What is an Algorithm?

(And how do we analyze one?)




Algorithms

* Informally,
A tool for solving a well-specified computational problem.

Input Algorithm ——Output

* Example: sorting
input: A sequence of numbers.
output: An ordered permutation of the input.
issues: correctness, efficiency, storage, etc.
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Strengthening the Informal
Definiton

* An algorithm is a finite sequence of unambiguous instructions
for solving a well-specified computational problem.

* Important Features:
Finiteness.
Definiteness.
Input.

Output.
Effectiveness.
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Axltggm]r;mmx&L&cs (Predicting the resource

requirements.)
Time, memory, communication bandwidth etc.
Computation time (running time) is of primary concern.

* Why analyze algorithms?

Choose the most efficient of several possible algorithms for the same
problem.

Is the best possible running time for a problem reasonably finite for
practical purposes?

Is the algorithm optimal (best in some sense)? — Is something better
possible?
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Running Time

* Run time expression should be machine-independent.
Use a model of computation or “hypothetical” computer.
Our choice — RAM model (most commonly-used).

* Model should be
Simple.
Applicable.
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%MCI\S/ILQQS'LCGSSOF model.

* Supports simple constant-time instructions found in
real computers.
Arithmetic (+, —, *, /, %, floor, ceiling).
Data Movement (load, store, copy).
Control (branch, subroutine call).

* Run time (cost) is uniform (1 time unit) for all simple
instructions.

* Memory is unlimited.

* Flat memory model — no hierarchy.

* Access to a word of memory takes 1 time unit.

* Sequential execution — no concurrent operations.
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Running Time - Definition

* Call each simple instruction and access to a word of memory a
“primitive operation” or “step.”
* Running time of an algorithm for a given input is
The number of steps executed by the algorithm on that input.

* Often referred to as the complexity of the algorithm.
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Complexity and Input

* Complexity of an algorithm generally depends on

Size of input.

Input size depends on the problem.
* Examples: No. of items to be sorted.
* No. of vertices and edges in a graph.

Other characteristics of the input data.
Are the items already sorted?
Are there cycles in the graph?
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Worst, Average, and Best-case

y - ﬂglt;xity
C%(Qlegssiep he algorithm takes for any possible input.

Most tractable measure.
* Average-case Complexity

Average of the running times of all possible inputs.

Demands a definition of probability of each input, which is usually
difficult to provide and to analyze.

* Best-case Complexity
Minimum number of steps for any possible input.
Not a useful measure. Why?
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'A Simple Example - Linear Search

INPUT: a sequence of n numbers, key to search for.
OUTPUT: true if key occurs in the sequence, false otherwise.

LinearSearch(A, key) cost times
1 i«1 Cy 1

2 while 1 <nand A[i] '= key C, X

3 do i++ Cq X-1

4 if 1<n C, 1

5 then return true Cs 1

6 else return false Ce 1

X ranges between 1 and n+1.
So, the running time ranges between
c,+ C,+ C, + C; — best case
and
C,+ C,(N+1)+ c5n + ¢, + C —worst case




'A Simple Example - Linear Search

INPUT: a sequence of n numbers, key to search for.
OUTPUT: true if key occurs in the sequence, false otherwise.

LinearSearch(A, key) cost times
1 i<«1 1 1

2 while 1 <nand A[i] '= key 1 X

3 do i++ 1 X-1
4 if i<n 1 1

5 then return true 1 1

6 else return false 1 1

Assign a cost of 1 to all statement executions.
Now, the running time ranges between

1+ 1+ 1+ 1 =4—Dbest case
and

1+ (n+1)+ n+ 1+ 1=2n+4 —worst case




'A Simple Example - Linear Search

INPUT: a sequence of n numbers, key to search for.
OUTPUT: true if key occurs in the sequence, false otherwise.

