






















EDN SEPTEMBER 24, 1998 b 119

ARM designs mP cores and cached macrocells for its licensees.
Partners offering ASICs with embedded ARM cores are
Atmel/ES2, Cirrus Logic, Mitel, IBM, LG Semicon (www.
lgsemicon.co.kr/), LSI Logic, Lucent (www.lucent.com),
National Semiconductor, NEC, Oki, Samsung, Seiko Epson
(www.epson.co.jp/), Sharp, Symbios Logic (www.symbios.
com), TI, and VLSI. Some partners offer the ARM core in
embedded products for vertical markets.

ARM processors comprise the ARM7 Thumb, ARM9
Thumb, and StrongARM product families. (ARM will
announce ARM10 in October.) All the processors support the
ARM instruction set, providing full software compatibility
over a range of performance and cost.

The ARM cores and cached macrocells implement a
load/store architecture and have 31 general-purpose registers
with 16 simultaneously visible. A fast interrupt has a mini-
mum latency of four processor cycles and uses seven private
registers to minimize state-saving overhead. All registers,
excluding the program counter, are general-purpose,
although a set of conventions, the ARM Procedure Call Stan-
dard, governs the registers’ use for C compatibility.

The ARM cores and cached macrocells support user and
supervisor modes for controlling access; they handle inter-
rupt-request, fast-interrupt-request, abort, and undefined
exception-processing modes. Modes use register windows to
overlay some of the 16 general-purpose registers.

The Thumb architectural extension is primarily a 16-bit
subset of the 32-bit instruction set. On execution, the
Thumb module, residing within the instruction pipeline,
decompresses the 16-bit instructions back to 32-bit instruc-
tions without added delay. The Thumb module adds about
6% to the core’s die size but helps increase code density and
overcome the waste from using 32-bit fixed-length instruc-
tions.

The bus clock for most ARM cached macrocells can be syn-
chronous or asynchronous with respect to the internal cache
clock. All ARM cached macrocells contain a write buffer,
which lets execution continue while writes are pending. The
buffer holds 8 words at four independent addresses.

The ARM7 Thumb family comprises the ARM7TDMI core
and ARM7x0T cached macrocells. This architecture, Version
4T, consists of a three-stage—fetch, decode, and execute—

pipeline to achieve single-cycle instruction execution.
All cores use an 8-bit Booth multiplier, which executes
in five or fewer cycles for 32332-bit multiply and
offers 64-bit multiplication. The ARM740T integrates
a simplified memory-management unit (MMU) that
allows you to specify eight memory areas by individ-
ually programming their base address, size, cache con-
trol, write-buffer control, and access permissions. This
approach simplifies the programmer model and
reduces the core size to less than that of the ARM710T
and ARM720T.

ARM based the ARM9 Thumb family, available as
the ARM940T, on the ARM9TDMI core. The core is
also an implementation of the ARM Version 4T archi-
tecture but with a five-stage—fetch, decode, execute,
memory, and write-back—pipeline. The additional
pipeline depth and design implementation double the
performance over the ARM7 Thumb cores. The bus
architecture also differs, using a Harvard approach
compared with the ARM7 Thumb core’s von Neu-
mann architecture. The ARM940T implements the
same MMU as the ARM740T. You can use the cache in
write-through and -back modes; write-back mode
reduces the number of external transactions from the
core.

StrongARM uses a five-stage pipeline and Harvard
architecture and supports Version 4 of the ARM archi-
tecture. It provides a fourfold increase in performance
over the ARM7 Thumb cores. Intel now produces and
develops StrongARM, which is available as the stan-
dard SA-110 processor and as part of custom logic
products.

The cores avoid excess pipeline flushes—Strong-
ARM by using early branch execution and ARM7 by
using static branch prediction, always taking the rear
branch as in a loop. The SA-110 has separate instruc-
tion and data MMUs. The translation-look-aside
buffers (TLBs) have 32 entries that can each map a seg-
ment, large page, or small page and use a round-robin
replacement algorithm. The data TLB supports both

SCAN
CONTROL

INSTRUCTION
DECODER

AND
CONTROL

LOGIC

ADDRESS REGISTER

ADDRESS
INCREMENTER

REGISTER BANK
(31332-BIT REGISTERS)

(SIX STATUS REGISTERS)

 3238
MULTIPLIER

ALE ABE

BARREL
SHIFTER

32-BIT ALU

WRITE-DATA REGISTER

nENOUT nENIN

DBE
D[31:0]

INSTRUCTION-PIPELINE,
READ-DATA REGISTER

AND THUMB INSTRUCTION
DECODER

A[31:0]

INCRE-
MENTER
BUSP

C

B
U
S

A
LU

 B
U

S

A
 B

U
S

B
 B

U
S

www.ednmag.com

ARM processors



120 b EDN SEPTEMBER 24, 1998

flush-all and flush-single-entry functions, and the instruc-
tion TLB supports only the flush-all function.
Power management: All the ARM processor cores and
cached macrocells are static designs. Furthermore, the
designs use gated clocks and transparent latches, clocking
the logic only during an operation (but not during a wait
state).
Special instructions: ARM has 11 basic types of fixed-length
instructions, which execute conditionally—not just
branch—and reduce the need for short pipeline-flushing
branches. A not-taken instruction executes in one cycle.
Taken branches incur a three-cycle delay. The 16 execution-
condition codes include equal, not equal, always, negative,
and overflow. The ARM lacks explicit shift instructions;
instead, all ALU operations can perform an optional shift
operation in one execution cycle. The processors have block-
data-transfer instructions to load and store data from any
subset of the 16 general-purpose registers.

ARM processors lack an integer-divide instruction; howev-
er, the chips have multiply and multiply-accumulate (MAC)
instructions. The MAC instruction speeds math-intensive
applications. ARM processors can synthesize division and
multiplication by a constant using sequences of one or more
shift-and-add or shift-and-subtract instructions. (For exam-
ple, division by 4 and multiplication by 5 each take one
cycle.)

Special on-chip peripherals: The ARM7 Thumb and ARM9
Thumb processor cores have integrated EmbeddedICE logic,
allowing you to debug the core via a JTAG interface. The ARM
Advanced Microcontroller Bus Architecture (AMBA) interface
is the standard bus interface to ARM7 Thumb and ARM9
Thumb cached macrocells.
Development tools: ARM offers a variety of software-devel-
opment tools and hardware-development platforms, includ-
ing the ARMUlator instruction-set emulator. A range of third-
party development tools and operating systems also support
the ARM architecture. Cygnus Solutions (www.cygnus.com),
Embedded Performance (www.episupport.com), Green Hills
Software (www.ghs.com), Metaware (www.metaware.com),
Microtec (www.microtec.com), Microware Systems Corp
(www.microware.com), and Wind River (www.windriver.
com) offer development-tool chains and compilers. Acceler-
ated Technology (www.atinucleus.com), Chorus Systems
(www.sun.com), CMX Co (www.cmx.com), Embedded Per-
formance, Etnoteam (www.etnoteam.it/), Geoworks
(www.geoworks.com), Integrated Systems (www.isi.com),
Microsoft (www.microsoft.com), Microware, Psion Software
(www.psion.com), US Software (www.uss.com), and Wind
River provide RTOS support. Hewlett-Packard (www.
hp.com), Lauterbach (www.lauterbach.com), and Yokogawa
Digital Corp (www.yokogawa.com) offer a debugger and an
in-circuit emulator.

CIRCLE NO. 10

ARM processors (continued)



122 b EDN SEPTEMBER 24, 1998

The 386 has disappeared from the desktop-PC market but has
developed a strong presence in embedded-PC applications.
Register-based, the 80386 architecture has four general-pur-
pose registers, four index/pointer registers, six 16-bit segment
registers, and two 32-bit status and control registers. Intel’s
8086 designers used 64-kbyte segments to extend addressing
to 1 Mbyte. The 80386 also uses segmentation; however,
because the general-purpose and index/pointer registers are
now 32 bits, the segment limits extend to the full 4-Gbyte
addressing range, and a segment register references a segment
descriptor with a 32-bit base address. These descriptors also
carry addressing-range and protection limits to prevent data
accesses into code, data that executes as code, and access to
inner privilege levels by outer levels.

Hardware-descriptor registers hold segment-access rights
and segment-base address and size limits. In protected-mode
addressing, a 16-bit selector points to a segment descriptor
and furnishes a base address. The base address adds to the 32-
bit effective address, producing a 32-bit linear address, which
the 80386 then uses as a physical or linear-page address.

The 386 has four code/data breakpoint registers and two
control registers for debugging. You can set the breakpoint
registers with addresses for halting execution on a program
or data access.
Power management: System-management mode (SMM), a
power-management mechanism, enables code to control
CPU power without rewriting or revamping operating soft-
ware. The CPU enters SMM via a hardware interrupt, the sys-
tem-management interrupt (SMI); the SMI code can set
SMMs to reduce chip power dissipation. Integrated versions
of the 386, including Intel’s 386EX, have idle and power-
down modes: Idle discontinues CPU processing but keeps
peripherals active, and power-down shuts down the entire

chip. AMD’s 386SC300 chip has low-speed mode, during
which the CPU goes to 0.5 MHz; doze, which stops the CPU,
system, and DMA clocks; sleep, which stops additional clocks
and peripherals; and suspend, which stops everything except
the real-time clock and memory.
Special instructions: The 386 instruction set is a superset of
the 8086/186. To support SMM, the 386 has seven addition-
al instructions, such as RSM (resume), which causes the
processor to resume from SMM.
Special on-chip peripherals: Intel’s 386EX peripherals
include a serial-I/O unit, a chip select, a clock generator, a
DMA- and bus-arbitrator unit, a DRAM-refresh-control unit,
an interrupt-control unit, a memory-management unit, and
a parallel-I/O unit. AMD’s ElanSC300 combines an Am386
CPU with a PC/AT chip set and essential embedded-PC
peripherals. The ElanSC300 also includes mobile-computing
peripherals, such as PLL clock generators, PCMCIA-card sup-
port, LCD-graphics control, a memory controller, DMA and
interrupt controllers, a real-time clock, a serial port, and a par-
allel port.
Development tools: Numerous third-party vendors support
the 386 architecture. They provide tools that include assem-
blers, compilers, linkers/locators, remote software debuggers,
software simulators, and integrated design environments for
software development. In addition, several vendors provide
utilities, such as flash-programming, device-driver, and flash-
translation-layer implementations. Hardware tools include
in-circuit emulators, logic analyzers, evaluation platforms,
and single-board computers. Operating-system support
includes DOS and windowed OSs and a variety of real-time
OSs from small, royalty-free microkernels to feature-rich
graphical-user-interface RTOSs.

80386

SEGMENTATION UNIT

THREE-INPUT
ADDER

DESCRIPTOR
REGISTERS

LIMIT AND
ATTRIBUTE

PLA

ADDER

PAGE
CACHE

CONTROL
AND ATTRI-
BUTE PLA

ADDRESS
DRIVER

PIPELINE/
BUS-SIZE
CONTROL

MULTIPLEXER/
TRANS-

CEIVERSBARREL
SHIFTER,
ADDER

MULTIPLY/
DIVIDE

REGISTER
FILE

REQUEST
PRIORITIZER

BUS-CONTROL
SIGNALS

C
O

N
T

R
O

L

ADDRESS
SIGNALS

BUS-
TRANSLATION
SIGNALS

DATA
SIGNALS

PAGING UNIT

EFFECTIVE ADDRESS BUS

25

32

32

32

32

P
H

Y
S

IC
A

L 
A

D
D

R
E

S
S

 B
U

S

C
O

D
E

 F
E

T
C

H
/P

A
G

E
 T

A
B

LE
 F

E
T

C
H

EFFECTIVE ADDRESS BUS

PREFETCHER/
LIMIT

CHECKER

16-BYTE
CODE

QUEUE

32

INSTRUCTION
PREFETCH

DECODING
AND

SEQUENCING

CONTROL
ROM

INSTRUCTION
DECODER

THREE-
DECODED-

INSTRUCTION
QUEUE

INSTRUCTION
PREDECODE

CONTROL

ALU
CONTROL

DEDICATED ALU BUS

STATUS
FLAGS

PROTECTION
TEST UNIT

ALU

D
IS

P
LA

C
E

M
E

N
T

 B
U

S

INTERNAL CONTROL BUS

32

LI
N

E
A

R
 A

D
D

R
E

S
S

 B
U

S

CODE
STREAM



124 b EDN SEPTEMBER 24, 1998

The 486 builds on the 386 architecture by adding a more effi-
cient memory bus; an on-chip floating-point unit; an on-
chip, unified, Level 1 cache; and a RISC-like implementation
for the core load/store instructions. The 32-bit 80486 imple-
mentation retains the i386’s complex instruction set but
relies on a pipelined RISC-like implementation to speed exe-
cution for simple load/store instructions. The standard 486
microarchitecture has a five-stage pipeline and uses two of
those stages, decoder stages D1 and D2, to decode the com-
plex instruction set.

The 486 chips use 1- to 15-byte-long instructions for com-
plex operations. The two decoder stages give the hardware
time to delineate and decode the instructions waiting in the
instruction queue. The instruction or byte-code queue holds
32 bytes for decoding. By fetching 4 words at a time from off-
chip or local memory, the hardware minimizes contention
between data and instruction accesses of the cache. To speed
processing, the hardware loads and writes cache lines in 4-
word bursts.

The DX4 has a unified cache that is four-way set-associa-
tive and implements a write-through policy: Writes to cache
pass through to memory, which raises memory bandwidth.
The 486’s bus and cache implement a bus-snooping protocol
for multiprocessor operation. The bus is more efficient than
that of the 386 and has a two-clock single read or write; 4-
word read bursts take five cycles and constitute most 486 bus
accesses. The processors also support secondary Level 2 cache
for both single-processor and multiprocessor operation, as
well as write-through/write-back protocols.

The 486 has four code/data breakpoint registers and two
control registers for debugging. You can set the breakpoint
registers with addresses for halting execution on a program
or data access.
Power management: The standard 486 employs system-

management mode (SMM) for power management, which
enables code to control CPU power without rewriting or
revamping operating software. The CPU enters SMM via a
hardware interrupt, the system-management interrupt (SMI);
the SMI code can set SMMs to reduce chip power dissipation.
A halt instruction powers down most of the CPU’s logic.
Special instructions: The 486 instruction set builds upon
that of the 80386, adding instructions such as byte swap,
exchange and add, compare and exchange, invalidate data
cache, write-back and invalidate data cache, invalidate trans-
lation-look-aside-buffer entry, processor identification, and
SMM resume.
Special on-chip peripherals: AMD’s ElanSC400 microcon-
troller combines an Am486 CPU with a PC/AT chip set and
essential embedded-PC peripherals. The ElanSC400 also
includes mobile-computing peripherals, such as PLL clock
generators, PCMCIA-card support, LCD-graphics control, a
memory controller, DMA and interrupt controllers, a real-
time clock, a serial port, and a parallel port.
Development tools: Most of the tool support for the 486 is
the same as that for the 386. AMD, Intel, and National offer
evaluation kits for each of their 486 processors. For example,
AMD’s $950 mforCE (micro for CE) demonstration system for
mobile and embedded product development uses the AMD’s
ElanSC400 microcontroller and the QNX (www.qnx.com)
Realtime OS or Microsoft (www.microsoft.com) Windows CE
OS. The board contains an external matrix scan keyboard, a
flash minicard slot, a PCMCIA type 2 slot, an IrDA interface,
a serial port, a 10-bit digitizer controller for pen input, an
audio chip, and 4 Mbytes of ROM and DRAM.
Second sources: There are no pin-compatible second sources
for the 80486. AMD, Intel, and STMicroelectronics act as sec-
ond sources for some implementations.

80486

CLOCK DOUBLER

ADDRESS DRIVERS

4332-BIT
WRITE BUFFERS

DATA-BUS
TRANSCEIVERS

BUS-CONTROL
REQUEST SEQUENCER

BURST BUS CONTROL

BUS-SIZE CONTROL

CACHE CONTROL

PARITY GENERATION
AND CONTROL

BOUNDARY-SCAN
CONTROL

CACHE UNIT

8-kBYTE
CACHE

A2 TO A31
BE0# TO BE3#

CLK

BUS INTERFACE

D0 TO D31

BUS-CONTROL
SIGNALS

BRDY# BLAST#

BS16# BS8#

KEN# FLUSH#
AHOLD, EADS#

PCHK#
DP0 TO DP3

TCK TMS
TDI TD0

PREFETCHER

32-BYTE
CODE QUEUE
(2316 BYTES)

CORE
CLOCK

128

32

32

32

32

24

32

PAGING
UNIT

TLB

PCD, PWT

2

20
PHYSICAL
ADDRESS

SEGMENTATION
UNIT

DESCRIPTOR
REGISTERS

LIMIT AND
ATTRIBUTE

PLA

DISPLACEMENT BUS

BARREL
SHIFTER

ALU

REGISTER
FILE

BASE/
INDEX
BUS

INSTRUCTION
DECODE

CONTROL-AND-
PROTECTION

TEST UNIT

CONTROL
ROM

FPU

FLOATING-
POINT REG-
ISTER FILE

CODE
STREAM

DECODED
INSTRUCTION

PATH

MICROINSTRUCTION

LINEAR-ADDRESS BUS
32

3232

3232

DATA BUS

DATA BUS

64-BIT INTERUNIT-TRANSFER BUS



126 b EDN SEPTEMBER 24, 1998

Fujitsu based its MB8683x,
or SPARClite, family on V8E
spec, SPARC International’s
(www.sparc.com) embed-
ded specification. The fami-
ly features a 32-bit ALU and
uses a load/store architec-
ture with a register stack of
136 32-bit registers. (The
86933H chips have 104.)
Eight reserved registers hold
global values. The remain-
ing registers arrange into
eight overlapping register
windows, one for each sub-
routine. This setup speeds
procedure calls and inter-
rupt processing. Multiple
contexts can be present
concurrently by limiting
the number of registers for a
task.

Fujitsu engineers extend-
ed the SPARC pipeline for
the SPARClite family to
fetch, decode, execute,
memory, and write-back
stages. The memory stage
minimizes the effects of
load/store operations and
reduces a load/store to one-
cycle execution. The stage is
idle for nonload/store operations.

All SPARClite mPs have separate data and instruction
caches. The caches are two-way set-associative and have 16-
or 32-byte cache lines. You can lock and not swap out criti-
cal cache lines on chip. The MB86832 also incorporates a
debug-support unit and an emulator bus, which makes
instruction streams visible even in on-chip cache. Debugging
registers hold data values or addresses for individual and
range breakpoints.

The SPARClite processors run with DRAM, synchronous
DRAM, SRAM, and ROM/EPROM. The memory interface
handles page-mode DRAM for low-cost, high-speed access
using a 32-byte burst mode. The memory interface includes
a refresh generator for DRAMs, programmable wait states for
slower memory, and programmable chip selects for memory
banking. Boot-up memory interfaces are programmable;
SPARClite CPUs can boot from 8-, 16-, or 32-bit ROM/
EPROM.
Power management: SPARClite processors incorporate
power-down modes, and a power-management register con-
trols shutdown of the floating-point unit.
Special instructions: The SPARClite implements the SPARC
V8 specification, which includes a hardware multiply instruc-
tion and a software division using divide by 4. Other special
instructions include scan word looking for first changed bit
or first one or zero, load/store double word, save/restore caller
(uses register windows), tagged add/subtract (generates over-
flow if most significant bits 0 and 1 are not 0), atomic math
and swap, and generate trap from conditions.

Special on-chip peripherals: SPARClite processors come
with a 24-bit timer that has an 8-bit prescaler and a 16-bit
counter. You can program this counter to operate in period-
ic-interrupt, time-out-interrupt, or square-wave-generator
mode. The mP’s debug-and-support unit (DSU) comprises two
4-bit emulator buses for data and status and two control sig-
nals that enable and set the breakpoint of an in-circuit emu-
lator for hardware debugging and software development. The
SPARClite’s DSU has six breakpoint-descriptor registers and
supports five hardware-monitoring debugging modes.
Development tools: SPARClite shares many of the develop-
ment tools that support the SPARC architecture, including
compilers and debuggers. Fujitsu supplies $89 evaluation kits
and full-featured evaluation boards and monitors. Fujitsu
works with Wind River Systems (www.windriver.com), Cho-
rus Systems (www.sun.com), Accelerated Technology
(www.atinucleus.com), Microtec (www.microtec.com), JMI
(www.jmi.com), Integrated Systems (www.isi.com), and Lynx
(www.lynx.com) for RTOS support. These vendors also sup-
ply system calls and library routines, many device drivers,
and network protocols. Cygnus (www.cygnus.com), Wind
River, and Green Hills Software (www.ghs.com) development
environments also support SPARClite. Orion Instruments
(www.yokogawa.com) in-circuit emulators support SPARC-
lite-based system development. US Software (www.
ussw.com) and Log Point (www.logpoint.com) offer floating-
point libraries for SPARClite.
Second sources: There are no second sources for SPARClite.

Fujitsu SPARClite

CLOCK-GENERATOR
PLL

BUS-INTERFACE
UNIT

ADDRESS DECODE

DRAM SUPPORT

DRAM CONTROLLER

CLOCK 1

32

26

10

DATA

ADDR

4ASI

6CHP_SLCT

SAME_PAGE

4RAS

4CAS

4DWE

CONTROL

INTEGER UNIT

8-kBYTE
DATA CACHE

8-kBYTE
INSTRUCTION

CACHE

32 I_DATA

32 I_ADDRESS

32 D_DATA

32 D_ADDRESS



128 b EDN SEPTEMBER 24, 1998

The SuperH Series comprises the SH-1, SH-2, SH-3, and SH-4
series of RISC mPs, mCs, and ASIC cores. The SH-1, -2, and -3
employ a fetch, decode, execute, memory-access, and write-
back-to-register pipeline. Hitachi built the devices around 25
32-bit registers that you access using load/store instructions.
These registers comprise 16 general registers (the SH-3 has
eight 32-bit shadow registers for context switching), five con-
trol registers, and four system registers. Depending on the
chip, the interrupt latency can be as low as seven clock cycles.
The chips use 32-bit datapaths to internally move data, but
all versions use a flexible external bus width. The SuperH fam-
ily also has devices with single-cycle mask ROM and one-
time-programmable and flash memory with densities as high
as 256 kbytes, unlike most RISC families.

Although devices in the SH series have a similar core, sig-
nificant differences exist. The major differences between SH-
1 and SH-2 are that the SH-2 features on-chip cache memo-
ry, higher speeds, and a 32332-bit multiply-accumulate
(MAC) unit. (The SH-1’s MAC unit is 16316 bits.) To build
the SH-3, Hitachi added to the SH-2 a memory-management
unit (MMU), a barrel shifter, and the ability for conditional-
branch instructions to enable or disable the pipeline’s delay
slot. Disabling the delay slot, although decreasing perform-
ance, allows the processor to run more deterministically and
reduces the effects of pipeline flushes.

The 200-MHz, two-way-superscalar SH-4 mP includes a 3-
D graphics accelerator that Hitachi claims can perform at 1.2
Gflops. This mP has four 32332-bit multipliers fed by two
128-bit buses; it also has four adders. You can load the mul-
tipliers with eight operands in one cycle; the mP then adds
the results in the next cycle. This hardware performs rota-
tions and transformations on 32-bit, single-precision, float-
ing-point vectors.

SuperH processors use a 16-bit instruction word to achieve
compact code. The instruction width limits the number of
basic operation codes, handles only 16 general registers, and
addresses only two operands. Additionally, only 12 bits are
available for an immediate offset; jumps with immediate data
must be in 2048-byte hops. However, the SH-3 supports FAR-
relative branches to support position-independent code.
Although these restrictions lead to more instructions per task,
the overall result is significantly smaller code.

The SH-1 mPs can operate from external memory or from
on-chip program memory at a CPU frequency of 20 MHz. The
16-bit-wide external-memory bus can supply the CPU with
instructions from SRAM or fast DRAM on each cycle. If the
processor is operating from external memory, each data
access to external memory may take an additional one to two
cycles.

Instead of on-chip program memory, the SH-2 and SH-3
have a four-way, set-associative on-chip cache (4 kbytes for
the SH-2 and 8 kbytes for the SH-3), a 32-bit-wide memory
bus for CPU-memory bandwidth as high as 60 MHz with a
synchronous-DRAM interface), and a 32-bit divide unit
(replacing the first chip’s bit-step-divide function on the SH-
2). You can reconfigure the cache as a two-way, set-associa-
tive cache and 2 kbytes (SH-2) or 4 kbytes (SH-3) of user-con-
figurable RAM. The external-memory bus supports
multiprocessing; it has bus arbitration for multiple masters.
The SH-3 also has a unique RTOS feature: If a task or thread
crashes, the operating system can gracefully recover and not

have the errant task corrupt other tasks or RTOS environ-
ments.
Power management: Sleep mode discontinues CPU pro-
cessing but keeps peripherals active. Standby stops every-
thing but maintains register and cache contents. The SH-2
and -3 provide several clock modes for reducing power; soft-
ware can adjust the clock rate during program operation. The
SH-3’s unified cache has a special low-power design that dis-
sipates only 100 mW in operation. The cache sense amps are
energized for the cache set that hits while the other three sets
stay switched off. The sense amps respond to only a 60-mV
differential versus the full 3.3V swing.
Special instructions: A 16316-bit MAC instruction (42-bit
accumulator) in the SH-1 and a 32332-bit MAC instruction
(64-bit accumulator) in the SH-2 and SH-3 provide a fast DSP
function. Although Hitachi classifies the architecture as
load/store, some instructions reference memory. Delayed
branch instructions minimize pipeline disruption. An
instruction swaps upper and lower bytes. The SH-4 includes
a set of 3-D, floating-point instructions. The SH-DSP, a ver-
sion of the SH-2, supports 23 32-bit DSP instructions for zero-
overhead looping and modulo-addressing support.
Special on-chip peripherals: The SH-DSP contains a DSP as
an “on-chip peripheral.” This DSP unit shares the five-stage
pipeline with the integer unit; the DSP is not a coprocessor.
The CPU contains a fetch-and-decode unit, which manages
the instruction stream for both the integer and DSP units,
routing instructions to the appropriate unit (see EDN’s 1998
“DSP-architecture directory,” April 23, 1998, pg 54). Other,
more conventional peripherals include memory controllers,
a real-time clock, smart-card and serial codec interfaces, IrDA
support, a floating-point-unit coprocessor, a hardware divi-
sion unit, complex multifunction timers, a PCMCIA inter-
face, and an LCD controller.

The SH-3 contains an MMU with a 128-entry translation-
look-aside buffer (TLB). The TLB caches virtual-to-physical-
address translations from user-created page tables to external
memory, providing both data protection and virtual memo-
ry. Address translation employs a paging system that supports
1- or 4-kbyte pages. The MMU also handles multitasking by
providing multiple virtual-memory modes. Thus, each
process has its own virtual memory and cannot access the
resources of another process or the OS kernel.
Development tools: Hitachi and a number of third-party
vendors offer development-tool support for the SuperH.
Hitachi, Green Hills Software (www.ghs.com), and Cygnus
(www.cygnus.com) provide C and C++ compilers. Hitachi,
HP (www.hp.com), Orion Instruments (www.yokogawa.
com), and Sophia Systems (www.sophia.com) offer in-circuit
emulators. Wind River (www.windriver.com), Accelerated
Technology Inc (www.atinucleus.com), and Microsoft
(www.microsoft.com) provide RTOSs. Other tools include
assemblers, ROM emulators, integrated Windows-based
development environments, debuggers, floating-point
libraries, and networking libraries. Hitachi supports Win-
dows CE development with the $10,000 D9000, a reconfig-
urable development platform.
Second sources: Seiko-Epson (www.seiko.com), VLSI, ST-
Microelectronics, and Sony (www.sel.sony.com) are licensees.

See EDN’s Web-site version, www.ednmag.com, for block
diagram.

Hitachi SuperH Series



130 b EDN SEPTEMBER 24, 1998

The hyperstone E1-32X combines
RISC and DSP technology in one core.
The E1-32X has a load/store architec-
ture built around a register set that
includes 64 general-purpose local and
22 global registers. Local registers are
organized into a 64-word, circular reg-
ister stack to hold function/subrou-
tine stack frames. The stack is orga-
nized into frames of as many as 16
words; the E1-32X keeps current
frames on chip and automatically
pushes the frame to off-chip memory
as the register stack fills and moves
frames back on chip as the register
stack empties. For fast parameter pass-
ing, the current stack frame can over-
lap the previous one with a variable
range. Instructions are 16, 32, or 48
bits wide. The variable-length instruc-
tions, which the E1-32X automatical-
ly prefetches, provide constants and
native addresses as large as 32 bits.

The 4-Gbyte address space divides
into four blocks; you can configure
each block individually for bus width
and timing. You can use these blocks
for glueless connection of DRAM,
extended-data-out DRAM, SRAM,
EPROM, or other memory devices,
each with its own timing and bus
width. A separate I/O-address space
also allows each I/O device to have its
own timing.

The integrated DSP unit, working in
parallel with the ALU and the
load/store unit, can perform DSP cal-
culations while the ALU is performing
loop counts, address calculations, or
load-and-store operations. The ALU
executes its instructions during the
latency cycles of DSP instructions. The DSP unit shares all the
E1-32X’s functional blocks, including the register set; how-
ever, it provides dedicated result registers and 32- and 64-bit
hardware accumulators. The DSP unit supports 16- and 32-
bit data types.
Power management: In automatic power-down mode, only
the interrupt logic, clock, and DRAM-refresh logic remain
active. Sleep mode also disables DRAM refresh. At 3.3V, cur-
rent consumption in power-down and sleep modes is less
than 2.5 mA and 100 mA, respectively.
Special instructions: DSP instructions include multiply,
complex and real multiply-accumulate, multiply-subtract,
and complex addition/subtraction. Other special instruc-
tions include test-leading zeros.
Special on-chip peripherals: Hyperstone’s E1-32X contains
a DRAM controller that allows you to program page size,
refresh rate, timing, and access parameters with an internal-
memory register. The controller supports fast-page-mode and
extended-data-out DRAMs. The mP also contains a single-
cycle-access, 8-kbyte memory, and an I/O- and peripheral-

interface controller. You can use this controller to set the width
and timing of the mP’s address areas. An integrated PLL allows
you to multiply the external clock by a factor as large as 4.
Development tools: The vendor offers a development starter
kit, a PC-based development board, and the hyICE serial con-
nector for stand-alone operation. The company also provides
an ANSI C compiler and DSP library, a source- and task-level
debugger, a multitasking real-time kernel, an assembler, a
linker, a library manager, and a profiler. Eonic Systems
(www.eonic.com) and Etnoteam (www.etnoteam.com) pro-
vide RTOS support. Visual Tools (www.etnoteam.it) offers a
JPEG embedded-image-compression/decompression library
for the hyperstone E1-32X mP. The library supports user-
defined subsampling for image quality and compression to
the desired size. Hyperstone provides speech compres-
sion/decompression algorithms (G.726, G.729, G.723.1,
GSM 06.10) and a complete modem. GAO Research
(www.gaoresearch.com) offers V.22 modem code.
Second sources: LG Semicon (www.lgsemicon.co.kr) is a
licensee.

hyperstone E1-32X

INSTRUCTION
CACHE

INSTRUCTION
DECODE

INSTRUCTION-
EXECUTION-

CONTROL UNIT

X-DECODE

Y-DECODE

INSTRUCTION-
CACHE

CONTROL

64 LOCAL,
22 GLOBAL
REGISTERS

Y PCX

Y IX

W AZ

YX

LOAD
DECODE

ALU
BARREL
SHIFTER

DSP-EXECU-
TION UNIT,
HARDWARE
MULTIPLIER

INSTRUCTION-
PREFETCH-

CONTROL UNIT

STORE-DATA
PIPELINE

BUS-
INTERFACE-

CONTROL UNIT

BUS-PIPE-
LINE CONTROL

MEMORY-ADDRESS
PIPELINE

CONTROL
BUS

INTERNAL
TIMER

INTERRUPT
CONTROL

POWER-
DOWN AND

RESET
CONTROLWATCHDOG

TIMER
4-kBYTE

SRAM
4

26
(22)

ADDRESS
BUS

12

32
32

(16)
4

(2)

DATA
BUS

PARITY



Serving as a base for a family of RISC chips, the PowerPC
derives its core architecture from the performance-opti-
mized-with-enhanced-RISC (POWER) architecture. The
instruction set and 32 32-bit, general-purpose registers sup-
port multiple microarchitecture implementations that
include the 32-bit 603e, 604e, 740, 750, and embedded
processors (Motorola’s MPC 50x, MPC8x0, MPC82x, and
IBM’s 400 series).

The PowerPC 750 contains seven parallel-operating exe-
cution units: two integer units, a branch-processing unit, a
load/store unit (LSU), a floating-point unit (FPU), a condi-
tion-register unit, and an L2-cache-interface unit. (The 740 is
the lower cost version of the 750 and lacks the L2-cache-inter-
face unit.) This CPU can fetch as many as four instructions
per cycle. The 750 processes branches as they enter the
instruction buffer and can decode and dispatch two non-
branches in one cycle. Completion logic keeps track of the
outstanding instructions and retires them in order.

The PowerPC 750 mP uses static or dynamic branch pre-
diction to improve the accuracy of instruction prefetching.
For static prediction, the branch-operation codes provide
hints to predict whether a branch is taken or not. For dynam-
ic prediction, the CPU uses a 512-entry branch-history table
and a 64-entry branch-target instruction. The CPU permits
speculative execution down a predicted path beyond one
unresolved branch.

The 750 has separate 32-kbyte instruction and data caches.
Both eight-way, set-associative, lockable caches provide byte-

level parity checking. A locked cache typically supplies data
on a hit, but cache lines are not replaced on a miss. The 750
contains an on-chip L2-cache controller and backside L2 bus,
which improves system performance by reducing system-bus
traffic. The L2-cache controller includes 8196 tag entries,
which support 256 kbytes, 512 kbytes, or 1 Mbyte of exter-
nal, two-way, set-associative, unified L2 cache. The L2 cache
uses standard, commodity SRAMs. The nonblocking L2 cache
supports hit-under-miss mode and can simultaneously ser-
vice as many as four requests. The L2-cache bus can operate
at various speeds relative to the processor frequency.

The PowerPC 604e contains seven independent execution
units: two single-cycle integer units, a multiple-cycle integer
unit, a branch-processing unit, an LSU, an FPU, and a condi-
tion-register unit. Instructions execute out of order, and exe-
cution results can be immediately available to subsequent
instructions through the use of rename registers. The com-
pletion unit commits, or “retires,” results to floating-point or
general-purpose registers. The unit retires as many as four
instructions per clock cycle in order, ensuring a precise excep-
tion model.

The PowerPC 604e mP uses dynamic branch prediction to
improve the accuracy of instruction prefetching. This feature
and the ability to speculatively execute through two unre-
solved branches minimize pipeline stalls. The 604e has sepa-
rate 32-kbyte, four-way, set-associative instruction and data
caches, both of which provide byte-level parity checking.

IBM/Motorola PowerPC

SYSTEM-REGISTER
UNIT

BRANCH-PROCESSING
UNIT

INSTRUCTION
UNIT

INTEGER
UNIT

INTEGER
UNIT

LOAD/STORE
UNIT

FLOATING-POINT
UNIT

DATA CACHE

MMU

MMU

INSTRUCTION CACHE

BUS-INTERFACE UNIT

SYSTEM BUS

L2 CONTROL/TAGS

L2 CACHE

64-BYTE
DATA

64-BYTE
DATA

17-BYTE
ADDRESS

32-BYTE
ADDRESS

MPC750 ONLY

132 b EDN SEPTEMBER 24, 1998

(continued on pg 142)



EDN SEPTEMBER 24, 1998 b 143142 b EDN SEPTEMBER 24, 1998

The 604e and 750 have separate memory-management
units (MMUs) for instructions and data. The MMUs support
as many as 4 petabytes of virtual memory and 4 Gbytes of
physical memory. Access privileges and memory protection
are controlled on 128-kbyte to 256-Mbyte blocks and 4-kbyte
pages. Translation-look-aside buffers (TLBs) with 128 entries
efficiently translate addresses by storing the most recently
used page translations.

The 604e and 750 support 64-bit data and 32-bit address
buses. The interface protocol allows multiple masters to
access system resources through a central arbiter. The Power-
PC 604e works in multiprocessor systems and snooping tasks
and requires no additional bus cycles. The 604e’s on-chip
snooping logic maintains cache coherency in multiprocessor
systems. The 750 supports snooping but is optimized for
uniprocessor systems. It supports no data sharing among
caches in different processors. The buses on the 604e and 750
are compatible electrically and in the protocol they use. A
common chip set supports both processors.

The 603e comprises five parallel execution units: integer
execution, floating point, branch, system, and load/store.
With a four-stage pipeline—fetch, dispatch, execute, and
complete—the 603 can achieve three instructions per clock
cycle. During the fetch stage, the 603 uses a six-instruction
prefetch queue to hold pending instructions. Unlike other
PowerPC derivatives, the 603 supports only static branch pre-

diction. However, the architecture supports out-of-order exe-
cution and in-order retirement, similar to other PowerPC
devices.

The embedded PowerPC processors include IBM’s 400
series and Motorola’s MPC500 and MCP800 families and
devices. Compared with other PowerPC devices, these
devices have similar—but fewer—execution units. IBM’s
403Gx embedded controllers have a five-stage pipeline and
can dispatch as many as two instructions per cycle. These
devices implement static branch prediction and branch fold-
ing and have a four-instruction prefetch queue. Integrated
caches of varying sizes are two-way set-associative and are
implemented as fetch-through instruction caches and write-
back data caches. (The 403GCX data cache does not provide
write-through operation.) The 403Gx processors do not pro-
vide hardware support for maintaining cache coherency dur-
ing DMA and external bus-master operations or in a multi-
processor configuration.

The PowerPC 403GC and 403GCX include an MMU fea-
turing a fully associative TLB. Each entry provides translation
for a memory page, which can be one of several sizes for effi-
cient system-memory use. Memory components attach
directly to the 403 devices with a programmable-memory
interface on the processor’s bus-interface unit. The DRAM
controller includes the address multiplexer, eliminating the
need for an external address multiplexer. The DRAM con-

CIRCLE NO. 15

troller supports external bus masters. You can use software
programming to tune the timing for the interface control sig-
nals.

The PowerPC 401GF implements a three-stage pipeline
and supports hardware multiply and divide and unaligned
loads and stores. The CPU uses operand forwarding and sta-
tic branch prediction to increase performance. The 401GF’s
cache controllers implement critical data forwarding, fill-
first handling of cache misses, and nonblocking flush oper-
ations.

Motorola’s MPC500 and MPC800 families, although tar-
geting different applications, have the same basic CPU archi-
tecture. (However, the new MPC8260 PowerQUICC II is an
upgrade of the MPC860 and contains a PowerPC EC603e
core.) Both families integrate a fixed-point unit (FXU), an
LSU, two register files, and a sequencer unit; the MPC500
family also adds an FPU. The FPU includes single- and dou-
ble-precision multiply-add instructions. The sequencer unit
contains a branch processor featuring static branch predic-
tion and branch-folding capability during execution (zero-
cycle branch execution time) and runtime reordering of loads
and stores.

The MPC500 and MPC800 devices use an InterModule
Bus, developed for Motorola’s 683xx devices, as a backplane
to connect all system modules. Both families include a sys-
tem-integration unit (SIU) that enables simple integration

with external memories, other CPUs, and peripherals. The
SIU for the MPC505 and MPC509 differs from the one in the
800 family devices and in the MPC555. The 505 and 509 SIUs
have separate data and instruction buses; the 800 and 555
devices combine these buses outside the SIU. The 800 family
has both instruction and data caches and an MMU. The
caches are two-way set-associative and feature lockability on
a line.
Special instructions: Motorola has expanded the PowerPC
architecture with its AltiVec technology—162 new instruc-
tions along with a 128-bit vector-execution unit that per-
forms single-instruction multiple-data operations concur-
rently with the integer units and FPUs. AltiVec supports
16-way parallelism for 8-bit integers and characters, eight-
way parallelism for 16-bit integers, and four-way parallelism
for 32-bit integers and IEEE floating-point numbers. AltiVec
also includes a separate register file with 32 128-bit-wide reg-
isters.
Development tools: The PowerPC families have a large
third-party tool-supplier base. IBM also offers development
tools for all its PowerPC embedded processors. These tools
include a C/C++ compiler; a RISCWatch debugger with in-cir-
cuit emulation; a ROM monitor; RTOS-aware debugging; and
real-time, noninvasive trace capability.
Second sources: Mitsubishi is a second source for IBM’s
embedded PowerPC mPs.

IBM/Motorola PowerPC (continued) IBM/Motorola PowerPC (continued)



EDN SEPTEMBER 24, 1998 b 145144 b EDN SEPTEMBER 24, 1998

The range of i960s runs from
the new superscalar
HA/HD/HT to the 16-bit SA/SB
variants, including low-power
versions of the i960 Jx series
that operate at 3.3V. The i960
combines a von Neumann
architecture with a load/store
architecture that centers on a
core of 32 32-bit general-pur-
pose registers comprising 16
local and 16 global registers.
An on-chip register cache
automatically caches the local
register sets to speed context
switching. If the cache is full,
the oldest cached set moves to
memory, and the latest set
caches. All i960s have multi-
stage pipelines and use re-
source “scoreboarding” to
track resource usage.

The i960CA provides super-
scalar operation and five pipe-
line stages. The key to the Cx is
its four-instruction-wide in-
struction decoder, which decodes as many as four instruc-
tions per cycle. Current implementations dispatch as many
as three of these instructions for execution. The i960CF has
128-bit-wide buses to move instructions to the decoder and
128-bit-wide buses to move data between the cache and reg-
isters.

Intel built the superscalar i960s around a six-port register
file with register or memory-control execution units. These
units include an integer unit, a floating-point unit, and an
interrupt-control unit on the register side and address-gener-
ation and bus-controller units on the memory side. The i960s
can cache instructions in a lockable cache; later versions add
an instruction cache to supplement the register cache.

Intel based the i960Rx series I/O processors on the i960 Jx
series processor core. The i960Rx processors target server-
motherboard and adapter-card applications, in which the
processors create an “intelligent” I/O subsystem. Intel and
others have developed an intelligent I/O (I2O) specification
to speed I/O processing and simplify driver development.
Special instructions: The i960 family has uninterruptible
atomic add and modify instructions. Other instructions flush
local registers and provide cache-locking control.
Development tools: More than 70 vendors support the i960
with a robust tool suite. These vendors offer a range of com-
pilers, emulators, evaluation boards, debugging monitors,
and real-time operating systems for the i960 family.

MIPS (www.mips.com) built the MIPS R3000 processors
around a set of 32-bit, general-purpose registers in a central
register file. To minimize control logic and improve speed,
the instruction set has only 73 instructions, and addressing
options are few. The chip has a three-address load/store archi-
tecture. Similarly, instructions are one 32-bit word to mini-
mize decoding and speed processing. To reduce code size,
MIPS and LSI Logic codesigned the MIPS16 application-spe-
cific extension. MIPS16 comprises new 16-bit instructions
with a corresponding decoding block that the MIPS mP core
integrates. Although most applications still need to run 32-
bit code (MIPS16 supports a mixture of 32- and 16-bit code),
MIPS claims that MIPS16 provides an overall memory savings

as large as 40%. LSI Logic, with its TinyRISC TR4101, is the
first MIPS licensee to implement the MIPS16 instruction
extensions.

MIPS engineers implemented a five-stage pipeline: instruc-
tion fetch, read operand and decode instruction, execute,
access data memory, and write back results for the R3000. The
pipeline lets as many as five instructions execute concurrent-
ly—each at a different stage of its instruction cycle. A branch-
delay slot minimizes branch effects. The compiler fills the
instruction slot, following the branch with a no-operation
instruction or an instruction from the current thread that can
execute before the branch takes effect. Toshiba’s R3900 and
Integrated Device Technology’s (IDT) RISCore32300, R3000

Intel i960

MIPS R3000

PRIMARY
ADDRESS-

TRANSLATION
UNIT

TWO-CHANNEL
DMA

CONTROLLER

MESSAGING
UNIT

SECONDARY
ADDRESS-

TRANSLATION
UNIT

ONE-CHANNEL
DMA

CONTROLLER

PCI-TO-PCI
BRIDGE

PRIMARY INTERNAL-
PCI ARBITER

SECONDARY INTERNAL-
PCI ARBITER

I/O
APIC

INTER-
FACE

I2C
INTERFACE

MEMORY
CON-

TROLLER

INTERNAL
LOCAL-

BUS
ARBITER

SECONDARY
PCI-

ARBITRATION
UNIT

80960 LOCAL BUS
80960 JF

PROCESSOR 
CORE

INTERRUPT
ROUTING

P_INTA-D#

SIX REQUEST/
GRANT PAIRS

D
E

M
A

N
D

-M
O

D
E

 D
M

A
 C

O
N

T
R

O
L

T
H

R
E

E
-P

IN
 A

P
IC

 B
U

S

T
W

O
-P

IN
 I2

C
 B

U
S

M
A

[1
1:

0]
+

C
O

N
T

R
O

L

80
96

0 
LO

C
A

L 
B

U
S

 A
N

D
 C

O
N

T
R

O
L

N
IN

E
 E

X
T

E
R

N
A

L 
IN

T
E

R
R

U
P

T
S

SECONDARY PCI BUSPRIMARY PCI BUSP
R

IM
A

R
Y

 P
C

I B
U

S

S
E

C
O

N
D

A
R

Y
 P

C
I B

U
S

derivatives, incorporate register “scoreboarding” to enable
nonblocking loads and avoid pipeline stalls when there are
no data dependencies in subsequent instructions. This fea-
ture has a significant benefit in communications applica-
tions: It allows programmers to hide main-memory latencies
during routing or packet processing. On IDT’s 32300, you can
also use the nonblocking load for cache prefetch and for per-
forming DMA transfers without performing invalidates and
write-backs. IDT implemented this feature as a new hint,
called “ignore hint.” This feature helps you get around the
MIPS instruction-set architecture’s lack of “move-multiple”
operations. The 32300 also supports a mechanism to mini-
mize pipeline stalls; in the event of a cache miss, the first
entering word goes directly to the pipeline.

To improve the multiply and divide performance of the
standard R3000, IDT built in a dedicated integer multiply/
divide unit. In the MIPS instruction-set architecture, multi-
ply and divide use special destination registers, permitting
only one multiply at a time. IDT enhances this capability
with a three-operand multiply, whereby the operand results
go directly to a general register. This feature supports DSP
capability and performs atomic multiply adds and multiply
subtracts. It also implements count-leading ones and zeros
operations. The multiply-add throughput is one cycle faster
than the data latency, so if you use two distinct operands, the
operation becomes load-bound. Whereas the general MIPS
mechanism supports reset, cache/parity error, user transla-
tion-look-aside-buffer (TLB) miss, and general interrupts,
IDT’s 32300 lets you define separate interrupts to support
software compatibility with your legacy code.

The standard R3000 memory-management unit includes a
fully associative, 64-entry TLB that translates virtual address-
es to 32-bit physical addresses. (Note: Not all R3000 deriva-
tives contain the TLB.) The mP uses a write-through cache pol-
icy. A small on-chip FIFO buffer enables the CPU to perform
instruction “streaming”—refilling the cache and executing
instructions even while reading additional instructions from
memory.
Special instructions: The R3000 implements the MIPS-I
instruction set. IDT’s 32300 uses the MIPS II instruction-set
architecture but includes some MIPS-IV functions. It imple-
ments those MIPS-IV instructions, such as prefetch opera-
tions and conditional moves, that are independent of
operand size. The 32300 also supports both big- and little-
endian data types. Several of the MIPS derivatives add a mul-
tiply-accumulate (MAC) instruction. LSI is the first MIPS
licensee to implement MIPS16 instruction extensions on the
TinyRISC TR4101. Toshiba’s TX19 also uses the MIPS16
instruction extensions. (See R4xxx, pg 169, for more details.)
Special on-chip peripherals: Philips offers the TwoChipPIC,
which combines the UCB1200 that interfaces with the com-
pany’s PR31700 MIPS mP. The TwoChipPIC provides a
microsystem on a chip for handheld devices. Integrated mod-
ules include a MAC unit, an LCD controller, an infrared con-
troller, PCMCIA-card support, touchscreen control, and
audio in/out. Toshiba’s peripherals include a graphics con-
troller, a PCI controller, and support for Microsoft’s
(www.microsoft.com)Windows CE.
Development tools: A range of third-party development
tools is available for the MIPS RISC architecture. Detailed
information is available in the MIPS RISC Resource Catalog
from MIPS Technologies Inc or at www.mips.com. Philips
supplies the hardware-abstraction layer, device drivers, a ref-
erence design, and a development board for Windows CE
implementation on the TwoChipPIC. Microsoft’s Visual C++

tool chain supports TwoChipPIC development.
LSI Logic offers evaluation boards and kits for its line of

TinyRISC and MiniRISC mPs and cores. For example, the com-
pany’s BDMR4101 evaluation board uses an 81-MHz TR4101
CPU core and features 1 Mbyte of SRAM and an 8-Mbyte
plug-in DRAM single-inline-memory module, 512 kbytes of
flash, a full-duplex serial port, SCN2681 dual UART with dual
RS-232C ports, the DP83934 Sonic Ethernet controller with a
10BaseT interface, and the SerialICE debugging monitor and
software in EPROM. It supports both PC and Unix host envi-
ronments. LSI offers a number of tools, including the Mini-
SIM and TinySIM architectural simulators for system-on-chip
embedded applications, as well as a system-verification envi-
ronment for silicon-design verification. LSI Logic also pro-
vides application-specific evaluation boards, such as the Inte-
gra for set-top-box development and the ATMIzer II for
communication-product development.

IDT’s 33-MHz 79S381 evaluation board allows you to eval-
uate the 3041, 3052, and 3081 mPs. The board features 2
Mbytes of interleaved DRAM, expandable to 16 Mbytes; 256
kbytes of zero-wait-state SRAM; 512 kbytes of EPROM,
expandable to 2 Mbytes; and a 1024-bit serial EEPROM. The
company provides the 79S361 evaluation platform for the
79R36100. This board has 1 Mbyte of noninterleaved, zero-
wait-state DRAM, expandable to 64 Mbytes. It also contains
2 Mbytes of EPROM and a slot for 1 Mbyte of zero-wait-state
SRAM.

IDT offers its kernel-integration tool that includes source-
and object-code versions of common routines for CPU
design. The company also offers a system-integration moni-
tor that is a ROMable debugging kernel. The monitor
includes IDT’s micromonitor, which requires only a UART
and ROM to perform the initial debugging and integration of
new hardware. IDT/C is an ANSI C-compliant Gnu compiler,
assembler, linker, and librarian. It includes start-up code,
cache, and exception routines.

Toshiba offers evaluation boards for its TX39 products.
These boards feature support for serial, SCSI-II, Ethernet, or
VMEbus interfaces. Wind River’s (www.windriver.com)
VxWorks and Tornado RTOS support these boards. Toshiba
also offers the TMPR3912 and TMPR3922 reference develop-
ment systems that support the Microsoft Window CE oper-
ating system.
Second sources: MIPS licenses the R3xxx processors to IDT,
LSI Logic, NKK, Philips, and Toshiba.

LOCAL
CONTROL

LOGIC

PROGRAM-COUNTER
INCREMENTER/MULTIPLEXER

32332-BIT
GENERAL REGISTERS

ALU

SHIFTER

MULTIPLIER/DIVIDER

ADDRESS ADDER

EXCEPTION/CONTROL
REGISTERS

MMU REGISTERS

64-ENTRY, 
SOFTWARE- 

MANAGED TLB

MASTER PIPELINE/BUS CONTROL

CONTROL CPUCP0
(SYSTEM-CONTROL

COPROCESSOR)

ASID=6 BITS
PPN=20 BITS ADDRESS (OFFSET=12 BITS)

DATA (32+4 BITS)PHYSICAL ADDRESS

VIRTUAL-PAGE NUMBER/
VIRTUAL ADDRESS



higher. For starters, the V3 core
includes multiple clock domains
that allow it to operate at a higher
frequency than the remainder of
the mP. V3’s IFP includes two addi-
tional stages to help pipeline the
address-generation and instruc-
tion-fetch phases. One of the addi-
tional stages is an instruction early
decode to help reduce decoding
time. This concept, borrowed from
the 68060, includes some branch-
acceleration techniques. For exam-
ple, the early-decode mechanism
considers that backward branches
are taken. By default, the mecha-
nism considers forward branches
taken, but a condition-code register
bit allows you to set up forward
branches to be not taken.

In the V2 implementation, the
instruction buffer comprises a
three-long-word-entry FIFO buffer.
The V3 implementation holds
three complete instructions,
regardless of length. This instruc-
tion buffer essentially converts
variable- into fixed-length instruc-
tions.

A modular, standard bus archi-
tecture separates the CPU core from on-chip peripherals. The
core communicates with on-chip memories using the tight-
ly coupled Kbus processor. This bus lets the core perform a
32-bit fetch from internal memory in one clock cycle by
pipelining the address and data. A controller interface on the
Kbus indirectly attaches the core to user-selectable cache,
ROM, and RAM modules. V3 uses a two-stage, but pipelined,
Kbus that adds one cycle to most operand-read accesses; how-
ever, the increased operating frequency offsets the extra
cycle. Another bus, the Mbus (master bus), offers centralized
arbitration. A special module connects the Mbus to the Kbus.
The Sbus (slave bus) interfaces to standard on- and off-chip
peripherals and attaches to the Mbus through a system-bus
controller.

On-chip debugging supports real-time trace; real-time and
non-real-time debugging; and access to control registers to
define types of memory regions, such as cacheable copy-back,
write-through, and noncacheable. Real-time trace reflects the
processor’s status and indicates events such as instruction
completion and monitoring change-of-flow target addresses.
Real-time debugging supports program-counter-relative,
operand-address, operand-data, and non-real-time-debug-
ging hardware breakpoints. Non-real-time debugging is sim-
ilar to background-debugging mode on current 683xx prod-
ucts. You can use a three-pin serial interface in this mode to
read register contents, generate an infinite-priority interrupt,
and force the CPU to halt.
Power management: A low-power-stop (LPSTOP) instruc-
tion shuts down active circuits in the processor and halts
instruction execution. Processing resumes via a reset or valid
interrupt.

Special instructions: ColdFire added 32332-bit integer-
multiply, register-sign-extension, and multiword nonopera-
tion instructions to the 68000 architecture. Compilers use
nonoperation instructions to remove branch instructions.
Special on-chip peripherals: The MCF5200M processor,
which Motorola designed with its FlexCore methodology,
integrates the ColdFire core, debugging module, and mis-
alignment module with a multiply-accumulate (MAC) unit
supporting 16- and 32-bit operations. The MCF5202 supports
a 32-bit multiplexed bus with dynamic bus sizing that allows
access to 8-, 16-, or 32-bit memory and peripherals. It also has
a debugging module that provides serial control and visibili-
ty of the processor and memory system. Motorola offers the
ColdFire2 and ColdFire2M in the FlexCore library for cus-
tomer design. Both devices integrate the ColdFire core with
a debugging module; a misalignment module; and memory
controllers that support as much as 32 kbytes each of RAM,
ROM, and instruction cache. The ColdFire2M also incorpo-
rates the MAC unit.
Development tools: Third-party tools for the ColdFire fam-
ily include in-circuit emulators from Embedded Support
Tools (www.estc.com), Lauterbach (www.lauterbach.com),
Microtec International (www.microtec.com), Noral Micro-
logics (www.noral.com), and Orion (www.yokogawa.com).
Cygnus (www.cygnus.com), Diab Data (www.diabdata.com),
and Software Development Systems (www.sds.com) offer C
compilers. Wind River (www.windriver.com), Integrated Sys-
tems Inc (www.isi.com), Embedded System Products
(www.esphou.com) offer ColdFire RTOS products. Hewlett-
Packard (www.hp.com) offers preprocessor support.
Second sources: There are no second sources for ColdFire.

EDN SEPTEMBER 24, 1998 b 147146 b EDN SEPTEMBER 24, 1998

The Mitsubishi M32Rx/D contains a 32-bit RISC CPU; as
much as 4 Mbytes of on-chip DRAM, which Mitsubishi calls
“eRAM”; a 32316-bit multiply-accumulate (MAC) unit; and
a bus-interface unit (BIU). A 128-bit, 66-MHz internal bus
connects the CPU, DRAM, cache, and BIU. The M32Rx/D’s
circuitry automatically refreshes the internal DRAM.

The M32Rx/D family comprises the M32R/D and the new
superscalar M32Rx/D architectures. Both architectures are
instruction-set-compatible and comprise a combination of
16- and 32-bit-wide instruction formats with six addressing
modes. The devices include 16 32-bit, general-purpose regis-
ters and two 56-bit accumulators.

The M32R/D CPU executes most instructions in one clock
cycle, using an instruction-fetch, decode, execute, memory-
access, and write-back pipeline. The decode stage dispatches
instructions in order, and the remaining stages execute them
out of order to hide memory-access latency. The MAC unit
contains a single-cycle, 32316-bit multiplier and a 56-bit
adder.

The M32Rx/D contains a dual-issue, six-stage pipeline and
performs out-of-order execution; it can execute two 16-bit
instructions in parallel. The pipelines are asymmetrical, and
instructions have to align properly to keep the pipes full. For
example, both pipelines can execute arithmetic and logical
operations, but only Pipeline 1 can execute load/store and
jump/branch instructions. Additionally, only Pipeline 2 can
execute MAC instructions.

Both CPUs have an instruction queue of two 128-bit
entries. The cache maps directly to the address space and has
caching modes for internal instruction and data, for internal
and external instructions, and for cache off. If a cache miss
occurs, the CPU fetches one 128-bit data line in five cycles.
The BIU has 128-bit data buffers and supports burst transfers
on 128-bit boundary data.

A 16.67-MHz bus clock and four digital PLLs generate the
internal 66-MHz clock. The PLL contains a digital frequency
multiplier. Four cascaded, 64-tap inverter chains generate
four timing edges in one-half of a clock cycle. A phase detec-
tor and an up/down counter adjust the pulse width to one-
fourth of the one-half clock cycle to keep the duty cycle of

the four-times clock at 50%. The generated clock then feeds
into a digital phase shifter to reduce the phase difference
between the external and internal clocks to 400 psec.
Power management: The M32Rx/D supports sleep and
standby modes, during which the average power consump-
tion is 170 and 2 mW for the two modes, respectively, for the
2-Mbyte version. In the sleep mode, the CPU and caches stop;
in standby mode, only the DRAM is clocked.
Special instructions: The M32Rx/D supports MACs of
32316 and 16316 bits. It also performs data rounding in the
accumulator and block moves. The M32R/D and M32Rx/D
support 83 and 95 instructions, respectively. The M32Rx/D’s
additional instructions include five DSP-function instruc-
tions for MAC and rounding operations.
Special off-chip peripherals: Mitsubishi’s M65439FP
peripheral-function “super-I/O” chip performs such func-
tions as M32000D bus control, DRAM control supporting two
banks and page-mode burst transfers, and chip-select control
for as many as five 64-kbyte to 4-Mbyte blocks with one to
eight wait states. The peripheral I/O ASIC also contains a two-
channel DMA controller that can transfer as much as 2
Mbytes using cycle-steal, single-transfer, continuous-burst-
transfer mode or cycle-steal, continuous-transfer mode. An
interrupt controller handles 20 sources with priority resolu-
tion for as many as seven levels. Other functions of the
M65439FP include timers, a two-channel UART, and a two-
slot IC-card controller. The device sells for $8 (10,000).
Development tools: Cygnus (www.cygnus.com) supplies C
and C++ compilers and debuggers for the M32Rx/D. Mit-
subishi also supplies a C compiler and debugger, an evalua-
tion board, and an in-circuit emulator. Wind River
(www.windriver.com) supplies the Tornado development
environment, which includes the VxWorks RTOS. Integrated
Systems (www.isi.com) supplies the Prism+ development
environment, which includes the pSOS RTOS, Diab Data’s
(www.diabdata.com) C compiler and Light Source debugger.
Second sources: There are no second sources for the M32R/D
or M32Rx/D.

See EDN Web-site version, www.ednmag.com, for block
diagram.

Motorola’s ColdFire, or VL-RISC (variable-length RISC),
architecture evolved from the M68000. VL instructions help
to attain higher code density. Also, the ColdFire architecture
eliminates M68000 instructions, which embedded applica-
tions rarely use, and optimizes the pipeline. As a result, it has
fewer transistors—approximately 55,000—than the M68000.
ColdFire continues to use the M68000 programmer’s model.

Motorola designed three versions of ColdFire. The first ver-
sion was relatively short-lived. The version 2 and 3 architec-

tures comprise two decoupled subpipelines: an instruction-
fetch pipeline (IFP) and an operand-execution pipeline
(OEP). An instruction buffer separates the two pipelines and
minimizes pipeline stalls. Motorola’s design goals for V2
included making the core as small as possible. Hence, V2’s IFP
is a simple two-stage pipeline: instruction-address generation
and instruction fetch.

Design goals for V3 were to stretch the pipeline to allow
the device to operate at clock frequencies of 90 MHz and

Mitsubishi M32Rx/D

Motorola ColdFire

SYSTEM-
BUS

CONTROLLER

JTAG

CONTROL

ADDRESS/DATA

EXTERNAL
BUS

COLDFIRE
PROCESSOR

CORE

INSTRUCTION-
FETCH PIPELINE

OPERAND-
EXECUTION

PIPELINE

INSTRUCTION
BUFFER

DEBUG

KBUS
MBUSCONTROL

CONTROL

CACHE

CONTROL
LOGIC

DIREC-
TORY

ARRAY

DATA
ARRAY

DATA-
PATH

ADDRESS PATH

DATA

DATA

ADDRESS

ADDRESS

Motorola ColdFire (continued)



EDN SEPTEMBER 24, 1998 b 153148 b EDN SEPTEMBER 24, 1998

MCore uses a four-stage pipeline to execute two-thirds of its
95 basic instructions in one clock. Similar to Hitachi’s 32-bit
SuperH architecture, MCore uses 16-bit, fixed-length instruc-
tions and a register file with 16 general-purpose registers and
an alternative register file for context switches. Unlike
SuperH, which shadows only eight of its general-purpose reg-
isters, MCore shadows all 16. MCore implements only 86%
of its operation-code space, allowing some instruction head
room for future generations. The 16-bit instruction size forces
MCore to use two operand instructions—4 bits per register.
Motorola claims that the lack of three operand instructions
causes a 2 to 7% code bloat in key applications.

The architecture supports 8-, 16-, and 32-bit data types,
although misaligned data accesses force a misaligned data
exception. You can mask the misaligned data exception using
a control bit in the process-status register. Although you can’t
access MCore’s registers as bytes and words, instructions can
sign-extend non-32-bit data types. A barrel shifter shifts as
many as 32 bits in one cycle. The architecture also contains
a find-first-one unit and result-feed-forward hardware. The
feed-forward hardware allows a subsequent operation to use
a result while the CPU writes the result back into the register
file. The first version of the MCore architecture offers limited
support for hardware multiply and divide; it uses a 2-bit per
clock, overlapped-scan, modified Booth algorithm with
early-out capability to reduce execution time for operations
with small multipliers.

MCore contains a 32-channel interrupt controller. The

processor can take in an asynchronous interrupt and get to
the first instruction of an interrupt-service routine in six
clocks. The CPU determines interrupt prioritization through
software, and you can use the find-first-one instruction to
scan for the highest priority interrupt and use the resulting
value as an offset into a jump table. An interrupt-control bit
in the program-status register allows an event to interrupt
multicycle instructions, such as the load/store multiple-reg-
ister instructions. For applications that are less real-time-crit-
ical, you can set this bit to prevent the interrupts from break-
ing into instructions.

