
What is an Algorithm?
 (And how do we analyze one?)

M
Y

cs
v
tu

 N
o
te

s
w

w
w

.m
y
cs

v
tu

n
o
te

s.
in

Algorithms
• Informally,

• A tool for solving a well-specified computational problem.

• Example: sorting
input: A sequence of numbers.

output: An ordered permutation of the input.

issues: correctness, efficiency, storage, etc.

w
w

w
.m

y
cs

v
tu

n
o
te

s.
in

 Algorithm Input Output M
Y

cs
v
tu

 N
o
te

s

Strengthening the Informal
Definiton
• An algorithm is a finite sequence of unambiguous instructions

for solving a well-specified computational problem.

• Important Features:

• Finiteness.

• Definiteness.

• Input.

• Output.

• Effectiveness. w
w

w
.m

y
cs

v
tu

n
o
te

s.
in

M

Y
cs

v
tu

 N
o
te

s

Algorithm Analysis • Determining performance characteristics. (Predicting the resource
requirements.)
• Time, memory, communication bandwidth etc.

• Computation time (running time) is of primary concern.

• Why analyze algorithms?
• Choose the most efficient of several possible algorithms for the same

problem.

• Is the best possible running time for a problem reasonably finite for
practical purposes?

• Is the algorithm optimal (best in some sense)? – Is something better
possible?

w
w

w
.m

y
cs

v
tu

n
o
te

s.
in

M

Y
cs

v
tu

 N
o
te

s

Running Time

• Run time expression should be machine-independent.

• Use a model of computation or “hypothetical” computer.

• Our choice – RAM model (most commonly-used).

• Model should be

• Simple.

• Applicable.

w
w

w
.m

y
cs

v
tu

n
o
te

s.
in

M

Y
cs

v
tu

 N
o
te

s

RAM Model • Generic single-processor model.

• Supports simple constant-time instructions found in
real computers.
• Arithmetic (+, –, *, /, %, floor, ceiling).

• Data Movement (load, store, copy).

• Control (branch, subroutine call).

• Run time (cost) is uniform (1 time unit) for all simple
instructions.

• Memory is unlimited.

• Flat memory model – no hierarchy.

• Access to a word of memory takes 1 time unit.

• Sequential execution – no concurrent operations.

w
w

w
.m

y
cs

v
tu

n
o
te

s.
in

M

Y
cs

v
tu

 N
o
te

s

Running Time – Definition

• Call each simple instruction and access to a word of memory a
“primitive operation” or “step.”

• Running time of an algorithm for a given input is

• The number of steps executed by the algorithm on that input.

• Often referred to as the complexity of the algorithm.

w
w

w
.m

y
cs

v
tu

n
o
te

s.
in

M

Y
cs

v
tu

 N
o
te

s

Complexity and Input

• Complexity of an algorithm generally depends on

• Size of input.

• Input size depends on the problem.

• Examples: No. of items to be sorted.

• No. of vertices and edges in a graph.

• Other characteristics of the input data.

• Are the items already sorted?

• Are there cycles in the graph?

w
w

w
.m

y
cs

v
tu

n
o
te

s.
in

M

Y
cs

v
tu

 N
o
te

s

Worst, Average, and Best-case
Complexity • Worst-case Complexity

• Maximum steps the algorithm takes for any possible input.

• Most tractable measure.

• Average-case Complexity
• Average of the running times of all possible inputs.

• Demands a definition of probability of each input, which is usually
difficult to provide and to analyze.

• Best-case Complexity
• Minimum number of steps for any possible input.

• Not a useful measure. Why?

w
w

w
.m

y
cs

v
tu

n
o
te

s.
in

M

Y
cs

v
tu

 N
o
te

s

A Simple Example – Linear Search
INPUT: a sequence of n numbers, key to search for.

OUTPUT: true if key occurs in the sequence, false otherwise.

 

n

i 2
1

www.mycsvtunotes.in

LinearSearch(A, key) cost times
1 i  1 c1 1

2 while i ≤ n and A[i] != key c2 x

3 do i++ c3 x-1

4 if i  n c4 1

5 then return true c5 1

6 else return false c6 1

x ranges between 1 and n+1.

So, the running time ranges between

 c1+ c2+ c4 + c5 – best case

and

 c1+ c2(n+1)+ c3n + c4 + c6 – worst case

A Simple Example – Linear Search
INPUT: a sequence of n numbers, key to search for.

