What is an Algorithm?

(And how do we analyze one?)

Algorithms

- Informally,

- A tool for solving a well-specified computational problem.

- Example: sorting
input: A sequence of numbers.
output: An ordered permutation of the input.
issues: correctness, efficiency, storage, etc.

Strengthening the Informal Definiton

- An algorithm is a finite sequence of unambiguous instructions for solving a well-specified computational problem.
- Important Features:
- Finiteness.
- Definiteness.
- Input.
- Output.
- Effectiveness.
 requirements.)
- Time, memory, communication bandwidth etc.
- Computation time (running time) is of primary concern.
- Why analyze algorithms?
- Choose the most efficient of several possible algorithms for the same problem.
- Is the best possible running time for a problem reasonably finite for practical purposes?
- Is the algorithm optimal (best in some sense)? - Is something better possible?

Running Time

- Run time expression should be machine-independent.
- Use a model of computation or "hypothetical" computer.
- Our choice - RAM model (most commonly-used).
- Model should be
- Simple.
- Applicable.

RAMericsingle-processor model.

- Supports simple constant-time instructions found in real computers.
- Arithmetic (+, -, *, /, \%, floor, ceiling).
- Data Movement (load, store, copy).
- Control (branch, subroutine call).
- Run time (cost) is uniform (1 time unit) for all simple instructions.
- Memory is unlimited.
- Flat memory model - no hierarchy.
- Access to a word of memory takes 1 time unit.
- Sequential execution - no concurrent operations.

Running Time - Definition

- Call each simple instruction and access to a word of memory a "primitive operation" or "step."
- Running time of an algorithm for a given input is
- The number of steps executed by the algorithm on that input.
- Often referred to as the complexity of the algorithm.

Complexity and Input

- Complexity of an algorithm generally depends on
- Size of input.
- Input size depends on the problem.
- Examples: No. of items to be sorted.
- No. of vertices and edges in a graph.
- Other characteristics of the input data.
- Are the items already sorted?
- Are there cycles in the graph?

Worst, Average, and Best-case

Vhaximum steps the algorithm takes for any possible input.

- Most tractable measure.
- Average-case Complexity
- Average of the running times of all possible inputs.
- Demands a definition of probability of each input, which is usually difficult to provide and to analyze.
- Best-case Complexity
- Minimum number of steps for any possible input.
- Not a useful measure. Why?

A Simple Example - Linear Search

 INPUT: a sequence of n numbers, key to search for.OUTPUT: true if key occurs in the sequence, false otherwise.

LinearSearch(A, key)	cost	times
$1 \quad i \leftarrow 1$	c_{1}	1
$2 \quad$ while $i \leq n$ and $\mathrm{A}[i]!=$ key	c_{2}	x
$\mathbf{3} \quad$ do $i++$	c_{3}	$x-1$
$\mathbf{4}$ if $i \leq n$	c_{4}	1
$\mathbf{5} \quad$ then return true	c_{5}	1
6	else return false	c_{6}

x ranges between 1 and $n+1$.
So, the running time ranges between

$$
c_{1}+c_{2}+c_{4}+c_{5}-\text { best case }
$$

and

$$
c_{1}+c_{2}(n+1)+c_{3} n+c_{4}+c_{6}-\text { worst case }
$$

A Simple Example - Linear Search

 INPUT: a sequence of n numbers, key to search for.OUTPUT: true if key occurs in the sequence, false otherwise.

LinearSearch(A, key)	cost	times
$1 \quad i \leftarrow 1$	1	1
$2 \quad$ while $i \leq n$ and $\mathrm{A}[i]!=$ key	1	x
$\mathbf{3} \quad$ do $i++$	1	$x-1$
$\mathbf{4}$ if $i \leq n$	1	1
$\mathbf{5} \quad$ then return true	1	1
6	else return false	1

Assign a cost of 1 to all statement executions.
Now, the running time ranges between

$$
1+1+1+1=4-\text { best case }
$$

and

$$
1+(n+1)+n+1+1=2 n+4-\text { worst case }
$$

A Simple Example - Linear Search

 INPUT: a sequence of n numbers, key to search for.OUTPUT: true if key occurs in the sequence, false otherwise.

LinearSearch(A, key)	cost	times
$1 \quad i \leftarrow 1$	1	1
$2 \quad$ while $i \leq n$ and $\mathrm{A}[i]!=$ key	1	x
$\mathbf{3} \quad$ do $i++$	1	$x-1$
$\mathbf{4}$ if $i \leq n$	1	1
$\mathbf{5} \quad$ then return true	1	1
$6 \quad$ else return false	1	1

If we assume that we search for a random item in the list, on an average, Statements 2 and 3 will be executed $n / 2$ times. Running times of other statements are independent of input. Hence, average-case complexity is

$$
1+n / 2+n / 2+1+1=n+3
$$

Order of growth

- Principal interest is to determine
- how running time grows with input size - Order of growth.
- the running time for large inputs - Asymptotic complexity.
- In determining the above,
- Lower-order terms and coefficient of the highest-order term are insignificant.
- Ex: $\ln 7 n^{5}+6 n^{3}+n+10$, which term dominates the running time for very large n ?
- Complexity of an algorithm is denoted by the highest-order term in the expression for running time.
- Ex: $O(n), \Theta(1), \Omega\left(n^{2}\right)$, etc.
- Constant complexity when running time is independent of the input size denoted $O(1)$.
- Linear Search: Best case $\Theta(1)$, Worst and Average cases: $\Theta(n)$.
- More on O, Θ, and Ω in next class. Use Θ for the present.