MCore’s hardware-accelerator interface supports a variety
of application-specific functions. You can use one of several
interface mechanisms. For example, a register-snooping
mechanism reflects updates of MCore’s registers across the
interface without explicit passing of parameters from the core
to the hardware accelerator.
Power management: Besides a 16-bit external interface to
minimize power consumption, MCore also implements three
software-controlled low-power modes and controls func-
tional-unit clocking. The core runs as low as 1V, although the
first products operate from 1.8 to 3.3V.
Development tools: To support the development tools for
MCore, Motorola has established a validation center to ensure
that third-party vendors comply with the Motorola-defined
Application Binary Interface (ABI). ABI ensures that MCore
tools will work together in a development environment.

The 68EC000, a base for the 680x0 and 683xx lines of 32-bit
mPs, mixes 16- and 32-bit architectures. It has 32-bit registers
for easy addressing, a 16-bit datapath and ALU to conserve
silicon, and 16-bit instructions. Programmers get eight gen-
eral-purpose, 32-bit data registers, which the CPU can address
by bit, BCD, byte, word, or double word. In addition to user
and supervisor stack pointers, 68EC000 chips have seven
address registers. Other registers include the 32-bit program-
counter and 16-bit status registers. The status register main-
tains status for the user and supervisor modes with ser and
supervisor bytes. The 68EC000 implements user and super-
visor modes in hardware, which eases having a control ker-
nel or OS manage multiple application tasks.

The 68EC000 has microcode and second-level, expanded-
nanocode microcode levels. Instruction execution triggers a
chain of 10-bit microcode words. Each microcode word can
reference another word, such as a jump in microcode or a
string of 70-bit nanocode words that directly drive the CPU
logic.

The CPU lacks a memory controller, but the separate
address and data buses eliminate the need for buffering
addresses. However, the CPU needs logic to generate the
required DTACK* signal, which marks the successful com-
pletion of a memory cycle. An address decoder is necessary
for multiple memory chips, and drivers may be necessary to
buffer bus address and data lines. (Integrated versions of the
68EC000 contain this logic.) If DTACK* is late, the CPU gen-
erates wait states.
Power management: Only the integrated versions provide
variations of sleep and low-power-stop modes.
Special instructions: The chip restricts privileged instruc-
tions—reset, stop, moves, and operations on the status regis-
ter—to supervisor mode. To support user and supervisor
modes, the hardware implements separate stacks and pushes
and pops the program counter and status register onto the
stack for exceptions. A link instruction lets you build link lists
on private stacks. A special instruction lets you move as many
as 16 registers to or from an effective address, including
blocks of data registers to or from address registers.
Development tools: Green Hills Software (www.ghs.com)
provides C, C++, Fortran, Pascal, and Ada compilers for the
68K architectures. This company also provides its Multi soft-

ware-development environment for developing programs
from these languages and mixing them into a single exe-
cutable program in almost any combination. Hewlett-
Packard (www.hp.com) offers logic analyzers, oscilloscopes,
emulators/analyzers, software simulators, debugger/emula-
tor software, a real-time software-performance analyzer, C
compilers, assemblers, linkers, and a debugging utility for
RTOSs. Huntsville Microsystems (www.hmi.com) supplies
emulators, a $199 background-mode debugger (BMD), and
simulators for Motorola devices. The company offers its HMI-
200 Series and SPS-2000 Series emulators. Integrated Systems
(www.isi.com), Microtec (www.microtec.com), and Micro-
ware (www.microware.com) provide RTOSs and a variety of
other software tools to support hardware and software inte-
gration. Intermetrics (www.intermetrics.com) offers compil-
ers, assemblers, utilities, debuggers, and royalty-free real-time
kernels. Orion Instruments (www.yokogawa.com) offers in-
circuit emulators and high-level-language source debuggers
for Windows or Unix hosts. Software Development Systems
(www.sdsi.com) provides C and C++ compilers; assemblers;
simulators; debuggers for the target monitor, BDM, and JTAG;
and interactive development and debugging environments.
Wind River Systems (www.windriver.com) provides an RTOS,
networking facilities, and a set of cross-development tools.
Wind River also provides a diagnostic and analysis tool that
provides visibility into the dynamic operation of an embed-
ded system.
Second sources: Second sources of a few NMOS versions of
the 68000 are Hitachi, Philips, and Toshiba.

Motorola MCore

Motorola 68EC000

ADDRESS MULTIPLEXER

PC 
INCREMENT

BRANCH
ADDER

INSTRUCTION
PIPELINE

INSTRUCTION
DECODE

ADDRESS GENERATOR

32-BIT316
GENERAL-
PURPOSE

REGISTER FILE

32-BIT316
ALTERNATE

REGISTER FILE

32-BIT316
CONTROL-

REGISTER FILE

IMMEDIATE
MULTIPLEXER

SCALE

SIGN
EXTENSION

BARREL SHIFTER
MULTIPLIER

DIVIDER

MULTIPLEXER MULTIPLEXER

ADDER/LOGICAL
PRIORITY/ENCODER/

ZERO DETECT/RESULT
MULTIPLEXER

DATA
BUS

HARDWARE-
ACCELERATOR-

INTERFACE
BUS

DATA CALCULATION

ADDRESS
BUSY PORTX PORT

BUS
 CONTROL

INSTRUCTION
ADDRESS

OPERAND
 ADDRESS

PREFETCH/
DECODE

EXECUTE

INTEGER
UNIT

24

16/8
ADDRESS

DATA

Although MCore has limited tool support, the tools that are
available should handle most development needs. Diab Data
(www.diabdata.com) supplies a C/C++ compiler, and Motoro-
la offers a Gnu tool kit. Software Development Systems (SDS,
www. sdsi.com) supplies a simulation and debugging tool that
offers memory and peripheral simulation. Integrated Systems
Inc (www.isi.com) and Microtec (www. microtec.com) have
ported their pSOS+ and OS-9000 RTOSs, respectively, to the
MCore architecture. Hewlett-Packard (www.hp.com) offers a
hardware-based runtime controller that operates through the
on-chip emulation circuitry and MCore’s JTAG interface.

Motorola also offers the MCore V1 evaluation system (EVS)
that comprises a mC-memory board, an I/O-personality board,
and a test-interface board. These boards provide 512 kbytes of
fast static RAM (zero wait states at 20 MHz); 2 Mbytes of flash;
64 bits of general-purpose input or output; and peripherals,
including two controller-access-network interfaces, a queued
serial module, a queued ADC, and others; and logic-analyzer
connectors. The EVS also includes evaluation copies of the
SDS debugger and Diab Data compiler.
Second sources: Lucent Technologies (www.lucent.com) has
licensed the MCore technology.

(continued on pg 153)



EDN SEPTEMBER 24, 1998 b 155

Motorola built the 680x0 archi-
tecture around 16 general regis-
ters with a 68000-compatible,
orthogonal instruction set. The
680x0 has more registers than the
original 68000. Motorola added
the control registers to control the
memory-management unit
(MMU) and the floating-point
unit (FPU) and to support addi-
tional processing capabilities. For
example, the 68040 adds eight 80-
bit floating-point registers and 12
control registers.These registers
include a vector-base register,
points to an interrupt-vector
table; a cache-control register;
user and supervisor root pointers;
and translation registers.

The superscalar 68060 heads
the 680x0 line-up with its dual
integer and floating-point pipe-
lines. As instructions enter the
CPU, they flow into a four-stage
prefetch pipeline: instruction-
address generation, instruction
cycle, instruction early decode, and instruction buffer. In this
pipeline, the 680x0 converts 68000-compatible, variable-
length CISC instructions to a fixed-length instruction. These
instructions then enter dual, four-stage, synchronously oper-
ating, integer-execution pipelines. The decode, effective-
address-calculation, fetch, and integer-execution pipeline
dispatches instructions to the FPU and allows for some exe-
cution overlap between the integer and FPU engines.

A Harvard architecture allows the 68060 to perform simul-
taneous instruction fetches and data accesses. The four-way
set-associative, four-way-interleaving, on-chip caches sup-
port simultaneous read and write operations. You can freeze
portions of the caches to prevent reallocation.

The 68040 implements a fetch, decode, effective-address-
calculation, effective-address-fetch, execute, and write-back
pipeline. To speed processing, the device has two 4-kbyte
direct-mapped caches and separate data and instruction
MMUs, which allow simultaneous address translations. The
040 includes bus snooping to ensure cache coherency for
multiprocessing. The cache supports both write-through and
copy-back modes. The 68020 and 68030 CISC implementa-
tions have smaller caches; the 030 and 040 versions imple-
ment burst mode, moving as much as 16 bytes in an address-
ing block between registers and memory.

The 040 and 060 deliver apparent single-cycle execution
for some instructions, mainly register operations such as
memory-to-register moves if the data is in the data cache. A
taken branch takes two cycles; a not-taken branch takes
three cycles. On the 68060, a 256-entry, four-way, set-asso-
ciative, on-chip branch cache allows taken and nontaken
branches to execute in zero and one clock, respectively. The
branch-cache unit contains state bits that provide a history
of branch executions, which helps to predict branch direc-
tion.

Unlike the 020/030, the 040 and 060 perform no dynam-

ic bus sizing. Instead, they have a highly reliable bus with a
high-drive option that can implement a synchronous, two-
clock read/write protocol. A 4-word burst takes five clocks.
The 040 includes multiprocessor-bus arbitration but requires
off-chip logic. Externally, the 68060 bus is a superset of the
68040 bus. Additional signals support higher performance
system designs, but the processor can easily operate on a
68040-based bus. An on-chip MMU with separate instruction
and data translation-look-aside buffers allows the 68060 to
access as much as 4 Gbytes of memory.
Power management: To support power management, the
68060’s functional units respond to dynamically controlled
clocking; the caches and execution units power down when
not accessed. The static design allows you to reduce or stop
the external clock, and a low-power-stop (LPSTOP) instruc-
tion disconnects most of the chip from the clock pin.
Special instructions: The CPUs have special instructions for
variable-length bit fields; moving 16 registers; compare; and
swap, which locks memory for multiprocessing. A scaling
option addresses data by item size for table-access, FPU, and
MMU commands.

The 68040 and 68060 have a special move instruction
(MOVE16) to perform a 16-byte block move and a PLPA
instruction that loads a physical address by translating a log-
ical address. A table instruction performs a table look-up and
interpolates the data.
Special peripherals: The MC68150 allows the 68040,
LC040, and EC040 bus to communicate bidirectionally with
32-, 16-, or 8-bit peripherals and memories. The XC68HC901
multifunction peripheral comprises a one-channel USART
and an eight-source interrupt controller.
Development tools: The 680x0 shares many of the same
tools as the 68EC000.
Second sources: Toshiba acts as a second source for some ver-
sions of the 680x0.

Motorola 680x0

INSTRUCTION
ATC

INSTRUCTION
CACHE

INSTRUCTION-CACHE
CONTROLLER

INTEGER UNIT

INSTRUCTION
ADDRESS

DATA
ADDRESS

CONTROL

DATA
ATC

DATA
CACHE

DATA-CACHE
CONTROLLER

IA
GENERATE

INSTRUCTION
FETCH
EARLY

DECODE

BRANCH
CACHE

INSTRUCTION-FETCH CONTROLLER

INSTRUCTION BUFFER

INT EXECUTE

EA FETCH

EA
GENERATE

DECODE

INT EXECUTE

FLOATING-
POINT

EXECUTE
EA FETCH

EA FETCH EA
GENERATE

DECODEFPU

INSTRUCTION-EXECUTION CONTROLLER

DATA AVAILABLE
WRITE-BACK

OPERAND DATA BUS

B
U

S
 C

O
N

T
R

O
LL

E
R



156 b EDN SEPTEMBER 24, 1998

For most of the 683xx family, Motorola combined a stripped-
down 68020 core with a 16-bit (32-bit for CPU32+) on-chip
InterModule Bus, which links the CPU with a device’s com-
plex peripherals. The core processor, the CPU32 or CPU32+,
is a 68020 CPU for embedded control that lacks memory-
management-unit (MMU) or floating-point-unit (FPU) inter-
faces. The CPU32 and CPU32+ have 16- and 32-bit data
buses, respectively. The 32-bit processor has eight general-
purpose, 32-bit registers; seven 32-bit address registers; a 32-
bit ALU; and separate user and supervisor modes, each with
its own stack and separate address and data spaces. The
CPU32 is code-compatible with the 68020 but has enhanced
addressing modes, including scaled index; address-register
indirect with base displacement; and index, program-
counter-relative, and 32-bit branch displacements. Postin-
crement and preincrement/decrement options simplify iter-
ative code. The CPU accesses memory-mapped peripheral-
control registers and I/O as addresses in memory.

All 683xxs have a system-integration module featuring sys-
tem configuration, oscillator and clock dividers, reset and
power-down-mode control, chip selects and wait states, par-
allel I/O with interrupt capability, interrupt configuration/
response, and a software watchdog timer. The external-bus
interface has as many as 32 address and 16 data lines (32 for

CPU32+) and as many as 12 programmable chip-selection
lines. The single-chip Integration Module II allows users to
select 32-kHz or 4-MHz clock crystals.
Power management: A low-power-stop (LPSTOP) instruc-
tion stops the clock. Devices can run at low frequencies.
Special instructions: The 68020 does not support BCD-
pack/unpack, bit-field, compare-and-swap, coprocessor,
MMU, module-call/return, and memory-indirect-addressing
instructions. New instructions include a table look-up and
interpolate and the ability to put the chip into a low-power
standby mode.
Development tools: The 683xx leverages the extensive
development-tool support from the 68xxx architecture.
These tools include assemblers, compilers and debuggers,
RTOSs, emulators, and evaluation boards.
Second sources: There are no second sources for the 683xx.

Motorola 683xx



158 b EDN SEPTEMBER 24, 1998

NEC’s V800 Series mCs are available as cores
and standard products. All core versions
contain the same peripherals as those in
the standard devices. The company based
the V800, including the V830 and V850,
on a proprietary, 32-bit RISC architecture.
NEC designed the V830 for embedded mul-
timedia applications with external-memo-
ry support; the family provides on-chip
instruction and data caches with demulti-
plexed address and data buses. The V850 is
a mC with integrated RAM, ROM, and flash
options.

The V800 architecture comprises a five-
stage pipeline: fetch, decode, execute,
memory access, and write back; 32 general-
purpose registers; a 32-bit barrel shifter;
and a hardware multiplier. Most instruc-
tions execute in one clock and are 2 bytes
long, allowing smaller code. The CPU has a
pipeline-stall feature that automatically
inserts a bubble in the pipeline to avoid
data dependencies and hazards. Instruc-
tion and data accesses occur on separate
buses. Interrupt latency from an external
source or peripherals is a minimum of 11
CPU cycles.

A bus-control unit (BCU) generates a
prefetch address to prefetch an instruction code from exter-
nal memory and store it in the 4-double-word prefetch
queue. For accesses from internal ROM, instructions go
straight to the CPU; that is, not through the prefetch queue.
Instruction fetches from internal ROM consume one cycle;
data fetches from ROM require three cycles. Therefore, you
should shadow look-up tables and fixed data structures to the
CPU’s internal RAM, in which the V800 can access data in
one clock. The BCU also provides a bus-arbitration function,
allowing other devices, such as DMA, to share and take con-
trol of the V851’s external bus. Programmable wait- and idle-
state insertion control facilitates interfacing to slow memory.
Although most of the microcontrollers provide as much as 16
Mbytes (24 address bits) of linear addressing, the new V850E
also provides dynamic bus sizing. The maximum addressing
range of the V800 architecture is 4 Gbytes.

The V800 accesses peripherals as memory-mapped I/O that
connects to the CPU through a 16-bit bus. ROM and RAM
communicate to the CPU using a 32-bit bus. Although the
first member of this family, the V851, has 32 kbytes of ROM
and 1 kbyte of RAM, the V850 architecture allows internal
expansion to 1 Mbyte of ROM and 4 kbytes of RAM. Similar-
ly, the external bus of the V851 addresses as much as 16
Mbytes. (The architecture allows access to as much as 4
Gbytes on future chips.) The V850’s memory space divides
into 1-Mbyte unit blocks, and you can insert wait states in a
bus cycle for every two blocks.
Power management: In halt mode, the clock generator con-
tinues to operate, but the CPU clock stops, allowing the on-
chip peripherals to function. Idle mode stops the CPU clock
and internal-system clock; however, because the clock gen-
erator continues to run, normal operation can resume with-
out waiting for oscillator and PLL stabilization. In stop mode,

everything stops, but register and memory contents stay
intact.
Special instructions: NEC’s V800 devices support a software-
trap instruction. The CPUs also perform saturate operations
in which the devices store maximum values of additions that
result in overflow. For example, if the result exceeds the pos-
itive-value 7FFFFFFFh, the CPU stores 7FFFFFFFh in the result
registers and then sets the saturation flag. The V850E device
also provides single-cycle byte-swapping operations for endi-
an translation of data structures. Also, NEC includes single
instructions to assist in C procedure calls for pushing and
popping multiple registers. The net effect would be a decrease
of code in the prologue and epilogue sections in C and a
resulting speed increase.
Special on-chip peripherals: An on-chip DRAM controller,
synchronous flash controller, and DMA controllers are avail-
able in the latest devices.
Development tools: NEC, Green Hills Software (www.
ghs.com), and Cygnus Support (www.cygnus.com) offer C-
compiler tool chains for the V800. Accelerated Technology
(www.atinucleus.com), Green Hills Software, NEC, JMI Soft-
ware (www.jmi.com), and Wind River Systems (www.win-
driver.com) provide RTOSs. A host of stand-alone evaluation
boards, PC ISA-bus evaluation boards, and in-circuit emula-
tors is available from NEC and third-party vendors. NEC
works jointly with Synopsys (www.synopsys.com) and Men-
tor (www.mentor.com) to provide simulation tools for the
V800 Series embedded core/ASIC development. NEC’s Open-
CAD environment supports these tools and is compatible
with the standard device-development tools.
Second sources: There are no second sources for the V800,
but Lucent Technologies (www.lucent.com) licenses the
V850 as a core within its cell-based ASCI library.

NEC V800

BUS-
INTER-
FACE
UNIT

A1 TO A31

D0 TO D31

CS0 TO CS3

BE0 TO BE3

BH

ST0 TO ST3

BCYST

R/W

READY

SIZ16B

HLDRQ

HLDAK

ASEL

4-kBYTE
INSTRUCTION CACHE

4-kBYTE
INSTRUCTION RAM

4-kBYTE
DATA CACHE

4-kBYTE
DATA RAM

FOUR-STAGE
WRITE BUFFER

50/33 MHz

50/33 MHz

100 MHz CLOCK
CONTROLLER

V830 CPU CORE

BARREL SHIFTER

SYSTEM REGISTERS

32-BIT ADDER
WITH SUM-OF-PRO-
DUCTS FUNCTION

32 GENERAL-
PURPOSE 32-BIT

REGISTERS

INTERRUPT
CONTROLLER

BCLK CMODE

RESET

NMI
INT

INTV0 TO
INTV3

EDN SEPTEMBER 24, 1998 b 159

The Siemens Tricore architecture represents the industry’s
trend toward a blurring of the distinction between micro-
controllers and DSPs (see “Microprocessor and DSP tech-
nologies unite for embedded applications,” EDN, March 2,
1998, pg 73). This architecture’s functional units and its uni-
fied instruction set target microcontroller- and DSP-specific
functionality. Tricore is a superscalar core with two primary
four-stage pipelines; the first bit of every instruction identi-
fies which pipeline that instruction follows. One pipeline
does loops, loads, and address-generation arithmetic; the
other pipeline does all the math and branches. The execute
unit comprises a multiply-accumulate (MAC) module, an
ALU, and a tightly coupled coprocessor interface. A third
pipeline performs loop control for zero-overhead looping.
Tricore supports a mixture of 16- and 32-bit-wide instructions
to help conserve code space; each operation code includes a
size bit to improve the efficiency of instruction decoding.

Tricore implements a Harvard architecture with separate
address and data buses for program and data memories. Tri-
core is also a load/store architecture with 16 32-bit general-
purpose data registers and 16 32-bit address registers. You can
concatenate consecutive even-odd data registers to form
eight 64-bit registers for extended precision.

Unlike traditional DSPs, Tricore lacks separate X- and Y-
memory spaces, which may require you to perform some
loop unrolling to achieve the parallel performance of DSPs.
As long as data is available for Tricore’s execute unit. The
device can perform single-cycle MACs. The data side of the
core has a 128-bit-wide bus to on-chip DRAM, which you can
use to save two data and two address registers in one cycle to
the cache. Tricore supports circular buffers for DSP filters and

bit-reversed indexing for FFTs. You must align the start of the
circular buffer to a multiple of the data size, which the
instruction using the buffer prescribes. The length of the
buffer must also be a multiple of the data size the instruction
using the buffer references.
Special instructions: The instruction set supports operations
on Booleans, bit strings, characters, signed fractions, address-
es, signed and unsigned integers, single-instruction multiple-
data, and single-precision floating-point numbers. In addi-
tion to a plethora of microcontroller-oriented instructions,
such as bit manipulation, Tricore supports the traditional DSP
instructions, including multiply and MAC, saturate, scaling,
and rounding. Tricore also supports packed arithmetic. Con-
ditional add, subtract, and select instructions let the device
avoid using conditional jumps.
Development tools: Tasking (www.tasking.com) and Green
Hills Software (www.ghs.com) offer C- and C++-compiler,
debugger, simulator, and RTOS support for Tricore. Acceler-
ated Technology (www.atinucleus.com) also supplies a Tri-
core RTOS. Nohau (www.nohau.com), Ashling (www.
ashling.com), Hitex (www.hitex.de), and Lauterbach (www.
lauterbach.com) supply Tricore in-circuit emulators. Task-
ing’s instruction-accurate simulator allows you to analyze the
basic functionality of your program. Siemens also has a cycle-
accurate simulator that implements a flexible cache model
that provides options, such as defining start and end address-
es, the number of ways and cache lines, and the line size and
banks. This simulator also includes branch-prediction logic
and determines interrupt latency.
Second sources: There are no second sources for the Tricore.

Siemens Tricore

FETCH/ISSUE DECODE EXECUTE WRITE BACK

PC LODGE

BRANCH-
TAGET
CACHE

INSTRUCTION
CACHE

LOOP DETECTION COUNTER
UPDATE

COUNTER
WRITE
BACK

REGISTER
READ

DATA
REGISTER

ISSUE

ALU

BIT

MULTIPLEXER

MULTIPLEXER

MAC FOR
WARDING

ACCUMULATOR

ROUNDING

SATURATION

LOGIC

ADDRESS
WTITE

ADDRESS
EXECUTION

CACHE
ACCESS

EXECUTION-
ADDRESS

GENERATION

PIPE LINE 1

PIPE LINE 2



160 b EDN SEPTEMBER 24, 1998

Because of Intel’s patent on
the Slot 1 processor’s CPU
interface, the company is the
sole source of these proces-
sors, primarily characterized
by their dedicated backside
L2-cache bus. Separate buses
to main memory and L2
cache allow the CPU to access
the L2 cache at 200 MHz,
one-half the core-processor
speed. Slot 1 provides Intel’s
GTL+ bus protocol, which is
helpful in multiprocessor sys-
tems.

Intel’s Slot 1-compatible
Pentium II barely resembles
the Pentium or any other x86
processor. With a decoupled
12-stage pipeline, the Pen-
tium II trades less work per
pipe stage for more stages.
The Pentium II comprises
three independent engines:
fetch/decode, dispatch/exe-
cute, and retire. The fetch/
decode engine converts in-
structions into one or more
micro-operations (mops). The
mops improve performance
by representing fixed-length,
fixed-field, easy-to-execute
operations. You can individu-
ally schedule the mops, facili-
tating the Pentium II’s out-of-
order execution of in-
structions.

After the decoder creates
mops, it sends them to a 40-
mop-deep reorder buffer
(ROB). The mops then await
dispatch to the execution
portion of the pipeline. The
mops are then either ready for
execution or waiting for data from a memory access or a result
from a previous mop. To avoid register dependencies, the Pen-
tium II performs renaming: Extra registers represent the x86’s
programmer-visible registers. The dispatch/execute engine
queues ready-for-execution mops within a 20-entry, distrib-
uted-reservation station. The Pentium II determines the data
flow by analyzing which mops depend on each other’s results.
The processor dispatches mops from anywhere or in any order
within the reservation station.

The Pentium II speculatively executes and returns these
mops to the ROB, and the retire engine then evaluates them.
Although the Pentium II executes mops or instructions out of
order, the device completes the instructions in the original
program order. Furthermore, speculative execution implies
that the device executes some instructions that never retire.
This situation occurs if the device mispredicts a program
branch. When the Pentium II encounters a mispredicted

branch, it flushes its deep pipelines and removes mops from
the ROB. To minimize the possibility of a mispredicted
branch, Intel designers increased the branch target buffer to
512 entries and added history bits to help the prediction algo-
rithm.

The Pentium II, with the same multimedia-extension
instructions as Pentium, comes in a single-edge-contact car-
tridge with a 512-kbyte L2 cache. This year, Intel introduced
its Celeron and Pentium II Xeon processors. Celeron, which
comes in a single-edge processor package, is basically a cache-
less Pentium II and targets the less-than-$1000 PC market. At
the other extreme is Xeon, targeting the midrange to high-
end server and workstation market. Xeon is a Pentium II with
512 kbytes or 1 Mbyte of L2 cache. It comes in a Slot 2 mod-
ule—approximately twice the weight and height of a Slot 1
module—and supports four- or eight-way multiprocessing.

Slot 1 processors

MICROCODE-
INSTRUCTION
SEQUENCER

REGISTER
ALLOCATOR

REGISTER-
ALIAS
TABLE

BRANCH-
ADDRESS

CALCULATOR

BRANCH-
TARGET
BUFFER

INSTRUCTION-FETCH UNIT

INSTRUCTION
DECODER

INSTRUC-
TION-
FETCH-
CLUSTER

ADDRESS-
GENERATION

UNIT

INTEGER-
EXECUTION

UNIT

FLOATING-POINT-
EXECUTION

UNIT

MEMORY-
INTERFACE

UNIT

RESERVATION
STATION

REGISTER-RE-
ORDER BUFFER,

RETIREMENT-
REGISTER

FILE

EXTERNAL-
BUS

LOGIC

CACHE-
BUS

LOGIC

PAGE-
MISS

HANDLER

MEMORY-
ORDER
BUFFER

DATA
TLB

L2

DATA-
CONTROL

UNIT

EXE-
CUTION
CLUS-
TER

OUT-OF-ORDER
CLUSTER

CLUSTER

MEMORY

BUS
CLUSTER

EXTERNAL

BUS

ISSUE
CLUSTER



164 b EDN SEPTEMBER 24, 1998

Socket 7 processors, primarily characterized by a common
interface between the L2-cache bus and the main system bus,
are available from AMD, IBM, Integrated Device Technology
(IDT), Intel, Cyrix/National Semiconductor, and Rise Tech-
nology (www.rise.com). The common interface typically lim-
its the bus’s clock speed; however, some of these vendors
recently increased the bus speed from 66 to 100 MHz, effec-
tively boosting the bandwidth by 50%. One other way
around the bandwidth limitation is to put the L2 cache on
chip; AMD and IDT plan to take this approach this year.

Intel’s Pentium processor, the first Socket 7 processor,
emphasizes executing simple instructions before complex
ones. With Pentium, the simple, RISC-like register-to-register
instructions drive the implementation; the microcoded com-
plex instructions are second priority.

Pentium achieves a two-instruction issue peak and has two
five-stage pipelines (U and V) for each instruction. A com-

mon instruction fetch/align stage, which fetches multiple
instructions from the cache, feeds the U and V pipelines. The
CPU passes a full 256-bit line to the instruction decoder. Each
pipeline has two decoder stages to decode simple and com-
plex instructions. The wide cache-to-decoder path with two-
stage decoding enables Pentium to decode the x86’s variable-
length instructions.

Pentium includes 57 instructions to support multimedia
applications, such as image processing and audio synthesis.
More fundamentally, these multimedia-extension (MMX)
instructions benefit applications with vectorizable code.
Eight 64-bit MMX registers, MM0 to MM7, support these
instructions and data types; these registers are “aliased”—
physical silicon is the same but the registers’ names change—
with the floating-point registers. Register aliasing eliminates
additional silicon for new registers. It also eliminates the need
to modify the operating system or system BIOS, which must

Socket 7 processors

PREFETCH AND PREDECODE

BRANCH PREDICTION

INSTRUCTION
CACHE

LINEAR TAGS

BYTE QUEUE

FAST
PATH

M
CODE

FAST
PATH

M
CODE

FAST
PATH

M
CODE

FAST
PATH

M
CODE

ALU

RS

ALU

RS

FPU

RS

BRANCH

RS RS

DATA CACHE

LINEAR TAGS

LOAD
STORE

LOAD
STORE

FOUR PORTS

REORDER BUFFER

REGISTER FILE
(x86 GENERAL-PURPOSE
REGISTERS, FLOATING-

POINT REGISTERS)

EIGHT PORTS

FIVE PORTS

FOUR PORTS

EIGHT PORTS

MMU
(TLBs AND PHYSICAL TAGS)

BUS-INTERFACE UNIT

32 64

STORE
BUFFER

FETCH

DECODE

EXECUTE

TWO
PORTS

RESULT

RETIRE

NOTES:
FAST PATH=HARDWARE ROPs.
M CODE=MICROCODE ROPs.
RS=RESERVATION STATION.
PORT=41 BITS.
           =ADDRESS.
           =DATA.

EDN SEPTEMBER 24, 1998 b 165

track these registers. However, aliasing inhibits you from per-
forming routines that combine floating-point and MMX
instructions; switching from MMX instructions to floating-
point instructions can take as many as 50 clock cycles. Before
the CPU can execute a floating-point instruction, you must
use the empty-MMX-state instruction to set up the floating-
point registers.

For superscalar, dual-instruction, load/store operations,
the dual-ported Pentium data translation-look-aside buffer
(TLB) and cache tags provide concurrent pipeline accesses.
The eight-way-interleaved data-cache SRAM allows concur-
rent accesses to memory banks. (The cache is actually triple-
ported with an extra port for snooping.) Cache-hit rates range
from 90 to 97%, depending on the code mix. The data cache
handles both 4-kbyte and 4-Mbyte pages. It has two four-way,
set-associative TLBs, one with 64 entries for 4-kbyte pages and
one with eight entries for 4-Mbyte pages. The two-way, set-
associative code cache has a four-way, set-associative, 32-
entry TLB that handles both 4-kbyte and 4-Mbyte pages.

Dynamic branch prediction allows the CPU to determine
which branch to take. Pentium’s 256-entry branch-target
buffer (BTB) holds branch-target addresses for previously
executed branches. The BTB supplies the next instruction
address that the last execution of a branch instruction took.
Each BTB entry integrates the target address with history
and operation bits. Intel claims that a correctly predicted
branch takes one pipeline cycle and doesn’t cause a pipeline
bubble.

Pentium’s floating-point unit features an eight-stage
pipeline, which shares the first five stages of the U and V
pipelines. Data transfers to or from the FPU use a 64-bit-wide
datapath to the data cache. Pentium adds a write buffer to
each pipeline to avoid write contention.

Pentium uses burst reads to fill its 256-bit-wide cache line.
It also has burst write-back writes. The pipelined memory
interface allows a second bus cycle to set up while the first
bus cycle completes. Pentium reads or writes a 64-bit double
word each cycle in burst mode.

AMD’s K6-2 with MMX is a six-issue, superscalar mP with
a Socket 7-compatible bus interface that runs at 100 MHz. It
features a decoupled, decoding/executing, superscalar design
that can simultaneously decode multiple x86 instructions. It
also performs single-clock RISC operations, out-of-order exe-
cution, data forwarding, speculative execution, and register
renaming. The K6-2 processor, based on a six-stage pipeline,
contains parallel decoders, a centralized RISC86 operation
scheduler, and seven execution units.

Similar to the Pentium II, the K6-2 decodes x86 instruc-
tions into RISC86 operations that adhere to the RISC-per-
formance principles of fixed-length encoding, regularized
instruction fields, and a large register set. The K6-2 imple-
ments branch-prediction logic in the form of an 8192-entry
branch-history table, a branch-target cache, and a return-
address stack. In the K6-2, x86 instruction decoding begins
before the CPU fills the on-chip instruction cache. Predecod-
ing logic determines x86-instruction length on a byte-by-
byte basis. The K6-2 stores this predecode information, along
with x86 instructions, in the instruction cache for later use
by the decoders. The decoders translate as many as two x86
instructions per clock into RISC86 operations.

The scheduler contains the logic needed to manage out-of-

order execution, data forwarding, register renaming, simul-
taneous issuing and retirement of multiple RISC86 opera-
tions, and speculative execution. The scheduler’s RISC86
operation buffer can hold as many as 24 operations. The
scheduler can simultaneously issue a RISC86 operation to
any available execution unit (store, load, branch, integer,
integer/multimedia, or floating point). The scheduler can
issue as many as six and retire as many as four RISC86 oper-
ations per clock.

Unlike the K6-2 (or Pentium II), Cyrix/National’s MII
processor directly executes native x86 instructions, rather
than converting x86 instructions into RISC-like instructions.
The MII achieves a dual-x86 instruction issue/execute rate
using dual seven-stage pipelines. The CPU performs register
renaming, multilevel dynamic branch prediction, specula-
tive execution, and out-of-order completion. The MII has a
dual-ported, 64-kbyte cache and a dual-ported, 384-entry
TLB; both support two reads and two writes or one read and
one write on every cycle. The processor allows you to turn
individual cache lines into scratchpad RAM to provide sup-
port for multimedia operations. In addition, the MII fully
supports Intel’s MMX instruction set.

The instruction-fetch stage of the MII’s pipeline fetches 16
instruction bytes per cycle from the instruction cache and
feeds the instruction-decode stage. The instruction decoder
issues as many as two complex x86 instructions per cycle.
During decoding, the decoder examines the resource require-
ments of the two instructions and chooses the optimal
pipeline for each instruction. During these stages, the
decoder accesses the 512-entry BTB and the 1024-entry
branch-history table to avoid pipeline bubbles.

During the access stages of the pipeline, the CPU performs
scoreboard checks, renames registers, and accesses the phys-
ical register file. The MII also calculates one or two linear
addresses per cycle for all addressing modes and accesses the
translation-look-aside and cache. The ability to fetch as many
as two memory operands from the data cache before the
instruction-execution stage allows the MII to execute mem-
ory-reference instructions in one cycle.

Cyrix’s Media GX processor with MMX performs all stan-
dard north-bridge functions of a PC’s core logic. It also per-
forms the functions of the PC’s graphics controller, audio
chip set, memory controller, and CPU-to-PCI bridge. Rather
than using only transistors to perform these functions,
Cyrix developed its Virtual System Architecture (VSA). VSA
supports the graphics- and audio-hardware functions
through software. VSA uses the Media GX’s system-man-
agement interrupt to capture any accesses to the memory-
or I/O-address ranges of the graphics and audio functions.
Once the processor enters system-management mode, it
executes Cyrix-supplied drivers to perform the appropriate
function.
Special instructions: MMX instructions operate on single-
instruction-multiple-data (SIMD) types. MMX instructions
include basic arithmetic operations, including add, subtract,
multiply, and divide; logical operations, such as AND, OR,
and AND NOT; compare operations; conversion instructions
to pack and unpack data elements; shift operations; and data-
movement instructions. AMD has developed 3-D instruction
extensions known as 3DNow, which will also be implement-
ed by Cyrix and IDT.

Socket 7 processors (continued)



166 b EDN SEPTEMBER 24, 1998

Sun built the microSPARC processors
around a large, multiported register
file that divides into a small set of
global registers for holding global
variables and sets of overlapping reg-
ister windows. Each 24-register win-
dow has a core of eight registers;
eight registers overlapping the previ-
ous and next register windows sup-
plement the eight-register core. The
overlapping registers eliminate the
need to save and restore registers on
function calls, returns, or context
switches between tasks.

The microSPARC has a five-stage
pipeline: fetch, decode, memory
access, execute, and write back. It
also has a four-entry write buffer to
prevent write stalls. A floating-point
unit (FPU) contains 32332-bit float-
ing-point registers, a general-pur-
pose execution unit, and a floating-
point multiplier. A three-entry queue
of floating-point instructions
increases concurrency with integer
execution.

MicroSPARC includes a SPARC-
compliant memory-management
unit (MMU). This MMU uses 3 high-
order bits of physical address to map
eight address spaces. The MMU con-
trols arbitration among I/O, data
cache, instruction cache, and trans-
lation-look-aside-buffer (TLB) references to memory. The
MMU contains a 64-entry, fully associative TLB and supports
256 contexts. The hyperSPARC’s MMU uses a context regis-
ter to identify as many as 4096 contexts.

The microSPARC mPs have a separate 64-bit memory inter-
face that handles as much as 256 Mbytes of 16-Mbit DRAM.
An on-chip, 25-MHz, 32-bit, synchronous Sbus (slave-bus)
interface and controller handle five Sbus slots.
Special instructions: The microSPARC mPs comply with
instructions in the SPARC V8 specification. T.sqware’s
(www.tsqware.com) HDLC controllers include a microSPARC
core with built-in DSP capabilities via an extension to the
SPARC instruction set and access to hardware operators using
the coprocessor operating code.
Special peripherals: The microSPARC-II has an on-chip Sbus
interface. Sun provides peripheral ASICs that attach to the
Sbus and provide memory and I/O capabilities, such as Eth-
ernet, serial, keyboard, mouse, SCSI, and parallel ports. One
such ASIC, the PCIO chip, links the processor and 10/100-
Mbit Ethernet; an 8-bit expansion bus links to standard
“super-I/O”-like ASICs for connection to keyboards, mice,
serial ports, and the like. The microSPARC-IIep contains a PCI
interface for using industry-standard peripherals.
Development tools: A variety of OSs, each with its own set
of development tools, supports the microSPARC-IIep. Sun’s
Solaris OS features the Workshop suite of development tools.
Workshop contains a C/C++ compiler and source-code-con-
trol, debugging, and profiling tools. Workshop provides a

self-hosted development environment allowing program-
mers to develop software for embedded applications on their
desktop development workstations. Wind River’s (www.
windriver.com) Tornado provides an integrated suite of
development tools for a cross-platform, host-target environ-
ment. Tornado features graphical host-based tools, a high-
performance RTOS, and host-target communication proto-
cols. Sun’s Chorus group (www.sun.com) features the ClassiX
RTOS. You can compile application code on a Solaris host
with the Workshop compiler and debug the code with a Gnu-
based source-level debugger.

ClassiX also features a Common Object Request Broker
Architecture (CORBA)-compliant Object Request Broker and
an Interface Definition Language (IDL) compiler. IDL
describes the interface to a routine or function. For example,
IDL defines objects in the CORBA distributed-object envi-
ronment, which describes the services that the object per-
forms and how data passes to the object. IDL stores the defi-
nitions in an interface repository that a client application can
query to determine which functions, or objects, are available
on the object bus. For developers using alternative system
software, the Cygnus (www.cygnus.com) GnuPro C/C++ tool
kit provides compiling and debugging tools.
Second sources: There are no second sources for microSPARC
devices; however, Sun licenses the microSPARC core to C-
Cube Microsystems (www.c-cube.com), Hyundai (www.
hei.co.kr/), Scientific Atlanta (www.scientific-atlanta.com/),
T.sqware, and Xylan (www.xylan.com).

Sun microSPARC

INTEGER UNIT FPU

PLL CLOCK
GENERATOR

INST [31:0]
DPC [31:2]

FP_DOUT [63:0]

16-kBYTE
INSTRUCTION

CACHE

8-kBYTE
DATA CACHE

FOUR-ENTRY
WRITE BUFFER

MEMORY-
MANAGEMENT

UNIT, 64-ENTRY TLB

64-BIT CACHE-FILL BUS

64

INSTRUCTION

D_VA [31:0]

I_VA [31:0]

IU_DOUT [63:0]

SBUS
CONTROLLER

MEMORY
INTERFACE

MISC_BUS [31:0]

PHY_ADDR [27:0]

32-BIT
SBUS

MEMORY DATA BUS
MEMORY ADDRESS

LOCAL BUS



*Other brands and names are the property of their respective owners.
Information in this document is provided in connection with Intel products. Intel assumes no liability whatsoever, including infringement of any patent or
copyright, for sale and use of Intel products except as provided in Intel’s Terms and Conditions of Sale for such products. Intel retains the right to make
changes to these specifications at any time, without notice. Microcomputer Products may have minor variations to this specification known as errata.

January 1994

COPYRIGHT © INTEL CORPORATION, 1995

Order Number: 240225-009

Intel387TM SX
MATH COPROCESSOR

Y New Automatic Power Management
Ð Low Power Consumption
Ð Typically 100 mA in Dynamic Mode,

and 4 mA in Idle Mode

Y Socket Compatible with Intel387 Family
of Math CoProcessors
Ð Hardware and Software Compatible
Ð Supported by Over 2100 Commercial

Software Packages
Ð 10% to 15% Performance Increase

on Whetstone and Livermore
Benchmarks

Y Compatible with the Intel386TM SX
Microprocessor
Ð Extends CPU Instruction Set to

Include Trigonometric, Logarithmic,
and Exponential

Y High Performance 80-Bit Internal
Architecture

Y Implements ANSI/IEEE Standard
754-1985 for Binary Floating-Point
Arithmetic

Y Available in a 68-Pin PLCC Package
See Intel Packaging Specification, Order Ý231369

The Intel387TM SX Math CoProcessor is an extension to the Intel386TM SX microprocessor architecture. The
combination of the Intel387TM SX with the Intel386TM SX microprocessor dramatically increases the process-
ing speed of computer application software that utilizes high performance floating-point operations. An internal
Power Management Unit enables the Intel387TM SX to perform these floating-point operations while maintain-
ing very low power consumption for portable and desktop applications. The internal Power Management Unit
effectively reduces power consumption by 95% when the device is idle.

The Intel387TM SX Math CoProcessor is available in a 68-pin PLCC package, and is manufactured on Intel’s
advanced 1.0 micron CHMOS IV technology.

240225–22

Intel386 and Intel387 are trademarks of Intel Corporation.

1



Intel387TM SX Math CoProcessor

CONTENTS PAGE

1.0 PIN ASSIGNMENT ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 5

1.1 Pin Description Table ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 6

2.0 FUNCTIONAL DESCRIPTION ÀÀÀÀÀÀÀÀÀ 7

2.1 Feature List ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 7

2.2 Math CoProcessor Architecture ÀÀÀÀÀÀ 7

2.3 Power Management ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 8

2.3.1 Dynamic Mode ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 8

2.3.2 Idle Mode ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 8

2.4 Compatibility ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 8

2.5 Performance ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 8

3.0 PROGRAMMING INTERFACE ÀÀÀÀÀÀÀÀÀ 9

3.1 Instruction Set ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 9

3.1.1 Data Transfer Instructions ÀÀÀÀÀÀ 9

3.1.2 Arithmetic Instructions ÀÀÀÀÀÀÀÀÀÀ 9

3.1.3 Comparison Instructions ÀÀÀÀÀÀÀ 10

3.1.4 Transcendental
Instructions ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 10

3.1.5 Load Constant Instructions ÀÀÀÀ 10

3.1.6 Processor Instructions ÀÀÀÀÀÀÀÀÀ 11

3.2 Register Set ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 11

3.2.1 Status Word (SW) Register ÀÀÀÀ 12

3.2.2 Control Word (CW)
Register ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 15

3.2.3 Data Register ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 16

3.2.4 Tag Word (TW) Register ÀÀÀÀÀÀÀ 16

3.2.5 Instruction and Data
Pointers ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 16

3.3 Data Types ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 18

3.4 Interrupt Description ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 18

3.5 Exception Handling ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 18

3.6 Initialization ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 21

3.7 Processing Modes ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 21

3.8 Programming Support ÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 21

CONTENTS PAGE

4.0 HARDWARE SYSTEM
INTERFACE ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 21

4.1 Signal Description ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 22

4.1.1 Intel386 CPU Clock 2
(CPUCLK2) ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 22

4.1.2 Intel387 Math CoProcessor
Clock 2 (NUMCLK2) ÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 22

4.1.3 Clocking Mode (CKM) ÀÀÀÀÀÀÀÀÀ 23

4.1.4 System Reset (RESETIN) ÀÀÀÀÀÀ 23

4.1.5 Processor Request
(PEREQ) ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 23

4.1.6 Busy Status (BUSYÝ) ÀÀÀÀÀÀÀÀÀ 23

4.1.7 Error Status (ERRORÝ) ÀÀÀÀÀÀÀ 23

4.1.8 Data Pins (D15–D0) ÀÀÀÀÀÀÀÀÀÀÀ 23

4.1.9 Write/Read Bus Cycle
(W/RÝ) ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 23

4.1.10 Address Stobe (ADSÝ) ÀÀÀÀÀÀÀ 23

4.1.11 Bus Ready Input
(READYÝ) ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 24

4.1.12 Ready Output
(READYOÝ) ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 24

4.1.13 Status Enable (STEN) ÀÀÀÀÀÀÀÀ 24

4.1.14 Math CoProcessor Select 1
(NPS1Ý) ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 24

4.1.15 Math CoProcessor Select 2
(NPS2) ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 24

4.1.16 Command (CMD0Ý) ÀÀÀÀÀÀÀÀÀ 24

4.1.17 System Power (VCC) ÀÀÀÀÀÀÀÀÀ 24

4.1.18 System Ground (VSS) ÀÀÀÀÀÀÀÀ 24

4.2 System Configuration ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 25

4.3 Math CoProcessor Architecture ÀÀÀÀÀ 26

4.3.1 Bus Control Logic ÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 26

4.3.2 Data Interface and Control
Unit ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 26

4.3.3 Floating Point Unit ÀÀÀÀÀÀÀÀÀÀÀÀÀ 26

4.3.4 Power Management Unit ÀÀÀÀÀÀÀ 26

2

2



CONTENTS PAGE

4.4 Bus Cycles ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 26

4.4.1 Intel387 SX Math
CoProcessor Addressing ÀÀÀÀÀÀÀÀÀÀ 27

4.4.2 CPU/Math CoProcessor
Synchronization ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 27

4.4.3 Synchronous/Asynchronous
Modes ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 27

4.4.4 Automatic Bus Cycle
Termination ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 27

5.0 BUS OPERATION ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 27

5.1 Non-pipelined Bus Cycles ÀÀÀÀÀÀÀÀÀÀ 28

5.1.1 Write Cycle ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 28

5.1.2 Read Cycle ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 29

5.2 Pipelined Bus Cycles ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 29

5.3 Mixed Bus Cycles ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 30

5.4 BUSYÝ and PEREQ Timing
Relationship ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 32

6.0 PACKAGE SPECIFICATIONS ÀÀÀÀÀÀÀÀ 33

6.1 Mechanical Specifications ÀÀÀÀÀÀÀÀÀÀ 33

6.2 Thermal Specifications ÀÀÀÀÀÀÀÀÀÀÀÀÀ 33

CONTENTS PAGE

7.0 ELECTRICAL
CHARACTERISTICS ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 33

7.1 Absolute Maximum Ratings ÀÀÀÀÀÀÀÀÀ 33

7.2 D.C. Characteristics ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 34

7.3 A.C. Characteristics ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 35

8.0 Intel387 SX MATH COPROCESSOR
INSTRUCTION SET ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 41

APPENDIX AÐIntel387 SX MATH
COPROCESSOR COMPATIBILITY ÀÀÀÀ A-1

A.1 8087/80287 Compatibility ÀÀÀÀÀÀÀÀÀ A-1

A.1.1 General Differences ÀÀÀÀÀÀÀÀÀÀ A-1

A.1.2 Exceptions ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ A-2

APPENDIX BÐCOMPATIBILITY
BETWEEN THE 80287 AND 8087
MATH COPROCESSOR ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ B-1

3

3



CONTENTS PAGE

FIGURES

Figure 1-1 Intel387 SX Math
CoProcessor Pinout ÀÀÀÀÀÀÀÀÀÀÀ 5

Figure 2-1 Intel387 SX Math
CoProcessor Block
Diagram ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 7

Figure 3-1 Intel 386 SX CPU and
Intel387 Math CoProcessor
Register Set ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 11

Figure 3-2 Status Word ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 12

Figure 3-3 Control Word ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 15

Figure 3-4 Tag Word Register ÀÀÀÀÀÀÀÀÀÀÀ 16

Figure 3-5 Instruction and Data Pointer
Image in Memory, 32-Bit
Protected Mode Format ÀÀÀÀÀÀ 17

Figure 3-6 Instruction and Data Pointer
Image in Memory, 16-Bit
Protected Mode Format ÀÀÀÀÀÀ 17

Figure 3-7 Instruction and Data Pointer
Image in Memory, 32-Bit
Real Mode Format ÀÀÀÀÀÀÀÀÀÀÀ 17

Figure 3-8 Instruction and Data Pointer
Image in Memory, 16-Bit
Real Mode Format ÀÀÀÀÀÀÀÀÀÀÀ 18

Figure 4-1 Intel386 SX CPU and
Intel387 SX Math
CoProcessor System
Configuration ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 25

Figure 5-1 Bus State Diagram ÀÀÀÀÀÀÀÀÀÀÀ 28

Figure 5-2 Non-Pipelined Read and
Write Cycles ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 29

Figure 5-3 Fastest Transition to and
from Pipelined Cycles ÀÀÀÀÀÀÀÀ 30

Figure 5-4 Pipelined Cycles with Wait
States ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 31

Figure 5-5 BUSYÝ and PEREQ Timing
Relationship ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 32

Figure 7-1a Typical Output Valid Delay
vs Load Capacitance at Max
Operating Temperature ÀÀÀÀÀÀ 37

Figure 7-1b Typical Output Slew Time vs
Load Capacitance at Max
Operating Temperature ÀÀÀÀÀÀ 37

Figure 7-1c Maximum ICC vs
Frequency ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 37

CONTENTS PAGE

Figure 7-2 CPUCLK2/NUMCLK2
Waveform and
Measurement Points for
Input/Output ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 38

Figure 7-3 Output Signals ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 38

Figure 7-4 Input and I/O Signals ÀÀÀÀÀÀÀÀ 39

Figure 7-5 RESET Signal ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 39

Figure 7-6 Float from STEN ÀÀÀÀÀÀÀÀÀÀÀÀÀ 40

Figure 7-7 Other Parameters ÀÀÀÀÀÀÀÀÀÀÀÀ 40

TABLES

Table 1-1 Pin Cross ReferenceÐ
Functional Grouping ÀÀÀÀÀÀÀÀÀÀÀ 5

Table 3-1 Condition Code
Interpretation ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 13

Table 3-2 Condition Code Interpretation
after FPREM and FPREM1
Instructions ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 14

Table 3-3 Condition Code Resulting
from Comparison ÀÀÀÀÀÀÀÀÀÀÀÀÀ 14

Table 3-4 Condition Code Defining
Operand Class ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 14

Table 3-5 Mapping Condition Codes to
Intel386 CPU Flag Bits ÀÀÀÀÀÀÀÀ 14

Table 3-6 Intel387 SX Math
CoProcessor Data Type
Representation in Memory ÀÀÀÀ 19

Table 3-7 CPU Interrupt Vectors
Reserve for Math
CoProcessor ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 20

Table 3-8 Intel387 SX Math
CoProcessor Exceptions ÀÀÀÀÀÀ 20

Table 4-1 Pin Summary ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 22

Table 4-2 Output Pin Status during
Reset ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 23

Table 4-3 Bus Cycle Definition ÀÀÀÀÀÀÀÀÀÀ 26

Table 6-1 Thermal Resistances
(§C/Watt) iJC and iJA ÀÀÀÀÀÀÀÀ 33

Table 6-2 Maximum TA at Various
Airflows ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 33

Table 7-1 D.C. Specifications ÀÀÀÀÀÀÀÀÀÀÀ 34

Table 7-2a Timing Requirements of the
Bus Interface Unit ÀÀÀÀÀÀÀÀÀÀÀÀ 35

Table 7-2b Timing Requirements of the
Execution Unit ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 36

Table 7-2c Other AC Parameters ÀÀÀÀÀÀÀÀÀ 36

Table 8-1 Instruction Formats ÀÀÀÀÀÀÀÀÀÀÀ 41

4

4



Intel387TM SX MATH COPROCESSOR

1.0 PIN ASSIGNMENT

The Intel387 SX Math CoProcessor pinout as
viewed from the top side of the component is shown
in Figure 1-1. VCC and VSS (GND) connections must
be made to multiple pins. The circuit board should

include VCC and VSS planes for power distribution
and all VCC and VSS pins must be connected to the
appropriate plane.

NOTE:
Pins identified as N.C. should remain completely
unconnected.

240225–1

Figure 1-1. Intel387TM SX Math CoProcessor Pinout

Table 1-1. Pin Cross ReferenceÐFunctional Grouping

BUSYÝ 36 D00 19 VCC 4 VSS 5 N.C. 1

PEREQ 56 D01 20 9 14 10

ERRORÝ 35 D02 23 13 21 17

D03 8 22 25 18
ADSÝ 47

D04 7 26 27 52
CMD0Ý 48

D05 6 31 32 65
NPS1Ý 44

D06 3 33 34 67
NPS2 45

D07 2 37 38 68
STEN 40

D08 24 39 42
W/RÝ 41

D09 28 43 55
READYÝ 49 D10 29 46 60
READYOÝ 57 D11 30 50 61

D12 16 58 63

D13 15 62 66CKM 59
D14 12 64CPUCLK2 54
D15 11NUMCLK2 53

RESETIN 51

5

5



Intel387TM SX MATH COPROCESSOR

1.1 Pin Description Table

The following table lists a brief description of each
pin on the Intel387 SX Math CoProcessor. For a
more complete description refer to Section 4.1 Sig-
nal Description. The following definitions are used in
these descriptions:

Ý The signal is active LOW.

I Input Signal

O Output Signal

I/O Input and Output Signal

Symbol Type Name and Function

ADSÝ I ADDRESS STROBE indicates that the address and bus cycle definition is valid.

BUSYÝ O BUSY indicates that the Math CoProcessor is currently executing an instruction.

CKM I CLOCKING MODE is used to select synchronous or asynchronous clock modes.

CMD0 I COMMAND determines whether an opcode or operand are being sent to the Math
CoProcessor. During a read cycle it indicates which register group is being read.

CPUCLK2 I CPU CLOCK input provides the timing for the bus interface unit and the execution
unit in synchronous mode.

D15–D0 I/O DATA BUS is used to transfer instructions and data between the Math
CoProcessor and CPU.

ERRORÝ O ERROR signals that an unmasked exception has occurred.

NC Ð NO CONNECT should always remain unconnected. Connection of a N.C. pin may
cause the Math CoProcessor to malfunction or be incompatible with future
steppings.

NPS1Ý I NPX SELECT 1 is used to select the Math CoProcessor.

NPS2 I NPX SELECT 2 is used to select the Math CoProcessor.

NUMCLK2 I NUMERICS CLOCK is used in asynchronous mode to drive the Floating Point
Execution Unit.

PEREQ O PROCESSOR EXTENSION REQUEST signals the CPU that the Math
CoProcessor is ready for data transfer to/from its FIFO.

READYÝ I READY indicates that the bus cycle is being terminated.

READYOÝ O READY OUT signals the CPU that the Math CoProcessor is terminating the bus
cycle.

RESETIN I SYSTEM RESET terminates any operation in progress and forces the Math
CoProcessor to enter a dormant state.

STEN I STATUS ENABLE serves as a master chip select for the Math CoProcessor.
When inactive, this pin forces all outputs and bi-directional pins into a floating
state.

W/RÝ I WRITE/READ indicates whether the CPU bus cycle in progress is a read or a write
cycle.

VCC I SYSTEM POWER provides the a5V nominal D.C. supply input.

VSS I SYSTEM GROUND provides the 0V connection from which all inputs and outputs
are measured.

6

6



Intel387TM SX MATH COPROCESSOR

2.0 FUNCTIONAL DESCRIPTION

The Intel387 SX Math CoProcessor is designed to
support the Intel386 SX Microprocessor and effec-
tively extend the CPU architecture by providing fast
execution of arithmetic instructions and transcen-
dental functions. This component contains internal
power management circuitry for reduced active pow-
er dissipation and an automatic idle mode.

2.1 Feature List

# New power saving design provides low power
dissipation in active and idle modes.

# Higher Performance, 10%–25% higher bench-
mark performance than the original Intel387 SX
Math CoProcessor.

# High Performance 84-bit Internal Architecture

# Eight 80-bit Numeric Registers, usable as individ-
ually addressable general registers or as a regis-
ter stack.

# Full-range transcendental operations for SINE,
COSINE, TANGENT, ARCTANGENT, and LOG-
ARITHM.

# Programmable rounding modes and notification
of rounding effects.

# Exception reporting either by software polling or
hardware interrupts.

# Fully compatible with the SX Microprocessors.

# Expands Intel386 SX CPU data types to include
32-bit, 64-bit, and 80-bit Floating Point; 32-bit and
64-bit Integers; and 18 Digit BCD Operands.

# Directly extends the Intel386 SX CPU Instruction
Set to trigonometric, logarithmic, exponential,
and arithmetic functions for all data types.

# Operates independently of Real, Protected, and
Virtual-86 Modes of the Intel386 SX Microproces-
sors.

# Fully compatible with the Intel387 SL Mobile and
DX Math CoProcessors. Implements all Intel387
Math CoProcessor architectural enhancements
over 8087 and 80287.

# Implements ANSI/IEEE Standard 754-1985 for
binary floating point arithmetic.

# Upward Object Code compatible from 8087 and
80287.

2.2 Math CoProcessor Architecture

As shown in Figure 2-1, the Intel387 SX Math Co-
Processor is internally divided into four sections; the
Bus Control Logic, the Data Interface and Control
Logic, the Floating Point Unit, and the Power Man-
agement Unit. The Bus Control Logic is responsible
for the CPU bus tracking and interface. The Data
Interface and Control Unit latches data and decodes
instructions. The Floating Point Unit executes the
mathematical instructions. The Power Management
Unit is new to the Intel387 family and is the nucleus

240225–2

Figure 2-1. Intel387TM SX Math CoProcessor Block Diagram

7

7



Intel387TM SX MATH COPROCESSOR

of the static architecture. It is responsible for shut-
ting down idle sections of the device to save power.

Microprocessor/Math CoProcessor Interface
The Intel386 CPU interprets the pattern 11011B in
most significant five bits of an instruction as an op-
code intended for a math coprocessor. Instructions
thus marked are called ESCAPE or ESC instruc-
tions. Upon decoding the instruction as an ESC in-
struction, the Intel386 CPU transfers the opcode to
the math coprocessor through an I/O write cycle at
a dedicated address (8000F8H) outside the normal
programmed I/O address range. The math coproc-
essor has dedicated output signals for controlling
the data transfer and notifying the CPU if the Math
CoProcessor is busy or that a floating point error has
occurred.

2.3 Power Management

The Intel387 SX Math CoProcessor offers two
modes of power management; dynamic and idle.

2.3.1 DYNAMIC MODE

Dynamic Mode is when the device is executing an
instruction. Using Intel’s CHMOS IV technology, the
Intel387 SX Math CoProcessor draws considerably
less power than its predecessor. The active power
supply current is reduced to approximately 100 mA
at 20 MHz and provides low case temperatures.

2.3.2 IDLE MODE

When an instruction is not being executed, the
Intel387 SX Math CoProcessor will automatically
change to Idle Mode . Three clocks after completion
of the previous instruction, the internal power man-
ager shuts down the floating point execution unit
and all non-essential circuitry. Only portions of the
Bus Interface Unit remain active to monitor the CPU
bus activity and to accept the next instruction when
it is transferred. When the CPU transfers the next
instruction to the Math CoProcessor, the Intel387 SX

Math CoProcessor accepts the instruction and
ramps the internal core within one clock so there is
no impact to performance or throughput. In idle
mode, the Intel387 SX Math CoProcessor draws typ-
ically 4 mA of current and reduces case temperature
to near ambient.

NOTE:
In asynchronous clock mode (CKM e 0), the inter-
nal idle mode is disabled.

2.4 Compatibility

The Intel387 SX Math CoProcessor is compatible
with the Intel387 SL Mobile Math CoProcessor. Due
to the increased performance and internal pipelining
effects, diagnostic programs should never use in-
struction execution time for test purposes.

2.5 Performance

The increased performance of floating point calcula-
tions can be attributed to the 84-bit architecture and
floating point processor. For the CPU to execute
floating point calculations requires very long soft-
ware emulation methods with reduced resolution
and accuracy. The performance of the Intel387 SX
Math CoProcessor has been further enhanced
through improvements in the internal microcode and
through internal architectural changes. These refine-
ments will increase Whetstone benchmarks by ap-
proximately 10% to 25% over the original Intel387
SX Math CoProcessor.

Real performance, however, should be measured
with application software. Depending upon software
coding, system overhead, and percentage of floating
point instructions, performance can vary significant-
ly.

8

8



Intel387TM SX MATH COPROCESSOR

3.0 PROGRAMMING INTERFACE

The Intel387 SX Math CoProcessor effectively ex-
tends to an Intel386 Microprocessor system addi-
tional instructions, registers, data types, and inter-
rupts specifically designed to facilitate high-speed
floating point processing. All communication be-
tween the CPU and the Math CoProcessor is trans-
parent to applications software. The CPU automati-
cally controls the Math CoProcessor whenever a
numerics instruction is executed. All physical memo-
ry and virtual memory of the CPU are available for
storage of the instructions and operands of pro-
grams that use the Math CoProcessor. All memory
addressing modes, including use of displacement,
base register, index register, and scaling are avail-
able for addressing numerical operands.

The Intel387 SX Math CoProcessor is software com-
patible with the Intel387 DX Math CoProcessors and
supports all applications written for the Intel386 CPU
and Intel387 Math CoProcessors.

3.1 Instruction Set

The Intel386 CPU interprets the pattern 11011B in
most significant five bits of an instruction as an op-
code intended for a math coprocessor. Instructions
thus marked are called ESCAPE or ESC instruction.

The typical Math CoProcessor instruction accepts
one or two operands and produces one or some-
times two results. In two-operand instructions, one
operand is the contents of the Math CoProcessor
register, while the other may be a memory location.
The operands of some instructions are predefined;
for example, FSQRT always takes the square root of
the number in the top stack element.

The Intel387 SX Math CoProcessor instruction set
can be divided into six groups. The following sec-
tions gives a brief description of each instruction.
Section 8.0 defines the instruction format and byte
fields. Further details can be obtained from the
Intel387 User’s Manual, Programmer’s Reference,
Order Ý231917.

3.1.1 DATA TRANSFER INSTRUCTIONS

The class includes the operations that load, store,
and convert operands of any support data types.

Real Transfers

FLD Load Real (single, double, extended)

FST Store Real (single, double)

FSTP Store Real and pop (single, double, ex-
tended)

FXCH Exchange registers

Integer Transfers

FILD Load (convert from) Integer (word, short,
long)

FIST Store (convert to) Integer (word, short)

FISTP Store (convert to) Integer and pop (word,
short, long)

Packed Decimal Transfers

FBLD Load (convert from) packed decimal

FBSTP Store packed decimal and pop

3.1.2 ARITHMETIC INSTRUCTIONS

This class of instructions provide variations on the
basic add, subtract, multiply, and divide operations
and a number of other basic arithmetic operations.
Operands may reside in registers or one operand
may reside in memory.

