COMP3001-Algorithms Lecture 1

f COMP 3001 - Algorithms'

LECTURER: Dr. Antonis Symvonis

OFFICE: Madsen Building G34a, Phone:9351-4291

OFFICE HOURS : Wednesday 10-12am.

TEXT: Cormen, Leiserson, Rivest, Introduction to Algorithms
ASSESSMENT

3 written assignments 20%

Mid-term test (13 April)  25%

Final Exam 55%

IMPORTANT !! No late assignments/projects will be marked.

o
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G/IPORTANT DATES
24 March (Wednesday, 5pm) :  Assignment #1 is due

12 April (Monday, 2pm): Assignment #2 is due

13 April (Tuesday): Mid-term test

26 May (Wednesday, 5pm): Assignment #3 is due
OTHER

e The final exam will be comprehensive

e The mid-term test will cover all the material taught before the lecture on
Monday 12 April.

e Results will be scaled

o
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ﬁv hat is an algorithm?

Input = | ALGORITHM | = Output

¢ An algorithm is a well defined computational procedure which takes some value,
a set of values, as input, and produces some value, or set of values, as output.

EXAMPLES

alphabetical order.

¢ A computational problem specifies the desired input/output relationship.

¢ An algorithm describes a specific computational procedure for achieving the
input /output relationship.

o

~

or

e Given a list of names, produce a new list that contains the same names sorted in

e Given a list of numbers, compute the maximum and the minimum among them.

/
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ﬁVhy do we study algorithms?

‘ The obvious solution to a problem is not always efficient.

EXAMPLE

You are given a map with n cities and the cost for travelling between each pair of
cities. Find the cheapest way to travel from city A to city B.

-40

A simple solution
1. Compute the cost of each path from A to B.

2. Select the cheapest one.

o
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ﬁuestion: What is the number of possible A — B paths? \

Answer:
Visit no intermediate city

1

9 1 9 (’I’I, _ 2)

” 2 intermediate cities (n—3)(n—2)

" 3 ” (n—4)(n—3)(n—2)
n— n— ! n— !

7 k 7 ("% ?)k! = (n—(2—i))! k! = (75—2E)k)!

e So, there are at least (n — 2)! paths.
e For large n, it is impossible to check all paths!

20! & 2.43 x 1018
50! ~ 3.04 x 10%4
100! = E (for my pocket calculator)

‘ We need to try more sophisticated solutions.

o /
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( quis N

You are given 12 balls of identical shape all of which, but one, are of equal weight.

The ball of different weight might be heavier or lighter. You are also given a balance.

By using the balance only 4 times, find the ball of irregular weight and the type of
irregularity (heavier/lighter).
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Gle sorting problem

Input: A sequence of numbers < a1, a2, a3, --- an >.
Output: A permutation (reordering) < af, a), af, --- aj, > of the
input sequence such that af <af <af < ---<aj,.
Example

<6,5,3,4,1,2 > = | SORTING | = < 1,2,3,4,5,6 >

How do we sort?

Algorithm 1: Insertion Sorting
e Process one input number at a time.
e Maintain a sorted sequence of the already processed numbers.

e Insert the currently processed number in the correct position of the

maintained sorted sequence.

o
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Gcample Input:< 6,5,3,4,1,2 >

Current element  Sorted list

6 <>

5 <6>

3 <5,6>

4 < 3,5,6 >

1 < 3,4,5,6 >

2 <1,3,4,5,6 >
NIL <1,2,3,4,5,6 >

Question: How good is insertion sort?

Good usually means fast!

o
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f Insertion_Sort(A)

1 for j «+ 2 to length(A) do

2 key + A[j]

3 /* Insert A[j] into the sorted sequence A[l...j — 1] */
4 i j—1

5 while ¢ > 0 and a[i] > key do

6 Ali + 1] « A4

7 1+—1—1
8 Ali+ 1] « key

1 i i n 5 6 : 4 1
| === |
A V s Vs 6 (i) 1

key

Qote: Insertion sort works “in place”.
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f Insertion_Sort(A) Cost Times
1 for j < 2 to length(A) do c1 n
2 key + A[j] c2 n—1
3 /¥ * 0
4 14— 7—1 cq n—1
5 while i > 0 and a[i] > key do  «¢5 }:;ﬂtj
6 Ali + 1] « A[4] co Zjﬁuj—n
7 i i—1 cr >t = 1)
8 Afi + 1] « key cs n—1

where, t; is the number of times the while loop is executed for the value j.
e T(n)=cin+ (c2+ca+cs)(n—1)+cs Z;-lzz tj + (ce +cr) Z;L:Q(tj -1

e The running time depends on n, the input size.

e For inputs of the same size, the running time might be different.

o
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C(n) =cin+(c2a+ca+eg)(n—1)+cs 2?22 t; + (c6 +c7) Z?:z(tj —-1)

= T(n) =

e If the input is

= T(n)=

e If already sorted input, ¢; =1, for j =2,3,---,n.

sorted in decreasing order, t; = j, for j = 2,3,---,n.

cin+ (c2+ca+ceg)(n—1)+es5(n—1)+0
cin+ (c2+ca+cs+cg)(n—1)
(c1+c2+ca+cs+cg)n—(c2+ca+cs+cg) [linear on n)

cin + (c2 +ca+cs)(n—1) +C5(@ — 1)+ (ce +C7)w

lesteaten)n? 4 (e1 +eatea+ D — L — % +og)n
—(c2 +ca+c5 +cg)

an? +bn+c a,b,c are constants [quadratic on n]

‘ In this course, we will be interested in the order of growth of the running time. ‘

o

/
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ﬁVorst case analysis \

e Gives an upper bound on the running time for any input.
e For some algorithms the worst case occurs very often (eg. searching).

e Some times the average case is as bad as the worst case.

Average case analysis

o

e Assumes that all inputs of a given size are equally likely to occur.

e For insertion sort: ¢; =j/2 —
T(n)=---=a'n?>+bn+c = 0(n?)

Worst case for insertion sort is also ©(n?).
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f Algorithm 2: Merge Sort

e Split the input into 2 parts.
e Recursively sort each of them.

e Merge the two sorted parts.

Example

1 2 3 1 5 6 8
yl N
8 6 3 7 5 1 2 4
3 6 7 8 1 2 4 5
y \ v \
8 6 3 7 5 1 2 4
6 8 3 7 1 5 2 4

o

14
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Gow do we merge?
Input: 2 sorted lists A and B of a and b elements, respectively.

Output: A sorted list C' which contains all the elements of A and B.
C is of length n = a + b.

Merge(A, B, C)
while there are still elements in A or B do
e Compare the “first” elements of A and B.

e Move the minimum of them from its corresponding list to the end of C.

Example
l _
g g
_ G |
A B c A B c A B c Time complexity: ©(n)
1]
13
4
6 5
- - L7
A B B C
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f Merge-Sort(A, p,r)

if p <r then
e g (p+7)/2]
e Merge-Sort(4, p, q)
e Merge-Sort(A,q+ 1,7)

e Merge(A,p,q,7)

Time analysis

in constant, i.e., ©(1) time.

e Let T'(n) be the time needed to sort for input of size n.
C(n) = 0O(n).
that ¢ = 1. Then

0(1) ifn<1
2T(3)+©(n) ifn>1

o

e If the problem size is small, say n < ¢ for some constant ¢, we can solve the problem

e Let C'(n) be the time needed to merge 2 lists of total size n. We know that

e Assume that the problem can be splitten into 2 subproblems in constant time and

/
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ﬁuestion: Is there a closed formula for T'(n)?

W.lLo.g., assume n = 2¥ (or, logn = k).

o(n n
T(n/2) T(n/2) = o(n/2) O(n/2) _ =
T(n/4)  T(n/4) T(n4)  T(n/4)

e —= o)
oa —= om

o(n4) ©O(n/4) o(n/4) O(n/4) — 0
A /\ (n

logn E

— = oM
0(1) 6(1) 6(1) o) eeceoe 0(1) 61 @1 o1 ——= o6
Total logn ©(n)

= T'(n) = O(nlogn)

o
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ﬁbservations:

e For merge-sort we have that:

Worst case time complexity
Average case time complexity = O(nlogn)

Best case time complexity

e For small values of n, insertion-sort might be faster than merge-sort.

We are interested in the performance of algorithms when the

input size n — oo.

We call this kind of analysis asymptotic.

o
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G this course ...

¢ We will compare different algorithms for the same problem with respect to their
asymptotic behaviour.

In that sense,

A O(n) algorithm is better than a
O(nlogn) algorithm, which is better than a
O(nlog?n) K
0(n?) »

O (n?) »
e(2m) K
O(n2™) K
O(n!) K
@(22”) ”
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Geading material

Introduction (from Cornem, Leiserson, Rivest).

Insertion sort (pp. 2-11).
Merge sort (pp. 11-15).

Suggested reading:

Mathematical foundations (pp. 21-135).
Pay special attention to the “Growth of functions” (pp. 23-41).

o

Note You are supposed to (AT LEAST) have seen the material in pp. 21-135.

COMP3001-Algorithms Lecture 2
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of edges.

Example

(3

V={1,2,3,4,5,6}

E={(1.3), (2.3), (2:4), (3:4). (4.9)}

e (&

Each edge is an ordered pair of vertices.

Why do we study graphs?

e To model a huge number of real life problems.

e They are an important tool in the design of algorithms.

o

g A

Definition A graph G is a pair (V, E) where V is the set of vertices and E is the set

COMP3001-Algorithms Lecture 3
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Girected graphs (digraphs) \

N C)

V={1,2,3,4,5}

E={(1.3), (2.3), (2:4), (3.3), (3:4)}

e Vertex 5 is an isolated vertex.

e Edge (3,3) is a self-loop.
d-(1)=d=(2)=d=(5)=0, d=(3)=3, d—(4)=2

dt(1)=1, d¥(2)=dt(3)=2, dt(4)=d*()=0

) dm(v) =) d*(v) =Bl

veV veEV

o

e The in-degree of vertex v is the number of edges entering vertex v (denoted d—(v)).

e The out-degree of vertex v is the number of edges leaving vertex v (denoted d*(v)).

/
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6 ndirected graphs

V={1,2,3,4,5}

E={(1,2), (1,4), (2,4), (3,5)}

Each edge e € E is an unordered pair of vertices.

d(1) =d(2) =d(4) =2, d(3)=4d(5) =1

oZd(v):2-|E|

vEV

o

e The degree of vertex v is the number of edges incident to v (denoted d(v)).
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Gultigraphs (directed or undirected)

¢ E is allowed to contain the same pair of vertices (u,v) more than 1 time.

V={1,2,3,4,5}

E={(1.3), (1.3), (1.3), (1.4),
(34).

@ @ (56:3), (5:3). (5,9), (5.5)}




COMP3001-Algorithms Lecture 3 25

é\ths in graphs \

A path of length k from a vertex u to a vertex v/ in graph G = (V, E) is a sequence

< wp, v1, v2,--+, vk > of vertices such that u = vg, v’ = v and (v;_1,v;) € E for
i=1,2,---,k.

e The length of a path is the number of o e’ 9
edges in it.

¢ A path is simple if all the vertices in it

are distinct. e e e

< 2,4,5,4,1 > is a path of length 4 (not simple).
< 2,4,1 > is a simple path of length 2.

e A path < wg, v1,---, vy > forms a cycle if v9 = vg and at least 1 edge is in the path.

<2,4,5,4,1,2 > is a cycle.
e A cycle is simple if all the vertices in it are distinct.

e A graph with no cycles is called acyclic.

o /
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ﬁonnected components \

e An undirected graph is connected if every

pair of vertices is connected by a path.

e The connected components of an undirected graph are the equivalence classes of

vertices under the “is reachable from” relation.

e Connected components:
{125}
{36}

(4) (6) (4
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Grongly connected components \

. . . 2 3
e A directed graph is strongly connected if L
every 2 vertices are reachable from each
other. 4 : 6

e The strongly connected components of a directed graph are the equivalence classes of
vertices under the “are mutually reachable” relation.

Strongly

connected  {1,2,6} {3,7,8} 4 {9 {5,10}
components

o /
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ﬁomplete graphs (cliques) \

¢ An undirected graph in which every pair of vertices is connected by an edge.

© B = EQvi=1)
oA ¢ :
W dw)=|V|-1,YweV
(3—14)

d-regular graphs

e An undirected graph in which
all vertices are of degree d.

) l
@—C0 (o
A clique is a (|V| — 1)-regular graph.

o /
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Gpartite graphs

¢ An undirected graph G = (V,E) in
which V is partitioned into two sets,
V1 and Vs, such that (u,v) € E im-
plies that either (v € Vi and v € V3)
or (u € Vo and v € V7).

DAGs (Directed Acyclic Graphs)

o

COMP3001-Algorithms Lecture 3

30

ﬁ‘rees

e An undirected connected graph with no cycles.

Weighted graphs

e A graph in which each edge is associated with a weight.
(022 +3)
30 40

Directed Undirected

50

Notational convention In asymptotic notation (©(), 2(), O()) the symbol V
denotes |V| and the symbol E denotes |E|.

o

/
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Gepresentation of graphs
Adjacency list representation
e An array Adj of |V| lists, one for each vertex in V.
e For each u € V, the adjacency list Adj(u) contains all the vertices v such that there
is an edge (u,v) in E.
(—H2) 1 e}z
2 e—taleg—aled—5]/]
(3) 3 tf2[+]
4 o —13[ ]
S|efti[ei—f2]ef—4[/]
Adj()
1 21
20/
(3) 3+ f2l+
a4l 1
(54 5 2]
Adj()
Qequired space: O(V + E).
COMP3001-Algorithms Lecture 3
ﬁdjacency matrix representation
if (¢,7) € E
¢ A |V| x |V| matrix A = (a;;) such that a;; = (3,4)
0 otherwise
12 3 45
(1) (2) 101001
2/1]0]1]0|1
Q 30/1|01|0
400101
51]1/0|1|0
1 2 3 4 5
10/1{0]0|12
2100/ 0[0|O
(3) 3ol1]0]1]0
4 0/ 0/0(0|O0
(5) (4) 50|1]/0|1]0
e The adjacency matrix of an undirected graph is symmetric along the diagonal.
Required space: O(V2).

o

/
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ée the adjacency list representation for sparse graphs (|E| is much less than |V|2)\
e Use the adjacency matrix representation for dense graphs (|E| is close to |V |?).

e When the adjacency list representation is used, it takes O(|V]) time to check if a
particular edge (u,v) exists.

e When the adjacency matrix representation is used, it takes O(1) time to check if a

particular edge (u,v) exists.

o /

COMP3001-Algorithms Lecture 3 34

f Breadth-First Search (BFS) I \

Given a graph G = (V, E) and a distinguished source vertex s, we want to

systematically explore the edges of G and to “discover” every vertex that is

reachable from s.

¢ BFS computes the distances (smallest number of edges) to all vertices reachable

from s.
e BFS builds a breadth-first tree from s which contains all such reachable vertices.