Comparison of Algorithms

- Complexity function can be used to compare the performance of algorithms.
- Algorithm A is more efficient than Algorithm B for solving a problem, if the complexity function of A is of lower order than that of B.
- Examples:
- Linear Search $-\Theta(n)$ vs. Binary Search $-\Theta(\lg n)$
- Insertion Sort $-\Theta\left(n^{2}\right)$ vs. Quick Sort $-\Theta(n \lg n)$

Asymptotic Notation, Review of Functions \& Summations

Asymptotic Complexity

- Running time of an algorithm as a function of input size n for large n.
- Expressed using only the highest-order term in the expression for the exact running time.
- Instead of exact running time, say $\Theta\left(n^{2}\right)$.
- Describes behavior of function in the limit.
- Written using Asymptotic Notation.

Asymptotic Notation

- $\Theta, 0, \Omega, o, \omega$
- Defined for functions over the natural numbers.
- Ex: $f(n)=\Theta\left(n^{2}\right)$.
- Describes how $f(n)$ grows in comparison to n^{2}.
- Define a set of functions; in practice used to compar two function sizes.
- The notations describe different rate-of-growth relations between the defining function and the defined set of functions.

Θ-notation

For function $g(n)$, we define $\Theta(g(n))$, big-Theta of n, as the set:
$\Theta(g(n))=\{f(n)$:
\exists positive constants c_{1}, c_{2}, and n_{0}, such that $\forall n \geq n_{0}$,
we have $0 \leq c_{1} g(n) \leq f(n) \leq c_{2} g(n)$ \}

Intuitively: Set of all functions that have the same rate of growth as $g(n)$.

$g(n)$ is an asymptotically tight bound for $f(n)$.

Θ-notation

For function $g(n)$, we define $\Theta(g(n))$, big-Theta of n, as the set:
$\Theta(g(n))=\{f(n)$:
\exists positive constants c_{1}, c_{2}, and n_{0}, such that $\forall n \geq n_{0}$,
we have $0 \leq c_{1} g(n) \leq f(n) \leq \mathrm{c}_{2} g(n)$ \}

Technically, $f(n) \in \Theta(g(n))$.
Older usage, $f(n)=\Theta(g(n))$.
 I'll accept either...
$f(n)$ and $g(n)$ are nonnegative, for large n.

Example

$\Theta(g(n))=\left\{f(n): \exists\right.$ positive constants c_{1}, c_{2}, and n_{0}, such that $\left.\forall n \geq n_{0}, \quad 0 \leq c_{1} g(n) \leq f(n) \leq \mathrm{c}_{2} g(n)\right\}$

- $10 n^{2}-3 n=\Theta\left(n^{2}\right)$
- What constants for n_{0}, c_{1}, and c_{2} will work?
- Make c_{1} a little smaller than the leading coefficient, and c_{2} a little bigger.
- To compare orders of growth, look at the leading term.
- Exercise: Prove that $n^{2} / 2-3 n=\Theta\left(n^{2}\right)$

Example

$\Theta(g(n))=\left\{f(n): \exists\right.$ positive constants c_{1}, c_{2}, and n_{0}, such that $\left.\forall n \geq n_{0}, \quad 0 \leq c_{1} g(n) \leq f(n) \leq \mathrm{c}_{2} g(n)\right\}$

- Is $3 n^{3} \in \Theta\left(n^{4}\right)$??
- How about $2^{2 n} \in \Theta\left(2^{n}\right)$??

O-notation

For function $g(n)$, we define $O(g(n))$, big-O of n, as the set:
$O(g(n))=\{f(n)$:
\exists positive constants c and n_{0}, such that $\forall n \geq n_{0}$, we have $0 \leq f(n) \leq \operatorname{cg}(n)\}$

Intuitively: Set of all functions whose rate of growth is the same as or lower than that of $g(n)$.
 $g(n)$ is an asymptotic upper bound for $f(n)$. $f(n)=\Theta(g(n)) \Rightarrow f(n)=O(g(n))$. $\Theta(g(n)) \subset O(g(n))$.

Examples

$O(g(n))=\left\{f(n): \exists\right.$ positive constants c and n_{0}, such that $\forall n \geq n_{0}$, we have $\left.0 \leq f(n) \leq \operatorname{cg}(n)\right\}$

- Any linear function $a n+b$ is in $O\left(n^{2}\right)$.
- Show that $3 n^{3}=O\left(n^{4}\right)$ for appropriate c and n_{0}.

