
What is an Algorithm? 
 (And how do we analyze one?) 
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Algorithms 
• Informally, 

• A tool for solving a well-specified computational problem. 

 

 

 

 

 

 

• Example:  sorting 
input:  A sequence of numbers. 

output:  An ordered permutation of the input. 

issues:  correctness, efficiency, storage, etc. 
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Strengthening the Informal 
Definiton 
• An algorithm is a finite sequence of unambiguous instructions 

for solving a well-specified computational problem. 

• Important Features: 

• Finiteness. 

• Definiteness. 

• Input. 

• Output. 

• Effectiveness. w
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Algorithm Analysis • Determining performance characteristics. (Predicting the resource 
requirements.) 
• Time, memory, communication bandwidth etc. 

• Computation time (running time) is of primary concern. 

• Why analyze algorithms? 
• Choose the most efficient of several possible algorithms for the same 

problem. 

• Is the best possible running time for a problem reasonably finite for 
practical purposes? 

• Is the algorithm optimal (best in some sense)? – Is something better 
possible? 
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Running Time 

• Run time expression should be machine-independent. 

• Use a model of computation or “hypothetical” computer. 

• Our choice – RAM model (most commonly-used). 

• Model should be 

• Simple. 

• Applicable. 
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RAM Model • Generic single-processor model. 

• Supports simple constant-time instructions found in 
real computers. 
• Arithmetic (+, –, *, /, %, floor, ceiling). 

• Data Movement (load, store, copy). 

• Control (branch, subroutine call). 

• Run time (cost) is uniform (1 time unit) for all simple 
instructions. 

• Memory is unlimited. 

• Flat memory model – no hierarchy. 

• Access to a word of memory takes 1 time unit. 

• Sequential execution – no concurrent operations. 
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Running Time – Definition 

• Call each simple instruction and access to a word of memory a 
“primitive operation” or “step.” 

• Running time of an algorithm for a given input is  

• The number of steps executed by the algorithm on that input. 

• Often referred to as the complexity of the algorithm. 
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Complexity and Input 

• Complexity of an algorithm generally depends on 

• Size of input. 

• Input size depends on the problem. 

• Examples: No. of items to be sorted. 

•  No. of vertices and edges in a graph. 

• Other characteristics of the input data. 

• Are the items already sorted?  

• Are there cycles in the graph? 
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Worst, Average, and Best-case 
Complexity • Worst-case Complexity 

• Maximum steps the algorithm takes for any possible input. 

• Most tractable measure. 

• Average-case Complexity 
• Average of the running times of all possible inputs. 

• Demands a definition of probability of each input, which is usually 
difficult to provide and to analyze. 

• Best-case Complexity 
• Minimum number of steps for any possible input. 

• Not a useful measure. Why? 
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A Simple Example – Linear Search  
INPUT: a sequence of n numbers, key to search for. 

OUTPUT:  true if key occurs in the sequence, false otherwise. 
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LinearSearch(A, key)                      cost        times 
1    i  1                                                      c1             1 

2   while i ≤ n and A[i] != key                    c2             x 

3         do i++                                              c3             x-1 

4 if  i  n                                                  c4                    1 

5      then return true                             c5                    1 

6      else  return false                             c6             1 

x ranges between 1 and n+1. 

So, the running time ranges between 

       c1+ c2+ c4 + c5 – best case 

and 

       c1+ c2(n+1)+ c3n + c4 + c6 – worst case 



A Simple Example – Linear Search  
INPUT: a sequence of n numbers, key to search for. 

OUTPUT:  true if key occurs in the sequence, false otherwise. 
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Assign a cost of 1 to all statement executions. 

Now, the running time ranges between 

       1+ 1+ 1 + 1 = 4 – best case 

and 

       1+ (n+1)+ n + 1 + 1 = 2n+4 – worst case 

LinearSearch(A, key)                      cost        times 
1    i  1                                                      1              1 

2   while i ≤ n and A[i] != key                    1              x 

3         do i++                                               1              x-1 

4 if  i  n                                                   1                    1 

5      then return true                               1                    1 

6      else  return false                              1              1 



A Simple Example – Linear Search  
INPUT: a sequence of n numbers, key to search for. 

OUTPUT:  true if key occurs in the sequence, false otherwise. 
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If we assume that we search for a random item in the list, 

on an average, Statements 2 and 3 will be executed n/2 times. 