Addition

FADD Add Real

FADDP Add Real and pop

FIADD Add Integer

Subtraction

FSUB Subtract Real

FSUBP Subtract Real and pop

FISUB Subtract Integer

FSUBR Subtract Real reversed

FSUBRP Subtract Real reversed and pop

FISUBR Subtract Integer reversed

Multiplication

FMUL Multiply Real

FMULP Multiply Real and pop

FIMUL Multiply Integer

Division

FDIV Divide Real

FDIVP Divide Real and pop

FIDIV Divide Integer

FDIVR Divide Real reversed

FDIVRP Divide Real reversed and pop

FIDIVR Divide Integer reversed

9

9



Intel387TM SX MATH COPROCESSOR

Other Operations

FSQRT Square Root

FSCALE Scale

FPREM Partial Remainder

FPREM1 IEEE standard partial remainder

FRNDINT Round to Integer

FXTRACT Extract Exponent and Significand

FABS Absolute Value

FCHS Change sign

3.1.3 COMPARISON INSTRUCTION

Instructions of this class allow comparison of num-
bers of all supported real and integer data types.
Each of these instructions analyzes the top stack
element often in relationship to another operand and
reports the result as a condition code in the status
word.

FCOM Compare Real

FCOMP Compare Real and pop

FCOMPP Compare Real and pop twice

FUCOM Unordered compare Real

FUCOMP Unordered compare Real and pop

FUCOMPP Unordered compare Real and pop
twice

FICOM Compare Integer

FICOMP Compare Integer and pop

FTST Test

FXAM Examine

3.1.4 TRANSCENDENTAL INSTRUCTIONS

This group of the Intel387 operations includes trigo-
nometric, inverse trigonometric, logarithmic and ex-
ponential functions. The transcendental operate on
the top one or two stack elements, and they return
their results to the stack. The trigonometric opera-
tions assume their arguments are expressed in radi-
ans. The logarithmic and exponential operations
work in base 2.

FSIN Sine

FCOS Cosine

FSINCOS Sine and cosine

FPTAN Tangent

FPATAN Arctangent of ST(1)/ST

F2XM1 2x–1

FYL2X Y * log2X

FYL2XP1 Y * log2(X a 1)

3.1.5 LOAD CONSTANT INSTRUCTIONS

Each of these instructions loads (pushes) a com-
monly used constant onto the stack. The constants
have extended real values nearest to the infinitely
precise numbers. The only error that can be gener-
ated is an Invalid Exception if a stack overflow oc-
curs.

FLDZ Load a0.0

FLD1 Load a1.0

FLDPI Load q

FLDL2T Load log2 10

FLDL2E Load log2e

FLDLG2 Load log102

FLDLN2 Load loge2

10

10



Intel387TM SX MATH COPROCESSOR

3.1.6 PROCESSOR INSTRUCTIONS
(ADMINISTRATIVE)

FINIT Initialize Math CoProcessor

FLDCW Load Control Word

FSTCW Store Control Word

FLDCW Load Status Word

FSTSW Store Status Word

FSTSW AX Store Status Word to AX register

FCLEX Clear Exceptions

FSTENV Store Environment

FLDENV Load Environment

FSAVE Save State

FRSTOR Restore State

FINCSTP Increment Stack pointer

FDECSTP Decrement Stack pointer

FFREE Free Register

FNOP No Operation

FWAIT Report Math CoProcessor Error

3.2 Register Set

Figure 3-1 shows the Intel387 SX Math CoProcessor
register set. When a Math CoProcessor is present in
a system, programmers may use these registers in
addition to the registers normally available on the
CPU.

i386TM Microprocessor Registers i387TM Math CoProcessor Data Registers

GENERAL REGISTERS
31 16 15 0

EAX
AX

AH AL

EBX
BX

BH BL

ECX
CX

CH CL

EDX
DX

DH DL

ESI SI

EDI DI

EBP BP

ESP SP

SEGMENT REGISTERS
15 0

CS

SS

DS

ES

FS

GS

31 0

EIP

EFLAGS

Tag
Field

79 78 64 63 0 1 0

R0 Sign Exponent Significand

R1

R2

R3

R4

R5

R6

R7

15 0

Control Register

Status Register

Tag Word

47 0

Instruction Pointer (in CPU)

Data Pointer (in CPU)

l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l

Figure 3-1. Intel386TM CPU and Intel387TM Math CoProcessor Register Set

11

11



Intel387TM SX MATH COPROCESSOR

3.2.1 STATUS WORD (SW) REGISTER

The 16-bit status word (in the status register) shown
in Figure 3-2 reflects the overall state of the Math
CoProcessor. It can be read and inspected by pro-
grams using the FSTSW memory or FSTSW AX in-
structions.

Bit 15, the Busy bit (B) is included for 8087 compati-
bility only. It always has the same value as the Error
Summary bit (ES, bit 7 of status word); it does not
indicate the status of the BUSYÝ output of the Math
CoProcessor.

Bits 13–11 (TOP) serves as the pointer to the Math
CoProcessor data register that is the current Top-Of-
Stack. The significance of the stack top is described
in Section 3.2.5 Data Registers.

The four numeric condition code bits (C3–C0, Bit 14,
10–8) are similar to the flags in a CPU; instructions
that perform arithmetic operations update these bits
to reflect the outcome. The effects of the instruc-
tions on the condition code are summarized in Ta-
bles 3-1 through 3-4. These condition code bits are
used principally for conditional branching. The
FSTSW AX instructions stores the Math CoProces-
sor status word directly to the CPU AX register, al-
lowing the condition codes to be inspected efficient-
ly by Intel386 CPU code. The Intel386 CPU SAHF
instruction can copy C3–C0 directly to the flag bits to
simplify conditional branching. Table 3-5 shows the
mapping of these bits to the Intel386 CPU flag bits.

Bit 7 is the error summary (ES) status bit. This bit is
set if any unmasked exception bit is set; it is clear
otherwise. If this bit is set, the ERRORÝ signal is
asserted.

Bit 6 is the stack flag (SF). This bit is used to distin-
guish invalid operations due to stack overflow or un-
derflow from other kinds of invalid operations. When
SF is set, bit 9 (C1) distinguishes between stack
overflow (C1 e 1) or underflow (C1 e 0).

Bit 5–0 are the six exception flags of the status word
and are set to indicate that during an instruction exe-
cution the Math CoProcessor has detected one of
six possible exception conditions since these status
bits were last cleared or reset. Section 3.5 entitled
Exception Handling explains how they are set and
used.

The exception flags are ‘‘sticky’’ bits and can only
be cleared by the instructions FINIT, FCLEX,
FLDENV, FSAVE, and FRSTOR. Note that when a
new value is loaded into the status word by the
FLDENV or FRSTOR instruction, the value of ES (bit
7) and B (bit 15) are not derived from the values
loaded from memory but rather are dependent upon
the values of the exception flags (bits 5–0) in the
status word and their corresponding masks in the
control word. If ES is set in such a case, the
ERRORÝ output of the Math CoProcessor is acti-
vated immediately.

240225–3

ES is set if any unmasked exception bit is set; cleared otherwise. See Table 2-2 for interpretation of condition code.
TOP values:

000 e Register 0 is Top of Stack
001 e Register 1 is Top of Stack

.

.

.
111 e Register 7 is Top of Stack

For definitions of exceptions, refer to the section entitled ‘‘Exception Handling’’

Figure 3-2. Status Word

12

12



Intel387TM SX MATH COPROCESSOR

Table 3-1. Condition Code Interpretation

Instruction C0 (S) C3 (Z) C1 (A) C2 (C)

FPREM, FPREM1 Three least significant bits
Reduction

(see Table 3-2) of quotient
0 e complete

Q2 Q0 Q1
1 e incomplete

or O/UÝ

FCOM, FCOMP,

FCOMPP, FTST, Result of comparison
Zero

Operand is not

FUCOM, FUCOMP, (see Table 3-3)
or O/UÝ

comparable

FUCOMPP, FICOM, (Table 3-3)

FICOMP

FXAM Operand class Sign Operand class

(see Table 3-4) or O/UÝ (Table 3-4)

FCHS, FABS, FXCH,

FINCSTP, FDECSTP,
Zero

Constant loads, UNDEFINED UNDEFINED

FXTRACT, FLD,
or O/UÝ

FILD, FBLD,

FSTP (ext real)

FIST, FBSTP,

FRNDINT, FST,

FSTP, FADD, FMUL,
Roundup

FDIV, FDIVR, UNDEFINED UNDEFINED

FSUB, FSUBR,
or O/UÝ

FSCALE, FSQRT,

FPATAN, F2XM1,

FYL2X, FYL2XP1

FPTAN, FSIN Roundup Reduction

FCOS, FSINCOS UNDEFINED or O/UÝ, 0 e complete

undefined 1 e incomplete

if C2 e 1

FLDENV, FRSTOR Each bit loaded from memory

FLDCW, FSTENV,

FSTCW, FSTSW, UNDEFINED

FCLEX, FINIT,

FSAVE

O/UÝ When both IE and SF bits of status word are set, indicating a stack exception, this bit
distinguishes between stack overflow (C1e1) and underflow (C1e0).

Reduction If FPREM or FPREM1 produces a remainder that is less than the modulus, reduction is
complete. When reduction is incomplete the value at the top of the stack is a partial
remainder, which can be used as input to further reduction. For FPTAN, FSIN, FCOS, and
FSINCOS, the reduction bit is set if the operand at the top of the stack is too large. In this
case the original operand remains at the top of the stack.

Roundup When the PE bit of the status word is set, this bit indicates whether the last rounding in the
instruction was upward.

UNDEFINED Do not rely on finding any specific value in these bits.

13

13



Intel387TM SX MATH COPROCESSOR

Table 3-2. Condition Code Interpretation after FPREM and FPREM1 Instructions

Condition Code
Interpretation after FPREM and FPREM1

C2 C3 C1 C0

Incomplete Reduction:

1 X X X further interation required

for complete reduction

Q1 Q0 Q2 Q MOD8

0 0 0 0

0 1 0 1
Complete Reduction:

0
1 0 0 2

C0, C3, C1 contain three least
1 1 0 3

significant bits of quotient
0 0 1 4

0 1 1 5

1 0 1 6

1 1 1 7

Table 3-3. Condition Code Resulting from Comparison

Order C3 C2 C0

TOP l Operand 0 0 0

TOP k Operand 0 0 1

TOP e Operand 1 0 0

Unordered 1 1 1

Table 3-4. Condition Code Defining Operand Class

C3 C2 C1 C0 Value at TOP

0 0 0 0 a Unsupported

0 0 0 1 a NaN

0 0 1 0 b Unsupported

0 0 1 1 b NaN

0 1 0 0 a Normal

0 1 0 1 a Infinity

0 1 1 0 b Normal

0 1 1 1 b Infinity

1 0 0 0 a 0

1 0 0 1 a Empty

1 0 1 0 b 0

1 0 1 1 b Empty

1 1 0 0 a Denormal

1 1 1 0 b Denormal

Table 3-5 Mapping Condition Codes to Intel386TM CPU Flag Bits

240225–4

14

14



Intel387TM SX MATH COPROCESSOR

3.2.2 CONTROL WORD (CW) REGISTER

The Math CoProcessor provides the programmer
with several processing options that are selected by
loading a control word from memory into the control
register. Figure 3-3 show the format and encoding of
fields in the control word.

The low-order byte of the control word register is
used to configure the exception masking. Bits 5–0
of the control word contain individual masks for each
of the six exceptions that the Math CoProcessor rec-
ognizes. See Section 3.5, Exception Handling, for
further explanation on the exception control and def-
inition.

The high-order byte of the control word is used to
configure the Math CoProcessor operating mode, in-
cluding precision, rounding and infinity control.

# The rounding control (RC) field (bits 11–10) pro-
vide for directed rounding and true chop, as well
as the unbiased round to nearest even mode
specified in the IEEE standard. Rounding control
affects only those instructions that perform
rounding at the end of the operation (and thus
can generate a precision exception); namely,
FST, FSTP, FIST, all arithmetic instructions (ex-
cept FPREM, FPREM1, FXTRACT, FABS, and
FCHS) and all transcendental instructions.

# The precision control (PC) field (bits 9–8) can be
used to set the Math CoProcessor internal oper-
ating precision of the significand at less than the
default of 64 bits (extended precision). This can
be useful in providing compatibility with early gen-
eration arithmetic processors of smaller preci-
sion. PC affects only the instructions FADD,
FSUB(R), FMUL, FDIV(R), and FSQRT. For all
other instructions, either the precision is deter-
mined by the opcode or extended precision is
used.

# The ‘‘infinity control bit’’ (bit 12) is not meaningful
to the Intel387 SX Math CoProcessor and pro-
grams must ignore its value. To maintain compat-
ibility with the 8087 and 80287 (non-387 core),
this bit can be programmed, however, regardless
of its value the Intel387 SX Math CoProcessor
always treats infinity in the affine sense (b% k

a%). This bit is initialized to zero both after a
hardware reset and after FINIT instruction.

All other bits are reserved and should not be pro-
grammed, to assure compatibility with future proces-
sors.

240225–5

Precision Control
00Ð24 bits (single precision)
01Ð(reserved)
10Ð53 bits (double precision)
11Ð64 bits (extended precision)

Rounding Control
00ÐRound to nearest or even
01ÐRound down (toward b%)
10ÐRound up (toward a%)
11ÐChop (truncate toward zero)

Figure 3-3. Control Word

15

15



Intel387TM SX MATH COPROCESSOR

3.2.3 DATA REGISTER

Intel387 SX Math CoProcessor data register set
consists of eight registers (R0–R7) which are treat-
ed as both a stack and a general register file. Each
of these data registers in the Math CoProcessor is
80 bits wide and is divided into fields corresponding
to the Math CoProcessor’s extended-precision real
data type, which is used for internal calculations.

The Math CoProcessor register set can be accessed
either as a stack, with instructions operating on the
top one or two stack elements, or as individually ad-
dressable registers. The TOP field in the status word
identifies the current top-of-stack register. A ‘‘push’’
operation decrements TOP by one and loads a value
into the new top register. A ‘‘store and pop’’ opera-
tion stores the value from the current top register
into memory and then increments TOP by one. The
Math CoProcessor register stack grows ‘‘down’’
toward lower-addressed registers.

Most of the Intel387 SX Math CoProcessor opera-
tions use the register stack as the operand(s) and/or
as a place to store the result. Instructions may ad-
dress the data register either implicitly or explicitly.
Many instructions operate on the register at the top
of the stack. These instructions implicitly address
the register at which TOP points. Other instructions
allow the programmer to explicitly specify which reg-
ister to use. Explicit register addressing is also rela-
tive to TOP (where ST denotes the current stack top
and ST(i) refers to the i’th register from the ST in the
stack so the real register address in computed as
STai).

3.2.4 TAG WORD (TW) REGISTER

The tag word marks the content of each numeric
data register, as Figure 3-4 shows. Each two-bit tag
represents one of the eight data register. The princi-

pal function of the tag word is to optimize the Math
CoProcessor’s performance and stack handling by
making it possible to distinguish between empty and
non-empty register locations. It also enables excep-
tion handlers to identify special values (e.g. NaNs or
denormals) in the contents of a stack location with-
out the need to perform complex decoding of the
actual data.

3.2.5 INSTRUCTION AND DATA POINTERS

Because the Math CoProcessor operates in parallel
with the CPU, any exceptions detected by the Math
CoProcessor may be reported after the CPU has ex-
ecuted the ESC instruction which caused it. To allow
identification of the numeric instruction which
caused the exception, the Intel386 Microprocessor
contains registers that aid in diagnosis. These regis-
ters supply the address of the failing instruction and
the address of its numeric memory operand (if ap-
propriate).

The instruction and data pointers are provided for
user-written exception handlers. These registers are
located in the CPU, but appear to be located in the
Math CoProcessor because they are accessed by
the ESC instructions FLDENV, FSTENV, FSAVE,
and FRSTOR; which transfer the values between
the registers and memory. Whenever the CPU exe-
cutes a new ESC instruction (except administrative
instructions), it saves the address of the instruction
(including any prefixes that may be present), the ad-
dress of the operand (if present) and the opcode.

The instruction and data pointers appear in one of
four formats depending on the operating mode of
the CPU (protected mode or real-address mode)
and depending on the operand size attribute in ef-
fect (32-bit operand or 16-bit operand). (See Figures
3-5, 3-6, 3-7, and 3-8.) Note that the value of the
data pointer is undefined if the prior ESC instruction
did not have a memory operand.

15 0

TAG (7) TAG (6) TAG (5) TAG (4) TAG (3) TAG (2) TAG (1) TAG (0)

NOTE:
The index i of tag(i) is not top-relative. A program typically uses the ‘‘top’’ field of Status Word to determine which tag(i)
field refers to logical top of stack.
TAG VALUES:

00 e Valid
01 e Zero
10 e QNaN, SNaN, Infinity, Denormal and Unsupported Formats
11 e Empty

Figure 3-4. Tag Word Register

16

16



Intel387TM SX MATH COPROCESSOR

32-BIT PROTECTED MODE FORMAT

31 23 15 7 0

RESERVED CONTROL WORD 0

RESERVED STATUS WORD 4

RESERVED TAG WORD 8

IP OFFSET C

00000 OPCODE 10..0 CS SELECTOR 10

DATA OPERAND OFFSET 14

RESERVED OPERAND SELECTOR 18

Figure 3-5. Instruction and Data Pointer Image in Memory, 32-Bit Protected-Mode Format

16-BIT PROTECTED MODE FORMAT

15 7 0

CONTROL WORD 0

STATUS WORD 2

TAG WORD 4

IP OFFSET 6

CS SELECTOR 8

OPERAND OFFSET A

OPERAND SELECTOR C

Figure 3-6. Instruction and Data Pointer Image in Memory, 16-Bit Protected-Mode Format

32-BIT REAL-ADDRESS MODE FORMAT
31 23 15 7 0

RESERVED CONTROL WORD 0

RESERVED STATUS WORD 4

RESERVED TAG WORD 8

RESERVED INSTRUCTION POINTER 15..0 C

0 0 0 0 INSTRUCTION POINTER 31..16 0 OPCODE 10..0 10

RESERVED OPERAND POINTER 15..0 14

0 0 0 0 OPERAND POINTER 31..16 0 0 0 0 0 0 0 0 0 0 0 0 18

Figure 3-7. Instruction and Data Pointer Image in Memory, 32-Bit Real-Mode Format

17

17



Intel387TM SX MATH COPROCESSOR

16-BIT REAL-ADDRESS MODE AND VIRTUAL 8086 MODE FORMAT

15 7 0

CONTROL WORD 0

STATUS WORD 2

TAG WORD 4

INSTRUCTION POINTER 15..0 6

IP19.16 0 OPCODE 10..0 8

OPERAND POINTER 15..0 A

DP 19.16 0 0 0 0 0 0 0 0 0 0 0 0 C

Figure 3-8. Instruction and Data Pointer Image in Memory, 16-Bit Real-Mode Format

3.3 Data Types

Table 3-6 lists the seven data types that the Math
CoProcessor supports and presents the format for
each type. Operands are stored in memory with the
least significant digit at the lowest memory address.
Programs retrieve these values by generating the
lowest address. For maximum system performance,
all operands should start at physical-memory ad-
dresses that correspond to the word size of the
CPU; operands may begin at any other addresses,
but will require extra memory cycles to access the
entire operand.

The data type formats can be divided into three
classes: binary integer, decimal integer, and binary
real. These formats, however, exist in memory only.
Internally, the Math CoProcessor holds all numbers
in the extended-precision real format. Instructions
that load operands from memory automatically con-
vert operands represented in memory as 16, 32, or
64-bit integers, 32 or 64-bit floating point numbers,
or 18 digit packed BCD numbers into extended-pre-
cision real format. Instructions that store operands in
memory perform the inverse type conversion.

In addition to the typical real and integer data values,
the Intel387 SX Math CoProcessor data formats en-
compass encodings for a variety of special values.
These special values have significance and can ex-
press relevant information about the computations
or operations that produced them. The various types
of special values are denormal real numbers, zeros,
positive and negative infinity, NaNs (Not-a-Number),
Indefinite, and unsupported formats. For further in-
formation on data types and formats, see the In-
tel387 Programmer’s Reference Manual.

3.4 Interrupt Description

CPU interrupts are used to report errors or excep-
tional conditions while executing numeric programs
in either real or protected mode. Table 3-7 shows
these interrupts and their functions.

3.5 Exception Handling

The Math CoProcessor detects six different excep-
tion conditions that occur during instruction execu-
tion. Table 3-8 lists the exception conditions in order
of precedence, showing for each the cause and the
default action taken by the Math CoProcessor if the
exception is masked by its corresponding mask bit in
the control word.

Any exception that is not masked by the control
word sets the corresponding exception flag of the
status word, sets the ES bit of the status word, and
asserts the ERRORÝ signal. When the CPU at-
tempts to execute another ESC instruction or WAIT,
exception 16 occurs. The exception condition must
be resolved via an interrupt service routine. The re-
turn address pushed onto the CPU stack upon entry
to the service routine does not necessarily point to
the failing instruction nor to the following instruction.
The CPU saves the address of the floating-point in-
struction that caused the exception and the address
of any memory operand required by that instruction.

18

18



Intel387TM SX MATH COPROCESSOR

Table 3-6. Intel387TM SX Math CoProcessor Data Type Representation in Memory

240225–23

NOTES:
1. S e Sign bit (0 e positive, 1 e negative)
2. dn e Decimal digit (two per byte)
3. X e Bits have no significance; Math CoProcessor ignores when loading, zeros when storing
4. U e Position of implicit binary point
5. I e Integer bit of significand; stored in temporary real, implicit in single and double precision
6. Exponent Bias (normalized values):

Single: 127 (7FH)
Double: 1023 (3FFH)
Extended REal: 16383 (3FFFH)

7. Packed BCD: (b1)S (D17..D0)
8. Real: (b1)S (2E-BIAS) (F0 F1...)

19

19



Intel387TM SX MATH COPROCESSOR

Table 3-7. CPU Interrupt Vectors Reserved for Math CoProcessor

Interrupt
Cause of Interrupt

Number

7 An ESC instruction was encountered when EM or TS of CPU control register zero (CR0) was
set. EM e 1 indicates that software emulation of the instruction is required. When TS is set,
either an ESC or WAIT instruction causes interrupt 7. This indicates that the current Math
CoProcessor context may not belong to the current task.

9 In a protected-mode system, an operand of a coprocessor instruction wrapped around an
addressing limit (0FFFFH for expand-up segments, zero for expand-down segments) and
spanned inaccessible addresses(1). The failing numerics instruction is not restartable. The
address of the failing numerics instruction and data operand may be lost; an FSTENV does not
return reliable addresses. The segment overrun exception should be handled by executing an
FNINIT instruction (i.e., an FINIT without a preceding WAIT). The exception can be avoided by
never allowing numerics operands to cross the end of a segment.

13 In a protected-mode system, the first word of a numeric operand is not entirely within the limit of
its segment. The return address pushed onto the stack of the exception handler points at the
ESC instruction that caused the exception, including any prefixes. The Math CoProcessor has
not executed this instruction; the instruction pointer and data pointer register refer to a previous,
correctly executed instruction.

16 The previous numerics instruction caused an unmasked exception. The address of the faulty
instruction and the address of its operand are stored in the instruction pointer and data pointer
registers. Only ESC and WAIT instructions can cause this interrupt. The CPU return address
pushed onto the stack of the exception handler points to a WAIT or ESC instruction (including
prefixes). This instruction can be restarted after clearing the exception condition in the Math
CoProcessor. FNINIT, FNCLEX, FNSTSW, FNSTENV, and FNSAVE cannot cause this interrupt.

NOTE:
1. An operand may wrap around an addressing limit when the segment limit is near an addressing limit and the operand is
near the largest valid address in the segment. Because of the wrap-around, the beginning and ending addresses of such an
operand will be at opposite ends of the segment. There are two ways that such an operand may also span inaccessible
addresses: 1) if the segment limit is not equal to the addressing limit (e.g. addressing limit is FFFFH and segment limit is
FFFDH) the operand will span addresses that are not within the segment (e.g. an 8-byte operand that starts at valid offset
FFFCH will span addresses FFFC–FFFFH and 0000-0003H; however addresses FFFEH and FFFFH are not valid, because
they exceed the limit); 2) if the operand begins and ends in present and accessible segments but intermediate bytes of the
operand fall in a not-present page or in a segment or page to which the procedure does not have access rights.

Table 3-8. Intel387TM SX Math CoProcessor Exceptions

Exception Cause
Default Action

(if exception is masked)

Invalid Operation on a signalling NaN, unsupported format, Result is a quiet NaN,
indeterminate for (0-%, 0/0, (a%) a (b%), etc.), or stack integer indefinite, orOperation
overflow/underflow (SF is also set). BCD indefinte

Denormalized At least one of the operands is denormalized, i.e., it has the Normal processing
smallest exponent but a nonzero significand. continuesOperand

Zero Divisor The divisor is zero while the dividend is a noninfinite, nonzero Result is %

number.

Overflow The result is too large in magnitude to fit in the specified format. Result is largest finite
value or %

Underflow The true result is nonzero but too small to be represented in the Result is denormalized
specified format, and, if underflow exception is masked, or zero
denormalization causes the loss of accuracy.

Inexact Result The true result is not exactly representable in the specified Normal processing
format (e.g. 1/3); the result is rounded according to the rounding continues(Precision)
mode.

20

20



Intel387TM SX MATH COPROCESSOR

3.6 Initialization

After FNINIT or RESET, the control word contains
the value 037FH (all exceptions masked, precision
control 64 bits, rounding to nearest) the same values
as in an Intel287 after RESET. For compatibility with
the 8087 and Intel287, the bit that used to indicate
infinity control (bit 12) is set to zero; however, re-
gardless of its setting, infinity is treated in the affine
sense. After FNINIT or RESET, the status word is
initialized as follows:

# All exceptions are set to zero.

# Stack TOP is zero, so that after the first push the
stack top will be register seven (111B).

# The condition code C3–C0 is undefined.

# The B-bit is zero.

The tag word contains FFFFH (all stack locations
are empty).

The Intel386 Microprocessor and Intel387 Math Co-
Processor initialization software must execute a
FNINIT instruction (i.e., FINIT without a preceding
WAIT) after RESET. The FNINIT is not strictly re-
quired for the Intel386 software, but Intel recom-
mends its use to help ensure upware compatibility
with other processors. After a hardware RESET, the
ERRORÝ output is asserted to indicate that an In-
tel387 Math CoProcessor is present. To accomplish
this, the IE (Invalid Exception) and ES (Error Sum-
mary) bits of the status word are set, and the IM bit
(Invalid Exception Mask) in the control word is
cleared. After FNINIT, the status word and the con-
trol word have the same values as in an Intel287
Math CoProcessor after RESET.

3.7 Processing Modes

The Intel387 SX Math CoProcessor works the same
whether the CPU is executing in real-addressing
mode, protected mode, or virtual-8086 mode. All ref-
erences to memory for numerics data or status infor-
mation are performed by the CPU, and therefore
obey the memory-management and protection rules
of the CPU mode currently in effect. The Intel387 SX
Math CoProcessor merely operates on instruc-

tions and values passed to it by the CPU and there-
fore is not sensitive to the processing mode of the
CPU.

The real-address mode and virtual-8086 mode, the
Intel387 SX Math CoProcessor is completely upward
compatible with software for the 8086/8087 and
80286/80287 real-address mode systems.

In protected mode, the Intel387 SX Math CoProces-
sor is completely upward compatible with software
for the 80286/80287 protected mode system.

The only differences of operation that may appear
when 8086/8087 programs are ported to the pro-
tected mode (not using virtual-8086 mode) is in the
format of operands for the administrative instruc-
tions FLDENV, FSTENV, FRSTOR, and FSAVE.

3.8 Programming Support

Using the Intel387 SX Math CoProcessor requires
no special programming tools, because all new in-
structions and data types are directly supported by
the assembler and compilers for high-level lan-
guages. All Intel386 Microprocessor development
tools that support Intel387 Math CoProcessor pro-
grams can also be used to develop software for the
Intel386 SX Microprocessors and Intel387 SX Math
CoProcessors. All 8086/8088 development tools
that support the 8087 can also be used to develop
software for the CPU and Math CoProcessor in real-
address mode or virtual-8086 mode. All 80286 de-
velopment tools that support the Intel287 Math Co-
Processor can also be used to develop software for
the Intel386 CPU and Intel387 Math CoProcessor.

4.0 HARDWARE SYSTEM
INTERFACE

In the following description of hardware interface,
the Ý symbol at the end of a signal name indicates
that the active or asserted state occurs when the
signal is at a low voltage. When no Ý is present after
the signal name, the signal is asserted when at the
high voltage level.

21

21



Intel387TM SX MATH COPROCESSOR

4.1 Signal Description

In the following signal descriptions, the Intel387 SX
Math CoProcessor pins are grouped by function as
shown by Table 4-1. Table 4-1 lists every pin by its
identifier, gives a brief description and lists some of
its characteristics (Refer to Figure 1-1 and Table 1-1
for pin configuration).

All output signals can be tri-stated by driving STEN
inactive. The output buffers of the bi-directional data
pins D15–D0 are also tri-state; they only leave the
floating state during read cycles when the Math Co-
Processor is selected.

4.1.1 Intel386 CPU CLOCK 2 (CPUCLK2)

This input uses the CLK2 signal of the CPU to time
the bus control logic. Several other Math CoProces-
sor signals are referenced to the rising edge of this
signal. When CKM e 1 (synchronous mode) this pin

also clocks the data interface and control unit and
the floating point unit of the Math CoProcessor. This
pin requires CMOS-level input. The signal on this pin
is divided by two to produce the internal clock signal
CLK.

4.1.2 Intel387 MATH COPROCESSOR CLOCK 2
(NUMCLK2)

When CKM e 0 (asynchronous mode), this pin pro-
vides the clock for the data interface and control unit
and the floating point unit of the Math CoProcessor.
In this case, the ratio of the frequency of NUMCLK2
to the frequency of CPUCLK2 must lie within the
range 10:16 to 14:10 and the maximum frequency
must not exceed the device specifications. When
CKM e 1 (synchronous mode), signals on this pin
are ignored: CPUCLK2 is used instead for the data
interface and control unit and the floating point unit.
This pin requires CMOS level input and should be
tied low if not used.

Table 4-1. Pin Summary

Pin Name Function Active State
Input/ Referenced

Output To . . .

Execution Control

CPUCLK2 Microprocessor Clock2 I

NUMCLK2 Math CoProcessor Clock2 I

CKM Math CoProcessor Clock Mode I

RESETIN System Reset High I CPUCLK2

Math CoProcessor Handshake

PEREQ Processor Request High O CPUCLK2

BUSYÝ Busy Status Low O CPUCLK2

ERRORÝ Error Status Low O NUMCLK2

Bus Interface

D15–D0 Data Pins I/O CPUCLK2

W/RÝ Write/Read Bus Cycle High/Low I CPUCLK2

ADSÝ Address Strobe Low I CPUCLK2

READYÝ Bus Ready Input Low I CPUCLK2

READYOÝ Ready Output Low O CPUCLK2

Chip/Port Select

STEN Status Enable High I CPUCLK2

NPS1Ý Numerics Select Ý1 Low I CPUCLK2

NPS2 Numerics Select Ý2 High I CPUCLK2

CMD0Ý Command Low I CPUCLK2

Power and Ground

VCC System Power

VSS System Ground

22

22



Intel387TM SX MATH COPROCESSOR

4.1.3 CLOCKING MODE (CKM)

This pin is strapping option. When it is strapped to
VCC (HIGH), the Math CoProcessor operates in syn-
chronous mode; when strapped to VSS (LOW), the
Math CoProcessor operates in asynchronous mode.
These modes relate to clocking of the internal data
interface and control unit and the floating point unit
only; the bus control logic always operates synchro-
nously with respect to the CPU.

Synchronous mode requires the use of only one
clock, the CPU’s CLK2. Use of synchronous mode
eliminates one clock generator from the board
design and is recommended for all designs. Syn-
chronous mode also allows the internal Power Man-
agement Unit to enable the idle and standby power
saving modes.

Asynchronous mode can provide higher perform-
ance of the floating point unit by running a faster
clock on NUMCLK2. (The CPU’s CLK2 must still be
connected to CPUCLK2 input.) This allows the float-
ing point unit to run up to 40% faster than in syn-
chronous mode. Internal power management is dis-
abled in asynchronous mode.

4.1.4 SYSTEM RESET (RESETIN)

A LOW to HIGH transition on this pin causes the
Math CoProcessor to terminate its present activity
and to enter a dormant state. RESETIN must remain
active (HIGH) for at least 40 CPUCLK2 (NUMCLK2 if
CKM e 0) periods.

The HIGH to LOW transitions of RESETIN must be
synchronous with CPUCLK2, so that the phase of
the internal clock of the bus control logic (which is
the CPUCLK2 divided by two) is the same as
the phase of the internal clock of the CPU. After
RESETIN goes LOW, at least 50 CPUCLK2
(NUMCLK2 if CKM e 0) periods must pass before
the first Math CoProcessor instruction is written into
the Math CoProcessor. This pin should be connect-
ed to the CPU RESET pin. Table 4-2 shows the
status of the output pins during the reset sequence.
After a reset, all output pins return to their inactive
state except for ERRORÝ which remains active (for
CPU recognition) until cleared.

Table 4-2. Output Pin Status during Reset

Pin Value Pin Name

HIGH READYOÝ, BUSYÝ
LOW PEREQ, ERRORÝ
Tri-State OFF D15–D0

4.1.5 PROCESSOR REQUEST (PEREQ)

When active, this pin signals to the CPU that the
Math CoProcessor is ready for data transfer to/from
its data FIFO. When all data is written to or read
from the data FIFO, PEREQ is deactivated. This sig-
nal always goes inactive before BUSYÝ goes inac-
tive. This signal is reference to CPUCLK2. It should
be connected to the CPU PEREQ input pin.

4.1.6 BUSY STATUS (BUSYÝ)

When active, this pin signals to the CPU that the
Math CoProcessor is currently executing an instruc-
tion. This signal is referenced to CPUCLK2. It should
be connected to the CPU BUSYÝ input pin.

4.1.7 ERROR STATUS (ERRORÝ)

This pin reflects the ES bit of the status register.
When active, it indicates that an unmasked excep-
tion has occurred. This signal can be changed to the
inactive state only by the following instructions (with-
out a preceding WAIT); FNINIT, FNCLEX,
FNSTENV, FNSAVE, FLDCW, FLDENV, and
FRSTOR. ERRORÝ is driven active during RESET
to indicate to the CPU that the Math CoProcessor is
present. This pin is referenced to NUMCLK2 (or
CPUCLK2 if CKM e 1). It should be connected to
the ERRORÝ pin of the CPU.

4.1.8 DATA PINS (D15–D0)

These bi-directional pins are used to transfer data
and opcodes between the CPU and Math CoProces-
sor. They are normally connected directly to the cor-
responding CPU data pins. HIGH state indicates a
value of one. D0 is the least significant data bit. Tim-
ings are referenced to rising edge of CPUCLK2.

4.1.9 WRITE/READ BUS CYCLE (W/RÝ)

This signal indicates to the Math CoProcessor
whether the CPU bus cycle in progress is a read or a
write cycle. This pin should be connected directly to
the CPU’s W/RÝ pin. HIGH indicates a write cycle
to the Math CoProcessor; LOW a read cycle from
the Math CoProcessor. This input is ignored if any of
the signals STEN, NPS1Ý, or NPS2 are inactive.
Setup and hold times are referenced to CPUCLK2.

4.1.10 ADDRESS STROBE (ADSÝ)

This input, in conjunction with the READYÝ input,
indicates when the Math CoProcessor bus control
logic may sample W/RÝ and the chip select signals.
Setup and hold times are referenced to CPUCLK2.
This pin should be connected to the ADSÝ pin of
the CPU.

23

23



Intel387TM SX MATH COPROCESSOR

4.1.11 BUS READY INPUT (READYÝ)

This input indicates to the Math CoProcessor when
a CPU bus cycle is to be terminated. It is used by the
bus control logic to trace bus activities. Bus cycles
can be extended indefinitely until terminated by
READYÝ. This input should be connected to the
same signal that drives the CPU’s READYÝ input.
Setup and hold times are referenced to CPUCLK2.

4.1.12 READY OUTPUT (READYOÝ)

This pin is activated at such a time that write cycles
are terminated after two clocks (except FLDENV
and FRSTOR) and read cycles after three clocks. In
configurations where no extra wait states are re-
quired, this pin must directly or indirectly drive the
READYÝ input of the CPU. Refer to the section enti-
tled ‘‘BUS OPERATION’’ for details. This pin is acti-
vated only during bus cycles that select the Math
CoProcessor. This signal is referenced to CPUCLK2.

(FLDENV and FRSTOR require data transfers larger
than the FIFO. Therefore, PEREQ is activated for
the duration of transferring 2 words of 32 bits and
then deactivated until the FIFO is ready to accept
two additional words. The length of the write cycles
of the last operand word in each transfer as well as
the first operand word transfer of the entire instruc-
tion is 3 clocks instead of 2 clocks. This is done to
give the Intel386 CPU enough time to sample
PEREQ and to notice that the Intel387 is not ready
for additional transfers.)

4.1.13 STATUS ENABLE (STEN)

This pin serves as a chip select for the Math Co-
Processor. When inactive, this pin forces BUSYÝ,
PEREQ, ERRORÝ and READYOÝ outputs into a
floating state. D15–D0 are normally floating and will
leave the floating state only if STEN is active and
additional conditions are met (read cycle). STEN
also causes the chip to recognize its other chip se-
lect inputs. STEN makes it easier to do on-board
testing (using the overdrive method) of other chips in
systems containing the Math CoProcessor. STEN
should be pulled up with a resistor so that it can be
pulled down when testing. In boards that do not use
on-board testing STEN should be connected to VCC.
Setup and hold times are relative to CPUCLK2. Note
that STEN must maintain the same setup and hold
times as NPS1Ý, NPS2, and CMD0Ý (i.e., if STEN
changes state during a Math CoProcessor bus cycle,
it must change state during the same CLK period as
the NPS1Ý, NPS2, and CMD0Ý signals).

4.1.14 MATH COPROCESSOR SELECT 1
(NPS1Ý)

When active (along with STEN and NPS2) in the first
period of a CPU bus cycle, this signal indicates that
the purpose of the bus cycle is to communicate with
the Math CoProcessor. This pin should be connect-
ed directly to the M/IOÝ pin of the CPU, so that the
Math CoProcessor is selected only when the CPU
performs I/O cycles. Setup and hold times are refer-
enced to the rising edge of CPUCLK2.

4.1.15 MATH COPROCESSOR SELECT 2
(NPS2)

When active (along with STEN and NPS1Ý) in the
first period of a CPU bus cycle, this signal indicates
that the purpose of the bus cycle is to communicate
with the Math CoProcessor. This pin should be con-
nected directly to the A23 pin of the CPU, so that the
Math CoProcessor is selected only when the CPU
issues one of the I/O addresses reserved for the
Math CoProcessor (8000F8h, 8000FCh, or 8000FEh
which is treated as 8000FCh by the Math CoProces-
sor). Setup and hold times are referenced to the ris-
ing edge of CPUCLK2.

4.1.16 COMMAND (CMD0Ý)

During a write cycle, this signal indicates whether an
opcode (CMD0Ý active low) or data (CMD0Ý inac-
tive high) is being sent to the Math CoProcessor.
During a read cycle, it indicates whether the control
or status register (CMD0Ý active) or a data register
(CMD0Ý) is being read. CMD0Ý should be connect-
ed directly to the A2 output of the CPU. Setup and
hold times are referenced to the rising edge of
CPUCLK2 at the end of PH2.

4.1.17 SYSTEM POWER (VCC)

System power provides the a5V DC supply input.
All VCC pins should be tied together on the circuit
board and local decoupling capacitors should be
used between VCC and VSS.

4.1.18 SYSTEM GROUND (VSS)

System ground provides the 0V connection from
which all inputs and outputs are measured. All VSS
pins should be tied together on the circuit board and
local decoupling capacitors should be used between
VCC and VSS.

24

24



Intel387TM SX MATH COPROCESSOR

4.2 System Configuration

The Intel387 SX Math CoProcessor is designed to
interface with the Intel386 SX Microprocessor as
shown by Figure 4-1. A dedicated communication
protocol makes possible high-speed transfer of op-
codes and operands between the CPU and Math
CoProcessor. The Intel387 SX Math CoProcessor is
designed so that no additional components are re-
quired for interface with the CPU. Most control pins
of the Math CoProcessor are connected directly to
pins of the CPU.

The interface between the Math CoProcessor and
the CPU has these characteristics:

# The Math CoProcessor shares the local bus of
the Intel386 SX Microprocessor.

# The CPU and Math CoProcessor share the same
reset signals. They may also share the same
clock input; however, for greatest performance,
an external oscillator may be needed.

# The corresponding BusyÝ, ERRORÝ, and
PEREQ pins are connected together.

# The Math CoProcessor NPS1Ý and NPS2 inputs
are connected to the latched CPU M/IOÝ and
A23 outputs respectively. For Math CoProcessor
cycles, M/IOÝ is always LOW and A23 always
HIGH.

# The Math CoProcessor input CMD0 is connected
to the latched A2 output. The Intel386 SX Micro-
processor generates address 8000F8H when
writing a command and address 8000FCH or
8000FEH (treated as 8000FCH by the Intel387
SX Math CoProcessor) when writing or reading
data. It does not generate any other addresses
during Math CoProcessor bus cycles.

240225–6

Figure 4-1. Intel386TM SX CPU and Intel387TM SX Math CoProcessor System Configuration

25

25



Intel387TM SX MATH COPROCESSOR

4.3 Math CoProcessor Architecture

As shown in Figure 2-1 Block Diagram, the Intel387
SX Math CoProcessor is internally divided into four
sections; the Bus Control Logic (BCL), the Data In-
terface and Control Logic, the Floating Point Unit
(FPU), and the Power Management Unit (PMU). The
Bus Control Logic is responsible for the CPU bus
tracking and interface. The BCL is the only unit in
the Math CoProcessor that must run synchronously
with the CPU; the rest of the Math CoProcessor can
run asynchronously with respect to the CPU. The
Data Interface and Control Unit is responsible for the
data flow to and from the FPU and the control regis-
ters, for receiving the instructions, decoding them,
sequencing the microinstructions, and for handling
some of the administrative instructions. The Floating
Point Unit (with the support of the control unit which
contains the sequencer and other support units) ex-
ecutes the mathematical instructions. The Power
Manager is new to the Intel387 family. It is responsi-
ble for shutting down idle sections of the device to
save power.

4.3.1 BUS CONTROL LOGIC

The BCL communicates solely with the CPU using
I/O bus cycles. The BCL appears to the CPU as a
special peripheral device. It is special in two re-
spects: the CPU initiates I/O automatically when it
encounters ESC instructions, and the CPU uses re-
served I/O addresses to communicate with the BCL.
The BCL does not communicate directly with memo-
ry. The CPU performs all memory access, transfer-
ring input operands from the memory to the Math
CoProcessor and transferring outputs from the Math
CoProcessor to memory.

4.3.2 DATA INTERFACE AND CONTROL UNIT

The data interface and control unit latches the data
and, subject to BCL control, directs the data to the

FIFO or the instruction decoder. The instruction de-
coder decodes the ESC instructions sent to it by the
CPU and generates controls that direct the data flow
in the FIFO. It also triggers the microinstruction se-
quencer that controls execution of each instruction.
If the ESC instruction is FINIT, FCLEX, FSTSW,
FSTSW AX, FSTCW, FSETPM, or FRSTPM, the
control unit executes it independently of the FPU
and the sequencer. The data interface and control
unit is the unit that generates the BUSYÝ, PEREQ,
and ERRORÝ signals that synchronize the Math
CoProcessor activities with the CPU.

4.3.3 FLOATING POINT UNIT

The FPU executes all instructions that involve the
register stack, including arithmetic, logical, transcen-
dental, constant, and data transfer instructions. The
data path in the FPU is 84 bits wide (68 significant
bits, 15 exponent bits, and a sign bit) which allows
internal operand transfers to be performed at very
high speeds.

4.3.4 POWER MANAGEMENT UNIT

The Power Management Unit (PMU) controls all in-
ternal power savings circuits. When the Math Co-
Processor is not executing an instruction, the PMU
disables the internal clock to the FPU, Control Unit,
and Data Interface within three clocks. The Bus
Control Logic remains enabled to accept the next
instruction. Upon decode of a valid Math CoProces-
sor bus cycle, the PMU enables the internal clock to
all circuits. No loss in performance occurs.

4.4 Bus Cycles

All bus cycles are initiated by the CPU. The pins
STEN, NPS1Ý, NPS2, CMD0, and W/RÝ identify
bus cycles for the Math CoProcessor. Table 4-3 de-
fines the types of Math CoProcessor bus cycles.

Table 4-3. Bus Cycle Definition

STEN NPS1Ý NPS2 CMD0Ý W/RÝ Bus Cycle Type

0 X X X X Math CoProcessor not selected and all outputs in floating state

1 1 X X X Math CoProcessor not selected

1 X 0 X X Math CoProcessor not selected

1 0 1 0 0 CW or SW read from Math CoProcessor

1 0 1 0 1 Opcode write to Math CoProcessor

1 0 1 1 0 Data read from Math CoProcessor

1 0 1 1 1 Data write to Math CoProcessor

26

26



Intel387TM SX MATH COPROCESSOR

4.4.1 INTEL387 SX MATH COPROCESSOR
ADDRESSING

The NPS1Ý, NPS2, and CMD0 signals allow the
Math CoProcessor to identify which bus cycles are
intended for the Math CoProcessor. The Math Co-
Processor responds to I/O cycles when the I/O ad-
dress is 8000F8h, 8000FCh, and 8000FEh (treated
as 8000FCh). The Math CoProcessor responds to
I/O cycles when bit 23 of the I/O address is set. In
other words, the Math CoProcessor acts as an I/O
device in a reserved I/O address space.

Because A23 is used to select the Intel387 SX Math
CoProcessor for data transfers, it is not possible for
a program running on the CPU to address the Math
CoProcessor with an I/O instruction. Only ESC in-
structions cause the CPU to communicate with the
Math CoProcessor.

4.4.2 CPU/MATH COPROCESSOR
SYNCHRONIZATION

The pins BUSYÝ, PEREQ, and ERRORÝ are used
for various aspects of synchronization between the
CPU and the Math CoProcessor.

BUSYÝ is used to synchronize instruction transfer
from the CPU to the Math CoProcessor. When the
Math CoProcessor recognizes an ESC instruction it
asserts BUSYÝ. For most ESC instructions, the
CPU waits for the Math CoProcessor to deassert
BUSYÝ before sending the new opcode.

The Math CoProcessor uses the PEREQ pin of the
CPU to signal that the Math CoProcessor is ready
for data transfer to or from its data FIFO. The Math
CoProcessor does not directly access memory; rath-
er, the CPU provides memory access services for
the Math CoProcessor. (For this reason, memory ac-
cess on behalf of the Math CoProcessor always
obeys the protection rules applicable to the current
CPU mode.) Once the CPU initiates an Math Co-
Processor instruction that has operands, the CPU
waits for PEREQ signals that indicate when the Math
CoProcessor is ready for operand transfer. Once all
operands have been transferred (or if the instruction
has no operands) the CPU continues program exe-
cution while the Math CoProcessor executes the
ESC instruction.

In 8087/8087 systems, WAIT instructions may be
required to achieve synchronization of both com-
mands and operands. In the Intel386 Micropro-
cessor and Intel387 Math CoProcessor systems,
however, WAIT instructions are required only for op-
erand synchronization; namely, after Math CoProc-
essor stores to memory (except FSTSW and
FSTCW) or load from memory. (In 80286/80287
systems, WAIT is required before FLDENV and
FRSTOR.) Used this way, WAIT ensures that the

value has already been written or read by the Math
CoProcessor before the CPU reads or changes the
value.

Once it has started to execute a numerics instruction
and has transferred and operands from the CPU, the
Math CoProcessor can process the instruction in
parallel with and independent of the host CPU.
When the Math CoProcessor detects an exception,
it asserts the ERRORÝ signal, which causes a CPU
interrupt.

4.4.3 SYNCHRONOUS/ASYNCHRONOUS
MODES

The internal logic of the Math CoProcessor can op-
erate either directly from the CPU clock (synchro-
nous mode) or from a separate clock (asynchronous
mode). The two configurations are distinguished by
the CKM pin. In either case, the bus control logic
(BCL) of the Math CoProcessor is synchronized with
the CPU clock. Use of asynchronous mode allows
the BCL and the FPU section of the Math CoProces-
sor to run at different speeds. In this case, the ratio
of the frequency of NUMCLK2 to the frequency of
CPUCLK2 must lie within the range 10:16 to 14:10.
Use of synchronous mode eliminates one clock gen-
erator from the board design. The internal Power
Management Unit of the Intel387 SX Math CoProc-
essor is disabled in asynchronous mode.

4.4.4 AUTOMATIC BUS CYCLE TERMINATION

In configurations where no extra wait states are re-
quired, READYOÝ can drive the CPU’s READYÝ
input and the Math CoProcessors READYÝ input. If
wait states are required, this pin should be connect-
ed to the logic that ORs all READY outputs from
peripheral devices on the CPU bus. READYOÝ is
asserted by the Math CoProcessor only during I/O
cycles that select the Math CoProcessor. Refer to
Section 5.0 Bus Operation for details.

5.0 BUS OPERATION

With respect to bus interface, the Intel387 SX Math
CoProcessor is fully synchronous with the CPU.
Both operate at the same rate because each gener-
ates its internal CLK signal by dividing CPUCLK2 by
two. Furthermore, both internal CLK signals are in
phase, because they are synchronized by the same
RESETIN signal.

A bus cycle for the Math CoProcessor starts when
the CPU activates ADSÝ and drives new values on
the address and cycle definition lines (W/RÝ,
M/IOÝ, etc.). The Math CoProcessor examines the
address and cycle definition lines in the same CLK
period during which ADSÝ is activated. This CLK
period is considered the first CLK of the bus cycle.

27

27



Intel387TM SX MATH COPROCESSOR

During this first CLK period, the Math CoProcessor
also examines the W/RÝ input signal to determine
whether the cycle is a read or a write cycle and ex-
amines the CMD0Ý input to determine whether an
opcode, operand, or control/status register transfer
is to occur.

The Intel387 SX Math CoProcessor supports both
pipelined (i.e., overlapped) and non-pipelined bus
cycles. A non-pipelined cycle is one for which the
CPU asserts ADSÝ when no other bus cycle is in
progress. A pipelined bus cycle is one for which the
CPU asserts ADSÝ and provides valid next address
and control signals before the prior Math CoProces-
sor cycle terminates. The CPU may do this as early
as the second CLK period after asserting ADSÝ for
the prior cycle. Pipelining increases the availability of
the bus by at least one CLK period. The Intel387 SX
Math CoProcessor supports pipelined bus cycles in
order to optimize address pipelining by the CPU for
memory cycles.

Bus operation is described in terms of an abstract
state machine. Figure 5-1 illustrates the states and
state transitions for Math CoProcessor bus cycles:

# TI is the idle state. This is the state of the bus
logic after RESET, the state to which bus logic
returns after every non-pipelined bus cycle, and
the state to which bus logic returns after a series
of pipelined cycles.

# TRS is the READYÝ sensitive state. Different
types of bus cycles may require a minimum of
one or two successive TRS states. The bus logic
remains in TRS state until READYÝ is sensed, at
which point the bus cycle terminates. Any number
of wait states may be implemented by delaying
READYÝ, thereby causing additional successive
TRS states.

# TP is the first state for every pipelined bus cycle.
This state is not used by non-pipelined cycles.

Note that the bus logic tracks bus state regardless
of the values on the chip/port select pins. The

240225–7

Figure 5-1. Bus State Diagram

READYOÝ output of the Math CoProcessor indi-
cates when a Math CoProcessor bus cycle may be
terminated if no extra wait states are required. For all
write cycles (except those for the instructions
FLDENV and FRSTOR), READYOÝ is always as-
serted during the first TRS state, regardless of the
number of wait states. For all read cycles (and write
cycles for FLDENV and FRSTOR), READYÝ is al-
ways asserted in the second TRS state, regardless
of the number of wait states. These rules apply to
both pipelined and non-pipelined cycles. Systems
designers may use READYOÝ in one of the follow-
ing ways:

1. Connect it (directly or through logic that ORs
READYÝ signals from other devices) to the
READYÝ inputs of the CPU and Math CoProces-
sor.

2. Use it as one input to a wait-state generator.

The following sections illustrate different types of
Intel387 SX Math CoProcessor bus cycles. Because
different instructions have different amounts of over-
head before, between, and after operand transfer
cycles, it is not possible to represent in a few dia-
grams all of the combinations of successive operand
transfer cycles. The following bus cycle diagrams
show memory cycles between Math CoProcessor
operand transfer cycles. Note however that, during
FRSTOR, some consecutive accesses to the Math
CoProcessor do not have intervening memory ac-
cesses. For the timing relationship between operand
transfer cycles and opcode write or other overhead
activities, see Figure 7-7 ‘‘Other Parameters’’.

5.1 Non-Pipelined Bus Cycles

Figure 5-2 illustrates bus activity for consecutive
non-pipelined bus cycles.

At the second clock of the bus cycle, the Math Co-
Processor enters the TRS state. During this state, it
samples the READYÝ input and stays in this state
as long as READYÝ is inactive.

5.1.1 WRITE CYCLE

In write cycles, the Math CoProcessor drives the
READYOÝ signal for one CLK period during the
second CLK period of the cycle (i.e., the first TRS
state); therefore, the fastest write cycle takes two
CLK periods (see cycle 2 of Figure 5-2). For the in-
structions FLDENV and FRSTOR, however, the
Math CoProcessor forces wait state by delaying the
activation of READYOÝ to the second TRS state
(not shown in Figure 5-2).

The Math CoProcessor samples the D15–D0 inputs
into data latches at the falling edge of CLK as long
as it stays in TRS state.

28

28



Intel387TM SX MATH COPROCESSOR

240225–8

Cycles 1 & 2 represent part of the operand transfer cycle for instructions involving either 4-byte or 8-byte operand loads.
Cycles 3 & 4 represent part of the operand transfer cycle for a store operation.
*Cycles 1 & 2 could repeat here or TI states for various non-operand transfer cycles and overhead.

Figure 5-2. Non-Pipelined Read and Write Cycles

When READYÝ is asserted, the Math CoProcessor
returns to the idle state. Simultaneously with the
Math CoProcessor entering the idle state, the CPU
may assert ADSÝ again, signaling the beginning of
yet another cycle.

5.1.2 READ CYCLE

At the rising edge of CLK in the second CLK period
of the cycle (i.e., the first TRS state), the Math Co-
Processor starts to drive the D15–D0 outputs and
continues to drive them as long as it stays in TRS
state.

At least one wait state must be inserted to ensure
that the CPU latches the correct data. Because the
Math CoProcessor starts driving the data bus only at
the rising edge of CLK in the second clock period of
the bus cycle, not enough time is left for the data
signals to propagate and be latched by the CPU be-
fore the next falling edge of CLK. Therefore, the
Math CoProcessor does not drive the READYOÝ

signal until the third CLK period of the cycle. Thus, if
the READYOÝ output drives the CPU’s READYÝ
input, one wait state is automatically inserted.

Because one wait state is required for Math CoProc-
essor reads, the minimum length of a Math CoProc-
essor read cycle is three CLK periods, as cycle 3 of
Figure 5-2 shows.

When READYÝ is asserted, the Math CoProcessor
returns to the idle state. Simultaneously with the
Math CoProcessor’s entering the idle state, the CPU
may assert ADSÝ again, signaling the beginning of
yet another cycle. The transition from TRS state to
idle state causes the Math CoProcessor to put the
D15–D0 outputs into the floating state, allowing an-
other device to drive the data bus.

5.2 Pipelined Bus Cycles

Because all the activities of the Math CoProcessor
bus interface occur either during the TRS state or

29

29



Intel387TM SX MATH COPROCESSOR

during the transitions to or from that state, the only
difference between a pipelined and a non-pipelined
cycle is the manner of changing from one state to
another. The exact activities during each state are
detailed in the previous section ‘‘Non-pipelined Bus
Cycles’’.

When the CPU asserts ADSÝ before the end of a
bus cycle, both ADSÝ and READYÝ are active dur-
ing a TRS state. This condition causes the Math Co-
Processor to change to a different state named TP.
One clock period after a TP state, the Math CoProc-
essor always returns to the TRS state. In consecu-
tive pipelined cycles, the Math CoProcessor bus log-
ic uses only the TRS and TP states.

Figure 5-3 shows the fastest transitions into and out
of the pipelined bus cycles. Cycle 1 in the figure rep-
resents a non-pipelined cycle. (Non-pipelined write
are always followed by another non-pipelined cycle,

because READYÝ is asserted before the earliest
possible assertion of ADSÝ for the next cycle.)

Figure 5-4 shows pipelined write and read cycles
with one additional TRS state beyond the minimum
required. To delay the assertion of READYÝ re-
quires external logic.

5.3 Mixed Bus Cycles

When the Math CoProcessor bus logic is in the TRS
state, it distinguishes between non-pipelined and
pipelined cycles according to the behavior of ADSÝ
and READYÝ. In a non-pipelined cycle, only
READYÝ is activated, and the transition is from the
TRS state to the idle state. In a pipelined cycle, both
READYÝ and ADSÝ are active, and the transition is
first from TRS state to TP state, then, after one clock
period, back to TRS state.

240225–9

Cycle 1–Cycle 4 represent the operand transfer cycle for an instruction involving a transfer of two 32-bit loads in total.
The opcode write cycles and other overhead are not shown.
Note that the next cycle will be a pipelined cycle if both READYÝ and ADSÝ are sampled active at the end of a TRS
state of the current cycle.

Figure 5-3. Fastest Transitions to and from Pipelined Cycles

30

30



Intel387TM SX MATH COPROCESSOR

240225–10

NOTE:
1. Cycles between operand write to the Math CoProcessor and storing result.

Figure 5-4. Pipelined Cycles with Wait States

31

31



Intel387TM SX MATH COPROCESSOR

5.4 BUSYÝ and PEREQ Timing
Relationship

Figure 5-5 shows the activation of BUSYÝ at the
beginning of instruction execution and its deactiva-

tion upon completion of the instruction. PEREQ is
activated within this interval. If ERRORÝ is ever as-
serted, it would be asserted at least six CPUCLK2
periods after the deactivation of PEREQ and would
be deasserted at least six CPUCLK2 periods before
the deactivation of BUSYÝ.

240225–11NOTES:
1. Instruction dependent.
2. PEREQ is an asynchronous input to the Intel386TM Microprocessor; it may not be asserted (instruction dependent).
3. More operand transfers.
4. Memory read (operand) cycle is not shown.

Figure 5-5. STEN, BUSYÝ, and PEREQ Timing Relationships

32

32



Intel387TM SX MATH COPROCESSOR

6.0 PACKAGE SPECIFICATIONS

6.1 Mechanical Specifications

The Intel387 SX Math CoProcessor is packaged in a
68-pin PLCC package. Detailed mechanical specifi-
cations can be found in the Intel Packaging Specifi-
cation, Order Number 231369.

6.2 Thermal Specifications

The Intel387 SX Math CoProcessor is specified for
operation when the case temperature is within the
range of 0§C to 100§C. The case temperature (TC)
may be measured in any environment to determine
whether the Intel387 SX Math CoProcessor is within
the specified operating range. The case temperature
should be measured at the center of the top surface.

The ambient temperature (TA) is guaranteed as long
as TC is not violated. The ambient temperature can
be calculated from the iJC (thermal resistance con-
stant from the transistor junction to the case) and
iJA (thermal resistance from junction to ambient)
from the following calculations:

Junction Temperature TJ e TC a P*iJC

Ambient Temperature TA e TJ b P*iJA

Case Temperature TC e TA a P* (iJA b iJC)

Values for iJA and iJC are given in Table 6-1 for the
68 pin PLCC package. iJC is given at various air-
flows. Table 6-2 shows the maximum TA allowable
without exceeding TC at various airflows. Note that
TA can be improved further by attaching a heat sink
to the package. P is calculated by using the maxi-
mum hot ICC and maximum VCC.

Table 6-1. Thermal Resistances (§C/Watt) iJC and iJA

Package iJC

iJA versus Airflow - ft/min (m/sec)

0 200 400 600 800 1000

(0) (1.01) (2.03) (3.04) (4.06) (5.07)

68-Pin PLCC 8 30 25 20 15.5 13 12

Table 6-2. Maximum TA at Various Airflows

Package

TA (§C) versus Airflow - ft/min (m/sec)

0 200 400 600 800 1000

(0) (1.01) (2.03) (3.04) (4.06) (5.07)

68-Pin PLCC 84.9 88.3 91.8 94.8 96.6 97.2

Maximum TA is calculated at maximum VCC and maximum ICC.

7.0 ELECTRICAL CHARACTERISTICS

The following specifications represent the targets of the design effort. They are subject to change without
notice. Contact your Intel representative to get the most up-to-date values.

7.1 Absolute Maximum Ratings*

Case Temperature TC Under BiasÀÀÀ0§C to a100§C
Storage Temperature ÀÀÀÀÀÀÀÀÀÀb65§C to a150§C
Voltage on Any Pin

with Respect to Ground ÀÀÀÀÀÀÀb0.5 to VCCa0.5

Power DissipationÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ0.8W

NOTICE: This is a production data sheet. The specifi-
cations are subject to change without notice.

*WARNING: Stressing the device beyond the ‘‘Absolute
Maximum Ratings’’ may cause permanent damage.
These are stress ratings only. Operation beyond the
‘‘Operating Conditions’’ is not recommended and ex-
tended exposure beyond the ‘‘Operating Conditions’’
may affect device reliability.

33

33



Intel387TM SX MATH COPROCESSOR

7.2 D.C. Characteristics

Table 7-1. D.C. Specifications TC e 0§C to a100§C, VCC e 5V g10%

Symbol Parameter Min Max Units Test Conditions

VIL Input LO Voltage b0.3 a0.8 V (Note 1)
VIH Input HI Voltage 2.0 VCCa0.3 V (Note 1)
VCL CPUCLK2 and NUMCLK2

Input LO Voltage b0.3 a0.8 V
VCH CPUCLK2 and NUMCLK2

Input HI Voltage VCCb0.8 VCCa0.8 V

VOL Output LO Voltage 0.45 V (Note 2)
VOH Output HI Voltage 2.4 V (Note 3)
VOH Output HI Voltage VCCb0.8 V (Note 4)

ICC Power Supply Current
Dynamic Mode

Freq. e 33 MHz(5) 150 mA ICC typ. e 135 mA
Freq. e 25 MHz(5) 150 mA ICC typ. e 130 mA
Freq. e 20 MHz(5) 125 mA ICC typ. e 110 mA
Freq. e 16 MHz(5) 100 mA ICC typ. e 90 mA
Freq. e 1 MHz(5) 20 mA ICC typ. e 5 mA

Idle Mode(6) 7 mA ICC typ. e 4 mA

ILI Input Leakage Current g15 mA 0V s VIN s VCC
ILO I/O Leakage Current g15 mA 0.45V s VO s VCC

CIN Input Capacitance 7 10 pF fc e 1 MHz
CO I/O Capacitance 7 12 pF fc e 1 MHz
CCLK Clock Capacitance 7 20 pF fc e 1 MHz

NOTES:
1. This parameter is for all inputs, excluding the clock inputs.
2. This parameter is measured at IOL as follows:

Data e 4.0 mA
READYOÝ, ERRORÝ, BUSYÝ, PEREQ e 25 mA

3. This parameter is measured at IOH as follows:
Data e 1.0 mA
READYOÝ, ERRORÝ, BUSYÝ, PEREQ e 0.6 mA

4. This parameter is measured at IOH as follows:
Data e 0.2 mA
READYOÝ, ERRORÝ, BUSYÝ PEREQ e 0.12 mA

5. Synchronous Clock Mode (CKM e 1). ICC is measured at steady state, maximum capacitive loading on the outputs, and
worst-case D.C. level at the inputs.