Ω-notation

For function $g(n)$, we define $\Omega(g(n))$, big-Omega of n, as the set:
$\Omega(g(n))=\{f(n)$:
\exists positive constants c and n_{0}, such that $\forall \boldsymbol{n} \geq \boldsymbol{n}_{\mathbf{0}}$, we have $0 \leq \operatorname{cg}(n) \leq f(n)\}$
Intuitively: Set of all functions whose rate of growth is the same as or higher than that of $g(n)$.

$g(n)$ is an asymptotic lower bound for $f(n)$.

$$
\begin{aligned}
& f(n)=\Theta(g(n)) \Rightarrow f(n)=\Omega(g(n)) . \\
& \Theta(g(n)) \subset \Omega(g(n)) .
\end{aligned}
$$

Example

$\Omega(g(n))=\left\{f(n): \exists\right.$ positive constants c and n_{0}, such that $\forall n \geq n_{0}$, we have $\left.0 \leq \operatorname{cg}(n) \leq f(n)\right\}$

- $V_{n}=\Omega(\lg n)$. Choose c and n_{0}.

Relations Between $\Theta, 0, \Omega$

Relations Between $\Theta, \Omega, 0$

Theorem : For any two functions $g(n)$ and $f(n)$,

$$
\begin{aligned}
& f(n)=\Theta(g(n)) \text { iff } \\
& f(n)=O(g(n)) \text { and } f(n)=\Omega(g(n)) .
\end{aligned}
$$

- I.e., $\Theta(g(n))=O(g(n)) \cap \Omega(g(n))$
- In practice, asymptotically tight bounds are obtained from asymptotic upper and lower bounds.

Running Times

- "Running time is $O(f(n)) " \Rightarrow$ Worst case is $O(f(n))$
- $O(f(n))$ bound on the worst-case running time \Rightarrow $O(f(n))$ bound on the running time of every input.
- $\Theta(f(n))$ bound on the worst-case running time \Rightarrow $\Theta(f(n))$ bound on the running time of every input.
- "Running time is $\Omega(f(n)) " \Rightarrow$ Best case is $\Omega(f(n))$
- Can still say "Worst-case running time is $\Omega(f(n))$ "
- Means worst-case running time is given by some unspecified function $g(n) \in \Omega(f(n))$.

Example

- Insertion sort takes $\Theta\left(n^{2}\right)$ in the worst case, so sorting (as a problem) is $O\left(n^{2}\right)$.
- Any sort algorithm must look at each item, so sorting is $\Omega(n)$.
- In fact, using (e.g.) merge sort, sorting is $\Theta(n \lg n)$ in the worst case.
- Later, we will prove that we cannot hope that any comparison sort to do better in the worst case.

Asymptotic Notation in

Equations replace expressions containing lower-order terms.

- For example,

$$
\begin{aligned}
& 4 n^{3}+3 n^{2}+2 n+1=4 n^{3}+3 n^{2}+\Theta(n) \\
& =4 n^{3}+\Theta\left(n^{2}\right)=\Theta\left(n^{3}\right)
\end{aligned}
$$

- In equations, $\Theta(f(n))$ always stands for an $g(n) \in$ $\Theta(f(n))$
- In the example above, $\Theta\left(n^{2}\right)$ stands for $3 n^{2}+2 n+1$.

Q-notation

For a given function $g(n)$, the set little- o :

$$
\begin{aligned}
& o(g(n))=\{f(n): \forall c>0, \exists \boldsymbol{n}_{\mathbf{0}}>\mathbf{0} \text { such that } \\
&\left.\forall n \geq n_{0} \text {, we have } 0 \leq f(n)<c g(n)\right\} .
\end{aligned}
$$

$f(n)$ becomes insignificant relative to $g(n)$ as n approaches infinity:

$$
\lim _{n \rightarrow \infty}[f(n) / g(n)]=0
$$

$g(n)$ is an upper bound for $f(n)$ that is not asymptotically tight.
Observe the difference in this definition from previous ones.

© -notation
 For a given function $g(n)$, the set little-omega:

$$
\begin{aligned}
\omega(g(n))= & \left\{f(n): \forall \boldsymbol{c}>\mathbf{0}, \exists \boldsymbol{n}_{\mathbf{0}}>\mathbf{0}\right. \text { such that } \\
& \left.\forall n \geq n_{0}, \text { we have } 0 \leq c g(n)<f(n)\right\} .
\end{aligned}
$$

$f(n)$ becomes arbitrarily large relative to $g(n)$ as n approaches infinity:

$$
\lim _{n \rightarrow \infty}[f(n) / g(n)]=\infty .
$$

$g(n)$ is a lower bound for $f(n)$ that is not asymptotically tight.