Example
r

o /
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@‘S expands the frontier between discovered and undiscovered vertices uniformly \
across the breadth of the frontier.

e It discovers all vertices at distance k from s before discovering any vertex at
distance k + 1.

e During its execution, BF'S colours the vertices white, grey, or black.

‘White vertices:  undiscovered.
Grey vertices: discovered, will be used to discover new vertices.

Black vertices: discovered, will not be used to discover new vertices.

Black vertices

G: __—frontier
Grey vertices

White vertices

o /
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@S(G,s) \

for each vertex u € V[G] — {s}
do color[u] = white

d[u] = +oo
w[u] = NIL
color(s] = grey
d[s]=0
n[s] = NIL

Q « {s} /* Q is a FIFO queue */
while Q # 0
do u = head(Q)
for each vertex v € Adj[u]
do if color[v] = white
then color[v] = grey
dlv] =du] + 1
wv] = u
enqueue(Q,v)
dequeue(Q)
color[u] = black

Analysis O(V + E)

k(Provided that the adjacency list representation is used.) j
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&
o
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ﬁoperties of BFS \

o dlu] = d(s,u)
(6(s,u) = The shortest path distance from s to u, is the minimum number of edges

in any path from s to u).

e BFS produces a breadth-first search tree consisting of vertices reachable from s such
that, for each vertex u in the tree, the simple path from s to w is also the shortest
path.

How to recover the shortest paths

Print_Path(G, s, v)

ifv=s
then print s
else if w[v] = NIL
then print “ no path from s to v exists”
else Print_Path(G, s, w[v])

print v

Analysis: Linear time on the number of vertices in the path.

e BF'S can be applied to both directed and undirected graphs.

o /
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Geading Material

85.4 “Graphs” pp. 86-90.
623.1 “Representation of graphs” pp. 465-469.

§23.2 “Breadth-First Search” pp.469-477.
(Proofs of properties are not required but are highly recommended.)

Suggested Reading
85.5 “Trees” pp. 91-97

Suggested Exercises
5.4-1 - 5.4-7 pp.91-97.
23.1-1 — 23.1-7 pp.468.
23.2-1 — 23.2-6 pp. 476.

o
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f Depth-First Search (DFS)I

e DFS searches “deeper” in the graph whenever possible.

e Edges are explored out of the most recently discovered vertex w that still has
unexplored vertices leaving it.

e DFS time-stamps each vertex.

d[u] : the time wu is first discovered.
f[u] : the time w is finished, i.e., u’s adjacency list has been completely
examined.

e DF'S builds a depth-first forest composed of several depth-first trees.

o
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Gcample
u

e During its execution, DF'S colours the vertices white, grey, or black.

White vertices: undiscovered vertices.

Grey vertices: discovered vertices that still have unexplored edges leaving
them.
Black vertices: discovered vertices of which the adjacency lists are completely
examined.
d(u) f(u) time_
u iswhite 7 u isgrey - u isblack

41

42
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/ orsco)

for each vertex u € V[G]
do color[u] = white
7[u] = NIL
time = 0
for each vertex u € V[G]
do if color[u] = white
then DFS_visit(u)

DFS_visit(u)

color[u] = grey
time = time + 1
d[u] = time
for each vertex v € Adj[u]
do if color[v] = white
then w[v] = u
DFS_visit(v)
color[u] = black
time = time + 1

flu] = time

Qnalysis O(V +E)

COMP3001-Algorithms Lecture 4
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G‘operties of DFS \

¢ Classification of edges

1. Tree edges are edges in the depth-first forest Gr. Edge (u,v) is a tree edge if v
was discovered by exploring edge (u, v).

2. Back edges are those edges (u,v) connecting a vertex u to an ancestor v in the
depth-first tree.

3. Forward edges are those edges (u,v) connecting a vertex u to a descendant v in

the depth-first tree.

4. Cross edges are all other edges. They are edges between vertices in the same
tree, as long as one vertex is not the ancestor of the other, or edges between

vertices in different depth-first trees.

¢ Parenthesis structure

The discovery and finishing times have a parenthesis structure.

o /
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— Treeedge
””” > Back edge
> Cross edge
— Forward edge

e e

k 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 j
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éow to classify edges \

e Each edge (u,v) can be classified by the colour of vertex v that is reached when the

edge is first explored.

tree edge if v is white.
. back edge if v is grey.
(1, w) 1 forward edge  if v is black and d[u] < d[v].
cross edge if v is black and d[u] > d[v].

Theorem In a depth-first search of an undirected graph G, every edge in G is either
a tree edge or a back edge.

o /
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f Topological sort I \

¢ A topological sort of a DAG G = (V, E) is a linear ordering of all of its vertices such

that if G contains an edge (u,v) then u appears before v in the ordering.

e If the graph is not acyclic, then no linear ordering is possible.

Application Denotes precedences among events.

Example Course prerequisites.

Discrete structures

Theory of
E—

Digital logic Automata
theory Programming
languages

Computer Operatin
archi ?ectures sypsterems 9
Assembly
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f Topological Sort(G) \

1. Call DFS(G) to compute the finishing times f[u] for each vertex w.

2. As each vertex is finished, insert it at the front of a linked list.

3. Return the linked list of the vertices.
Time analysis O(V + E)

Example

@ 15/16
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Gamma A directed graph G is acyclic if and only if a depth-first search of G yielh
no back edges.

Proof

“—>" (@ is acyclic = G has no back edges

W | |
Suppose there is a back edge (u, v). Then, v is an ancestor
of u in the depth-first forest. Thus, there is a path from
v to u in G, That path together with (u,v) form a cycle.
—4—

“=" (@ has no back edges = G is acyclic

u Assume that G contains a cycle c. We will show that a
\ A depth-first search yields a back edge.

Vi Let v be the first edge discovered in c¢. By appropriately
" arranging the vertices of ¢ in the adjacency lists, we can
) make the DFS reach u and thus, u becomes a descendant

(o of v. Then, (u,v) becomes a back edge. —+«

o /
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Gmeorem Topological_Sort(G) produces a topological sort of a DAG G \
Proof

It suffices to show that for any pair of vertices u, v € V, if there is an edge in G
from u to v , then f[v] < f[u].

Consider any edge (u,v) explored by DFS(G).

When (u,v) is explored, v cannot be grey. (v would be an ancestor of u, and thus,
(u,v) a back edge).

Thus, v is either white or black.

e If v is white, it becomes a descendant of u. = f[v] < flu].

e If v is black, then v is finished. = f[v] < f[u].

o /
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Geading Material

§23.3 “Depth-first search”.

§23.4 “Topological sort”.

Suggested Exercises
23.3-1, 23.3-2, 23.3-4, 23.3-6, 23.3-7, 23.3-8.
23.4-1, 23.4-2, 23.4-3, 23.4-5.

o
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s

o

The Divide-and-Conquer Approach.

e A recursive approach
— Divide the problem into a number of subproblems.
— Conquer the subproblems by solving them recursively.

— Combine the solutions of the subproblems into the solution of the original

problems.
Example: Merge Sort
Analysis: Based on recurrence relations.

~
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ﬁhe nt* Power of an n x n Matrix

Input:
Output:

An n x n matrix A.

A=A X Ax---x A
~—_—

n times

Fact: A? = A x A can be computed in O(n?) time.

¢ A simple iterative approach

(3)

(1) RESULT =A
(2) fori=2to ndo

RESULT = RESULT x A

¢ Analysis

Step 1:
Step 2:
Step 3:
Total:

o

Question:

@

n?)

©)

n)

(
(
( 4
(

@

n*) [n — 1 operations of O(n?) each]

nt)

@

Can we do better?
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6 divide-and-conquer approach
Assume that n = 2% (or, logn = k). Then,

n times % times

A\ A\

2 times

A\

7~ ™

A" = AxAx---xA = (AxAx---xA)x(ﬁxAx---xE) or,

A" = (AZ)x (A4%) = ((A%)X(A%))x((A%)X(A%)) - ... or,

——
logn
An
/\
n2 AV2
AV4 A4 Aé\A”"‘
logn A A A A
A R S IS
/\ o0 000 /\ /\
k A A AA A A AA
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ﬁdivide-and-conquer algorithm

RESULT = A
for : =1 to logn do
RESULT = RESULT x RESULT

Time analysis: ©(n3logn)

can be computed in O(f(n)logn) time.

(n?) operations.

o

More generally: If matrix multiplication can be done on O(f(n)) time then A"

Comment: f(n) = Q(n?), i.e., to multiply two n x n matrices we need to perform

/
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Gnary search \
Input: A sorted array A of n elements and an element key.

Output:  The position of key in A. If key is not in A we return 0.

e A trivial algorithm

Search the array from the beginning to the end.

If you meet key during the search report its position.

Otherwise return 0.

Analysis: 0O(n)

This is a bad design since we never took into account the fact that the array is
initially sorted.

o /
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6 divide-and-conquer approach \

Assume that n = 2 (or, logn = k) and that A is sorted in increasing order.

Binary_search(A, 1, j, key) /* Searches for key in A[i..j] */
if ¢ > j return(0) and exit
if i < j do
middle = | (i + 5)/2]
if key = A[middle] then return(middle) and exit
else if key < A[middle] then Binary_search(A,, middle — 1, key)
else Binary_search(A, middle + 1, j, key)
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Lecture 5

unsuccessful search.

4K

5 (k+1)

o

Proof Consider the binary decision tree for Binary_search.

e A successful search ends at a O node.
¢ An unsuccessful search ends at a O node.
e O nodes exist at levels 1..k.

e O nodes exist at levels &k and k + 1.

Georem If n is in the range [28—1,2F), Binary_search makes at most k elemeh
comparisons for a successful search and either k — 1 or k comparisons for an

COMP3001-Algorithms

Lecture 5
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@e time for a successful search is O(logn) while the time for an unsuccessful sear(h

is ©(logn).

In conclusion

Successful searches

Unsuccessful searches

Best case

Worst case

Average case

e(1)
O(logn)
O(logn)

O(logn)
©(logn)
O(logn)

Question Will it help if we split the list into 3 parts (ternary search)?
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Gnding the convex hull \

e The convex hull of a set of n points in the plane is a sequence of points from the set

which defines a convex figure enclosing all points.

Example

e A divide-and-conquer approach

e Split the points into 2 sets, each containing n/2 points.
e Recursively compute the two convex hulls.
e Combine the 2 hulls.

o /
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Gcample \

_%'\
O
el

Problem It is not easy to combine the solutions.

Alternative Split the points differently.

Property The points with the maximum and minimum y-coordinates belong in
the convex hull. Let these be points A and B, respectively.

o /
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gplit the points into 2 sets based on their location with respect to line AB.
Solve the smallest problems.

Combine them.

Time analysis
Average analysis: O(nlogn)

Worst case analysis: O(n?)

o

COMP3001-Algorithms Lecture 5

Geading Material

§1.3 pp. 11-15.
§4.3 pp. 66—69 Kingston’s book, (Convex hull material).

“Binary Search”, “A™” are not in the book.

Suggested Reading
84.3 “The master method” pp. 61-64.

84.4 “Proof of the master theorem” pp. 64-72.

o

65

66
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Gatrix multiplication \

Input: Two n X n matrices A and B.

Output: Matrix C such that C = A x B.

e The conventional method

Clijl = Y Alisk] - Blk,j]

1<k<n

/* Conventional matrix multiplication. C = A x B */

fori=1ton
for j=1ton
for k=1ton
Cli, j] := C[i, 5] + Ali, k] - Blk, j]

Analysis: 0O(n?)

o /
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6 divide and conquer approach \

Assume that n = 2 (or, k = logn).
If AX Bis

A1 Aip y Bii Biz2 | | Ciqn Cip (1)
Azl Az By1 Bap Ca1 Ca2

] )

then

Ci1=A11%xB11+A12x By
Ci2=A11%xB12+ A12 X By o

(2)
Co1 =A21 X B1,1+A22 X Ba1
C22 =A21 X B12+ Az2 X By
Time analysis
b n<2
T(n) = (3)

ST(2) +en? n>2
N 2 /
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Gthis method better? \

(n)—8T( )+en? = 8(8T(%) +c(R)?) +en? =
=82T(%) +cn? (1+8(3)?) =
= g2 (8T( )+ e(2)?) +en? (148(3)%) =
= 837( )—|—cn (1+8(3)2+82(%)?) =

=8’°T( )+en® (1+8(3)° +87(55) + -+ +87 (551)7)
o(n?)
° 8k — 810g2n — plog28 — 3

o cn? (1+8(l)2+82(2%)2+ +8k_l(2k1—1 ) — cn2210g2n lg 2L)2 _

kch Zloan 12j Sc,n3 j
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Gnstea,d of (?7?7) we had: \
b n<2
T(n) = (4)

TT(%)+cn? n>2

T(n) =70(%) +en? = 7(T0(%) +c(2)?) + en?® =
=727(%) +en? (1+7(3)?) =
=72 (TT(%) +c($)?) +en? (1+7(3)?) =
=73T(%) +en? (1+7(3)% + 72(%)?)

=7ET(1) + en? (1+7(3)2+72(H)2 + -+ + 7 U(550)?)
:@(nlog27) — @(n2'71)

o en? (1+7(3) +72<%> b T (GR)?) = en? B T (L)2 =

k QZloan 1 = ¢en cl( )log2n_cclnlog27 j
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Grassen’s matrix multiplication

A1 Al 9 B1,1 Bip Ci1 Cip2
Ax1 Ao B21 DBa2p C21 Cap2

E] E]

(A1,1 + A22) x (B1,1 + B2,2)
(A2,1 + A2,2) X B1,1
A1,1 X (B1,2 — B2,2)
Az2 X (B2,1 — B1,1)
(A1,1 + A1,2) X B2 2
(A2,1 —A1,1) X (B1,1 + B1,2)
= (A1,2 — A22) X (B2,1 + B2,2)

P
Q
R
S
T
U
1%

Cipn=P+S-T+V
Cipo=R+T
Co1=Q+S
C22=P+R-Q+U

e 7 multiplications and 18 additions/subtractions.

e T(n) = ©(n27) [From the solution of (?7).]

o

COMP3001-Algorithms Lecture 6
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ﬁ)me results ...

e We cannot multiply two 2 X 2 matrices using less that 7 multiplications.

e We can do matrix multiplication in O(n?-37) time.

Which method to use?

e For very small matrices use the “traditional” method.
e For moderate size matrices use Winograd’s method.

e For very large values use Strassen’s method.

o

~
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COMP3001-Algorithms

ﬁomputing a local minimum

Definition Given an array A[0..n 4+ 1] we say that A[:], 1 < i < n, is a local
minimum if Ali — 1] > A[{] < At 4+ 1]

Example
c7lalal2[als] 5] 2] 4]

local minimum local minimum

Input: An array A[0..n + 1] such that A[0] = A[n 4+ 1] = 400

Output:  The position of a local minimum.

e A trivial algorithm

Traverse the array from left to right and for every 3 consecutive
elements check if element_1 > element_2 < element_3.