Running times of other statements are independent of input. 

Hence, average-case complexity is 

       1+ n/2+ n/2 + 1 + 1 = n+3 

LinearSearch(A, key)                      cost        times 
1    i  1                                                      1              1 

2   while i ≤ n and A[i] != key                    1              x 

3         do i++                                               1              x-1 

4 if  i  n                                                   1                    1 

5      then return true                               1                    1 

6      else  return false                              1              1 



Order of growth 
• Principal interest is to determine 

• how running time grows with input size – Order of growth. 
• the running time for large inputs – Asymptotic complexity. 

• In determining the above, 
• Lower-order terms and coefficient of the highest-order term are 

insignificant. 
• Ex: In 7n5+6n3+n+10, which term dominates the running time for very 

large n? 

• Complexity of an algorithm is denoted by the highest-order 
term in the expression for running time. 
• Ex: Ο(n), Θ(1), Ω(n2), etc. 
• Constant complexity when running time is independent of the input size – 

denoted Ο(1). 
• Linear Search: Best case Θ(1), Worst and Average cases: Θ(n). 

• More on Ο, Θ, and Ω in next class. Use Θ for the present. 
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Comparison of Algorithms 

• Complexity function can be used to compare the performance 
of algorithms. 

• Algorithm A is more efficient than Algorithm B for solving a 
problem, if the complexity function of A is of lower order than 
that of B. 

• Examples: 

• Linear Search – (n) vs. Binary Search – (lg n) 

• Insertion Sort – (n2) vs. Quick Sort – (n lg n) 
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Asymptotic Notation, 
Review of Functions 
& Summations 
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Asymptotic Complexity 

• Running time of an algorithm as a function of input size n for 
large n. 

• Expressed using only the highest-order term in the expression 
for the exact running time. 

• Instead of exact running time, say Q(n2). 

• Describes behavior of function in the limit. 
• Written using Asymptotic Notation. 
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Asymptotic Notation 
•  Q, O, W, o, w 

• Defined for functions over the natural numbers. 
• Ex: f(n)  =  Q(n2). 

• Describes how f(n) grows in comparison to n2. 

• Define a set of functions; in practice used to compare 
two function sizes. 

• The notations describe different rate-of-growth 
relations between the defining function and the 
defined set of functions. 
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Q-notation 
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Q(g(n)) = {f(n) :  

 positive constants c1, c2, and n0, 

such that n   n0, 

we have 0  c1g(n)   f(n)  c2g(n) 

} 

For function g(n), we define Q(g(n)), 

big-Theta of n, as the set: 

g(n) is an asymptotically tight bound for f(n). 

Intuitively: Set of all functions that 

have the same rate of growth as g(n). 

M
Y

cs
v
tu

 N
o
te

s 



Q-notation 
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Q(g(n)) = {f(n) :  

 positive constants c1, c2, and n0, 

such that n   n0, 

we have 0  c1g(n)   f(n)  c2g(n) 

} 

For function g(n), we define Q(g(n)), 

big-Theta of n, as the set: 

Technically, f(n)  Q(g(n)). 

Older usage,  f(n) = Q(g(n)). 

I’ll accept either…  

f(n) and g(n) are nonnegative, for large n.  
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Example 

• 10n2 - 3n = Q(n2) 

• What constants for n0, c1, and c2 will work? 

• Make c1 a little smaller than the leading coefficient, and c2 a little 
bigger. 

• To compare orders of growth, look at the leading term. 

• Exercise: Prove that n2/2-3n= Q(n2) 
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Q(g(n)) = {f(n) :  positive constants c1, c2, and n0, 

such that n   n0,    0  c1g(n)   f(n)  c2g(n)} 
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Example 

• Is 3n3  Q(n4) ?? 

• How about 22n Q(2n)?? 
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Q(g(n)) = {f(n) :  positive constants c1, c2, and n0, 

such that n   n0,    0  c1g(n)   f(n)  c2g(n)} 
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O-notation 
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O(g(n)) = {f(n) :  

 positive constants c and n0, 

such that n   n0, 

we have 0   f(n)  cg(n) } 

For function g(n), we define O(g(n)), 

big-O of n, as the set: 

g(n) is an asymptotic upper bound for f(n). 

Intuitively: Set of all functions 

whose rate of growth is the same as 

or lower than that of g(n). 

f(n) = Q(g(n))  f(n) = O(g(n)). 