Comparison of Functions

$$
f \leftrightarrow g \approx a \leftrightarrow b
$$

$$
\begin{aligned}
& f(n)=O(g(n)) \approx a \leq b \\
& f(n)=\Omega(g(n)) \approx a \geq b \\
& f(n)=\Theta(g(n)) \approx a=b \\
& f(n)=o(g(n)) \approx a<b \\
& f(n)=\omega(g(n)) \approx a>b
\end{aligned}
$$

Limits

$-\lim _{n \rightarrow \infty}[f(n) / g(n)]=0 \Rightarrow f(n) \in o(g(n))$
$-\lim _{n \rightarrow \infty}[f(n) / g(n)]=\infty \Rightarrow f(n) \in \omega(g(n))$

Properties

$$
\begin{aligned}
& f(n)=\Theta(g(n)) \& g(n)=\Theta(h(n)) \Rightarrow f(n)=\Theta(h(n)) \\
& f(n)=O(g(n)) \& g(n)=O(h(n)) \Rightarrow f(n)=O(h(n)) \\
& f(n)=\Omega(g(n)) \& g(n)=\Omega(h(n)) \Rightarrow f(n)=\Omega(h(n)) \\
& f(n)=o(g(n)) \& g(n)=o(h(n)) \Rightarrow f(n)=o(h(n)) \\
& f(n)=\omega(g(n)) \& g(n)=\omega(h(n)) \Rightarrow f(n)=\omega(h(n))
\end{aligned}
$$

- Reflexivity

$$
\begin{gathered}
f(n)=\Theta(f(n)) \\
f(n)=O(f(n)) \\
f(n)=\Omega(f(n))
\end{gathered}
$$

Propyerties

$f(n)=\Theta(g(n))$ if $g(n)=\Theta(f(n))$

- Complementarity

$$
\begin{aligned}
& f(n)=O(g(n)) \text { iff } g(n)=\Omega(f(n)) \\
& f(n)=o(g(n)) \text { iff } g(n)=\omega((f(n))
\end{aligned}
$$

Common Functions

Monotonicity

- $f(n)$ is
- monotonically increasing if $m \leq n \Rightarrow f(m) \leq f(n)$.
- monotonically decreasing if $m \geq n \Rightarrow f(m) \geq f(n)$.
- strictly increasing if $m<n \Rightarrow f(m)<f(n)$.
- strictly decreasing if $m>n \Rightarrow f(m)>f(n)$.

Exponentials

- Useful Identities:

$$
\begin{aligned}
& a^{-1}=\frac{1}{a} \\
& \left(a^{m}\right)^{n}=a^{m n} \\
& a^{m} a^{n}=a^{m+n}
\end{aligned}
$$

- Exponentials and polynomials

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{n^{b}}{a^{n}}=0 \\
& \Rightarrow n^{b}=o\left(a^{n}\right)
\end{aligned}
$$

Logarithms

$x=\log _{b} a$ is the exponent for $a=b^{x}$.

Natural log: $\ln a=\log _{e} a$
Binary log: $\lg a=\log _{2} a$

$$
\begin{aligned}
& \lg ^{2} a=(\lg a)^{2} \\
& \lg \lg a=\lg (\lg a)
\end{aligned}
$$

$$
a=b^{\log _{b} a}
$$

$$
\begin{aligned}
& \log _{c}(a b)=\log _{c} a+\log _{c} b \\
& \log _{b} a^{n}=n \log _{b} a
\end{aligned}
$$

$$
\log _{b} a=\frac{\log _{c} a}{\log _{c} b}
$$

$$
\log _{b}(1 / a)=-\log _{b} a
$$

$$
\log _{b} a=\frac{1}{\log _{a} b}
$$

$$
a^{\log _{b} c}=c^{\log _{b} a}
$$

Polylogarithms

- For $\boldsymbol{a} \geq 0, \boldsymbol{b}>0, \lim _{n \rightarrow \infty}\left(\lg ^{a} n / n^{b}\right)=0$,
so $\lg ^{a} n=o\left(n^{b}\right)$, and $n^{b}=\omega\left(\lg ^{a} n\right)$
- Prove using L’Hopital's rule repeatedly
- $\lg (n!)=\Theta(n \lg n)$
- Prove using Stirling's approximation (in the text) for $\lg (n!)$.

Exercise

Express functions in A in asymptotic notation using functions in B .