LinearSearch(A, key) cost times
1 i<«1 1 1

2 while 1 <nand A[i] '= key 1 X

3 do i++ 1 X-1
4 if i<n 1 1

5 then return true 1 1

6 else return false 1 1

If we assume that we search for a random item in the list,
on an average, Statements 2 and 3 will be executed n/2 times.
Running times of other statements are independent of input.
Hence, average-case complexity is

1+ n/2+n/2+ 1+ 1=n+3




Order of growth

* Principal interest is to determine
how running time grows with input size — Order of growth.
the running time for large inputs — Asymptotic complexity.

* In determining the above,
Lower-order terms and coefficient of the highest-order term are
insignificant.
Ex: In 7n°+6n3+n+10, which term dominates the running time for very
large n?

* Complexity of an algorithm is denoted by the highest-order

term in the expression for running time.

Ex: O(n), ©(1), Q(n?), etc.
Constant complexity when running time is independent of the input size
denoted O(1).

Linear Search: Best case ©(1), Worst and Average cases: O(n).
* More on O, O, and Q in next class. Use O for the present.
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Comparison of Algorithms

* Complexity function can be used to compare the performance
of algorithms.

* Algorithm A is more efficient than Algorithm B for solving a
problem, if the complexity function of A is of lower order than
that of B.

e Examples:

Linear Search — ®(n) vs. Binary Search — ®(lg n)
Insertion Sort — ®(n?) vs. Quick Sort — O(n Ig n)
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Asymptotic Notation,
Review of Functions
& Summations




Asymptotic Complexity

* Running time of an algorithm as a function of input size n for
large n.

* Expressed using only the highest-order term in the expression
for the exact running time.

Instead of exact running time, say ®(n?).
* Describes behavior of function in the limit.

* Written using Asymptotic Notation.
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Asymptotic Notation
° 0,000, 0

* Defined for functions over the natural numbers.
Ex: f(n) = ©(n?).
Describes how f(n) grows in comparison to n?.
* Define a set of functions; in practice used to comps
two function sizes.

* The notations describe different rate-of-growth
relations between the defining function and the
defined set of functions.
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(®-notation
For function g(n), we define ®(g(n)),
big-Theta of n, as the set:

®(g(n)) = {f(n) :
3 positive constants ¢, ¢,, and n,
such that vn > n,,

we have 0 < ¢,g(n) £ f(n) < c,g(n)

Intuitively: Set of all functions that |
have the same rate of growth as g(n). ng &

f(n) =0(g(n))
g(n) is an asymptotically tight bound for f(n).



(®-notation
For function g(n), we define ®(g(n)),
big-Theta of n, as the set:

®(g(n)) = {f(n) :
3 positive constants ¢, ¢,, and n,
such that vn > n,,

we have 0 < ¢,g(n) £ f(n) < c,g(n)

}

Technically, f(n) e O(g(n)). ‘ n
Older usage, f(n) = ©(g(n)). " f ) = ©(gn))
I’1l accept either...

f(n) and g(n) are nonnegative, for large n.



Example

®(g(n)) = {f(n) : 3 positive constants c,, ¢,, and n,,
such that Vvn> n,, 0<c,g(n) < f(n) <c,g(n)}

10n? - 3n = ®(n?)
What constants for n,, ¢,, and ¢, will work?

Make c, a little smaller than the leading coefficient, and c, a little
bigger.

To compare orders of growth, look at the leading term.
Exercise: Prove that n?/2-3n= ®(n?)

([ J
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Example

®(g(n)) = {f(n) : 3 positive constants c,, ¢,, and n,,
such that Vvn> n,, 0<c,g(n) < f(n) <c,g(n)}

MY csvtu Notes

* Is 3n3 € O(n*) ??
* How about 22" ®(2")??
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O-notation
For function g(n), we define O(g(n)),
big-O of n, as the set:

O(g(n)) = {f(n) :
3 positive constants ¢ and n,
such that vn > n,,

we have 0 < f(n) < cg(n) }

Intuitively: Set of all functions
whose rate of growth is the same as | ”

or lower than that of g(n). ") = 0(g(n))

g(n) is an asymptotic upper bound for f(n).

f(n) = ®(g(n)) = 1(n) = O(g(n)).
0(g(n)) <O(g(n)).