Analysis ©O(n)

o

~
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6 divide-and-conquer approach

If in the sub-array A[i..j], 7 — ¢ > 2 it holds that A[:] > A[i + 1] and

Fact
Alj — 1] < A[j] then in Ai..j] there exists a local minimum.

Because A[0] = A[n + 1] = 400 we must have a local minimum in A.

b-1 b b+l

if A[b] > A[b+ 1] = 3 a local minimum in A[b..j]
else if A[b] > Ab—1] = 3 a local minimum in A[:..b]

else A[b] is a local minimum

Analysis O(logn)

o
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Geading Material

831.1 “Operations on matrices” pp. 733-735.
831.2 “Strassen’s algorithm...” pp. 739-745

“Local minimum” is not in the book.

Suggested Reading

84.3 “The master method” pp. 61-64.
84.4 “Proof of the master theorem” pp. 64-72.

o

(the notation is different from that used in lectures).

COMP3001-Algorithms Lecture 6
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f The Greedy Method. \

Optimization problems

e In such problems there can be many possible solutions.

e Each solution has a value. We wish to find a solution with the optimal

(maximum or minimum) value.

Example Find the shortest path from s to t.

Path Cost

s—2—4—t 24+134+20=235

s—1—-5—-2—-4-1 3+ 14412+ 13 + 20 = 62

s—3—4—-1 1410420 =31 j
COMP3001-Algorithms Lecture 7 78

4 )

‘ A greedy algorithm always makes the choice which looks best at the moment. ‘

It makes a locally optimal choice in the hope that this choice will lead to a globally
optimal solution.

NOTE When we claim that we have a greedy algorithm that computes an optimal
solution to an optimization problem we must give a proof for our claim.

We will study:

e Activity selection problem.
e Huffman codes.

e Prim’s algorithm for minimum spanning trees.

Dijkstra’s algorithm for single source shortest paths.
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Lecture 7

Gn activity selection problem

Input:

time fi, fi > s;.
Output:

Example
Resource: A lecture room.
Activities: Lectl [1..3)pm

Lect4 [3..5)pm

Possible schedules

A set S ={1,2,---,n} of n proposed activities all of which wish to
use a resource. For each activity i, its start time s; and its finishing

A maximum size set of mutually compatible activities.

e Activities ¢ and j are compatible if the intervals [s;, f;) and [s;, fj) do not overlap.

Lect2 [2..3)pm
Lect5 [5..7)pm

Lect3 [4..6)pm

Al 1 | | 5 | B 2] \ 3 |
1 2 3 4 5 6 7 1 2 3 4 5 6 7
c [ 2] | 5 |
k 1 2 3 5 6 7
COMP3001-Algorithms Lecture 7

6 first greedy approach ...

Select the activity of least duration from those that are com-

patible with previously selected activities.

o It works for the following instance:

o It fails for the instance:
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6 second greedy approach ... \

Select the activity which overlaps the fewest activities out of
those that are compatible with previously selected ones.

o It works for the following instance:

1
t
o It fails for the instance:
— ] — ]
— ] — ]
[ ] [ [ ]
[ ] [ ] ]
t
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6 greedy solution \

Assume that the activities are in order of increasing finishing times, i.e.,
f1 < fa <+ < fn. (If they are not, we sort them in O(nlogn) time.)

Greedy_activity_selection(s, f)
n = length(s)
A={1}

Always select the activity with j=1
the earliest finishing time that for : =2 to n do
can be legally scheduled. if s; > f; then
A=AuU{i}
j=1
return A

e Our greedy choice is the one that maximizes the amount of unscheduled remaining
time.
e Set A collects the selected activities.

¢ j specifies the most resent addition to A.

Time complexity: O(n)

o /
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Finising time
Starting time

s

11 12 13 14

9 10

8

e Y B BN o
e —
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O 4 N ™M <
<t 0O O~ 0 0O A A A A H
N
— M O 1O ™M 1 © 0 0 N «
o
78911

<

Lecture 7
Theorem 1 Algorithm Greedy_activity_selection produces solutions of maximum

COMP3001-Algorithms
éoving the greedy method correct

size for the activity selection problem.

Lemma 1 There is an optimal solution that begins with a greedy choice, i.e.,

activity 1.

ptimal solution of the activity selection problem.

Proof Let A C S bean o

e Order the activities of A by finishing time.

e Let k be the first activity.

e If k =1 we are done.

o If kK # 1 then A — {k} U {1} is also an optimal solution (f1 < fx and {1} € A).

rest of activities

A-{K} U {1}

rest of activities
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Gamma 2 If A is an optimal solution of the original problem S, then A’ = A — {h
is an optimal solution of the activity selection problem S’ = {i € S:s; > f1}.

Proof
e Let A contain m activities. =—> A’ contains m — 1 activities.

e Assume that A’ is not optimal, i.e.,
there exists a set B of activities that is a valid schedule that contains more activities
than A’, |B| > m — 1.

Then, BU {1} is a valid schedule for S and |B U {1}| > m. Thus, A is not optimal.
This is a clear contradiction since we assumed it is.

o /
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Goof of Theorem 1 (By induction) \

e Basis: Lemma 1

e Induction step: Lemma 2

After each greedy choice is made, we are left with an optimization problem of the

same form as the original problem.

By induction on the number of choices made, making the greedy choice at every step

produces the optimal solution.
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Geading Material

§17.1 “An activity-selection problem” pp. 329-333.

§17.2 “Elements of the greedy strategy” pp. 333-334

Suggested Exercises

17.1-2, 17.1-3.

o

(up to “Greedy versus dynamic programming”).

COMP3001-Algorithms Lecture 7
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éuffman codes \

We consider the problem of designing a binary character code wherein each
character is represented by a unique binary string.

e Fixed-length codeword.

e Variable-length codeword.

‘ a b c d e f
Frequency (in thousands) | 45 13 12 16 9 5
Fixed-length codeword 000 001 010 011 100 101
Variable-length codeword 0 101 100 111 1101 1100

e We need 300,000 bits to encode a file consisting of 100,000 characters (a-f only) if
coded by the fixed-length codewords.

o If the variable-length codewords are used we need:
1000-(45-1 + 13-3 + 12-3 4+ 16-3 + 9-4 + 5-4) =224, 000.

About 25% savings of space.

o /
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ﬁeﬁx—free codes: Codes in which no codeword is also a prefix of another \
codeword.

¢ Prefix-free codes simplify encoding and decoding.

abc” @ 000 001 010  (fixed-length code)
0 101 100  (variable-length code)

113

Encoding:

Decoding: We use binary trees.

Fixed-length (non optimal) Variable-length

e An optimal code for a file is always represented by a full binary tree in which every
non-leaf node has two children.

e A tree of an optimal prefix code for a set C of characters has exactly |C| leaves and

k|C| — 1 internal nodes. j
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@)nsider a tree T corresponding to a prefix-free code for alphabet C. Also consideﬁ

a file over C' and let:

e f(c) denote the frequency of ¢ in the file, and
e dr(c) denote the depth of ¢’s leaf in the tree T'.

The number of bits required to encode a file is:

B(T) =Y f(c)-dr(e)

ceC

B(T) is defined to be the cost of tree T'.

Problem Given an alphabet C and a set of frequencies for the characters in C

find a coding scheme (tree) of minimum cost.

o

/

COMP3001-Algorithms

Lecture 8
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s

Huf fman(C)
/* Q is a priority queue */
n=|C|
Q=C
fori=1ton—1do
z = allocate_node()
z = extract_-min(Q)
y = extract-min(Q)
left[z) ==
right[z] =y
712 = £l + 1]
insert(Q, z)
return extract_-min(Q)

o

@, o8 @
0 1 0 1
[e9] [f5] b:13

Time complexity O(nlogn) (if Q is implemented as a binary heap).

~

@), @5 (=9
0 1
€] [r5]

b:13
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ﬁorrectness of Huffman’s algorithm \

Theorem 1 Algorithm Huffman produces an optimal prefix-free code.

Lemma 1 Let z and y be two characters in alphabet C having the lowest
frequencies. Then, there exists an optimal prefix-free code for C in which the
codewords for z and y have the same length and differ only in the last bit.

Proof Take a tree T representing an arbitrary optimal prefix code. Modify it to
satisfy the lemma.

e Let b, c be two characters that are sibling leaves of maximum depth in 7.
e Assume that f(b) < f(c¢) and f(z) < f(y)-

e Exchange b with . (= B(T) > B(T"))

e Exchange ¢ with y. (= B(T'") > B(T"))

o /

COMP3001-Algorithms Lecture 8 94

Gamma 2 Let T be a full binary tree representing an optimal prefix code over ah
alphabet C. Consider any 2 characters x and y that appear as sibling leaves in T,

and let z be their parent. Then, considering z as a character with frequency

f(z) = f(z) + f(y), the tree T! = T — {x,y} represents an optimal prefix code for
alphabet C' = C — {z,y} U {z}.

Proof (by contradiction)

o B(T) = B(T') + f(z) + f(y)-
e Assume that T’ is not optimal. =— 3 T” for C' : B(T”) < B(T").

¢ We can obtain from T” a prefix code for C with cost B(T”) + f(z) + f(y) < B(T).
This is a clear contradiction since we assumed that B(T) is optimal.

Proof of Theorem 1 Follows from Lemmata 1 and 2.

o °/
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Gcercise 17.3-1 Prove that a binary tree T" which is not full cannot represent a,h
optimal prefix code.

Proof (by contradiction)

e Assume that we have a binary tree which is not full and it represents an optimal
prefix code.

e There is an internal node of T" which contains only 1 child.

e By contracting that node with its child we get a binary tree T’ that represents a
code for the same file and is of less cost than T'. This is a clear contradiction since T
was assumed to be of minimum cost.

Contraction
—_—

COMP3001-Algorithms Lecture 8 96

Geading Material \

§17.3 “Huffman codes” pp. 337-344.

Suggested Exercises

17.3-2, 17.3-4, 17.3-6.
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f Single-source shortest path problems I \

Mbotivation

e They have a greedy solution (Dijkstra’s algorithm).

e They have many real-life applications.

Examples

e Given a road map of North America (or of any other place) find the distance from
New York to all other cities on the map.

Represent cities as vertices,

roads as edges, and

distances between cities as edge weights.
Then, find the shortest paths to all vertices (representing cities) from the
vertex that represents New York.

o /
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ﬂven the schedules of all airline flights and their flying-times find what is the fast&s}
way to go from New York to Carbondale, Illinois.

St Louis

Total=3:15
Solution (

Carbondale

O

:20 Total=4:05

. . New York
Represent cities as vertices,

flights as edges, and flying-
times as edge weights.

Atflanta

¢ What if we want to take waiting time between flights into account?

Total=7:30
45 (

New York Carbondae
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@ngle-source shortest path problems \

Input: e A weighted, undirected graph G = (V, E) with weight function

w : E — R mapping edges to real valued weights.
e A source node s.

Output:  The shortest paths from s to any other vertex in G.

Definitions
The weight of path p = (vo,v1,---,vk) is the sum of the weights of the constituent
edges
k
w(p) = Zw(vi—l,vi)
=1

The shortest path weight from u to v is defined by:

min{w(p) : u > v}  if there is a path from u to v
d(u,v) =

+00 otherwise

o /
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Gegative weight edges \

Cycles that contain negative weight edges:
e cost of cycle > 0.
e cost of cycle < 0.

o /
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éow to represent the shortest paths \

e In the following we concentrate only on finding the costs of the shortest paths.

e The actual paths can be constructed with the same algorithm we used to construct
paths from a breadth first search tree.

o

/
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ﬁptimal substructure of a shortest path \

Lemma  (Sub-paths of shortest paths are shortest paths)

Assume a weighted directed graph G = (V, E) with weight function w and let

p = (v1,v2,--,v) be a shortest path from vy to vg. For 1 <i < j <k let

pi,j = (vi, -+, v;) be the sub-path of p from v; to v;. Then p; ; is a shortest path.

Proof (By contradiction)

DA AN EA )

Pij

o w(p) = w(p1,i) + w(pi,j) + w(pj k) and w(p) is minimum.

¢ Assume p; ; is not minimum. Let p; j be a minimum path.

. w(p) ;) < wipi ).

e Then p is mot a minimum path. A clear contradiction.
(The path p’ : p1,; —p) ; — Pk has smaller weight than p.)

o
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ijstra’s algorithm \

e It solves the single-source shortest paths problem on weighted graph G = (V, E) with
nonnegative edge weights.

e S: set of vertices whose final shortest path weights from the source s have been
determined.

e d[v]: an upper bound on the weight of a shortest path from source s to v.

e (): a priority queue containing vertices in V' — S sorted by their d values.

Dijkstra(G,w, s)
for each vertex v € V do
d[v] = o0
dls]=0
Q=V
while Q # 0 do
u = Extract_min(Q)
S=SU{u}
for each vertex v € adj[u] and v € V — S do
if d[v] > d[u] + w[u,v] then
d[v] = d[u] + w[u, v]

o /
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Gcample \

Iteration S w d[s] dla] d[b] d[c] d[d]
initial 0 - 0 400 400 40 4
1 {s} s 0 10 +4oo 30 100
2 {s,a} a 0 10 60 30 100
3 {s,a,c} c 0 10 50 30 90
4 {s,a,b,c} b 0 10 50 30 60
5 {s,a,b,e,d} d 0O 10 50 30 60

Time analysis
e If  is maintained as an array: O(n?2).

e If ) is implemented as a binary heap: O(ElogV).

k(This is better for sparse graphs.) j
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ﬁorrectness of Dijkstra’s algorithm \

e d[v], for any vertex v, contains the cost of a path that passes only through vertices in

S.

e Whenever we insert a new vertex w in S, d[w] contains the cost of the shortest path
from source s to w.

Proof

Consider a hypothetical shorter path from s to w that leaves S to go to = and then
it reaches w.

If this path is shorter, then  had to be selected by the algorithm instead of w. Thus
we didn’t execute the algorithm correctly.
(Note how crucial is the fact that we do not have negative weights.)

O

o /
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(d[v] is always the cost of the shortest path from s to v that passes from vertices inh

Proof

When we add w in S we have to make sure that if there is a shortest path to v that
passes through w, we update d[v] correctly.

e If the path goes through the old S to w and then directly to v, we are updating it
correctly.

e What if the path goes to w, then to € S and then to v? (The algorithm does
nothing to cover this case.)

This case cannot occur!

Since z was placed in S before w, the shortest of all paths from the source s to z runs

through the old S alone. Thus, the path to x through w is no shorter than the path

directly trough S. So, we cannot improve d[v].

N D/
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Geading Material \

825 “Introduction” pp. 514-518.
Lemma 25.1 pp. 519.

§25.2 “Dijkstra’s algorithm”.

Additional Reading (optional)

§25.1 “Shortest paths and relaxation”.

Suggested Exercises

25.2-1, 25.2-2.

o /
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f Minimum spanning trees' \

Motivation

e Nice greedy solutions.

e They have many real-life applications.

Definition Let G = (V, E) be an undirected connected graph. A subgraph
T = (V,E') of G is a spanning tree of G iff T is a tree.