B

$$
\begin{aligned}
& 5 n^{2}+100 n \\
& 3 n^{2}+2 \\
& \mathbf{A} \in \Theta(\mathbf{B}) \\
& \mathrm{A} \in \Theta\left(n^{2}\right), n^{2} \in \Theta(\mathrm{~B}) \Rightarrow \mathrm{A} \in \Theta(\mathrm{~B}) \\
& \log _{3}\left(n^{2}\right) \\
& \log _{2}\left(n^{3}\right) \quad A \in \Theta(B) \\
& \log _{b} a=\log _{c} a / \log _{c} b ; \mathrm{A}=2 \lg n / \lg 3, \mathrm{~B}=3 \lg n, \mathrm{~A} / \mathrm{B}=2 /(3 \lg 3) \\
& n^{\lg 4} \\
& 3^{\lg n} \\
& \mathbf{A} \in \omega(\mathbf{B}) \\
& a^{\log b}=b^{\log a} ; \mathrm{B}=3^{\lg n}=n^{\lg 3} ; \mathrm{A} / \mathrm{B}=n^{\lg (4 / 3)} \rightarrow \infty \text { as } n \rightarrow \infty \\
& \lg ^{2} n \\
& n^{1 / 2} \\
& \mathbf{A} \in \boldsymbol{o}(\mathbf{B}) \\
& \lim \left(\lg ^{a} n / n^{b}\right)=0(\text { here } a=2 \text { and } b=1 / 2) \Rightarrow \mathrm{A} \in o(\mathrm{~B})
\end{aligned}
$$

Recurrences

The Master Method

- Based on the Master theorem.
- "Cookbook" approach for solving recurrences of the form $T(n)=a T(n / b)+f(n)$
- $a \geq 1, b>1$ are constants.
- $f(n)$ is asymptotically positive.
- n / b may not be an integer, but we ignore floors and ceilings. Why?
- Requires memorization of three cases.

The Master Theorem

Theorem 4.1

Let $a \geq 1$ and $b>1$ be constants, let $f(n)$ be a function, and
Let $T(n)$ be defined on nonnegative integers by the recurrence $T(n)=a T(n / b)+f(n)$, where we can replace n / b by $\lfloor n / b\rfloor$ or $\lceil n / b\rceil$.
$T(n)$ can be bounded asymptotically in three cases:

1. If $f(n)=O\left(n^{\log _{b} a-\varepsilon}\right)$ for some constant $\varepsilon>0$, then $T(n)=\Theta\left(n^{\log _{b} a}\right)$.
2. If $f(n)=\Theta\left(n^{\log _{b} a}\right)$, then $T(n)=\Theta\left(n^{\log _{b} a} \lg n\right)$.
3. If $f(n)=\Omega\left(n^{\log _{b} a+\varepsilon}\right)$ for some constant $\varepsilon>0$, and if, for some constant $c<1$ and all sufficiently large n, we have $a \cdot f(n / b) \leq c f(n)$, then $T(n)=\Theta(f(n))$.

Recursion tree view

The Master Theorem

Theorem 4.1

Let $a \geq 1$ and $b>1$ be constants, let $f(n)$ be a function, and
Let $T(n)$ be defined on nonnegative integers by the recurrence $T(n)=a T(n / b)+f(n)$, where we can replace n / b by $\lfloor n / b\rfloor$ or $\lceil n / b\rceil$.
$T(n)$ can be bounded asymptotically in three cases:

1. If $f(n)=O\left(n^{\log _{b} a-\varepsilon}\right)$ for some constant $\varepsilon>0$, then $T(n)=\Theta\left(n^{\log _{b} a}\right)$.
2. If $f(n)=\Theta\left(n^{\log _{b} a}\right)$, then $T(n)=\Theta\left(n^{\log _{b} a} \lg n\right)$.
3. If $f(n)=\Omega\left(n^{\log _{b} a+\varepsilon}\right)$ for some constant $\varepsilon>0$, and if, for some constant $c<1$ and all sufficiently large n, we have $a \cdot f(n / b) \leq c f(n)$, then $T(n)=\Theta(f(n))$.

Master Method - Examples

- $T(n)=16 T(n / 4)+n$
- $a=16, b=4, n^{\log b a}=n^{\log 416}=n^{2}$.
- $f(n)=n=O\left(n^{\log b a-\varepsilon}\right)=O\left(n^{2-\varepsilon}\right)$, where $\varepsilon=1 \Rightarrow$ Case 1 .
- Hence, $T(n)=\Theta\left(n^{\log b a}\right)=\Theta\left(n^{2}\right)$.
- $T(n)=T(3 n / 7)+1$
- $a=1, b=7 / 3$, and $n^{\log b a}=n^{\log 7 / 31}=n^{0}=1$
- $f(n)=1=\Theta\left(n^{\log b} a\right) \Rightarrow$ Case 2.
- Therefore, $T(n)=\Theta\left(n^{\log b} a \lg n\right)=\Theta(\lg n)$

Master Method - Examples

- $T(n)=3 T(n / 4)+n \lg n$
- $a=3, b=4$, thus $n^{\log b} b=n^{\log 43}=O\left(n^{0.793}\right)$
- $f(n)=n \lg n=\Omega\left(n^{\log 43+\varepsilon}\right)$ where $\varepsilon \approx 0.2 \Rightarrow$ Case 3 .
- Therefore, $T(n)=\Theta(f(n))=\Theta(n \lg n)$.
- $T(n)=2 T(n / 2)+n \lg n$
- $a=2, b=2, f(n)=n \lg n$, and $n^{\log b a}=n^{\log _{2} 2}=n$
- $f(n)$ is asymptotically larger than $n^{\log b a}$, but not polynomially larger. The ratio $\lg n$ is asymptotically less than n^{ε} for any positive ε. Thus, the Master Theorem doesn't apply here.