Examples

O(g(n)) = {f(n) : 3 positive constants c and n,,
such that Vn = n,, we have 0 < f(n) <cg(n) }

* Any linear function an + b is in O(n?).

MY csvtu Notes

* Show that 3n3=0(n*) for appropriate ¢ and n,,
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(2 -notation |
For function g(n), we define Q(g(n)),
big-Omega of n, as the set:

Q(g(n)) = {f(n) :
3 positive constants ¢ and n,
such that vn > n,,

we have 0 < cg(n) < f(n)}

Intuitively: Set of all functions
whose rate of growth is the same 1 n
as or higher than that of g(n). ") = Qe(n))

g(n) is an asymptotic lower bound for f(n).

f(n) = ®(g(n)) = 1(n) = Q(g(n)).
0(g(n)) <Q(g(n)).




Example

Q(g(n)) = {f(n) : 3 positive constants ¢ and n,, such
that ¥n > n,, we have 0 <cg(n) <f(n)}

MY csvitu NoOTE

» vn = Q(Ig n). Choose c and n,.

=
%)
(<}
=
(@]
c
=)
=
>
n
©
>
£




Relations Between ®, O, ()

cr2(n) cg(n)

f(n)

crg(n)

n n

f(n) =0(g(n)) “fm=0mm) 'mﬂm=9@m)

no



Relations Between ©®, ), O

Theorem : For any two functions g(n) and f(n),
f(n) = ®(g(n)) It
f(n) = O(g(n)) and f(n) = Q(g(n)).

> l.e.,, ©(g(n)) = O(g(n)) N Q(g(n))

* |n practice, asymptotically tight bounds are
obtained from asymptotic upper and lower
bounds.




Running Times
* “Running time is O(f(n))” = Worst case is O(f(n))

* O(f(n)) bound on the worst-case running time =

O(f(n)) bound on the running time of every input.

* O(f(n)) bound on the worst-case running time =

®(f(n)) bound on the running time of every input.

* “Running time is Q(f(n))” = Best case is Q(f(n))

* Can still say “Worst-case running time is Q(f(n))”

Means worst-case running time is given by some
unspecified function g(n) € Q(f(n)).
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Example

* Insertion sort takes ®(n?) in the worst case, so
sorting (as a problem) is O(n?).

* Any sort algorithm must look at each item, so
sorting is Q2(n).

* In fact, using (e.g.) merge sort, sorting is ®(n lg n)
in the worst case.
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Later, we will prove that we cannot hope that any
comparison sort to do better in the worst case.




Asymptotic Notation in

E%%%Ei(gggptotic notation in equations to

replace expressions containing lower-order terms.

* For example,
4n3+3n?+2n+1=4n3+3n%?+ O(n)
=4n3 + O(n?) = O(n3).

* In equations, ®(f(n)) always stands for an g(n) €
O(f(n))

In the example above, ®(n?) stands for
3n?+2n+1.
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(I):orrlz? glz\i/e}qofﬂlnctlon g(n), the set little-o:

o(g(n)) = {f(n): ¥ ¢ >0, 3 ny> 0 such that

V¥ n > n, we have 0 < f(n) <cg(n)}.

f(n) becomes insignificant relative to g(n) as n
approaches infinity:

lim [f(n) / g(n)] =0

n—>oo

g(n) is an upper bound for f(n) that is not
asymptotically tight.

Observe the difference in this definition from
previous ones.
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o-rIalglvenllgl)Jnctlon g(n), the set little-omega:

)(g(n)) ={f(n): V¢ >0, 3 n,> 0 such that
V¥ n > n, we have 0 < cg(n) < f(n)}.
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f(n) becomes arbitrarily large relative to g(n) as n
approaches infinity:

lim [f(n) / g(n)] = oo

n—>co
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g(n) is a lower bound for f(n) that is not
asymptotically tight.