6. Intel387 SX Math CoProcessor Internal Idle Mode. Synchronous clock mode, clock and control inputs are active but the
Math CoProcessor is not executing an instruction. Outputs driving CMOS inputs.

34

34



Intel387TM SX MATH COPROCESSOR

7.3 A.C. Characteristics

Table 7-2a. Timing Requirements of the Bus Interface Unit

TC e 0§C to a100§C, VCC e 5V g10% (All measurements made at 1.5V unless otherwise specified)

Pin Symbol Parameter

16 MHz–
33 MHz

Conditions

Test Refer to

Figure

25 MHz

Min Max Min Max

(ns) (ns) (ns) (ns)

CPUCLK2 t1 Period 20 DC 15 DC 2.0V 7.2

CPUCLK2 t2a High Time 6 6.25 2.0V

CPUCLK2 t2b High Time 3 4.5 VCCb0.8V

CPUCLK2 t3a Low Time 6 6.25 2.0V

CPUCLK2 t3b Low Time 4 4.5 0.8V

CPUCLK2 t4 Fall Time 7 4 From VCCb0.8V to 0.8V

CPUCLK2 t5 Rise Time 7 4 From 0.8V to VCCb0.8V

READYOÝ t7a Out Delay 4 25 4 17 CL e 50 pF 7.3

PEREQ t7b Out Delay 4 23 4 21 CL e 50 pF

BUSYÝ t7c Out Delay 4 23 4 21 CL e 50 pF

ERRORÝ t7d Out Delay 4 23 4 23 CL e 50 pF

D15–D0 t8 Out Delay 1 45 0 37 CL e 50 pF 7.4

D15–D0 t10 Setup Time 11 8

D15–D0 t11 Hold Time 11 8

D15–D0 t12* Float Time 6 24 6 19

READYOÝ t13a* Float Time 1 40 1 30 7.6

PEREQ t13b* Float Time 1 40 1 30

BUSYÝ t13c* Float Time 1 40 1 30

ERRORÝ t13d* Float Time 1 40 1 30

ADSÝ t14a Setup Time 15 13 7.4

ADSÝ t15a Hold Time 4 4

W/RÝ t14b Setup Time 15 13

W/RÝ t15b Hold Time 4 4

READYÝ t16a Setup Time 9 7 7.4

READYÝ t17a Hold Time 4 4

CMD0Ý t16b Setup Time 16 13

CMD0Ý t17b Hold Time 2 2

NPS1Ý, NPS2 t16c Setup Time 16 13

NPS1Ý, NPS2 t17c Hold Time 2 2

STEN t16d Setup Time 15 13

STEN t17d Hold Time 2 2

RESETIN t18 Setup Time 8 5 7.5

RESETIN t19 Hold Time 3 2

NOTE:
*Float condition occurs when maximum output current becomes less than ILO in magnitude. Float delay is not tested.

35

35



Intel387TM SX MATH COPROCESSOR

Table 7-2b. Timing Requirements of the Execution Unit (Asynchronous Mode CKM e 0)

Pin Symbol Parameter

16 MHz–
33 MHz

Conditions

Test Refer to

Figure

25 MHz

Min Max Min Max

(ns) (ns) (ns) (ns)

NUMCLK2 t1 Period 20 500 15 500 2.0V 7.2

NUMCLK2 t2a High Time 6 6.25 2.0V

NUMCLK2 t2b High Time 3 4.5 VCCb0.8V

NUMCLK2 t3a Low Time 6 6.25 2.0V

NUMCLK2 t3b Low Time 4 4.5 0.8V

NUMCLK2 t4 Fall Time 7 6 From VCCb0.8V to 0.8V

NUMCLK2 t5 Rise Time 7 6 From 0.8V to VCCb0.8V

NUMCLK2/ Ratio 10/16 14/10 10/16 14/10

CPUCLK2

NOTE:
If not used (CKM e 1) tie NUMCLK2 low.

Table 7-2c. Other A.C. Parameters

Pin Symbol Parameter Min Max Units

RESETIN t30 Duration 40 NUMCLK2

RESETIN t31 RESETIN Inactive to 1st 50 NUMCLK2

Opcode Write

BUSYÝ t32 Duration 6 CPUCLK2

BUSYÝ, ERRORÝ t33 ERRORÝ (In)Active to 6 CPUCLK2

BUSYÝ Inactive

PEREQ, ERRORÝ t34 PEREQ Inactive to 6 CPUCLK2

ERRORÝ Active

READYÝ, BUSYÝ t35 READYÝ Active to BUSYÝ 0 4 CPUCLK2

Active

READYÝ t36 Minimum Time from 4 CPUCLK2

Opcode Write to

Opcode/Operand Write

READYÝ t37 Minimum Time from 4 CPUCLK2

Operand Write to Operand

Write

36

36



Intel387TM SX MATH COPROCESSOR

240225–12

NOTE:
*Typical part under worst-case conditions.

Figure 7-1a. Typical Output Valid Delay vs Load Capacitance at Max Operating Temperature

240225–13 240225–14

NOTE:
*Typical part under worst-case conditions.

Figure 7-1b. Typical Output Slew Time vs Load Capacitance at Max Operating Temperature

240225–15

Figure 7-1c. Maximum ICC vs Frequency

37

37



Intel387TM SX MATH COPROCESSOR

240225–16

Figure 7-2. CPUCLK2/NUMCLK2 Waveform and Measurement Points for Input/Output

240225–17

Figure 7-3. Output Signals

38

38



Intel387TM SX MATH COPROCESSOR

240225–18

Figure 7-4. Input and I/O Signals

240225–19

NOTE:
The second internal processor phase following RESET high to low transition is PH2.

Figure 7-5. RESET Signal

39

39



Intel387TM SX MATH COPROCESSOR

240225–20

Figure 7-6. Float from STEN

240225–21

*In NUMCLK2’s
**or last operand

NOTE:
1. Memory read (operand) cycle is not shown.

Figure 7-7. Other Parameters

40

40



Intel387TM SX MATH COPROCESSOR

8.0 INTEL387 SX MATH
COPROCESSOR INSTRUCTION
SET

Instructions for the Intel387 SX Math CoProcessor
assume one of the five forms shown in Table 8-1. In
all cases, instructions are at least two bytes long and
begin with the bit pattern 11011B, which identifies
the ESCAPE class of instruction. Instructions that
refer to memory operands specify addresses using
the CPU’s addressing modes.

MOD (Mode field) and R/M (Register/Memory spec-
ifier) have the same interpretation as the corre-
sponding fields of CPU instructions (refer to Pro-

grammer’s Reference Manual for the CPU). SIB
(Scale Index Base) byte and DISP (displacement)
are optionally present in instructions that have MOD
and R/M fields. Their presence depends on the val-
ues of MOD and R/M, as for instructions of the CPU.

The instruction summaries that follow in Table 8-2
assume that the instruction has been prefetched,
decoded, and is ready for execution; that bus cycles
do not require wait states; that there are no local bus
HOLD requests delaying processor access to the
bus; and that no exceptions are detected during in-
struction execution. If the instruction has MOD and
R/M fields that call for both base and index regis-
ters, add one clock.

Table 8-1. Instruction Formats

Instruction Optional

FieldsFirst Byte Second Byte

1 11011 OPA 1 MOD 1 OPB R/M SIB DISP

2 11011 MF OPA MOD OPB* R/M SIB DISP

3 11011 d P OPA 1 1 OPB* ST(i)

4 11011 0 0 1 1 1 1 OP

5 11011 0 1 1 1 1 1 OP

15–11 10 9 8 7 6 5 4 3 2 1 0

OP e Instruction opcode, possibly split into two fields OPA and OPB
MF e Memory Format

00 - 32-bit real
01 - 32-bit integer
10 - 64-bit real
11 - 16-bit integer

d e Destination
0 - Destination is ST(0)
1 - Destination is ST(i)

R XOR d e 0 - Destination (op) Source
R XOR d e 1 - Source (op) Destination
*In FSUB and FDIV, the low-order bit of OPB is the R (reversed) bit
P e POP

0 - Do not pop stack
1 - Pop stack after operation

ESC e 11011
ST(i) e Register stack element i

000 e Stack top
001 e Second stack element

#
#
#

111 e Eighth stack element

41

41



Intel387TM SX MATH COPROCESSOR

Encoding Clock Count Range

Instruction
Byte 0 Byte 1

Optional 32-Bit 32-Bit 64-Bit 16-Bit
Bytes 2–6 Real Integer Real Integer

DATA TRANSFER

FLD e Loada

Integer/real memory to ST(0) ESC MF 1 MOD 000 R/M SIB/DISP 11–20 28–44 20–27 42–53

Long integer memory to ST(0) ESC 111 MOD 101 R/M SIB/DISP 30–58

Extended real memory to ST(0) ESC 011 MOD 101 R/M SIB/DISP 16–47

BCD memory to ST(0) ESC 111 MOD 100 R/M SIB/DISP 49–101

ST(i) to ST(0) ESC 001 11000 ST(i) 7–12

FST e Store

ST(0) to integer/real memory ESC MF 1 MOD 010 R/M SIB/DISP 27–45 59–78 59 58–76

ST(0) to ST(i) ESC 101 11010 ST(i) 7–11

FSTP e Store and Pop

ST(0) to integer/real memory ESC MF 1 MOD 011 R/M SIB/DISP 27–45 59–78 59 58–76

ST(0) to long integer memory ESC 111 MOD 111 R/M SIB/DISP 64–86

ST(0) to extended real memory ESC 011 MOD 111 R/M SIB/DISP 50–56

ST(0) to BCD memory ESC 111 MOD 110 R/M SIB/DISP 116–194

ST(0) to ST(i) ESC 101 11011 ST (i) 7–11

FXCH e Exchange

ST(i) and ST(0) ESC 001 11001 ST(i) 10–17

COMPARISON

FCOM e Compare

Integer/real memory to ST(0) ESC MF 0 MOD 010 R/M SIB/DISP 15–27 36–54 18–31 39–62

ST(i) to ST(0) ESC 000 11010 ST(i) 13–21

FCOMP e Compare and pop

Integer/real memory to ST(0) ESC MF 0 MOD 011 R/M SIB/DISP 15–27 36–54 18–31 39–62

ST(i) to ST(0) ESC 000 11011 ST(i) 13–21

FCOMPP e Compare and pop twice

ST(1) to ST(0) ESC 110 1101 1001 13–21

FTST e Test ST(0) ESC 001 1110 0100 17–25

FUCOM e Unordered compare ESC 101 11100 ST(i) 13–21

FUCOMP e Unordered compare

and pop ESC 101 11101 ST(i) 13–21

FUCOMPP e Unordered compare
and pop twice ESC 010 1110 1001 13–21

FXAM e Examine ST(0) ESC 001 1110 0101 24-37

Shaded areas indicate instructions not available in 8087/80287.

NOTE:
a. When loading single or double precision zero from memory, add 5 clocks.

42

42



Intel387TM SX MATH COPROCESSOR

Encoding Clock Count Range

Instruction
Byte 0 Byte 1

Optional 32-Bit 32-Bit 64-Bit 16-Bit
Bytes 2–6 Real Integer Real Integer

ARITHMETIC

FADD e Add

Integer/real memory to ST(0) ESC MF 0 MOD 000 R/M SIB/DISP 14–31 36–58 19–38 38–64

ST(i) and ST(0) ESC d P 0 11000 ST(i) SIB/DISP 12–26b

FSUB e Subtract

Integer/real memory with ST(0) ESC MF 0 MOD 10 R R/M SIB/DISP 14–31 36–58 19–38 38–64c

ST(i) to ST(0) ESC d P 0 1110 R R/M 12–26d

FMUL e Multiply

Integer/real memory with ST(0) ESC MF 0 MOD 001 R/M SIB/DISP 21–33 45–73 27–57 46–74

ST(i) and ST(0) ESC d P 0 1100 1 R/M 17–50e

FDIV e Divide

Integer/real memory with ST(0) ESC MF 0 MOD 11 R R/M SIB/DISP 79–87 103–116f 85–95 105–124g

ST(i) and ST(0) ESC d P 0 1111 R R/M 77–80h

FSQRT i e Square root ESC 001 1111 1010 97–111

FSCALE e Scale ST(0) by ST(1) ESC 001 1111 1101 44–82

FPREM e Partial remainder ESC 001 1111 1000 56–140

FPREM1 e Partial remainder (IEEE) ESC 001 1111 0101 81–168

FRNDINT e Round ST(0) to integer ESC 001 1111 1100 41–62

FXTRACT e Extract components
of ST(0) ESC 001 1111 0100 42–63

FABS e Absolute value of ST(0) ESC 001 1110 0001 14–21

FCHS e Change sign of ST(0) ESC 001 1110 0000 17–24

TRANSCENDENTAL

FCOSk e Cosine of ST(0) ESC 001 1111 1111 122–680

FPTANk e Partial tangent of ST(0) ESC 001 1111 0010 162–430j

FPATAN e Partial arctangent of ST(0) ESC 001 1111 0011 250–420

FSINk e Sine of ST(0) ESC 001 1111 1110 121–680

FSINCOSk e Sine and cosine of ST(0) ESC 001 1111 1011 150–650

F2XM1l e 2ST(0) b 1 ESC 001 1111 0000 167–410

FYL2Xm e ST(1) * log2ST(0) ESC 001 1111 0001 99–436

FYL2XP1n e ST(1) * log2[ST(0) a 1.0] ESC 001 1111 1001 210–447

Shaded areas indicate instructions not available in 8087/80287.

NOTES:
b. Add 3 clocks to the range when d e 1.
c. Add 1 clock to each range when R e 1.
d. Add 3 clocks to the range when d e 0.
e. typical e 52 (When d e 0, 46–54, typical e 49).
f. Add 1 clock to the range when R e 1.
g. 135–141 when R e 1.
h. Add 3 clocks to the range when d e 1.
i. b0 s ST(0) s a%.
j. These timings hold for operands in the range lxl k q. For operands not in this range, up to 76 additional clocks may be

needed to reduce the operand.
k. 0 s ST(0) k 263.
l. b1.0 s ST(0) s 1.0.
m. 0 s ST(0) k %, b% k ST(1) k a%.
n. 0 s lST(0)l k [2-SQRT(2)]/2, b% kST(1) k a%.

43

43



Intel387TM SX MATH COPROCESSOR

Encoding Clock Count Range

Instruction
Byte 0 Byte 1

Optional 32-Bit 32-Bit 64-Bit 16-Bit
Bytes 2–6 Real Integer Real Integer

CONSTANTS

FLDZ e Load a0.0 to ST(0) ESC 001 1110 1110 10–17

FLD1 e Load a1.0 to ST(0) ESC 001 1110 1000 15–22

FLDPI e Load q to ST(0) ESC 001 1110 1011 26–36

FLDL2T e Load log2(10) to ST(0) ESC 001 1110 1001 26–36

FLDL2E e Load log2(e) to ST(0) ESC 001 1110 1010 26–36

FLDLG2 e Load log10(2) to ST(0) ESC 001 1110 1100 25–35

FLDLN2 e Load loge(2) to ST(0) ESC 001 1110 1101 26–38

PROCESSOR CONTROL

FINIT e Initialize Math CoProcessor ESC 011 1110 0011 33

FLDCW e Load control word from memory ESC 001 MOD 101 R/M SIB/DISP 19

FSTCW e Store control word to memory ESC 001 MOD 111 R/M SIB/DISP 15

FSTSW e Store status word to memory ESC 101 MOD 111 R/M SIB/DISP 15

FSTSW AX e Store status word to AX ESC 111 1110 0000 13

FCLEX e Clear exceptions ESC 011 1110 0010 11

FSTENV e Store environment ESC 001 MOD 110 R/M SIB/DISP 117–118

FLDENV e Load environment ESC 001 MOD 100 R/M SIB/DISP 85

FSAVE e Save state ESC 101 MOD 110 R/M SIB/DISP 402–403

FRSTOR e Restore state ESC 101 MOD 100 R/M SIB/DISP 415

FINCSTP e Increment stack pointer ESC 001 1111 0111 21

FDECSTP e Decrement stack pointer ESC 001 1111 0110 22

FFREE e Free ST(i) ESC 101 1100 0 ST(i) 18

FNOP e No operations ESC 001 1101 0000 12

44

44



Intel387TM SX MATH COPROCESSOR

APPENDIX A
INTEL387 SX MATH COPROCESSOR

COMPATIBILITY

A.1 8087/80287 Compatibility

This section summarizes the differences between the Intel387 SX Math CoProcessor and the 80287 Math
CoProcessor. Any migration from the 8087 directly to the Intel387 SX Math CoProcessor must also take into
account the differences between the 8087 and the 80287 Math CoProcessor as listed in Appendix B.

Many changes have been designed into the Intel387 SX Math CoProcessor to directly support the IEEE
standard in hardware. These changes result in increased performance by eliminating the need for software
that supports the standard.

A.1.1 GENERAL DIFFERENCES

The Intel387 SX Math CoProcessor supports only affine closure for infinity arithmetic, not projective closure.

Operands for FSCALE and FPATAN are no longer restricted in range (except for g%); F2XM1 and FPTAN
accept a wider range of operands.

Rounding control is in effect for FLD constant.

Software cannot change entries of the tag word to values (other than empty) that differ from actual register
contents.

After reset, FINIT, and incomplete FPREM, the Intel387 SX Math CoProcessor resets to zero the condition
code bits C3–C0 of the status word.

In conformance with the IEEE standard, the Intel387 SX Math CoProcessor does not support the special data
formats pseudo-zero, pseudo-NaN, pseudo-infinity, and unnormal.

The denormal exception has a different purpose on the Intel387 SX Math CoProcessor. A system that uses the
denormal exception handler solely to normalize the denormal operands, would better mask the denormal
exception on the Intel387 SX Math CoProcessor. The Intel387 SX Math CoProcessor automatically normalizes
denormal operands when the denormal exception is masked.

A-1

45



Intel387TM SX MATH COPROCESSOR

A.1.2 EXCEPTIONS

A number of differences exist due to changes in the IEEE standard and to functional improvements to the
architecture of the Intel387 SX Math CoProcessor:

1. When the overflow or underflow exception is masked, the Intel387 SX Math CoProcessor differs from the
80287 in rounding when overflow or underflow occurs. The Intel387 SX Math CoProcessor produces
results that are consistent with the rounding mode.

2. When the underflow exception is masked, the Intel387 SX Math CoProcessor sets its underflow flag only if
there is also a loss of accuracy during denormalization.

3. Fewer invalid-operations exceptions due to denormal operand, because the instructions FSQRT, FDIV,
FPREM, and conversions to BCD or to integer normalize denormal operands before proceeding.

4. The FSQRT, FBSTP, and FPREM instructions may cause underflow, because they support denormal
operands.

5. The denormal exception can occur during the transcendental instruction and the FXTRACT instruction.

6. The denormal exception no longer takes precedence over all other exceptions.

7. When the denormal exception is masked, the Intel387 SX Math CoProcessor automatically normalizes
denormal operands. The 8087/80287 performs unnormal arithmetic, which might produce an unnormal
result.

8. When the operand is zero, the FXTRACT instruction reports a zero-divide exception and leaves b% in
ST(1).

9. The status word has a new bit (SF) that signals when invalid-operation exceptions are due to stack
underflow or overflow.

10. FLD extended precision no longer reports denormal exceptions, because the instruction is not numeric.

11. FLD single/double precision when the operand is denormal converts the number to extended precision
and signals the denormal operand exception. When loading a signaling NaN, FLDsingle/double precision
signals an invalid-operation exception.

12. The Intel387 SX Math CoProcessor only generates quiet NaNs (as on the 80287); however, the Intel387
SX Math CoProcessor distinguishes between quiet NaNs and signaling NaNs. Signaling NaNs trigger
exceptions when they are used as operands; quiet NaNs do not (except for FCOM, FIST, and FBSTP
which also raise IE for quiet NaNs).

13. When stack overflow occurs during FPTAN and overflow is masked, both ST(0) and ST(1) contain quiet
NaNs. The 80287/8087 leaves the original operand in ST(1) intact.

14. When the scaling factor is g%, the FSCALE instruction behaves as follows:

# FSCALE (0, %) generates the invalid operation exception.

# FSCALE (finite, b%) generates zero with the same sign as the scaled operand.

# FSCALE (finite, a%) generates % with the same sign as the scaled operand.

The 8087/80287 returns zero in the first case and raises the invalid-operation exception in the other
cases.

15. The Intel387 SX Math CoProcessor returns signed infinity/zero as the unmasked response to massive
overflow/underflow. The 8087 and 80287 support a limited range for the scaling factor; within this range
either massive overflow/underflow do not occur or undefined results are produced.

A-2

46



Intel387TM SX MATH COPROCESSOR

APPENDIX B
COMPATIBILITY BETWEEN THE 80287

AND 8087 MATH COPROCESSOR

The 80286/80287 operating in Real Address mode will execute 8086/8087 programs without major modifica-
tion. However, because of differences in the handling of numeric exceptions by the 80287 Math CoProcessor
and the 8087 Math CoProcessor, exception handling routinesmay need to be changed. This appendix summa-
rizes the differences between the 80287 Math CoProcessor and the 8087 Math CoProcessor, and provides
details showing how 8087/8087 programs can be ported to the 80286/80287.

1. The Math CoProcessor signals exceptions through a dedicated ERRORÝ line to the 80286. The Math
CoProcessor error signal does not pass through an interrupt controller (the 8087 INT signal does). There-
fore, any interrupt controller oriented instructions in numeric exception handlers for the 8086/8087 should
be deleted.

2. The 8087 instructions FENI and FDISI perform no useful function in the 80287. If the 80287 encounters one
of these opcodes in its instruction stream, the instruction will effectively be ignored; none of the 80287
internal states will be updated. While 8086/8087 programs containing the instruction may be executed on
the 80286/80287, it is unlikely that the exception handling routines containing these instructions will be
completely portable to the 80287.

3. Interrupt vector 16 must point to the numeric exception handling routine.

4. The ESC instruction address saved in the 80287 includes any leading prefixes before the ESC opcode. The
corresponding address saved in the 8087 does not include leading prefixes.

5. In Protected Address mode, the format of the 80287’s saved instruction and address pointers is different
than for the 8087. The instruction opcode is not saved in Protected mode; exception handlers will have to
retrieve the opcode from memory if needed.

6. Interrupt 7 will occur in the 80286 when executing ESC instructions with either TS (task switched) or EM
(emulation) of the 80286 MSW set (TS e 1 or EM e 1). It TS is set, then a WAIT instruction will also cause
interrupt 7. An exception handler should be included in 80286/80287 code to handle these situations.

7. Interrupt 9 will occur if the second or subsequent words of a floating point operand fall outside a segment’s
size. Interrupt 13 will occur if the starting address of a numeric operand falls outside a segment’s size. An
exception handler should be included in 80286/80287 code to report these programming errors.

8. Except for the processor control instructions, all of the 80287 numeric instructions are automatically syn-
chronized by the 80286 CPU; the 80286 CPU automatically tests the BUSYÝ line from the 80287 to ensure
that the 80287 has completed its previous instruction before executing the next ESC instruction. No explicit
WAIT instructions are required to assure this synchronization. For the 8087 used witth 8086 and 8088
processors, explicit WAITs are required before each numeric instruction to ensure synchronization. Al-
though 8086/8087 programs having explicit WAIT instructions will execute perfectly on the 80286/80287
without reassembly, these WAIT instructions are unnecessary.

9. Since the 80287 does not require WAIT instructions before each numeric instruction, the ASM286 assem-
bler does not automatically generate these WAIT instuctions. The ASM86 assembler, however, automati-
cally precedes every ESC instruction with a WAIT instruction. Although numeric routines generated using
the ASM86 assembler will generally execute correctly on the 80286/80287, reassembly using ASM286
may result in a more compact code image.

The processor control instructions for the 80287 may be coded using either a WAIT or No-WAIT form of
mnemonic. The WAIT forms of these instructions cause ASM286 to precede the ESC instructions with a CPU
WAIT instruction, in the identical manner as does ASM86.

B-1

47



*Other brands and names are the property of their respective owners.
Information in this document is provided in connection with Intel products. Intel assumes no liability whatsoever, including infringement of any patent or
copyright, for sale and use of Intel products except as provided in Intel’s Terms and Conditions of Sale for such products. Intel retains the right to make
changes to these specifications at any time, without notice. Microcomputer Products may have minor variations to this specification known as errata.

November 1992COPYRIGHT © INTEL CORPORATION, 1995 Order Number: 270640-004

80C187
80-BIT MATH COPROCESSOR

Y High Performance 80-Bit Internal
Architecture

Y Implements ANSI/IEEE Standard 754-
1985 for Binary Floating-Point
Arithmetic

Y Upward Object-Code Compatible from
8087

Y Fully Compatible with 387DX and 387SX
Math Coprocessors. Implements all 387
Architectural Enhancements over 8087

Y Directly Interfaces with 80C186 CPU

Y 80C186/80C187 Provide a Software/
Binary Compatible Upgrade from
80186/82188/8087 Systems

Y Expands 80C186’s Data Types to
Include 32-, 64-, 80-Bit Floating-Point,
32-, 64-Bit Integers and 18-Digit BCD
Operands

Y Directly Extends 80C186’s Instruction
Set to Trigonometric, Logarithmic,
Exponential, and Arithmetic
Instructions for All Data Types

Y Full-Range Transcendental Operations
for SINE, COSINE, TANGENT,
ARCTANGENT, and LOGARITHM

Y Built-In Exception Handling

Y Eight 80-Bit Numeric Registers, Usable
as Individually Addressable General
Registers or as a Register Stack

Y Available in 40-Pin CERDIP and 44-Pin
PLCC Package
(See Packaging Outlines and Dimensions, Order Ý231369)

The Intel 80C187 is a high-performance math coprocessor that extends the architecture of the 80C186 with
floating-point, extended integer, and BCD data types. A computing system that includes the 80C187 fully
conforms to the IEEE Floating-Point Standard. The 80C187 adds over seventy mnemonics to the instruction
set of the 80C186, including support for arithmetic, logarithmic, exponential, and trigonometric mathematical
operations. The 80C187 is implemented with 1.5 micron, high-speed CHMOS III technology and packaged in
both a 40-pin CERDIP and a 44-pin PLCC package. The 80C187 is upward object-code compatible from the
8087 math coprocessor and will execute code written for the 80387DX and 80387SX math coprocessors.



80C187

2
7
0
6
4
0
–
1

Figure 1. 80C187 Block Diagram

2



80C187

80C187 Data Registers
79 78 64 63 0

R0 SIGN EXPONENT SIGNIFICAND

R1

R2

R3

R4

R5

R6

R7

15 0 15 0

CONTROL REGISTER INSTRUCTION POINTER

STATUS REGISTER DATA POINTER

TAG WORD

Figure 2. Register Set

FUNCTIONAL DESCRIPTION

The 80C187 Math Coprocessor provides arithmetic
instructions for a variety of numeric data types. It
also executes numerous built-in transcendental
functions (e.g. tangent, sine, cosine, and log func-
tions). The 80C187 effectively extends the register
and instruction set of the 80C186 CPU for existing
data types and adds several new data types as well.
Figure 2 shows the additional registers visible to pro-
grams in a system that includes the 80C187. Essen-
tially, the 80C187 can be treated as an additional
resource or an extension to the CPU. The 80C186
CPU together with an 80C187 can be used as a sin-
gle unified system.

A 80C186 system that includes the 80C187 is com-
pletely upward compatible with software for the
8086/8087.

The 80C187 interfaces only with the 80C186 CPU.
The interface hardware for the 80C187 is not imple-
mented on the 80C188.

PROGRAMMING INTERFACE

The 80C187 adds to the CPU additional data types,
registers, instructions, and interrupts specifically de-
signed to facilitate high-speed numerics processing.
All new instructions and data types are directly sup-
ported by the assembler and compilers for high-level
languages. The 80C187 also supports the full
80387DX instruction set.

All communication between the CPU and the
80C187 is transparent to applications software. The

CPU automatically controls the 80C187 whenever a
numerics instruction is executed. All physical memo-
ry and virtual memory of the CPU are available for
storage of the instructions and operands of pro-
grams that use the 80C187. All memory addressing
modes are available for addressing numerics oper-
ands.

The end of this data sheet lists by class the instruc-
tions that the 80C187 adds to the instruction set.

NOTE:
The 80C187 Math Coprocessor is also referred to
as a Numeric Processor Extension (NPX) in this
document.

Data Types

Table 1 lists the seven data types that the 80C187
supports and presents the format for each type. Op-
erands are stored in memory with the least signifi-
cant digit at the lowest memory address. Programs
retrieve these values by generating the lowest ad-
dress. For maximum system performance, all oper-
ands should start at even physical-memory address-
es; operands may begin at odd addresses, but will
require extra memory cycles to access the entire op-
erand.

Internally, the 80C187 holds all numbers in the ex-
tended-precision real format. Instructions that load
operands from memory automatically convert oper-
ands represented in memory as 16-, 32-, or 64-bit
integers, 32- or 64-bit floating-point numbers, or 18-
digit packed BCD numbers into extended-precision
real format. Instructions that store operands in mem-
ory perform the inverse type conversion.

3



80C187

Numeric Operands

A typical NPX instruction accepts one or two oper-
ands and produces one (or sometimes two) results.
In two-operand instructions, one operand is the con-
tents of an NPX register, while the other may be a
memory location. The operands of some instructions
are predefined; for example, FSQRT always takes
the square root of the number in the top stack ele-
ment (refer to the section on Data Registers).

Register Set

Figure 2 shows the 80C187 register set. When an
80C187 is present in a system, programmers may
use these registers in addition to the registers nor-
mally available on the CPU.

DATA REGISTERS

80C187 computations use the extended-precision
real data type.

Table 1. Data Type Representation in Memory

270640–2

NOTES:
1. S e Sign bit (0 e Positive, 1 e Negative)
2. dn e Decimal digit (two per byte)
3. X e Bits have no significance; 80C187 ignores when loading, zeros when storing
4. U e Position of implicit binary point
5. I e Integer bit of significand; stored in temporary real, implicit in single and double precision
6. Exponent Bias (normalized values):

Single: 127 (7FH)
Double: 1023 (3FFH)
Extended Real: 16383 (3FFFH)

7. Packed BCD: (b1)S (D17 . . . D0)
8. Real: (b1)S (2E-BIAS) (F0, F1 . . . )

4



80C187

The 80C187 register set can be accessed either as
a stack, with instructions operating on the top one or
two stack elements, or as individually addressable
registers. The TOP field in the status word identifies
the current top-of-stack register. A ‘‘push’’ operation
decrements TOP by one and loads a value into the
new top register. A ‘‘pop’’ operation stores the value
from the current top register and then increments
TOP by one. The 80C187 register stack grows
‘‘down’’ toward lower-addressed registers.

Instructions may address the data registers either
implicitly or explicitly. Many instructions operate on
the register at the TOP of the stack. These instruc-
tions implicitly address the register at which TOP
points. Other instructions allow the programmer to
explicitly specify which register to use. This explicit
addressing is also relative to TOP.

TAG WORD

The tag word marks the content of each numeric
data register, as Figure 3 shows. Each two-bit tag
represents one of the eight data registers. The prin-
cipal function of the tag word is to optimize the
NPX’s performance and stack handling by making it
possible to distinguish between empty and nonemp-
ty register locations. It also enables exception han-
dlers to identify special values (e.g. NaNs or denor-
mals) in the contents of a stack location without the
need to perform complex decoding of the actual
data.

STATUS WORD

The 16-bit status word (in the status register) shown
in Figure 4 reflects the overall state of the 80C187. It
may be read and inspected by programs.

Bit 15, the B-bit (busy bit) is included for 8087 com-
patibility only. It always has the same value as the
ES bit (bit 7 of the status word); it does not indicate
the status of the BUSY output of 80C187.

Bits 13–11 (TOP) point to the 80C187 register that
is the current top-of-stack.

The four numeric condition code bits (C3–C0) are
similar to the flags in a CPU; instructions that per-
form arithmetic operations update these bits to re-
flect the outcome. The effects of these instructions
on the condition code are summarized in Tables 2
through 5.

Bit 7 is the error summary (ES) status bit. This bit is
set if any unmasked exception bit is set; it is clear
otherwise. If this bit is set, the ERROR signal is as-
serted.

Bit 6 is the stack flag (SF). This bit is used to distin-
guish invalid operations due to stack overflow or un-
derflow from other kinds of invalid operations. When
SF is set, bit 9 (C1) distinguishes between stack
overflow (C1 e 1) and underflow (C1 e 0).

Figure 4 shows the six exception flags in bits 5–0 of
the status word. Bits 5–0 are set to indicate that the
80C187 has detected an exception while executing
an instruction. A later section entitled ‘‘Exception
Handling’’ explains how they are set and used.

Note that when a new value is loaded into the status
word by the FLDENV or FRSTOR instruction, the
value of ES (bit 7) and its reflection in the B-bit (bit
15) are not derived from the values loaded from
memory but rather are dependent upon the values of
the exception flags (bits 5–0) in the status word and
their corresponding masks in the control word. If ES
is set in such a case, the ERROR output of the
80C187 is activated immediately.

15 0

TAG (7) TAG (6) TAG (5) TAG (4) TAG (3) TAG (2) TAG (1) TAG (0)

NOTE:
The index i of tag(i) is not top-relative. A program typically uses the ‘‘top’’ field of Status Word to determine
which tag(i) field refers to logical top of stack.
TAG VALUES:

00 e Valid
01 e Zero
10 e QNaN, SNaN, Infinity, Denormal and Unsupported Formats
11 e Empty

Figure 3. Tag Word

5



80C187

270640–3
ES is set if any unmasked exception bit is set; cleared otherwise.
See Table 2 for interpretation of condition code.
TOP values:

000 e Register 0 is Top of Stack
001 e Register 1 is Top of Stack

#
#
#

111 e Register 7 is Top of Stack
For definitions of exceptions, refer to the section entitled,
‘‘Exception Handling’’

Figure 4. Status Word

6



80C187

CONTROL WORD

The NPX provides several processing options that are selected by loading a control word from memory into
the control register. Figure 5 shows the format and encoding of fields in the control word.

Table 2. Condition Code Interpretation

Instruction C0(S) C3(Z) C1(A) C2(C)

FPREM, FPREM1 Three Least Significant Reduction

(See Table 3) Bits of Quotient 0 e Complete

Q2 Q0 Q1 1 e Incomplete

or O/U

FCOM, FCOMP,

FCOMPP, FTST Result of Comparison Zero or Operand is not

FUCOM, FUCOMP, (See Table 4) O/U Comparable (Table 4)

FUCOMPP, FICOM,

FICOMP

FXAM Operand Class Sign Operand Class

(See Table 5) or O/U (Table 5)

FCHS, FABS, FXCH,

FINCSTP, FDECSTP,

Constant Loads,
UNDEFINED

Zero
UNDEFINED

FXTRACT, FLD, or O/U

FILD, FBLD,

FSTP (Ext Real)

FIST, FBSTP,

FRNDINT, FST,

FSTP, FADD, FMUL,
UNDEFINED Roundup UNDEFINED

FDIV, FDIVR,
or O/U

FSUB, FSUBR,

FSCALE, FSQRT,

FPATAN, F2XM1,

FYL2X, FYL2XP1

FPTAN, FSIN,
UNDEFINED

Roundup Reduction

FCOS, FSINCOS or O/U, 0 e Complete

Undefined 1 e Incomplete

if C2 e 1

FLDENV, FRSTOR Each Bit Loaded from Memory

FLDCW, FSTENV,

FSTCW, FSTSW,
UNDEFINED

FCLEX, FINIT,

FSAVE

O/U When both IE and SF bits of status word are set, indicating a stack exception, this bit distinguishes between
stack overflow (C1 e 1) and underflow (C1 e 0).

Reduction If FPREM or FPREM1 produces a remainder that is less than the modulus, reduction is complete. When
reduction is incomplete the value at the top of the stack is a partial remainder, which can be used as input to
further reduction. For FPTAN, FSIN, FCOS, and FSINCOS, the reduction bit is set if the operand at the top of
the stack is too large. In this case the original operand remains at the top of the stack.

Roundup When the PE bit of the status word is set, this bit indicates whether one was added to the least significant bit of
the result during the last rounding.

UNDEFINED Do not rely on finding any specific value in these bits.

7



80C187

The low-order byte of this control word configures
exception masking. Bits 5–0 of the control word
contain individual masks for each of the six excep-
tions that the 80C187 recognizes.

The high-order byte of the control word configures
the 80C187 operating mode, including precision,
rounding, and infinity control.

# The ‘‘infinity control bit’’ (bit 12) is not meaningful
to the 80C187, and programs must ignore its val-
ue. To maintain compatibility with the 8087, this
bit can be programmed; however, regardless of
its value, the 80C187 always treats infinity in the
affine sense (b% k a%). This bit is initialized
to zero both after a hardware reset and after the
FINIT instruction.

# The rounding control (RC) bits (bits 11–10) pro-
vide for directed rounding and true chop, as well

as the unbiased round to nearest even mode
specified in the IEEE standard. Rounding control
affects only those instructions that perform
rounding at the end of the operation (and thus
can generate a precision exception); namely,
FST, FSTP, FIST, all arithmetic instructions (ex-
cept FPREM, FPREM1, FXTRACT, FABS, and
FCHS), and all transcendental instructions.

# The precision control (PC) bits (bits 9–8) can be
used to set the 80C187 internal operating preci-
sion of the significand at less than the default of
64 bits (extended precision). This can be useful in
providing compatibility with early generation arith-
metic processors of smaller precision. PC affects
only the instructions ADD, SUB, DIV, MUL, and
SQRT. For all other instructions, either the preci-
sion is determined by the opcode or extended
precision is used.

Table 3. Condition Code Interpretation after FPREM and FPREM1 Instructions

Condition Code Interpretation after

C2 C3 C1 C0
FPREM and FPREM1

Incomplete Reduction:

1 X X X Further Iteration Required

for Complete Reduction

Q1 Q0 Q2 Q MOD 8

0 0 0 0

0 1 0 1 Complete Reduction:

0
1 0 0 2 C0, C3, C1 Contain Three Least

1 1 0 3 Significant Bits of Quotient

0 0 1 4

0 1 1 5

1 0 1 6

1 1 1 7

Table 4. Condition Code Resulting from Comparison

Order C3 C2 C0

TOP l Operand 0 0 0

TOP k Operand 0 0 1

TOP e Operand 1 0 0

Unordered 1 1 1

8



80C187

Table 5. Condition Code Defining Operand Class

C3 C2 C1 C0 Value at TOP

0 0 0 0 a Unsupported

0 0 0 1 a NaN

0 0 1 0 b Unsupported

0 0 1 1 b NaN

0 1 0 0 a Normal

0 1 0 1 a Infinity

0 1 1 0 b Normal

0 1 1 1 b Infinity

1 0 0 0 a 0

1 0 0 1 a Empty

1 0 1 0 b 0

1 0 1 1 b Empty

1 1 0 0 a Denormal

1 1 1 1 b Denormal

INSTRUCTION AND DATA POINTERS

Because the NPX operates in parallel with the CPU,
any exceptions detected by the NPX may be report-
ed after the CPU has executed the ESC instruction
which caused it. To allow identification of the failing
numerics instruction, the 80C187 contains registers
that aid in diagnosis. These registers supply the op-
code of the failing numerics instruction, the address
of the instruction, and the address of its numerics
memory operand (if appropriate).

The instruction and data pointers are provided for
user-written exception handlers. Whenever the
80C187 executes a new ESC instruction, it saves
the address of the instruction (including any prefixes
that may be present), the address of the operand (if
present), and the opcode.

The instruction and data pointers appear in the for-
mat shown by Figure 6. The ESC instruction
FLDENV, FSTENV, FSAVE and FRSTOR are used
to transfer these values between the registers and
memory. Note that the value of the data pointer is
undefined if the prior ESC instruction did not have a
memory operand.

Interrupt Description

CPU interrupt 16 is used to report exceptional condi-
tions while executing numeric programs. Interrupt 16
indicates that the previous numerics instruction
caused an unmasked exception. The address of the
faulty instruction and the address of its operand are
stored in the instruction pointer and data pointer reg-
isters. Only ESC instructions can cause this inter-

rupt. The CPU return address pushed onto the stack
of the exception handler points to an ESC instruction
(including prefixes). This instruction can be restarted
after clearing the exception condition in the NPX.
FNINIT, FNCLEX, FNSTSW, FNSTENV, and
FNSAVE cannot cause this interrupt.

Exception Handling

The 80C187 detects six different exception condi-
tions that can occur during instruction execution. Ta-
ble 6 lists the exception conditions in order of prece-
dence, showing for each the cause and the default
action taken by the 80C187 if the exception is
masked by its corresponding mask bit in the control
word.

Any exception that is not masked by the control
word sets the corresponding exception flag of the
status word, sets the ES bit of the status word, and
asserts the ERROR signal. When the CPU attempts
to execute another ESC instruction, interrupt 16 oc-
curs. The exception condition must be resolved via
an interrupt service routine. The return address
pushed onto the CPU stack upon entry to the serv-
ice routine does not necessarily point to the failing
instruction nor to the following instruction. The
80C187 saves the address of the floating-point in-
struction that caused the exception and the address
of any memory operand required by that instruction.

If error trapping is required at the end of a series of
numerics instructions (specifically, when the last
ESC instruction modifies memory data and that data
is used in subsequent nonnumerics instructions), it is
necessary to insert the FNOP instruction to force the
80C187 to check its ERROR input.

9



80C187

270640–4

Precision Control
00Ð 24 Bits (Single Precision)
01Ð (Reserved)
10Ð 53 Bits (Double Precision)
11Ð 64 Bits (Extended Precision)

Rounding Control
00Ð Round to Nearest or Even
01Ð Round Down (toward b%)
10Ð Round Up (toward a%)
11Ð Chop (Truncate toward Zero)

*The ‘‘infinity control’’ bit is not meaningful to the 80C187. To maintain compatibility with the 8087, this bit can be
programmed; however, regardless of its value, the 80C187 treats infinity in the affine sense (b% k a%).

Figure 5. Control Word

15 7 0

CONTROL WORD a0

STATUS WORD a2

TAG WORD a4

INSTRUCTION POINTER15..0 a6

IP19..16 0 OPCODE10..0 a8

OPERAND POINTER15..0 aA

OP19..16 0 0 0 0 0 0 0 0 0 0 0 0 aC

Figure 6. Instruction and Data Pointer Image in Memory

10



80C187

Table 6. Exceptions

Exception Cause
Default Action

(If Exception is Masked)

Invalid Operation on a signalling NaN, Result is a quiet NaN,

Operation unsupported format, indeterminate integer indefinite, or

form (0*%, 0/0), (a%) BCD indefinite
a (b%), etc.), or stack

overflow/underflow (SF is also set)

Denormalized At least one of the operands is The operand is normalized,

Operand denormalized, i.e. it has the smallest and normal processing

exponent but a nonzero significand continues

Zero Divisor The divisor is zero while the dividend Result is %

is a noninfinite, nonzero number

Overflow The result is too large in magnitude Result is largest finite

to fit in the specified format value or %

Underflow The true result is nonzero but too small Result is denormalized

to be represented in the specified format, and, or zero

if underflow exception is masked, denormalization

causes loss of accuracy

Inexact The true result is not exactly representable Normal processing

Result in the specified format (e.g. 1/3); continues

(Precision) the result is rounded according to the

rounding mode

Initialization

After FNINIT or RESET, the control word contains
the value 037FH (all exceptions masked, precision
control 64 bits, rounding to nearest) the same values
as in an 8087 after RESET. For compatibility with the
8087, the bit that used to indicate infinity control (bit
12) is set to zero; however, regardless of its setting,
infinity is treated in the affine sense. After FNINIT or
RESET, the status word is initialized as follows:

# All exceptions are set to zero.

# Stack TOP is zero, so that after the first push the
stack top will be register seven (111B).

# The condition code C3–C0 is undefined.

# The B-bit is zero.

The tag word contains FFFFH (all stack locations
are empty).

80C186/80C187 initialization software should exe-
cute an FNINIT instruction (i.e. an FINIT without a
preceding WAIT) after RESET. The FNINIT is not
strictly required for 80C187 software, but Intel
recommends its use to help ensure upward compati-
bility with other processors.

8087 Compatibility

This section summarizes the differences between
the 80C187 and the 8087. Many changes have been
designed into the 80C187 to directly support the
IEEE standard in hardware. These changes result in
increased performance by elminating the need for
software that supports the standard.

GENERAL DIFFERENCES

The 8087 instructions FENI/FNENI and FDISI/
FNDISI perform no useful function in the 80C187
Numeric Processor Extension. They do not alter the
state of the 80C187 Numeric Processor Extension.
(They are treated similarly to FNOP, except that
ERROR is not checked.) While 8086/8087 code
containing these instructions can be executed on
the 80C186/80C187, it is unlikely that the exception-
handling routines containing these instructions will
be completely portable to the 80C187 Numeric Proc-
essor Extension.

The 80C187 differs from the 8087 with respect to
instruction, data, and exception synchronization. Ex-
cept for the processor control instructions, all of the
80C187 numeric instructions are automatically syn-
chronized by the 80C186 CPU. When necessary, the

11



80C187

80C186 automatically tests the BUSY line from the
80C187 Numeric Processor Extension to ensure that
the 80C187 Numeric Processor Extension has com-
pleted its previous instruction before executing the
next ESC instruction. No explicit WAIT instructions
are required to assure this synchronization. For the
8087 used with 8086 and 8088 CPUs, explicit WAITs
are required before each numeric instruction to en-
sure synchronization. Although 8086/8087 pro-
grams having explicit WAIT instructions will execute
on the 80C186/80C187, these WAIT instructions
are unnecessary.

The 80C187 supports only affine closure for infinity
arithmetic, not projective closure.

Operands for FSCALE and FPATAN are no longer
restricted in range (except for g%); F2XM1 and
FPTAN accept a wider range of operands.

Rounding control is in effect for FLD constant .

Software cannot change entries of the tag word to
values (other than empty) that differ from actual reg-
ister contents.

After reset, FINIT, and incomplete FPREM, the
80C187 resets to zero the condition code bits C3–
C0 of the status word.

In conformance with the IEEE standard, the 80C187
does not support the special data formats
pseudozero, pseudo-NaN, pseudoinfinity, and un-
normal.

The denormal exception has a different purpose on
the 80C187. A system that uses the denormal-ex-
ception handler solely to normalize the denormal op-
erands, would better mask the denormal exception
on the 80C187. The 80C187 automatically normal-
izes denormal operands when the denormal excep-
tion is masked.

EXCEPTIONS

A number of differences exist due to changes in the
IEEE standard and to functional improvements to
the architecture of the 80C186/80C187:

1. The 80C186/80C187 traps exceptions only on
the next ESC instruction; i.e. the 80C186 does not
notice unmasked 80C187 exceptions on the
80C186 ERROR input line until a later numerics
instruction is executed. Because the 80C186
does not sample ERROR on WAIT and FWAIT
instructions, programmers should place an FNOP
instruction at the end of a sequence of numerics
instructions to force the 80C186 to sample its
ERROR input.

2. The 80C187 Numeric Processor Extension sig-
nals exceptions through a dedicated ERROR line
to the CPU. The 80C187 error signal does not
pass through an interrupt controller (the 8087 INT
signal does). Therefore, any interrupt-controller-
oriented instructions in numerics exception han-
dlers for the 8086/8087 should be deleted.

3. Interrupt vector 16 must point to the numerics ex-
ception handling routine.

4. The ESC instruction address saved in the 80C187
Numeric Processor Extension includes any lead-
ing prefixes before the ESC opcode. The corre-
sponding address saved in the 8087 does not
include leading prefixes.

5. When the overflow or underflow exception is
masked, the 80C187 differs from the 8087 in
rounding when overflow or underflow occurs. The
80C187 produces results that are consistent with
the rounding mode.

6. When the underflow exception is masked, the
80C187 sets its underflow flag only if there is also
a loss of accuracy during denormalization.

7. Fewer invalid-operation exceptions due to denor-
mal operands, because the instructions FSQRT,
FDIV, FPREM, and conversions to BCD or to inte-
ger normalize denormal operands before pro-
ceeding.

8. The FSQRT, FBSTP, and FPREM instructions
may cause underflow, because they support de-
normal operands.

9. The denormal exception can occur during the
transcendental instructions and the FXTRACT in-
struction.

10. The denormal exception no longer takes prece-
dence over all other exceptions.

11. When the denormal exception is masked, the
80C187 automatically normalizes denormal op-
erands. The 8087 performs unnormal arithmetic,
which might produce an unnormal result.

12. When the operand is zero, the FXTRACT in-
struction reports a zero-divide exception and
leaves b% in ST(1).

13. The status word has a new bit (SF) that signals
when invalid-operation exceptions are due to
stack underflow or overflow.

14. FLDextended precision no longer reports denor-
mal exceptions, because the instruction is not
numeric.

15. FLD single/double precision when the operand
is denormal converts the number to extended
precision and signals the denormalized oper-

12



80C187

and exception. When loading a signalling NaN,
FLD single/double precision signals an invalid-
operand exception.

16. The 80C187 only generates quiet NaNs (as on
the 8087); however, the 80C187 distinguishes
between quiet NaNs and signalling NaNs. Sig-
nalling NaNs trigger exceptions when they are
used as operands; quiet NaNs do not (except for
FCOM, FIST, and FBSTP which also raise IE for
quiet NaNs).

17. When stack overflow occurs during FPTAN and
overflow is masked, both ST(0) and ST(1) con-
tain quiet NaNs. The 8087 leaves the original
operand in ST(1) intact.

18. When the scaling factor is g%, the FSCALE
(ST(0), ST(1) instruction behaves as follows

(ST(0) and ST(1) contain the scaled and scaling
operands respectively):

# FSCALE (0, %) generates the invalid opera-
tion exception.

# FSCALE (finite, b%) generates zero with the
same sign as the scaled operand.

# FSCALE (finite, a%) generates % with the
same sign as the scaled operand.

The 8087 returns zero in the first case and rais-
es the invalid-operation exception in the other
cases.

19. The 80C187 returns signed infinity/zero as the
unmasked response to massive overflow/under-
flow. The 8087 supports a limited range for the
scaling factor; within this range either massive
overflow/underflow do not occur or undefined
results are produced.

Table 7. Pin Summary

Pin
Function

Active Input/

Name State Output

CLK CLocK I

CKM ClocKing Mode I

RESET System reset High I

PEREQ Processor Extension High O

REQuest

BUSY Busy status High O

ERROR Error status Low O

D15–D0 Data pins High I/O

NPRD Numeric Processor ReaD Low I

NPWR Numeric Processor WRite Low I

NPS1 NPX select Ý1 Low I

NPS2 NPX select Ý2 High I

CMD0 CoMmanD 0 High I

CMD1 CoMmanD 1 High I

VCC System power I

VSS System ground I

13



80C187

HARDWARE INTERFACE

In the following description of hardware interface, an
overbar above a signal name indicates that the ac-
tive or asserted state occurs when the signal is at a
low voltage. When no overbar is present above the
signal name, the signal is asserted when at the high
voltage level.

Signal Description

In the following signal descriptions, the 80C187 pins
are grouped by function as follows:

1. Execution ControlÐ CLK, CKM, RESET

2. NPX HandshakeÐ PEREQ, BUSY, ERROR

3. Bus Interface PinsÐ D15–D0, NPWR, NPRD

4. Chip/Port SelectÐ NPS1, NPS2, CMD0, CMD1

5. Power SuppliesÐ VCC, VSS

Table 7 lists every pin by its identifier, gives a brief
description of its function, and lists some of its char-
acteristics. Figure 7 shows the locations of pins on
the CERDIP package, while Figure 8 shows the loca-
tions of pins on the PLCC package. Table 8 helps to
locate pin identifiers in Figures 7 and 8.

Clock (CLK)

This input provides the basic timing for internal oper-
ation. This pin does not require MOS-level input; it
will operate at either TTL or MOS levels up to the
maximum allowed frequency. A minimum frequency
must be provided to keep the internal logic properly
functioning. Depending on the signal on CKM, the
signal on CLK can be divided by two to produce the
internal clock signal (in which case CLK may be up
to 32 MHz in frequency), or can be used directly (in
which case CLK may be up to 12.5 MHz).

Clocking Mode (CKM)

This pin is a strapping option. When it is strapped to
VCC (HIGH), the CLK input is used directly; when
strapped to VSS (LOW), the CLK input is divided by
two to produce the internal clock signal. During the
RESET sequence, this input must be stable at least
four internal clock cycles (i.e. CLK clocks when CKM
is HIGH; 2 c CLK clocks when CKM is LOW) before
RESET goes LOW.

270640–5

*N.C. e Pin Not Connected

Figure 7. CERDIP Pin Configuration

270640–6

*N.C. e Pin Not Connected
**‘‘Top View’’ means as the package is seen from the

component side of the board.

Figure 8. PLCC Pin Configuration

14



80C187

Table 8. PLCC Pin Cross-Reference

Pin Name CERDIP Package PLCC Package

BUSY 25 28

CKM 39 44

CLK 32 36

CMD0 29 32

CMD1 31 35

D0 23 26

D1 22 25

D2 21 24

D3 20 22

D4 19 21

D5 18 20

D6 17 19

D7 16 18

D8 15 17

D9 14 16

D10 12 14

D11 11 13

D12 8 9

D13 7 8

D14 6 7

D15 5 5

ERROR 26 29

No Connect 2 6, 11, 23, 33, 40

NPRD 27 30

NPS1 34 38

NPS2 33 37

NPWR 28 31

PEREQ 24 27

RESET 35 39

VCC 3, 9, 13, 37, 40 1, 3, 10, 15, 42

VSS 1, 4, 10, 30, 36, 38 2, 4, 12, 34, 41, 43

System Reset (RESET)

A LOW to HIGH transition on this pin causes the
80C187 to terminate its present activity and to enter
a dormant state. RESET must remain active (HIGH)
for at least four internal clock periods. (The relation
of the internal clock period to CLK depends on
CLKM; the internal clock may be different from that
of the CPU.) Note that the 80C187 is active internal-
ly for 25 clock periods after the termination of the
RESET signal (the HIGH to LOW transition of RE-
SET); therefore, the first instruction should not be
written to the 80C187 until 25 internal clocks after
the falling edge of RESET. Table 9 shows the status
of the output pins during the reset sequence. After a
reset, all output pins return to their inactive states.

Table 9. Output Pin Status during Reset

Output Value

Pin Name during Reset

BUSY HIGH

ERROR HIGH

PEREQ LOW

D15–D0 TRI-STATE OFF

Processor Extension Request (PEREQ)

When active, this pin signals to the CPU that the
80C187 is ready for data transfer to/from its data
FIFO. When there are more than five data transfers,

15



80C187

PEREQ is deactivated after the first three transfers
and subsequently after every four transfers. This sig-
nal always goes inactive before BUSY goes inactive.

Busy Status (BUSY)

When active, this pin signals to the CPU that the
80C187 is currently executing an instruction. This
pin is active HIGH. It should be connected to the
80C186’s TEST/BUSY pin. During the RESET se-
quence this pin is HIGH. The 80C186 uses this
HIGH state to detect the presence of an 80C187.

Error Status (ERROR)

This pin reflects the ES bit of the status register.
When active, it indicates that an unmasked excep-
tion has occurred. This signal can be changed to
inactive state only by the following instructions (with-
out a preceding WAIT): FNINIT, FNCLEX,
FNSTENV, FNSAVE, FLDCW, FLDENV, and
FRSTOR. This pin should be connected to the
ERROR pin of the CPU. ERROR can change state
only when BUSY is active.

Data Pins (D15–D0)

These bidirectional pins are used to transfer data
and opcodes between the CPU and 80C187. They
are normally connected directly to the correspond-
ing CPU data pins. Other buffers/drivers driving the
local data bus must be disabled when the CPU
reads from the NPX. High state indicates a value of
one. D0 is the least significant data bit.

Numeric Processor Write (NPWR)

A signal on this pin enables transfers of data from
the CPU to the NPX. This input is valid only when
NPS1 and NPS2 are both active.

Numeric Processor Read (NPRD)

A signal on this pin enables transfers of data from
the NPX to the CPU. This input is valid only when
NPS1 and NPS2 are both active.

Numeric Processor Selects (NPS1 and NPS2)

Concurrent assertion of these signals indicates that
the CPU is performing an escape instruction and en-
ables the 80C187 to execute that instruction. No

data transfer involving the 80C187 occurs unless the
device is selected by these lines.

Command Selects (CMD0 and CMD1)

These pins along with the select pins allow the CPU
to direct the operation of the 80C187.

System Power (VCC)

System power provides the a5V g10% DC supply
input. All VCC pins should be tied together on the
circuit board and local decoupling capacitors should
be used between VCC and VSS.

System Ground (VSS)

All VSS pins should be tied together on the circuit
board and local decoupling capacitors should be
used between VCC and VSS.

Processor Architecture

As shown by the block diagram (Figure 1), the
80C187 NPX is internally divided into three sections:
the bus control logic (BCL), the data interface and
control unit, and the floating-point unit (FPU). The
FPU (with the support of the control unit which con-
tains the sequencer and other support units) exe-
cutes all numerics instructions. The data interface
and control unit is responsible for the data flow to
and from the FPU and the control registers, for re-
ceiving the instructions, decoding them, and se-
quencing the microinstructions, and for handling
some of the administrative instructions. The BCL is
responsible for CPU bus tracking and interface.

BUS CONTROL LOGIC

The BCL communicates solely with the CPU using
I/O bus cycles. The BCL appears to the CPU as a
special peripheral device. It is special in two re-
spects: the CPU initiates I/O automatically when it
encounters ESC instructions, and the CPU uses re-
served I/O addresses to communicate with the BCL.
The BCL does not communicate directly with memo-
ry. The CPU performs all memory access, transfer-
ring input operands from memory to the 80C187 and
transferring outputs from the 80C187 to memory. A
dedicated communication protocol makes possible
high-speed transfer of opcodes and operands be-
tween the CPU and 80C187.

16



80C187

Table 10. Bus Cycles Definition

NPS1 NPS2 CMD0 CMD1 NPRD NPWR Bus Cycle Type

x 0 x x x x 80C187 Not Selected

1 x x x x x 80C187 Not Selected

0 1 0 0 1 0 Opcode Write to 80C187

0 1 0 0 0 1 CW or SW Read from 80C187

0 1 1 0 0 1 Read Data from 80C187

0 1 1 0 1 0 Write Data to 80C187

0 1 0 1 1 0 Write Exception Pointers

0 1 0 1 0 1 Reserved

0 1 1 1 0 1 Read Opcode Status

0 1 1 1 1 0 Reserved

DATA INTERFACE AND CONTROL UNIT

The data interface and control unit latches the data
and, subject to BCL control, directs the data to the
FIFO or the instruction decoder. The instruction de-
coder decodes the ESC instructions sent to it by the
CPU and generates controls that direct the data flow
in the FIFO. It also triggers the microinstruction se-
quencer that controls execution of each instruction.
If the ESC instruction is FINIT, FCLEX, FSTSW,
FSTSW AX, FSTCW, FSETPM, or FRSTPM, the
control executes it independently of the FPU and the
sequencer. The data interface and control unit is the
one that generates the BUSY, PEREQ, and ERROR
signals that synchronize 80C187 activities with the
CPU.

FLOATING-POINT UNIT

The FPU executes all instructions that involve the
register stack, including arithmetic, logical, transcen-
dental, constant, and data transfer instructions. The

data path in the FPU is 84 bits wide (68 significant
bits, 15 exponent bits, and a sign bit) which allows
internal operand transfers to be performed at very
high speeds.

Bus Cycles

The pins NPS1, NPS2, CMD0, CMD1, NPRD and
NPWR identify bus cycles for the NPX. Table 10 de-
fines the types of 80C187 bus cycles.

80C187 ADDRESSING

The NPS1, NPS2, CMD0, and CMD1 signals allow
the NPX to identify which bus cycles are intended for
the NPX. The NPX responds to I/O cycles when the
I/O address is 00F8H, 00FAH, 00FCH, or 00FEH.
The correspondence betwen I/O addresses and
control signals is defined by Table 11. To guarantee
correct operation of the NPX, programs must not
perform any I/O operations to these reserved port
addresses.

Table 11. I/O Address Decoding

I/O Address
80C187 Select and Command Inputs

(Hexadecimal) NPS2 NPS1 CMD1 CMD0

00F8 1 0 0 0

00FA 1 0 0 1

00FC 1 0 1 0

00FE 1 0 1 1

17



80C187

CPU/NPX SYNCHRONIZATION

The pins BUSY, PEREQ, and ERROR are used for
various aspects of synchronization between the
CPU and the NPX.

BUSY is used to synchronize instruction transfer
from the CPU to the 80C187. When the 80C187 rec-
ognizes an ESC instruction, it asserts BUSY. For
most ESC instructions, the CPU waits for the
80C187 to deassert BUSY before sending the new
opcode.

The NPX uses the PEREQ pin of the CPU to signal
that the NPX is ready for data transfer to or from its
data FIFO. The NPX does not directly access mem-
ory; rather, the CPU provides memory access serv-
ices for the NPX.

Once the CPU initiates an 80C187 instruction that
has operands, the CPU waits for PEREQ signals that
indicate when the 80C187 is ready for operand
transfer. Once all operands have been transferred
(or if the instruction has no operands) the CPU con-
tinues program execution while the 80C187 exe-
cutes the ESC instruction.

In 8086/8087 systems, WAIT instructions are re-
quired to achieve synchronization of both com-
mands and operands. The 80C187, however, does
not require WAIT instructions. The WAIT or FWAIT
instruction commonly inserted by high-level compil-
ers and assembly-language programmers for excep-
tion synchronization is not treated as an instruction
by the 80C186 and does not provide exception trap-
ping. (Refer to the section ‘‘System Configuration for
8087-Compatible Exception Trapping’’.)

Once it has started to execute a numerics instruction
and has transferred the operands from the CPU, the
80C187 can process the instruction in parallel with
and independent of the host CPU. When the NPX
detects an exception, it asserts the ERROR signal,
which causes a CPU interrupt.

OPCODE INTERPRETATION

The CPU and the NPX use a bus protocol that
adapts to the numerics opcode being executed.
Only the NPX directly interprets the opcode. Some
of the results of this interpretation are relevant to the
CPU. The NPX records these results (opcode status
information) in an internal 16-bit register. The
80C186 accesses this register only via reads from
NPX port 00FEH. Tables 10 and 11 define the signal
combinations that correspond to each of the follow-
ing steps.

1. The CPU writes the opcode to NPX port 00F8H.
This write can occur even when the NPX is busy
or is signalling an exception. The NPX does not
necessarily begin executing the opcode immedi-
ately.

2. The CPU reads the opcode status information
from NPX port 00FEH.

3. The CPU initiates subsequent bus cycles accord-
ing to the opcode status information. The opcode
status information specifies whether to wait until
the NPX is not busy, when to transfer exception
pointers to port 00FCH, when to read or write op-
erands and results at port 00FAH, etc.

For most instructions, the NPX does not start exe-
cuting the previously transferred opcode until the
CPU (guided by the opcode status information) first
writes exception pointer information to port 00FCH
of the NPX. This protocol is completely transparent
to programmers.