OUTPUT: true if key occurs in the sequence, false otherwise.

 

n

i 2
1

www.mycsvtunotes.in

Assign a cost of 1 to all statement executions.

Now, the running time ranges between

 1+ 1+ 1 + 1 = 4 – best case

and

 1+ (n+1)+ n + 1 + 1 = 2n+4 – worst case

LinearSearch(A, key) cost times
1 i  1 1 1

2 while i ≤ n and A[i] != key 1 x

3 do i++ 1 x-1

4 if i  n 1 1

5 then return true 1 1

6 else return false 1 1

A Simple Example – Linear Search
INPUT: a sequence of n numbers, key to search for.

OUTPUT: true if key occurs in the sequence, false otherwise.

 

n

i 2
1

www.mycsvtunotes.in

If we assume that we search for a random item in the list,

on an average, Statements 2 and 3 will be executed n/2 times.

Running times of other statements are independent of input.

Hence, average-case complexity is

 1+ n/2+ n/2 + 1 + 1 = n+3

LinearSearch(A, key) cost times
1 i  1 1 1

2 while i ≤ n and A[i] != key 1 x

3 do i++ 1 x-1

4 if i  n 1 1

5 then return true 1 1

6 else return false 1 1

Order of growth
• Principal interest is to determine

• how running time grows with input size – Order of growth.
• the running time for large inputs – Asymptotic complexity.

• In determining the above,
• Lower-order terms and coefficient of the highest-order term are

insignificant.
• Ex: In 7n5+6n3+n+10, which term dominates the running time for very

large n?

• Complexity of an algorithm is denoted by the highest-order
term in the expression for running time.
• Ex: Ο(n), Θ(1), Ω(n2), etc.
• Constant complexity when running time is independent of the input size –

denoted Ο(1).
• Linear Search: Best case Θ(1), Worst and Average cases: Θ(n).

• More on Ο, Θ, and Ω in next class. Use Θ for the present.

w
w

w
.m

y
cs

v
tu

n
o
te

s.
in

M

Y
cs

v
tu

 N
o
te

s

Comparison of Algorithms

• Complexity function can be used to compare the performance
of algorithms.

• Algorithm A is more efficient than Algorithm B for solving a
problem, if the complexity function of A is of lower order than
that of B.

• Examples:

• Linear Search – (n) vs. Binary Search – (lg n)

• Insertion Sort – (n2) vs. Quick Sort – (n lg n)

w
w

w
.m

y
cs

v
tu

n
o
te

s.
in

M

Y
cs

v
tu

 N
o
te

s

Asymptotic Notation,
Review of Functions
& Summations

M
Y

cs
v
tu

 N
o
te

s
w

w
w

.m
y
cs

v
tu

n
o
te

s.
in

Asymptotic Complexity

• Running time of an algorithm as a function of input size n for
large n.

• Expressed using only the highest-order term in the expression
for the exact running time.

• Instead of exact running time, say Q(n2).

• Describes behavior of function in the limit.
• Written using Asymptotic Notation.

w
w

w
.m

y
cs

v
tu

n
o
te

s.
in

M

Y
cs

v
tu

 N
o
te

s

Asymptotic Notation
• Q, O, W, o, w

• Defined for functions over the natural numbers.
• Ex: f(n) = Q(n2).

• Describes how f(n) grows in comparison to n2.

• Define a set of functions; in practice used to compare
two function sizes.

• The notations describe different rate-of-growth
relations between the defining function and the
defined set of functions.

w
w

w
.m

y
cs

v
tu

n
o
te

s.
in

M

Y
cs

v
tu

 N
o
te

s

Q-notation

w
w

w
.m

y
cs

v
tu

n
o
te

s.
in

Q(g(n)) = {f(n) :

 positive constants c1, c2, and n0,

such that n  n0,

we have 0  c1g(n)  f(n)  c2g(n)

}

For function g(n), we define Q(g(n)),

big-Theta of n, as the set:

g(n) is an asymptotically tight bound for f(n).

Intuitively: Set of all functions that

have the same rate of growth as g(n).

M
Y

cs
v
tu

 N
o
te

s

Q-notation

w
w

w
.m

y
cs

v
tu

n
o
te

s.
in

Q(g(n)) = {f(n) :

 positive constants c1, c2, and n0,

such that n  n0,

we have 0  c1g(n)  f(n)  c2g(n)

}

For function g(n), we define Q(g(n)),

big-Theta of n, as the set:

Technically, f(n)  Q(g(n)).