Comparison of Functions

fegraeb

f(n)=0(g(n)) = a < b
f(n)=Q(g(n)) = a = b
f(n)=06(g(n)) =~ a = b
f(n)=olg(n)) = a < b
fln)=wl(g(n)) = a>b

MY csvtu Notes
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Limits

*lim [f(n) / g(n)] = 0 = f(n) € olg(n))

n—>oo

*lim [f(n) / g(n)] = © = f(n) € w(g(n))

n—>oo




ProDEEHES
fln) = ©(g(n)) & g(n) = B(h(n)) = f(n) = O(h(n))
fln) = O(g(n)) & g(n) = O(h(n)) = f(n) = O(h(n))
fln) =£(g(n)) & g(n) = L3(h(n)) = f(n) = C(h(n))
fln) = 0(g(n)) & g(n) = o (h(n)) = f(n) = o (h(n))
fin) = lg(n)) & g(n) = alh(n)) = f(n) = lh(n))

* Reflexivity
fln) = B(f(n))
fln) = O(f(n))
f(n) =Q(f(n))




Properties
fin) = ©(g(n)) iff g(n) = O(f(n))
* Complementarity

fln) = O(g(n)) iff g(n) = Q(f(n))
fin) = olg(n)) iff g(n) = &X(f(n))
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Common Functions




Monotonicity

* f(n)is
monotonically increasing if m < n = f(m) < f(n).
monotonically decreasing if m > n = f(m) > f(n).
strictly increasing if m < n = f(m) < f(n).
strictly decreasing if m > n = f(m) > f(n).
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Exponentials

* Useful Identities:

i1 :

a

(am)n — amn =

aman — am+n g

* Exponentials and polynomials ]
£




Logarithms o powa
x = log,a is the log.(ab) =log, a+log,

exponent for a = b*. "
log, a" =nlog,a
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Natural log: In a = log_a log, a = Iogc d £
b & s
Binary log: Ig a = log,a Iogc b :
log,(1/a)=-log,a &
lg?a = (Ig a)? 1
glga =lg(lga log, a =
glga =lg(lga) % log_ b
log, C log, a

a =C




Polylogarithms

*Fora=>0,b>0,lim___(lg°n/n?)=0,
so lg?n = o(n®), and n®?= w(lgon)
Prove using L'Hopital’s rule repeatedly

* lg(n!) =®(nlg n)
Prove using Stirling’s approximation (in the text) for
lg(n!).
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Exercise

Express functions in A in asymptotic notation using functions in

A B
5n2 + 100N 3n2 + 2 Acor) [
A e O(n), n2 e O(B) = A € O(B)
10g5(n?) og,(n?)  Ace®) [
logya = log.a / log.b; A = 2Ign / 1g3, B = 3Ign, A/B =2/(31g3) %
n'e* 3lgn A e o(B)
alogb =ploga: B =319n=nl93. A/B =nl9*3) _; o a5 N>
lg%n N2 A e o (B)

lim(lggan/n°)=0(herea=2andb=1/2) = A € o(B)

N—00




Recurrences




The Master Method

* Based on the Master theorem.
* “Cookbook” approach for solving recurrences of the form
T(n) = aT(n/b) + f(n)
a>1, b>1 are constants.
f(n) is asymptotically positive.

MY csvtu Notes

n/b may not be an integer, but we ignore floors and ceilings. Why?

* Requires memorization of three cases.
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__The Master Theorem

Theorem 4.1

Leta > 1 and b > 1 be constants, let f(n) be a function, and
Let T(n) be defined on nonnegative integers by the recurrence
T(n) = aT(n/b) + f(n), where we can replace n/b by [ n/b] or [ n/b]
T(n) can be bounded asymptotically in three cases:
1. If f(n) = O(n'°%2-<) for some constant € > 0, then T(n) = A(n'0%?),
If f(n) = ®(n'%2), then T(n) = A(nl°%2lg n).
3. If f(n) =Q(n'°%2*¢) for some constant ¢ > 0,
and if, for some constant ¢ < 1 and all sufficiently large n,

we have a-f(n/b) < c f(n), then T(n) = O(f(n)).