Q(g(n))   O(g(n)). 
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Examples 

• Any linear function an + b is in O(n2).  

• Show that 3n3=O(n4) for appropriate c and n0. 
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O(g(n)) = {f(n) :  positive constants c and n0, 

such that n   n0, we have 0   f(n)  cg(n) } 
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W -notation 
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g(n) is an asymptotic lower bound for f(n). 

Intuitively: Set of all functions 

whose rate of growth is the same 

as or higher than that of g(n). 

f(n) = Q(g(n))  f(n) = W(g(n)). 

Q(g(n))   W(g(n)). 

W(g(n)) = {f(n) :  

 positive constants c and n0, 

such that n   n0, 

we have 0  cg(n)  f(n)} 

For function g(n), we define W(g(n)), 

big-Omega of n, as the set: 
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Example 

 

 

• n = W(lg n). Choose c and n0. 
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W(g(n)) = {f(n) :  positive constants c and n0, such 

that n  n0, we have 0  cg(n)  f(n)} 
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Relations Between Q, O, W 
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Relations Between Q, W, O 

• I.e., Q(g(n)) = O(g(n))  W(g(n)) 

• In practice, asymptotically tight bounds are 
obtained from asymptotic upper and lower 
bounds. 
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Theorem :  For any two functions g(n) and f(n),  

           f(n) = Q(g(n)) iff  

 f(n) = O(g(n)) and f(n) = W(g(n)). 
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Running Times 
• “Running time is O(f(n))”  Worst case is O(f(n)) 

• O(f(n)) bound on the worst-case running time  
O(f(n)) bound on the running time of every input. 

• Q(f(n)) bound on the worst-case running time  
Q(f(n)) bound on the running time of every input. 

• “Running time is W(f(n))”  Best case is W(f(n))  

• Can still say “Worst-case running time is W(f(n))” 

• Means worst-case running time is given by some 
unspecified function g(n)  W(f(n)). 
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Example 
• Insertion sort takes Q(n2) in the worst case, so 

sorting (as a problem) is O(n2).   

• Any sort algorithm must look at each item, so 
sorting is W(n). 

• In fact, using (e.g.) merge sort, sorting is Q(n lg n) 
in the worst case. 

• Later, we will prove that we cannot hope that any 
comparison sort to do better in the worst case. 
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Asymptotic Notation in 
Equations • Can use asymptotic notation in equations to 

replace expressions containing lower-order terms. 

• For example, 
4n3 + 3n2 + 2n + 1 = 4n3 + 3n2 + Q(n)  

= 4n3 + Q(n2) = Q(n3). 

• In equations, Q(f(n)) always stands for an g(n)  
Q(f(n)) 

• In the example above, Q(n2) stands for  
3n2 + 2n + 1. 
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o-notation 

 f(n) becomes insignificant relative to g(n) as n 
approaches infinity: 

     lim [f(n) / g(n)] = 0 

                     
n

  
g(n) is an upper bound for f(n) that is not 

asymptotically tight. 

Observe the difference in this definition from 
previous ones.  
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o(g(n)) = {f(n):  c > 0,  n0 > 0 such that  
   n   n0, we have 0   f(n) < cg(n)}. 

For a given function g(n), the set little-o: 
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w -notation 

f(n) becomes arbitrarily large  relative to g(n) as n 
approaches infinity: 

    lim [f(n) / g(n)] = . 
                         

n
  

g(n) is a lower bound for f(n) that is not 
asymptotically tight. 
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w(g(n)) = {f(n):  c > 0,  n0 > 0 such that  

   n   n0, we have 0  cg(n) <  f(n)}. 

For a given function g(n), the set little-omega: 
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Comparison of Functions 
             f  g    a  b 

 

f (n) = O(g(n))    a     b 

f (n) = W(g(n))    a    b 

f (n) = Q(g(n))    a  =  b 

f (n) = o(g(n))    a  <  b 

f (n) = w (g(n))    a  >  b 
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Limits 
 
 

• lim [f(n) / g(n)] = 0  f(n)  o(g(n)) 
    n 

• lim [f(n) / g(n)] =   f(n)  w(g(n)) 
    n 
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Properties 
• Transitivity 

f(n) = Q(g(n)) & g(n) = Q(h(n))  f(n) = Q(h(n)) 
f(n) = O(g(n)) & g(n) = O(h(n))  f(n) = O(h(n)) 
f(n) = W(g(n)) & g(n) = W(h(n))  f(n) = W(h(n)) 
f(n) = o (g(n)) & g(n) = o (h(n))  f(n) = o (h(n)) 
f(n) = w(g(n)) & g(n) = w(h(n))  f(n) = w(h(n))  