Bus Operation

With respect to bus interface, the 80C187 is fully
asynchronous with the CPU, even when it operates
from the same clock source as the CPU. The CPU
initiates a bus cycle for the NPX by activating both
NPS1 and NPS2, the NPX select signals. During the
CLK period in which NPS1 and NPS2 are activated,
the 80C187 also examines the NPRD and NPRW

18



80C187

input signals to determine whether the cycle is a
read or a write cycle and examines the CMD0 and
CMD1 inputs to determine whether an opcode, oper-
and, or control/status register transfer is to occur.
The 80C187 activates its BUSY output some time
after the leading edge of the NPRD or NPRW signal.
Input and ouput data are referenced to the trailing
edges of the NPRD and NPRW signals.

The 80C187 activates the PEREQ signal when it is
ready for data transfer. The 80C187 deactivates
PEREQ automatically.

System Configuration

The 80C187 can be connected to the 80C186 CPU
as shown by Figure 9. (Refer to the 80C186 Data
Sheet for an explanation of the 80C186’s signals.)
This interface has the following characteristics:

# The 80C187’s NPS1, ERROR, PEREQ, and
BUSY pins are connected directly to the corre-
sponding pins of the 80C186.

# The 80C186 pin MCS3/NPS is connected to
NPS1; NPS2 is connected to VCC. Note that if the
80C186 CPU’s DEN signal is used to gate exter-
nal data buffers, it must be combined with the
NPS signal to insure numeric accesses will not
activate these buffers.

# The NPRD and NPRW pins are connected to the
RD and WR pins of the 80C186.

# CMD1 and CMD0 come from the latched A2 and
A1 of the 80C186, respectively.

# The 80C187 BUSY output connects to the
80C186 TEST/BUSY input. During RESET, the
signal at the 80C187 BUSY output automatically
programs the 80C186 to use the 80C187.

# The 80C187 can use the CLKOUT signal of the
80C186 to conserve board space when operating
at 12.5 MHz or less. In this case, the 80C187
CKM input must be pulled HIGH. For operation in
excess of 12.5 MHz, a double-frequency external
oscillator for CLK input is needed. In this case,
CKM must be pulled LOW.

270640–7

Figure 9. 80C186/80C187 System Configuration

19



80C187

System Configuration for 80186/
80187-Compatible Exception Trapping

When the 80C187 ERROR output signal is connect-
ed directly to the 80C186 ERROR input, floating-
point exceptions cause interrupt Ý16. However, ex-
isting software may be programmed to expect float-
ing-point exceptions to be signalled over an external
interrupt pin via an interrupt controller.

For exception handling compatible with the 80186/
82188/8087, the 80C186 can be wired to recognize
exceptions through an external interrupt pin, as Fig-
ure 10 shows. (Refer to the 80C186 Data Sheet for
an explanation of the 80C186’s signals.) With this
arrangement, a flip-flop is needed to latch BUSY
upon assertion of ERROR. The latch can then be
cleared during the exception-handler routine by forc-
ing a PCS pin active. The latch must also be cleared
at RESET in order for the 80C186 to work with the
80C187.

270640–8

*For input clocking options, refer to Figure 9.

Figure 10. System Configuration for 8087-Compatible Exception Trapping

20



80C187

ELECTRICAL DATA

Absolute Maximum Ratings*

Case Temperature Under Bias (TC)ÀÀÀ0§C to a85§C
Storage Temperature ÀÀÀÀÀÀÀÀÀÀb65§C to a150§C
Voltage on Any Pin

with Respect to GroundÀÀÀÀb0.5V to VCC a0.5V

Power DissipationÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ1.5W

Power and Frequency Requirements

The typical relationship between ICC and the fre-
quency of operation F is as follows:

ICCtyp
e 55a 5 * F mA where F is in MHz.

When the frequency is reduced below the minimum
operating frequency specified in the AC Characteris-
tics table, the internal states of the 80C187 may be-
come indeterminate. The 80C187 clock cannot be
stopped; otherwise, ICC would increase significantly
beyond what the equation above indicates.

NOTICE: This is a production data sheet. The specifi-
cations are subject to change without notice.

*WARNING: Stressing the device beyond the ‘‘Absolute
Maximum Ratings’’ may cause permanent damage.
These are stress ratings only. Operation beyond the
‘‘Operating Conditions’’ is not recommended and ex-
tended exposure beyond the ‘‘Operating Conditions’’
may affect device reliability.

DC Characteristics TC e 0§C to a85§C, VCC e a5V g10%

Symbol Parameter Min Max Units Test Conditions

VIL Input LOW Voltage b0.5 a0.8 V

VIH Input HIGH Voltage 2.0 VCC a0.5 V

VICL Clock Input LOW Voltage b0.5 a0.8 V

VICH Clock Input HIGH Voltage 2.0 VCC a0.5 V

VOL Output LOW Voltage 0.45 V IOL e 3.0 mA

VOH Output HIGH Voltage 2.4 V IOH e b0.4 mA

ICC Power Supply Current 156 mA 16 MHz

135 mA 12.5 MHz

ILI Input Leakage Current g10 mA 0V s VIN s VCC

ILO I/O Leakage Current g10 mA 0.45V s VOUT s VCC b 0.45V

CIN Input Capacitance 10 pF FC e 1 MHz

CO I/O or Output Capacitance 12 pF FC e 1 MHz

CCLK Clock Capacitance 20 pF FC e 1 MHz

21



80C187

AC Characteristics
TC e 0§C to a85§C, VCC e 5V g10%
All timings are measured at 1.5V unless otherwise specified

12.5 MHz 16 MHz
Test

Symbol Parameter Min Max Min Max Conditions

(ns) (ns) (ns) (ns)

Tdvwh (t6) Data Setup to NPWR 43 33

Twhdx (t7) Data Hold from NPWR 14 14

Trlrh (t8) NPRD Active Time 59 54

Twlwh (t9) NPWR Active Time 59 54

Tavwl (t10) Command Valid to NPWR 0 0

Tavrl (t11) Command Valid to NPRD 0 0

Tmhrl (t12) Min Delay from PEREQ Active 40 30

to NPRD Active

Twhax (t18) Command Hold from NPWR 12 8

Trhax (t19) Command Hold from NPRD 12 8

Tivcl (t20) NPRD, NPWR, RESET to 46 38 Note 1

CLK Setup Time

Tclih (t21) NPRD, NPWR, RESET from 26 18 Note 1

CLK Hold Time

Trscl (t24) RESET to CLK Setup 21 19 Note 1

Tclrs (t25) RESET from CLK Hold 14 9 Note 1

Tcmdi (t26) Command Inactive Time

Write to Write 69 59

Read to Read 69 59

Read to Write 69 59

Write to Read 69 59

NOTE:
1. This is an asynchronous input. This specification is given for testing purposes only, to assure recognition at a specific CLK
edge.

22



80C187

Timing Responses
All timings are measured at 1.5V unless otherwise specified

12.5 MHz 16 MHz
Test

Symbol Parameter Min Max Min Max Conditions

(ns) (ns) (ns) (ns)

Trhqz (t27) NPRD Inactive to Data Float* 18 18 Note 2

Trlqv (t28) NPRD Active to Data Valid 50 45 Note 3

Tilbh (t29) ERROR Active to Busy Inactive 104 104 Note 4

Twlbv (t30) NPWR Active to Busy Active 80 60 Note 4

Tklml (t31) NPRD or NPWR Active 80 60 Note 5

to PEREQ Inactive

Trhqh (t32) Data Hold from NPRD Inactive 2 2 Note 3

Trlbh (t33) RESET Inactive to BUSY Inactive 80 60

NOTES:
*The data float delay is not tested.
2. The float condition occurs when the measured output current is less than IOL on D15–D0.
3. D15–D0 loading: CL e 100 pF.
4. BUSY loading: CL e 100 pF.
5. On last data transfer of numeric instruction.

Clock Timings

12.5 MHz 16 MHz*
Test

Symbol Parameter Min Max Min Max Conditions

(ns) (ns) (ns) (ns)

Tclcl (t1a) CLK Period CKM e 1 80 250 N/A N/A Note 6

(t1B) CKM e 0 40 125 31.25 125 Note 6

Tclch (t2a) CLK Low Time CKM e 1 35 N/A Note 6

(t2b) CKM e 0 9 7 Note 7

Tchcl (t3a) CLK High Time CKM e 1 35 N/A Note 6

(t3b) CKM e 0 13 9 Note 8

Tch2ch1(t4) 10 8 Note 9

Tch1ch2(t5) 10 8 Note 10

NOTES:
*16 MHz operation is available only in divide-by-2 mode (CKM strapped LOW).
6. At 1.5V
7. At 0.8V
8. At 2.0V
9. CKM e 1: 3.7V to 0.8V at 16 MHz, 3.5V to 1.0V at 12.5 MHz
10. CKM e 1: 0.8V to 3.7V at 16 MHz, 1.0V to 3.5V at 12.5 MHz

23



80C187

AC DRIVE AND MEASUREMENT
POINTSÐCLK INPUT

270640–9

AC SETUP, HOLD, AND DELAY TIME
MEASUREMENTSÐGENERAL

270640–10

AC TEST LOADING ON OUTPUTS

270640–11

DATA TRANSFER TIMING (INITIATED BY CPU)

270640–12

24



80C187

DATA CHANNEL TIMING (INITIATED BY 80C187)

270640–13

ERROR OUTPUT TIMING

270640–14

CLK, RESET TIMING (CKM e 1)

270640–15

25



80C187

CLK, NPRD, NPWR TIMING (CKM e 1)

270640–16

CLK, RESET TIMING (CKM e 0)

270640–17

RESET must meet timing shown to guarantee known phase of internal divide by 2 circuits.

NOTE:
RESET, NPWR, NPRD inputs are asynchronous to CLK. Timing requirements are given for testing purposes only, to assure
recognition at a specific CLK edge.

CLK, NPRD, NPWR TIMING (CKM e 0)

270640–18

RESET, BUSY TIMING

270640–19

26



80C187

80C187 EXTENSIONS TO THE CPU’s
INSTRUCTION SET

Instructions for the 80C187 assume one of the five
forms shown in Table 12. In all cases, instructions
are at least two bytes long and begin with the bit
pattern 11011B, which identifies the ESCAPE class
of instruction. Instructions that refer to memory oper-
ands specify addresses using the CPU’s addressing
modes.

MOD (Mode field) and R/M (Register/Memory spec-
ifier) have the same interpretation as the corre-
sponding fields of CPU instructions (refer to Pro-
grammer’s Reference Manual for the CPU). The

DISP (displacement) is optionally present in instruc-
tions that have MOD and R/M fields. Its presence
depends on the values of MOD and R/M, as for in-
structions of the CPU.

The instruction summaries that follow assume that
the instruction has been prefetched, decoded, and is
ready for execution; that bus cycles do not require
wait states; that there are no local bus HOLD re-
quests delaying processor access to the bus; and
that no exceptions are detected during instruction
execution. Timings are given in internal 80C187
clocks and include the time for opcode and data
transfer between the CPU and the NPX. If the in-
struction has MOD and R/M fields that call for both
base and index registers, add one clock.

Table 12. Instruction Formats

Instruction
Optional

First Byte Second Byte Field

1 11011 OPA 1 MOD 1 OPB R/M DISP

2 11011 MF OPA MOD OPB * R/M DISP

3 11011 d P OPA 1 1 OPB * ST (i)

4 11011 0 0 1 1 1 1 OP

5 11011 0 1 1 1 1 1 OP

15–11 10 9 8 7 6 5 4 3 2 1 0

NOTES:
OP e Instruction opcode, possibly split into two fields OPA and OPB

MF e Memory Format
00Ð 32-Bit Real
01Ð 32-Bit Integer
10Ð 64-Bit Real
11Ð 16-Bit Integer

d e Destination
0Ð Destination is ST(0)
0Ð Destination is ST(i)

R XOR d e 0Ð Destination (op) Source
R XOR d e 1Ð Source (op) Destination

*In FSUB and FDIV, the low-order bit of OPB is the R (reversed) bit

P e Pop
0Ð Do not pop stack
1Ð Pop stack after operation

ESC e 11011

ST(i) e Register Stack Element i
000 e Stack Top
001 e Second Stack Element

#
#
#

111 e Eighth Stack Element

27



80C187

80C187 Extensions to the 80C186 Instruction Set

Encoding Clock Count Range

Instruction Byte Byte Optional 32-Bit 32-Bit 64-Bit 16-Bit
0 1 Bytes 2–3 Real Integer Real Integer

DATA TRANSFER

FLD e Loada

Integer/real memory to ST(0) ESC MF 1 MOD 000 R/M DISP 40 65–72 59 67–71

Long integer memory to ST(0) ESC 111 MOD 101 R/M DISP 90–101

Extended real memory to ST(0) ESC 011 MOD 101 R/M DISP 74

BCD memory to ST(0) ESC 111 MOD 100 R/M DISP 296–305

ST(i) to ST(0) ESC 001 11000 ST(i) 16

FST e Store

ST(0) to integer/real memory ESC MF 1 MOD 010 R/M DISP 58 93–107 73 80–93

ST(0) to ST(i) ESC 101 11010 ST(i) 13

FSTP e Store and Pop

ST(0) to integer/real memory ESC MF 1 MOD 011 R/M DISP 58 93–107 73 80–93

ST(0) to long integer memory ESC 111 MOD 111 R/M DISP 116–133

ST(0) to extended real ESC 011 MOD 111 R/M DISP 83

ST(0) to BCD memory ESC 111 MOD 110 R/M DISP 542–564

ST(0) to ST(i) ESC 101 11001 ST (i) 14

FXCH e Exchange

ST(i) and ST(0) ESC 001 11001 ST(i) 20

COMPARISON

FCOM e Compare

Integer/real memory to ST(0) ESC MF 0 MOD 010 R/M DISP 48 78–85 67 77–81

ST(i) to ST(0) ESC 000 11010 ST(i) 26

FCOMP e Compare and pop

Integer/real memory to ST ESC MF 0 MOD 011 R/M DISP 48 78–85 67 77–81

ST(i) to ST(0) ESC 000 11011 ST(i) 28

FCOMPP e Compare and pop twice

ST(1) to ST(0) ESC 110 1101 1001 28

FTST e Test ST(0) ESC 001 1110 0100 30

FUCOM e Unordered compare ESC 101 11100 ST(i) 26

FUCOMP e Unordered compare
and pop ESC 101 11101 ST(i) 28

FUCOMPP e Unordered compare
and pop twice ESC 010 1110 1001 28

FXAM e Examine ST(0) ESC 001 11100101 32-40

CONSTANTS

FLDZ e Load a0.0 into ST(0) ESC 001 1110 1110 22

FLD1 e Load a1.0 into ST(0) ESC 001 1110 1000 26

FLDPI e Load pi into ST(0) ESC 001 1110 1011 42

FLDL2T e Load log2(10) into ST(0) ESC 001 1110 1001 42

Shaded areas indicate instructions not available in 8087.

NOTE:
a. When loading single- or double-precision zero from memory, add 5 clocks.

28



80C187

80C187 Extensions to the 80C186 Instruction Set (Continued)

Encoding Clock Count Range

Instruction Byte Byte Optional 32-Bit 32-Bit 64-Bit 16-Bit
0 1 Bytes 2–3 Real Integer Real Integer

CONSTANTS (Continued)

FLDL2E e Load log2(e) into ST(0) ESC 001 1110 1010 42

FLDLG2 e Load log10(2) into ST(0) ESC 001 1110 1100 43

FLDLN2 e Load loge(2) into ST(0) ESC 001 1110 1101 43

ARITHMETIC

FADD e Add

Integer/real memory with ST(0) ESC MF 0 MOD 000 R/M DISP 44–52 77–92 65–73 77–91

ST(i) and ST(0) ESC d P 0 11000 ST(i) 25–33b

FSUB e Subtract

Integer/real memory with ST(0) ESC MF 0 MOD 10 R R/M DISP 44–52 77–92 65–73 77–91c

ST(i) and ST(0) ESC d P 0 1110 R R/M 28–36d

FMUL e Multiply

Integer/real memory with ST(0) ESC MF 0 MOD 001 R/M DISP 47–57 81–102 68–93 82–93

ST(i) and ST(0) ESC d P 0 1100 1 R/M 31–59e

FDIV e Divide

Integer/real memory with ST(0) ESC MF 0 MOD 11 R R/M DISP 108 140–147f 128 142–146g

ST(i) and ST(0) ESC d P 0 1111 R R/M 90h

FSQRTi e Square root ESC 001 1111 1010 124–131

FSCALE e Scale ST(0) by ST(1) ESC 001 1111 1101 69–88

FPREM e Partial remainder of

ST(0) d ST(1) ESC 001 1111 1000 76–157

FPREM1 e Partial remainder
(IEEE) ESC 001 1111 0101 97–187

FRNDINT e Round ST(0)
to integer ESC 001 1111 1100 68–82

FXTRACT e Extract components
of ST(0) ESC 001 1111 0100 72–78

FABS e Absolute value of ST(0) ESC 001 1110 0001 24

FCHS e Change sign of ST(0) ESC 001 1110 0000 26–27

Shaded areas indicate instructions not available in 8087.

NOTES:
b. Add 3 clocks to the range when d e 1.
c. Add 1 clock to each range when R e 1.
d. Add 3 clocks to the range when d e 0.
e. typical e 54 (When d e 0, 48–56, typical e 51).
f. Add 1 clock to the range when R e 1.
g. 153–159 when R e 1.
h. Add 3 clocks to the range when d e 1.
i. b0 s ST(0) s a%.

29



80C187

80C187 Extensions to the 80C186 Instruction Set (Continued)

Encoding
Instruction Byte Byte Optional Clock Count Range

0 1 Bytes 2–3

TRANSCENDENTAL

FCOS e Cosine of ST(0) ESC 001 1111 1111 125–774j

FPTANk e Partial tangent of ST(0) ESC 001 1111 0010 193–499j

FPATAN e Partial arctangent ESC 001 1111 0011 316–489

FSIN e Sine of ST(0) ESC 001 1111 1110 124–773j

FSINCOS e Sine and cosine of ST(0) ESC 001 1111 1011 196–811j

F2XM1l e 2ST(0) b 1 ESC 001 1111 0000 213–478

FYL2Xm e ST(1) * log2(ST(0)) ESC 001 1111 0001 122–540

FYL2XP1n e ST(1) * log2(ST(0) a 1.0) ESC 001 1111 1001 259–549

PROCESSOR CONTROL

FINIT e Initialize NPX ESC 011 1110 0011 35

FSTSW AX e Store status word ESC 111 1110 0000 17

FLDCW e Load control word ESC 001 MOD 101 R/M DISP 23

FSTCW e Store control word ESC 001 MOD 111 R/M DISP 21

FSTSW e Store status word ESC 101 MOD 111 R/M DISP 21

FCLEX e Clear exceptions ESC 011 1110 0010 13

FSTENV e Store environment ESC 001 MOD 110 R/M DISP 146

FLDENV e Load environment ESC 001 MOD 100 R/M DISP 113

FSAVE e Save state ESC 101 MOD 110 R/M DISP 550

FRSTOR e Restore state ESC 101 MOD 100 R/M DISP 482

FINCSTP e Increment stack pointer ESC 001 1111 0111 23

FDECSTP e Decrement stack pointer ESC 001 1111 0110 24

FFREE e Free ST(i) ESC 101 1100 0 ST(i) 20

FNOP e No operations ESC 001 1101 0000 14

Shaded areas indicate instructions not available in 8087.

NOTES:
j. These timings hold for operands in the range lxl k q/4. For operands not in this range, up to 78 clocks may be needed to
reduce the operand.
k. 0 s l ST(0) l k 263.
l. b1.0 s ST(0) s 1.0.
m. 0 s ST(0) k %, b% k ST(1) k a%.
n. 0 s lST(0)l k (2 b S(2))/2, b% k ST(1) k a%.

DATA SHEET REVISION REVIEW

The following list represents the key differences between the -002 and the -001 version of the 80C187 data
sheet. Please review this summary carefully.

1. Figure 10, titled ‘‘System Configuration for 8087ÐCompatible Exception Trapping’’, was replaced with a
revised schematic. The previous configuration was faulty. Updated timing diagrams on Data Transfer Tim-
ing, Error Output, and RESET/BUSY.

30



������
�����
	����
�

80C31/80C32
80C51 8-bit microcontroller family
128/256 byte RAM ROMless low voltage (2.7 V–5.5 V),
low power, high speed (33 MHz)

Product specification
IC28 Data Handbook

2000 Aug 07

INTEGRATED CIRCUITS



Philips Semiconductors Product specification

80C31/80C32
80C51 8-bit microcontroller family
128/256 byte RAM ROMless low voltage (2.7V–5.5V), 
low power, high speed (33 MHz)

 22000 Aug 07 853–2213 24293

DESCRIPTION
The Philips 80C31/32 is a high-performance static 80C51 design
fabricated with Philips high-density CMOS technology with operation
from 2.7 V to 5.5 V.

The 80C31/32 ROMless devices contain a 128 × 8 RAM/256 × 8
RAM, 32 I/O lines, three 16-bit counter/timers, a six-source,
four-priority level nested interrupt structure, a serial I/O port for
either multi-processor communications, I/O expansion or full duplex
UART, and on-chip oscillator and clock circuits.

In addition, the device is a low power static design which offers a
wide range of operating frequencies down to zero. Two software
selectable modes of power reduction—idle mode and power-down
mode are available. The idle mode freezes the CPU while allowing
the RAM, timers, serial port, and interrupt system to continue
functioning. The power-down mode saves the RAM contents but
freezes the oscillator, causing all other chip functions to be
inoperative. Since the design is static, the clock can be stopped
without loss of user data and then the execution resumed from the
point the clock was stopped.

SELECTION TABLE
For applications requiring more ROM and RAM, see the 8XC54/58
and 8XC51RA+/RB+/RC+/80C51RA+ data sheet.

ROM/EPROM
Memory Size

(X by 8)

RAM Size
(X by 8)

Programmable
Timer Counter

(PCA)

Hardware
Watch Dog

Timer

80C31/8XC51

0K/4K 128 No No

80C32/8XC52/54/58

0K/8K/16K/32K 256 No No

80C51RA+/8XC51RA+/RB+/RC+

0K/8K/16K/32K 512 Yes Yes

8XC51RD+

64K 1024 Yes Yes

FEATURES
• 8051 Central Processing Unit

– 128 × 8 RAM (80C31)

– 256 × 8 RAM (80C32)

– Three 16-bit counter/timers

– Boolean processor

– Full static operation

– Low voltage (2.7 V to 5.5 V@ 16 MHz) operation

• Memory addressing capability

– 64k ROM and 64k RAM

• Power control modes:

– Clock can be stopped and resumed

– Idle mode

– Power-down mode

• CMOS and TTL compatible

• TWO speed ranges at VCC = 5 V

– 0 to 16 MHz

– 0 to 33 MHz

• Three package styles

• Extended temperature ranges

• Dual Data Pointers

• 4 level priority interrupt

• 6 interrupt sources

• Four 8-bit I/O ports

• Full–duplex enhanced UART

– Framing error detection

– Automatic address recognition

• Programmable clock out

• Asynchronous port reset

• Low EMI (inhibit ALE)

• Wake-up from Power Down by an external interrupt



Philips Semiconductors Product specification

80C31/80C32
80C51 8-bit microcontroller family
128/256 byte RAM ROMless low voltage (2.7V–5.5V), 
low power, high speed (33 MHz)

2000 Aug 07  3

80C51/87C51 AND 80C31 ORDERING INFORMATION

ROMless TEMPERATURE RANGE °C
AND PACKAGE

VOLTAGE
RANGE

FREQ.
(MHz)

DRAWING
NUMBER

P80C31SBPN 0 to +70 Plastic Dual In line Package 2 7 V to 5 5 V 0 to 16 SOT129 1P80C31SBPN 0 to +70, Plastic Dual In-line Package 2.7 V to 5.5 V 0 to 16 SOT129-1

P80C31SBAA 0 to +70 Plastic Leaded Chip Carrier 2 7 V to 5 5 V 0 to 16 SOT187 2P80C31SBAA 0 to +70, Plastic Leaded Chip Carrier 2.7 V to 5.5 V 0 to 16 SOT187-2

P80C31SBBB 0 to +70 Plastic Quad Flat Pack 2 7 V to 5 5 V 0 to 16 SOT307 2P80C31SBBB 0 to +70, Plastic Quad Flat Pack 2.7 V to 5.5 V 0 to 16 SOT307-2

P80C31SFPN 40 to +85 Plastic Dual In line Package 2 7 V to 5 5 V 0 to 16 SOT129 1P80C31SFPN –40 to +85, Plastic Dual In-line Package 2.7 V to 5.5 V 0 to 16 SOT129-1

P80C31SFA A 40 to +85 Plastic Leaded Chip Carrier 2 7 V to 5 5 V 0 to 16 SOT187 2P80C31SFA A –40 to +85, Plastic Leaded Chip Carrier 2.7 V to 5.5 V 0 to 16 SOT187-2

P80C31SFBB 40 to +85 Plastic Quad Flat Pack 2 7 V to 5 5 V 0 to 16 SOT307 2P80C31SFBB –40 to +85, Plastic Quad Flat Pack 2.7 V to 5.5 V 0 to 16 SOT307-2

PART NUMBER DERIVATION
DEVICE NUMBER OPERATING FREQUENCY, MAX (S) TEMPERATURE RANGE (B) PACKAGE (AA)

P80C31 S = 16 MHz B = 0� to +70�C AA = PLCC

P80C32 U = 33 MHz F = –40�C to +85�C BB = PQFP

PN = PDIP

80C32 ORDERING INFORMATION

ROMless TEMPERATURE RANGE °C
AND PACKAGE

FREQ
MHz

DRAWING
NUMBER

P80C32SBP N 0 to +70, Plastic Dual In-line Package 16 SOT129-1

P80C32SBA A 0 to +70, Plastic Leaded Chip Carrier 16 SOT187-2

P80C32SBB B 0 to +70, Plastic Quad Flat Pack 16 SOT307-2

P80C32SFP N –40 to +85, Plastic Dual In-line Package 16 SOT129-1

P80C32SFA A –40 to +85, Plastic Leaded Chip Carrier 16 SOT187-2

P80C32SFB B –40 to +85, Plastic Quad Flat Pack 16 SOT307-2

P80C32UBA A 0 to +70, Plastic Leaded Chip Carrier 33 SOT187-2

P80C32UBP N 0 to +70, Plastic Dual In-line Package 33 SOT129-1

P80C32UBB B 0 to +70, Plastic Quad Flat Pack 33 SOT307-2

P80C32UFA A –40 to +85, Plastic Leaded Chip Carrier 33 SOT187-2

P80C32UFP N –40 to +85, Plastic Dual In-line Package 33 SOT129-1

P80C32UFB B –40 to +85, Plastic Quad Flat Pack 33 SOT307-2



Philips Semiconductors Product specification

80C31/80C32
80C51 8-bit microcontroller family
128/256 byte RAM ROMless low voltage (2.7V–5.5V), 
low power, high speed (33 MHz)

2000 Aug 07  4

BLOCK DIAGRAM

SU00845

PSEN

EAVPP

ALE/PROG

RST

XTAL1 XTAL2

VCC

VSS

PORT 0
DRIVERS

PORT 2
DRIVERS

RAM ADDR
REGISTER RAM PORT 0

LATCH
PORT 2
LATCH

ROM/EPROM

REGISTER
B

ACC STACK
POINTER

TMP2 TMP1

ALU

TIMING
AND

CONTROL

IN
S

T
R

U
C

T
IO

N
R

E
G

IS
T

E
R

PD

OSCILLATOR

PSW

PORT 1
LATCH

PORT 3
LATCH

PORT 1 
DRIVERS

PORT 3
DRIVERS

PROGRAM
ADDRESS
REGISTER

BUFFER

PC
INCRE-

MENTER

PROGRAM
COUNTER

DPTR’S
MULTIPLE

P1.0–P1.7 P3.0–P3.7

P0.0–P0.7 P2.0–P2.7

SFRs

TIMERS

8

8 16



Philips Semiconductors Product specification

80C31/80C32
80C51 8-bit microcontroller family
128/256 byte RAM ROMless low voltage (2.7V–5.5V), 
low power, high speed (33 MHz)

2000 Aug 07  5

LOGIC SYMBOL

P
O

R
T

 0
P

O
R

T
 1

P
O

R
T

 2

P
O

R
T

 3

ADDRESS AND

DATA BUS

ADDRESS BUS

T2
T2EX

RxD

TxD
INT0

INT1
T0
T1

WR
RD

S
E

C
O

N
D

A
R

Y
 F

U
N

C
T

IO
N

S

RST
EA/VPP

PSEN

ALE/PROG

VSSVCC

XTAL1

XTAL2

SU00830

PIN CONFIGURATIONS

SU01063

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20 21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40T2/P1.0

T2EX/P1.1

P1.2

P1.3

P1.4

P1.5

P1.6

RST

RxD/P3.0

TxD/P3.1

INT0/P3.2

INT1/P3.3

T0/P3.4

T1/P3.5

P1.7

WR/P3.6

RD/P3.7

XTAL2

XTAL1

VSS P2.0/A8

P2.1/A9

P2.2/A10

P2.3/A11

P2.4/A12

P2.5/A13

P2.6/A14

P2.7/A15

PSEN

ALE

EA/VPP

P0.7/AD7

P0.6/AD6

P0.5/AD5

P0.4/AD4

P0.3/AD3

P0.2/AD2

P0.1/AD1

P0.0/AD0

VCC

DUAL
IN-LINE

PACKAGE

PLASTIC LEADED CHIP CARRIER PIN FUNCTIONS

SU01062

LCC

6 1 40

7

17

39

29

18 28

Pin Function
1 NIC*
2 P1.0/T2
3 P1.1/T2EX
4 P1.2
5 P1.3
6 P1.4
7 P1.5
8 P1.6
9 P1.7

10 RST
11 P3.0/RxD
12 NIC*
13 P3.1/TxD
14 P3.2/INT0
15 P3.3/INT1

Pin Function
16 P3.4/T0
17 P3.5/T1
18 P3.6/WR
19 P3.7/RD
20 XTAL2
21 XTAL1
22 VSS
23 NIC*
24 P2.0/A8
25 P2.1/A9
26 P2.2/A10
27 P2.3/A11
28 P2.4/A12
29 P2.5/A13
30 P2.6/A14

Pin Function
31 P2.7/A15
32 PSEN
33 ALE
34 NIC*
35 EA/VPP
36 P0.7/AD7
37 P0.6/AD6
38 P0.5/AD5
39 P0.4/AD4
40 P0.3/AD3
41 P0.2/AD2
42 P0.1/AD1
43 P0.0/AD0
44 VCC

* NO INTERNAL CONNECTION

PLASTIC QUAD FLAT PACK 
PIN FUNCTIONS

SU01064

PQFP

44 34

1

11

33

23

12 22

Pin Function
1 P1.5
2 P1.6
3 P1.7
4 RST
5 P3.0/RxD
6 NIC*
7 P3.1/TxD
8 P3.2/INT0
9 P3.3/INT1

10 P3.4/T0
11 P3.5/T1
12 P3.6/WR
13 P3.7/RD
14 XTAL2
15 XTAL1

Pin Function
16 VSS
17 NIC*
18 P2.0/A8
19 P2.1/A9
20 P2.2/A10
21 P2.3/A11
22 P2.4/A12
23 P2.5/A13
24 P2.6/A14
25 P2.7/A15
26 PSEN
27 ALE
28 NIC*
29 EA/VPP
30 P0.7/AD7

Pin Function
31 P0.6/AD6
32 P0.5/AD5
33 P0.4/AD4
34 P0.3/AD3
35 P0.2/AD2
36 P0.1/AD1
37 P0.0/AD0
38 VCC
39 NIC*
40 P1.0/T2
41 P1.1/T2EX
42 P1.2
43 P1.3
44 P1.4

* NO INTERNAL CONNECTION



Philips Semiconductors Product specification

80C31/80C32
80C51 8-bit microcontroller family
128/256 byte RAM ROMless low voltage (2.7V–5.5V), 
low power, high speed (33 MHz)

2000 Aug 07  6

PIN DESCRIPTIONS
PIN NUMBER

MNEMONIC DIP LCC QFP TYPE NAME AND FUNCTION

VSS 20 22 16 I Ground:  0 V reference.

VCC 40 44 38 I Power Supply:  This is the power supply voltage for normal, idle, and power-down operation.

P0.0–0.7 39–32 43–36 37–30 I/O Port 0: Port 0 is an open-drain, bidirectional I/O port with Schmitt trigger inputs. Port 0 pins
that have 1s written to them float and can be used as high-impedance inputs. Port 0 is also
the multiplexed low-order address and data bus during accesses to external program and
data memory. In this application, it uses strong internal pull-ups when emitting 1s.

P1.0–P1.7 1–8 2–9 40–44,
1–3

I/O Port 1:  Port 1 is an 8-bit bidirectional I/O port with internal pull-ups and Schmitt trigger
inputs. Port 1 pins that have 1s written to them are pulled high by the internal pull-ups and
can be used as inputs. As inputs, port 1 pins that are externally pulled low will source
current because of the internal pull-ups. (See DC Electrical Characteristics: IIL). Alternate
functions for Port 1 include:

1 2 40 I/O T2 (P1.0): Timer/Counter 2 external count input/clockout (see Programmable Clock-Out)
2 3 41 I T2EX (P1.1): Timer/Counter 2 Reload/Capture/Direction control

P2.0–P2.7 21–28 24–31 18–25 I/O Port 2: Port 2 is an 8-bit bidirectional I/O port with internal pull-ups and Schmitt trigger
inputs. Port 2 pins that have 1s written to them are pulled high by the internal pull-ups and
can be used as inputs. As inputs, port 2 pins that are externally being pulled low will source
current because of the internal pull-ups. (See DC Electrical Characteristics: IIL). Port 2 emits
the high-order address byte during fetches from external program memory and during
accesses to external data memory that use 16-bit addresses (MOVX @DPTR). In this
application, it uses strong internal pull-ups when emitting 1s. During accesses to external
data memory that use 8-bit addresses (MOV @Ri), port 2 emits the contents of the P2
special function register.

P3.0–P3.7 10–17 11,
13–19

5,
7–13

I/O Port 3:  Port 3 is an 8-bit bidirectional I/O port with internal pull-ups and Schmitt trigger
inputs. Port 3 pins that have 1s written to them are pulled high by the internal pull-ups and
can be used as inputs. As inputs, port 3 pins that are externally being pulled low will source
current because of the pull-ups. (See DC Electrical Characteristics: IIL). Port 3 also serves
the special features of the 80C51 family, as listed below:

10 11 5 I RxD (P3.0): Serial input port
11 13 7 O TxD (P3.1): Serial output port
12 14 8 I INT0 (P3.2): External interrupt
13 15 9 I INT1 (P3.3): External interrupt
14 16 10 I T0 (P3.4): Timer 0 external input
15 17 11 I T1 (P3.5): Timer 1 external input
16 18 12 O WR (P3.6): External data memory write strobe
17 19 13 O RD (P3.7): External data memory read strobe

RST 9 10 4 I Reset:  A high on this pin for two machine cycles while the oscillator is running, resets the
device. An internal diffused resistor to VSS permits a power-on reset using only an external
capacitor to VCC.

ALE 30 33 27 O Address Latch Enable: Output pulse for latching the low byte of the address during an
access to external memory. In normal operation, ALE is emitted at a constant rate of 1/6 the
oscillator frequency, and can be used for external timing or clocking. Note that one ALE
pulse is skipped during each access to external data memory. ALE can be disabled by
setting SFR auxiliary.0. With this bit set, ALE will be active only during a MOVX instruction.

PSEN 29 32 26 O Program Store Enable: The read strobe to external program memory. When the 80C31/32
is executing code from the external program memory, PSEN is activated twice each
machine cycle, except that two PSEN activations are skipped during each access to
external data memory. PSEN is not activated during fetches from internal program memory.

EA/VPP 31 35 29 I External Access Enable/Programming Supply Voltage:  EA must be externally held low
to enable the device to fetch code from external program memory locations 0000H to
0FFFH.

XTAL1 19 21 15 I Crystal 1: Input to the inverting oscillator amplifier and input to the internal clock generator
circuits.

XTAL2 18 20 14 O Crystal 2:  Output from the inverting oscillator amplifier.
NOTE:
To avoid “latch-up” effect at power-on, the voltage on any pin at any time must not be higher than VCC + 0.5 V or VSS – 0.5 V, respectively.



Philips Semiconductors Product specification

80C31/80C32
80C51 8-bit microcontroller family
128/256 byte RAM ROMless low voltage (2.7V–5.5V), 
low power, high speed (33 MHz)

2000 Aug 07  7

Table 1.  8XC51/80C31 Special Function Registers

SYMBOL DESCRIPTION
DIRECT

ADDRESS
BIT ADDRESS, SYMBOL, OR ALTERNATIVE PORT FUNCTION

MSB LSB
RESET
VALUE

ACC* Accumulator E0H E7 E6 E5 E4 E3 E2 E1 E0 00H

AUXR# Auxiliary 8EH – – – – – – – AO xxxxxxx0B

AUXR1# Auxiliary 1 A2H – – – – WUPD2 0 – DPS xxx000x0B

B* B register F0H F7 F6 F5 F4 F3 F2 F1 F0 00H

DPTR: Data Pointer (2 bytes)
  DPH Data Pointer High 83H 00H
  DPL Data Pointer Low 82H 00H

AF AE AD AC AB AA A9 A8

IE* Interrupt Enable A8H EA – ET2 ES ET1 EX1 ET0 EX0 0x000000B

BF BE BD BC BB BA B9 B8

IP* Interrupt Priority B8H – – PT2 PS PT1 PX1 PT0 PX0 xx000000B

B7 B6 B5 B4 B3 B2 B1 B0

IPH# Interrupt Priority High B7H – – PT2H PSH PT1H PX1H PT0H PX0H xx000000B

87 86 85 84 83 82 81 80

P0* Port 0 80H AD7 AD6 AD5 AD4 AD3 AD2 AD1 AD0 FFH

97 96 95 94 93 92 91 90

P1* Port 1 90H – – – – – – T2EX T2 FFH

A7 A6 A5 A4 A3 A2 A1 A0

P2* Port 2 A0H AD15 AD14 AD13 AD12 AD11 AD10 AD9 AD8 FFH

B7 B6 B5 B4 B3 B2 B1 B0

P3* Port 3 B0H RD WR T1 T0 INT1 INT0 TxD RxD FFH

PCON#1 Power Control 87H SMOD1 SMOD0 – POF GF1 GF0 PD IDL 00xx0000B

D7 D6 D5 D4 D3 D2 D1 D0

PSW* Program Status Word D0H CY AC F0 RS1 RS0 OV – P 000000x0B

RACAP2H# Timer 2 Capture High CBH 00H
RACAP2L# Timer 2 Capture Low CAH 00H

SADDR# Slave Address A9H 00H
SADEN# Slave Address Mask B9H 00H

SBUF Serial Data Buffer 99H xxxxxxxxB

9F 9E 9D 9C 9B 9A 99 98

SCON* Serial Control 98H SM0/FE SM1 SM2 REN TB8 RB8 TI RI 00H

SP Stack Pointer 81H 07H

8F 8E 8D 8C 8B 8A 89 88

TCON* Timer Control 88H TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0 00H

CF CE CD CC CB CA C9 C8

T2CON* Timer 2 Control C8H TF2 EXF2 RCLK TCLK EXEN2 TR2 C/T2 CP/RL2 00H

T2MOD# Timer 2 Mode Control C9H – – – – – – T2OE DCEN xxxxxx00B
TH0 Timer High 0 8CH 00H
TH1 Timer High 1 8DH 00H
TH2# Timer High 2 CDH 00H
TL0 Timer Low 0 8AH 00H
TL1 Timer Low 1 8BH 00H
TL2# Timer Low 2 CCH 00H

TMOD Timer Mode 89H GATE C/T M1 M0 GATE C/T M1 M0 00H

NOTE:
Unused register bits that are not defined should not be set by the user’s program. If violated, the device could function incorrectly.
* SFRs are bit addressable.
# SFRs are modified from or added to the 80C51 SFRs.
– Reserved bits.
1. Reset value depends on reset source.
2. Not available on 80C31.



Philips Semiconductors Product specification

80C31/80C32
80C51 8-bit microcontroller family
128/256 byte RAM ROMless low voltage (2.7V–5.5V), 
low power, high speed (33 MHz)

2000 Aug 07  8

OSCILLATOR CHARACTERISTICS
XTAL1 and XTAL2 are the input and output, respectively, of an
inverting amplifier. The pins can be configured for use as an on-chip
oscillator, as shown in the logic symbol.

To drive the device from an external clock source, XTAL1 should be
driven while XTAL2 is left unconnected. There are no requirements
on the duty cycle of the external clock signal, because the input to
the internal clock circuitry is through a divide-by-two flip-flop.
However, minimum and maximum high and low times specified in
the data sheet must be observed.

Reset
A reset is accomplished by holding the RST pin high for at least two
machine cycles (24 oscillator periods), while the oscillator is running.
To insure a good power-up reset, the RST pin must be high long
enough to allow the oscillator time to start up (normally a few
milliseconds) plus two machine cycles.

Stop Clock Mode
The static design enables the clock speed to be reduced down to
0 MHz (stopped). When the oscillator is stopped, the RAM and
Special Function Registers retain their values. This mode allows
step-by-step utilization and permits reduced system power
consumption by lowering the clock frequency down to any value. For
lowest power consumption the Power Down mode is suggested.

Idle Mode
In idle mode (see Table 2), the CPU puts itself to sleep while all of
the on-chip peripherals stay active. The instruction to invoke the idle
mode is the last instruction executed in the normal operating mode
before the idle mode is activated. The CPU contents, the on-chip
RAM, and all of the special function registers remain intact during
this mode. The idle mode can be terminated either by any enabled
interrupt (at which time the process is picked up at the interrupt
service routine and continued), or by a hardware reset which starts
the processor in the same manner as a power-on reset.

Power-Down Mode
To save even more power, a Power Down mode (see Table 2) can
be invoked by software. In this mode, the oscillator is stopped and
the instruction that invoked Power Down is the last instruction
executed. The on-chip RAM and Special Function Registers retain
their values down to 2.0 V and care must be taken to return VCC to
the minimum specified operating voltages before the Power Down
Mode is terminated.

For the 80C31 or 80C32, either a hardware reset or external
interrupt can be used to exit from Power Down. Reset redefines all
the SFRs but does not change the on-chip RAM. An external
interrupt allows both the SFRs and the on-chip RAM to retain their
values. WUPD (AUXR1.3–Wakeup from Power Down) enables or
disables the wakeup from power down with external interrupt.
Where:

WUPD = 0 Disable
WUPD = 1 Enable

To properly terminate Power Down the reset or external interrupt
should not be executed before VCC is restored to its normal
operating level and must be held active long enough for the
oscillator to restart and stabilize (normally less than 10 ms).

With an external interrupt, INT0 or INT1 must be enabled and
configured as level-sensitive. Holding the pin low restarts the
oscillator but bringing the pin back high completes the exit. Once the
interrupt is serviced, the next instruction to be executed after RETI
will be the one following the instruction that put the device into
Power Down.

For the 80C31, wakeup from power down is always enabled.

Design Consideration
• When the idle mode is terminated by a hardware reset, the device

normally resumes program execution, from where it left off, up to
two machine cycles before the internal reset algorithm takes
control. On-chip hardware inhibits access to internal RAM in this
event, but access to the port pins is not inhibited. To eliminate the

possibility of an unexpected write when Idle is terminated by reset,
the instruction following the one that invokes Idle should not be
one that writes to a port pin or to external memory.

ONCE  Mode
The ONCE (“On-Circuit Emulation”) Mode facilitates testing and
debugging of systems without the device having to be removed from
the circuit. The ONCE Mode is invoked by:

1. Pull ALE low while the device is in reset and PSEN is high;

2. Hold ALE low as RST is deactivated.

While the device is in ONCE Mode, the Port 0 pins go into a float
state, and the other port pins and ALE and PSEN are weakly pulled
high. The oscillator circuit remains active. While the 80C31/32 is in
this mode, an emulator or test CPU can be used to drive the circuit.
Normal operation is restored when a normal reset is applied.

Table 2.  External Pin Status During Idle and Power-Down Modes
MODE PROGRAM MEMORY ALE PSEN PORT 0 PORT 1 PORT 2 PORT 3

Idle Internal 1 1 Data Data Data Data

Idle External 1 1 Float Data Address Data

Power-down Internal 0 0 Data Data Data Data

Power-down External 0 0 Float Data Data Data



Philips Semiconductors Product specification

80C31/80C32
80C51 8-bit microcontroller family
128/256 byte RAM ROMless low voltage (2.7V–5.5V), 
low power, high speed (33 MHz)

2000 Aug 07  9

Programmable Clock-Out
A 50% duty cycle clock can be programmed to come out on P1.0.
This pin, besides being a regular I/O pin, has two alternate
functions. It can be programmed:

1. to input the external clock for Timer/Counter 2, or

2. to output a 50% duty cycle clock ranging from 61 Hz to 4 MHz at
a 16 MHz operating frequency.

To configure the Timer/Counter 2 as a clock generator, bit C/T2 (in
T2CON) must be cleared and bit T20E in T2MOD must be set. Bit
TR2 (T2CON.2) also must be set to start the timer.

The Clock-Out frequency depends on the oscillator frequency and
the reload value of Timer 2 capture registers (RCAP2H, RCAP2L)
as shown in this equation:

Oscillator Frequency
4 � (65536 � RCAP2H, RCAP2L)

Where:

(RCAP2H,RCAP2L) = the content of RCAP2H and RCAP2L
taken as a 16-bit unsigned integer.

In the Clock-Out mode Timer 2 roll-overs will not generate an
interrupt. This is similar to when it is used as a baud-rate generator.
It is possible to use Timer 2 as a baud-rate generator and a clock
generator simultaneously. Note, however, that the baud-rate and the
Clock-Out frequency will be the same.

TIMER 2 OPERATION

Timer 2
Timer 2 is a 16-bit Timer/Counter which can operate as either an
event timer or an event counter, as selected by C/T2* in the special
function register T2CON (see Figure 1). Timer 2 has three operating
modes:Capture, Auto-reload (up or down counting) ,and Baud Rate
Generator, which are selected by bits in the T2CON as shown in
Table 3.

Capture Mode
In the capture mode there are two options which are selected by bit
EXEN2 in T2CON. If EXEN2=0, then timer 2 is a 16-bit timer or
counter (as selected by C/T2* in T2CON) which, upon overflowing
sets bit TF2, the timer 2 overflow bit. This bit can be used to
generate an interrupt (by enabling the Timer 2 interrupt bit in the
IE register). If EXEN2= 1, Timer 2 operates as described above, but
with the added feature that a 1- to -0 transition at external input
T2EX causes the current value in the Timer 2 registers, TL2 and

TH2, to be captured into registers RCAP2L and RCAP2H,
respectively. In addition, the transition at T2EX causes bit EXF2 in
T2CON to be set, and EXF2 like TF2 can generate an interrupt
(which vectors to the same location as Timer 2 overflow interrupt.
The Timer 2 interrupt service routine can interrogate TF2 and EXF2
to determine which event caused the interrupt). The capture mode is
illustrated in Figure 2 (There is no reload value for TL2 and TH2 in
this mode. Even when a capture event occurs from T2EX, the
counter keeps on counting T2EX pin transitions or osc/12 pulses.).

Auto-Reload Mode (Up or Down Counter)
In the 16-bit auto-reload mode, Timer 2 can be configured (as either
a timer or counter (C/T2* in T2CON)) then programmed to count up
or down. The counting direction is determined by bit DCEN (Down
Counter Enable) which is located in the T2MOD register (see
Figure 3). When reset is applied the DCEN=0 which means Timer 2
will default to counting up. If DCEN bit is set, Timer 2 can count up
or down depending on the value of the T2EX pin.

Figure 4 shows Timer 2 which will count up automatically since
DCEN=0. In this mode there are two options selected by bit EXEN2
in T2CON register. If EXEN2=0, then Timer 2 counts up to 0FFFFH
and sets the TF2 (Overflow Flag) bit upon overflow. This causes the
Timer 2 registers to be reloaded with the 16-bit value in RCAP2L
and RCAP2H. The values in RCAP2L and RCAP2H are preset by
software means.

If EXEN2=1, then a 16-bit reload can be triggered either by an
overflow or by a 1-to-0 transition at input T2EX. This transition also
sets the EXF2 bit. The Timer 2 interrupt, if enabled, can be
generated when either TF2 or EXF2 are 1.

In Figure 5 DCEN=1 which enables Timer 2 to count up or down.
This mode allows pin T2EX to control the direction of count. When a
logic 1 is applied at pin T2EX Timer 2 will count up. Timer 2 will
overflow at 0FFFFH and set the TF2 flag, which can then generate
an interrupt, if the interrupt is enabled. This timer overflow also
causes the 16–bit value in RCAP2L and RCAP2H to be reloaded
into the timer registers TL2 and TH2.

When a logic 0 is applied at pin T2EX this causes Timer 2 to count
down. The timer will underflow when TL2 and TH2 become equal to
the value stored in RCAP2L and RCAP2H. Timer 2 underflow sets
the TF2 flag and causes 0FFFFH to be reloaded into the timer
registers TL2 and TH2.

The external flag EXF2 toggles when Timer 2 underflows or
overflows. This EXF2 bit can be used as a 17th bit of resolution if
needed. The EXF2 flag does not generate an interrupt in this mode
of operation.

Table 3.  Timer 2 Operating Modes
RCLK + TCLK CP/RL2 TR2 MODE

0 0 1 16-bit Auto-reload

0 1 1 16-bit Capture

1 X 1 Baud rate generator

X X 0 (off)



Philips Semiconductors Product specification

80C31/80C32
80C51 8-bit microcontroller family
128/256 byte RAM ROMless low voltage (2.7V–5.5V), 
low power, high speed (33 MHz)

2000 Aug 07  10

(MSB) (LSB)

Symbol Position Name and Significance

TF2 T2CON.7 Timer 2 overflow flag set by a Timer 2 overflow and must be cleared by software. TF2 will not be set
when either RCLK or TCLK = 1.

EXF2 T2CON.6 Timer 2 external flag set when either a capture or reload is caused by a negative transition on T2EX and
EXEN2 = 1. When Timer 2 interrupt is enabled, EXF2 = 1 will cause the CPU to vector to the Timer 2
interrupt routine. EXF2 must be cleared by software. EXF2 does not cause an interrupt in up/down
counter mode (DCEN = 1).

RCLK T2CON.5 Receive clock flag. When set, causes the serial port to use Timer 2 overflow pulses for its receive clock
in modes 1 and 3. RCLK = 0 causes Timer 1 overflow to be used for the receive clock.

TCLK T2CON.4 Transmit clock flag. When set, causes the serial port to use Timer 2 overflow pulses for its transmit clock
in modes 1 and 3. TCLK = 0 causes Timer 1 overflows to be used for the transmit clock.

EXEN2 T2CON.3 Timer 2 external enable flag. When set, allows a capture or reload to occur as a result of a negative
transition on T2EX if Timer 2 is not being used to clock the serial port. EXEN2 = 0 causes Timer 2 to
ignore events at T2EX.

TR2 T2CON.2 Start/stop control for Timer 2. A logic 1 starts the timer.

C/T2 T2CON.1 Timer or counter select. (Timer 2)
0 = Internal timer (OSC/12)
1 = External event counter (falling edge triggered).

CP/RL2 T2CON.0 Capture/Reload flag. When set, captures will occur on negative transitions at T2EX if EXEN2 = 1. When
cleared, auto-reloads will occur either with Timer 2 overflows or negative transitions at T2EX when
EXEN2 = 1. When either RCLK = 1 or TCLK = 1, this bit is ignored and the timer is forced to auto-reload
on Timer 2 overflow.

TF2 EXF2 RCLK TCLK EXEN2 TR2 C/T2 CP/RL2

SU00728

Figure 1.  Timer/Counter 2 (T2CON) Control Register

OSC ÷ 12
C/T2 = 0

C/T2 = 1

TR2

Control

TL2
(8-bits)

TH2
(8-bits) TF2

RCAP2L RCAP2H

EXEN2

Control

EXF2

Timer 2
Interrupt

T2EX Pin

Transition
Detector

T2 Pin

Capture

SU00066

Figure 2.  Timer 2 in Capture Mode



Philips Semiconductors Product specification

80C31/80C32
80C51 8-bit microcontroller family
128/256 byte RAM ROMless low voltage (2.7V–5.5V), 
low power, high speed (33 MHz)

2000 Aug 07  11

Not Bit Addressable

Symbol Function

— Not implemented, reserved for future use.*

T2OE Timer 2 Output Enable bit.

DCEN Down Count Enable bit. When set, this allows Timer 2 to be configured as an up/down counter.

— — — — — — T2OE DCEN

SU00729

7 6 5 4 3 2 1 0

* User software should not write 1s to reserved bits. These bits may be used in future 8051 family products to invoke new features.
In that case, the reset or inactive value of the new bit will be 0, and its active value will be 1. The value read from a reserved bit is
indeterminate.

Bit

T2MOD Address = 0C9H Reset Value = XXXX XX00B

Figure 3.  Timer 2 Mode (T2MOD) Control Register

OSC ÷ 12
C/T2 = 0

C/T2 = 1

TR2

CONTROL

TL2
(8-BITS)

TH2
(8-BITS)

TF2
RCAP2L RCAP2H

EXEN2

CONTROL

EXF2

TIMER 2
INTERRUPT

T2EX PIN

TRANSITION
DETECTOR

T2 PIN

RELOAD

SU00067

Figure 4.  Timer 2 in Auto-Reload Mode (DCEN = 0)



Philips Semiconductors Product specification

80C31/80C32
80C51 8-bit microcontroller family
128/256 byte RAM ROMless low voltage (2.7V–5.5V), 
low power, high speed (33 MHz)

2000 Aug 07  12

÷12 C/T2 = 0

C/T2 = 1

TL2 TH2

TR2

CONTROL
T2 PIN

SU00730

FFH FFH

RCAP2L RCAP2H

(UP COUNTING RELOAD VALUE) T2EX PIN

TF2 INTERRUPT

COUNT
DIRECTION
1 = UP
0 = DOWN

EXF2

OVERFLOW

(DOWN COUNTING RELOAD VALUE)

TOGGLE

OSC

Figure 5.  Timer 2 Auto Reload Mode (DCEN = 1)

OSC ÷ 2
C/T2 = 0

C/T2 = 1

TR2

Control

TL2
(8-bits)

TH2
(8-bits)

÷ 16

RCAP2L RCAP2H

EXEN2

Control

EXF2 Timer 2
Interrupt

T2EX Pin

Transition
Detector

T2 Pin

Reload

NOTE: OSC. Freq. is divided by 2, not 12. ÷ 2

“0” “1”

RX Clock

÷ 16 TX Clock

“0”“1”

“0”“1”

Timer 1
Overflow

Note availability of additional external interrupt.

SMOD

RCLK

TCLK

SU00068

Figure 6.  Timer 2 in Baud Rate Generator Mode



Philips Semiconductors Product specification

80C31/80C32
80C51 8-bit microcontroller family
128/256 byte RAM ROMless low voltage (2.7V–5.5V), 
low power, high speed (33 MHz)

2000 Aug 07  13

Baud Rate Generator Mode
Bits TCLK and/or RCLK in T2CON (Table 3) allow the serial port
transmit and receive baud rates to be derived from either Timer 1 or
Timer 2. When TCLK= 0, Timer 1 is used as the serial port transmit
baud rate generator. When TCLK= 1, Timer 2 is used as the serial
port transmit baud rate generator. RCLK has the same effect for the
serial port receive baud rate. With these two bits, the serial port can
have different receive and transmit baud rates – one generated by
Timer 1, the other by Timer 2.

Figure 6 shows the Timer 2 in baud rate generation mode. The baud
rate generation mode is like the auto-reload mode, in that a rollover
in TH2 causes the Timer 2 registers to be reloaded with the 16-bit
value in registers RCAP2H and RCAP2L, which are preset by
software.

The baud rates in modes 1 and 3 are determined by Timer 2’s
overflow rate given below:

Modes 1 and 3 Baud Rates �
Timer 2 Overflow Rate

16

The timer can be configured for either “timer” or “counter” operation.
In many applications, it is configured for “timer” operation (C/T2*=0).
Timer operation is different for Timer 2 when it is being used as a
baud rate generator.

Usually, as a timer it would increment every machine cycle (i.e., 1/12
the oscillator frequency). As a baud rate generator, it increments
every state time (i.e., 1/2 the oscillator frequency). Thus the baud
rate formula is as follows:

Oscillator Frequency
[32 � [65536 � (RCAP2H, RCAP2L)]]

Modes 1 and 3 Baud Rates =

Where: (RCAP2H, RCAP2L)= The content of RCAP2H and
RCAP2L taken as a 16-bit unsigned integer.

The Timer 2 as a baud rate generator mode shown in Figure 6, is
valid only if RCLK and/or TCLK = 1 in T2CON register. Note that a
rollover in TH2 does not set TF2, and will not generate an interrupt.
Thus, the Timer 2 interrupt does not have to be disabled when
Timer 2 is in the baud rate generator mode. Also if the EXEN2
(T2 external enable flag) is set, a 1-to-0 transition in T2EX
(Timer/counter 2 trigger input) will set EXF2 (T2 external flag) but
will not cause a reload from (RCAP2H, RCAP2L) to (TH2,TL2).
Therefore when Timer 2 is in use as a baud rate generator, T2EX
can be used as an additional external interrupt, if needed.

When Timer 2 is in the baud rate generator mode, one should not try
to read or write TH2 and TL2. As a baud rate generator, Timer 2 is
incremented every state time (osc/2) or asynchronously from pin T2;

under these conditions, a read or write of TH2 or TL2 may not be
accurate. The RCAP2 registers may be read, but should not be
written to, because a write might overlap a reload and cause write
and/or reload errors. The timer should be turned off (clear TR2)
before accessing the Timer 2 or RCAP2 registers.

Table 4 shows commonly used baud rates and how they can be
obtained from Timer 2.

Table 4.  Timer 2 Generated Commonly Used
Baud Rates

Ba d Rate Osc Freq
Timer 2

Baud Rate Osc Freq
RCAP2H RCAP2L

375 K 12 MHz FF FF
9.6 K 12 MHz FF D9
2.8 K 12 MHz FF B2
2.4 K 12 MHz FF 64
1.2 K 12 MHz FE C8
300 12 MHz FB 1E
110 12 MHz F2 AF
300 6 MHz FD 8F
110 6 MHz F9 57

Summary Of Baud Rate Equations
Timer 2 is in baud rate generating mode. If Timer 2 is being clocked
through pin T2(P1.0) the baud rate is:

Baud Rate �
Timer 2 Overflow Rate

16

If Timer 2 is being clocked internally, the baud rate is:

Baud Rate �

fOSC

[32 � [65536 � (RCAP2H, RCAP2L)]]

Where fOSC= Oscillator Frequency

To obtain the reload value for RCAP2H and RCAP2L, the above
equation can be rewritten as:

RCAP2H, RCAP2L � 65536 ��
fOSC

32 � Baud Rate
�

Timer/Counter 2 Set-up
Except for the baud rate generator mode, the values given for
T2CON do not include the setting of the TR2 bit. Therefore, bit TR2
must be set, separately, to turn the timer on. See Table 5 for set-up
of Timer 2 as a timer. Also see Table 6 for set-up of Timer 2 as a
counter.



Philips Semiconductors Product specification

80C31/80C32
80C51 8-bit microcontroller family
128/256 byte RAM ROMless low voltage (2.7V–5.5V), 
low power, high speed (33 MHz)

2000 Aug 07  14

Table 5.   Timer 2 as a Timer

MODE
T2CON

MODE
INTERNAL CONTROL (Note  1) EXTERNAL CONTROL (Note 2)

16-bit Auto-Reload 00H 08H

16-bit Capture 01H 09H

Baud rate generator receive and transmit same baud rate 34H 36H

Receive only 24H 26H

Transmit only 14H 16H

Table 6.   Timer 2 as a Counter

MODE
TMOD

MODE
INTERNAL CONTROL (Note  1) EXTERNAL CONTROL (Note 2)

16-bit 02H 0AH

Auto-Reload 03H 0BH

NOTES:
1. Capture/reload occurs only on timer/counter overflow.
2. Capture/reload occurs on timer/counter overflow and a 1-to-0 transition on T2EX (P1.1) pin except when Timer 2 is used in the baud rate

generator mode.

Enhanced UART
The UART operates in all of the usual modes that are described in
the first section of Data Handbook IC20, 80C51-Based 8-Bit
Microcontrollers. In addition the UART can perform framing error
detect by looking for missing stop bits, and automatic address
recognition. The 80C31/32 UART also fully supports multiprocessor
communication.

When used for framing error detect the UART looks for missing stop
bits in the communication. A missing bit will set the FE bit in the
SCON register. The FE bit shares the SCON.7 bit with SM0 and the
function of SCON.7 is determined by PCON.6 (SMOD0) (see
Figure 7). If SMOD0 is set then SCON.7 functions as FE. SCON.7
functions as SM0 when SMOD0 is cleared. When used as FE
SCON.7 can only be cleared by software. Refer to Figure 8.

Automatic Address Recognition
Automatic Address Recognition is a feature which allows the UART
to recognize certain addresses in the serial bit stream by using
hardware to make the comparisons. This feature saves a great deal
of software overhead by eliminating the need for the software to
examine every serial address which passes by the serial port. This
feature is enabled by setting the SM2 bit in SCON. In the 9 bit UART
modes, mode 2 and mode 3, the Receive Interrupt flag (RI) will be
automatically set when the received byte contains either the “Given”
address or the “Broadcast” address. The 9 bit mode requires that
the 9th information bit is a 1 to indicate that the received information
is an address and not data. Automatic address recognition is shown
in Figure 9.

The 8 bit mode is called Mode 1. In this mode the RI flag will be set
if SM2 is enabled and the information received has a valid stop bit
following the 8 address bits and the information is either a Given or
Broadcast address.

Mode 0 is the Shift Register mode and SM2 is ignored.

Using the Automatic Address Recognition feature allows a master to
selectively communicate with one or more slaves by invoking the
Given slave address or addresses. All of the slaves may be
contacted by using the Broadcast address. Two special Function
Registers are used to define the slave’s address, SADDR, and the
address mask, SADEN. SADEN is used to define which bits in the

SADDR are to b used and which bits are “don’t care”. The SADEN
mask can be logically ANDed with the SADDR to create the “Given”
address which the master will use for addressing each of the slaves.
Use of the Given address allows multiple slaves to be recognized
while excluding others. The following examples will help to show the
versatility of this scheme:

Slave 0 SADDR = 1100 0000
SADEN = 1111 1101
Given = 1100 00X0

Slave 1 SADDR = 1100 0000
SADEN = 1111 1110
Given = 1100 000X

In the above example SADDR is the same and the SADEN data is
used to differentiate between the two slaves. Slave 0 requires a 0 in
bit 0 and it ignores bit 1. Slave 1 requires a 0 in bit 1 and bit 0 is
ignored. A unique address for Slave 0 would be 1100 0010 since
slave 1 requires a 0 in bit 1. A unique address for slave 1 would be
1100 0001 since a 1 in bit 0 will exclude slave 0. Both slaves can be
selected at the same time by an address which has bit 0 = 0 (for
slave 0) and bit 1 = 0 (for slave 1). Thus, both could be addressed
with 1100 0000.