Older usage, f(n) = Q(g(n)).

I’ll accept either…

f(n) and g(n) are nonnegative, for large n.

M
Y

cs
v
tu

 N
o
te

s

Example

• 10n2 - 3n = Q(n2)

• What constants for n0, c1, and c2 will work?

• Make c1 a little smaller than the leading coefficient, and c2 a little
bigger.

• To compare orders of growth, look at the leading term.

• Exercise: Prove that n2/2-3n= Q(n2)

w
w

w
.m

y
cs

v
tu

n
o
te

s.
in

Q(g(n)) = {f(n) :  positive constants c1, c2, and n0,

such that n  n0, 0  c1g(n)  f(n)  c2g(n)}

M
Y

cs
v
tu

 N
o
te

s

Example

• Is 3n3  Q(n4) ??

• How about 22n Q(2n)??

w
w

w
.m

y
cs

v
tu

n
o
te

s.
in

Q(g(n)) = {f(n) :  positive constants c1, c2, and n0,

such that n  n0, 0  c1g(n)  f(n)  c2g(n)}

M
Y

cs
v
tu

 N
o
te

s

O-notation

w
w

w
.m

y
cs

v
tu

n
o
te

s.
in

O(g(n)) = {f(n) :

 positive constants c and n0,

such that n  n0,

we have 0  f(n)  cg(n) }

For function g(n), we define O(g(n)),

big-O of n, as the set:

g(n) is an asymptotic upper bound for f(n).

Intuitively: Set of all functions

whose rate of growth is the same as

or lower than that of g(n).

f(n) = Q(g(n))  f(n) = O(g(n)).

Q(g(n))  O(g(n)).

M
Y

cs
v
tu

 N
o
te

s

Examples

• Any linear function an + b is in O(n2).

• Show that 3n3=O(n4) for appropriate c and n0.

w
w

w
.m

y
cs

v
tu

n
o
te

s.
in

O(g(n)) = {f(n) :  positive constants c and n0,

such that n  n0, we have 0  f(n)  cg(n) }

M
Y

cs
v
tu

 N
o
te

s

W -notation

w
w

w
.m

y
cs

v
tu

n
o
te

s.
in

g(n) is an asymptotic lower bound for f(n).

Intuitively: Set of all functions

whose rate of growth is the same

as or higher than that of g(n).

f(n) = Q(g(n))  f(n) = W(g(n)).

Q(g(n))  W(g(n)).

W(g(n)) = {f(n) :

 positive constants c and n0,

such that n  n0,

we have 0  cg(n)  f(n)}

For function g(n), we define W(g(n)),

big-Omega of n, as the set:

M
Y

cs
v
tu

 N
o
te

s

Example

• n = W(lg n). Choose c and n0.

w
w

w
.m

y
cs

v
tu

n
o
te

s.
in

W(g(n)) = {f(n) :  positive constants c and n0, such

that n  n0, we have 0  cg(n)  f(n)}

M
Y

cs
v
tu

 N
o
te

s

Relations Between Q, O, W

w
w

w
.m

y
cs

v
tu

n
o
te

s.
in

M

Y
cs

v
tu

 N
o
te

s

Relations Between Q, W, O

• I.e., Q(g(n)) = O(g(n))  W(g(n))

• In practice, asymptotically tight bounds are
obtained from asymptotic upper and lower
bounds.

w
w

w
.m

y
cs

v
tu

n
o
te

s.
in

Theorem : For any two functions g(n) and f(n),

 f(n) = Q(g(n)) iff

 f(n) = O(g(n)) and f(n) = W(g(n)).

M
Y

cs
v
tu

 N
o
te

s

Running Times
• “Running time is O(f(n))”  Worst case is O(f(n))

• O(f(n)) bound on the worst-case running time 
O(f(n)) bound on the running time of every input.

• Q(f(n)) bound on the worst-case running time 
Q(f(n)) bound on the running time of every input.

• “Running time is W(f(n))”  Best case is W(f(n))

• Can still say “Worst-case running time is W(f(n))”

• Means worst-case running time is given by some
unspecified function g(n)  W(f(n)).

w
w

w
.m

y
cs

v
tu

n
o
te

s.
in

M

Y
cs

v
tu

 N
o
te

s

Example
• Insertion sort takes Q(n2) in the worst case, so

sorting (as a problem) is O(n2).