Example A complete graph of 4 nodes together with 3 of its spanning trees.

O ) EA

o /
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@1 weight is associated with each edge of the graph, we are interested in finding a\
minimum- weight spanning tree.

e The total weight of a spanning tree T of graph G is:
w(T) = Z w(e)
ecT

where e is an edge and w(e) is its weight.

Application In the design of electronic circuits we often want to make n pins
electrically equivalent by wiring them. We want to find an “efficient” wiring, i.e.,
one of minimum cost. The cost to connect any two pins is given.

Solution
e Represent each pin by a vertex.
e Represent each possible connection by an edge of appropriate weight.

Then, find a minimum spanning tree.

o /
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ﬂrowing a spanning tree \

Input: A connected undirected graph G = (V, E) with a weight func-
tion w: E — R.

Output: A minimum spanning tree for G.

e A generic algorithm

Generic_ M ST(G, w)

A=10

while A does not form a spanning tree do
Find an edge (u,v) that is safe for A.
A=AU{(u,v)}

return A

Algorithm Invariant A is always a subset of some minimum spanning tree.

e An edge (u,v) is a safe edge for A if it can be safely added to A without violating
the invariant.

If A does not form a (minimum) spanning tree, we can always find a safe

k edge for A. j
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Gow to find a safe edge for A \

Lemma Consider any vertex v. Let (v, w) be the incident edge on v of minimum

weight. Then, there exists a minimum spanning tree which contains (v, w).

Proof (By contradiction)

e Assume that such a tree does not exist.

e Consider any minimum spanning tree

T.

Let (v, ) be the edge of T incident to
v.

¢ By adding (v, w) in T we introduce a cycle. We can break it by removing (v, z). This
gives us the new spanning tree T = T — {(v,z)} U {(v, w)}.

e w(T") < w(T) since w((v,w)) < w((v,z)). Thus, T’ contains (v, w) and does not
have weight greater than the minimum spanning tree T. A clear contradiction.

O
t By the above lemma we know how to find the first safe edge. j
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Gamma Let A be a subset of a minimum spanning tree and S be the set of \
vertices that are adjacent to edges in A. Let (v, w) be an edge of minimum weight

such that v € S and w € V — S. Then, (v, w) is a safe edge for A.

Proof (By contradiction)

e Let T be a minimum spanning tree with edge (v, z) connecting S and V — S.

o T/ =T —{(v,2)} U{(v,w)} is a spanning tree of weight smaller or equal to that of T
and also contains (v, w). A clear contradiction.

o /
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Gcample
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G‘im’s algorithm \

e During execution of the algorithm all vertices not currently in the tree reside in a

priority queue @ based on a key field.
e For each vertex v € V, key[v] is the minimum weight of any edge connecting v to a
vertex in the tree.

e 7[v] denotes the “parent” of v in the tree.

MST _prim(G,w,r) /* r is the root of the spanning tree */

for each u € V do key[u] = 400
key[r] =0
wlr] = nil
Q=V
while Q # 0 do
u = extract_min(Q)
for each v € adjacent_list(u) do
if v € Q and wu,v] < key[v] then
wv] =u
key[v] = w(u,v)

Analysis: O(VlogV + Elog V) = O(Elog V) if the queue is implemented as a heap.
k O(VlogV + E) if the queue is implemented as a Fibonacci heap. j
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ﬁonclusion \

e A lot of optimization problems suggest a trivial algorithm. Usually it is not efficient.

Examples
e Minimum Spanning Trees

Construct all Spanning Trees.
Find the one of minimum weight.
Analysis: O (C (JE|,n —1) - n)
e Single-source shortest paths (nounegative weights)
For each vertex v, construct all paths from the source s to v.

Find the one of minimum length.

Analysis: O (C (|E|,n—1)-n-n)

e Finding properties of the optimal solution leads to efficient algorithms.

o /
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Geading Material \

824 “Minimum spanning trees” pp. 498-499.

§24.1 “Growing a minimum spanning tree” pp. 499-504.

(The presentation in the book is different from that made in class.)

§24.2 “Prim’s algorithm” (only) pp. 505-511.

Suggested Exercises

24.1-1, 24.1-5, 24.2-2.

o /

COMP3001-Algorithms Lecture 10 118

4 )




COMP3001-Algorithms Lecture 11
f Dynamic Programming I
Characteristics

e Optimal substructure.

e Overlapping subproblems.

We will examine:
e Fibonacci numbers.
e Matrix-chain multiplication.
o Longest common subsequence.

e All-pairs shortest paths.

o

COMP3001-Algorithms Lecture 11

Gbonacci numbers

The nt" Fibonacci number F(n) is defined by the recurrence relation:

F(0)=0
F(1)=1
F(n)=F(n—1)+ F(n—2) forn > 2

An obvious algorithm to compute F(n), n>1

Fibinacci(n)
if n < 2 then return(n)
else return(Fibonacci(n — 1) + Fibonacci(n — 2))

1 n <2

Analysis T(n) =
Tn—1)4+T(n—-2) n>2
— T =22 = ) =)

F(2)=1, F(3) =2, F(4) =3, F(5) =5, F(6) =8, F(7) =13, F(8) =21, ---

119

120

Q: 145 — 161803, ¢ =15 = —0.61803
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gor n = 5, the recursion tree is:

We compute:

o

(Fib(4)

(Fib(3)
GLOMGEE) @@

£(3)
F(2)
£(1)
£(0)

o o

2 times,
3 times,
5 times,
3 times.

This is redundant work!

(Fib(3)
by (EbE@) b))
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Gbetter solution

e Compute F(n) in a bottom-up manner.

AJ0] =0
Al]=1

Analysis:

©(n)

Non_Recursive_Fibonacci(n)
/¥ A[l..n] is an array in which we store F(1)---F(n) */

for : =2 ton do
Ali)=A[i — 1]+ A[i — 2]
return Afn]




COMP3001-Algorithms Lecture 11 123

f Matrix-chain multiplication I \

We are given a sequence (chain) < A1, As, ---, A, > of n matrices and we want to

compute the product A1 X Ag X -+ X Ap.

o (A1 x Ag) x Az = A; X (A2 X A3), i.e., matrix multiplication is associative.

— All parenthesizations will give the same result.

Example For n =4, there are 5 distinct parenthesizations:

(A1 x (A2 x (A3 x A4)))
(A1 x ((A2 x A3) x Ay))
((Al X Ag) X (AS X A4))

((A1 X (A2 X Ag)) X A4)

(((A1 X Ag) X A3) X A4)

o /
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6eﬁnition A product of matrices is fully parenthesized if it is either a single \
matrix or the product of two fully parenthesized matrix products surrounded by
parentheses.

Note We can generalize the definition to any kind of binary operator and operands.

Exercise Show that a full parenthesization of an n-element expression has exactly
n — 1 pairs of parentheses. (A binary operator is assumed.)
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f Matriz_multiply(A, B) \

if columns(A) # rows(B)
then error “incompatible dimension”

else for i = 1 to rows(A) do
for j =1 to columns(B) do
Cli,j1=0
for k=1 to columns(A) do
Cli,j] = Cli, j] + Ali, k] - Bk, ]

e If Ais a p X ¢ matrix and B is a ¢ X » matrix then C is a ¢ X r matrix.

e The algorithm performs exactly pgr multiplications.

Example A; =10x 100, A =100x5, A3 =5x50

((A1 x A2) x A3) needs (10-100-5)+ (10-5-50) = 7,500 multiplications.
(A1 x (A2 x A3)) mneeds (10-100 -50) + (100 -5 -50) = 75,000 multiplications.

— The order in which we perform the multiplications is very important!

o /
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Guestion What is the number of possible parenthesizations? \

Answer Denote the answer by P(n).

(A1 X Ag X -+ X Ag) X (Ap41 X -+ X Ap)

s

-~ -~

P(k) P(n—k)

We can write the recurrence relation:
1 if n=

PCIP(k)P(n—k)  if n>2

P(n) =

The solution is the sequence of Catalan numbers P(n) = C(n — 1) where,
1
C(n) = —— (%) = Q4" /n®/?)
n+1

(Exponential on n!)

o /
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Ge structure of the optimal parenthesization \

e A; j denotes the matrix that results from evaluating the product A; X --- X Aj.

Observation An optimal parenthesization of A; x .-+ x Ay, splits the product
between Ay and Ag41 for some integer k, 1 < k < n.

((A1 x Ag X -+ X Ag) X (Agg1 X -+ X Ap))

Theorem The parenthesization of the prefix subchain A1 X --- X A within an
optimal parenthesization of A1 X --- X A, must be an optimal parenthesization of
Al X -+ X Ag.

Proof If we can find a better parenthesization for A1 x --- x A then, we can
construct a better than the optimal parenthesization for A1 X --- X Ap. This is a
clear contradiction.

Note We can obtain a similar theorem for the postfix chain Agy1 x -+ X Ap.

o /

COMP3001-Algorithms Lecture 11 128

6 recursive solution \

e m[i, j] denotes the minimum number of multiplications needed to compute A;. ;.

e We want to find the parenthesization which takes m[1,n] multiplications to
computeAi. n.

e We assume that A; is of dimensions [p;—1 X p;].

We can compute m[1,n] by using the recurrence relation:

i 0 if 5=
mli, j] =
min;<g<;{mli, k] + mlk +1,5] + pi—1pep; if i<

¢ A recursive algorithm based on the above recurrence relation will take at least
exponential time!

o /
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Observation We have to solve ©(n?) subproblems, one for each choice of i and j
satisfying 1 < i< j < mn.

Idea: We will compute m[l,n] in a bottom-up fashion. We will compute all m][z, j]
in order of increasing (j — 7).

Matriz_Chain_order(p)

/* p=<po, p1, -+, Pn >, the dimensions of the matrices */
n = length(p) — 1

for : =1 to n do

m[i,7] =0
for [ =2 to n do /* 1 denotes the “length” of A; ; */
fori=1ton—-101+4+1do
j=i+1—-1
mli,j] =0

for k=1ito j—1do
q=m[i,k] +m[k +1,5] + pi—1- Pk - Pj
if ¢ < mfi,j] then m[i,j] =¢
return m

Analysis: 0O(n?)
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Matrix Dimension M i ) 1 2 3 4 5 6
Aq 30 x 35 1 0 15,750 7,875/ 9,375| 11,875 15,125
Ay 35 x 15 2 0 2,625 4,375 7,125| 10,500
As 15 x 5 3 0 750| 2,500 5,375
Ay 5 X 10 4 0 1,000, 3,500
As 10 x 20 5 0 5,000
Ag 20 x 25 6 0

m[1,2] = 30 - 35 - 15 = 15, 750

m[1,1] + m[2,3] + po - p1 - p3 = 0 + 2,625 + 5,250 = 7,875

m[1, 3] = min
m[1,2] + m[3,3] + po - p2 - p3 = 15,750 + 0 + 2,250 = 18, 000

m[1,1] + m[2,4] 4+ po - p1 - pa = 0 + 4,375 + 10,500 = 14, 875
1,2] + m[3,4] 4 po - p2 - pa = 15,750 + 750 + 4,500 = 21,000
m[1,3] + m[4,4] + po - p3 - pa = 7,875 4 0 + 1,500 = 9, 375

m[l,4] = min { m[

129

Gdynamic programming solution \

130

Gcample \

o /
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Guestion How do we recover the actual parenthesization?

which we split A;__;.

Matriz_Chain_order_1(p)

/* p=<wpo, p1, -+, Pn >, the dimensions of the matrices */
n = length(p) — 1

for : =1 ton do

m[i,7] =0
for [ =2 to n do /™ 1 denotes the “length” of A; ; */
forc=1ton—-1[01+4+1do
j=i+1-1
mli,§] =0

for k=1to j—1do
g=mli,k] + m[k +1,5] +pi—1 - Pk - Dj
if g < mli,j] then
ml[i, j] = q
split[i, j] =k
return m, split

o

Answer By maintaining an additional matrix split where, split[z, j] is the place in

~

COMP3001-Algorithms Lecture 11

132

Gle matrix multiplication algorithm

Matriz_Chain_Multiply(A, split, i, j)
/* Computes A;. ;. A is the set of matrices */

if j > ¢ then X = Matriz_Chain_Multiply(A, split, i, split[i, j])
Y = Matriz_Chain_Multiply(A, split, split[i, j] + 1, j)
return Matriz_Multiply(X,Y)
else return A;
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Gements of dynamic programming \

e Optimal substructure.

e Overlapping subproblems.

e Memoization Use the recursive algorithm but store the solution of each
subproblem for future use. In that way, we solve each subproblem once.

o /
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Geading Material \

816 “Dynamic programming” pp. 301-302.

816.1 “Matrix-chain multiplication” pp. 302-309.

Suggested Reading

§16.2 “Elements of dynamic programming” pp. 309-314.

Suggested Exercises

16.1-1, 16.1-2, 16.1-4.

o /
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f Longest Common Subsequence.

Definition Given a sequence X =< 1,2, -, Zm >, another sequence

Z =< 21,722, +,2 > is a subsequence of X if there exists a strictly increasing
sequence < 41,142, -+, > of indices of X such that for all j = 1---k we have
:Eij = Zj-

Example X =<A,B,C, A, D,E, A, F,B>

Subsequence of X Sequence of indices of X
Z:<A7C7D7E7A> <173757677>
Z =< A,B> <1,2>,<1,9>,<4,9>

e A better visual representation:

X:<ABCADEAFB>

k Z:<ACDEA>

~

/
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6eﬁnition Given two sequences X and Y, we say that a sequence 7 is a commh

subsequence of X and Y if Z is a subsequence of both X and Y.

The longest common subsequence (LCS) problem

Input: Two sequences X and Y.
Output: Their longest common subsequence.
Examples
X:AB BDAB X BDAB

N
oo

o
o0

N

>
w
>

O
>
w

N
o0

w
>
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ﬁVhy do we study the LCS problem? \

e It has a nice dynamic programming solution.

e It is a very useful algorithm.

Application

Given two versions of a program locate the changes that happened from the
first to the second version.

Solution

Find the LCS of the two programs. The text that is not part of the LCS
represents the additions/deletions made from the one version to the other.

o /
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6 brute-force approach \

e Let S be the set of all possible subsequences of X and Y.

e Check all of them to find the longest common subsequence.

Question How large is S7
Answer Let k= min(legth(X),length(Y)). Then, |S|= 2F.

This makes the brute-force approach inefficient!
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6 recursive solution

Let X =< z1,22, -, zm > and Y =<y1,y2, ", Yn >.

Denote by X; the subsequence X; =< x1,22, -, 2; >
and by Y; the subsequence Y; =< y1,y2, -, y; >.

Let c[i, j] be the length of the LCS of the sequences X; and Yj.

We are interested in computing c[m, n].

We can write the recurrence relation:
0 if =0 or =0

cli, j] = ci—1,7—-1]+1
max(c[t,j — 1], [z — 1, j])

if 4,7 >0 and z; = y;
if 4,7 >0 and z; #y;

Question i) Is the above relation correct?
ii) How did we arrive to it?