In a more complex system the following could be used to select
slaves 1 and 2 while excluding slave 0:

Slave 0 SADDR = 1100 0000
SADEN = 1111 1001
Given = 1100 0XX0

Slave 1 SADDR = 1110 0000
SADEN = 1111 1010
Given = 1110 0X0X

Slave 2 SADDR = 1110 0000
SADEN = 1111 1100
Given = 1110 00XX

In the above example the differentiation among the 3 slaves is in the
lower 3 address bits. Slave 0 requires that bit 0 = 0 and it can be
uniquely addressed by 1110 0110. Slave 1 requires that bit 1 = 0 and
it can be uniquely addressed by 1110 and 0101. Slave 2 requires
that bit 2 = 0 and its unique address is 1110 0011. To select Slaves 0



Philips Semiconductors Product specification

80C31/80C32
80C51 8-bit microcontroller family
128/256 byte RAM ROMless low voltage (2.7V–5.5V), 
low power, high speed (33 MHz)

2000 Aug 07  15

and 1 and exclude Slave 2 use address 1110 0100, since it is
necessary to make bit 2 = 1 to exclude slave 2.

The Broadcast Address for each slave is created by taking the
logical OR of SADDR and SADEN. Zeros in this result are trended
as don’t-cares. In most cases, interpreting the don’t-cares as ones,
the broadcast address will be FF hexadecimal.

Upon reset SADDR (SFR address 0A9H) and SADEN (SFR
address 0B9H) are leaded with 0s. This produces a given address
of all “don’t cares” as well as a Broadcast address of all “don’t
cares”. This effectively disables the Automatic Addressing mode and
allows the microcontroller to use standard 80C51 type UART drivers
which do not make use of this feature.

SCON   Address = 98H Reset Value = 0000 0000B 

SM0/FE SM1 SM2 REN TB8 RB8 Tl Rl

Bit Addressable

(SMOD0 = 0/1)*

Symbol Function

FE Framing Error bit. This bit is set by the receiver when an invalid stop bit is detected. The FE bit is not cleared by valid
frames but should be cleared by software. The SMOD0 bit must be set to enable access to the FE bit.

SM0 Serial Port Mode Bit 0, (SMOD0 must = 0 to access bit SM0)

SM1 Serial Port Mode Bit 1
SM0 SM1 Mode Description Baud Rate**

0 0 0 shift register fOSC/12
0 1 1 8-bit UART variable
1 0 2 9-bit UART fOSC/64 or fOSC/32
1 1 3 9-bit UART variable

SM2 Enables the Automatic Address Recognition feature in Modes 2 or 3. If SM2 = 1 then Rl will not be set unless the
received 9th data bit (RB8) is 1, indicating an address, and the received byte is a Given or Broadcast Address.
In Mode 1, if SM2 = 1 then Rl will not be activated unless a valid stop bit was received, and the received byte is a
Given or Broadcast Address. In Mode 0, SM2 should be 0.

REN Enables serial reception. Set by software to enable reception. Clear by software to disable reception.

TB8 The 9th data bit that will be transmitted in Modes 2 and 3. Set or clear by software as desired.

RB8 In modes 2 and 3, the 9th data bit that was received. In Mode 1, if SM2 = 0, RB8 is the stop bit that was received. 
In Mode 0, RB8 is not used.

Tl Transmit interrupt flag. Set by hardware at the end of the 8th bit time in Mode 0, or at the beginning of the stop bit in the
other modes, in any serial transmission. Must be cleared by software.

Rl   Receive interrupt flag. Set by hardware at the end of the 8th bit time in Mode 0, or halfway through the stop bit time in
the other modes, in any serial reception (except see SM2). Must be cleared by software.

NOTE:
*SMOD0 is located at PCON6.
**fOSC = oscillator frequency SU00043

Bit: 7 6 5 4 3 2 1 0

Figure 7.  SCON: Serial Port Control Register



Philips Semiconductors Product specification

80C31/80C32
80C51 8-bit microcontroller family
128/256 byte RAM ROMless low voltage (2.7V–5.5V), 
low power, high speed (33 MHz)

2000 Aug 07  16

SMOD1 SMOD0 – POF GF1 GF0 PD IDL
PCON
(87H)

SM0 / FE SM1 SM2 REN TB8 RB8 TI RI SCON
(98H)

D0 D1 D2 D3 D4 D5 D6 D7 D8

STOP 
BIT

DATA BYTE ONLY IN 
MODE 2, 3

START 
BIT

SET FE BIT IF STOP BIT IS 0 (FRAMING ERROR)

SM0 TO UART MODE CONTROL

0 : SCON.7 = SM0
1 : SCON.7 = FE

SU01191

Figure 8.  UART Framing Error Detection

SM0 SM1 SM2 REN TB8 RB8 TI RI SCON
(98H)

D0 D1 D2 D3 D4 D5 D6 D7 D8

1
1

1
0

COMPARATOR

1 1 X

RECEIVED ADDRESS D0 TO D7

PROGRAMMED ADDRESS

IN UART MODE 2 OR MODE 3 AND SM2 = 1:
     INTERRUPT IF REN=1, RB8=1 AND “RECEIVED ADDRESS” = “PROGRAMMED ADDRESS”
– WHEN OWN ADDRESS RECEIVED,  CLEAR SM2 TO RECEIVE DATA BYTES
– WHEN ALL DATA BYTES HAVE BEEN RECEIVED: SET SM2 TO WAIT FOR NEXT ADDRESS.

SU00045

Figure 9.  UART Multiprocessor Communication, Automatic Address Recognition



Philips Semiconductors Product specification

80C31/80C32
80C51 8-bit microcontroller family
128/256 byte RAM ROMless low voltage (2.7V–5.5V), 
low power, high speed (33 MHz)

2000 Aug 07  17

Interrupt Priority Structure
The 80C31 and 80C32 have a 6-source four-level interrupt
structure. They are the IE, IP and IPH. (See Figures 10, 11, and 12.)
The IPH (Interrupt Priority High) register that makes the four-level
interrupt structure possible. The IPH is located at SFR address B7H.
The structure of the IPH register and a description of its bits is
shown in Figure 12.

The function of the IPH SFR is simple and when combined with the
IP SFR determines the priority of each interrupt. The priority of each
interrupt is determined as shown in the following table:

PRIORITY BITS
INTERRUPT PRIORITY LEVEL

IPH.x IP.x
INTERRUPT PRIORITY LEVEL

0 0 Level 0 (lowest priority)

0 1 Level 1

1 0 Level 2

1 1 Level 3 (highest priority)

An interrupt will be serviced as long as an interrupt of equal or
higher priority is not already being serviced. If an interrupt of equal
or higher level priority is being serviced, the new interrupt will wait
until it is finished before being serviced. If a lower priority level
interrupt is being serviced, it will be stopped and the new interrupt
serviced. When the new interrupt is finished, the lower priority level
interrupt that was stopped will be completed.

Table 7.  Interrupt Table
SOURCE POLLING PRIORITY REQUEST BITS HARDWARE CLEAR? VECTOR ADDRESS

X0 1 IE0 N (L)1 Y (T)2 03H

T0 2 TP0 Y 0BH

X1 3 IE1 N (L) Y (T) 13H

T1 4 TF1 Y 1BH

SP 5 RI, TI N 23H

T2 6 TF2, EXF2 N 2BH

NOTES:
1. L = Level activated
2. T = Transition activated

EX0IE (0A8H)

Enable Bit = 1 enables the interrupt.
Enable Bit = 0 disables it.

BIT SYMBOL FUNCTION
IE.7 EA Global disable bit. If EA = 0, all interrupts are disabled. If EA = 1, each interrupt can be individually

enabled or disabled by setting or clearing its enable bit.
IE.6 — Not implemented. Reserved for future use.
IE.5 ET2 Timer 2 interrupt enable bit.
IE.4 ES Serial Port interrupt enable bit.
IE.3 ET1 Timer 1 interrupt enable bit.
IE.2 EX1 External interrupt 1 enable bit.
IE.1 ET0 Timer 0 interrupt enable bit.
IE.0 EX0 External interrupt 0 enable bit. SU00571

ET0EX1ET1ESET2—EA

01234567

Figure 10.  IE Registers



Philips Semiconductors Product specification

80C31/80C32
80C51 8-bit microcontroller family
128/256 byte RAM ROMless low voltage (2.7V–5.5V), 
low power, high speed (33 MHz)

2000 Aug 07  18

PX0IP (0B8H)

Priority Bit = 1 assigns higher priority
Priority Bit = 0 assigns lower priority

BIT SYMBOL FUNCTION
IP.7 — Not implemented, reserved for future use.
IP.6 — Not implemented, reserved for future use.
IP.5 PT2 Timer 2 interrupt priority bit.
IP.4 PS Serial Port interrupt priority bit.
IP.3 PT1 Timer 1 interrupt priority bit.
IP.2 PX1 External interrupt 1 priority bit.
IP.1 PT0 Timer 0 interrupt priority bit.
IP.0 PX0 External interrupt 0 priority bit. SU00572

PT0PX1PT1PSPT2——

01234567

Figure 11.  IP Registers

PX0HIPH (B7H)

Priority Bit = 1 assigns higher priority
Priority Bit = 0 assigns lower priority

BIT SYMBOL FUNCTION
IPH.7 — Not implemented, reserved for future use.
IPH.6 — Not implemented, reserved for future use.
IPH.5 PT2H Timer 2 interrupt priority bit high.
IPH.4 PSH Serial Port interrupt priority bit high.
IPH.3 PT1H Timer 1 interrupt priority bit high.
IPH.2 PX1H External interrupt 1 priority bit high.
IPH.1 PT0H Timer 0 interrupt priority bit high.
IPH.0 PX0H External interrupt 0 priority bit high.

SU01058

PT0HPX1HPT1HPSHPT2H——

01234567

Figure 12.  IPH Registers



Philips Semiconductors Product specification

80C31/80C32
80C51 8-bit microcontroller family
128/256 byte RAM ROMless low voltage (2.7V–5.5V), 
low power, high speed (33 MHz)

2000 Aug 07  19

Reduced EMI Mode
The AO bit (AUXR.0) in the AUXR register when set disables the
ALE output.

Reduced EMI Mode

AUXR (8EH)

7 6 5 4 3 2 1 0

– – – – – – – AO

AUXR.0 AO Turns off ALE output.

Dual DPTR
The dual DPTR structure (see Figure 13) enables a way to specify
the address of an external data memory location. There are two
16-bit DPTR registers that address the external memory, and a
single bit called DPS = AUXR1/bit0 that allows the program code to
switch between them.

• New Register Name: AUXR1#

• SFR Address: A2H

• Reset Value: xxx000x0B

AUXR1 (A2H)

7 6 5 4 3 2 1 0

– – – – WUPD 0 – DPS

Where:
DPS = AUXR1/bit0 = Switches between DPTR0 and DPTR1.

Select Reg DPS

DPTR0 0

DPTR1 1

The DPS bit status should be saved by software when switching
between DPTR0 and DPTR1.

Note that bit 2  is not writable and is always read as a zero. This
allows the DPS bit to be quickly toggled simply by executing an INC
DPTR instruction without affecting the WOPD or LPEP bits.

DPS

DPTR1

DPTR0

DPH
(83H)

DPL
(82H) EXTERNAL

DATA
MEMORY

SU00745A

BIT0
AUXR1

Figure 13.  

DPTR Instructions
The instructions that refer to DPTR refer to the data pointer that is
currently selected using the AUXR1/bit 0 register. The six
instructions that use the DPTR are as follows:

INC DPTR Increments the data pointer by 1

MOV DPTR, #data16 Loads the DPTR with a 16-bit constant

MOV A, @ A+DPTR Move code byte relative to DPTR to ACC

MOVX A, @ DPTR Move external RAM (16-bit address) to
ACC

MOVX @ DPTR , A Move ACC to external RAM (16-bit
address)

JMP @ A + DPTR Jump indirect relative to DPTR

The data pointer can be accessed on a byte-by-byte basis by
specifying the low or high byte in an instruction which accesses the
SFRs. See application note AN458 for more details.



Philips Semiconductors Product specification

80C31/80C32
80C51 8-bit microcontroller family
128/256 byte RAM ROMless low voltage (2.7V–5.5V), 
low power, high speed (33 MHz)

2000 Aug 07  20

ABSOLUTE MAXIMUM RATINGS 1, 2, 3

PARAMETER RATING UNIT

Operating temperature under bias 0 to +70 or –40 to +85 °C

Storage temperature range –65 to +150 °C

Voltage on EA pin to VSS 0 to +13.0 V

Voltage on any other pin to VSS –0.5 to +6.5 V

Maximum IOL per I/O pin 15 mA

Power dissipation (based on package heat transfer limitations, not device power consumption) 1.5 W

NOTES:
1. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and

functional operation of the device at these or any conditions other than those described in the AC and DC Electrical Characteristics section
of this specification is not implied.

2. This product includes circuitry specifically designed for the protection of its internal devices from the damaging effects of excessive static
charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying greater than the rated maximum.

3. Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to VSS unless otherwise
noted.

AC ELECTRICAL CHARACTERISTICS
Tamb = 0°C to +70°C or –40°C to +85°C

CLOCK FREQUENCY
RANGE –f

SYMBOL FIGURE PARAMETER MIN MAX UNIT

1/tCLCL 29 Oscillator frequency
Speed versions : S (16 MHz)

U (33 MHz)
0
0

16
33

MHz
MHz



Philips Semiconductors Product specification

80C31/80C32
80C51 8-bit microcontroller family
128/256 byte RAM ROMless low voltage (2.7V–5.5V), 
low power, high speed (33 MHz)

2000 Aug 07  21

DC ELECTRICAL CHARACTERISTICS
Tamb = 0°C to +70°C or –40°C to +85°C, VCC = 2.7 V to 5.5 V, VSS = 0 V (16 MHz devices)

SYMBOL PARAMETER
TEST LIMITS

UNITSYMBOL PARAMETER CONDITIONS MIN TYP1 MAX
UNIT

V Input low voltage
4.0 V < VCC < 5.5 V –0.5 0.2 VCC–0.1 V

VIL Input low voltage
2.7 V<VCC< 4.0 V –0.5 0.7 V

VIH Input high voltage (ports 0, 1, 2, 3, EA) 0.2 VCC+0.9 VCC+0.5 V

VIH1 Input high voltage, XTAL1, RST 0.7 VCC VCC+0.5 V

VOL Output low voltage, ports 1, 2, 8 VCC = 2.7 V
IOL = 1.6 mA2 0.4 V

VOL1 Output low voltage, port 0, ALE, PSEN8, 7
VCC = 2.7 V

IOL = 3.2 mA2 0.4 V

VO Output high voltage ports 1 2 3 3

VCC = 2.7 V
IOH = –20 µA VCC – 0.7 V

VOH Output high voltage, ports 1, 2, 3 3
VCC = 4.5 V
IOH = –30 µA VCC – 0.7 V

VOH1
Output high voltage (port 0 in external bus
mode), ALE9, PSEN3

VCC = 2.7 V
IOH = –3.2 mA VCC – 0.7 V

IIL Logical 0 input current, ports 1, 2, 3 VIN = 0.4 V –1 –50 µA

ITL Logical 1-to-0 transition current, ports 1, 2, 36 VIN = 2.0 V
See note 4 –650 µA

ILI Input leakage current, port 0 0.45 < VIN < VCC – 0.3 ±10 µA

ICC Power supply current (see Figure 21): See note 5
Active mode @ 16 MHz µA
Idle mode @ 16 MHz µA
Power-down mode or clock stopped (see

Fi 25 f diti )
Tamb = 0°C to 70°C 3 50 µA

Figure 25 for conditions) Tamb = –40°C to +85°C 75 µA

RRST Internal reset pull-down resistor 40 225 kΩ

CIO Pin capacitance10 (except EA) 15 pF

NOTES:
1. Typical ratings are not guaranteed. The values listed are at room temperature, 5 V.
2. Capacitive loading on ports 0 and 2 may cause spurious noise to be superimposed on the VOLs of ALE and ports 1 and 3. The noise is due

to external bus capacitance discharging into the port 0 and port 2 pins when these pins make 1-to-0 transitions during bus operations. In the
worst cases (capacitive loading > 100 pF), the noise pulse on the ALE pin may exceed 0.8 V. In such cases, it may be desirable to qualify
ALE with a Schmitt Trigger, or use an address latch with a Schmitt Trigger STROBE input. IOL can exceed these conditions provided that no
single output sinks more than 5 mA and no more than two outputs exceed the test conditions.

3. Capacitive loading on ports 0 and 2 may cause the VOH on ALE and PSEN to momentarily fall below the VCC–0.7 specification when the
address bits are stabilizing.

4. Pins of ports 1, 2 and 3 source a transition current when they are being externally driven from 1 to 0. The transition current reaches its
maximum value when VIN is approximately 2 V.

5. See Figures 22 through 25 for ICC test conditions. 
Active mode: ICC = 0.9 × FREQ. + 1.1 mA
Idle mode: ICC = 0.18 × FREQ. +1.01 mA; See Figure 21.

6. This value applies to Tamb = 0°C to +70°C. For Tamb = –40°C to +85°C, ITL = –750 µA.
7. Load capacitance for port 0, ALE, and PSEN = 100 pF, load capacitance for all other outputs = 80 pF.
8. Under steady state (non-transient) conditions, IOL must be externally limited as follows:

Maximum IOL per port pin: 15 mA (*NOTE: This is 85°C specification.)
Maximum IOL per 8-bit port: 26 mA
Maximum total IOL for all outputs: 71 mA

If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current greater than the listed
test conditions.

9. ALE is tested to VOH1, except when ALE is off then VOH is the voltage specification.
10.Pin capacitance is characterized but not tested. Pin capacitance is less than 25 pF.



Philips Semiconductors Product specification

80C31/80C32
80C51 8-bit microcontroller family
128/256 byte RAM ROMless low voltage (2.7V–5.5V), 
low power, high speed (33 MHz)

2000 Aug 07  22

DC ELECTRICAL CHARACTERISTICS
Tamb = 0°C to +70°C or –40°C to +85°C, 33 MHz devices; 5 V ±10%; VSS = 0 V

SYMBOL PARAMETER
TEST LIMITS

UNITSYMBOL PARAMETER CONDITIONS MIN TYP1 MAX
UNIT

VIL Input low voltage 4.5 V < VCC < 5.5 V –0.5 0.2 VCC–0.1 V

VIH Input high voltage (ports 0, 1, 2, 3, EA) 0.2 VCC+0.9 VCC+0.5 V

VIH1 Input high voltage, XTAL1, RST 0.7 VCC VCC+0.5 V

VOL Output low voltage, ports 1, 2, 3 8 VCC = 4.5 V
IOL = 1.6mA2 0.4 V

VOL1 Output low voltage, port 0, ALE, PSEN 7, 8
VCC = 4.5 V
IOL = 3.2mA2 0.4 V

VOH Output high voltage, ports 1, 2, 3 3 VCC = 4.5 V
IOH = –30µA VCC – 0.7 V

VOH1
Output high voltage (port 0 in external bus
mode), ALE9, PSEN3

VCC = 4.5 V
IOH = –3.2mA VCC – 0.7 V

IIL Logical 0 input current, ports 1, 2, 3 VIN = 0.4 V –1 –50 µA

ITL Logical 1-to-0 transition current, ports 1, 2, 36 VIN = 2.0 V
See note 4 –650 µA

ILI Input leakage current, port 0 0.45 < VIN < VCC – 0.3 ±10 µA

ICC Power supply current (see Figure 21): See note 5
Active mode (see Note 5)
Idle mode (see Note 5)
Power-down mode or clock stopped (see Fig-

25 f diti )
Tamb = 0°C to 70°C 3 50 µA

ure 25 for conditions) Tamb = –40°C to +85°C 75 µA

RRST Internal reset pull-down resistor 40 225 kΩ

CIO Pin capacitance10 (except EA) 15 pF

NOTES:
1. Typical ratings are not guaranteed. The values listed are at room temperature, 5 V.
2. Capacitive loading on ports 0 and 2 may cause spurious noise to be superimposed on the VOLs of ALE and ports 1 and 3. The noise is due

to external bus capacitance discharging into the port 0 and port 2 pins when these pins make 1-to-0 transitions during bus operations. In the
worst cases (capacitive loading > 100 pF), the noise pulse on the ALE pin may exceed 0.8 V. In such cases, it may be desirable to qualify
ALE with a Schmitt Trigger, or use an address latch with a Schmitt Trigger STROBE input. IOL can exceed these conditions provided that no
single output sinks more than 5mA and no more than two outputs exceed the test conditions.

3. Capacitive loading on ports 0 and 2 may cause the VOH on ALE and PSEN to momentarily fall below the VCC–0.7 specification when the
address bits are stabilizing.

4. Pins of ports 1, 2 and 3 source a transition current when they are being externally driven from 1 to 0. The transition current reaches its
maximum value when VIN is approximately 2 V.

5. See Figures 22 through 25 for ICC test conditions. 
Active mode: ICC(MAX) = 0.9 × FREQ. + 1.1 mA
Idle mode: ICC(MAX) = 0.18 × FREQ. +1.0 mA; See Figure 21.

6. This value applies to Tamb = 0°C to +70°C. For Tamb = –40°C to +85°C, ITL = –750 µA.
7. Load capacitance for port 0, ALE, and PSEN = 100 pF, load capacitance for all other outputs = 80 pF.
8. Under steady state (non-transient) conditions, IOL must be externally limited as follows:

Maximum IOL per port pin: 15 mA (*NOTE: This is 85°C specification.)
Maximum IOL per 8-bit port: 26 mA
Maximum total IOL for all outputs: 71 mA

If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current greater than the listed
test conditions.

9. ALE is tested to VOH1, except when ALE is off then VOH is the voltage specification.
10.Pin capacitance is characterized but not tested. Pin capacitance is less than 25 pF.  Pin capacitance of ceramic package is less than 15 pF

(except EA is 25 pF).



Philips Semiconductors Product specification

80C31/80C32
80C51 8-bit microcontroller family
128/256 byte RAM ROMless low voltage (2.7V–5.5V), 
low power, high speed (33 MHz)

2000 Aug 07  23

AC ELECTRICAL CHARACTERISTICS
Tamb = 0°C to +70°C or –40°C to +85°C, VCC = +2.7 V to +5.5 V, VSS = 0 V1, 2, 3

16 MHz CLOCK VARIABLE CLOCK

SYMBOL FIGURE PARAMETER MIN MAX MIN MAX UNIT

1/tCLCL 14 Oscillator frequency5

Speed versions :S 3.5 16 MHz

tLHLL 14 ALE pulse width 85 2tCLCL–40 ns

tAVLL 14 Address valid to ALE low 22 tCLCL–40 ns

tLLAX 14 Address hold after ALE low 32 tCLCL–30 ns

tLLIV 14 ALE low to valid instruction in 150 4tCLCL–100 ns

tLLPL 14 ALE low to PSEN low 32 tCLCL–30 ns

tPLPH 14 PSEN pulse width 142 3tCLCL–45 ns

tPLIV 14 PSEN low to valid instruction in 82 3tCLCL–105 ns

tPXIX 14 Input instruction hold after PSEN 0 0 ns

tPXIZ 14 Input instruction float after PSEN 37 tCLCL–25 ns

tAVIV
4 14 Address to valid instruction in 207 5tCLCL–105 ns

tPLAZ 14 PSEN low to address float 10 10 ns

Data Memory

tRLRH 15, 16 RD pulse width 275 6tCLCL–100 ns

tWLWH 15, 16 WR pulse width 275 6tCLCL–100 ns

tRLDV 15, 16 RD low to valid data in 147 5tCLCL–165 ns

tRHDX 15, 16 Data hold after RD 0 0 ns

tRHDZ 15, 16 Data float after RD 65 2tCLCL–60 ns

tLLDV 15, 16 ALE low to valid data in 350 8tCLCL–150 ns

tAVDV 15, 16 Address to valid data in 397 9tCLCL–165 ns

tLLWL 15, 16 ALE low to RD or WR low 137 239 3tCLCL–50 3tCLCL+50 ns

tAVWL 15, 16 Address valid to WR low or RD low 122 4tCLCL–130 ns

tQVWX 15, 16 Data valid to WR transition 13 tCLCL–50 ns

tWHQX 15, 16 Data hold after WR 13 tCLCL–50 ns

tQVWH 16 Data valid to WR high 287 7tCLCL–150 ns

tRLAZ 15, 16 RD low to address float 0 0 ns

tWHLH 15, 16 RD or WR high to ALE high 23 103 tCLCL–40 tCLCL+40 ns

External Clock

tCHCX 18 High time 20 20 tCLCL–tCLCX ns

tCLCX 18 Low time 20 20 tCLCL–tCHCX ns

tCLCH 18 Rise time 20 20 ns

tCHCL 18 Fall time 20 20 ns

Shift Register

tXLXL 17 Serial port clock cycle time 750 12tCLCL ns

tQVXH 17 Output data setup to clock rising edge 492 10tCLCL–133 ns

tXHQX 17 Output data hold after clock rising edge 8 2tCLCL–117 ns

tXHDX 17 Input data hold after clock rising edge 0 0 ns

tXHDV 17 Clock rising edge to input data valid 492 10tCLCL–133 ns

NOTES:
1. Parameters are valid over operating temperature range unless otherwise specified.
2. Load capacitance for port 0, ALE, and PSEN = 100 pF, load capacitance for all other outputs = 80 pF.
3. Interfacing the 80C31 and 80C32 to devices with float times up to 45ns is permitted. This limited bus contention will not cause damage to

Port 0 drivers.
4. See application note AN457 for external memory interface.
5. Parts are guaranteed to operate down to 0 Hz. When an external clock source is used, the RST pin should be held high for a minimum of

20 µs for power-on or wakeup from power down.



Philips Semiconductors Product specification

80C31/80C32
80C51 8-bit microcontroller family
128/256 byte RAM ROMless low voltage (2.7V–5.5V), 
low power, high speed (33 MHz)

2000 Aug 07  24

AC ELECTRICAL CHARACTERISTICS
Tamb = 0°C to +70°C or –40°C to +85°C, VCC = 5 V ±10%, VSS = 0 V1, 2, 3

VARIABLE CLOCK 4

16 MHz to f max 33 MHz CLOCK

SYMBOL FIGURE PARAMETER MIN MAX MIN MAX UNIT

tLHLL 14 ALE pulse width 2tCLCL–40 21 ns

tAVLL 14 Address valid to ALE low tCLCL–25 5 ns

tLLAX 14 Address hold after ALE low tCLCL–25 ns

tLLIV 14 ALE low to valid instruction in 4tCLCL–65 55 ns

tLLPL 14 ALE low to PSEN low tCLCL–25 5 ns

tPLPH 14 PSEN pulse width 3tCLCL–45 45 ns

tPLIV 14 PSEN low to valid instruction in 3tCLCL–60 30 ns

tPXIX 14 Input instruction hold after PSEN 0 0 ns

tPXIZ 14 Input instruction float after PSEN tCLCL–25 5 ns

tAVIV 14 Address to valid instruction in 5tCLCL–80 70 ns

tPLAZ 14 PSEN low to address float 10 10 ns

Data Memory

tRLRH 15, 16 RD pulse width 6tCLCL–100 82 ns

tWLWH 15, 16 WR pulse width 6tCLCL–100 82 ns

tRLDV 15, 16 RD low to valid data in 5tCLCL–90 60 ns

tRHDX 15, 16 Data hold after RD 0 0 ns

tRHDZ 15, 16 Data float after RD 2tCLCL–28 32 ns

tLLDV 15, 16 ALE low to valid data in 8tCLCL–150 90 ns

tAVDV 15, 16 Address to valid data in 9tCLCL–165 105 ns

tLLWL 15, 16 ALE low to RD or WR low 3tCLCL–50 3tCLCL+50 40 140 ns

tAVWL 15, 16 Address valid to WR low or RD low 4tCLCL–75 45 ns

tQVWX 15, 16 Data valid to WR transition tCLCL–30 0 ns

tWHQX 15, 16 Data hold after WR tCLCL–25 5 ns

tQVWH 16 Data valid to WR high 7tCLCL–130 80 ns

tRLAZ 15, 16 RD low to address float 0 0 ns

tWHLH 15, 16 RD or WR high to ALE high tCLCL–25 tCLCL+25 5 55 ns

External Clock

tCHCX 18 High time 0.38tCLCL tCLCL–tCLCX ns

tCLCX 18 Low time 0.38tCLCL tCLCL–tCHCX ns

tCLCH 18 Rise time 5 ns

tCHCL 18 Fall time 5 ns

Shift Register

tXLXL 17 Serial port clock cycle time 12tCLCL 360 ns

tQVXH 17 Output data setup to clock rising edge 10tCLCL–133 167 ns

tXHQX 17 Output data hold after clock rising edge 2tCLCL–80 ns

tXHDX 17 Input data hold after clock rising edge 0 0 ns

tXHDV 17 Clock rising edge to input data valid 10tCLCL–133 167 ns
NOTES:
1. Parameters are valid over operating temperature range unless otherwise specified.
2. Load capacitance for port 0, ALE, and PSEN = 100 pF, load capacitance for all other outputs = 80 pF.
3. Interfacing the 80C31 and 80C32 to devices with float times up to 45ns is permitted. This limited bus contention will not cause damage to

Port 0 drivers.
4. Variable clock is specified for oscillator frequencies greater than 16 MHz to 33 MHz. For frequencies equal or less than 16 MHz, see 16 MHz

“AC Electrical Characteristics”, page 23.
5. Parts are guaranteed to operate down to 0 Hz. When an external clock source is used, the RST pin should be held high for a minimum of

20 µs for power-on or wakeup from power down.



Philips Semiconductors Product specification

80C31/80C32
80C51 8-bit microcontroller family
128/256 byte RAM ROMless low voltage (2.7V–5.5V), 
low power, high speed (33 MHz)

2000 Aug 07  25

EXPLANATION OF THE AC SYMBOLS
Each timing symbol has five characters. The first character is always
‘t’ (= time). The other characters, depending on their positions,
indicate the name of a signal or the logical status of that signal. The
designations are:
A – Address
C – Clock
D – Input data
H – Logic level high
I – Instruction (program memory contents)
L – Logic level low, or ALE

P – PSEN
Q – Output data
R – RD signal
t – Time
V – Valid
W– WR signal
X – No longer a valid logic level
Z – Float
Examples: tAVLL = Time for address valid to ALE low.

tLLPL =Time for ALE low to PSEN low.

tPXIZ

ALE

PSEN

PORT 0

PORT 2 A0–A15 A8–A15

A0–A7 A0–A7

tAVLL

tPXIX

tLLAX

INSTR IN

tLHLL

tPLPH
tLLIV

tPLAZ

tLLPL

tAVIV

SU00006

tPLIV

Figure 14.  External Program Memory Read Cycle

ALE

PSEN

PORT 0

PORT 2

RD

A0–A7
FROM RI OR DPL DATA IN A0–A7 FROM PCL INSTR IN

P2.0–P2.7 OR A8–A15 FROM DPF A0–A15 FROM PCH

tWHLH

tLLDV

tLLWL tRLRH

tLLAX

tRLAZ

tAVLL

tRHDX

tRHDZ

tAVWL

tAVDV

tRLDV

SU00025

Figure 15.  External Data Memory Read Cycle



Philips Semiconductors Product specification

80C31/80C32
80C51 8-bit microcontroller family
128/256 byte RAM ROMless low voltage (2.7V–5.5V), 
low power, high speed (33 MHz)

2000 Aug 07  26

tLLAX

ALE

PSEN

PORT 0

PORT 2

WR

A0–A7
FROM RI OR DPL DATA OUT A0–A7 FROM PCL INSTR IN

P2.0–P2.7 OR A8–A15 FROM DPF A0–A15 FROM PCH

tWHLH

tLLWL tWLWH

tAVLL

tAVWL

tQVWX tWHQX

tQVWH

SU00026

Figure 16.  External Data Memory Write Cycle

0 1 2 3 4 5 6 7 8INSTRUCTION

ALE

CLOCK

OUTPUT DATA

WRITE TO SBUF

INPUT DATA

CLEAR RI

VALID VALID VALID VALID VALID VALID VALID VALID

SET TI

SET RI

tXLXL

tQVXH

tXHQX

tXHDX
tXHDV

SU00027

1 2 30 4 5 6 7

Figure 17.  Shift Register Mode Timing

VCC–0.5

0.45V
0.7VCC

0.2VCC–0.1

tCHCL

tCLCL

tCLCHtCLCX

tCHCX

SU00009

Figure 18.  External Clock Drive



Philips Semiconductors Product specification

80C31/80C32
80C51 8-bit microcontroller family
128/256 byte RAM ROMless low voltage (2.7V–5.5V), 
low power, high speed (33 MHz)

2000 Aug 07  27

VCC–0.5

0.45V

0.2VCC+0.9

0.2VCC–0.1

NOTE:
AC inputs during testing are driven at VCC –0.5 for a logic ‘1’ and 0.45V for a logic ‘0’.
Timing measurements are made at VIH min for a logic ‘1’ and VIL max for a logic ‘0’.

SU00717

Figure 19.  AC Testing Input/Output

VLOAD

VLOAD+0.1V

VLOAD–0.1V

VOH–0.1V

VOL+0.1V

NOTE:

TIMING
REFERENCE

POINTS

For timing purposes, a port is no longer floating when a 100mV change from
load voltage occurs, and begins to float when a 100mV change from the loaded
VOH/VOL level occurs. IOH/IOL ≥ ±20mA.

SU00718

Figure 20.  Float Waveform

SU01413

TYP ACTIVE MODE

MAX IDLE MODE

TYP IDLE MODE

MAX ACTIVE
MODE

ICCMAX = 0.9 X FREQ. + 1.1

5

4 8 12 16

FREQ AT XTAL1 (MHz)

20 24 28 32 36

15

25

30

I C
C

(m
A

)

10

20

35

Figure 21.  I CC vs. FREQ
Valid only within frequency specifications of the device under test



Philips Semiconductors Product specification

80C31/80C32
80C51 8-bit microcontroller family
128/256 byte RAM ROMless low voltage (2.7V–5.5V), 
low power, high speed (33 MHz)

2000 Aug 07  28

VCC

P0

EA

RST

XTAL1

XTAL2

VSS

VCC

VCC

VCC

ICC

(NC)

CLOCK SIGNAL

SU00719

Figure 22.  I CC Test Condition, Active Mode
All other pins are disconnected

VCC

P0

EA

RST

XTAL1

XTAL2

VSS

VCC

VCC

ICC

(NC)

CLOCK SIGNAL

SU00720

Figure 23.  I CC Test Condition, Idle Mode
All other pins are disconnected

VCC–0.5

0.45V
0.7VCC

0.2VCC–0.1

tCHCL

tCLCL

tCLCHtCLCX

tCHCX

SU00009

Figure 24.  Clock Signal Waveform for I CC Tests in Active and Idle Modes
tCLCH = tCHCL = 5ns

VCC

P0

EA

RST

XTAL1

XTAL2

VSS

VCC

VCC

ICC

(NC)

SU00016

Figure 25.  I CC Test Condition, Power Down Mode
All other pins are disconnected. V CC = 2 V to 5.5 V



Philips Semiconductors Product specification

80C31/80C32
80C51 8-bit microcontroller family
128/256 byte RAM ROMless low voltage (2.7V–5.5V), 
low power, high speed (33 MHz)

2000 Aug 07  29

DIP40: plastic dual in-line package; 40 leads (600 mil) SOT129-1



Philips Semiconductors Product specification

80C31/80C32
80C51 8-bit microcontroller family
128/256 byte RAM ROMless low voltage (2.7V–5.5V), 
low power, high speed (33 MHz)

2000 Aug 07  30

PLCC44: plastic leaded chip carrier; 44 leads SOT187-2



Philips Semiconductors Product specification

80C31/80C32
80C51 8-bit microcontroller family
128/256 byte RAM ROMless low voltage (2.7V–5.5V), 
low power, high speed (33 MHz)

2000 Aug 07  31

QFP44: plastic quad flat package; 44 leads (lead length 1.3 mm); body 10 x 10 x 1.75 mm SOT307-2



Philips Semiconductors Product specification

80C31/80C32
80C51 8-bit microcontroller family
128/256 byte RAM ROMless low voltage (2.7V–5.5V), 
low power, high speed (33 MHz)

2000 Aug 07  32

Definitions
Short-form specification —  The data in a short-form specification is extracted from a full data sheet with the same type number and title. For
detailed information see the relevant data sheet or data handbook.

Limiting values definition —  Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one
or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or
at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended
periods may affect device reliability.

Application information —  Applications that are described herein for any of these products are for illustrative purposes only. Philips
Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or
modification.

Disclaimers
Life support —  These products are not designed for use in life support appliances, devices or systems where malfunction of these products can
reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications
do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes —  Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard
cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no
responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these
products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless
otherwise specified.

Philips Semiconductors
811 East Arques Avenue
P.O. Box 3409
Sunnyvale, California 94088–3409
Telephone  800-234-7381

  Copyright Philips Electronics North America Corporation 2000
All rights reserved. Printed in U.S.A.

Date of release: 08-00

Document order number: 9397 750 07403

������
�����
	����
�

Data sheet
status

Objective 
specification

Preliminary 
specification

Product 
specification

Product
status

Development

Qualification

Production

Definition [1]

This data sheet contains the design target or goal specifications for product development.
Specification may change in any manner without notice.

This data sheet contains preliminary data, and supplementary data will be published at a later date.
Philips Semiconductors reserves the right to make changes at any time without notice in order to
improve design and supply the best possible product.

This data sheet contains final specifications. Philips Semiconductors reserves the right to make
changes at any time without notice in order to improve design and supply the best possible product.

Data sheet status

[1] Please consult the most recently issued datasheet before initiating or completing a design.



September 1993 Order Number: 231164-005

8254
PROGRAMMABLE INTERVAL TIMER

Y Compatible with All Intel and Most
Other Microprocessors

Y Handles Inputs from DC to 10 MHz
Ð 8 MHz 8254
Ð 10 MHz 8254-2

Y Status Read-Back Command

Y Six Programmable Counter Modes

Y Three Independent 16-Bit Counters

Y Binary or BCD Counting

Y Single a5V Supply

Y Available in EXPRESS
Ð Standard Temperature Range

The Intel 8254 is a counter/timer device designed to solve the common timing control problems in microcom-
puter system design. It provides three independent 16-bit counters, each capable of handling clock inputs up
to 10 MHz. All modes are software programmable. The 8254 is a superset of the 8253.

The 8254 uses HMOS technology and comes in a 24-pin plastic or CERDIP package.

231164–1

Figure 1. 8254 Block Diagram

231164–2

Figure 2. Pin Configuration



8254

Table 1. Pin Description

Symbol
Pin

Type Name and Function
No.

D7–D0 1–8 I/O DATA: Bi-directional three state data bus lines, connected to system
data bus.

CLK 0 9 I CLOCK 0: Clock input of Counter 0.

OUT 0 10 O OUTPUT 0: Output of Counter 0.

GATE 0 11 I GATE 0: Gate input of Counter 0.

GND 12 GROUND: Power supply connection.

VCC 24 POWER: a5V power supply connection.

WR 23 I WRITE CONTROL: This input is low during CPU write operations.

RD 22 I READ CONTROL: This input is low during CPU read operations.

CS 21 I CHIP SELECT: A low on this input enables the 8254 to respond to
RD and WR signals. RD and WR are ignored otherwise.

A1, A0 20–19 I ADDRESS: Used to select one of the three Counters or the Control
Word Register for read or write operations. Normally connected to
the system address bus.

A1 A0 Selects

0 0 Counter 0
0 1 Counter 1
1 0 Counter 2
1 1 Control Word Register

CLK 2 18 I CLOCK 2: Clock input of Counter 2.

OUT 2 17 O OUT 2: Output of Counter 2.

GATE 2 16 I GATE 2: Gate input of Counter 2.

CLK 1 15 I CLOCK 1: Clock input of Counter 1.

GATE 1 14 I GATE 1: Gate input of Counter 1.

OUT 1 13 O OUT 1: Output of Counter 1.

FUNCTIONAL DESCRIPTION

General

The 8254 is a programmable interval timer/counter
designed for use with Intel microcomputer systems.
It is a general purpose, multi-timing element that can
be treated as an array of I/O ports in the system
software.

The 8254 solves one of the most common problems
in any microcomputer system, the generation of ac-
curate time delays under software control. Instead of
setting up timing loops in software, the programmer
configures the 8254 to match his requirements and
programs one of the counters for the desired delay.
After the desired delay, the 8254 will interrupt the
CPU. Software overhead is minimal and variable
length delays can easily be accommodated.

Some of the other counter/timer functions common
to microcomputers which can be implemented with
the 8254 are:

# Real time clock

# Event-counter

# Digital one-shot

# Programmable rate generator

# Square wave generator

# Binary rate multiplier

# Complex waveform generator

# Complex motor controller

Block Diagram

DATA BUS BUFFER

This 3-state, bi-directional, 8-bit buffer is used to in-
terface the 8254 to the system bus (see Figure 3).

2



8254

231164–3

Figure 3. Block Diagram Showing Data Bus Buffer and Read/Write Logic Functions

READ/WRITE LOGIC

The Read/Write Logic accepts inputs from the sys-
tem bus and generates control signals for the other
functional blocks of the 8254. A1 and A0 select one
of the three counters or the Control Word Register
to be read from/written into. A ‘‘low’’ on the RD in-
put tells the 8254 that the CPU is reading one of the
counters. A ‘‘low’’ on the WR input tells the 8254
that the CPU is writing either a Control Word or an
initial count. Both RD and WR are qualified by CS;
RD and WR are ignored unless the 8254 has been
selected by holding CS low.

CONTROL WORD REGISTER

The Control Word Register (see Figure 4) is selected
by the Read/Write Logic when A1,A0 e 11. If the
CPU then does a write operation to the 8254, the
data is stored in the Control Word Register and is
interpreted as a Control Word used to define the
operation of the Counters.

The Control Word Register can only be written to;
status information is available with the Read-Back
Command.

COUNTER 0, COUNTER 1, COUNTER 2

These three functional blocks are identical in opera-
tion, so only a single Counter will be described. The
internal block diagram of a single counter is shown
in Figure 5.

The Counters are fully independent. Each Counter
may operate in a different Mode.

The Control Word Register is shown in the figure; it
is not part of the Counter itself, but its contents de-
termine how the Counter operates.

The status register, shown in Figure 5, when
latched, contains the current contents of the Control
Word Register and status of the output and null
count flag. (See detailed explanation of the Read-
Back command.)

The actual counter is labelled CE (for ‘‘Counting Ele-
ment’’). It is a 16-bit presettable synchronous down
counter.

OLM and OLL are two 8-bit latches. OL stands for
‘‘Output Latch’’; the subscripts M and L stand for
‘‘Most significant byte’’ and ‘‘Least significant byte’’

3



8254

231164–4

Figure 4. Block Diagram Showing Control Word Register and Counter Functions

231164–5

Figure 5. Internal Block Diagram of a Counter

4



8254

respectively. Both are normally referred to as one
unit and called just OL. These latches normally ‘‘fol-
low’’ the CE, but if a suitable Counter Latch Com-
mand is sent to the 8254, the latches ‘‘latch’’ the
present count until read by the CPU and then return
to ‘‘following’’ the CE. One latch at a time is enabled
by the counter’s Control Logic to drive the internal
bus. This is how the 16-bit Counter communicates
over the 8-bit internal bus. Note that the CE itself
cannot be read; whenever you read the count, it is
the OL that is being read.

Similarly, there are two 8-bit registers called CRM
and CRL (for ‘‘Count Register’’). Both are normally
referred to as one unit and called just CR. When a
new count is written to the Counter, the count is
stored in the CR and later transferred to the CE. The
Control Logic allows one register at a time to be
loaded from the internal bus. Both bytes are trans-
ferred to the CE simultaneously. CRM and CRL are
cleared when the Counter is programmed. In this
way, if the Counter has been programmed for one
byte counts (either most significant byte only or least
significant byte only) the other byte will be zero.
Note that the CE cannot be written into; whenever a
count is written, it is written into the CR.

The Control Logic is also shown in the diagram.
CLK n, GATE n, and OUT n are all connected to the
outside world through the Control Logic.

8254 SYSTEM INTERFACE

The 8254 is a component of the Intel Microcomputer
Systems and interfaces in the same manner as all

other peripherals of the family. It is treated by the
system’s software as an array of peripheral I/O
ports; three are counters and the fourth is a control
register for MODE programming.

Basically, the select inputs A0,A1 connect to the A0,
A1 address bus signals of the CPU. The CS can be
derived directly from the address bus using a linear
select method. Or it can be connected to the output
of a decoder, such as an Intel 8205 for larger sys-
tems.

OPERATIONAL DESCRIPTION

General

After power-up, the state of the 8254 is undefined.
The Mode, count value, and output of all Counters
are undefined.

How each Counter operates is determined when it is
programmed. Each Counter must be programmed
before it can be used. Unused counters need not be
programmed.

Programming the 8254

Counters are programmed by writing a Control Word
and then an initial count.

The Control Words are written into the Control Word
Register, which is selected when A1,A0 e 11. The
Control Word itself specifies which Counter is being
programmed.

231164–6

Figure 6. 8254 System Interface

5



8254

Control Word Format
A1,A0 e 11 CS e 0 RD e 1 WR e 0

D7 D6 D5 D4 D3 D2 D1 D0

SC1 SC0 RW1 RW0 M2 M1 M0 BCD

SCÐSelect Counter

SC1 SC0

0 0 Select Counter 0

0 1 Select Counter 1

1 0 Select Counter 2

1 1 Read-Back Command

(see Read Operations)

RWÐRead/Write

RW1 RW0

0 0 Counter Latch Command (see Read

Operations)

0 1 Read/Write least significant byte only

1 0 Read/Write most significant byte only

1 1 Read/Write least significant byte first,

then most significant byte

MÐMode

M2 M1 M0

0 0 0 Mode 0

0 0 1 Mode 1

X 1 0 Mode 2

X 1 1 Mode 3

1 0 0 Mode 4

1 0 1 Mode 5

BCD

0 Binary Counter 16-bits

1 Binary Coded Decimal (BCD) Counter

(4 Decades)

NOTE:
Don’t care bits (X) should be 0 to insure compatibility with future Intel products.

Figure 7. Control Word Format

By contrast, initial counts are written into the Coun-
ters, not the Control Word Register. The A1,A0 in-
puts are used to select the Counter to be written
into. The format of the initial count is determined by
the Control Word used.

Write Operations

The programming procedure for the 8254 is very
flexible. Only two conventions need to be remem-
bered:

1) For each Counter, the Control Word must be writ-
ten before the initial count is written.

2) The initial count must follow the count format
specified in the Control Word (least significant
byte only, most significant byte only, or least sig-
nificant byte and then most significant byte).

Since the Control Word Register and the three
Counters have separate addresses (selected by the
A1,A0 inputs), and each Control Word specifies the
Counter it applies to (SC0,SC1 bits), no special in-
struction sequence is required. Any programming
sequence that follows the conventions in Figure 7 is
acceptable.

A new initial count may be written to a Counter at
any time without affecting the Counter’s pro-
grammed Mode in any way. Counting will be affected
as described in the Mode definitions. The new count
must follow the programmed count format.

If a Counter is programmed to read/write two-byte
counts, the following precaution applies: A program
must not transfer control between writing the first
and second byte to another routine which also writes
into that same Counter. Otherwise, the Counter will
be loaded with an incorrect count.

6



8254

A1 A0

Control WordÐCounter 0 1 1

LSB of countÐCounter 0 0 0

MSB of countÐCounter 0 0 0

Control WordÐCounter 1 1 1

LSB of countÐCounter 1 0 1

MSB of countÐCounter 1 0 1

Control WordÐCounter 2 1 1

LSB of countÐCounter 2 1 0

MSB of countÐCounter 2 1 0

A1 A0

Control WordÐCounter 0 1 1

Control WordÐCounter 1 1 1

Control WordÐCounter 2 1 1

LSB of countÐCounter 2 1 0

LSB of countÐCounter 1 0 1

LSB of countÐCounter 0 0 0

MSB of countÐCounter 0 0 0

MSB of countÐCounter 1 0 1

MSB of countÐCounter 2 1 0

A1 A0

Control WordÐCounter 2 1 1

Control WordÐCounter 1 1 1

Control WordÐCounter 0 1 1

LSB of countÐCounter 2 1 0

MSB of countÐCounter 2 1 0

LSB of countÐCounter 1 0 1

MSB of countÐCounter 1 0 1

LSB of countÐCounter 0 0 0

MSB of countÐCounter 0 0 0

A1 A0

Control WordÐCounter 1 1 1

Control WordÐCounter 0 1 1

LSB of countÐCounter 1 0 1

Control WordÐCounter 2 1 1

LSB of countÐCounter 0 0 0

MSB of countÐCounter 1 0 1

LSB of countÐCounter 2 1 0

MSB of countÐCounter 0 0 0

MSB of countÐCounter 2 1 0

NOTE:
In all four examples, all Counters are programmed to read/write two-byte counts. These are only four of many possible
programming sequences.

Figure 8. A Few Possible Programming Sequences

Read Operations

It is often desirable to read the value of a Counter
without disturbing the count in progress. This is easi-
ly done in the 8254.

There are three possible methods for reading the
counters: a simple read operation, the Counter
Latch Command, and the Read-Back Command.
Each is explained below. The first method is to per-
form a simple read operation. To read the Counter,
which is selected with the A1, A0 inputs, the CLK
input of the selected Counter must be inhibited by
using either the GATE input or external logic. Other-
wise, the count may be in the process of changing
when it is read, giving an undefined result.

COUNTER LATCH COMMAND

The second method uses the ‘‘Counter Latch Com-
mand’’. Like a Control Word, this command is written
to the Control Word Register, which is selected
when A1,A0 e 11. Also like a Control Word, the
SC0, SC1 bits select one of the three Counters, but
two other bits, D5 and D4, distinguish this command
from a Control Word.

A1,A0 e 11; CS e 0; RD e 1; WR e 0

D7 D6 D5 D4 D3 D2 D1 D0

SC1 SC0 0 0 X X X X

SC1,SC0Ðspecify counter to be latched

SC1 SC0 Counter

0 0 0

0 1 1

1 0 2

1 1 Read-Back Command

D5,D4Ð00 designates Counter Latch Command

XÐdon’t care

NOTE:
Don’t care bits (X) should be 0 to insure compatibility
with future Intel products.

Figure 9. Counter Latching Command Format

7



8254

The selected Counter’s output latch (OL) latches the
count at the time the Counter Latch Command is
received. This count is held in the latch until it is read
by the CPU (or until the Counter is reprogrammed).
The count is then unlatched automatically and the
OL returns to ‘‘following’’ the counting element (CE).
This allows reading the contents of the Counters
‘‘on the fly’’ without affecting counting in progress.
Multiple Counter Latch Commands may be used to
latch more than one Counter. Each latched Coun-
ter’s OL holds its count until it is read. Counter Latch
Commands do not affect the programmed Mode of
the Counter in any way.

If a Counter is latched and then, some time later,
latched again before the count is read, the second
Counter Latch Command is ignored. The count read
will be the count at the time the first Counter Latch
Command was issued.

With either method, the count must be read accord-
ing to the programmed format; specifically, if the
Counter is programmed for two byte counts, two
bytes must be read. The two bytes do not have to be
read one right after the other; read or write or pro-
gramming operations of other Counters may be in-
serted between them.

Another feature of the 8254 is that reads and writes
of the same Counter may be interleaved; for exam-
ple, if the Counter is programmed for two byte
counts, the following sequence is valid.

1) Read least significant byte.

2) Write new least significant byte.

3) Read most significant byte.

4) Write new most significant byte.

If a Counter is programmed to read/write two-byte
counts, the following precaution applies: A program
must not transfer control between reading the first
and second byte to another routine which also reads
from that same Counter. Otherwise, an incorrect
count will be read.

READ-BACK COMMAND

The third method uses the Read-Back Command.
This command allows the user to check the count
value, programmed Mode, and current states of the
OUT pin and Null Count flag of the selected coun-
ter(s).

The command is written into the Control Word Reg-
ister and has the format shown in Figure 10. The
command applies to the counters selected by set-
ting their corresponding bits D3, D2, D1 e 1.

A0, A1 e 11 CS e 0 RD e 1 WR e 0

D7 D6 D5 D4 D3 D2 D1 D0

1 1 COUNT STATUS CNT 2 CNT 1 CNT 0 0

D5: 0 e Latch count of selected counter(s)
D4: 0 e Latch status of selected counters(s)
D3: 1 e Select Counter 2
D2: 1 e Select Counter 1
D1: 1 e Select Counter 0
D0: Reserved for future expansion; Must be 0

Figure 10. Read-Back Command Format

The read-back command may be used to latch multi-
ple counter output latches (OL) by setting the
COUNT bit D5 e 0 and selecting the desired coun-
ter(s). This single command is functionally equiva-
lent to several counter latch commands, one for
each counter latched. Each counter’s latched count
is held until it is read (or the counter is repro-
grammed). The counter is automatically unlatched
when read, but other counters remain latched until
they are read. If multiple count read-back commands
are issued to the same counter without reading the
count, all but the first are ignored; i.e., the count
which will be read is the count at the time the first
read-back command was issued.

The read-back command may also be used to latch
status information of selected counter(s) by setting
STATUS bit D4 e 0. Status must be latched to be
read; status of a counter is accessed by a read from
that counter.

The counter status format is shown in Figure 11. Bits
D5 through D0 contain the counter’s programmed
Mode exactly as written in the last Mode Control
Word. OUTPUT bit D7 contains the current state of
the OUT pin. This allows the user to monitor the
counter’s output via software, possibly eliminating
some hardware from a system.

D7 D6 D5 D4 D3 D2 D1 D0

Output
Null

RW1 RW0 M2 M1 M0 BCD
Count

D7 1 e OUT Pin is 1
0 e OUT Pin is 0

D6 1 e Null Count
0 e Count available for reading

D5–D0 Counter programmed mode (see Figure
7)

Figure 11. Status Byte

8



8254

NULL COUNT bit D6 indicates when the last count
written to the counter register (CR) has been loaded
into the counting element (CE). The exact time this
happens depends on the Mode of the counter and is
described in the Mode Definitions, but until the count
is loaded into the counting element (CE), it can’t be
read from the counter. If the count is latched or read
before this time, the count value will not reflect the
new count just written. The operation of Null Count
is shown in Figure 12.

This Action Causes

A. Write to the control word register;(1) Null Count e 1

B. Write to the count register (CR);(2) Null Count e 1

C. New Count is loaded into Null Count e 0

CE (CRxCE);

NOTE:
1. Only the counter specified by the control word will
have its Null Count set to 1. Null count bits of other
counters are unaffected.
2. If the counter is programmed for two-byte counts
(least significant byte then most significant byte) Null
Count goes to 1 when the second byte is written.

Figure 12. Null Count Operation

If multiple status latch operations of the counter(s)
are performed without reading the status, all but the
first are ignored; i.e., the status that will be read is
the status of the counter at the time the first status
read-back command was issued.

Both count and status of the selected counter(s)
may be latched simultaneously by setting both

COUNT and STATUS bits D5,D4 e 0. This is func-
tionally the same as issuing two separate read-back
commands at once, and the above discussions ap-
ply here also. Specifically, if multiple count and/or
status read-back commands are issued to the same
counter(s) without any intervening reads, all but the
first are ignored. This is illustrated in Figure 13.

If both count and status of a counter are latched, the
first read operation of that counter will return latched
status, regardless of which was latched first. The
next one or two reads (depending on whether the
counter is programmed for one or two type counts)
return latched count. Subsequent reads return un-
latched count.

CS RD WR A1 A0

0 1 0 0 0 Write into Counter 0

0 1 0 0 1 Write into Counter 1

0 1 0 1 0 Write into Counter 2

0 1 0 1 1 Write Control Word

0 0 1 0 0 Read from Counter 0

0 0 1 0 1 Read from Counter 1

0 0 1 1 0 Read from Counter 2

0 0 1 1 1 No-Operation (3-State)

1 X X X X No-Operation (3-State)

0 1 1 X X No-Operation (3-State)

Figure 14. Read/Write Operations Summary

Command
Description Result

D7 D6 D5 D4 D3 D2 D1 D0

1 1 0 0 0 0 1 0 Read back count and status of Count and status latched

Counter 0 for Counter 0

1 1 1 0 0 1 0 0 Read back status of Counter 1 Status latched for Counter 1

1 1 1 0 1 1 0 0 Read back status of Counters 2, 1 Status latched for Counter

2, but not Counter 1

1 1 0 1 1 0 0 0 Read back count of Counter 2 Count latched for Counter 2

1 1 0 0 0 1 0 0 Read back count and status of Count latched for Counter 1,

Counter 1 but not status

1 1 1 0 0 0 1 0 Read back status of Counter 1 Command ignored, status

already latched for Counter 1

Figure 13. Read-Back Command Example

9



8254

Mode Definitions

The following are defined for use in describing the
operation of the 8254.

CLK Pulse: a rising edge, then a falling edge, in
that order, of a Counter’s CLK in-
put.

Trigger: a rising edge of a Counter’s GATE
input.

Counter loading: the transfer of a count from the CR
to the CE (refer to the ‘‘Functional
Description’’)

MODE 0: INTERRUPT ON TERMINAL COUNT

Mode 0 is typically used for event counting. After the
Control Word is written, OUT is initially low, and will
remain low until the Counter reaches zero. OUT then
goes high and remains high until a new count or a
new Mode 0 Control Word is written into the Coun-
ter.

GATE e 1 enables counting; GATE e 0 disables
counting. GATE has no effect on OUT.

After the Control Word and initial count are written to
a Counter, the initial count will be loaded on the next
CLK pulse. This CLK pulse does not decrement the
count, so for an initial count of N, OUT does not go
high until N a 1 CLK pulses after the initial count is
written.

If a new count is written to the Counter, it will be
loaded on the next CLK pulse and counting will con-
tinue from the new count. If a two-byte count is writ-
ten, the following happens:

1) Writing the first byte disables counting. OUT is set
low immediately (no clock pulse required)

2) Writing the second byte allows the new count to
be loaded on the next CLK pulse.

This allows the counting sequence to be synchroniz-
ed by software. Again, OUT does not go high until
Na1 CLK pulses after the new count of N is written.

If an initial count is written while GATE e 0, it will
still be loaded on the next CLK pulse. When GATE
goes high, OUT will go high N CLK pulses later; no
CLK pulse is needed to load the Counter as this has
already been done.

MODE 1: HARDWARE RETRIGGERABLE
ONE-SHOT

OUT will be initially high. OUT will go low on the CLK
pulse following a trigger to begin the one-shot pulse,
and will remain low until the Counter reaches zero.

OUT will then go high and remain high until the CLK
pulse after the next trigger.

After writing the Control Word and initial count, the
Counter is armed. A trigger results in loading the
Counter and setting OUT low on the next CLK pulse,
thus starting the one-shot pulse. An initial count of N
will result in a one-shot pulse N CLK cycles in dura-
tion. The one-shot is retriggerable, hence OUT will
remain low for N CLK pulses after any trigger. The
one-shot pulse can be repeated without rewriting the
same count into the counter. GATE has no effect on
OUT.

If a new count is written to the Counter during a one-
shot pulse, the current one-shot is not affected un-
less the counter is retriggered. In that case, the
Counter is loaded with the new count and the one-
shot pulse continues until the new count expires.

MODE 2: RATE GENERATOR

This Mode functions like a divide-by-N counter. It is
typically used to generate a Real Time Clock inter-
rupt. OUT will initially be high. When the initial count
has decremented to 1, OUT goes low for one CLK
pulse. OUT then goes high again, the Counter re-
loads the initial count and the process is repeated.
Mode 2 is periodic; the same sequence is repeated
indefinitely. For an initial count of N, the sequence
repeats every N CLK cycles.

GATE e 1 enables counting; GATE e 0 disables
counting. If GATE goes low during an output pulse,
OUT is set high immediately. A trigger reloads the
Counter with the initial count on the next CLK pulse;
OUT goes low N CLK pulses after the trigger. Thus
the GATE input can be used to synchronize the
Counter.

After writing a Control Word and initial count, the
Counter will be loaded on the next CLK pulse. OUT
goes low N CLK Pulses after the initial count is writ-
ten. This allows the Counter to be synchronized by
software also.

Writing a new count while counting does not affect
the current counting sequence. If a trigger is re-
ceived after writing a new count but before the end
of the current period, the Counter will be loaded with
the new count on the next CLK pulse and counting
will continue from the new count. Otherwise, the
new count will be loaded at the end of the current
counting cycle. In mode 2, a COUNT of 1 is illegal.

MODE 3: SQUARE WAVE MODE

Mode 3 is typically used for Baud rate generation.
Mode 3 is similar to Mode 2 except for the duty cycle
of OUT. OUT will initially be high. When half the

10



8254

231164–7

NOTE:
The following conventions apply to all mode timing diagrams:
1. Counters are programmed for binary (not BCD) counting and for reading/writing least significant byte (LSB) only.
2. The counter is always selected (CS always low).
3. CW stands for ‘‘Control Word’’; CW e 10 means a control word of 10 HEX is written to the counter.
4. LSB stands for ‘‘Least Significant Byte’’ of count.
5. Numbers below diagrams are count values. The lower number is the least significant byte. The upper number is the
most significant byte. Since the counter is programmed to read/write LSB only, the most significant byte cannot be read.

N stands for an undefined count.
Vertical lines show transitions between count values.

Figure 15. Mode 0

11



8254

231164–8

Figure 16. Mode 1

initial count has expired, OUT goes low for the re-
mainder of the count. Mode 3 is periodic; the se-
quence above is repeated indefinitely. An initial
count of N results in a square wave with a period of
N CLK cycles.

GATE e 1 enables counting; GATE e 0 disables
counting. If GATE goes low while OUT is low, OUT is
set high immediately; no CLK pulse is required. A
trigger reloads the Counter with the initial count on
the next CLK pulse. Thus the GATE input can be
used to synchronize the Counter.

After writing a Control Word and initial count, the
Counter will be loaded on the next CLK pulse. This
allows the Counter to be synchronized by software
also.

Writing a new count while counting does not affect
the current counting sequence. If a trigger is re-
ceived after writing a new count but before the end
of the current half-cycle of the square wave, the
Counter will be loaded with the new count on the
next CLK pulse and counting will continue from the

12



8254

231164–9

NOTE:
A GATE transition should not occur one clock prior to terminal count.

Figure 17. Mode 2

new count. Otherwise, the new count will be loaded
at the end of the current half-cycle.

Mode 3 is implemented as follows:

Even counts: OUT is initially high. The initial count is
loaded on one CLK pulse and then is decremented
by two on succeeding CLK pulses. When the count
expires OUT changes value and the Counter is re-
loaded with the initial count. The above process is
repeated indefinitely.

Odd counts: OUT is initially high. The initial count
minus one (an even number) is loaded on one CLK
pulse and then is decremented by two on succeed-
ing CLK pulses. One CLK pulse after the count ex-
pires, OUT goes low and the Counter is reloaded
with the initial count minus one. Succeeding CLK
pulses decrement the count by two. When the count
expires, OUT goes high again and the Counter is
reloaded with the initial count minus one. The above
process is repeated indefinitely. So for odd counts,
OUT will be high for (N a 1)/2 counts and low for
(N b 1)/2 counts.

13



8254

231164–10

NOTE:
A GATE transition should not occur one clock prior to terminal count.

Figure 18. Mode 3

14



8254

MODE 4: SOFTWARE TRIGGERED STROBE

OUT will be initially high. When the initial count ex-
pires, OUT will go low for one CLK pulse and then
go high again. The counting sequence is ‘‘triggered’’
by writing the initial count.

GATE e 1 enables counting; GATE e 0 disables
counting. GATE has no effect on OUT.