• Any sort algorithm must look at each item, so
sorting is W(n).

• In fact, using (e.g.) merge sort, sorting is Q(n lg n)
in the worst case.

• Later, we will prove that we cannot hope that any
comparison sort to do better in the worst case.

w
w

w
.m

y
cs

v
tu

n
o
te

s.
in

M

Y
cs

v
tu

 N
o
te

s

Asymptotic Notation in
Equations • Can use asymptotic notation in equations to

replace expressions containing lower-order terms.

• For example,
4n3 + 3n2 + 2n + 1 = 4n3 + 3n2 + Q(n)

= 4n3 + Q(n2) = Q(n3).

• In equations, Q(f(n)) always stands for an g(n) 
Q(f(n))

• In the example above, Q(n2) stands for
3n2 + 2n + 1.

w
w

w
.m

y
cs

v
tu

n
o
te

s.
in

M

Y
cs

v
tu

 N
o
te

s

o-notation

 f(n) becomes insignificant relative to g(n) as n
approaches infinity:

 lim [f(n) / g(n)] = 0

n

g(n) is an upper bound for f(n) that is not

asymptotically tight.

Observe the difference in this definition from
previous ones.

w
w

w
.m

y
cs

v
tu

n
o
te

s.
in

o(g(n)) = {f(n):  c > 0,  n0 > 0 such that
  n  n0, we have 0  f(n) < cg(n)}.

For a given function g(n), the set little-o:

M
Y

cs
v
tu

 N
o
te

s

w -notation

f(n) becomes arbitrarily large relative to g(n) as n
approaches infinity:

 lim [f(n) / g(n)] = .

n

g(n) is a lower bound for f(n) that is not
asymptotically tight.

w
w

w
.m

y
cs

v
tu

n
o
te

s.
in

w(g(n)) = {f(n):  c > 0,  n0 > 0 such that

  n  n0, we have 0  cg(n) < f(n)}.

For a given function g(n), the set little-omega:

M
Y

cs
v
tu

 N
o
te

s

Comparison of Functions
 f  g  a  b

f (n) = O(g(n))  a  b

f (n) = W(g(n))  a  b

f (n) = Q(g(n))  a = b

f (n) = o(g(n))  a < b

f (n) = w (g(n))  a > b

w
w

w
.m

y
cs

v
tu

n
o
te

s.
in

M

Y
cs

v
tu

 N
o
te

s

Limits

• lim [f(n) / g(n)] = 0  f(n)  o(g(n))
 n

• lim [f(n) / g(n)] =   f(n)  w(g(n))
 n

w
w

w
.m

y
cs

v
tu

n
o
te

s.
in

M

Y
cs

v
tu

 N
o
te

s

Properties
• Transitivity

f(n) = Q(g(n)) & g(n) = Q(h(n))  f(n) = Q(h(n))
f(n) = O(g(n)) & g(n) = O(h(n))  f(n) = O(h(n))
f(n) = W(g(n)) & g(n) = W(h(n))  f(n) = W(h(n))
f(n) = o (g(n)) & g(n) = o (h(n))  f(n) = o (h(n))
f(n) = w(g(n)) & g(n) = w(h(n))  f(n) = w(h(n))

• Reflexivity

 f(n) = Q(f(n))

 f(n) = O(f(n))

 f(n) = W(f(n))

w
w

w
.m

y
cs

v
tu

n
o
te

s.
in

M

Y
cs

v
tu

 N
o
te

s

Properties
• Symmetry

 f(n) = Q(g(n)) iff g(n) = Q(f(n))

• Complementarity

 f(n) = O(g(n)) iff g(n) = W(f(n))

 f(n) = o(g(n)) iff g(n) = w((f(n))

w
w

w
.m

y
cs

v
tu

n
o
te

s.
in

M

Y
cs

v
tu

 N
o
te

s

Common Functions

M
Y

cs
v
tu

 N
o
te

s
w

w
w

.m
y
cs

v
tu

n
o
te

s.
in

Monotonicity

• f(n) is

• monotonically increasing if m  n  f(m)  f(n).

• monotonically decreasing if m  n  f(m)  f(n).

• strictly increasing if m < n  f(m) < f(n).