 

• Reflexivity 

 f(n) = Q(f(n)) 

    f(n) = O(f(n)) 

   f(n)  = W(f(n)) 
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Properties 
• Symmetry 

 f(n) = Q(g(n)) iff g(n) = Q(f(n))  
 

• Complementarity 

     f(n) = O(g(n)) iff g(n) = W(f(n))  

     f(n) =  o(g(n)) iff g(n) = w((f(n))  
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Common Functions 
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Monotonicity 

• f(n) is  

• monotonically increasing if m  n  f(m)  f(n). 

• monotonically decreasing if m  n  f(m)  f(n). 

• strictly increasing if m < n  f(m) < f(n). 

• strictly decreasing if m > n  f(m) > f(n). 
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Exponentials 

• Useful Identities: 

 

 

 

 

• Exponentials and polynomials 
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Logarithms  

x = logba is the  
exponent for a = bx. 

 

Natural log: ln a = logea 

Binary log: lg a = log2a 

 

lg2a = (lg a)2 

lg lg a  =  lg (lg a) 
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Polylogarithms 

• For a  0, b > 0, lim n ( lga n / nb ) = 0,  
so lga n = o(nb), and  nb = w(lga n ) 

• Prove using L’Hopital’s rule repeatedly 

 

• lg(n!) = Q(n lg n) 

• Prove using Stirling’s approximation (in the text) for 
lg(n!). 
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Exercise 
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Express functions in A in asymptotic notation using functions in B. 

 A                                         B                                     

5n2 + 100n               3n2 + 2 

 A  Q(n2), n2  Q(B)  A  Q(B) 

log3(n
2)            log2(n

3) 

logba = logca / logcb; A = 2lgn / lg3, B  = 3lgn, A/B =2/(3lg3) 

 nlg4                   3lg n 

alog b = blog a; B =3lg n=nlg 3; A/B =nlg(4/3)   as n 

lg2n                              n1/2 

lim ( lga n / nb ) = 0 (here a = 2 and b = 1/2)  A  o (B) 

 
n

 

A  Q(B) 

A  Q(B) 

A  w(B) 

A  o (B) 
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Recurrences 
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The Master Method 
• Based on the Master theorem. 

• “Cookbook” approach for solving recurrences of the form 

    T(n) = aT(n/b) + f(n) 

• a  1, b > 1 are constants. 

• f(n) is asymptotically positive. 

• n/b may not be an integer, but we ignore floors and ceilings. Why? 

• Requires memorization of three cases. 
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The Master Theorem 
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Theorem 4.1 

Let a  1 and b > 1 be constants, let f(n) be a function, and  

Let T(n) be defined on nonnegative integers by the recurrence  

T(n) = aT(n/b) + f(n), where we can replace n/b by n/b or n/b.  

T(n) can be bounded asymptotically in three cases: 

1. If  f(n) = O(nlogba–)  for some constant  > 0, then T(n) = (nlogba). 

2. If  f(n) = (nlogba), then T(n) = (nlogbalg n). 

3. If  f(n) = (nlogba+)  for some constant  > 0,  

 and if, for some constant c < 1 and all sufficiently large n,  

 we have a·f(n/b)  c f(n), then T(n) = (f(n)). 
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Recursion tree view 
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f(n/b2) f(n/b2) f(n/b2) f(n/b2) f(n/b2) f(n/b2) f(n/b2) f(n/b2) f(n/b2) 

a 

a a a 

… 

… … … 

a a a a a a 

… … … … … … 

Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) 

f(n) 

af(n/b) 

a2f(n/b2) 

(nlogba) 
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The Master Theorem 
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Theorem 4.1 

Let a  1 and b > 1 be constants, let f(n) be a function, and  

Let T(n) be defined on nonnegative integers by the recurrence  

T(n) = aT(n/b) + f(n), where we can replace n/b by n/b or n/b.  