After writing a Control Word and initial count, the
Counter will be loaded on the next CLK pulse. This
CLK pulse does not decrement the count, so for an

initial count of N, OUT does not strobe low until N a

1 CLK pulses after the initial count is written.

If a new count is written during counting, it will be
loaded on the next CLK pulse and counting will con-
tinue from the new count. If a two-byte count is writ-
ten, the following happens:

1) Writing the first byte has no effect on counting.

2) Writing the second byte allows the new count to
be loaded on the next CLK pulse.

This allows the sequence to be ‘‘retriggered’’ by
software. OUT strobes low N a 1 CLK pulses after
the new count of N is written.

231164–11

Figure 19. Mode 4

15



8254

MODE 5: HARDWARE TRIGGERED STROBE
(RETRIGGERABLE)

OUT will initially be high. Counting is triggered by a
rising edge of GATE. When the initial count has ex-
pired, OUT will go low for one CLK pulse and then
go high again.

After writing the Control Word and initial count, the
counter will not be loaded until the CLK pulse after a
trigger. This CLK pulse does not decrement the
count, so for an initial count of N, OUT does not
strobe low until N a 1 CLK pulses after a trigger.

A trigger results in the Counter being loaded with the
initial count on the next CLK pulse. The counting
sequence is retriggerable. OUT will not strobe low
for N a 1 CLK pulses after any trigger. GATE has
no effect on OUT.

If a new count is written during counting, the current
counting sequence will not be affected. If a trigger
occurs after the new count is written but before the
current count expires, the Counter will be loaded
with the new count on the next CLK pulse and
counting will continue from there.

231164–12

Figure 20. Mode 5

16



8254

Signal Low

Status Or Going Rising High

Modes Low

0 Disables Ð Ð Enables

Counting Counting

1 Ð Ð 1) Initiates Ð Ð

Counting

2) Resets Output

after Next

Clock

2 1) Disables

Counting Initiates Enables

2) Sets Output Counting Counting

Immediately

High

3 1) Disables

Counting Initiates Enables

2) Sets Output Counting Counting

Immediately

High

4 Disables Ð Ð Enables

Counting Counting

5 Ð Ð Initiates Ð Ð

Counting

Figure 21. Gate Pin Operations Summary

Mode
Min Max

Count Count

0 1 0

1 1 0

2 2 0

3 2 0

4 1 0

5 1 0

NOTE:
0 is equivalent to 216 for binary counting and 104 for
BCD counting.

Figure 22. Minimum and Maximum Initial Counts

Operation Common to All Modes

PROGRAMMING

When a Control Word is written to a Counter, all
Control Logic is immediately reset and OUT goes to
a known initial state; no CLK pulses are required for
this.

GATE

The GATE input is always sampled on the rising
edge of CLK. In Modes 0, 2, 3, and 4 the GATE input
is level sensitive, and the logic level is sampled on
the rising edge of CLK. In Modes 1, 2, 3, and 5 the
GATE input is rising-edge sensitive. In these Modes,
a rising edge of GATE (trigger) sets an edge-sensi-
tive flip-flop in the Counter. This flip-flop is then sam-
pled on the next rising edge of CLK; the flip-flop is
reset immediately after it is sampled. In this way, a
trigger will be detected no matter when it occursÐa
high logic level does not have to be maintained until
the next rising edge of CLK. Note that in Modes 2
and 3, the GATE input is both edge- and level-sensi-
tive. In Modes 2 and 3, if a CLK source other than
the system clock is used, GATE should be pulsed
immediately following WR of a new count value.

COUNTER

New counts are loaded and Counters are decre-
mented on the falling edge of CLK.

The largest possible initial count is 0; this is equiva-
lent to 216 for binary counting and 104 for BCD
counting.

The Counter does not stop when it reaches zero. In
Modes 0, 1, 4, and 5 the Counter ‘‘wraps around’’ to
the highest count, either FFFF hex for binary count-
ing or 9999 for BCD counting, and continues count-
ing. Modes 2 and 3 are periodic; the Counter reloads
itself with the initial count and continues counting
from there.

17



8254

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias ÀÀÀÀÀÀ0§C to 70§C
Storage Temperature ÀÀÀÀÀÀÀÀÀÀb65§C to a150§C
Voltage on Any Pin with

Respect to GroundÀÀÀÀÀÀÀÀÀÀÀÀÀÀb0.5V to a7V

Power Dissipation ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ1W

NOTICE: This is a production data sheet. The specifi-
cations are subject to change without notice.

*WARNING: Stressing the device beyond the ‘‘Absolute
Maximum Ratings’’ may cause permanent damage.
These are stress ratings only. Operation beyond the
‘‘Operating Conditions’’ is not recommended and ex-
tended exposure beyond the ‘‘Operating Conditions’’
may affect device reliability.

D.C. CHARACTERISTICS TA e 0§C to 70§C, VCC e 5V g10%

Symbol Parameter Min Max Units Test Conditions

VIL Input Low Voltage b0.5 0.8 V

VIH Input High Voltage 2.0 VCC a0.5V V

VOL Output Low Voltage 0.45 V IOL e 2.0 mA

VOH Output High Voltage 2.4 V IOH e b400 mA

IIL Input Load Current g10 mA VIN e VCC to 0V

IOFL Output Float Leakage g10 mA VOUT e VCC to 0.45V

ICC VCC Supply Current 170 mA

CIN Input Capacitance 10 pF fc e 1 MHz

CI/0 I/O Capacitance 20 pF Unmeasured pins

returned to VSS
(4)

A.C. CHARACTERISTICS TA e 0§C to 70§C, VCC e 5V g10%, GND e 0V

Bus Parameters(1)

READ CYCLE

Symbol Parameter
8254 8254-2

Unit
Min Max Min Max

tAR Address Stable Before RDv 45 30 ns

tSR CS Stable Before RDv 0 0 ns

tRA Address Hold Time After RDu 0 0 ns

tRR RD Pulse Width 150 95 ns

tRD Data Delay from RDv 120 85 ns

tAD Data Delay from Address 220 185 ns

tDF RDu to Data Floating 5 90 5 65 ns

tRV Command Recovery Time 200 165 ns

NOTE:
1. AC timings measured at VOH e 2.0V, VOL e 0.8V.

18



8254

A.C. CHARACTERISTICS TA e 0§C to 70§C, VCC e 5V g10%, GND e 0V (Continued)

WRITE CYCLE

Symbol Parameter
8254 8254-2

Unit
Min Max Min Max

tAW Address Stable Before WRv 0 0 ns

tSW CS Stable Before WRv 0 0 ns

tWA Address Hold Time After WRv 0 0 ns

tWW WR Pulse Width 150 95 ns

tDW Data Setup Time Before WRu 120 95 ns

tWD Data Hold Time After WRu 0 0 ns

tRV Command Recovery Time 200 165 ns

CLOCK AND GATE

Symbol Parameter
8254 8254-2

Unit
Min Max Min Max

tCLK Clock Period 125 DC 100 DC ns

tPWH High Pulse Width 60(3) 30(3) ns

tPWL Low Pulse Width 60(3) 50(3) ns

tR Clock Rise Time 25 25 ns

tF Clock Fall Time 25 25 ns

tGW Gate Width High 50 50 ns

tGL Gate Width Low 50 50 ns

tGS Gate Setup Time to CLKu 50 40 ns

tGH Gate Setup Time After CLKu 50(2) 50(2) ns

tOD Output Delay from CLKv 150 100 ns

tODG Output Delay from Gatev 120 100 ns

tWC CLK Delay for Loadingv 0 55 0 55 ns

tWG Gate Delay for Sampling b5 50 b5 40 ns

tWO OUT Delay from Mode Write 260 240 ns

tCL CLK Set Up for Count Latch b40 45 b40 40 ns

NOTES:
2. In Modes 1 and 5 triggers are sampled on each rising clock edge. A second trigger within 120 ns (70 ns for the 8254-2) of
the rising clock edge may not be detected.
3. Low-going glitches that violate tPWH, tPWL may cause errors requiring counter reprogramming.
4. Sampled, not 100% tested. TA e 25§C.
5. If CLK present at TWC min then Count equals Na2 CLK pulses, TWC max equals Count Na1 CLK pulse. TWC min to
TWC max, count will be either Na1 or Na2 CLK pulses.
6. In Modes 1 and 5, if GATE is present when writing a new Count value, at TWG min Counter will not be triggered, at TWG
max Counter will be triggered.
7. If CLK present when writing a Counter Latch or ReadBack Command, at TCL min CLK will be reflected in count value
latched, at TCL max CLK will not be reflected in the count value latched.

19



8254

WAVEFORMS

WRITE

231164–13

READ

231164–14

20



8254

WAVEFORMS (Continued)

RECOVERY

231164–15

CLOCK AND GATE

231164–16

*Last byte of count being written.

A.C. TESTING INPUT, OUTPUT WAVEFORM

231164–17

A.C. Testing: Inputs are driven at 2.4V for a Logic ‘‘1’’ and 0.45V
for a Logic ‘‘0.’’ Timing measurements are made at 2.0V for a
Logic ‘‘1’’ and 0.8V for a Logic ‘‘0’’.

A.C. TESTING LOAD CIRCUIT

231164–18
CL e 150 pF
CL Includes Jig Capacitance

REVISION SUMMARY

The following list represents the key differences be-
tween Rev. 004 and Rev. 005 of the 8254 Data
Sheet.

1. References to and specifications for the 5 MHz
8254-5 are removed. Only the 8 MHz 8254 and
the 10 MHz 8254-2 remain in production.

21



October 1994 Order Number: 231244-006

82C54
CHMOS PROGRAMMABLE INTERVAL TIMER

Y Compatible with all Intel and most
other microprocessors

Y High Speed, ‘‘Zero Wait State’’
Operation with 8 MHz 8086/88 and
80186/188

Y Handles Inputs from DC
Ð 10 MHz for 82C54-2

Y Available in EXPRESS
Ð Standard Temperature Range
Ð Extended Temperature Range

Y Three independent 16-bit counters

Y Low Power CHMOS
Ð ICC e 10 mA @ 8 MHz Count

frequency

Y Completely TTL Compatible

Y Six Programmable Counter Modes

Y Binary or BCD counting

Y Status Read Back Command

Y Available in 24-Pin DIP and 28-Pin PLCC

The Intel 82C54 is a high-performance, CHMOS version of the industry standard 8254 counter/timer which is
designed to solve the timing control problems common in microcomputer system design. It provides three
independent 16-bit counters, each capable of handling clock inputs up to 10 MHz. All modes are software
programmable. The 82C54 is pin compatible with the HMOS 8254, and is a superset of the 8253.

Six programmable timer modes allow the 82C54 to be used as an event counter, elapsed time indicator,
programmable one-shot, and in many other applications.

The 82C54 is fabricated on Intel’s advanced CHMOS III technology which provides low power consumption
with performance equal to or greater than the equivalent HMOS product. The 82C54 is available in 24-pin DIP
and 28-pin plastic leaded chip carrier (PLCC) packages.

231244–1

Figure 1. 82C54 Block Diagram

231244–3

PLASTIC LEADED CHIP CARRIER

231244–2
Diagrams are for pin reference only.

Package sizes are not to scale.

Figure 2. 82C54 Pinout



82C54

Table 1. Pin Description

Symbol
Pin Number

Type Function
DIP PLCC

D7-D0 1-8 2-9 I/O Data: Bidirectional tri-state data bus lines,

connected to system data bus.

CLK 0 9 10 I Clock 0: Clock input of Counter 0.

OUT 0 10 12 O Output 0: Output of Counter 0.

GATE 0 11 13 I Gate 0: Gate input of Counter 0.

GND 12 14 Ground: Power supply connection.

OUT 1 13 16 O Out 1: Output of Counter 1.

GATE 1 14 17 I Gate 1: Gate input of Counter 1.

CLK 1 15 18 I Clock 1: Clock input of Counter 1.

GATE 2 16 19 I Gate 2: Gate input of Counter 2.

OUT 2 17 20 O Out 2: Output of Counter 2.

CLK 2 18 21 I Clock 2: Clock input of Counter 2.

A1, A0 20-19 23-22 I Address: Used to select one of the three Counters

or the Control Word Register for read or write

operations. Normally connected to the system

address bus.

A1 A0 Selects

0 0 Counter 0
0 1 Counter 1
1 0 Counter 2
1 1 Control Word Register

CS 21 24 I Chip Select: A low on this input enables the 82C54

to respond to RD and WR signals. RD and WR are

ignored otherwise.

RD 22 26 I Read Control: This input is low during CPU read

operations.

WR 23 27 I Write Control: This input is low during CPU write

operations.

VCC 24 28 Power: a5V power supply connection.

NC 1, 11, 15, 25 No Connect

FUNCTIONAL DESCRIPTION

General

The 82C54 is a programmable interval timer/counter
designed for use with Intel microcomputer systems.
It is a general purpose, multi-timing element that can
be treated as an array of I/O ports in the system
software.

The 82C54 solves one of the most common prob-
lems in any microcomputer system, the generation
of accurate time delays under software control. In-
stead of setting up timing loops in software, the pro-
grammer configures the 82C54 to match his require-
ments and programs one of the counters for the de-

sired delay. After the desired delay, the 82C54 will
interrupt the CPU. Software overhead is minimal and
variable length delays can easily be accommodated.

Some of the other counter/timer functions common
to microcomputers which can be implemented with
the 82C54 are:

# Real time clock
# Even counter
# Digital one-shot
# Programmable rate generator
# Square wave generator
# Binary rate multiplier
# Complex waveform generator
# Complex motor controller

2



82C54

Block Diagram

DATA BUS BUFFER

This 3-state, bi-directional, 8-bit buffer is used to in-
terface the 82C54 to the system bus (see Figure 3).

231244–4

Figure 3. Block Diagram Showing Data Bus

Buffer and Read/Write Logic Functions

READ/WRITE LOGIC

The Read/Write Logic accepts inputs from the sys-
tem bus and generates control signals for the other
functional blocks of the 82C54. A1 and A0 select
one of the three counters or the Control Word Regis-
ter to be read from/written into. A ‘‘low’’ on the RD
input tells the 82C54 that the CPU is reading one of
the counters. A ‘‘low’’ on the WR input tells the
82C54 that the CPU is writing either a Control Word
or an initial count. Both RD and WR are qualified by
CS; RD and WR are ignored unless the 82C54 has
been selected by holding CS low.

The WRÝ and CLK signals should be synchronous.
This is accomplished by using a CLK input signal to
the 82C54 counters which is a derivative of the sys-
tem clock source. Another technique is to externally
synchronize the WRÝ and CLK input signals. This is
done by gating WRÝ with CLK.

CONTROL WORD REGISTER

The Control Word Register (see Figure 4) is selected
by the Read/Write Logic when A1, A0 e 11. If the
CPU then does a write operation to the 82C54, the
data is stored in the Control Word Register and is
interpreted as a Control Word used to define the
operation of the Counters.

The Control Word Register can only be written to;
status information is available with the Read-Back
Command.

231244–5

Figure 4. Block Diagram Showing Control Word

Register and Counter Functions

COUNTER 0, COUNTER 1, COUNTER 2

These three functional blocks are identical in opera-
tion, so only a single Counter will be described. The
internal block diagram of a single counter is shown
in Figure 5.

The Counters are fully independent. Each Counter
may operate in a different Mode.

The Control Word Register is shown in the figure; it
is not part of the Counter itself, but its contents de-
termine how the Counter operates.

3



82C54

231244–6

Figure 5. Internal Block Diagram of a Counter

The status register, shown in the Figure, when
latched, contains the current contents of the Control
Word Register and status of the output and null
count flag. (See detailed explanation of the Read-
Back command.)

The actual counter is labelled CE (for ‘‘Counting Ele-
ment’’). It is a 16-bit presettable synchronous down
counter.

OLM and OLL are two 8-bit latches. OL stands for
‘‘Output Latch’’; the subscripts M and L stand for
‘‘Most significant byte’’ and ‘‘Least significant byte’’
respectively. Both are normally referred to as one
unit and called just OL. These latches normally ‘‘fol-
low’’ the CE, but if a suitable Counter Latch Com-
mand is sent to the 82C54, the latches ‘‘latch’’ the
present count until read by the CPU and then return
to ‘‘following’’ the CE. One latch at a time is enabled
by the counter’s Control Logic to drive the internal
bus. This is how the 16-bit Counter communicates
over the 8-bit internal bus. Note that the CE itself
cannot be read; whenever you read the count, it is
the OL that is being read.

Similarly, there are two 8-bit registers called CRM
and CRL (for ‘‘Count Register’’). Both are normally
referred to as one unit and called just CR. When a
new count is written to the Counter, the count is

stored in the CR and later transferred to the CE. The
Control Logic allows one register at a time to be
loaded from the internal bus. Both bytes are trans-
ferred to the CE simultaneously. CRM and CRL are
cleared when the Counter is programmed. In this
way, if the Counter has been programmed for one
byte counts (either most significant byte only or least
significant byte only) the other byte will be zero.
Note that the CE cannot be written into; whenever a
count is written, it is written into the CR.

The Control Logic is also shown in the diagram. CLK
n, GATE n, and OUT n are all connected to the out-
side world through the Control Logic.

82C54 SYSTEM INTERFACE

The 82C54 is treated by the systems software as an
array of peripheral I/O ports; three are counters and
the fourth is a control register for MODE program-
ming.

Basically, the select inputs A0, A1 connect to the A0,
A1 address bus signals of the CPU. The CS can be
derived directly from the address bus using a linear
select method. Or it can be connected to the output
of a decoder, such as an Intel 8205 for larger sys-
tems.

231244–7

Figure 6. 82C54 System Interface

4



82C54

OPERATIONAL DESCRIPTION

General

After power-up, the state of the 82C54 is undefined.
The Mode, count value, and output of all Counters
are undefined.

How each Counter operates is determined when it is
programmed. Each Counter must be programmed
before it can be used. Unused counters need not be
programmed.

Programming the 82C54

Counters are programmed by writing a Control Word
and then an initial count. The control word format is
shown in Figure 7.

All Control Words are written into the Control Word
Register, which is selected when A1, A0 e 11. The
Control Word itself specifies which Counter is being
programmed.

By contrast, initial counts are written into the Coun-
ters, not the Control Word Register. The A1, A0 in-
puts are used to select the Counter to be written
into. The format of the initial count is determined by
the Control Word used.

Control Word Format

A1, A0 e 11 CS e 0 RD e 1 WR e 0

D7 D6 D5 D4 D3 D2 D1 D0

SC1 SC0 RW1 RW0 M2 M1 M0 BCD

SC Ð Select Counter:

SC1 SC0

0 0 Select Counter 0

0 1 Select Counter 1

1 0 Select Counter 2

1 1
Read-Back Command

(See Read Operations)

RW Ð Read/Write:

RW1 RW0

0 0 Counter Latch Command (see Read

Operations)

0 1 Read/Write least significant byte only.

1 0 Read/Write most significant byte only.

1 1 Read/Write least significant byte first,

then most significant byte.

NOTE: Don’t care bits (X) should be 0 to insure
compatibility with future Intel products.

M Ð MODE:

M2 M1 M0

0 0 0 Mode 0

0 0 1 Mode 1

X 1 0 Mode 2

X 1 1 Mode 3

1 0 0 Mode 4

1 0 1 Mode 5

BCD:

0 Binary Counter 16-bits

1 Binary Coded Decimal (BCD) Counter

(4 Decades)

Figure 7. Control Word Format

5



82C54

Write Operations

The programming procedure for the 82C54 is very
flexible. Only two conventions need to be remem-
bered:

1) For each Counter, the Control Word must be
written before the initial count is written.

2) The initial count must follow the count format
specified in the Control Word (least significant
byte only, most significant byte only, or least sig-
nificant byte and then most significant byte).

Since the Control Word Register and the three
Counters have separate addresses (selected by the
A1, A0 inputs), and each Control Word specifies the
Counter it applies to (SC0, SC1 bits), no special in-

struction sequence is required. Any programming
sequence that follows the conventions above is ac-
ceptable.

A new initial count may be written to a Counter at
any time without affecting the Counter’s pro-
grammed Mode in any way. Counting will be affected
as described in the Mode definitions. The new count
must follow the programmed count format.

If a Counter is programmed to read/write two-byte
counts, the following precaution applies: A program
must not transfer control between writing the first
and second byte to another routine which also writes
into that same Counter. Otherwise, the Counter will
be loaded with an incorrect count.

A1 A0

Control Word Ð Counter 0 1 1

LSB of count Ð Counter 0 0 0

MSB of count Ð Counter 0 0 0

Control Word Ð Counter 1 1 1

LSB of count Ð Counter 1 0 1

MSB of count Ð Counter 1 0 1

Control Word Ð Counter 2 1 1

LSB of count Ð Counter 2 1 0

MSB of count Ð Counter 2 1 0

A1 A0

Control Word Ð Counter 0 1 1

Counter Word Ð Counter 1 1 1

Control Word Ð Counter 2 1 1

LSB of count Ð Counter 2 1 0

LSB of count Ð Counter 1 0 1

LSB of count Ð Counter 0 0 0

MSB of count Ð Counter 0 0 0

MSB of count Ð Counter 1 0 1

MSB of count Ð Counter 2 1 0

A1 A0

Control Word Ð Counter 2 1 1

Control Word Ð Counter 1 1 1

Control Word Ð Counter 0 1 1

LSB of count Ð Counter 2 1 0

MSB of count Ð Counter 2 1 0

LSB of count Ð Counter 1 0 1

MSB of count Ð Counter 1 0 1

LSB of count Ð Counter 0 0 0

MSB of count Ð Counter 0 0 0

A1 A0

Control Word Ð Counter 1 1 1

Control Word Ð Counter 0 1 1

LSB of count Ð Counter 1 0 1

Control Word Ð Counter 2 1 1

LSB of count Ð Counter 0 0 0

MSB of count Ð Counter 1 0 1

LSB of count Ð Counter 2 1 0

MSB of count Ð Counter 0 0 0

MSB of count Ð Counter 2 1 0

NOTE:
In all four examples, all counters are programmed to read/write two-byte counts.
These are only four of many possible programming sequences.

Figure 8. A Few Possible Programming Sequences

Read Operations

It is often desirable to read the value of a Counter
without disturbing the count in progress. This is easi-
ly done in the 82C54.

There are three possible methods for reading the
counters: a simple read operation, the Counter

Latch Command, and the Read-Back Command.
Each is explained below. The first method is to per-
form a simple read operation. To read the Counter,
which is selected with the A1, A0 inputs, the CLK
input of the selected Counter must be inhibited by
using either the GATE input or external logic. Other-
wise, the count may be in the process of changing
when it is read, giving an undefined result.

6



82C54

COUNTER LATCH COMMAND

The second method uses the ‘‘Counter Latch Com-
mand’’. Like a Control Word, this command is written
to the Control Word Register, which is selected
when A1, A0 e 11. Also like a Control Word, the
SC0, SC1 bits select one of the three Counters, but
two other bits, D5 and D4, distinguish this command
from a Control Word.

A1, A0e11; CSe0; RDe1; WRe0

D7 D6 D5 D4 D3 D2 D1 D0

SC1 SC0 0 0 X X X X

SC1, SC0 - specify counter to be latched

SC1 SC0 Counter

0 0 0

0 1 1

1 0 2

1 1 Read-Back Command

D5,D4 - 00 designates Counter Latch Command

X - don’t care

NOTE:
Don’t care bits (X) should be 0 to insure compatibility
with future Intel products.

Figure 9. Counter Latching Command Format

The selected Counter’s output latch (OL) latches the
count at the time the Counter Latch Command is
received. This count is held in the latch until it is read
by the CPU (or until the Counter is reprogrammed).
The count is then unlatched automatically and the
OL returns to ‘‘following’’ the counting element (CE).
This allows reading the contents of the Counters
‘‘on the fly’’ without affecting counting in progress.
Multiple Counter Latch Commands may be used to
latch more than one Counter. Each latched Coun-
ter’s OL holds its count until it is read. Counter Latch
Commands do not affect the programmed Mode of
the Counter in any way.

If a Counter is latched and then, some time later,
latched again before the count is read, the second
Counter Latch Command is ignored. The count read
will be the count at the time the first Counter Latch
Command was issued.

With either method, the count must be read accord-
ing to the programmed format; specifically, if the
Counter is programmed for two byte counts, two
bytes must be read. The two bytes do not have to be
read one right after the other; read or write or pro-

gramming operations of other Counters may be in-
serted between them.

Another feature of the 82C54 is that reads and
writes of the same Counter may be interleaved; for
example, if the Counter is programmed for two byte
counts, the following sequence is valid.

1. Read least significant byte.
2. Write new least significant byte.
3. Read most significant byte.
4. Write new most significant byte.

If a Counter is programmed to read/write two-byte
counts, the following precaution applies; A program
must not transfer control between reading the first
and second byte to another routine which also reads
from that same Counter. Otherwise, an incorrect
count will be read.

READ-BACK COMMAND

The third method uses the Read-Back command.
This command allows the user to check the count
value, programmed Mode, and current state of the
OUT pin and Null Count flag of the selected coun-
ter(s).

The command is written into the Control Word Reg-
ister and has the format shown in Figure 10. The
command applies to the counters selected by set-
ting their corresponding bits D3,D2,D1 e 1.

A0, A1 e 11 CS e 0 RD e 1 WR e 0

D7 D6 D5 D4 D3 D2 D1 D0

1 1 COUNT STATUS CNT 2 CNT 1 CNT 0 0

D5: 0 e Latch count of selected counter(s)
D4: 0 e Latch status of selected counter(s)
D3: 1 e Select counter 2
D2: 1 e Select counter 1
D1: 1 e Select counter 0
D0: Reserved for future expansion; must be 0

Figure 10. Read-Back Command Format

The read-back command may be used to latch multi-
ple counter output latches (OL) by setting the
COUNT bit D5e0 and selecting the desired coun-
ter(s). This single command is functionally equiva-
lent to several counter latch commands, one for
each counter latched. Each counter’s latched count
is held until it is read (or the counter is repro-
grammed). That counter is automatically unlatched
when read, but other counters remain latched until
they are read. If multiple count read-back commands
are issued to the same counter without reading the

7



82C54

count, all but the first are ignored; i.e., the count
which will be read is the count at the time the first
read-back command was issued.

The read-back command may also be used to latch
status information of selected counter(s) by setting
STATUS bit D4e0. Status must be latched to be
read; status of a counter is accessed by a read from
that counter.

The counter status format is shown in Figure 11. Bits
D5 through D0 contain the counter’s programmed
Mode exactly as written in the last Mode Control
Word. OUTPUT bit D7 contains the current state of
the OUT pin. This allows the user to monitor the
counter’s output via software, possibly eliminating
some hardware from a system.

D7 D6 D5 D4 D3 D2 D1 D0

OUTPUT
NULL

RW1 RW0 M2 M1 M0 BCD
COUNT

D7 1 e Out Pin is 1
0 e Out Pin is 0

D6 1 e Null count
0 e Count available for reading

D5-D0 Counter Programmed Mode (See Figure 7)

Figure 11. Status Byte

NULL COUNT bit D6 indicates when the last count
written to the counter register (CR) has been loaded
into the counting element (CE). The exact time this
happens depends on the Mode of the counter and is
described in the Mode Definitions, but until the count
is loaded into the counting element (CE), it can’t be
read from the counter. If the count is latched or read
before this time, the count value will not reflect the
new count just written. The operation of Null Count
is shown in Figure 12.

THIS ACTION: CAUSES:

A. Write to the control
Null counte1

word register:[1]

B. Write to the count
Null counte1

register (CR);[2]

C. New count is loaded
Null counte0

into CE (CRxCE);

[1] Only the counter specified by the control word will
have its null count set to 1. Null count bits of other
counters are unaffected.
[2] If the counter is programmed for two-byte counts
(least significant byte then most significant byte) null
count goes to 1 when the second byte is written.

Figure 12. Null Count Operation

If multiple status latch operations of the counter(s)
are performed without reading the status, all but the
first are ignored; i.e., the status that will be read is
the status of the counter at the time the first status
read-back command was issued.

Both count and status of the selected counter(s)
may be latched simultaneously by setting both
COUNT and STATUS bits D5,D4e0. This is func-
tionally the same as issuing two separate read-back
commands at once, and the above discussions ap-
ply here also. Specifically, if multiple count and/or
status read-back commands are issued to the same
counter(s) without any intervening reads, all but the
first are ignored. This is illustrated in Figure 13.

If both count and status of a counter are latched, the
first read operation of that counter will return latched
status, regardless of which was latched first. The
next one or two reads (depending on whether the
counter is programmed for one or two type counts)
return latched count. Subsequent reads return un-
latched count.

Command
Description Results

D7 D6 D5 D4 D3 D2 D1 D0

1 1 0 0 0 0 1 0 Read back count and status of Count and status latched
Counter 0 for Counter 0

1 1 1 0 0 1 0 0 Read back status of Counter 1 Status latched for Counter 1

1 1 1 0 1 1 0 0 Read back status of Counters 2, 1 Status latched for Counter
2, but not Counter 1

1 1 0 1 1 0 0 0 Read back count of Counter 2 Count latched for Counter 2

1 1 0 0 0 1 0 0 Read back count and status of Count latched for Counter 1,
Counter 1 but not status

1 1 1 0 0 0 1 0 Read back status of Counter 1 Command ignored, status
already latched for Counter 1

Figure 13. Read-Back Command Example

8



82C54

CS RD WR A1 A0

0 1 0 0 0 Write into Counter 0

0 1 0 0 1 Write into Counter 1

0 1 0 1 0 Write into Counter 2

0 1 0 1 1 Write Control Word

0 0 1 0 0 Read from Counter 0

0 0 1 0 1 Read from Counter 1

0 0 1 1 0 Read from Counter 2

0 0 1 1 1 No-Operation (3-State)

1 X X X X No-Operation (3-State)

0 1 1 X X No-Operation (3-State)

Figure 14. Read/Write Operations Summary

Mode Definitions

The following are defined for use in describing the
operation of the 82C54.

CLK PULSE: a rising edge, then a falling edge, in
that order, of a Counter’s CLK input.

TRIGGER: a rising edge of a Counter’s GATE in-
put.

COUNTER LOADING: the transfer of a count from
the CR to the CE (refer to
the ‘‘Functional Descrip-
tion’’)

MODE 0: INTERRUPT ON TERMINAL COUNT

Mode 0 is typically used for event counting. After the
Control Word is written, OUT is initially low, and will
remain low until the Counter reaches zero. OUT then
goes high and remains high until a new count or a
new Mode 0 Control Word is written into the Coun-
ter.

GATE e 1 enables counting; GATE e 0 disables
counting. GATE has no effect on OUT.

After the Control Word and initial count are written to
a Counter, the initial count will be loaded on the next
CLK pulse. This CLK pulse does not decrement the
count, so for an initial count of N, OUT does not go
high until N a 1 CLK pulses after the initial count is
written.

If a new count is written to the Counter, it will be
loaded on the next CLK pulse and counting will con-
tinue from the new count. If a two-byte count is writ-
ten, the following happens:

1) Writing the first byte does not disable counting.
OUT is set low immediately (no clock pulse re-
quired).

2) Writing the second byte allows the new count to
be loaded on the next CLK pulse.

3) When there is a count in progress, writing a new
LSB before the counter has counted down to 0
and rolled over to FFFFh, WILL stop the counter.
However, if the LSB is loaded AFTER the counter
has rolled over to FFFFh, so that an MSB now
exists in the counter, then the counter WILL NOT
stop.

This allows the counting sequence to be synchroniz-
ed by software. Again, OUT does not go high until N
a 1 CLK pulses after the new count of N is written.

9



82C54

If an initial count is written while GATE e 0, it will
still be loaded on the next CLK pulse. When GATE
goes high, OUT will go high N CLK pulses later; no
CLK pulse is needed to load the Counter as this has
already been done.

231244–8

NOTE:
The Following Conventions Apply To All Mode Timing
Diagrams:
1. Counters are programmed for binary (not BCD)
counting and for Reading/Writing least significant byte
(LSB) only.
2. The counter is always selected (CS always low).
3. CW stands for ‘‘Control Word’’; CW e 10 means a
control word of 10, hex is written to the counter.
4. LSB stands for ‘‘Least Significant Byte’’ of count.
5. Numbers below diagrams are count values.
The lower number is the least significant byte.
The upper number is the most significant byte. Since
the counter is programmed to Read/Write LSB only,
the most significant byte cannot be read.
N stands for an undefined count.
Vertical lines show transitions between count values.

Figure 15. Mode 0

MODE 1: HARDWARE RETRIGGERABLE
ONE-SHOT

OUT will be initially high. OUT will go low on the CLK
pulse following a trigger to begin the one-shot pulse,
and will remain low until the Counter reaches zero.
OUT will then go high and remain high until the CLK
pulse after the next trigger.

After writing the Control Word and initial count, the
Counter is armed. A trigger results in loading the
Counter and setting OUT low on the next CLK pulse,
thus starting the one-shot pulse. An initial count of N
will result in a one-shot pulse N CLK cycles in dura-
tion. The one-shot is retriggerable, hence OUT will
remain low for N CLK pulses after any trigger. The
one-shot pulse can be repeated without rewriting the
same count into the counter. GATE has no effect on
OUT.

If a new count is written to the Counter during a one-
shot pulse, the current one-shot is not affected un-
less the Counter is retriggered. In that case, the
Counter is loaded with the new count and the one-
shot pulse continues until the new count expires.

231244–9

Figure 16. Mode 1

10



82C54

MODE 2: RATE GENERATOR

This Mode functions like a divide-by-N counter. It is
typicially used to generate a Real Time Clock inter-
rupt. OUT will initially be high. When the initial count
has decremented to 1, OUT goes low for one CLK
pulse. OUT then goes high again, the Counter re-
loads the initial count and the process is repeated.
Mode 2 is periodic; the same sequence is repeated
indefinitely. For an initial count of N, the sequence
repeats every N CLK cycles.

GATE e 1 enables counting; GATE e 0 disables
counting. If GATE goes low during an output pulse,
OUT is set high immediately. A trigger reloads the
Counter with the initial count on the next CLK pulse;
OUT goes low N CLK pulses after the trigger. Thus
the GATE input can be used to synchronize the
Counter.

After writing a Control Word and initial count, the
Counter will be loaded on the next CLK pulse. OUT
goes low N CLK Pulses after the initial count is writ-
ten. This allows the Counter to be synchronized by
software also.

231244–10

NOTE:
A GATE transition should not occur one clock prior to
terminal count.

Figure 17. Mode 2

Writing a new count while counting does not affect
the current counting sequence. If a trigger is re-
ceived after writing a new count but before the end
of the current period, the Counter will be loaded with
the new count on the next CLK pulse and counting
will continue from the new count. Otherwise, the
new count will be loaded at the end of the current
counting cycle. In mode 2, a COUNT of 1 is illegal.

MODE 3: SQUARE WAVE MODE

Mode 3 is typically used for Baud rate generation.
Mode 3 is similar to Mode 2 except for the duty cycle
of OUT. OUT will initially be high. When half the ini-
tial count has expired, OUT goes low for the remain-
der of the count. Mode 3 is periodic; the sequence
above is repeated indefinitely. An initial count of N
results in a square wave with a period of N CLK
cycles.

GATE e 1 enables counting; GATE e 0 disables
counting. If GATE goes low while OUT is low, OUT is
set high immediately; no CLK pulse is required. A
trigger reloads the Counter with the initial count on
the next CLK pulse. Thus the GATE input can be
used to synchronize the Counter.

After writing a Control Word and initial count, the
Counter will be loaded on the next CLK pulse. This
allows the Counter to be synchronized by software
also.

Writing a new count while counting does not affect
the current counting sequence. If a trigger is re-
ceived after writing a new count but before the end
of the current half-cycle of the square wave, the
Counter will be loaded with the new count on the
next CLK pulse and counting will continue from the
new count. Otherwise, the new count will be loaded
at the end of the current half-cycle.

Mode 3 is implemented as follows:

Even counts: OUT is initially high. The initial count is
loaded on one CLK pulse and then is decremented
by two on succeeding CLK pulses. When the count
expires OUT changes value and the Counter is re-
loaded with the initial count. The above process is
repeated indefinitely.

Odd counts: OUT is initially high. The initial count
minus one (an even number) is loaded on one CLK
pulse and then is decremented by two on succeed-
ing CLK pulses. One CLK pulse after the count ex-
pires, OUT goes low and the Counter is reloaded
with the initial count minus one. Succeeding CLK
pulses decrement the count by two. When the count
expires, OUT goes high again and the Counter is
reloaded with the initial count minus one. The above
process is repeated indefinitely. So for odd counts,

11



82C54

OUT will be high for (N a 1)/2 counts and low for
(N b1)/2 counts.

231244–11

NOTE:
A GATE transition should not occur one clock prior to
terminal count.

Figure 18. Mode 3

MODE 4: SOFTWARE TRIGGERED STROBE

OUT will be initially high. When the initial count ex-
pires, OUT will go low for one CLK pulse and then
go high again. The counting sequence is ‘‘triggered’’
by writing the initial count.

GATE e 1 enables counting; GATE e 0 disables
counting. GATE has no effect on OUT.

After writing a Control Word and initial count, the
Counter will be loaded on the next CLK pulse. This
CLK pulse does not decrement the count, so for an
initial count of N, OUT does not strobe low until
N a 1 CLK pulses after the initial count is written.

If a new count is written during counting, it will be
loaded on the next CLK pulse and counting will con-
tinue from the new count. If a two-byte count is writ-
ten, the following happens:

1) Writing the first byte has no effect on counting.

2) Writing the second byte allows the new count to
be loaded on the next CLK pulse.

This allows the sequence to be ‘‘retriggered’’ by
software. OUT strobes low Na1 CLK pulses after
the new count of N is written.

231244–12

Figure 19. Mode 4

MODE 5: HARDWARE TRIGGERED STROBE
(RETRIGGERABLE)

OUT will initially be high. Counting is triggered by a
rising edge of GATE. When the initial count has ex-
pired, OUT will go low for one CLK pulse and then
go high again.

12



82C54

After writing the Control Word and initial count, the
counter will not be loaded until the CLK pulse after a
trigger. This CLK pulse does not decrement the
count, so for an initial count of N, OUT does not
strobe low until Na1 CLK pulses after a trigger.

A trigger results in the Counter being loaded with the
initial count on the next CLK pulse. The counting
sequence is retriggerable. OUT will not strobe low
for N a 1 CLK pulses after any trigger. GATE has
no effect on OUT.

If a new count is written during counting, the current
counting sequence will not be affected. If a trigger
occurs after the new count is written but before the
current count expires, the Counter will be loaded
with the new count on the next CLK pulse and
counting will continue from there.

231244–13

Figure 20. Mode 5

Signal Low

Status Or Going Rising High

Modes Low

0 Disables Ð Enables

counting counting

1 Ð 1) Initiates Ð

counting

2) Resets output

after next

clock

2 1) Disables

counting Initiates Enables

2) Sets output counting counting

immediately

high

3 1) Disables

counting Initiates Enables

2) Sets output counting counting

immediately

high

4 Disables Ð Enables

counting counting

5 Ð Initiates Ð

counting

Figure 21. Gate Pin Operations Summary

MODE
MIN MAX

COUNT COUNT

0 1 0

1 1 0

2 2 0

3 2 0

4 1 0

NOTE:
0 is equivalent to 216 for binary counting and 104 for
BCD counting

Figure 22. Minimum and Maximum initial Counts

13



82C54

Operation Common to All Modes

Programming

When a Control Word is written to a Counter, all
Control Logic is immediately reset and OUT goes to
a known initial state; no CLK pulses are required for
this.

GATE

The GATE input is always sampled on the rising
edge of CLK. In Modes 0, 2, 3, and 4 the GATE input
is level sensitive, and the logic level is sampled on
the rising edge of CLK. In Modes 1, 2, 3, and 5 the
GATE input is rising-edge sensitive. In these Modes,
a rising edge of GATE (trigger) sets an edge-sensi-
tive flip-flop in the Counter. This flip-flop is then sam-
pled on the next rising edge of CLK; the flip-flop is
reset immediately after it is sampled. In this way, a
trigger will be detected no matter when it occursÐa

high logic level does not have to be maintained until
the next rising edge of CLK. Note that in Modes 2
and 3, the GATE input is both edge- and level-sensi-
tive. In Modes 2 and 3, if a CLK source other than
the system clock is used, GATE should be pulsed
immediately following WR of a new count value.

COUNTER

New counts are loaded and Counters are decre-
mented on the falling edge of CLK.

The largest possible initial count is 0; this is equiva-
lent to 216 for binary counting and 104 for BCD
counting.

The Counter does not stop when it reaches zero. In
Modes 0, 1, 4, and 5 the Counter ‘‘wraps around’’ to
the highest count, either FFFF hex for binary count-
ing or 9999 for BCD counting, and continues count-
ing. Modes 2 and 3 are periodic; the Counter reloads
itself with the initial count and continues counting
from there.

14



82C54

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias.ÀÀÀÀÀÀ0§C to 70§C
Storage Temperature ÀÀÀÀÀÀÀÀÀÀÀÀb65§ to a150§C
Supply Voltage ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀb0.5 to a8.0V
Operating Voltage ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀa4V to a7V
Voltage on any InputÀÀÀÀÀÀÀÀÀÀGND b2V to a6.5V
Voltage on any Output ÀÀGNDb0.5V to VCC a 0.5V
Power Dissipation ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ1 Watt

NOTICE: This is a production data sheet. The specifi-
cations are subject to change without notice.

*WARNING: Stressing the device beyond the ‘‘Absolute
Maximum Ratings’’ may cause permanent damage.
These are stress ratings only. Operation beyond the
‘‘Operating Conditions’’ is not recommended and ex-
tended exposure beyond the ‘‘Operating Conditions’’
may affect device reliability.

D.C. CHARACTERISTICS
(TAe0§C to 70§C, VCCe5Vg 10%, GNDe0V) (TA e b40§C to a85§C for Extended Temperature)

Symbol Parameter Min Max Units Test Conditions

VIL Input Low Voltage b0.5 0.8 V

VIH Input High Voltage 2.0 VCC a 0.5 V

VOL Output Low Voltage 0.4 V IOL e 2.5 mA

VOH Output High Voltage 3.0 V IOH e b2.5 mA
VCC b 0.4 V IOH e b100 mA

IIL Input Load Current g2.0 mA VINeVCC to 0V

IOFL Output Float Leakage Current g10 mA VOUTeVCC to 0.0V

ICC VCC Supply Current 20 mA
Clk Freqe

8MHz 82C54
10MHz 82C54-2

ICCSB VCC Supply Current-Standby 10 mA CLK Freq e DC
CS e VCC.
All Inputs/Data Bus VCC
All Outputs Floating

ICCSB1 VCC Supply Current-Standby 150 mA CLK Freq e DC
CS e VCC. All Other Inputs,
I/O Pins e VGND, Outputs Open

CIN Input Capacitance 10 pF fc e 1 MHz

CI/O I/O Capacitance 20 pF Unmeasured pins

COUT Output Capacitance 20 pF returned to GND(5)

A.C. CHARACTERISTICS
(TA e 0§C to 70§C, VCC e 5V g10%, GND e0V) (TA e b40§C to a85§C for Extended Temperature)

BUS PARAMETERS (Note 1)

READ CYCLE

Symbol Parameter
82C54-2

Units
Min Max

tAR Address Stable Before RDv 30 ns

tSR CS Stable Before RDv 0 ns

tRA Address Hold Time After RDu 0 ns

tRR RD Pulse Width 95 ns

tRD Data Delay from RDv 85 ns

tAD Data Delay from Address 185 ns

tDF RDu to Data Floating 5 65 ns

tRV Command Recovery Time 165 ns

NOTE:
1. AC timings measured at VOH e 2.0V, VOL e 0.8V.

15



82C54

A.C. CHARACTERISTICS (Continued)

WRITE CYCLE

Symbol Parameter
82C54-2

Units
Min Max

tAW Address Stable Before WRv 0 ns

tSW CS Stable Before WRv 0 ns

tWA Address Hold Time After WRu 0 ns

tWW WR Pulse Width 95 ns

tDW Data Setup Time Before WRu 95 ns

tWD Data Hold Time After WRu 0 ns

tRV Command Recovery Time 165 ns

CLOCK AND GATE

Symbol Parameter
82C54-2

Units
Min Max

tCLK Clock Period 100 DC ns

tPWH High Pulse Width 30(3) ns

tPWL Low Pulse Width 50(3) ns

TR Clock Rise Time 25 ns

tF Clock Fall Time 25 ns

tGW Gate Width High 50 ns

tGL Gate Width Low 50 ns

tGS Gate Setup Time to CLKu 40 ns

tGH Gate Hold Time After CLKu 50(2) ns

TOD Output Delay from CLKv 100 ns

tODG Output Delay from Gatev 100 ns

tWC CLK Delay for Loading(4) 0 55 ns

tWG Gate Delay for Sampling(4) b5 40 ns

tWO OUT Delay from Mode Write 240 ns

tCL CLK Set Up for Count Latch b40 40 ns

NOTES:
2. In Modes 1 and 5 triggers are sampled on each rising clock edge. A second trigger within 70 ns for the 82C54-2 of the
rising clock edge may not be detected.
3. Low-going glitches that violate tPWH, tPWL may cause errors requiring counter reprogramming.
4. Except for Extended Temp., See Extended Temp. A.C. Characteristics below.
5. Sampled not 100% tested. TA e 25§C.
6. If CLK present at TWC min then Count equals Na2 CLK pulses, TWC max equals Count Na1 CLK pulse. TWC min to
TWC max, count will be either Na1 or Na2 CLK pulses.
7. In Modes 1 and 5, if GATE is present when writing a new Count value, at TWG min Counter will not be triggered, at TWG
max Counter will be triggered.
8. If CLK present when writing a Counter Latch or ReadBack Command, at TCL min CLK will be reflected in count value
latched, at TCL max CLK will not be reflected in the count value latched. Writing a Counter Latch or ReadBack Command
between TCL min and TWL max will result in a latched count vallue which is g one least significant bit.

EXTENDED TEMPERATURE (TA e b40§C to a85§C for Extended Temperature)

Symbol Parameter
82C54-2

Units
Min Max

tWC CLK Delay for Loading b25 25 ns

tWG Gate Delay for Sampling b25 25 ns

16



82C54

WAVEFORMS

WRITE

231244–14

READ

231244–15

RECOVERY

231244–16

17



82C54

CLOCK AND GATE

231244–17
* Last byte of count being written

A.C. TESTING INPUT, OUTPUT WAVEFORM

INPUT/OUTPUT

231244–18
A.C. Testing: Inputs are driven at 2.4V for a logic ‘‘1’’ and 0.45V
for a logic ‘‘0.’’ Timing measurements are made at 2.0V for a logic
‘‘1’’ and 0.8V for a logic ‘‘0.’’

A.C. TESTING LOAD CIRCUIT

231244–19
CL e 150 pF
CL includes jig capacitance

REVISION SUMMARY

The following list represents the key differences be-
tween Rev. 005 and 006 of the 82C54 Data Sheet.

1. References to and specifications for the 8 MHz
82C54 are removed. Only the 10 MHz 82C52-2
remains in production.

18



4-1

Semiconductor

March 1997

82C54
CMOS Programmable Interval Timer

Features
• 8MHz to 12MHz Clock Input Frequency

• Compatible with NMOS 8254
- Enhanced Version of NMOS 8253

• Three Independent 16-Bit Counters

• Six Programmable Counter Modes

• Status Read Back Command

• Binary or BCD Counting

• Fully TTL Compatible

• Single 5V Power Supply

• Low Power
- ICCSB  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10µA
- ICCOP . . . . . . . . . . . . . . . . . . . . . . . . . . 10mA at 8MHz

• Operating Temperature Ranges
- C82C54  . . . . . . . . . . . . . . . . . . . . . . . . . .0oC to +70oC
- I82C54 . . . . . . . . . . . . . . . . . . . . . . . . . -40oC to +85oC
- M82C54 . . . . . . . . . . . . . . . . . . . . . . . -55oC to +125oC

Description
The Harris 82C54 is a high performance CMOS Programma-
ble Interval Timer manufactured using an advanced 2 micron
CMOS process.

The 82C54 has three independently programmable and
functional 16-bit counters, each capable of handling clock
input frequencies of up to 8MHz (82C54) or 10MHz
(82C54-10) or 12MHz (82C54-12).

The high speed and industry standard configuration of the
82C54 make it compatible with the Harris 80C86, 80C88,
and 80C286 CMOS microprocessors along with many other
industry standard processors. Six programmable timer
modes allow the 82C54 to be used as an event counter,
elapsed time indicator, programmable one-shot, and many
other applications. Static CMOS circuit design insures low
power operation.

The Harris advanced CMOS process results in a significant
reduction in power with performance equal to or greater than
existing equivalent products.

Pinouts
82C54 (PDIP, CERDIP, SOIC)

TOP VIEW
82C54 (PLCC/CLCC)

TOP VIEW

1

2

3

4

5

6

7

8

9

10

11

12

16

17

18

19

20

21

22

23

24

15

14

13

D7

D6

D5

D4

D3

D2

D1

D0

CLK 0

OUT 0

GATE 0

GND

VCC

RD

CS

A1

A0

OUT 2

CLK 1

GATE 1

OUT 1

WR

CLK 2

GATE 2

G
N

D

N
C

O
U

T
 1

G
AT

E
 1

C
LK

 1

O
U

T
 0

G
AT

E
 0

D
7

N
C

V
C

C

W
R

R
D

D
5

D
6

CS

A1

A0

CLK2

NC

GATE 2

OUT 2

1234

5

6

7

8

9

10

11

12 13 14 15 16 17 18

19

20

21

22

23

24

25

262728

D3

D2

D1

D0

D4

NC

CLK 0

CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper IC Handling Procedures.

Copyright © Harris Corporation 1997
File Number 2970.1



4-2

Functional Diagram

Ordering Information

PART NUMBERS TEMPERATURE
RANGE PACKAGE PKG. NO.8MHz 10MHz 12MHz

CP82C54 CP82C54-10 CP82C54-12 0oC to +70oC 24 Lead PDIP E24.6

IP82C54 IP82C54-10 IP82C54-12 -40oC to +85oC 24 Lead PDIP E24.6

CS82C54 CS82C54-10 CS82C54-12 0oC to +70oC 28 Lead PLCC N28.45

IS82C54 IS82C54-10 IS82C54-12 -40oC to +85oC 28 Lead PLCC N28.45

CD82C54 CD82C54-10 CD82C54-12 0oC to +70oC 24 Lead CERDIP F24.6

ID82C54 ID82C54-10 ID82C54-12 -40oC to +85oC 24 Lead CERDIP F24.6

MD82C54/B MD82C54-10/B MD82C54-12/B -55oC to +125oC 24 Lead CERDIP F24.6

MR82C54/B MR82C54-10/B MR82C54-12/B -55oC to +125oC 28 Lead CLCC J28.A

SMD # 8406501JA - 8406502JA -55oC to +125oC 24 Lead CERDIP F24.6

SMD# 84065013A - 84065023A -55oC to +125oC 28 Lead CLCC J28.A

CM82C54 CM82C54-10 CM82C54-12 0oC to +70oC 24 Lead SOIC M24.3

Pin Description

SYMBOL
DIP PIN

NUMBER TYPE DEFINITION

D7 - D0 1 - 8 I/O DATA: Bi-directional three-state data bus lines, connected to system data bus.

CLK 0 9 I CLOCK 0: Clock input of Counter 0.

OUT 0 10 O OUT 0: Output of Counter 0.

GATE 0 11 I GATE 0: Gate input of Counter 0.

GND 12 GROUND: Power supply connection.

OUT 1 13 O OUT 1: Output of Counter 1.

GATE 1 14 I GATE 1: Gate input of Counter 1.

CLK 1 15 I CLOCK 1: Clock input of Counter 1.

GATE 2 16 I GATE 2: Gate input of Counter 2.

OUT 2 17 O OUT 2: Output of Counter 2.

CONTROL
WORD

REGISTER

READ/
WRITE
LOGIC

DATA/
BUS

BUFFER

COUNTER
2

COUNTER
1

COUNTER
0

IN
T

E
R

N
A

L 
B

U
S

INTERNAL BUS

CONTROL
LOGIC

CONTROL
WORD

REGISTER

STATUS
LATCH

STATUS
REGISTER

CLK n

GATE n

OUT n

OUT 2

GATE 2

CLK 2

OUT 1

GATE 1

CLK 1

OUT 0

GATE 0

CLK 0

WR

RD

D7 - D0

A0

A1

CS

OLM OLL

CE

CRM CRL

COUNTER INTERNAL BLOCK DIAGRAM

8

82C54



4-3

Functional Description
General

The 82C54 is a programmable interval timer/counter
designed for use with microcomputer systems. It is a general
purpose, multi-timing element that can be treated as an
array of I/O ports in the system software.

The 82C54 solves one of the most common problems in any
microcomputer system, the generation of accurate time
delays under software control. Instead of setting up timing
loops in software, the programmer configures the 82C54 to
match his requirements and programs one of the counters
for the desired delay. After the desired delay, the 82C54 will
interrupt the CPU. Software overhead is minimal and vari-
able length delays can easily be accommodated.

Some of the other computer/timer functions common to micro-
computers which can be implemented with the 82C54 are:

• Real time clock

• Event counter

• Digital one-shot

• Programmable rate generator

• Square wave generator

• Binary rate multiplier

• Complex waveform generator

• Complex motor controller

Data Bus Buffer

This three-state, bi-directional, 8-bit buffer is used to inter-
face the 82C54 to the system bus (see Figure 1).

Read/Write Logic

The Read/Write Logic accepts inputs from the system bus and
generates control signals for the other functional blocks of the
82C54. A1 and A0 select one of the three counters or the Con-
trol Word Register to be read from/written into. A “low” on the
RD input tells the 82C54 that the CPU is reading one of the
counters. A “low” on the WR input tells the 82C54 that the CPU
is writing either a Control Word or an initial count. Both RD and
WR are qualified by CS; RD and WR are ignored unless the
82C54 has been selected by holding CS low.

CLK 2 18 I CLOCK 2: Clock input of Counter 2.

A0, A1 19 - 20 I ADDRESS: Select inputs for one of the three counters or Control Word Register for read/write
operations. Normally connected to the system address bus.

CS 21 I CHIP SELECT: A low on this input enables the 82C54 to respond to RD and WR signals. RD and
WR are ignored otherwise.

RD 22 I READ: This input is low during CPU read operations.

WR 23 I WRITE: This input is low during CPU write operations.

VCC 24 VCC: The +5V power supply pin. A 0.1µF capacitor between pins VCC and GND is recommended
for decoupling.

Pin Description  (Continued)

SYMBOL
DIP PIN

NUMBER TYPE DEFINITION

A1 A0 SELECTS

0 0 Counter 0

0 1 Counter 1

1 0 Counter 2

1 1 Control Word Register

CONTROL
WORD

REGISTER

COUNTER
2

COUNTER
1

COUNTER
0

IN
T

E
R

N
A

L 
B

U
S

OUT 2

GATE 2

CLK 2

OUT 1

GATE 1

CLK 1

OUT 0

GATE 0

CLK 0

WR

RD

D7 - D0

A0

A1

CS

FIGURE 1. DATA BUS BUFFER AND READ/WRITE LOGIC
FUNCTIONS

8
DATA/
BUS

BUFFER

READ/
WRITE
LOGIC

82C54



4-4

Control Word Register

The Control Word Register (Figure 2) is selected by the
Read/Write Logic when A1, A0 = 11. If the CPU then does a
write operation to the 82C54, the data is stored in the Con-
trol Word Register and is interpreted as a Control Word used
to define the Counter operation.

The Control Word Register can only be written to; status
information is available with the Read-Back Command.

Counter 0, Counter 1, Counter 2

These three functional blocks are identical in operation, so
only a single Counter will be described. The internal block
diagram of a signal counter is shown in Figure 3. The
counters are fully independent. Each Counter may operate
in a different Mode.

The Control Word Register is shown in the figure; it is not
part of the Counter itself, but its contents determine how the
Counter operates.

The status register, shown in the figure, when latched, con-
tains the current contents of the Control Word Register and
status of the output and null count flag. (See detailed expla-
nation of the Read-Back command.)

The actual counter is labeled CE (for Counting Element). It is
a 16-bit presettable synchronous down counter.

OLM and OLL are two 8-bit latches. OL stands for “Output
Latch”; the subscripts M and L for “Most significant byte” and
“Least significant byte”, respectively. Both are normally referred
to as one unit and called just OL. These latches normally “fol-
low” the CE, but if a suitable Counter Latch Command is sent to
the 82C54, the latches “latch” the present count until read by
the CPU and then return to “following” the CE. One latch at a
time is enabled by the counter’s Control Logic to drive the inter-
nal bus. This is how the 16-bit Counter communicates over the
8-bit internal bus. Note that the CE itself cannot be read; when-
ever you read the count, it is the OL that is being read.

Similarly, there are two 8-bit registers called CRM and CRL (for
“Count Register”). Both are normally referred to as one unit and
called just CR. When a new count is written to the Counter, the
count is stored in the CR and later transferred to the CE. The
Control Logic allows one register at a time to be loaded from
the internal bus. Both bytes are transferred to the CE simulta-
neously. CRM and CRL are cleared when the Counter is pro-
grammed for one byte counts (either most significant byte only
or least significant byte only) the other byte will be zero. Note
that the CE cannot be written into; whenever a count is written,
it is written into the CR.

The Control Logic is also shown in the diagram. CLK n,
GATE n, and OUT n are all connected to the outside world
through the Control Logic.

82C54 System Interface

The 82C54 is treated by the system software as an array of
peripheral I/O ports; three are counters and the fourth is a
control register for MODE programming.

Basically, the select inputs A0, A1 connect to the A0, A1
address bus signals of the CPU. The CS can be derived
directly from the address bus using a linear select method or
it can be connected to the output of a decoder.

READ/
WRITE
LOGIC

DATA/
BUS

BUFFER

IN
T

E
R

N
A

L 
B

U
S

OUT 2

GATE 2

CLK 2

OUT 1

GATE 1

CLK 1

OUT 0

GATE 0

CLK 0

WR

RD

D7 - D0

A0

A1

CS

FIGURE 2. CONTROL WORD REGISTER AND COUNTER
FUNCTIONS

8

CONTROL
WORD

REGISTER

COUNTER
2

COUNTER
1

COUNTER
0

INTERNAL BUS

CONTROL
LOGIC

CONTROL
WORD

REGISTER

STATUS
LATCH

STATUS
REGISTER

CLK n

GATE n

OUT n

OLM OLL

CE

CRM CRL

FIGURE 3. COUNTER INTERNAL BLOCK DIAGRAM

82C54



4-5

Operational Description
General

After power-up, the state of the 82C54 is undefined. The
Mode, count value, and output of all Counters are undefined.

How each Counter operates is determined when it is pro-
grammed. Each Counter must be programmed before it can
be used. Unused counters need not be programmed.

Programming the 82C54

Counters are programmed by writing a Control Word and
then an initial count.

All Control Words are written into the Control Word Register,
which is selected when A1, A0 = 11. The Control Word spec-
ifies which Counter is being programmed.

By contrast, initial counts are written into the Counters, not
the Control Word Register. The A1, A0 inputs are used to
select the Counter to be written into. The format of the initial
count is determined by the Control Word used.

FIGURE 4. 82C54 SYSTEM INTERFACE

Write Operations

The programming procedure for the 82C54 is very flexible.
Only two conventions need to be remembered:

1. For Each Counter, the Control Word must be written
before the initial count is written.

2. The initial count must follow the count format specified in the
Control Word (least significant byte only, most significant byte
only, or least significant byte and then most significant byte).

Since the Control Word Register and the three Counters have
separate addresses (selected by the A1, A0 inputs), and each
Control Word specifies the Counter it applies to (SC0, SC1 bits),
no special instruction sequence is required. Any programming
sequence that follows the conventions above is acceptable.

Control Word Format

A1, A0 = 11; CS = 0; RD = 1; WR = 0

D7 D6 D5 D4 D3 D2 D1 D0

SC1 SC0 RW1 RW0 M2 M1 M0 BCD

ADDRESS BUS (16)

CONTROL BUS

DATA BUS (8)

I/OR I/OW

WRRDCSA0A1

A1 A0

8

COUNTER
0

OUTGATE CLK

COUNTER
1

COUNTER
2

OUTGATE CLK OUT GATE CLK

D0 - D7
82C54

SC - Select Counter

SC1 SC0

0 0 Select Counter 0

0 1 Select Counter 1

1 0 Select Counter 2

1 1 Read-Back Command (See Read Operations)

RW - Read/Write

RW1 RW0

0 0 Counter Latch Command (See Read Operations)

0 1 Read/Write least significant byte only.

1 0 Read/Write most significant byte only.

1 1 Read/Write least significant byte first, then most
significant byte.

M - Mode

M2 M1 M0

0 0 0 Mode 0

0 0 1 Mode 1

X 1 0 Mode 2

X 1 1 Mode 3

1 0 0 Mode 4

1 0 1 Mode 5

BCD - Binary Coded Decimal

0 Binary Counter 16-bit

1 Binary Coded Decimal (BCD) Counter (4 Decades)

NOTE: Don’t Care bits (X) should be 0 to insure compatibility with
future products.

Possible Programming Sequence

A1 A0

Control Word - Counter 0 1 1

LSB of Count - Counter 0 0 0

MSB of Count - Counter 0 0 0

Control Word - Counter 1 1 1

LSB of Count - Counter 1 0 1

MSB of Count - Counter 1 0 1

Control Word - Counter 2 1 1

LSB of Count - Counter 2 1 0

MSB of Count - Counter 2 1 0

Possible Programming Sequence

A1 A0

Control Word - Counter 0 1 1

Control Word - Counter 1 1 1

Control Word - Counter 2 1 1

LSB of Count - Counter 2 1 0

82C54



4-6

A new initial count may be written to a Counter at any time
without affecting the Counter’s programmed Mode in any way.
Counting will be affected as described in the Mode definitions.
The new count must follow the programmed count format.

If a Counter is programmed to read/write two-byte counts,
the following precaution applies. A program must not transfer
control between writing the first and second byte to another
routine which also writes into that same Counter. Otherwise,
the Counter will be loaded with an incorrect count.

Read Operations

It is often desirable to read the value of a Counter without
disturbing the count in progress. This is easily done in the
82C54.

There are three possible methods for reading the Counters.
The first is through the Read-Back command, which is

explained later. The second is a simple read operation of the
Counter, which is selected with the A1, A0 inputs. The only
requirement is that the CLK input of the selected Counter
must be inhibited by using either the GATE input or external
logic. Otherwise, the count may be in process of changing
when it is read, giving an undefined result.

Counter Latch Command

The other method for reading the Counters involves a spe-
cial software command called the “Counter Latch Com-
mand”. Like a Control Word, this command is written to the
Control Word Register, which is selected when A1, A0 = 11.
Also, like a Control Word, the SC0, SC1 bits select one of
the three Counters, but two other bits, D5 and D4, distin-
guish this command from a Control Word.
.

The selected Counter’s output latch (OL) latches the count
when the Counter Latch Command is received. This count is
held in the latch until it is read by the CPU (or until the Counter
is reprogrammed). The count is then unlatched automatically
and the OL returns to “following” the counting element (CE).
This allows reading the contents of the Counters “on the fly”
without affecting counting in progress. Multiple Counter Latch
Commands may be used to latch more than one Counter.
Each latched Counter’s OL holds its count until read. Counter
Latch Commands do not affect the programmed Mode of the
Counter in any way.

If a Counter is latched and then, some time later, latched
again before the count is read, the second Counter Latch
Command is ignored. The count read will be the count at the
time the first Counter Latch Command was issued.