• strictly decreasing if m > n  f(m) > f(n).

w
w

w
.m

y
cs

v
tu

n
o
te

s.
in

M

Y
cs

v
tu

 N
o
te

s

Exponentials

• Useful Identities:

• Exponentials and polynomials

w
w

w
.m

y
cs

v
tu

n
o
te

s.
in

nmnm

mnnm

aaa

aa

a
a











)(

11

)(

0lim

nb

n

b

n

aon

a

n






M
Y

cs
v
tu

 N
o
te

s

Logarithms

x = logba is the
exponent for a = bx.

Natural log: ln a = logea

Binary log: lg a = log2a

lg2a = (lg a)2

lg lg a = lg (lg a)

w
w

w
.m

y
cs

v
tu

n
o
te

s.
in

ac

a

b

bb

c

c
b

b

n

b

ccc

a

bb

b

ca

b
a

aa

b

a
a

ana

baab

ba

loglog

log

log

1
log

log)/1(log

log

log
log

loglog

loglog)(log















M
Y

cs
v
tu

 N
o
te

s

Polylogarithms

• For a  0, b > 0, lim n (lga n / nb) = 0,
so lga n = o(nb), and nb = w(lga n)

• Prove using L’Hopital’s rule repeatedly

• lg(n!) = Q(n lg n)

• Prove using Stirling’s approximation (in the text) for
lg(n!).

w
w

w
.m

y
cs

v
tu

n
o
te

s.
in

M

Y
cs

v
tu

 N
o
te

s

Exercise

w
w

w
.m

y
cs

v
tu

n
o
te

s.
in

Express functions in A in asymptotic notation using functions in B.

 A B

5n2 + 100n 3n2 + 2

 A  Q(n2), n2  Q(B)  A  Q(B)

log3(n
2) log2(n

3)

logba = logca / logcb; A = 2lgn / lg3, B = 3lgn, A/B =2/(3lg3)

 nlg4 3lg n

alog b = blog a; B =3lg n=nlg 3; A/B =nlg(4/3)   as n

lg2n n1/2

lim (lga n / nb) = 0 (here a = 2 and b = 1/2)  A  o (B)

n

A  Q(B)

A  Q(B)

A  w(B)

A  o (B)

M
Y

cs
v
tu

 N
o
te

s

Recurrences

M
Y

cs
v
tu

 N
o
te

s
w

w
w

.m
y
cs

v
tu

n
o
te

s.
in

The Master Method
• Based on the Master theorem.

• “Cookbook” approach for solving recurrences of the form

 T(n) = aT(n/b) + f(n)

• a  1, b > 1 are constants.

• f(n) is asymptotically positive.

• n/b may not be an integer, but we ignore floors and ceilings. Why?

• Requires memorization of three cases.

w
w

w
.m

y
cs

v
tu

n
o
te

s.
in

M

Y
cs

v
tu

 N
o
te

s

The Master Theorem

w
w

w
.m

y
cs

v
tu

n
o
te

s.
in

Theorem 4.1

Let a  1 and b > 1 be constants, let f(n) be a function, and

Let T(n) be defined on nonnegative integers by the recurrence

T(n) = aT(n/b) + f(n), where we can replace n/b by n/b or n/b.

T(n) can be bounded asymptotically in three cases:

1. If f(n) = O(nlogba–) for some constant  > 0, then T(n) = (nlogba).

2. If f(n) = (nlogba), then T(n) = (nlogbalg n).

3. If f(n) = (nlogba+) for some constant  > 0,

 and if, for some constant c < 1 and all sufficiently large n,

 we have a·f(n/b)  c f(n), then T(n) = (f(n)).

M
Y

cs
v
tu

 N
o
te

s

Recursion tree view

w
w

w
.m

y
cs

v
tu

n
o
te

s.
in

Θ(1)

f(n)

f(n/b) f(n/b) f(n/b)

f(n/b2) f(n/b2) f(n/b2) f(n/b2) f(n/b2) f(n/b2) f(n/b2) f(n/b2) f(n/b2)

a

a a a

…

… … …

a a a a a a

… … … … … …

Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1)

f(n)

af(n/b)

a2f(n/b2)

(nlogba)

Total: 





1log

0

log
)/()()(

n

j

jja
b

b bnfannT

M
Y

cs
v
tu

 N
o
te

s

The Master Theorem

w
w

w
.m

y
cs

v
tu

n
o
te

s.
in

Theorem 4.1

Let a  1 and b > 1 be constants, let f(n) be a function, and

Let T(n) be defined on nonnegative integers by the recurrence

T(n) = aT(n/b) + f(n), where we can replace n/b by n/b or n/b.