Answer i) YES

o

COMP3001-Algorithms

Lecture 12

140

C

i) i, j] =

e if 1=0 or j=0:

one (denoted by e).

o if 4,5>0 and =z; = y;:

< T1,T2, ", Ti—1,Ti >

< Y1,Y2,° - Yj—1,Y5 >

o if 4,5>0 and =z; # y;:

< X1, &2, , Ti—1,L5 >

;ﬁ
< Y1,Y2,° - Yj—1,Y5 >

o

fi—1,j—1]+1
max(c[i,j — 1], [z — 1, j])

if =0 or =0
if 4,7 >0 and z; =y;
if 4,7 >0 and z; #y;

At least one sequence is empty. Thus, the only common subsequence is the empty

LCS(XZ',Y'J') = LCS(Xi_l,Y}'_l) @D z;
= [, j]l=c[t—1,7—1]+1

(& denotes string concatenation)

LCS[X;,Yj-1]
LCS[X;,Y;] = or
LCS[Xi—l7 Y}]

= c[i,j] = max(c[i,j — 1],¢[t — 1,4])
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6 recursive approach \

e In the case where the 2 subsequences have no common subsequences (besides €), the

algorithm will take exponential time.
Example Draw the “recursion graph” for C[3,4].
@ C“-r“]ﬁcm
@ 3] 23]
c[0,2]

(@02
(@01

c[0,1]

o /
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Gcercise Compute the number of times that the procedure which computes c[i,j]\
is invoked during the computation of ¢[m,n], where 0 <i<m, 0<j < n.

e Obviously, we have overlapping subproblems that the recursive algorithm will
solve several times.

(The recursive algorithm will take at least exponential time.)

Observation We can easily compute ¢[m,n] in a bottom-up fashion.

(Fill matrix ¢ in a row-major fashion from left to right.)
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f LCS_length(X,Y) \

= length(X)
n = length(Y)
for i=1tomdo ([:,0]=0
for j=1tondo ¢[0,j]=0
for i =1 to m do

for j =1 ton do

if z; =y,
then c[i,j] = c[i —1,7—-1]+1
bli, j] =
else if ¢[i — 1 ]] > cfi,7 — 1]
then ([, j] = [z— 1,74]
blé, 4] =
else c[i, j] = C[l,j —1]
bi, j] = «
return ¢, b
Qote Matrix b is used to recover the common subsequence. /
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Gcample X=ABCBDARB \

Y=BDCABA

i 0 1 2 3 4 5 6
i ® Db (© A ® ®
7 B o, 1| | 2| 2| 3|, 4|| 4
6 (A) o} 1 20| 2|y 3| 3|,/ 4
5 D oly 1 2/, 2| 2| 3/, 3
4 B ol 1/} 1/} 2|} 2/, 3— 3
3(c) o} 1 1]y 2|=— 2| 2| 2
2 (B) 0, 1— 1—1|| 1|/ 2|— 2
1 A o/ Oy O O, 1|— 1|, 1
0 0 0 o o 0 ol o
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ﬁuestion 1 What is the time complexity of LCS()? \

Answer: O(mn)

Question 2 How much time is required for constructing the LCS from matrix ¢?

Answer: O(m +n)

Question 3 What is the space requirement of LCS()?

Answer: O(mn)

Question 4 Can we improve the space complexity for the case where we ONLY
want to compute the length of the LCS?

Answer: Yes! Only two rows are needed.
= O(min(m,n)) space.

Note: We cannot trace our steps back to recover the LCS.

o

COMP3001-Algorithms Lecture 12

146

Geading Material \

816.3 “Longest common subsequence” pp. 314-319.

Suggested Exercises

16.3-1, 16.3-2, 16.3-3, 16.3-4, 16.3-5.
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f All-Pairs Shortest Paths' \

Input: A weighted, directed graph G = (V, E) with a weight function
w:E—>TR.

Output For every pair of vertices u,v € V a shortest path from u to v.

Application Create the “table of distances” between the cities of a road atlas.

A simple algorithm
Trivial _All_Pairs(G, w)

for each v € V(G) do
Run Dijkstra() with v as the source vertex

Complexity Linear array implementation: O(V3)
Binary heap implementation: O(V ElogV)

Note We will only get the correct results if all weights are non-negative.

o /
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6 dynamic programming approach \

e The structure of a shortest path

Consider the shortest path from vertex ¢ to vertex j which passes only through
vertices in the set {1,2,---,k}.

dl intermediate verticesin{1,2,...k-1} &l intermediate verticesin {1,2,... k-1}

7 B

R —

P: al intermediate verticesin {1,2,... k}

e A recursive solution

Notation dgkj) =the weight of the shortest path from ¢ to j which passes only
through vertices in {1,2,---,k}.

w; j ifk=0
(k) _
di,j -

min(d{"Y, a4 alf oY) k>

o /
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Goyd_Warshal(W) \

n = rows(W)
dO) =w
for k=1 to n do
for i =1 to n do
for j =1 to n do
d®) = min(a{"7 Y, dlh Y +alf o)

%

return d(™)
Time & space complexity: O(V3)

Note 1 The space complexity can be reduced to O(V?). Simply observe that in
the computation of d(*) we only use d(k—1).

Note 2 The Floyd_Warshal algorithm works only for graphs with no negative
weight cycles. (Why?)

Note 3 Up to now, we only computed the costs of the shortest paths. We haven’t

kshow how to recover the paths. (How do we recover the paths?) j
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0 3 8 4 4 \
oo 0 oo 1 7
a(3) = 0o 4 0 5 11
2 1 -5 0 -2
<] oo oo 6 0
o 3 8 oo —4 0 3 -1 4 -4
oo 0 [eS] 1 7 3 0 —4 1 -1
a0 — o 4 0 oo oo a4 — 74 o 5 3
2 o -5 0 oo 2 -1 -5 0 -2
oo oo oo 6 0 8 5 1 6 0
o 3 8 oo 4 0 3 2 4
oo 0 [eS] 1 7 3 0 —4 1 -1
aV) = o 4 0 oo oo a® = 7 o 5 3
2 5 -5 0 -2 2 -1 -5 0 -2
oo oo S} 6 0 8 5 1 6 0
o 3 8 4 4
S} 0 [} 1 7
a2 = o 4 o 5 11
2 5 -5 0 -2
oo oo <] 6 0
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f Transitive closure of directed graphs.

Input: A directed graph G = (V, E).
Output: A directed graph G* = (V, E*) where
E* = {(4,j) : there is a path from ¢ to j in G}.

Example
Q £

G: / G:

LY

O

A simple algorithm

e Assign weight “1” to all edges of G.
e Run Floyd_Warshal().
e If the cost of the path from ¢ to j is not oo then (,j) € E*.

o
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6 similar algorithm

0 ifi#jand(i,j) ¢E
1 ifi=jor(i,j)€E

0) _
ti,j =

Transitive_Closure(Q)
n=|V|
for i =1 to n do
for j =1 ton do
if i=jor (i,j) € E then t{) =1
(0) _
else t;; =0
for k=1 ton do
for i =1 to n do
for j =1 to n do
(k) _ ,(k—1) (k—1) (k1)
tig =tiy vV (p T At )
return ¢

Analysis: Identical to Floyd-Warshal.

deantages It is faster and uses less space (by a constant factor).

(k) _ ,(k—1) (k—1) (k—1)
ti; =t \% (ti,k Aty )

~

/
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Geading Material \

§26.2 “All-pairs shortest paths” pp. 558-562.
“Transitive closure of a directed graph” pp. 562-565.

Suggested Exercises

26.2-1, 26.2-2, 26.2-3, 26.2-5.

o /
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f On Lower Bounds. \

When we are given a problem P and an algorithm A that solves P, we want to

know: “Is algorithm A the best possible algorithm for P?”

Possible improvements on A may be:
e Reduction of required time.

e Reduction of required space.

We want a theorem of the form:

“All algorithms for problem P have complezity T'(n) > f(n).”

e A function f(n) appearing in such a theorem is called a lower bound on the
complexity of problem P.

e If there exists an algorithm for P of complexity f(n), that algorithm is optimal.

o /
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Ge model of computation must be well defined \

It must be clear what is the model of computation we assume when arriving at a

lower bound.
e The way we access data must be defined (random access vs sequential access).

e The possible operations on the data must be defined (the instruction set used by
the algorithm).

Example

Assume a sorted list of elements is on a tape that can be accessed sequentially, the

tape head is initially at the beginning of the tape, and that elementary operations

are:
1. move_head(direction) (direction is either Left or Right)
2. compare(key) (compares key with element under the tape-head)

3. if “condition” then “jump”

Assume that each elementary operation takes O(1) time.

o /
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(Atrivial lower bound for “search” under this model is 2(n).

If the key is the last element in the list, we have to execute at least n — 1
move_head(right) statements.

Question If Q(n) is a lower bound on the searching problem for the model stated
above, why it is possible to have an O(logn) algorithm (as binary search)?

Answer Because the binary search algorithm is designed for a random access
machine (RAM). A different model of computation!

~

When we state a lower bound for some problem, we must also describe the
model of computation under which the lower bound was derived.

o
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Gput-output lower bounds

Examples

Sorting

Matrix multiplication
Single-source shortest paths
All-pairs shortest paths
Minimum spanning tree

Etc ...

o

e When the input of a problem is of size n, we need at least n steps to read the input.

Note: In several cases we assume that the data are already stored in main memory.

e When the output of a problem cousists of f(n) primitive elements, then we need at
least Q(f(n)) time to report (output) them.

Q(n) lower bound.
Q(n?) lower bound.
Q(]V]) lower bound.
(
(

Q(|V]2) lower bound.

Q(|V|) lower bound.

~
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6dversary lower bounds

Problem Find the sum of n numbers.

Theorem Finding the sum of n numbers requires (n) time.

find their sum).

an unexamined element.

o

Proof (Intuition: the algorithm must examine all elements of the input in order to

e Assume that there is an algorithm that does not examine all elements.

e The adversary watches and, when the algorithm terminates, it moves in and changes

o If the algorithm is run again, it will give the same result since it doesn’t see the
change. But, the true result has changed, and thus, the algorithm is incorrect!

So, any correct summation algorithm examines every element and so is Q(n).

~

/
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G)wer bound for sorting

Model of computation

e Random access machine (RAM).

e Only comparisons between elements are allowed.

¢ Algorithms for the above model are called “comparison sorts”.

e We can view them as decision trees:

Notation

Internal node. a is compared with b.

Leaf. It contains the output of the al-

k gorithm.
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ﬁere are n! possible permutations of the input. Thus, the decision tree must ha,veh

least n! leaves.

The length of the longest path from the root of the decision tree to any of
its leaves represents the worst case number of comparisons the sorting

algorithm performs.

Facts

1. A binary tree of height h has at most 2" leaves.

n
2. n! > (ﬁ>
e

e =2.T1828...

The formula is derived from Stirling’s approximation:

e () (0 1)

o
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Georem Any decision tree that sorts n elements has height Q(nlogn).
Proof Let such a tree have height h. Thus,
n! < 2k (Fact 1)

= h >log(n!)

n n
= h2>log <—) (Fact 2)
e

n

= thog( ):nlogn—nloge

n
en
= h=Q(nlogn)

Theorem MergeSort is asymptotically optimal.

Proof MergeSort used the same model of computation as the one we used to
obtain the Q(nlogn) lower bound. Moreover, its time complexity is O(nlogn).

o

~

°/
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Gaductions (Transformations) \

¢ When two problems are related, it may be possible to use an algorithm for the one to

solve the other.

e Let P, P’ be problems and I be an arbitrary instance of P. Also assume that we
know an algorithm A’ that solves P’. We may be able to solve P as follows:

I — ‘ Convert instance ‘ — I

4 {
Algorithm A for P ‘ ‘ Algorithm A’ for P’

4 {

S — ‘ Convert solution ‘ «— 5

o If there exist algorithms for converting I to I’ and S’ to S, we say that
P reduces to P’ or, P transforms to P’.

o We write P o P’.

o /
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Gleorem Suppose that P oc P’ and that the worst case time complexities for \
converting I to I’ and S’ to S are f1(n) and f2(n), respectively, where n is the size
of instance I. Then,

1. For every algorithm for P’ of worst case time complexity W'(n), there is an
algorithm for P of complexity fi(n)+ W'(n) + fa(n).

2. If g(n) is a lower bound on the complexity of P, then g(n) — fi(n) — fa(n) is a
lower bound on the complexity of P’.

Proof (See previous figure)
1. By constructing the algorithm.

2. By contradiction.

o /
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Glower bound for the Huffman tree problem

Problem Given n weights w1, wa,...,wy find a Huffman tree for them.

e A Huffman tree minimizes Z w(c) - dr(c).

c is a leaf
Theorem Counstructing Huffman trees is of complexity ©(n logn).
Proof Consider the following problem Sort*:

We are given a set of n positive numbers wi, w2, ...,wn for which there is a
permutation w], wb, ..., w], of them such that

i—1
wh > E w)
Jj=1
for all 7. Sort these numbers.

e It is easy to see that Sort* = Q(nlogn). This is because, again, any decision tree

must have at least n! leaves.

o

~

/
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Grt* o Huffman tree problem

{w1, wa,...,wn} — {0, w1, wa,...,wn}
{ \:
‘ Huffman tree algorithm ‘
1 A

{w], wh,...,w} —

Thus, any decision tree algorithm for constructing Huffman trees is Q(nlogn).

o
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Geading Material \

89.1 “Lower bounds for sorting” pp. 172-174.

From “Algorithms and Data Structures” by Jeff Kingston:

§11.1 “Model of computation” pp.284-286.
811.2 “Adversary bounds” pp. 286-288.
811.3 “Transformations” pp. 297-301.

Suggested Exercises

9.1-4, 9.1-5.

o /
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s

Counting-Sort

A[l..n]:

B[1..n]:

C[1..k]:

o

Sorting in Linear Time.

Input: n integers in the range [1..k].

Output: The n integers sorted in increasing order.

e Counting-Sort uses 3 arrays:

Contains the input elements.

Contains the sorted output.

Idea: Determine for each input element z, the number of elements which are < x.

C[¢] contains the number of elements which are < i.

170
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@UNTING — SORT(A, B, k)

1 2 3 4 5 6 7 8
for i+ 1tok Alslelala[s[af1]4]

@ 1 2 3 4 5 &6

do CJ[i] + 0 cl2fol2[3[0l1]

for j < 1 to length[A] 1 2 3 4 5 &6

c

do OTAL]] « CIAL]] +1 o clzzlelririel
/* CJi] now contains the number of */ B : [ : [ : [ : [ 5‘6 [ Z‘ 8‘

* . * 1 2 3 4 5 6

/* elements equal to i (see (a) ). */ © ¢ (2l 246 7]5]

for i < 2 to k

1 2 3 4 5 6 7 8
do C[i] + C[i]+ C[i — 1] B Jal [ [ T [al ]

/* CJi] now contains the number of */ @ ¢
/* elements < i (see (b) ). */ . s 6 7 8
for j < length[A] downto 1 © 5‘1‘21‘3‘4‘5‘64‘4‘ |

€)
do B[C[A[j]]] + Al[j] Clal2[afs[7]8]

ClA[7]] « C[A[4]]

Time complexity: O(k

Q)mparison.