N




‘Recursion tree view

(1) I ———————— - f(n
d

f(n/b) f(n/b) .. f(n/b) ................................... > af(

fn/bZ)f(n/bZ) fn/b2) fn/bz)f(n/bz) fn/bZ) ;Zr{ﬁaz)f(n/bz). ) ;Zr{fﬂ) ------------ . af
a\ a\

o) od) od) ed) o) o1 o1 od) o o) od) od) 6d) Od) 3 @(
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log, n-1
Total: T(n)=O(n"**)+ > a’f(

i=0




__The Master Theorem

Theorem 4.1

Leta > 1 and b > 1 be constants, let f(n) be a function, and
Let T(n) be defined on nonnegative integers by the recurrence
T(n) = aT(n/b) + f(n), where we can replace n/b by [ n/b] or [ n/b]
T(n) can be bounded asymptotically in three cases:
1. If f(n) = O(n'°%2-<) for some constant € > 0, then T(n) = A(n'0%?),
If f(n) = ®(n'%2), then T(n) = A(nl°%2lg n).
3. If f(n) =Q(n'°%2*¢) for some constant ¢ > 0,
and if, for some constant ¢ < 1 and all sufficiently large n,

we have a-f(n/b) < c f(n), then T(n) = O(f(n)).

N




Master Method - Examples

* T(n) =16T(n/4)+n
a =16, b =4, nlosba = nlogal6 - 2
f(n) = n = O(n'eebe-¢) = O(n%¢), where ¢ =1 => Case 1.
Hence, T(n) = ®(n'o8ba) = O(n?).

* T(n)=T(3n/7) +1
a=1, b=7/3, and n'o8ba = plog7/31 = nd = 1
f(n) =1 = ©(n'°gb?) = Case 2.
Therefore, T(n) = ®(n'ebY |g n) = B(Ig n)
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Master Method - Examples
* T(n)=3T(n/4) +nlgn

a =3, b=4, thus n'oeba = ploga3 = O(n0.793)
fln) =nlg n=CQ(n'"e43*¢) where £~ 0.2 = Case 3.
Therefore, T(n) = ®(f(n)) = O(n Ig n).

* T(n) =2T(n/2) +nlgn
a =2, b=2, f(n) =nlg n, and n'ogbe = pnlos22 = p
f(n) is asymptotically larger than n'eese, but not
polynomially larger. The ratio g n is asymptotically less th:
n¢ for any positive &. Thus, the Master Theorem doesn’t
apply here.
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Master Theorem - What it

: means?(n) = O(n'°&:2—¢) for some constant € >0,
then T(n) = ©(n'°e2),
n'eg.e = gloesn : Number of leaves in the recursion tree.

f(n) = O(n'°e:"~¢) = Sum of the cost of the nodes at each
internal level asymptotically smaller than the cost of leave
by a polynomial factor.

Cost of the problem dominated by leaves, hence cost is
O(n'°8:1),
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Master Theorem - What it
: mﬁalﬂﬁ}(n) = @(n'°e:9), then T(n) = ©(n'°&:%1g n).

n'°g:a = glog:" : Number of leaves in the recursion tree.

f(n) = ®(n'°e:%) = Sum of the cost of the nodes at each
level asymptotically the same as the cost of leaves.

There are O(lg n) levels.
Hence, total cost is ®(n'°&:“|g n).
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Master Theorem — What it
¢ m@adEI? f(n) = Q(n'e2*¢) for some constant € >0,

and if, for some constant ¢ < 1 and all sufficiently large n,
we have a:f(n/b) < c f(n), then T(n) = O(f(n)).

n'eg:a = glogs"  Number of leaves in the recursion tree.

f(n) = Q(n'ee:2*¢) = Cost is dominated by the root. Cost of
the root is asymptotically larger than the sum of the cost
of the leaves by a polynomial factor.