T(n) can be bounded asymptotically in three cases:

1. If f(n) = O(nlogba–) for some constant  > 0, then T(n) = (nlogba).

2. If f(n) = (nlogba), then T(n) = (nlogbalg n).

3. If f(n) = (nlogba+) for some constant  > 0,

 and if, for some constant c < 1 and all sufficiently large n,

 we have a·f(n/b)  c f(n), then T(n) = (f(n)).

M
Y

cs
v
tu

 N
o
te

s

Master Method – Examples

• T(n) = 16T(n/4)+n

• a = 16, b = 4, nlogba = nlog416 = n2.

• f(n) = n = O(nlogba-) = O(n2-), where  = 1  Case 1.
• Hence, T(n) = (nlogba) = (n2).

• T(n) = T(3n/7) + 1
• a = 1, b=7/3, and nlogba = nlog 7/3 1 = n0 = 1

• f(n) = 1 = (nlogba)  Case 2.

• Therefore, T(n) = (nlogba lg n) = (lg n)

w
w

w
.m

y
cs

v
tu

n
o
te

s.
in

M

Y
cs

v
tu

 N
o
te

s

Master Method – Examples
• T(n) = 3T(n/4) + n lg n

• a = 3, b=4, thus nlogba = nlog43 = O(n0.793)

• f(n) = n lg n = (nlog43 + ) where   0.2  Case 3.

• Therefore, T(n) = (f(n)) = (n lg n).

• T(n) = 2T(n/2) + n lg n
• a = 2, b=2, f(n) = n lg n, and nlogba = nlog22 = n

• f(n) is asymptotically larger than nlogba, but not
polynomially larger. The ratio lg n is asymptotically less than
n for any positive . Thus, the Master Theorem doesn’t
apply here.

w
w

w
.m

y
cs

v
tu

n
o
te

s.
in

M

Y
cs

v
tu

 N
o
te

s

Master Theorem – What it
means? • Case 1: If f(n) = O(nlogba–) for some constant  > 0,

then T(n) = (nlogba).

• nlogba = alogbn : Number of leaves in the recursion tree.

• f(n) = O(nlogba–)  Sum of the cost of the nodes at each
internal level asymptotically smaller than the cost of leaves
by a polynomial factor.

• Cost of the problem dominated by leaves, hence cost is
(nlogba).

w
w

w
.m

y
cs

v
tu

n
o
te

s.
in

M

Y
cs

v
tu

 N
o
te

s

Master Theorem – What it
means? • Case 2: If f(n) = (nlogba), then T(n) = (nlogbalg n).

• nlogba = alogbn : Number of leaves in the recursion tree.

• f(n) = (nlogba)  Sum of the cost of the nodes at each
level asymptotically the same as the cost of leaves.

• There are (lg n) levels.

• Hence, total cost is (nlogba lg n).

w
w

w
.m

y
cs

v
tu

n
o
te

s.
in

M

Y
cs

v
tu

 N
o
te

s

Master Theorem – What it
means? • Case 3: If f(n) = (nlogba+) for some constant  > 0,

 and if, for some constant c < 1 and all sufficiently large n,
 we have a·f(n/b)  c f(n), then T(n) = (f(n)).

• nlogba = alogbn : Number of leaves in the recursion tree.

• f(n) = (nlogba+)  Cost is dominated by the root. Cost of
the root is asymptotically larger than the sum of the cost
of the leaves by a polynomial factor.

• Hence, cost is (f(n)).

w
w

w
.m

y
cs

v
tu

n
o
te

s.
in

M

Y
cs

v
tu

 N
o
te

s

Master Theorem – Proof for exact
powers
• Proof when n is an exact power of b.

• Three steps.

1. Reduce the problem of solving the recurrence to the problem
of evaluating an expression that contains a summation.

2. Determine bounds on the summation.

3. Combine 1 and 2.

w
w

w
.m

y
cs

v
tu

n
o
te

s.
in

M

Y
cs

v
tu

 N
o
te

s

Proof for exact powers – Step 1

Lemma 4.2

 Let a  1 and b > 1 be constants, and let f(n) be
a nonnegative function defined on exact powers
of b. Define T(n) on exact powers of b by the
recurrence

 T(n) = (1) if n = 1,

 aT(n/b) + f(n) if n = bi, i is a +ve
integer.