-1
®

+n)

1 2 3 4 5 6 7 8
B[ 1[1[ 3[3] 4] a[a]s]

If K = O(n) = O(n) algorithm.

Note This result does not contradict with the Q(nlogn) lower bound. We are not
using the comparison model. Actuallyy, COUNTING-SORT() never makes a

/
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6eﬁnition A sorting algorithm is stable if elements with the same value appearh
the output in the same order as they appear at the input.

Fact COUNTING-SORT() is stable.
(Prove it by examining the algorithm.)

o /
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Gadix-Sort \
Input: n elements such that each element consists of d digits where

the 15t digit is the lowest-order digit and the dt* digit is the
highest-order digit.

Output: A sorted array containing the n elements in increasing order.
Idea: Sort the elements on their least significant digit first.

Example

329 720 720 329
457 355 329 355
657 436 436 436
839 — 457 — 839 — 457
436 657 355 657
720 329 457 720
355 839 657 839
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GADIX — SORT(A, d) \

fori:=1tod
do use a stable sorting algorithm to sort array A on digit <.

Proof of correctness (by induction on the number of passes)

e Assume that the lower order digits are sorted.

e Show that sorting on the next digit leaves the array correctly sorted.

e Consider any two elements:

e If 2 digits in this position are different, sorting the elements on that position
results to the correct ordering. The lower-order digits are irrelevant.

e If 2 digits in this position are the same, the elements are already in the right
order since they are already sorted on the lower-order digits. Since we use a
stable sorting algorithm, the elements stay in the right order.

O

o /
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6nalysis \

e Each pass takes ©(n + k) time, where each digit takes values in the range [1..k].
= O(d(n + k))
o If k = O(n) = ©(dn), using COUNTING-SORTY().

Bin-Sort(similar to Radix-Sort)

Input: A linked list of n d-digit elements where each digit is in the
range [1..k].

Output: A sorted linked list the n elements in increasing order.

Idea: e Partition the elements into “bins”.
e Work similar to Radix-Sort.

o /
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Illustration (k = 2) \

D, hed [ [F— T/
D, tail B

Example Sort the list < 36, 9, 0, 25, 1, 49, 64, 16, 81, 4 > of 2-digit numbers.

Bin  Contents Bin  Contents
0 0 0 0,1,4,9
1 1, 81 1 16
2 2 25
3 3 36
4 64, 4 4 49
5 25 5
6 36, 16 6 64
7 7
8 8 81
9 9, 49 9

N

N
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GIN — SORT(L,d,k) /* L is the list of the input elements. */ \

/* Each element consists of d digits. */
/* Each digit is in the range [1..k]. */
for i=1to ddo
e Process list L sequentially and place each element of L at the top of the list
Lj, 1 <j <k, where j is the it digit of the element under consideration.

e Concatenate L1, La,..., Lk into L.

Time complexity ©(dn + dk)
e If k= O(n) and d is a constant = O(n).

o /
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Geading Material \

89.2 “Counting sort” pp. 175-177.
§9.3 “Radix sort” pp. 178-180.

Suggested Reading
89.4 “Bucket sort” pp. 180-183.

Suggested Exercises

9.2-1, 9.2-2, 9.2-3.
9.3-1, 9.3-3, 9.3-4.

o /
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Input: A directed graph G = (V, E).
Output: Does G contain a cycle?

ACYCLICITY (G)

1. Run DFS(G) and classify the edges as tree edges, forward edges, cross edges and
back edges.

2. If there exists a back edge then G contains a cycle.
Time complexity: O(V + E)

Proof of correctness

e If G has a back edge then, obviously, it contains a cycle.

= (u, v,..., w, v) is a cycle.

f Graph Acyclicity Testing' \

" y
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Gaim If a directed graph has a cycle, then a back edge will always be encounterh

in any DF'S of the graph.
e Suppose the graph has a cycle.

e Let v be the vertex with the smallest discovery time d[v] out of the vertices that
belong to the cycle.

e Consider an edge w — v on some cycle containing v.

e Since u is on the cycle, u is a descendant
AN of v in the DF'S forest.
\ —> w — v is not a cross edge.
Q\ \ e Since d[v] < d[u] = u — v is not
| a tree edge or a forward edge.

Q( . Thus, u — v is a back edge.
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f Strongly Connected Components. \

A strongly connected component of a directed graph G = (V| E) is a maximal set of

vertices U C V such that for every pair of vertices u and v in U, there exists a path
from % to v and a path from v to u.

Input: A directed graph G = (V, E).
Output: The strongly connected components of G.

Example

(¢) O (0)

A directed graph Its strongly connected components

o /
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gery vertex of a directed graph is in some strongly connected component, but \
certain edges of the graph may be in no component. Such edges are called

cross-component edges.

e We can represent the interconnections between the components by constructing a
reduced component graph.

Example (continued)

(0

e The reduced component graph is ALWAYS acyclic, i.e., a DAG.

o /
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@RONGLY_CONNECTED_COMPONENTS(G) \

1. Call DF'S(G) to compute the finishing times f[u] for each vertex u of G.
2. Compute the transpose GT of G.

3. Call DFS(GT), but in the main loop of the DFS consider the vertices in order of
decreasing f[] (as computed in 1).

4. Output the vertices of each tree in the DF'S-forest produced in 3 as a separate
strongly connected component.

Time complexity: O(V + E)
Example

/8 8 7

£ d—¢ o 0 @
27 L
W [N @ ®
: 3/6

G 4 G’

@4/5

After step 3
After step 1

o /
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Goof of correctness \

e If v and w are in the same component, then there exist paths:

G i G’ 6D/l .

e We have to show that:

v and w are in the same .
v and w are in the same tree of

strongly connected component <~
rongly con mponen the DF S- forest of GT.

of G.

« ”»
—

e Suppose that in GT we begin the search at some root x and we reach v. Then, w will
end up in the same tree (since w is reachable from v).

o /
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ﬁ:” (v and w are in the same tree of the DFS- forest of GT = v and w are in\
the same strongly connected component of G.)

e Let = be the root of the tree in the DFS-forest of GT in which v and w belong.
= InGT3Japathz —v = 1InG Japathv— .

e In GT, v was unvisited when = was discovered.
= InG, flz]> flv].
=—> In the search of G, v is visited during the search of z.
—> v is a descendant of = in the DF S-forest of G.

— InG Japathz — v. = z and v are in the same strongly connected
component.

¢ Similarly we prove that x and w are in the same strongly connected component.

O

o /
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Proof of correctness for algorithm STRONGLY_CONNECTED_COMPONENTS()

‘We have claimed that the vertices of a strongly connected component correspond precisely to the vertices
of a tree in the spanning forest of the seconf depth-first search. To see why, observe that if v and w are
vertices in the same strongly connected component, then there are paths in G from v to w and from w

to v. Thus, there are also paths from v to w and from w to v in GT.

Suppose that in the depth-first search of aT we begin a search at some root z and either reach v or w.
Since v and w are reachable from each other, both v and w will end up in the tree with root x.

Now suppose that v and w are in the same tree of the DF S-forest of GT. We must show that v and w
are in the same strongly connected component of G. Let = be the root of the tree containing v and w.

Since v is a descendant of x, there is a path from x to v in cT. Thus, there exists a path from v to z in G.
During the construction of the the depth-first search at x was initiated. Thus, = has a higher finishing
timestamp than v, i.e., f[z] > f[v]. So, in the depth-first search of G, the recursive call at v terminated
before the recursive call at  did. But, in the depth-first search of G, the search at v could not have
started before z since the path in G from v to # would then imply that the search at z would start and
end before the search at v ended.

We conclude that in the depth-first search of G, v is visited during the search of z and hence v is a
descendant of z in the DF S-forest of G. Thus, there exists a path from = to v in G. Therefore, z and
v are in the same strongly connected component. An identical argument shows that # and w are in the

same strongly connected component and hence v and w are in the same strongly connected component,

as shown by the path from v to # to w and the path from w to = to v.O
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Geading Material \

Lemma 23.10 “Acyclicity testing” pp. 486-487.

“Strongly connected components” from lecture notes and
§10.7 “Strongly connected components” pp. 248-249 from Jeff Kington’s book.

Suggested Reading

§23.5 “Strongly connected components” pp. 488-494.
(A different proof was given at the lecture)

Suggested Exercises

23.4-3, 23.4-5.
23.5-1 — 23.5-7.

o /
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f Minimum Spanning Trees: Kruskal’s Algorithm. \

Input: A connected undirected graph G = (V, E) with a weight func-
tion w: E — R.

Output: A minimum spanning tree for G.

e Recall the generic algorithm:

Generic_ M ST(G, w)

A=10

while A does not form a spanning tree do
Find an edge (u,v) that is safe for A.
A=AU{(u,v)}

return A

Algorithm Invariant A is always a subset of some minimum spanning tree.

e An edge (u,v) is a safe edge for A if it can be safely added to A without violating

the invariant.

o /
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f MST_Kruskal(G,w) \
A=0

. for each vertex v € V(G)
do MAKE_SET (v)

. Sort the the edges of E in non-decreasing weight w.

1
2
3
4
5. for each edge (u,v) € E, in order by non-decreasing weight,
6 do if FIND_SET(u) # FIND_SET (v)

7 then A = AU {(u,v)}

8 UNION((u,v)

9

. return A

e We used an ADT that supports operations on disjoint sets.
—~-MAKE_SET(v) :Creates a new set that contains element v.
—FIND_SET(v) : Returns the set in which v belongs.
—~UNION(u,v)  :Creates a new set that is the union of sets

FIND_SET(u) and FIND_SET(v).

e Analysis Steps 2-3: O(V)
Step 4: O(ElogE)
Steps 5-8: O(E + VlogV) (See §22.2)

TOTAL: O(ElogE)
\_ /
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Gcample

h,g) 1
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Goof of correctness for Kruskal’s algorithm \

Theorem If we decide to add edge (u,v) in A, (u,v) is a safe edge.

Proof We add (u,v) in A iff 4 and v belong to different trees of G (formed so far
by the execution of Kruskal’s algorithm).

o If (u,v) is not safe, then it does not be-
long in the MST. Thus, there exists a
path p from the tree which contains u
to the tree which contains v that be-
longs to the MST of G.

e Since p consists from edges with weights greater than or equal to w(u,v), we can
substitute any edge in p with (u,v) and obtain a spanning tree with the same weight
as the assumed MST of G.

Thus, (u,v) is safe.

o /
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f Single-source shortest path problems' \
Input: e A weighted, directed graph G = (V, E) with weight function

w : E — R mapping edges to real valued weights.
e A source node s.

Output:  The shortest paths from s to any other vertex in G.

Relaxation

e For each vertex v € V, d[v] is an upper bound on the weight of a shortest path from
the source s to v.
d[v] = shortest_path_estimate

e We initialize d[v], v € V, as follows:

INITIALIZE_SINGLE_SOURCE(G, s)
for each vertex v € V
do d[v] + 400
wv] < NIL
d[s] <0

o /
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f While relazing edge (u,v), we check if we can improve the shortest path from \
s to v by going through edge (u,v).

RELAX(u,v,w)
if d[v] > d[u] + w(u,v)
then d[v] « d[u] + w(u, v)
wv]  u

Example
2 | 2
W——0 @ OO
dul=5 dvj=9 | d[ul=5 d[v]=6
\L RELAX(u,v,w) \L RELAX(u,v,w)

O ) (W2

dlul=5 dv=7 d[ul=5 dv=6

e Immediately after relaxing edge (u,v) by executing RELAX(u,v,w), we have:
dv] < du] + w(u, v).
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&kstra’s algorithm can be rewritten as: \

Dijkstra(G,w, s)

S+ SuU{u}
for each vertex v € Adj[u]

1. INITIALIZE_SINGLE_SOURCE(G, s)
2. S« 0

3. Q + V[G]

4. while Q # 0

5. do u = extract-min(Q)

6.

7.

8.

do RELAX(u,v,w)

Note 1: In Dijkstra’s algorithm, each edge is relaxed exactly 1 time.

Note 2: Dijkstra’s algorithm works only for graphs with non-negative edge
weights.

Question: How do we deal with negative weights?

o /
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Ge BELLMAN-FORD algorithm \

Input: e A weighted, undirected graph G = (V, E) with weight function

w : E — R mapping edges to real valued weights.
e A source node s.

Output: e A boolean value indicating whether there exists a negative
weight cycle reachable from the source s.
e If there is no negative weight cycle, the shortest paths (and
their weights) from s to any other vertex in G.

BELLMAN_FORD(G,w, s)

INITIALIZE_SINGLE_SOURCE(G, s)
for i =1to |[V(G)| -1
do for each edge (u,v) € E(G)
do RELAX(u,v,w)
for each edge (u,v) € E(Q)
do if d[v] > d[u] + w(u,v)
then return FALSE
return TRUE

P NS s W

kTime complexity O(VE) (Each edge is relaxed exactly |V| — 1 times.) j
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Gcample \

We relax the edges in the following order:

(2, u)
(2, 7)
(u,v)
(u,y)
(u, )
(v, u)
(z,v)
(z,y)
(y,2)
(y,v)

e The order of relaxation is arbitrary. Each pass can use a different order.
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Goof of correctness of the BELLMAN-FORD algorithm \

e Let v be a vertex reachable from s.
e Let p = (s,v1,v2,...,05—1,v) be a shortest path of length k from s to v, k < |[V]|—1.
e We prove by induction that d[v;] = §(s,v;) after the i*? pass over the edges.

Basis d[s] = 0.

Induction step
o Assume that d[v;_1] = 6(s,v;_1) after the (i — 1)t pass.
o Prove that d[v;] = d(s, v;) after the i*" pass.

It follows from the facts:

1. We relax edge (v;—1,v;) during the it pass.

2. The sub-paths of shortest paths are shortest paths.

o /
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Gcample The edges are relaxed in lexicographic order.
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s

o

Single-source Shortest Paths in DAGSI

DAGs_Shortest_Paths(G,w, s)

1.

ot WN

Topologically sort the vertices of G
INITIALIZE_SINGLE_SOURCE(G, s)
for each vertex u (in the topologically sorted order)
do for each vertex v € Adj[u]
do RELAX (u,v)

Time complexity O(V + E)
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Geading Material

§24.1
§24.2
§25.1
§25.3
§25.4

“Growing a minimum spanning tree” pp. 498-503.
“Kruskal’s algorithm” pp. 504-505.

“Single-source shortest paths - relaxation” pp. 514-526
“The Bellman-Ford algorithm” pp. 532-535
“Shortest-paths in DAGs” pp. 536-538

Suggested Reading

§22.1-2 “Disjoint-set operations” pp. 440-446.

Suggested Exercises

o

24.2-4
25.3-5
25.4-1
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s

Maximum Flow '

capacities of the edges of the network.