Master Theorem - What it

- Mesinf ? $n(n)=O\left(n^{\log _{b} a-\varepsilon}\right)$ for some constant $\varepsilon>0$, then $T(n)=\Theta\left(n^{\log _{b} a}\right)$.
- $n^{\log _{b} a}=a^{\log _{b} n}$: Number of leaves in the recursion tree.
- $f(n)=O\left(n^{\log _{a} a-\varepsilon}\right) \Rightarrow$ Sum of the cost of the nodes at each internal level asymptotically smaller than the cost of leaves by a polynomial factor.
- Cost of the problem dominated by leaves, hence cost is $\Theta\left(n^{\log _{b} a}\right)$.

Master Theorem - What it

- $n^{\log _{b} a}=a^{\log _{b} n}$: Number of leaves in the recursion tree. $f(n)=\Theta\left(n^{\log _{b} a}\right) \Rightarrow$ Sum of the cost of the nodes at each level asymptotically the same as the cost of leaves.
- There are $\Theta(\lg n)$ levels.
- Hence, total cost is $\Theta\left(n^{\log _{b} a} \lg n\right)$.

Master Theorem - What it

- MCAdBSIf $f(n)=\Omega\left(n^{\log _{b} a+\varepsilon}\right)$ for some constant $\varepsilon>0$, and if, for some constant $c<1$ and all sufficiently large n, we have $a \cdot f(n / b) \leq c f(n)$, then $T(n)=\Theta(f(n))$.
- $n^{\log _{b} a}=a^{\log _{b} n}$: Number of leaves in the recursion tree.
- $f(n)=\Omega\left(n^{\log _{b} a+\varepsilon}\right) \Rightarrow$ Cost is dominated by the root. Cost of the root is asymptotically larger than the sum of the cost of the leaves by a polynomial factor.
- Hence, cost is $\Theta(f(n))$.

Master Theorem - Proof for exact

powers

- Proof when n is an exact power of b.
- Three steps.

1. Reduce the problem of solving the recurrence to the problem of evaluating an expression that contains a summation.
2. Determine bounds on the summation.
3. Combine 1 and 2.

Proof for exact powers - Step 1

Lemma 4.2

Let $a \geq 1$ and $b>1$ be constants, and let $f(n)$ be a nonnegative function defined on exact powers of b. Define $T(n)$ on exact powers of b by the recurrence
$T(n)=\Theta(1) \quad$ if $n=1$,
integer. $T(n)=\Theta\left(n^{\log _{b} a}\right)+\sum_{j=0}^{\log _{s} n-1} a^{j} f\left(n / b^{j}\right)$ a +ve

Then

Proof of Lemma 4.2

.Proop of ofocoletmma 4.2 - Contd.

- Number of children of the root = Number of nodes at distance from the root $=a$.
- Problem size at depth $1=$ Original Size/b=n/b.
- Cost of nodes at depth $1=f(n / b)$.
- Each node at depth 1 has a children.
- Hence, number of nodes at depth 2
= \# of nodes at depth $1 \times \#$ of children per depth 1 node, $=a \times a=a^{2}$
- Size of problems at depth 2 = ((Problem size at depth 1$) / b)=$ $n / b / b=n / b^{2}$.
- Cost of problems at depth $2=f\left(n / b^{2}\right)$.

Proof of Lemma 4. 2 - Contd. - Continuing in the same way,

- number of nodes at depth j
$=a^{j}$
- Size of problems at depth $j=n / b^{j}$.
- Cost of problems at depth $j=f\left(n / b^{j}\right)$.
- Problem size reduces to 1 at leaves.
- Let x be the depth of leaves. Then x is given by $n / b^{x}=1$
- Hence, depth of leaf level is $\log _{b} n$.
- number of leaves $=$ number of nodes at level $\log _{b} n=$ $a^{\log _{b} n}=n^{\log _{b} a}$.

Proof of Lemma 4.2 - Contd.

- Cost of a leaf node $=\Theta(1)$.
- So, total cost of all leaf nodes $=\Theta\left(n^{\log _{b} a}\right)$.
- Total cost of internal nodes = Sum of total cost of internal nodes at all levels (from depth 0 (root) to depth $\log _{b} n-1$).
$=\sum_{\sum a^{\log ,-1}-1} a^{j} f\left(n / b^{j}\right)$
- Totà̉ problem cost = Cost of leaves + Cost of internal nodes $=$

$$
T(n)=\Theta\left(n^{\log _{b} a}\right)+\sum_{j=0}^{\log _{b} n-1} a^{j} f\left(n / b^{j}\right) \text { (from } 4.2 \mathrm{a} \text { and } 4 .
$$

Step 2 - Bounding the Summation in Eq.