 Then

w
w

w
.m

y
cs

v
tu

n
o
te

s.
in







1log

0

log
)/()()(

n

j

jja
b

b bnfannT (4.6)

M
Y

cs
v
tu

 N
o
te

s

Proof of Lemma 4.2

w
w

w
.m

y
cs

v
tu

n
o
te

s.
in

Θ(1)

f(n)

f(n/b) f(n/b) f(n/b)

f(n/b2) f(n/b2) f(n/b2) f(n/b2) f(n/b2) f(n/b2) f(n/b2) f(n/b2) f(n/b2)

a

a a a

…

… … …

a a a a a a

… … … … … …

Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1)

f(n)

af(n/b)

a2f(n/b2)

(nlogba)

Total: 





1log

0

log
)/()()(

n

j

jja
b

b bnfannT

M
Y

cs
v
tu

 N
o
te

s

Proof of Lemma 4.2 – Contd. • Cost of the root – f(n)

• Number of children of the root = Number of nodes at distance 1
from the root = a.

• Problem size at depth 1 = Original Size/b = n/b.

• Cost of nodes at depth 1 = f(n/b).

• Each node at depth 1 has a children.

• Hence, number of nodes at depth 2

 = # of nodes at depth 1  # of children per depth 1 node,

 = a  a = a2

• Size of problems at depth 2 = ((Problem size at depth 1)/b) =
n/b/b = n/b2.

• Cost of problems at depth 2 = f(n/b2).

w
w

w
.m

y
cs

v
tu

n
o
te

s.
in

M

Y
cs

v
tu

 N
o
te

s

Proof of Lemma 4.2 – Contd.
• Continuing in the same way,

• number of nodes at depth j

 = aj

• Size of problems at depth j = n/bj.

• Cost of problems at depth j = f(n/bj).

• Problem size reduces to 1 at leaves.

• Let x be the depth of leaves. Then x is given by n/bx =1

• Hence, depth of leaf level is logbn.

• number of leaves = number of nodes at level logbn =
alogbn = nlogba.

w
w

w
.m

y
cs

v
tu

n
o
te

s.
in

M

Y
cs

v
tu

 N
o
te

s

Proof of Lemma 4.2 – Contd.
• Cost of a leaf node = (1).

• So, total cost of all leaf nodes = (nlogba).

• Total cost of internal nodes = Sum of total cost of
internal nodes at all levels (from depth 0 (root) to
depth logbn – 1).

 =

• Total problem cost = Cost of leaves + Cost of internal
nodes = w

w
w

.m
y
cs

v
tu

n
o
te

s.
in






1log

0

)/(
n

j

jj
b

bnfa







1log

0

log
)/()()(

n

j

jja
b

b bnfannT

(4.2 a)

(4.2 b)

(from 4.2 a and 4.2 b)

M
Y

cs
v
tu

 N
o
te

s

Step 2 – Bounding the Summation in Eq.
(4.6) Lemma 4.3

 Let a  1 and b > 1 be constants, and let f(n) be a nonnegative
function defined on exact powers of b. A function g(n)
defined over exact powers of b by

can be bounded asymptotically for exact powers of b as follows.

1. If f(n) = O(nlogba–) for some constant  > 0, then g(n) =

O(nlogba).

2. If f(n) = (nlogba), then g(n) = (nlogbalg n).

3. If a f(n/b)  c f(n) for some constant c < 1 and all n  b, then

g(n) = (f(n)).

w
w

w
.m

y
cs

v
tu

n
o
te

s.
in

 





1log

0

)/()(
n

j

jj
b

bnfang M
Y

cs
v
tu

 N
o
te

s

Proof of Lemma 4.3
Case 1

 f(n) = O(nlogba–)  f(n/bj) = O((n/bj)logba–)

w
w

w
.m

y
cs

v
tu

n
o
te

s.
in







1log

0

)/()(
n

j

jj
b

bnfang






















 





1log

0

logn

j

a

j

j
b b

b

n
aO



















1log

0
log

log
n

j

j

a

a
b

b

b

b

ab
n




 







1log

0

log
n

j

ja
b

b bn 
















1log

0

logn

j

a

j

j
b b

b

n
a



Factoring out terms and simplifying the

summation within O-notation leaves an

increasing geometric series.

M
Y

cs
v
tu

 N
o
te

s

Proof of Lemma 4.3 – Contd.

w
w

w
.m

y
cs

v
tu

n
o
te

s.
in

 







1log

0

log
n

j

ja
b

b bn 

















1

1
log

log






b

b
n

n
a

b

b

















1

1log






b

n
n

ab

)(
log 

nOn
ab 


















1log

0

logn

j

a

j

j
b b

b

n
a



;because  and b are constants.