A flow network.

¢ We are given a flow network, a source s, and a sink t. We want to find the maximum
amount of some commodity that can flow from s to ¢t without violating the flow

A flow f with |f| = 19.

~
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1.

2
3.
4

Applications

o We can model:

The flow of liquids through pipes.

. The flow of parts through an assembly line.

Electrical networks.

. Communication networks.

e Several other problems that seem to be unrelated to the maximum flow problem can
be reduced to it (e.g., mazrimal matching in bipartite graphs).
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Gow networks and flows \

e A flow network G = (V, E) is a directed graph in which each edge (u,v) € E has a
non-negative capacity c¢(u,v) > 0. If (u,v) ¢ E then ¢(u,v) = 0.

e There are 2 distinguished vertices: A source s and a sink t.
We assume that every vertex v € V — {s, ¢} is on some path from s to ¢.

=—> |E| > |V| —1 (the graph is connected).

e A flow in G is a real-valued function f: V x V — R satisfying the following
properties:

1. Capacity constraint: ¥V u,v €V, f(u,v) < c(u,v).

2. Skew constraint: VY u,v €V, f(u,v) = —f(v,u).

3. Flow conservation: Y u €V — {s,t}, Z flu,v) =0.
veV

o /
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Gow conservation \

e For all w €V —{s,t} we require Z flu,v) =0
veEV

T
/

e The flow that enters a vertex is equal to the flow that exits from it.

e The flow for all outgoing edges is nonnegative while the flow for all incoming
edges is non-positive.

e The quantity f(u,v) is called the net flow from vertex u to vertezr v.

e The value of a flow f is defined as:

F1=) fs0) =D fw)

veV veEV

o /
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éow to manipulate flows - Cancellation \

10

4

e Ship 8 units from v1 —> w2.

8/10 8/10
T T
-8/ 4 4

e Ship 3 units from vo — wv1.

5110 8/10 5110
-5/ 4 34 4
e Ship 7 units from vo — wv1.
-2/ 10 5/10 10
2/4 714 2/4

o /
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f The Ford-Fulkerson Method' \

Definition An augmenting path is a path from the source s to the sink ¢ along

which we can push more flow and thus, augment the flow along this path.

Example

Ford_Fulkerson_Method(G, s,t)

1. Initialize flow f to 0

2. while there exists an augmenting path p
3. do augment flow f along p

4. return f
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Gesidual networks \

e Let f be a flow in G and consider a pair of vertices u, v € V. The amount of

additional net flow that we can push from u to v before exceeding the capacity
c(u,v) is the residual capacity cy(u,v) of (u,v).

Cf(u’ U) = C(’u,,’U) - f(u,l))
Note: cf(u,v) >0 forallu, v €V

e Given a flow network G = (V, E) and a flow f, the residual network of G induced by
fis Gy = (V,Ey) where Ef = {(u,v) : cf(u,v) > 0}.

Example
1212
4
8/13 (;\
1114

Observation |E¢| < 2|E|

residual

This is because edge (u, v) is in E if at least one of (u,v) or (v,u) is in E.

o /
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Gcample (1 iteration of Ford_Fulkerson_Method) \

<— Flow f in G.

+— Gy and an augmenting path p.

<— The flow in G after augmenting
along path p.
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@sume an augmenting path p. The maximum amount of flow that we can ship \
along the edges of p is called the residual capacity of p.

cf(p) = min{cy¢(u,v) : (u,v) € p}

Ford_Fulkerson(G, s, t)
1. for each edge (u,v) € E

2. do flu,v]=0

3. flv,u] =0

4. while there exists a path p from s to t in G¢
5. do c¢¢(p) = min{cys(u,v) : (u,v) € p}
6. for each edge (u,v) in p

7. do flu,v] = fu,v] + c7(p)
8. flv,ul = = flu, v]

Running time
¢ It depends on the way we choose the augmenting paths.
e The algorithm may not even terminate.

o If the capacities are integral the algorithm will terminate.

o /
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@ upper bound on the running time of Ford_Fulkerson() when the capacities are\
integral is O(E|f*|) where f* is the maximum flow returned by the algorithm.

Example

1000000 999999 T 71000000
: N
i
EE— i1
i
i ! 1
Se 1
- g S ~ |
_+* 1000000 1000000 ~~. 999999

999998

999999
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@ augmenting path can be found in O(E) time with either depth first search or \
breadth first search.

e The proof of correctness for Ford-Fulkerson’s method follows from the theorem:

Theorem If f is a flow in a flow network G = (V, E) with source s and sink ¢, then
the following two statements are equivalent:

1. fis a maximum flow in G.

2. The residual network Gy contains no augmenting paths.

o /
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@

dmonds-Karp algorithm

Edmonds_Karp(G, s, t)

e Compute the flow as in Ford_Fulkerson().

e Use breadth first search to compute the augmenting paths.

Theorem The Edmonds_Karp algorithm makes O(V E) flow augmentations.

Time complexity: O(VE?)
(A total of O(VE) calls to breadth first search.)

Note The capacities must be integral.

o /
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Geading material \

827 “Maximum Flow” pp. 579-580.

§27.1 “Flow networks” pp. 580-584

§27.2 “The Ford-Fulkerson method” pp. 587-600
(Read only the subsections covered at the lecture.)

Suggested reading:

The analysis of the Edmonds-Karp Algorithm (Theorem 27.9)

Suggested Exercises

27.1-1 - 27.1-3
27.2-2

o /
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f Cuts on Flow Networks'

FEEY) =30 flayy)

zeX yey

Lemma
1. f(X,X)=0, XCV

f(XUY,Z):f(X,Z)-I—f(Y,Z)
f(ZvXUY):f(Z7X)+f(Z7Y)

o

Notation Let f be a flow in flow graph G = (V,E) and X, Y C V.

X, Y, ZCV, XNY =10

/
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Gamma Let G = (V, E) be a flow network with source s and sink ¢ and let f be ax

Then, f+ f' is aflow in G with value |f + f/| = |f| + |f']-
Proof  (f+ f)(u,v) € f(u,v) + f'(u,v)

1. Skew symmetry
(f+ )(u,v) = flu,v)+ f'(u,v)
= _f(Uvu) - f,(vvu)
== (f(v,u) + f'(v,u))
=—(f+f)(v,u)

2. Capacity constraint
(f + ) (u,0) = flu,v) + £ (u,v)
S f(u,v) + (C(U, ’U) - f(u,v))

= ¢(u,v)

Note: f'(u,v) < cp(u,v) 2 e(u,v) — f(u,v)

o

flow in G. Let G ¢ be the residual network induced by f, and f’ be a flow in Gy.
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ﬁ Flow conservation

For all u € V — {s,t},
S G+ ) =3y fo) + Yoy fw)
=0+0
=0

The value of the new flow
f+ 71 =2 e (f+F(s0)
= pev F(&0) + X0 oy F(s,0)
= |fl+1F

o
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6eﬁnitions

such that s € Sand t € T.

e The capacity of a cut (S,T), c¢(S,Y), is defined as:

(ST =Y Y ela,y)

zeS yeT

Example

8/13 :

@W “

I

QS,T) = c(v1,v3) + c(v2,v4) = 12414 = 26

e A cut (S,T) of a flow network G = (V, E) is a partition of V into S and T=V — §

e f(S,T) = f(vi,v3)+ f(v2,va) + f(v2,v3) = 124114 (—4) = 19

~

/
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Gamma Let f be a flow in a flow network G and let (S,T) be a “cut” in G. Then}

f(5,T) = |f]
Proof
f(8,T) =f(S,V)—f(S,9)
=f(S,V)-0
=f(s,V)+ f(S—{s},V)
= f(s,V)
= |/l

O

Exercise Work out the details of the above proof. See also exercise 27.1-5.

o /
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Gamma The value of any flow f in a flow network G is bounded from above by\
the capacity of any “cut” of G.

Proof
Let (S,T) be an arbitrary “cut” of G and let f be any flow.

By the previous lemma,
Ifl = f(S,T)
= ZuES ZvGT f(u’ 1))
<D ues 2over (W v)

=¢(S,T)
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G’leorem (Maz-Flow Min-Cut Theorem,) \

If f is a flow in a network G = (V, E), then the following statements are equivalent:

1. fis a maximum flow in G.
2. The residual network Gy contains no augmenting path.

3. |f| =¢(S,T) for some “cut” (S,T) of G.

Proof

(1) = (2) (By contradiction)

Suppose that f is a maximum flow and that Gy has an augmenting path p
(with flow fp). Then,

lf + fol = I+ 1fol > ISl

a clear contradiction since f is a maximum flow.

o /
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K(Q) — (3) \
¢ “Gy has an augmenting path” = “-3 a path from s to ¢”
e Define S = {v: v is reachable from s}

and T=V-S5
e (S,T) is a “cut”. Thus,

“for all (u,v) such that w € S, v € T we have that f(u,v) = c(u,v)”

= |fI=f(5.T) = ¢(S,1)

B) = (1)
o |f| <¢(S,T) for all “cuts” (S,T) (Lemma on page 220.)

Thus, the fact that |f| = ¢(S,T) for some “cut” (S,T) implies that f is maximum.

O

o /




COMP3001-Algorithms Lecture 19 223

Getworks with multiple sources and sinks \

e Reduces to a single-source single-sink maximum flow problem.

¢ In practice, instead of +00 we can set the capacity of the new edges to ¢ > E c(e).
ecE

o /
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f Maximum Bipartite Matching' \
Definitions

e Given an undirected graph G = (V, E), a matching M is a subset of edges, M C E,
such that for all vertices v € V, at most one edge of M is incident to v.

Example

e A mazimum bipartite matching is
a maximum matching of a bipartite
graph.

(Very useful in scheduling problems.)

o /
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¢ Maximum bipartite matching o« Maximum integral flow. \

e Given a bipartite graph G = (L, R, E) construct a flow network G’ = (V', E') as
follows:

e V'=LURU {s,t}
o E'={(s,u): ue L} U {(u,v): wu€ L, véER, (u,v) € E} U {(v,t): v E€ R}
1 for each (u,v) € E’

e c(u,v) =
0 otherwise

Example

COMP3001-Algorithms Lecture 19 226
Gme analysis: O(VE) \
Because:

1. The maximum matching of any graph has cardinality O(V').

2. The time complexity of the Ford_Fulkerson() algorithm is O(E|f*|),
where f* is the maximum flow.
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Geading material \

§27.2 “The Ford-Fulkerson method” pp. 587-600
§27.3 “Maximum bipartite matching” pp. 600-604

Suggested Exercises

27.2-6
27.3-1, 27.3-3, [27.3-4, 27.3-5]
Problem 27-1 (pp 625)

o /
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f Planar graphs I \

Definition A graph G is planar if it can be drawn on the plane with its edges
intersecting only at vertices of G.

Examples

A A plane drawing of G.

a b a b
K A plane drawing of Ky.
4 K4 is planar =
—> K3 and K> are also
d c d c
planar.
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ﬁVhat about K57 \

¢ K5 is not planar.

b b b
?
—_— — —
d e d e d
K5 is not planar — K,,, m > 5 is not planar.

o /
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Geﬁnition A complete bipartite graph K n is a bipartite graph G = (V1, VQ,E)\
that satisfies the properties:

1. |V1| =m
2. |V2| =n
m ifv e Vs
3. degree(v) = >
n ifven
Example K35
Vl V2

|E(Km,n)| = mn

|E(K3,5)]=3-5=15

o /
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ﬁnsider K2’3 \

C
: A plane drawing of
Kz,s : d d Ko 3.
b
€ e
What about K337
b : e
C

b
b
a d
be : Ee —
ce f °

There is no way to draw edge (¢, d) without intersecting another edge.

Thus, K3,3 is not planar.

= Km,n, m >3, n >3 is not planar.

o /
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Geﬁnition Let G = (V, E) be a loop-free undirected graph, where |E| # 0. We \
obtain an elementary subdivision of G when we remove an edge (u,w) from G and
replace it by edges (u,v) and (v, w), where v is a new vertex.

Example

mmmm

4 can be obtained from G by a sequence of 3 elementary subdivisions.

Theorem (Kuratowski’s theorem) A graph is non-planar if and only if it
contains a subgraph that can be obtained from K5 or K3 3 as a sequence of

elementary subdivisions.

o /

COMP3001-Algorithms Lecture 20 234

ﬁVhat about the following graph? (Petersen’s graph) \

Redraw the graph induced by the solid
edges: \4‘/
>l
AA‘

This is a graph obtained from K3 3 by

a sequence of 4 subdivisions.
—> Petersen’s graph is not planar.

o /
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@)nsider some plane drawing of a planar graph G. \

Definition A face of G is defined to be a region of the plane bounded by edges

such that any two points in the region can be connected by a continuous curve that
meets no edges or vertices.

Examples

ad D

f3

f fi f fs

< J
d c

Theorem (Euler’s theorem) Let G = (V,E) be a connected planar graph. Let
f be the number of faces of G. Then,

V(@) - EG)|+f=2

o /
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Goof (By induction on |E|.) \

e Basis If |[E| =1, then G is one of the two following graphs:

@ Q For (a) we have: |V| =1, f=2 = 1-1+2=2./

For (b) we have: |V|=2, f=1 = 2—-1+1=2.4/

(b)
e Induction step Assume the result is true for any connected graph of k edges. Let
G be a connected planar graph with |V| vertices, f faces and |E| = k + 1 edges.

We will show that the formula |V| — |E| 4+ f = 2 holds for G.

Case 1: G contains a vertex a of degree 1

Let H be the graph obtained by deleting a and its incident
edge from G.

e H still has f faces.

o [V(H)|=V(G)] -1

o |E(H)|=|E(G)| -1

Because |E(H)| = k, the induction hypothesis holds. Thus,
V(H)| - EH)|+f=2 = [V(G)|-1-[EG)|+1+[f=2 =

k:> V(&) - E(G)|+ f =2 J
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@se 2: G does not contain a vertex of degree 1 \

Let H be the graph obtained by deleting any edge (a, b) from
G.
a e H has f — 1 faces.
o |[V(H)| = |V(G)]
o |[E(H)| = |E(G)] -1

b

Because |E(H)| = k, the induction hypothesis holds. Thus,
V(H) - |[EH)|+f=2 = [V(Q)| - |BE@Q)|+1+f-1=2 =
= V(G| - |EG)|+ [ =2

o /
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Geﬁnition Given a plane drawing of a planar graph G = (V, E) that has f facesﬁ
the face-edge incidence graph F(V', E') for G is constructed as follows:

Vi={vi 1 <i<f} U {ui [1 <i <[E(G)[}
~E'" = {(vi,uj) |j is an edge at the boundary of face i}

Examples
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G’leorem For any planar graph G = (V, E), |E| > 3, it holds that |E| < 3|V| — 6\
Proof
e Assume that G has f faces. Construct the face-edge incident graph H for G.