Let $a \geq 1$ and $b>1$ be constants, and let $f(n)$ be a nonnegative function defined on exact powers of b. A function $g(n)$ defined over exact powers of b by

$$
g(n)=\sum_{j=0}^{\log _{b} n-1} a^{j} f\left(n / b^{j}\right)
$$

can be bounded asymptotically for exact powers of b as follows.

1. If $f(n)=O\left(n^{\log _{b} a-\varepsilon}\right)$ for some constant $\varepsilon>0$, then $g(n)=$ $O\left(n^{\log _{b} a}\right)$.
2. If $f(n)=\Theta\left(n^{\log _{b} a}\right)$, then $g(n)=\Theta\left(n^{\log _{b} a} \mid g n\right)$.
3. If $a f(n / b) \leq c f(n)$ for some constant $c<1$ and all $n \geq b$, then $g(n)=\Theta(f(n))$.

Prarpof of Lemma 4.3

$$
\begin{aligned}
& f(n)=O\left(n^{\log _{b} a-\varepsilon}\right) \Rightarrow f\left(n / b^{j}\right)=O\left(\left(n / b^{j}\right)^{\log _{b} a-\varepsilon}\right) \\
& g(n)=\sum_{j=0}^{\log _{b} n-1} a^{j} f\left(n / b^{j}\right)
\end{aligned}
$$

$$
=O\left(\sum_{j=0}^{\log _{b} n-1} a^{j}\left(\frac{n}{b^{j}}\right)^{\log _{b} a-\varepsilon}\right)
$$

Factoring out terms and simplifying the summation within O-notation leaves an increasing geometric series.

$$
\begin{aligned}
\sum_{j=0}^{\log _{b} n-1} a^{j}\left(\frac{n}{b^{j}}\right)^{\log _{b} a-\varepsilon} & =n^{\log _{b} a-\varepsilon} \sum_{j=0}^{\log _{b} n-1}\left(\frac{a b^{\varepsilon}}{b^{\log _{b} a}}\right)^{j} \\
& =n^{\log _{b} a-\varepsilon} \sum_{j=0}^{\log _{b} n-1}\left(b^{\varepsilon}\right)^{j}
\end{aligned}
$$

$$
=n^{\log _{b} a-\varepsilon} O\left(n^{\varepsilon}\right) \quad ; \text { because } \varepsilon \text { and } b \text { are constants. }
$$

$$
\begin{gathered}
=O\left(n^{\log _{b} a}\right) \\
g(n)=O\left(\sum_{j=0}^{\log _{b} n-1} a^{j}\left(\frac{n}{b^{j}}\right)^{\log _{b} a-\varepsilon}\right)=O\left(n^{\log _{b} a}\right)
\end{gathered}
$$

$$
\begin{aligned}
& \text { Proof af almemma } 4.3 \text { - Contd. }
\end{aligned}
$$

$$
\begin{aligned}
& =n^{\log _{g} a-\varepsilon}\left(\frac{b^{b^{\operatorname{cog}_{g} n}-1}}{b^{\varepsilon}-1}\right) \\
& =n^{\log _{a} a-\varepsilon}\left(\frac{n^{\varepsilon}-1}{b^{\varepsilon}-1}\right)
\end{aligned}
$$

Proof of Lemma 4.3 - Contd.

Case 2

$$
f(n)=\Theta\left(n^{\log _{b} a}\right) \Rightarrow f\left(n / b^{j}\right)=\Theta\left(\left(n / b^{j}\right)^{\log _{b} a}\right)
$$

$$
\begin{aligned}
g(n) & =\sum_{j=0}^{\log _{b} n-1} a^{j} f\left(n / b^{j}\right) \\
& =\Theta\left(\sum_{j=0}^{\log _{b} n-1} a^{j}\left(\frac{n}{b^{j}}\right)^{\log _{b} a}\right)
\end{aligned}
$$

Factoring out terms and simplifying the summation within Θ-notation leaves a constant series.

$$
\begin{aligned}
\sum_{j=0}^{\log _{b} n-1} a^{j}\left(\frac{n}{b^{j}}\right)^{\log _{b} a} & =n^{\log _{b} a} \sum_{j=0}^{\log _{b} n-1}\left(\frac{a}{b^{\log _{b} a}}\right)^{j} \\
& =n^{\log _{b} a} \sum_{j=0}^{\log _{b} n-1} 1 \\
& =n^{\log _{b} a} \log _{b} n
\end{aligned}
$$

Proof of Lemma 4.3 - Contd.

Case 2 - Contd.

$$
\begin{aligned}
g(n) & =\Theta\left(\sum_{j=0}^{\log _{b} n-1} a^{j}\left(\frac{n}{b^{j}}\right)^{\log _{b} a}\right) \\
& =\Theta\left(n^{\log _{b} a} \log _{b} n\right) \\
& =\Theta\left(n^{\log _{b} a} \lg n\right)
\end{aligned}
$$

Proof of Lemma 4.3 - Contd.