)(
log abnO

)()(
log

1log

0

log

a
n

j

a

j

j b

b b

nO
b

n
aOng 





















 







M
Y

cs
v
tu

 N
o
te

s

Proof of Lemma 4.3 – Contd.
Case 2

 f(n) = (nlogba)  f(n/bj) = ((n/bj)logba)

nn b

ab log
log



www.mycsvtunotes.in







1log

0

)/()(
n

j

jj
b

bnfang






















 





1log

0

logn

j

a

j

j
b b

b

n
a
















1log

0
log

log
n

j

j

a

a
b

b

b

b

a
n







1log

0

log
1

n

j

a
b

bn














1log

0

logn

j

a

j

j
b b

b

n
a

Factoring out terms and simplifying the

summation within -notation leaves a

constant series.

Proof of Lemma 4.3 – Contd.

Case 2 – Contd.

)log(
log

nn b

ab

www.mycsvtunotes.in






















 





1log

0

log

)(
n

j

a

j

j
b b

b

n
ang

)lg(
log

nn
ab

Proof of Lemma 4.3 – Contd.
Case 3

fa
b

n
fa

b

n
afnf

nb 1log

2

2)(


















 

www.mycsvtunotes.in







1log

0

)/()(
n

j

jj
b

bnfang

•f(n) is nonnegative, by definition.

•a (number of subproblems) and b (factor by which the problem size

is reduced at each step) are nonnegative.

•Hence, each term in the above expression for g(n) is nonnegative.

Also, g(n) contains f(n).

•Hence g(n) = (f(n)), for exact powers of b.

Proof of Lemma 4.3 – Contd.
Case 3 – Contd.

• By assumption, a f(n/b)  c f(n), for c < 1 and all n  b.

•  f(n/b)  (c/a) f(n).

• Iterating j times, f(n/bj)  (c/a)j f(n).

•  aj f(n/b)  cj f(n).

www.mycsvtunotes.in

Proof of Lemma 4.3 – Contd.

Case 3 – Contd.








1log

0

)/()(
n

j

jj
b

bnfang







1log

0

)(
n

j

j
b

nfc

www.mycsvtunotes.in







0

)(
j

j nfc













c
nf

1

1
)())((nfO

Substituting aj f(n/b)  cj f(n) and simplifying

yields a decreasing geometric series since c < 1.

Thus, g(n) = O(f(n)) and g(n) = (f(n)) (proved earlier).

 g(n) = (f(n)).

Master Theorem – Proof – Step
3 Lemma 4.4

 Let a  1 and b > 1 be constants, and let f(n) be a nonnegative
function defined on exact powers of b. Define T(n) on exact
powers of b by the recurrence

 T(n) = (1) if n = 1,

 T(n) = aT(n/b) + f(n) if n = bi, i is a +ve integer.

 Then T(n) can be bounded asymptotically for exact powers of b
as follows.

1. If f(n) = O(nlogba–) for some constant  > 0, then T(n) =
(nlogba).

2. If f(n) = (nlogba), then T(n) = (nlogbalg n).
3. If f(n) = (nlogba+) for some constant  > 0, and af(n/b)  c

f(n) for some constant c < 1 and large n, then T(n) = (f(n)).

w
w

w
.m

y
cs

v
tu

n
o
te

s.
in

M

Y
cs

v
tu

 N
o
te

s

Lemma 4.4 – Proof







1log

0

log
)/()()(

n

j

jja
b

b bnfannT

)()()(
loglog aa bb nOnnT 

)(
log abn

)lg()()(
loglog

nnnnT
aa bb 

www.mycsvtunotes.in

Bounds obtained for all 3 cases in

Lemma 4.3. Use them. Case 1:

Why?

Case 2:

)lg(
log

nn
ab

Case 3:

))(()()(
log

nfnnT
ab 

))((nf)()(;
log 


abnnf

By Lemma 4.2,

Proof for when n is not an exact power of b

• To complete the proof for Master Theorem in
general,

• Extend analysis to cases where floors and ceilings occur in
the recurrence.

• I.e., consider recurrences of the form

 and

• Go through Sec. 4.4.2 in the text.

 )()/()(nfbnaTnT 

 )()/()(nfbnaTnT 

www.mycsvtunotes.in