T(n) can be bounded asymptotically in three cases: 

1. If  f(n) = O(nlogba–)  for some constant  > 0, then T(n) = (nlogba). 

2. If  f(n) = (nlogba), then T(n) = (nlogbalg n). 

3. If  f(n) = (nlogba+)  for some constant  > 0,  

 and if, for some constant c < 1 and all sufficiently large n,  

 we have a·f(n/b)  c f(n), then T(n) = (f(n)). 
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Master Method – Examples  

• T(n) = 16T(n/4)+n 

• a = 16, b = 4, nlogba = nlog416 = n2. 

• f(n) = n = O(nlogba-) = O(n2- ), where  = 1  Case 1. 
• Hence, T(n) = (nlogba ) = (n2). 

 

• T(n) = T(3n/7) + 1 
•  a = 1, b=7/3, and nlogba = nlog 7/3 1 = n0 = 1 

•  f(n) = 1 = (nlogba)  Case 2. 

• Therefore, T(n) = (nlogba lg n) = (lg n) 
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Master Method – Examples  
• T(n) = 3T(n/4) + n lg n 

•  a = 3, b=4, thus nlogba = nlog43 = O(n0.793) 

•  f(n) = n lg n = (nlog43 +  ) where   0.2  Case 3. 

• Therefore, T(n) = (f(n)) = (n lg n). 

 

• T(n) = 2T(n/2) + n lg n 
•  a = 2, b=2, f(n) = n lg n, and nlogba = nlog22 = n 

•   f(n) is asymptotically larger than nlogba, but not 
polynomially larger. The ratio lg n is asymptotically less than 
n for any positive .   Thus, the Master Theorem doesn’t 
apply here. 
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Master Theorem – What it 
means? • Case 1: If  f(n) = O(nlogba–)  for some constant  > 0, 

then T(n) = (nlogba). 

• nlogba = alogbn : Number of leaves in the recursion tree. 

• f(n) = O(nlogba–)  Sum of the cost of the nodes at each 
internal level asymptotically smaller than the cost of leaves 
by a polynomial factor. 

• Cost of the problem dominated by leaves, hence cost is 
(nlogba). 
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Master Theorem – What it 
means? • Case 2: If  f(n) = (nlogba), then T(n) = (nlogbalg n). 

• nlogba = alogbn : Number of leaves in the recursion tree. 

• f(n) = (nlogba)  Sum of the cost of the nodes at each 
level asymptotically the same as the cost of leaves. 

• There are (lg n) levels. 

• Hence, total cost is (nlogba lg n). 
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Master Theorem – What it 
means? • Case 3: If  f(n) = (nlogba+)  for some constant  > 0,  

 and if, for some constant c < 1 and all sufficiently large n,  
 we have a·f(n/b)  c f(n), then T(n) = (f(n)). 

 

 

• nlogba = alogbn : Number of leaves in the recursion tree. 

• f(n) = (nlogba+)  Cost is dominated by the root. Cost of 
the root is asymptotically larger than the sum of the cost 
of the leaves by a polynomial factor. 

• Hence, cost is (f(n)). 
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Master Theorem – Proof for exact 
powers 
• Proof when n is an exact power of b. 

• Three steps. 

1. Reduce the problem of solving the recurrence to the problem 
of evaluating an expression that contains a summation. 

2. Determine bounds on the summation. 

3. Combine 1 and 2. 
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Proof for exact powers – Step 1 

Lemma 4.2 

    Let a  1 and b > 1 be constants, and let f(n) be 
a nonnegative function defined on exact powers 
of b. Define T(n) on exact powers of b by the 
recurrence 

   T(n)  =  (1)                     if n = 1, 

                 aT(n/b) + f(n)      if n = bi, i is a +ve 
integer. 

    

    Then 
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Proof of Lemma 4.2 
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Θ(1) 

f(n) 

f(n/b) f(n/b) f(n/b) 

f(n/b2) f(n/b2) f(n/b2) f(n/b2) f(n/b2) f(n/b2) f(n/b2) f(n/b2) f(n/b2) 

a 

a a a 

… 

… … … 

a a a a a a 

… … … … … … 
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Proof of Lemma 4.2 – Contd. • Cost of the root – f(n)                   

• Number of children of the root = Number of nodes at distance 1 
from the root = a. 

• Problem size at depth 1 = Original Size/b = n/b. 

• Cost of nodes at depth 1 = f(n/b). 

 

• Each node at depth 1 has a children. 

• Hence, number of nodes at depth 2  

    = # of nodes at depth 1  # of children per depth 1 node,  

    = a  a = a2 

• Size of problems at depth 2 = ((Problem size at depth 1)/b) = 
n/b/b = n/b2. 