Case 3

$$
\begin{aligned}
g(n) & =\sum_{j=0}^{\log , n-1} a^{j} f\left(n / b^{j}\right) \\
& =f(n)+a f\left(\frac{n}{b}\right)+a^{2} f\left(\frac{n}{b^{2}}\right)+\cdots+a^{\operatorname{mos}_{3},-1} f
\end{aligned}
$$

$\bullet f(n)$ is nonnegative, by definition.

- a (number of subproblems) and b (factor by which the problem is reduced at each step) are nonnegative.
-Hence, each term in the above expression for $g(n)$ is nonnegative. Also, $g(n)$ contains $f(n)$.
- Hence $g(n)=\Omega(f(n))$, for exact powers of b.

Proof of Lemma 4.3 - Contd.

Case 3 - Contd.

- By assumption, $a f(n / b) \leq c f(n)$, for $c<1$ and all $n \geq b$. - $\Rightarrow f(n / b) \leq(c / a) f(n)$.
- Iterating j times, $f\left(n / b^{j}\right) \leq(c / a)^{i} f(n)$.
- $\Rightarrow a^{j} f(n / b) \leq c^{j} f(n)$.

Proof of Lemma 4.3 - Contd.

Case 3 - Contd.

$$
\begin{aligned}
g(n) & =\sum_{j=0}^{\log _{m} n^{-1} a^{j} f\left(n / b^{j}\right)} \begin{array}{ll}
& \\
& \leq \sum_{j=0}^{\log _{b} n-1} c^{j} f(n) \\
& \leq \sum_{j=0}^{\infty} c^{j} f(n) \\
& \\
& =f(n)\left(\frac{1}{1-c}\right)=O(f(n))
\end{array}
\end{aligned}
$$

Thus, $g(n)=O(f(n))$ and $g(n)=\Omega(f(n))$ (proved earlier).
$\therefore g(n)=\Theta(f(n))$.

Master Theorem - Proof - Step

Lȩ̧nma 4.4

Let $a \geq 1$ and $b>1$ be constants, and let $f(n)$ be a nonnegative function defined on exact powers of b. Define $T(n)$ on exact powers of b by the recurrence

$$
\begin{array}{ll}
T(n)=\Theta(1) & \text { if } n=1, \\
T(n)=a T(n / b)+f(n) & \text { if } n=b^{i}, i \text { is a +ve integer. }
\end{array}
$$

Then $T(n)$ can be bounded asymptotically for exact powers of b as follows.

1. If $f(n)=O\left(n^{\log _{b} a-\varepsilon}\right)$ for some constant $\varepsilon>0$, then $T(n)=$ $\Theta\left(n^{\log _{b} a}\right)$.
2. If $f(n)=\Theta\left(n^{\log _{b} a}\right)$, then $T(n)=\Theta\left(n^{\log _{b} a} \mid g n\right)$.
3. If $f(n)=\Omega\left(n^{\log _{b} a+\varepsilon}\right)$ for some constant $\varepsilon>0$, and $a f(n / b) \leq c$ $f(n)$ for some constant $c<1$ and large n, then $T(n)=\Theta(f(n))$.

Lemma 4.4 - Proof

By Lemma 4.2,
$T(n)=\Theta\left(n^{\log _{b} a}\right)+\sum_{j=0}^{\log _{b} n-1} a^{j} f\left(n / b^{j}\right) \curvearrowright \quad \begin{aligned} & \text { Bounds obtained for all } 3 \text { cases } \\ & \text { Lemma 4.3. Use them. }\end{aligned}$
Case 1: Lemma 4.3. Use them.

$$
\begin{aligned}
T(n) & =\Theta\left(n^{\log _{b} a}\right)+O\left(n^{\log _{b} a}\right) \\
& =\Theta\left(n^{\log _{b} a}\right) \quad \text { Why? }
\end{aligned}
$$

Case 2:

$$
\begin{aligned}
T(n) & =\Theta\left(n^{\log _{b} a}\right)+\Theta\left(n^{\log _{b} a} \lg n\right) \\
& =\Theta\left(n^{\log _{b} a} \lg n\right)
\end{aligned}
$$

Case 3:

$$
\begin{aligned}
T(n) & =\Theta\left(n^{\log _{b} a}\right)+\Theta(f(n)) \\
& =\Theta(f(n)) \quad ; \because f(n)=\Omega\left(n^{\log _{b} a+\varepsilon}\right)
\end{aligned}
$$

Proof for when n is not an exact power of

- To complete the proof for Master Theorem in general,
- Extend analysis to cases where floors and ceilings occur in the recurrence.
- I.e., consider recurrences of the form
$T(n)=a T(|n \nmid b|)+f(n)$
and

$$
T(n)=a T(\lfloor n / b\rfloor)+f(n)
$$

- Go through Sec. 4.4.2 in the text.