¢ Since each face must be incident with at least 3 edges,
= |E(H)|=3f (1)

e Since each edge can be adjacent with at most 2 faces,

=

|E(H)| < 2|B]|

(2)

e (1), (2) = 2IE|23f = f[<

(3)

(3)

2| 5|
3

e From Euler’s formula we have that |V|— |E|+ f =2 =

= [El=f+V|-2 = [E|<AF+|V]-2 =
= 3|E|<2/E|+3|V|-6 = |E|<3|V|—-6
O
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@e equality in |E| < 3|V| — 6 holds when all faces are triangles (planar triangulath

graphs).
Example
A |E| = 12
Ab V| =6
F=38

|E| =3|V|—6 < 12=3-6—6=12y/

e The expression |E| < 3|V| — 6 is very important!

An immediate implication is that the time analysis of all algorithms that involved E
in their time complexity can be improved.

e For planar graphs:

Depth-first search: o(V)
Breadth-first search:  O(V)
Bellman-Ford: o(V?)
Edmonds-Karp: o(V3)

etc ...

o
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Gleorem K5 is not planar. \

Proof
e Ky has b vertices and 5—;1 = 10 edges.

o If K5 was planar we must have that:

|E(K5)| < 3|V(K5)|—6 < 10<3-5—6 < 10 <9 which is false.

Question Can we prove with the same method that K3 3 is not planar?

o /
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Gmeorem For any planar bipartite graph G it holds that |E| < 2|V| — 4. \
Proof

e Assume that G has f faces. Construct the face-edge incident graph H for G.

e In a bipartite planar graph each face is incident to at least 4 edges.

= [E(H)|=4f (1)

e Since each edge can be adjacent with at most 2 faces,
= |EH)|<2|B| (2)

o (1), (2) = 20E|>4f — f<El (3

e From Euler’s formula we have that |V|— |E|+ f =2 =

3
— Bl=f+V|-2 & |B<Eiy-2 =

— 2E|< |E|+2|V|-4 = |E|<2|V|-4

Exercise Prove that K3 3 is not planar.

o /




COMP3001-Algorithms Lecture 22

f Approximation Algorithms I

Consider the problems:

¢ 3-SATISFIABILITY (3-SAT)

Instance: A collection C' = {c1,¢2,...,cm} of clauses on a finite set U
of n variables such that |¢;| =3 for 1 < i < m.

Question: Is there a truth assignment for U that satisfies all the clauses
in C?

Example

U= {111‘1,.’172,.’173,:1,‘4,.135} C = {01,02,03704}
c1=z1+z2+ 73
c2o =71+ T4+ 75
c3 =71 +7T4+ x5
c3 =x3+ x4+ 25

Answer: YES, (z1 =T/F, 22=T, 2z3=T/F, 24=T, 2z5=T)

o

COMP3001-Algorithms Lecture 22
(VERTEX COVER (VC)
Instance: A graph G = (V, E) and a positive integer k < |V]|.
Question: Is there a vertex cover of size at most k for G, that is, a subset
V! C V such that |V'| < k and for each edge (u,v) € E at
least one of u or v belongs to V'?
Examples
Answer
a d 9 k=1 NO
k=2 NO
. k=3  NO
k=4 NO
b ) h k=5 YES (b, c,e, f,h)
k>6 YES
Answer
k=1 YES (i)
k>2 YES

253

254
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¢ GRAPH k-COLOURABILITY (CHROMATIC NUMBER) \
Instance: A graph G = (V, E) and a positive integer k < |V]|.

Question: Is G k-colourable, that is, does there exist a function

f: V—={1,2,...,k} such that f(u) # f(v) whenever

(u,v) € E?
Example
a
Answer

k=1 NO

I P k=2  NO
k=3 YES (a—> 1, b2 ¢c—> 1, d— 2, e—> 3)
k YES
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ﬁ is “easy” to find an exponential algorithm for each of these problems. \

3-SATISFIABILITY (3-SAT)

e Let S be the set of all possible assignments. (|S| = 2")
e While S # () do
e Let a be an assignment in S.
e S=85—{a}
o If o satisfies all clauses then
¢ ANSWER= TRUE
¢ Exit and Stop.
¢ ANSWER= FALSE

Time complexity O(2"|C|) = O(m2")
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ﬁERTEX COVER (VC) \

e Let S be the set of all subsets of V' of cardinality k. (|S| = (Hk/l))
e While S # ( do
o Let a be a subset in S.
e S=5—-{a}
o If o “covers” all edges of E then
¢ ANSWER= TRUE
o Exit and Stop.
¢ ANSWER= FALSE

Time complexity O((|Z|)|E|)

VERTEX COVER (VC)

A similar algorithm can be obtained.

(,n) < 2"H(N) where,
kH()\) = —AlogX — (1 —X)log(1l —A), 0 <X <1 (entropy function). j
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5 problem is polynomial-time solvable if there exists an algorithm to solve it in \
O(n®) time, for some constant c.

e The complexity class P is defined as the set of all decision problems that are solvable
in polynomial time.

e All problems solvable in polynomial time are considered to be tractable.

e All problems that require super-polynomial time are considered to be intractable.

o /
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K\IP-Complete problems

e A class of problems the status of which is unknown.

¢ No polynomial-time algorithm has yet been discovered for an NP-Complete problem.

e No one has proven a super-polynomial lower bound for any NP-Complete problem.

2
P=NP

e The most famous open problem in Computer Science since 1971 (Cook).

e We conjecture that P # NP.

ALL NP-Complete problems have a polynomial-time solution.

Reason: If a single NP-Complete problem is solved in polynomial time then

o “Computers and Intractability. A Guide to the Theory of NP-Completeness”,
Michael R. Garey and David S. Johnson, W.H. Freeman and Company, 1979.

\

N
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ﬁVhat do we do if a problem is NP-Complete?

e For optimization problems, a solution that is near optimal is desirable.

e An algorithm that returns near-optimal solutions is called an approrimation
algorithm.

e An approximation algorithm has relative error bound of e(n) if

IC - C¥]

—— <en)

optimal solution.

(For several problems such algorithms do not exist!)

o

where, C' is the solution returned by the approximation algorithm and C* is the

¢ We want to derive approximation algorithms which have a fized relative error bound.

/
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Ganar Graph Colouring \

Instance: A loop-free planar graph G = (V, E), |E| > 1.

Question:  What is the minimum number of colours needed to colour
graph G?

Approz_Planar_Graph_Colouring(G)

e return(“We need 3 colours”)

e This is an approximation algorithm of fixed relative error bound.

e Every planar graph can be coloured with 4 colours.

o If |E| > 1, we always need at least 2 colours.

|[C-C*] 1

e It might be impossible to colour G with 3 colours!

Note This was a stupid toy-example! The approximation algorithm for the
k“mim’mum verter cover” that follows will convince you that this is not “easy staﬂ'”.j
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ﬁertex cover \

Instance: A graph G = (V, E).

Output: A cover for G of minimum cardinality.

Approz_Vertex_Cover(G)

1. C«+0

2. E' + E(G)

3. while E' # 0 do
e Let (u,v) be an arbitrary edge of E’.
e C + CU{u,v}

e Remove from E’ every edge incident on either u or v.

Time complexity O(E)

Note In the case where the optimal solution is of odd cardinality, the above

approximation algorithm will never return the correct answer.

o /
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Example

b c d b c d
. ° ° .

° o - o °

a e f g a e f g
Select edge (b, ). Select edge (d, €).
= C=1{b,c} = C ={b,c,d,e} = C={b,cd,e}

e Note that C* = {b, e, d}.

e If we remove the edges in a different order we might get a “cover” C’ with |C’| > 4.

o /
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Example
b c d b c d b c d
® , ,,,,,,, [ ] . ------- .
¢ . o o
a e f 9 a e £ g a e £ g
Select edge (a,b). Select edge (c,d). Select edge (e, f)-
= C'={a,b} = C'={a,b,c,d} = C'={a,b,c,d,e, f}
b c d
° ° °
° L JECRTP ° °
a e f g

{a’7bac7daevf}7 |Cl| =6

k:> C' =
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G’leorem Let C be the cover produced by Approz_Vertex_Cover(G),
and C* be an optimal cover. Then,

IC] < 2/1C7|
Proof
e Let A be the set of edges that were selected by the algorithm.

e The cover C consists of the endpoints of the edges in A.

e The edges in A are vertex disjoint.

= Any cover will include at least one endpoint for every edge in A.

— |4l < [C*]
— 2]4] < 27|
— o] <2l

o
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g

For these problems, we try heuristic methods and hope for the best!

Graph Partitioning (Bisection)

Instance: A graph G = (V, E) such that |V| = 2k.

Output: A partitioning of V into two sets Vi3 and Va3 such that
[Vi] = |V2| = k and the number of edges that have one of
their endpoint in V1 and the other in V2 is minimized.

e There are several problems for which we do not know any approximation algorithm.

~
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Example
PRGN
~
/, S
, \
/ 1 -
I 1 == - \ . .
\ s I Bisection =1
\ oK !
~ - 7 /7
- , . ’
' e
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Gcample
a
e e
a
d —= d
f ‘
c
b c f

Bisection = 4
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Gle Kernighan-Lin algorithm \

A simplified version of the algorithm is the following:

Simplified_Kernighan-Lin(G)
1. Start with an arbitrary initial partition Vi, Va.

2. while there are sets A C V1 and B C V> with |A| = |B| such that
when exchanged the bisection reduces do

Vi« Vi—-AUB
VoV -—-W

e The resulting partition depends on the initial partition.
e The resulting partition depends on the order of the exchanges.
e The algorithm works in practice. It is being used since 1971.

e A similar (popular and fast) algorithm is due to Fiduccia and Matheyses (1982).

o /

COMP3001-Algorithms Lecture 23 270
Gcample \
° a b c d e ° f
Let Vi ={a,b,c,d, e}
V2 = {f:gahviaj}
9 h i i
a@ f a® o f a@ of
b g b e b e
c h—= c h—= .
d i d i h i
e j g i g j
Bisection = 7 Bisection = 5 Bisection = 2
Exchange g with e. Exchange h with d.

Q this example, we got the optimal solution. We cannot be that lucky all the time!j
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Geading Material \

837 “Approximation Algorithms” pp. 964-966.
837.1 “The vertex-cover problem” pp. 966-968.

Additional Reading (optional)

836 “NP-Completeness” pp. 916-946.

Suggested Exercises

37.1-1, 37.1-2, 37.1-3.

o /
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Gn—Packing

Problem Given a finite set U = {u1,u2,...,un} of items and size-function
s(u) € [0...1] for each item u € U, find a partition of U into disjoint subsets
Ui, Uy,..

most 1, and k is as small as possible.

., Uk such that the sum of the sizes of the items in each (bin) U; is at

e View each U; as a unit-capacity bin.

Example

U3 u
u u, 4 u,
1 2 5 U6

Items 1 2 3 4

Bins

e Let OPT(I) denote the number of bins in an optimal solution of the bin-packing
problem for instance I. Then,

n
oPT(D) > |3 s(us)
=1
COMP3001-Algorithms Lecture 24

(First-Fit approach

First-Fit(I)

1. Start with an infinite sequence B1, Ba,... of unit-capacity bins, all of

which are empty.

2. For i=1to ndo
Place item wu; into the bin of smallest index in which it can fit.

Example

Bins

273

274
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G&note by FF(I) the number of bins required by algorithm First-Fit() for instance)

Theorem FF(I)<2-0OPT(I)
Proof

e We have that FF(I) < (2 Z?:l s(ui)—l (1)

since there can be at most 1 nonempty bin with total contents % or less.
e We also have that OPT(I) > ’_2 o s(uz)-| (2)

o (1),(2) = FF(I)<2-OPT(I)

O
Theorem i) FF(I)< % -OPT(I)+ 2, for every instance I.
ii) There exist instances with OPT(I) arbitrarily large such that
FF(I) > (OPT(I) - 1)
O

o /
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(First-Fit-Decreasing approach \

First-Fit-Decreasing(I)

1. Sort the items in decreasing order of size.

2. Apply First-Fit() in the sequence of items obtained from step 1.

e Denote by FFD(I) the number of bins required by algorithm First-Fit-Decreasing()
for instance I.

Theorem i) FFD(I)< % - OPT(I) + 4, for every instance I.

ii) There exist instances with OPT(I) arbitrarily large such that
FFD(I) =4 . OoPT(I)
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ﬁseudo-Polynomial time algorithms \

e The “Partition” problem

Instance: A finite set A and a size s(a) € ZT for each a € A.
Output: Is there a subset A’ C A such that

ZaGA’ s(a) = ZaGA—A' s(a) 7

Example

A ={a1,02,a3,04,0a5}

s(a1) =1
s(a2) =9
s(az) =5
s(ag) =3
s(as) = 8

Let A’ = {a3,a5}
= ZaGA,s(a):a3+a5:5+8:13
= ZaeA_A/s(a):al+a2+a4:1+9+3:13

o /
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étB:ZaeAs(a) \

e If B is odd, obviously no set A’ satisfies the requirements of the problem.

efor1<i:<n, 0<5< g consider the statement:

“There is a subset of 1,a2,...,a;} for which the sum of the item sizes is

exactly j5.”

Denote by t(,7) the truth value of this statement.

e The values for (i, j) can be arranged in a table of dimensions n X (g +1).

0123 i n/2

N

n
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(VVe can fill the table as follows: \

Row 1 ¢(1,j)=T <= j=0orj=s(a1)
Rowi ¢(i,5) =T <= t(i—1,j) =T or (s(a;) <j
and (i — 1,5 — s(a;)) = T)

In our example, s(a1) =1, s(a2) =9, s(a3z) =5, s(as) =3, s(as) =8

0O 1 2 3 4 5 6 7.8 9 10 11 12 13
1| T | T
2
3
4
5

Time complexity O(nB)

o /
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Glct: The “partition” problem is NP-complete. \

Question Did we just prove that P = NP?

Answer NO!

o We are after a polynomial to the size of the input algorithm.

e Each integer s(a;) can be represented by a bit-string of size O(log s(a;)).
Thus, the size of the input I has length

n n
length(I) = Zlogs(ai) < ZlogB = O(nlog B)
i=1 i=1

e nB is not bounded by a polynomial function of nlog B.

o /
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ﬁkeudo—polynomial algorithms are useful in practice. \

e In scheduling problems, numbers represent task-lengths and it is reasonable
to assume that they are small.

e In problems where numbers represent empirically measured quantities, limits
on the precision of measurement limit their range.

e In applications which no bounds on numbers are imposed,

pseudo-polynomial algorithms display “exponential behaviour” only when
confronted with instances containing “exponentially large” numbers.

Reading Material

“Computers and Intractability. A Guide to the Theory of NP-Completeness”,
Michael R. Garey and David S. Johnson, W.H. Freeman and Company, 1979.

“Bin-packing” pp. 123-128.
“Pseudo-polynomial algorithms” pp. 90-92.

o /
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G finish this module, remember: \

e There are

LIES,

BIG LIES, wa

BIG “O” NOTATION.

e ALWAYS consider the hidden constant in the asymptotic complexity of an algorithm
you are apply.

e ALWAYS consider the properties that your input possesses.

o /