• Cost of problems at depth 2 = f(n/b2). 
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Proof of Lemma 4.2 – Contd. 
• Continuing in the same way,                  

• number of nodes at depth j  

    = aj 

• Size of problems at depth j = n/bj. 

• Cost of problems at depth j = f(n/bj). 

• Problem size reduces to 1 at leaves. 

• Let x be the depth of leaves. Then x is given by n/bx =1  

• Hence, depth of leaf level is logbn. 

• number of leaves = number of nodes at level logbn = 
alogbn = nlogba. 
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Proof of Lemma 4.2 – Contd. 
• Cost of a leaf node = (1).  

• So, total cost of all leaf nodes = (nlogba). 

• Total cost of internal nodes = Sum of total cost of 
internal nodes at all levels (from depth 0 (root) to 
depth logbn – 1). 

    = 

• Total problem cost = Cost of leaves + Cost of internal 
nodes = w
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Step 2 – Bounding the Summation in Eq. 
(4.6) Lemma 4.3 

   Let a  1 and b > 1 be constants, and let f(n) be a nonnegative 
function defined on exact powers of b. A function g(n) 
defined over exact powers of b by  

 

     

can be bounded asymptotically for exact powers of b as follows.  

1. If  f(n) = O(nlogba–)  for some constant  > 0, then g(n) = 

O(nlogba). 

2. If  f(n) = (nlogba), then g(n) = (nlogbalg n). 

3. If  a f(n/b)  c f(n) for some constant c < 1 and all n  b, then 

g(n) = (f(n)). 
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Proof of Lemma 4.3 
Case 1 

 f(n) = O(nlogba–)   f(n/bj) = O((n/bj)logba–)  
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Proof of Lemma 4.3 – Contd. 
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Proof of Lemma 4.3 – Contd. 
Case 2 

 f(n) = (nlogba)   f(n/bj) = ((n/bj)logba)  
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constant series. 



Proof of Lemma 4.3 – Contd. 

Case 2 – Contd. 
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Proof of Lemma 4.3 – Contd. 
Case 3 
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•f(n) is nonnegative, by definition.  

•a (number of subproblems) and b (factor by which the problem size 

is reduced at each step) are nonnegative. 

•Hence, each term in the above expression for g(n) is nonnegative. 

Also, g(n) contains f(n). 

•Hence g(n) = (f(n)), for exact powers of b. 



Proof of Lemma 4.3 – Contd. 
Case 3 – Contd. 

• By assumption, a f(n/b)  c f(n), for c < 1 and all n  b. 

•  f(n/b)  (c/a) f(n). 

• Iterating j times, f(n/bj)  (c/a)j f(n). 

•  aj f(n/b)  cj f(n). 
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Proof of Lemma 4.3 – Contd. 

Case 3 – Contd. 
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Substituting aj f(n/b)  cj f(n) and simplifying 

yields a decreasing geometric series since c < 1. 

Thus, g(n) = O(f(n)) and g(n) = (f(n)) (proved earlier).  

 g(n) = (f(n)). 



Master Theorem – Proof – Step 
3 Lemma 4.4 

    Let a  1 and b > 1 be constants, and let f(n) be a nonnegative 
function defined on exact powers of b. Define T(n) on exact 
powers of b by the recurrence 

     T(n)  = (1)                    if n = 1, 

    T(n) = aT(n/b) + f(n)     if n = bi, i is a +ve integer. 

    Then T(n) can be bounded asymptotically for exact powers of b 
as follows. 

1. If  f(n) = O(nlogba–)  for some constant  > 0, then T(n) = 
(nlogba). 

2. If  f(n) = (nlogba), then T(n) = (nlogbalg n). 
3. If  f(n) = (nlogba+)  for some constant  > 0, and af(n/b)  c 

f(n) for some constant c < 1 and large n, then T(n) = (f(n)). 
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Lemma 4.4 – Proof  
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Bounds obtained for all 3 cases in 

Lemma 4.3. Use them. Case 1:    

Why? 

Case 2:    
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By Lemma 4.2, 



Proof for when n is not an exact power of b 

• To complete the proof for Master Theorem in 
general, 

• Extend analysis to cases where floors and ceilings occur in 
the recurrence. 

• I.e., consider recurrences of the form 

 

    and 

 

 

• Go through Sec. 4.4.2 in the text. 
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