Hence, cost is O(f(n)).
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Master Theorem - Proof for exact
powers

. Proof when n is an exact power of b.

. Three steps.

Reduce the problem of solving the recurrence to the problem
of evaluating an expression that contains a summation.

Determine bounds on the summation.
Combine 1 and 2.
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Proof for exact powers - Step 1

Lemma 4.2

Let a > 1 and b > 1 be constants, and let f(n) be
a nonnegative function defined on exact powers
of b. Define T(n) on exact powers of b by the
recurrence
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T(n) = G(1) ifn=1,
log, n—1 _ g +ve
_ log, a j j
integer T(nN)=0(n"""") + ,E:oa f(n/b’)

Then




Proof of Lemma 4.2

(1) I ———————— - f(n
d

f(n/b) f(n/b) .. f(n/b) ................................... > af(

fn/bZ)f(n/bZ) fn/b2) fn/bz)f(n/bz) fn/bZ) ;Zr{ﬁaz)f(n/bz). ) ;Zr{fﬂ) ------------ . af
a\ a\
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log, n-1
Total: T(n)=O(n"**)+ > a’f(

j=0




Rropfoflemma 4.2 - Contd.

* Number of children of the root = Number of nodes at distance
from the root = a.

Problem size at depth 1 = Original Size/b = n/b.
Cost of nodes at depth 1 = f(n/b).

Each node at depth 1 has a children.

Hence, number of nodes at depth 2

= # of nodes at depth 1 x # of children per depth 1 node,
=axa=a?

Size of problems at depth 2 = ((Problem size at depth 1)/b) =
n/b/b = n/b?.

Cost of problems at depth 2 = f(n/b?).
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Proof of Lemma 4.2 - Contd.
on € Way,

InUing in the sam
* number of nodes at depth j
-
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» Size of problems at depth j = n/b'.
» Cost of problems at depth j = f(n/b).
* Problem size reduces to 1 at leaves.
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* Let x be the depth of leaves. Then x is given by n/b* =1
* Hence, depth of leaf level is log,n.

* number of leaves = number of nodes at level log,n =
q'08," = plog,a.




rProof of Lemma 4.2 — Contd.

* Cost of a leaf node = ©(1).
» So, total cost of all leaf nodes = ®(n'°8:9). @

* Total cost of internal nodes = Sum of total cost of
internal nodes at all levels (from depth O (root) to
depth log,n — 1).

log, n-1

~ Y a'f(n/b’)

(4.2 b)

> Total problem cost = Cost of leaves + Cost of internal

nodes =

log, n-1

T(n) =0O(n"%?) + Zajf(n/bj)

(from 4.2 aand 4.]
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Step 2 - Bounding the Summation in Eq.
L{AnG -3

Let a > 1 and b > 1 be constants, and let f(n) be a nonnegative
function defined on exact powers of b. A function g(n)
defined over exact powers of b by

log, n—1

g(n) = Zajf(n/bj)

can be bounded asymptotically for exact powers of b as follows.

1. If f(n) = O(n'°&:*~¢) for some constant € > 0, then g(n) =
O(nlogba)_

2. If fln) = ®(n'e2), then g(n) = O(n'elg n).

3. If af(n/b) <c f(n)for some constantc<1andalln= b, the
g(n) = O(f(n)).
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Proof of Lemma 4.3
fin) = O(n's<) = f{n/b)) = O((n/bl)es=~

log, n-1

g(n) = Zajf(n/bj)

[Iogbnl n Iogbae] Factoring out terms and simplifying the

summation within O-notation leaves a
Increasing geometric series.
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j=0

log, n-1 ; n log, a—¢ _nlogba—g Iogf—l abg J
Z a’| a blogba

log, n—1

:nlogba—g Z (bg)j

j=0




log, n-1

e )

=0

_ nlogba—g bglogbn 1
b -1

_ nlogba—g n° -1
b -1

=n"%®*“0O(n®) ;because € and b are consta

Proch f.L.emma 4.3 - Contd.
bJ
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g(n) = O(Iog_bila" (n.jlogba_g] =0(n"*?)




rProof of Lemma 4.3 — Contd.

Case 2
fln) = B(n'">e*) = f(n/bl) = O((n/b))"e:)

log,n-1 _
_ j j . —
g(n) = Za f(n/b’) Factoring out terms and simplifying the
1=0 summation within @-notation leaves a
log, n-1 i(n 09, 2 constant series.
— @ Z a —J
o \b
log, n-1 log, & _ i
R
j=0 b j=0 blogba
log, n-1
_ nIogba Zl
i=0




rProof of Lemma 4.3 — Contd.

Case 2 — Contd.
so-of 3 a1
=®(n"*"log, n)

=O(n"°%?*Ign)




rProof of Lemma 4.3 — Contd.
Case 3

log, n—1

g(n) = Zajf(n/bj)

—f(n)+af( j+a f( j+ +a%"
b b°

*f(n) Is nonnegative, by definition.

*a (number of subproblems) and b (factor by which the problem
IS reduced at each step) are nonnegative.

*Hence, each term in the above expression for g(n) is nonnegati
Also, g(n) contains f(n).

*Hence g(n) = Q(f(n)), for exact powers of b.




rProof of Lemma 4.3 — Contd.

Case 3 — Contd.

* By assumption, a f(n/b) < c f(n), forc< 1 and all n >b.
- = fin/b) < (c/a) f(n).

* Iterating j times, f(n/b)) < (c/a) f(n).

« = df(n/b) < d f(n).




rProof of Lemma 4.3 — Contd.

Case 3 — Contd.

log,n-1 .
g(n)= » a'f(n/b’) _ _
jz=t; Substituting al f(n/b) < ¢! f(n) and simplifying
log, n-1 yields a decreasing geometric series since ¢ <

< chf(n)
sic"f(n)

_ f(n)(lfcj _0(f (n))

Thus, g(n) = O(f(n)) and g(n) = Q(f(n)) (proved earlier).
- g(n) = 6(f(n)).




Master Theorem - Proof - Step
Lédnma 4.4

Let a > 1 and b > 1 be constants, and let f(n) be a nonnegative
function defined on exact powers of b. Define T(n) on exact
powers of b by the recurrence

T(n) = (1) ifn=1,
T(n) = aT(n/b) + f{n) ifn=>biisa+veinteger.
Then T(n) can be bounded asymptotically for exact powers of b
as follows.
1. If f(n) = O(n'&:“~¢) for some constant € >0, then T(n) =
®(n'oes).
2. If fln) = ®(n'&2), then T(n) = O(n'°s:lg n).
3. If fln) = Q(n'°e*¢) for some constant € >0, and af(n/b) <c
f(n) for some constant c < 1 and large n, then T(n) = ®(f(n)).
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rLemma 4.4 - Proof

By Lemma 4.2,
| log,n-1 .
_ 0gpa j j
T(n) =6(n™=")+ Z(;a T(n/b )\ Bounds obtained for all 3 cases
Case 1: d Lemma 4.3. Use them.

T(n) =O(n°%**)+0(n"%*?)
=O(n""?*) Why?
Case 2:
T(n) =0(n"°**)+O(n"%*Ign)
=@(n"**Ign)
Case 3:
T(n) =0(n"**)+6(f(n))
=0(f(n)) -+ f(n) =Q(n"%*)




Proof for when n is not an exact power o

* To complete the proof for Master Theorem in
general,

Extend analysis to cases where floors and ceilings occur in
the recurrence.

l.e., cons_i_d(%r) r:ecatirffﬁfgj)oj ‘%hﬁ]{orm

and

T(n)=aT(n/b )+ f(n)

* Go through Sec. 4.4.2 in the text.