With either method, the count must be read according to the
programmed format; specifically, if the Counter is pro-
grammed for two byte counts, two bytes must be read. The
two bytes do not have to be read one right after the other;
read or write or programming operations of other Counters
may be inserted between them.

Another feature of the 82C54 is that reads and writes of the
same Counter may be interleaved; for example, if the
Counter is programmed for two byte counts, the following
sequence is valid.

LSB of Count - Counter 1 0 1

LSB of Count - Counter 0 0 0

MSB of Count - Counter 0 0 0

MSB of Count - Counter 1 0 1

MSB of Count - Counter 2 1 0

Possible Programming Sequence

A1 A0

Control Word - Counter 2 1 1

Control Word - Counter 1 1 1

Control Word - Counter 0 1 1

LSB of Count - Counter 2 1 0

MSB of Count - Counter 2 1 0

LSB of Count - Counter 1 0 1

MSB of Count - Counter 1 0 1

LSB of Count - Counter 0 0 0

MSB of Count - Counter 0 0 0

Possible Programming Sequence

A1 A0

Control Word - Counter 1 1 1

Control Word - Counter 0 1 1

LSB of Count - Counter 1 0 1

Control Word - Counter 2 1 1

LSB of Count - Counter 0 0 0

MSB of Count - Counter 1 0 1

LSB of Count - Counter 2 1 0

MSB of Count - Counter 0 0 0

MSB of Count - Counter 2 1 0

NOTE: In all four examples, all counters are programmed to
Read/Write two-byte counts. These are only four of many
programming sequences.

Possible Programming Sequence  (Continued)

A1 A0

A1, A0 = 11; CS = 0; RD = 1; WR = 0

D7 D6 D5 D4 D3 D2 D1 D0

SC1 SC0 0 0 X X X X

SC1, SC0 - specify counter to be latched

SC1 SC0 COUNTER

0 0 0

0 1 1

1 0 2

1 1 Read-Back Command

D5, D4 - 00 designates Counter Latch Command, X - Don’t Care.
NOTE: Don’t Care bits (X) should be 0 to insure compatibility with

future products.

82C54



4-7

1. Read least significant byte.

2. Write new least significant byte.

3. Read most significant byte.

4. Write new most significant byte.

If a counter is programmed to read or write two-byte counts,
the following precaution applies: A program MUST NOT
transfer control between reading the first and second byte to
another routine which also reads from that same Counter.
Otherwise, an incorrect count will be read.

Read-Back Command

The read-back command allows the user to check the count
value, programmed Mode, and current state of the OUT pin
and Null Count flag of the selected counter(s).

The command is written into the Control Word Register and
has the format shown in Figure 5. The command applies to
the counters selected by setting their corresponding bits D3,
D2, D1 = 1.

The read-back command may be used to latch multiple
counter output latches (OL) by setting the COUNT bit D5 = 0
and selecting the desired counter(s). This signal command
is functionally equivalent to several counter latch commands,
one for each counter latched. Each counter’s latched count
is held until it is read (or the counter is reprogrammed). That
counter is automatically unlatched when read, but other
counters remain latched until they are read. If multiple count
read-back commands are issued to the same counter with-
out reading the count, all but the first are ignored; i.e., the
count which will be read is the count at the time the first
read-back command was issued.

The read-back command may also be used to latch status
information of selected counter(s) by setting STATUS bit D4
= 0. Status must be latched to be read; status of a counter is
accessed by a read from that counter.

The counter status format is shown in Figure 6. Bits D5
through D0 contain the counter’s programmed Mode exactly
as written in the last Mode Control Word. OUTPUT bit D7
contains the current state of the OUT pin. This allows the
user to monitor the counter’s output via software, possibly
eliminating some hardware from a system.

NULL COUNT bit D6 indicates when the last count written to
the counter register (CR) has been loaded into the counting
element (CE). The exact time this happens depends on the
Mode of the counter and is described in the Mode Definitions,
but until the counter is loaded into the counting element (CE),
it can’t be read from the counter. If the count is latched or read
before this time, the count value will not reflect the new count
just written. The operation of Null Count is shown below.
THIS ACTION: CAUSES:
A. Write to the control word register:(1) . . . . . . . . . . Null Count = 1

B. Write to the count register (CR):(2) . . . . . . . . . . . Null Count = 1

C. New count is loaded into CE (CR - CE) . . . . . . . . Null Count = 0

(1) Only the counter specified by the control word will have its null
count set to 1. Null count bits of other counters are unaffected.

(2) If the counter is programmed for two-byte counts (least signifi-
cant byte then most significant byte) null count goes to 1 when
the second byte is written.

If multiple status latch operations of the counter(s) are per-
formed without reading the status, all but the first are ignored;
i.e., the status that will be read is the status of the counter at
the time the first status read-back command was issued.

FIGURE 7. READ-BACK COMMAND EXAMPLE

A0, A1 = 11; CS = 0; RD = 1; WR = 0

D7 D6 D5 D4 D3 D2 D1 D0

1 1 COUNT STATUS CNT 2 CNT 1 CNT 0 0

D5: 0 = Latch count of selected Counter (s)
D4: 0 = Latch status of selected Counter(s)
D3: 1 = Select Counter 2
D2: 1 = Select Counter 1
D1: 1 = Select Counter 0
D0: Reserved for future expansion; Must be 0

FIGURE 5. READ-BACK COMMAND FORMAT

D7 D6 D5 D4 D3 D2 D1 D0

OUTPUT NULL
COUNT

RW1 RW0 M2 M1 M0 BCD

D7: 1 = Out pin is 1
0 = Out pin is 0

D6: 1 = Null count
0 = Count available for reading

D5 - D0 = Counter programmed mode (See Control Word Formats)

FIGURE 6. STATUS BYTE

COMMANDS

DESCRIPTION RESULTD7 D6 D5 D4 D3 D2 D1 D0

1 1 0 0 0 0 1 0 Read-Back Count and Status of Counter 0 Count and Status Latched for Counter 0

1 1 1 0 0 1 0 0 Read-Back Status of Counter 1 Status Latched for Counter 1

1 1 1 0 1 1 0 0 Read-Back Status of Counters 2, 1 Status Latched for Counter 2,
But Not Counter 1

1 1 0 1 1 0 0 0 Read-Back Count of Counter 2 Count Latched for Counter 2

1 1 0 0 0 1 0 0 Read-Back Count and Status of Counter 1 Count Latched for Counter 1,
But Not Status

1 1 1 0 0 0 1 0 Read-Back Status of Counter 1 Command Ignored, Status Already
Latched for Counter 1

82C54



4-8

Both count and status of the selected counter(s) may be
latched simultaneously by setting both COUNT and STATUS
bits D5, D4 = 0. This is functionally the same as issuing two
separate read-back commands at once, and the above dis-
cussions apply here also. Specifically, if multiple count
and/or status read-back commands are issued to the same
counter(s) without any intervening reads, all but the first are
ignored. This is illustrated in Figure 7.

If both count and status of a counter are latched, the first
read operation of that counter will return latched status,
regardless of which was latched first. The next one or two
reads (depending on whether the counter is programmed for
one or two type counts) return latched count. Subsequent
reads return unlatched count.

Mode Definitions

The following are defined for use in describing the operation
of the 82C54.

CLK PULSE:

A rising edge, then a falling edge, in that order, of a
Counter’s CLK input.

TRIGGER:

A rising edge of a Counter’s Gate input.

COUNTER LOADING:

The transfer of a count from the CR to the CE (See “Func-
tional Description”)

Mode 0: Interrupt on Terminal Count

Mode 0 is typically used for event counting. After the Control
Word is written, OUT is initially low, and will remain low until
the Counter reaches zero. OUT then goes high and remains
high until a new count or a new Mode 0 Control Word is writ-
ten to the Counter.

GATE = 1 enables counting; GATE = 0 disables counting.
GATE has no effect on OUT.

After the Control Word and initial count are written to a
Counter, the initial count will be loaded on the next CLK
pulse. This CLK pulse does not decrement the count, so for
an initial count of N, OUT does not go high until N + 1 CLK
pulses after the initial count is written.

If a new count is written to the Counter it will be loaded on
the next CLK pulse and counting will continue from the new
count. If a two-byte count is written, the following happens:

(1)Writing the first byte disables counting. Out is set low
immediately (no clock pulse required).

(2)Writing the second byte allows the new count to be
loaded on the next CLK pulse.

This allows the counting sequence to be synchronized by
software. Again OUT does not go high until N + 1 CLK
pulses after the new count of N is written.

If an initial count is written while GATE = 0, it will still be
loaded on the next CLK pulse. When GATE goes high, OUT
will go high N CLK pulses later; no CLK pulse is needed to
load the counter as this has already been done.

FIGURE 9. MODE 0
NOTES: The following conventions apply to all mode timing diagrams.

1. Counters are programmed for binary (not BCD) counting and for
reading/writing least significant byte (LSB) only.

2. The counter is always selected (CS always low).

3. CW stands for “Control Word”; CW = 10 means a control word of
10, Hex is written to the counter.

4. LSB stands for Least significant “byte” of count.

5. Numbers below diagrams are count values. The lower number is
the least significant byte. The upper number is the most signifi-
cant byte. Since the counter is programmed to read/write LSB
only, the most significant byte cannot be read.

6. N stands for an undefined count.

7. Vertical lines show transitions between count values.

CS RD WR A1 A0

0 1 0 0 0 Write into Counter 0

0 1 0 0 1 Write into Counter 1

0 1 0 1 0 Write into Counter 2

0 1 0 1 1 Write Control Word

0 0 1 0 0 Read from Counter 0

0 0 1 0 1 Read from Counter 1

0 0 1 1 0 Read from Counter 2

0 0 1 1 1 No-Operation (Three-State)

1 X X X X No-Operation (Three-State)

0 1 1 X X No-Operation (Three-State)

FIGURE 8. READ/WRITE OPERATIONS SUMMARY

CW = 10 LSB = 4

WR

CLK

GATE

OUT

WR

CLK

GATE

OUT

WR

CLK

GATE

OUT

CW = 10 LSB = 3

CW = 10 LSB = 3 LSB = 2

N N N N 0
4

0
3

0
2

0
1

0
0

FF
FF

FF
FE

N N N N 0
3

0
2

0
2

0
2

0
1

0
0

FF
FF

N N N N 0
3

0
2

0
1

0
2

0
1

0
0

FF
FF

82C54



4-9

Mode 1: Hardware Retriggerable One-Shot

OUT will be initially high. OUT will go low on the CLK pulse
following a trigger to begin the one-shot pulse, and will remain
low until the Counter reaches zero. OUT will then go high and
remain high until the CLK pulse after the next trigger.

After writing the Control Word and initial count, the Counter is
armed. A trigger results in loading the Counter and setting
OUT low on the next CLK pulse, thus starting the one-shot
pulse N CLK cycles in duration. The one-shot is retriggerable,
hence OUT will remain low for N CLK pulses after any trigger.
The one-shot pulse can be repeated without rewriting the
same count into the counter. GATE has no effect on OUT.

If a new count is written to the Counter during a one-shot
pulse, the current one-shot is not affected unless the
Counter is retriggerable. In that case, the Counter is loaded
with the new count and the one-shot pulse continues until
the new count expires.

FIGURE 10. MODE 1

Mode 2: Rate Generator

This Mode functions like a divide-by-N counter. It is typically
used to generate a Real Time Clock Interrupt. OUT will ini-
tially be high. When the initial count has decremented to 1,
OUT goes low for one CLK pulse. OUT then goes high
again, the Counter reloads the initial count and the process
is repeated. Mode 2 is periodic; the same sequence is
repeated indefinitely. For an initial count of N, the sequence
repeats every N CLK cycles.

GATE = 1 enables counting; GATE = 0 disables counting. If
GATE goes low during an output pulse, OUT is set high
immediately. A trigger reloads the Counter with the initial
count on the next CLK pulse; OUT goes low N CLK pulses
after the trigger. Thus the GATE input can be used to syn-
chronize the Counter.

After writing a Control Word and initial count, the Counter will
be loaded on the next CLK pulse. OUT goes low N CLK
pulses after the initial count is written. This allows the
Counter to be synchronized by software also.

Writing a new count while counting does not affect the current
counting sequence. If a trigger is received after writing a new
count but before the end of the current period, the Counter will
be loaded with the new count on the next CLK pulse and count-
ing will continue from the end of the current counting cycle.

FIGURE 11. MODE 2

WR

CLK

GATE

OUT

WR

CLK

GATE

OUT

WR

CLK

GATE

OUT

N N N N
0
3

0
2

0
1

0
0

FF
FF

0
3

0
2N

CW = 12 LSB = 3

CW = 12 LSB = 3

CW = 12 LSB = 2 LSB = 4

N N N N
0
2

0
1

0
0

FF
FF

FF
FE

0
4

0
3N

N N N N
0
3

0
2

0
1

0
3

0
2

0
1

0
0N

N N N N
0
2

0
1

0
3

0
2

0
1

0
3

0
3

N N N N
0
2

0
2

0
3

0
2

0
1

0
3

0
3

N N N N
0
3

0
2

0
1

0
5

0
4

0
3

0
4

WR

CLK

GATE

OUT

CW = 14 LSB = 3

WR

CLK

GATE

OUT

CW = 14 LSB = 3

WR

CLK

GATE

OUT

CW = 14 LSB = 4 LSB = 5

82C54



4-10

Mode 3: Square Wave Mode

Mode 3 is typically used for Baud rate generation. Mode 3 is
similar to Mode 2 except for the duty cycle of OUT. OUT will
initially be high. When half the initial count has expired, OUT
goes low for the remainder of the count. Mode 3 is periodic;
the sequence above is repeated indefinitely. An initial count
of N results in a square wave with a period of N CLK cycles.

GATE = 1 enables counting; GATE = 0 disables counting. If
GATE goes low while OUT is low, OUT is set high immedi-
ately; no CLK pulse is required. A trigger reloads the
Counter with the initial count on the next CLK pulse. Thus
the GATE input can be used to synchronize the Counter.

After writing a Control Word and initial count, the Counter will
be loaded on the next CLK pulse. This allows the Counter to
be synchronized by software also.

Writing a new count while counting does not affect the cur-
rent counting sequence. If a trigger is received after writing a
new count but before the end of the current half-cycle of the
square wave, the Counter will be loaded with the new count
on the next CLK pulse and counting will continue from the
new count. Otherwise, the new count will be loaded at the
end of the current half-cycle.

FIGURE 12. MODE 3

Mode 3 is Implemented as Follows:

EVEN COUNTS: OUT is initially high. The initial count is
loaded on one CLK pulse and then is decremented by two
on succeeding CLK pulses. When the count expires, OUT
changes value and the Counter is reloaded with the initial
count. The above process is repeated indefinitely.

ODD COUNTS: OUT is initially high. The initial count is loaded
on one CLK pulse, decremented by one on the next CLK pulse,
and then decremented by two on succeeding CLK pulses.
When the count expires, OUT goes low and the Counter is
reloaded with the initial count. The count is decremented by
three on the next CLK pulse, and then by two on succeeding
CLK pulses. When the count expires, OUT goes high again and
the Counter is reloaded with the initial count. The above pro-
cess is repeated indefinitely. So for odd counts, OUT will be
high for (N + 1)/2 counts and low for (N - 1)/2 counts.

Mode 4: Software Triggered Mode

OUT will be initially high. When the initial count expires, OUT
will go low for one CLK pulse then go high again. The count-
ing sequence is “Triggered” by writing the initial count.

GATE = 1 enables counting; GATE = 0 disables counting.
GATE has no effect on OUT.

After writing a Control Word and initial count, the Counter will be
loaded on the next CLK pulse. This CLK pulse does not decre-
ment the count, so for an initial count of N, OUT does not strobe
low until N + 1 CLK pulses after the initial count is written.

If a new count is written during counting, it will be loaded on
the next CLK pulse and counting will continue from the new
count. If a two-byte count is written, the following happens:

(1)Writing the first byte has no effect on counting.

(2)Writing the second byte allows the new count to be
loaded on the next CLK pulse.

This allows the sequence to be “retriggered” by software. OUT
strobes low N + 1 CLK pulses after the new count of N is written.

N N N N
0
2

0
4

0
2

0
4

0
2

0
4

0
2

0
4

0
4

0
2

N N N N
0
4

0
2

0
5

0
2

0
5

0
4

0
2

0
5

0
5

0
2

N N N N
0
2

0
4

0
2

0
2

0
2

0
4

0
2

0
4

0
4

0
2

WR

CLK

GATE

OUT

CW = 16 LSB = 4

WR

CLK

GATE

OUT

WR

CLK

GATE

OUT

CW = 16 LSB = 5

CW = 16 LSB = 4

82C54



4-11

FIGURE 13. MODE 4

Mode 5: Hardware Triggered Strobe (Retriggerable)

OUT will initially be high. Counting is triggered by a rising
edge of GATE. When the initial count has expired, OUT will
go low for one CLK pulse and then go high again.

After writing the Control Word and initial count, the counter
will not be loaded until the CLK pulse after a trigger. This
CLK pulse does not decrement the count, so for an initial
count of N, OUT does not strobe low until N + 1 CLK pulses
after trigger.

A trigger results in the Counter being loaded with the initial
count on the next CLK pulse. The counting sequence is trig-
gerable. OUT will not strobe low for N + 1 CLK pulses after
any trigger GATE has no effect on OUT.

If a new count is written during counting, the current count-
ing sequence will not be affected. If a trigger occurs after the
new count is written but before the current count expires, the
Counter will be loaded with new count on the next CLK pulse
and counting will continue from there.

FIGURE 14. MODE 5

Operation Common to All Modes
Programming

When a Control Word is written to a Counter, all Control
Logic, is immediately reset and OUT goes to a known initial
state; no CLK pulses are required for this.

Gate

The GATE input is always sampled on the rising edge of
CLK. In Modes 0, 2, 3 and 4 the GATE input is level sensi-
tive, and logic level is sampled on the rising edge of CLK. In
modes 1, 2, 3 and 5 the GATE input is rising-edge sensitive.
In these Modes, a rising edge of Gate (trigger) sets an edge-
sensitive flip-flop in the Counter. This flip-flop is then sam-
pled on the next rising edge of CLK. The flip-flop is reset
immediately after it is sampled. In this way, a trigger will be
detected no matter when it occurs - a high logic level does
not have to be maintained until the next rising edge of CLK.
Note that in Modes 2 and 3, the GATE input is both edge-
and level-sensitive.

N N N N 0
2

0
1

0
0

FF
FF

FF
FE

FF
FD

0
3

WR

CLK

GATE

OUT

CW = 18 LSB = 3

WR

CLK

GATE

OUT

WR

CLK

GATE

OUT

CW = 18 LSB = 3

CW = 18 LSB = 3

N N N 0
3

0
2

0
1

0
2

0
1

0
0

FF
FF

N N N N 0
3

0
3

0
2

0
1

0
0

FF
FF

0
3

LSB = 2

N

N N N N
0
3

0
2

0
1

0
0

FF
FF

0
3

WR

CLK

GATE

OUT

CW = 1A LSB = 3

N N N N
0
3

0
2

0
3

0
2

0
1

N N N N
0
3

0
2

0
1

0
0

FF
FF

FF
FE

WR

CLK

GATE

OUT

CW = 1A LSB = 3

WR

CLK

GATE

OUT

CW = 1A LSB = 3

N

N N
0
0

FF
FF

LSB = 5

N
0
5

0
4

82C54



4-12

Counter

New counts are loaded and Counters are decremented on
the falling edge of CLK.

The largest possible initial count is 0; this is equivalent to 216

for binary counting and 104 for BCD counting.

The counter does not stop when it reaches zero. In Modes 0,
1, 4, and 5 the Counter “wraps around” to the highest count,
either FFFF hex for binary counting or 9999 for BCD count-
ing, and continues counting. Modes 2 and 3 are periodic; the
Counter reloads itself with the initial count and continues
counting from there.

FIGURE 15. GATE PIN OPERATIONS SUMMARY

FIGURE 16. MINIMUM AND MAXIMUM INITIAL COUNTS

SIGNAL
STATUS
MODES

LOW OR
GOING LOW RISING HIGH

0 Disables Counting - Enables Counting

1 - 1) Initiates
Counting

2) Resets output
after next clock

-

2 1) Disables
counting

2) Sets output im-
mediately high

Initiates Counting Enables Counting

3 1) Disables
counting

2) Sets output im-
mediately high

Initiates Counting Enables Counting

4 1) Disables
Counting

- Enables Counting

5 - Initiates Counting -

MODE MIN COUNT MAX COUNT

0 1 0

1 1 0

2 2 0

3 2 0

4 1 0

5 1 0

NOTE: 0 is equivalent to 216 for binary counting and 104 for BCD
counting.

82C54



4-13

)

Absolute Maximum Ratings Thermal Information
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .+8.0V
Input, Output or I/O Voltage . . . . . . . . . . . . GND-0.5V to VCC +0.5V
ESD Classification  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Class 1

Operating Conditions
Operating Voltage Range . . . . . . . . . . . . . . . . . . . . . +4.5V to +5.5V
Operating Temperature Range

C82C54, C82C54-10, -12 . . . . . . . . . . . . . . . . . . . . 0oC to +70oC
I82C54, I82C54-10, -12  . . . . . . . . . . . . . . . . . . . . -40oC to +85oC
M82C54, M82C54-10, -12  . . . . . . . . . . . . . . . . . -55oC to +125oC

Thermal Resistance (Typical) θJA (oC/W) θJC (oC/W)

CERDIP Package  . . . . . . . . . . . . . . . . 55 12
CLCC Package  . . . . . . . . . . . . . . . . . . 65 14
PDIP Package . . . . . . . . . . . . . . . . . . . 60 N/A
PLCC Package  . . . . . . . . . . . . . . . . . . 65 N/A
SOIC Package . . . . . . . . . . . . . . . . . . . 75 N/A

Storage Temperature Range. . . . . . . . . . . . . . . . . .-65oC to +150oC
Maximum Junction Temperature Ceramic Package  . . . . . . . +175oC
Maximum Junction Temperature Plastic Package. . . . . . . . . +150oC
Maximum Lead Temperature Package (Soldering 10s)  . . . . +300oC

(PLCC and SOIC - Lean Tips Only)

Die Characteristics
Gate Count . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2250 Gates

CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation
of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

DC Electrical Specifications VCC = +5.0V ± 10%, TA = 0oC to +70oC (C82C54, C82C54-10, C82C54-12)

TA = -40oC to +85oC (I82C54, I82C54-10, I82C54-12)

TA = -55oC to +125oC (M82C54, M82C54-10, M82C54-12

SYMBOL PARAMETER MIN MAX UNITS TEST CONDITIONS

VIH Logical One Input Voltage 2.0 - V C82C54, I82C54

2.2 - V M82C54

VIL Logical Zero Input Voltage - 0.8 V

VOH Output HIGH Voltage 3.0 - V IOH = -2.5mA

VCC -0.4 - V IOH = -100µA

VOL Output LOW Voltage - 0.4 V IOL = +2.5mA

II Input Leakage Current -1 +1 µA VIN = GND or VCC
DIP Pins 9,11,14-16,18-23

IO Output Leakage Current -10 +10 µA VOUT = GND or VCC
DIP Pins 1-8

ICCSB Standby Power Supply Current - 10 µA VCC = 5.5V, VIN = GND or VCC,
Outputs Open, Counters
Programmed

ICCOP Operating Power Supply Current - 10 mA VCC = 5.5V,
CLK0 = CLK1 = CLK2 = 8MHz,
VIN = GND or VCC,
Outputs Open

Capacitance TA = +25oC; All Measurements Referenced to Device GND, Note 1

SYMBOL PARAMETER TYP UNITS TEST CONDITIONS

CIN Input Capacitance 20 pF FREQ = 1MHz

COUT Output Capacitance 20 pF FREQ = 1MHz

CI/O I/O Capacitance 20 pF FREQ = 1MHz

NOTE:

1. Not tested, but characterized at initial design and at major process/design changes.

82C54



4-14

AC Electrical Specifications VCC = +5.0V ± 10%, TA = 0oC to +70oC (C82C54, C82C54-10, C82C54-12)

TA = -40oC to +85oC (I82C54, I82C54-10, I82C54-12)

TA = -55oC to +125oC (M82C54, M82C54-10, M82C54-12)

SYMBOL PARAMETER

82C54 82C54-10 82C54-12

UNITS
TEST

CONDITIONSMIN MAX MIN MAX MIN MAX

READ CYCLE

(1) TAR Address Stable Before RD 30 - 25 - 25 - ns 1

(2) TSR CS Stable Before RD 0 - 0 - 0 - ns 1

(3) TRA Address Hold Time After RD 0 - 0 - 0 - ns 1

(4) TRR RD Pulse Width 150 - 95 - 95 - ns 1

(5) TRD Data Delay from RD - 120 - 85 - 85 ns 1

(6) TAD Data Delay from Address - 210 - 185 - 185 ns 1

(7) TDF RD to Data Floating 5 85 5 65 5 65 ns 2, Note 1

(8) TRV Command Recovery Time 200 - 165 - 165 - ns

WRITE CYCLE

(9) TAW Address Stable Before WR 0 - 0 - 0 - ns

(10) TSW CS Stable Before WR 0 - 0 - 0 - ns

(11) TWA Address Hold Time After WR 0 - 0 - 0 - ns

(12) TWW WR Pulse Width 95 - 95 - 95 - ns

(13) TDW Data Setup Time Before WR 140 - 95 - 95 - ns

(14) TWD Data Hold Time After WR 25 - 0 - 0 - ns

(15) TRV Command Recovery Time 200 - 165 - 165 - ns

CLOCK AND GATE

(16) TCLK Clock Period 125 DC 100 DC 80 DC ns 1

(17) TPWH High Pulse Width 60 - 30 - 30 - ns 1

(18) TPWL Low Pulse Width 60 - 40 - 30 - ns 1

(19) TR Clock Rise Time - 25 - 25 - 25 ns

(20) TF Clock Fall Time - 25 - 25 - 25 ns

(21) TGW Gate Width High 50 - 50 - 50 - ns 1

(22) TGL Gate Width Low 50 - 50 - 50 - ns 1

(23) TGS Gate Setup Time to CLK 50 - 40 - 40 - ns 1

(24) TGH Gate Hold Time After CLK 50 - 50 - 50 - ns 1

(25) TOD Output Delay from CLK - 150 - 100 - 100 ns 1

(26) TODG Output Delay from Gate - 120 - 100 - 100 ns 1

(27) TWO OUT Delay from Mode Write - 260 - 240 - 240 ns 1

(28) TWC CLK Delay for Loading 0 55 0 55 0 55 ns 1

(29) TWG Gate Delay for Sampling -5 40 -5 40 -5 40 ns 1

(30) TCL CLK Setup for Count Latch -40 40 -40 40 -40 40 ns 1

NOTE:

1. Not tested, but characterized at initial design and at major process/design changes.

82C54



4-15

Timing Waveforms

FIGURE 17. WRITE

FIGURE 18. READ

FIGURE 19. RECOVERY

FIGURE 20. CLOCK AND GATE

A0 - A1

CS

DATA BUS

WR

(12)
tWW

(13)
tDW

(10)
tSW

(9)
tAW

VALID

tWD (14)

tWA (11)

VALID

A0 - A1

CS

RD

DATA BUS

(2)
tSR

(6)
tAD

(5)
tRD

(4)
tRR

(7)
tDF

tRA (3)tAR (1)

(8) (15)
tRV

RD, WR

WR

CLK

GATE

OUT

MODE
COUNT

(SEE NOTE)

(17)
tPWH (18)

tPWL

(16)
tCLK tGS

(21)
tGW

(27)
tWO

tGS
(23)

tGH

(24)

tGL

tODG (26)

tF (20)

tOD (25)

tGH (24)

NOTE: LAST BYTE OF COUNT BEING WRITTEN

(19)
tR

(22)

(23)

tCL (30)

tWC (28)

82C54



4-16

Burn-In Circuits
MD 82C54 CERDIP

MR 82C54 CLCC

NOTES:

1. VCC = 5.5V ± 0.5V

2. GND = 0V

3. VIH = 4.5V ±10%

4. VIL = -0.2V to 0.4V

5. R1 = 47kΩ ±5%

6. R2 = 1.0kΩ ±5%

7. R3 = 2.7kΩ ±5%

8. R4 = 1.8kΩ ±5%

9. R5 = 1.2kΩ ±5%

10. C1 = 0.01µF Min

11. F0 = 100kHz ±10%

12. F1 = F0/2, F2 = F1/2, ...F12 = F11/2

R1

R1

R1

R1

R1

R1

R1

R1

R2

R1

R1

R1

R1

R1

R2

R1

R1

R2

R1

VCC

GND

Q5

Q4

A

F1

Q7

A

Q3

F2

Q8

Q2

VCC

GND

F9

F11

F0

A

Q6

GND

Q1

F10

F12

VCC

A

1

2

3

4

5

6

7

8

9

10

11

12

16

17

18

19

20

21

22

23

24

15

14

13

VCC
C1

R4

R3

23

24

25

22

21

20

1911

3 2 14

14 15 16 17 1812 13

28 27 26

10

5

6

7

8

9

VCC/2 Q6 GND
OPEN

VCC/2 F1Q7

R1

R1

R1

R1

R2

R5

GND

Q5

Q4

Q8

OPEN

F2

VCC/2

R1

R1

R1

R1

R1

R2

F9

F10

F11

OPEN

GND

F12

F0

R5 R1 R5 R1 R2

R1R1R1R1R1

VCC Q2 Q1 OPEN

C1

Q3 VCC

VCC

82C54



4-17

Die Characteristics
DIE DIMENSIONS:

129mils x 155mils x 19mils
(3270µm x 3940µm x 483µm)

METALLIZATION:
Type: Si-Al-Cu

Thickness: Metal 1: 8kÅ ± 0.75kÅ
Metal 2: 12kÅ ± 1.0kÅ

GLASSIVATION:
Type: Nitrox
Thickness: 10kÅ ± 3.0kÅ

Metallization Mask Layout
82C54

CS

A1

A0

CLK2

OUT2

GATE2

D4

D3

D2

D1

D0

CLK0

D5 D6 D7 VCC WR RD

OUT0 GATE0 GND OUT1 GATE1 CLK1

82C54



•The Real World is Analog
• ADC are necessary to convert the real world signals 

(analog) into the digital form for easy processing

ADC

Digital Processing

(Computer, DSP...)
DAC

Real World:
Antenna, microphone,

sensor...

Real World:
Speaker, screen,
motor control...

Data Converters

Analog and Mixed Signal Center, TAMU



• The goal of an ADC is to determine the output digital word corresponding to an    

analog input signal.

• The basic internal structures of ADC rely heavily on DACs structures.

• ADCs can be seen as low speed (serial type), medium speed, high-speed and high-
performance.

C

o

d

e

r

Digital Output

+

+

+
_

_

_

Comparator  n

Comparator 2

Comparator 1

S/H

Vr1

Vr2

Vrn
A simple ADC parallel topology

VLSI Analog Microelectronics (ESS) Analog and Mixed Signal Center, TAMU

Basic Concepts



Fundamentals
• Traditional Data Converters at Nyquist 

Rate   (fs>2fm)
– A/D Converter Details:

Low Pass
Filter S&H Quantizer

Digital
Encoder

x(t)

X(f) X1(f)

xnxQ(t)xSH(t)x1(t)

fm fsfm 2fs fsfm 2fs

Quant. noise

Binary Number
10001000111...

A/D

Analog and Mixed Signal Center, TAMU



Nyquist Rate
D/A

(Ideal)
S&H

Fundamentals
• Traditional Data converters at 

Nyquist Rate (fs>2fm)
– D/A Converter:

LPF +
Droop correction

yn

Yk(f)

y(t)ySH(t)yk(t)

fsfm 2fs

Binary Number
10001000111...

fsfm 2fs fsfm 2fs

Y(f)

Analog and Mixed Signal Center, TAMU

• Droop correction means inverse Sinc

• The S/H is a “deglitching” circuit and 
could be eliminated for small glitches



Fundamentals

• A/D: Sampled Signal Spectrum:

fsfm 2fs

Quant. “noise”
σσe

2
101

δ

σσ e
2 = δδ 2/12

DR = 1.5 (K-1)2 =  1 . 7 6  +     ∗ 6 . 0 21 . 7 6  +     ∗ 6 . 0 2

dB

K: # Quantizer levels

n: Equivalent # Bits

Anti-alias filter

Analog and Mixed Signal Center, TAMU

n



Sampling
• The process of converting to digital can not be instantaneous

• The input has to be stabilized while a conversion is performed.

Sampler

Conversion

Delay

The ADC will convert each of
these analog values to the

corresponding digital value one
after the other.

ADC

Analog
Input

Sampled
Analog

Analog and Mixed Signal Center, TAMU



REAL SAMPLING
Input Waveform

Output SpectraInput Spectra Sampling Spectra

Sampled OutputSampling Function

f(t)

t

Fourier Analysis

τ

h(t)

Τ tt

g(t)

F(f) H(f) G(f)

f1 fs = 1/T τ/1 2fs f1 fs 2fs fff

Input signals are not truly 
band limited

( ) 1f2sf >/ envelope  
sin

x
x

Sampling cannot be done with 
impulses so, amplitude of 
signal is modulated by

Because of input spectra and 
sampling there is aliasing and 
distortion 

x
xsin

Square Wave

f(t)

A

Period T

2/2/ ττ +−

Envelope has the form









=

τπ

τπτ

f

fsin

T

A
E

τ/1− τ/10

T/AτF(f)

Analog and Mixed Signal Center, TAMU



Since real Data Converters have a number of non-idealities
we need to use a Performance Metrics to evaluate and
compare them. In what follows we will attempt to define it.

The number of bits of the digital code is finite: for n-bit we have 2n

codes and each code represents a given quantization level.
The error due to the quantization is called quantization error and ranges
between plus or minus half quantization level (LSB). This error is a
consequence ( and a measure) of the finite A/D converter resolution.
Furthermore, the quantization error can be considered as a noise if
all quantization levels are exercised with equal probability, the 
quantization steps are uniform; a large number of quantization levels 
are used, and thev quantization error is not correlated with the input signal.



Definitions

• Differential Nonlinearity:
Deviation in the width of a certain code 

from the value of  1LSB.

• Integral Non-Linearity:
Deviation in the midpoint of the code 

from the best straight line in LSBs.



Conversion Code

Range of 
Analog Input 

Values

Digital Output 
Code

4.5 • 5.5 101

3.5 • 4.5 100

2.5 • 3.5 011

1.5 • 2.5 010

0.5 • 1.5 001

0 • 0.5 000

THE IDEAL TRANSFER FUNCTION (ADC)

-1/2 LSB

+1/2 LSB

Elements of Transfer Diagram for an Ideal Linear ADC

Digital Output 
Code Ideal Straight Line

Center

Step Width (1 LSB)

Analog Input Value
0

Quantization 
Error

0 1 32 4 5

3 4 521

Analog Input Value

Midstep Value of 
011

Inherent Quantization Error (±1/2 LSB)

001

011

010

000

100

101

Analog and Mixed-Signal Center (ESS)



Ideal Transfer Characteristic

Output Code Best Straight Line

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8-8

0000

0110

0101

0100

0011

0010

0001

0111

1001

1101

1100

1010

1011

1000

1111

1110



Output Code Best Straight Line

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8-8

0 1-1

0000

0110

0101

0100

0011

0010

0001

0111

1001

1101

1100

1010

1011

1000

1111

1110

Ideal Transfer Characteristic



Output Code Best Straight Line

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8-8

0 1-1

0000

0110

0101

0100

0011

0010

0001

0111

1001

1101

1100

1010

1011

1000

1111

1110

Ideal Transfer Characteristic



Unipolar Quantization Error
Output Code

0000

0110

0101

0100

0011

0010

0001

0111

1001

1101

1100

1010

1011

1000

1111

1110

Error
1LSB

Input

Input
0



Bipolar Quantization Error
Output Code

0000

0110

0101

0100

0011

0010

0001

0111

1001

1101

1100

1010

1011

1000

1111

1110

Error

1/2 LSB

Input

Input0
-1/2 LSB

FSR
1 LSB

• Bipolar Error

• Offset Error  
(Minor 
Importance)



Unipolar vs. Bipolar

• Quantization Noise 
Power:

LSB2/3

• RMS Value of
Quantization Noise 
Power:

LSB/1.73

• More Than Half an LSB 
error.

Unipolar
Error (ε) [LSB]

0

1/2

2-1-2 1

Input [LSB]

1



Unipolar vs. Bipolar

• Quantization Noise 
Power:

LSB2/12
• RMS Value of

Quantization Noise 
Power:

LSB/3.46
• Approximately One 

Third of an LSB.

Bipolar
Error (ε) [LSB]

0

1/2

3/2-1/2-3/2 1/2

-1/2 Input [LSB]

Reference: Spectra of Quantized Signals, W.R.Bennett, BSTJ, July 1948.



Digital 
Code

Vl

+ q 1/2
- q 1/2

Ej

+ 1/2 
LSB

- 1/2 
LSB

Error E

Quantization 
Error

( )ljj VVE −=

12

q
dEE

q

1
E

2q/2

q/2

2
j

1

2
j == ∫

+

−

12/qN 22
=

Error at the jth step:

The mean square error over the step is:

Assuming equal steps, the 
total error is:

(Mean square quantization noise)

QUANTIZATION EFFECTS

Analog and Mixed-Signal Center, TAMU  (ESS)



Considering a sine wave input F(t) of amplitude A so that

which has a mean square value of F2(t), where

( ) tsinAtF ω=

( ) ( )∫=
π

ω
π

2

0

222 dttsinA
2

1
tF

which is the signal power.  Therefore the signal to noise ratio SNR is given by

























=

12
q

2
A10LogSNR(dB)

22

but
1nn 2

A

2

2A
LSB 1q

−
===

Substituting for q gives









=
























=

2

2*3
Log 10

2* 3
A

2
ALog 10SNR(dB)

2n

2n

22

1.76dB6.02n +⇒

This gives the ideal value for an n bit converter and shows that each extra 1 bit of resolution provide 
approximately 6 dB improvement in the SNR.

In practice, integral and differential non-linearity (discussed later in this presentation) introduce errors that 
lead to a reduction of this value.  The limit of a 1/2 LSB differential linearity error is a missing code condition 
which is equivalent to a reduction of 1 bit of resolution and hence a reduction of 6 dB in the SNR.  This then 
gives a worst case value of SNR for an n-bit converter with 1/2 LSB linearity error

Thus, we can established the boundary conditions for the choice of the resolution of the converter based upon 
a desired level of SNR.

4.24dB6.02n61.766.02ncase)(worst  SNR −=−+=

Analog and Mixed-Signal Center  (ESS)

QUANTIZATION EFFECTS



Signal to Noise Ratio  (SNR)
• Vin=A Sin(ωT) ; A = VFSR / 2
• Signal Power: 

VS
2 = (VFSR / 2.8)2 = VFSR

2/8
• Noise Power:

VN
2 = LSB2/12

• SNR  = (1.5)22N

1.8 + 6.02 N [dB]
• Example:  SNR(10bit) = 62dB



Sampling Pulse

-Vo

Vo

Sample

Hold

TA

EA
Aperture 

Error

Aperture 
Uncertainty

in
N

ref

LSB
A fVf

V
T

ππ 2
1

=<

⇒=
+ AO1n
O TfV2

2

2V
π

1n
O

AA 2

2V
LSB 1/2

dt

dV
TE

+
===

ft2sinVV O π=

O
max

fV2
dt
dV

π=ftcos2fV2
dt
dV

O ππ=

ADC

fCLK

APERTURE ERROR

Analog and Mixed-Signal Center (ESS)

The aperture error comes from the fact that there is a delay 
between the clock signal and the effective holding time.



Nyquist Rate
• According to signal processing theory, the sampling process generates 

images of the input signal around the sampling frequency

• It can be seen that if the input frequency is higher than half the 
sampling frequency, there will be corruption of the information by the 
image.

4 5 8 10 12 16

Sampling of
interest

Sampling
Frequency

6 14

Images

Input
Frequency

Limit

Frequencies

of interest

Frequency (KHz)

Analog and Mixed Signal Center, TAMU



Oversampling

• As we have seen earlier, the SNR of a typical ADC is:

• If the sampling rate is increased, we get the following SNR:

where OSR stands for “oversampling ratio”.

1 2 10 12 16
Sampling

Frequency

3 14

Images

Input
Frequency

Limit

Frequency (KHz)

Signal of interrest

1.76dB6.02n +

6.02n+1.76dB+10log(OSR)



Signal to Noise + 
Distortion Ratio (SNDR)

1LSB VFSR

1.8+6.02N

SNDR [dB]

Input Magnitude

Analog and Mixed Signal Center, TAMU



Signal to Noise + 
Distortion Ratio (SNDR)

1LSB VFSR

1.8+6.02N

SNDR [dB]

Input Magnitude

f

THD

Analog and Mixed Signal Center, TAMU



Performance Evaluation  
of ADCs

Analog and Mixed Signal Center, TAMU



001

010

011

1 32

D
ig

ita
l O

ut
pu

t C
od

e

+1/2 LSB

Actual 
Diagram

Ideal 
Diagram

Analog Output Value
Actual 
Offset Point

Offset Error 
(+1 1/4 LSB)

Nominal 
Offset Point

0

(a)       ADC

000

Offset Errors

Actual 
Offset Point

Digital Input Code
011000 001 010

0

1

2

3

A
na

lo
g 

O
ut

pu
t V

al
ue

 (
L

SB
)

Actual 
Diagram

Ideal 
Diagram

Offset Error 
(+1 1/4 LSB)

Nominal 
Offset Point

(b)     DAC
VLSI Analog Microelectronics (ESS)

Input 
Ramp



001

010

011

1 32

D
ig

ita
l O

ut
pu

t C
od

e

Actual 
Diagram

Ideal 
Diagram

Analog Output Value
0

(a)       ADC

000

Digital Input Code
011000 001 010

0

1

2

3

A
na

lo
g 

O
ut

pu
t V

al
ue

 (
L

SB
)

Ideal 
Diagram

(b)     DAC
VLSI Analog Microelectronics (ESS)

Best Fit 
Straight 
Line

Measured 
Gain

Input 
Ramp

Best Fit 
Straight 
Line

Measured 
Gain

Measured 
Data

Gain Errors



0…111

0…101

0…100

0…011

0…010

0…001

0…000

0…110

10 2 3 4 5 6 7

Total Error 
At Step 0…101 
(-1 1/4 LSB)

Total Error 
At Step 0…001 
(1/2 LSB)

Digital 
Output 
Error

Analog Input Value (LSB)

(a) ADC

Total Error
At Step 0…011 

(1 1/4 LSB)

0…000

0…001
0…010

0…011
0…100

0…101
0…110

0…111

Digital Input Code 
(b) DAC

0

0…101

0…101

1

2

3

4

5

6

7

Analog Output 
Value (LSB)

Absolute Accuracy (Total) Error

The absolute accuracy or total error of an ADC as shown in Figure is the maximum value of the difference between an analog value
and the ideal midstep value.  It includes offset, gain, and integral linearity errors and also the quantization error in the case of an 
ADC.

Analog and Mixed Signal Center, TAMU  (ESS)



1 2 3 4 5 6 70

000

001

010

011

100

101

010

111

D
ig

ita
l O

ut
pu

t C
od

e

Actual 
Transition

Ideal 
Transition

At Transition 
011/100 
(-1/2 LSB)

At Transition 
001/010 (-1/4 LSB)

End-Point Lin. Error

Analog Input Value (LSB)
(a) ADC

End-Point Linearity Error of a Linear 3-bit Natural Binary-Coded ADC or DAC
(Offset Error and Gain Error are Adjusted to the Value Zero)

At Step 
001 (1/4 LSB)

At Step 
011 (1/2 LSB)

End-Point Lin. Error

001 010 011 100 101 010 111000

Digital Input Code
(b) DAC

1

2

3

4

5

6

7

0
A

na
lo

g 
O

ut
pu

t V
al

ue
 (

L
SB

)

The integral non-linearity depicts a possible distortion of the input-output 
transfer characteristic and leads to harmonic distortion.

Analog and Mixed-Signal Center (ESS)

Integral Nonlinearity (INL) Error



Differential Nonlinearity (DNL)
Digital 
Output 
Code

0…110

0          1           2          3          4           5  

Differential 
Linearity Error 
(1/2 LSB)1 LSB

1 LSB
Differential 
Linearity Error 
(-1/2 LSB)

Analog Input Value (LSB)

(a) ADC

0…101

0…100

0…011

0…010

0…001

0…000

0…101

0…100

0…011

0…010

0…001

0…000

1 LSB

Differential 
Linearity Error
(-1/4 LSB)

1 LSB

Differential Linearity 
Error (+1/4 LSB)

6

5

4

3

2

1

0

Analog Output 
Value (LSB)

Digital Input Code

(b) DAC

Differential Linearity Error of a Linear ADC or DAC
VLSI Analog Microelectronics (ESS)



Solution

A 100-mVpp sinusoidal signal is applied to an ideal 12-bit A/D converter for which
Vref= 5 V.  Find the SNR of the digitized output signal.

First, we use to find the maximum SNR if a full-scale sinusoidal wave-form of    2.5 V
were applied to the input.

±

Idealized SNR versus sinusoidal input signal amplitude for a 10-bit A/D converter.  The
0-dB input signal amplitude corresponds to a peak-to-peak voltage equaling Vref.

However, since the input is only a 100-mV sinusoidal waveform that is 28 dB below
full scale, the SNR of the digitized output is

±

dB7476.11202.6dB76.1N02.6SNRmax =+×=+=

dB462874SNR =−=

Numerical Examples [1]Example 1.









=








=













= N

LSB

ref

Q

in 2
2
3

log20
12/V

)22/(V
log20

)rms(V

)rms(V
log20SNR

SNR
(dB)

60

50

40

30

20

10

-60 -50 -40 -30 -20 -10 0
0 Vin(dB)

Vpp=Vref

Best possible SNR

Best real SNR



Consider a 3-bit D/A converter in which Vref = 4 V, with the following measured voltage values:
{ 0.011 : 0.507 : 1.002 : 1.501 : 1.996 : 2.495 : 2.996 : 3.491 }

1.   Find the offset and gain errors in units of LSBs.
2.   Find the INL (endpoint) and DNL errors (in units of LSBs).
3.   Find the effective number of bits of absolute accuracy.
4.   Find the effective number of bits of relative accuracy.

We first note that 1 LSB corresponds to Vref/23 = 0.5 V.
1.   Since that offset voltage is 11 mV, and since 0.5 V corresponds to 1 LSB, we see that the offset error is given by

For the gain error, from (11.25) we have

2.   For INL and DNL errors, we first need to remove both offset and gain errors in the measured D/A values. The offset error is removed by
subtracting 0.022 LSB off each value, whereas the gain error is eliminated by subtracting off scaled values of the gain error.  For example,
the new value for 1.002 (scaled to 1 LSB) is given by

Thus, the offset-free, gain-free, scaled values are given by
{ 0.0 : 0.998 : 1.993 : 2.997 : 3.993 : 4.997 : 6.004 : 7.0 }

Since these results are in units of LSBs, we calculate the INL errors as the difference between these values and the ideal values, giving us
INL errors : { 0 : -0.002 : -0.007 : -0.003 : -0.007 : -0.003 : 0.004 : 0 }
For DNL errors, we find the difference between adjacent offset-free, gain-free, scaled values to give
DNL errors: { -0.002 : -0.005 : 0.004 : -0.004 : 0.004 : 0.007 : -0.004 }

3.   For absolute accuracy, we find the largest deviation between the measured values and the ideal values, which, in this case, occurs at 0 V
and is 11 mV.  To relate this 11-mV value to effective bits, 11 mV should correspond to 1 LSB when Vref = 4 V. In other words, we have
the relationship

which results in an absolute accuracy of Nabs = 8.5 bits.
4.   For relative accuracy, we use the INL errors found in part 2, whose maximum magnitude is 0.007 LSB, or equivalently, 3.5 mV. We relate

this 3.5-mV value to effective bits in the same manner as in part 3, resulting in a relative accuracy of Nrel = 10.2 nits.

Solution

LSB022.0
5.0

011.0
0...0V

V
E

LSB

out
)A/D(off ===

LSB04.0)12(
5.0

011.0491.3
)12(

0...0V

V

1...1V

V
E 3N

LSB

out

LSB

out
)A/D(gain −=−−







 −
=−−








−=

993.1)04.0(
7
2

022.0
5.0

002.1
=








+−

mV11
2

V4
effN

=

Example 2. NN
ref

LSB
2
1LSB1,

2

V
V ==

D/AVin

Vref

Vout



A full-scale sinusoidal waveform is applied to a 12-bit A/D converter, and the
output is digitally analyzed.  If the fundamental has a normalized power of 1 W
while the remaining power is 0.5 µW, what is the effective number of bits for
the converter?

Using the expression for the SNR, we have

In this case, the signal-to-noise ration is found to be

Substituting this SNR value into the SNR expression yields

76.1N02.6SNR eff +=

dB63
105.0

1
log10

P

P
log10SNR

6
rema

.fund =








×
=








=

−

bitseffective2.10
02.6

76.163
Neff =

−
=

Solution

Example 3 [Johns & Martin]



Measure Static Performance

The first step is to find each transition point;

• The real transition is not instantaneous.  The transition point 
is half way between 2 consecutive codes

• Once all the transition points are recorded, the static 
parameters can be computed by a set of equations

• three different static performance measurement methods are 
described



Method 1:manual measurement
• Increase the analog input to the ADC slowly until we can make the digital output 1 

LSB more,from 11010 to 11011

• write down the correspond analog input value V1

• decrease the analog input to the ADC slowly until we can make the digital output 
return to the 11010

• write down the correspond analog input value V2

• The transition point between 11010 and 11011 is  0.5(V1+V2)

Code 11011

Code 11010

Transition point

Ideal Curve

Measured Curve



Method 2:The Servo Method
• The Servo method is an automated technique to easily find the transition 

points

• for example,we need the transition point between 11010 and 11011.We should 
set search value register as 11010

• close the loop;when the circuit is stable,use a DC voltmeter to measure the 
analog value at the output of the integrator.It is the transition point between 
11010 and 11011

ADC
Under
Test

Digital
Comparator

Search Value
Register

one-bit
DAC

Analog
Integrator

VOH -> Ramp up
VOL -> Ramp down



Method 3:The Linear Ramp Histogram

• The histogram is best suited for automated testing 
of  ADCs in the industry

• A linear ramp is sent to the ADC under test and 
the output codes are sampled and recorded

• The input ramp must be very slow, such that we 
get at least 16 samples per output code

• This allows a precise evaluation of the static 
performances.



Method 3:The linear Ramp Histogram 
(continued)

input analog voltage

digital output code

ADC samples
missing code

transition point

• Record the samples per 
digital code

• use the recorded values 
to compute the 
transition point one by 
one



Calculate static parameters from 
transition points

• Use TP as the symbol of the transition point,and assume TP[i] is the transition point 
between code i-1 and code I

• Offset = TP[1]-0.5 FSR is the full scale input range; N is ADC resolution

• Gain Error=

• Differential Non-linearity 

•
DNL[i]= -1

• Integral Non-linearity

INL[i]=









N

FSR
2

1001

^2
2^2

]1[]1^2[
×



















−
























 −
×

−−

N
N

FSR

TPNTP

LSB
iTPiTP ][]1[ −+

LSB
TPiLSBiTP ])1[)1((][ +−×−



Dynamic Performance Measurement

• The most typical dynamic performance measurement consists of 
looking for distortion in the frequency domain

• This is done by sending a pure sinusoidal input and looking at the 
output

Conceptual Dynamic Test Setup

ADC 
Under Test

Perfect 
DAC

f

dB

f

dB

Distortion
or noise



Real Measurement of 
Dynamic Performance

• There is no such thing as a perfect DAC…

• To improve the precision and simplify the post-processing, 
all the spectrum analysis is done in digital form and in 
software.

ADC 
Under Test

f

dB

Computer

Acquisition Board (Like 
National Instruments)



Other Dynamic Measurements

• All the timing and control signals (i.e. Convert, 
Data_Ready, Read, Data, …) must be tested at full speed 
to ensure their functionality,

input analog voltage

digital output code

transition point

Sparkling• The output from a sinewave 
input can also be observed in 
time-domain to make sure 
there is no sparkling (sudden 
out-of-range samples).



A/D Conversion : Practical Techniques

• Serial Conversion:
Dual Slope

• Successive 
Approximation

• Parallel Conversion:
Flash

• Quantized Feedforward:
Pipelined

• Quantized Feedback:
Delta-Sigma

An illustrative example/comparison:



Speed vs. Resolution

Conversions/sec

Resolution[bits]

6

1E9

>20

1E2



Throughput Rate Comparison of ADCs

Resolution[bits]

Clock Cycles/Output
100

14

12

10

8

6

4

1000

2

101 10000

Flash, 2 Step Flash, Pipelined

2nd Order ∆−Σ

Serial (Dual Slope)

SAR



An A/D Conversion Classification
Multiplexing

Time Interweave

Pipeline

Parallel

Flash

Stacking
Flash

Neural
Network

Series-
Parallel

Subranging

Subranging with
Folding Amps

Ripple

Serial Coarse-
Fine

Counting

Coarse-FineNon-Algorithmic
Successive 
Approximation

Charge 
Redistribution

Variable Ref.
Serial Ripple

Pulse Width
Ramp
Comparison

Dual Slopes

Constant
Slope

Algorithmic Iterative

Cyclic 
Sample/Hold

Pulse Rate

Ramp Comparison
Quantized Feedback

Algorithmic Replicative

Straight Binary
Gray

Tracking Feedback

Servo
Delta Modulation

Note:  The procedure and architecture
are shown as

Procedure

A
rc

hi
te

ct
ur

e

Analog and mixed Signal Center, TAMU  (ESS)



Coarse List of A/D 
Converter Architectures

Low-to-Medium Speed
High-Accuracy

Medium Speed
Medium Accuracy

High-Speed
Low-to-Medium Accuracy

Integrating

Oversampling

Successive Approximation

Algorithmic

Flash

Two-Step

Interpolating

Folding

Pipelined

Time-Interleaved

VLSI Analog Microelectronics (ESS)



VLSI Analog Microelectronics (ESS)

References
[1]  D.A. Johns and K. Martin, Analog Integrated Circuit Design, Chapters 11 and 12, John      

Wiley & Sons, Inc.,  New York 1997,.

[2]  A.B. Grebene.  Bipolar and MOS Analog Integrated Circuit Design,  John Wiley & 

Sons, Inc., New York 1984.

[3]  B. Razavi, Principles of Data Conversion System Design,  The IEEE Press, New York 

1995.

[4]  A.M.J. Daanen, Classification of DA and AD Conversion Techniques, Report of the 

Graduation Work, Technical University, Eindhoven, Dec. 1986.

[5]  P.E. Allen and E. Sánchez-Sinencio, Switched Capacitor Circuits, Van Nostrand 

Reinhold, New York 1984.

[6]  J.A.Shoeff, “An Inherently Monotonic 12 Bit DAC,” IEEE J. Solid-State Circuits, vol. 

SC-14, pp 904-911, Dec. 1979.

[7]  R.H. Charles and D.A. Hodges, “Charge Circuits for Analog Circuits for Analog LSI,”  

IEEE Trans. Circuit and Systems, vol. CAS-25, No. 7, pp 490-497, July 1978.

[8]  J. Doernberg, H.S. Lee and D. Hodges, “Full Speed Testing of A/D Converters,” IEEE

J. Solid-State Circuits, vol. SC-19, No. 6, pp 820-827, Dec. 1984.



Analog and Mixed Signal Center, TAMU (ESS)

[8]  Texas Instruments Application Report,” Understanding Data Converters”, SLAA013, 

July 1995.

[9] J.C. Candy, and G. C. Temes, Editors. “Oversampling Delta-Sigma Data Converters: Theory,

Design and Simulation” IEEE Press, New York 1992.

[10] J. E. Franca and Y. Tsividis, Editors, Design of Analog-Digital VLSI Circuits for 

Telecommunications and Signal Processing”, Chapters 9 and 10,Prentice Hall, Englewood 

Cliffs,1994

[11] S. Franco, “Design with Operational Amplifiers and Analog Integrated Circuits”, McGraw-
Hill, Boston, 1998.

[12] M. Burns and G. Roberts, “Introduction to Mixed-Signal Test and Measurement”, to be 
published.

[13] G.J. Gomez, “Introduction to the Design of Sigma-Delta Modulators”, Seminar document.



ADC0801/ADC0802/ADC0803/ADC0804/ADC0805
8-Bit µP Compatible A/D Converters
General Description
The ADC0801, ADC0802, ADC0803, ADC0804 and
ADC0805 are CMOS 8-bit successive approximation A/D
converters that use a differential potentiometric
ladder — similar to the 256R products. These converters are
designed to allow operation with the NSC800 and INS8080A
derivative control bus with TRI-STATE® output latches di-
rectly driving the data bus. These A/Ds appear like memory
locations or I/O ports to the microprocessor and no interfac-
ing logic is needed.

Differential analog voltage inputs allow increasing the
common-mode rejection and offsetting the analog zero input
voltage value. In addition, the voltage reference input can be
adjusted to allow encoding any smaller analog voltage span
to the full 8 bits of resolution.

Features
n Compatible with 8080 µP derivatives — no interfacing

logic needed - access time - 135 ns
n Easy interface to all microprocessors, or operates “stand

alone”

n Differential analog voltage inputs
n Logic inputs and outputs meet both MOS and TTL

voltage level specifications
n Works with 2.5V (LM336) voltage reference
n On-chip clock generator
n 0V to 5V analog input voltage range with single 5V

supply
n No zero adjust required
n 0.3" standard width 20-pin DIP package
n 20-pin molded chip carrier or small outline package
n Operates ratiometrically or with 5 VDC, 2.5 VDC, or

analog span adjusted voltage reference

Key Specifications
n Resolution 8 bits
n Total error ±1⁄4 LSB, ±1⁄2 LSB and ±1 LSB
n Conversion time 100 µs

Connection Diagram

Ordering Information

TEMP RANGE 0˚C TO 70˚C 0˚C TO 70˚C −40˚C TO +85˚C

±1⁄4 Bit Adjusted ADC0801LCN

ERROR ±1⁄2 Bit Unadjusted ADC0802LCWM ADC0802LCN

±1⁄2 Bit Adjusted ADC0803LCN

±1Bit Unadjusted ADC0804LCWM ADC0804LCN ADC0805LCN/ADC0804LCJ

PACKAGE OUTLINE M20B — Small
Outline

N20A — Molded DIP

TRI-STATE® is a registered trademark of National Semiconductor Corp.
Z-80® is a registered trademark of Zilog Corp.

ADC080X
Dual-In-Line and Small Outline (SO) Packages

DS005671-30

See Ordering Information

November 1999

A
D

C
0801/A

D
C

0802/A
D

C
0803/A

D
C

0804/A
D

C
0805

8-B
itµP

C
om

patible
A

/D
C

onverters

© 1999 National Semiconductor Corporation DS005671 www.national.com



Typical Applications

Error Specification (Includes Full-Scale,

Zero Error, and Non-Linearity)

Part Full- V REF/2=2.500 VDC VREF/2=No Connection

Number Scale (No Adjustments) (No Adjustments)

Adjusted

ADC0801 ±1⁄4 LSB

ADC0802 ±1⁄2 LSB

ADC0803 ±1⁄2 LSB

ADC0804 ±1 LSB

ADC0805 ±1 LSB

DS005671-1

8080 Interface

DS005671-31

A
D

C
08

01
/A

D
C

08
02

/A
D

C
08

03
/A

D
C

08
04

/A
D

C
08

05

www.national.com 2



Absolute Maximum Ratings (Notes 1, 2)

If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales Office/
Distributors for availability and specifications.

Supply Voltage (VCC) (Note 3) 6.5V
Voltage

Logic Control Inputs −0.3V to +18V
At Other Input and Outputs −0.3V to (VCC+0.3V)

Lead Temp. (Soldering, 10 seconds)
Dual-In-Line Package (plastic) 260˚C
Dual-In-Line Package (ceramic) 300˚C
Surface Mount Package

Vapor Phase (60 seconds) 215˚C

Infrared (15 seconds) 220˚C
Storage Temperature Range −65˚C to +150˚C
Package Dissipation at TA=25˚C 875 mW
ESD Susceptibility (Note 10) 800V

Operating Ratings (Notes 1, 2)

Temperature Range TMIN≤TA≤TMAX

ADC0804LCJ −40˚C≤TA≤+85˚C
ADC0801/02/03/05LCN −40˚C≤TA≤+85˚C
ADC0804LCN 0˚C≤TA≤+70˚C
ADC0802/04LCWM 0˚C≤TA≤+70˚C

Range of VCC 4.5 VDC to 6.3 VDC

Electrical Characteristics
The following specifications apply for VCC=5 VDC, TMIN≤TA≤TMAX and fCLK=640 kHz unless otherwise specified.

Parameter Conditions Min Typ Max Units

ADC0801: Total Adjusted Error (Note 8) With Full-Scale Adj. ±1⁄4 LSB

(See Section 2.5.2)

ADC0802: Total Unadjusted Error (Note 8) VREF/2=2.500 VDC ±1⁄2 LSB

ADC0803: Total Adjusted Error (Note 8) With Full-Scale Adj. ±1⁄2 LSB

(See Section 2.5.2)

ADC0804: Total Unadjusted Error (Note 8) VREF/2=2.500 VDC ±1 LSB

ADC0805: Total Unadjusted Error (Note 8) VREF/2-No Connection ±1 LSB

VREF/2 Input Resistance (Pin 9) ADC0801/02/03/05 2.5 8.0 kΩ
ADC0804 (Note 9) 0.75 1.1 kΩ

Analog Input Voltage Range (Note 4) V(+) or V(−) Gnd–0.05 VCC+0.05 VDC

DC Common-Mode Error Over Analog Input Voltage ±1/16 ±1⁄8 LSB

Range

Power Supply Sensitivity VCC=5 VDC ±10% Over ±1/16 ±1⁄8 LSB

Allowed VIN(+) and VIN(−)

Voltage Range (Note 4)

AC Electrical Characteristics
The following specifications apply for VCC=5 VDC and TMIN≤TA≤TMAX unless otherwise specified.

Symbol Parameter Conditions Min Typ Max Units

TC Conversion Time fCLK=640 kHz (Note 6) 103 114 µs

TC Conversion Time (Notes 5, 6) 66 73 1/fCLK

fCLK Clock Frequency VCC=5V, (Note 5) 100 640 1460 kHz

Clock Duty Cycle 40 60 %

CR Conversion Rate in Free-Running INTR tied to WR with 8770 9708 conv/s

Mode CS =0 VDC, fCLK=640 kHz

tW(WR)L Width of WR Input (Start Pulse Width) CS =0 VDC (Note 7) 100 ns

tACC Access Time (Delay from Falling CL=100 pF 135 200 ns

Edge of RD to Output Data Valid)

t1H, t0H TRI-STATE Control (Delay CL=10 pF, RL=10k 125 200 ns

from Rising Edge of RD to (See TRI-STATE Test

Hi-Z State) Circuits)

tWI, tRI Delay from Falling Edge 300 450 ns

of WR or RD to Reset of INTR

CIN Input Capacitance of Logic 5 7.5 pF

Control Inputs

A
D

C
0801/A

D
C

0802/A
D

C
0803/A

D
C

0804/A
D

C
0805

www.national.com3



AC Electrical Characteristics (Continued)

The following specifications apply for VCC=5 VDC and TMIN≤TA≤TMAX unless otherwise specified.

Symbol Parameter Conditions Min Typ Max Units

COUT TRI-STATE Output 5 7.5 pF

Capacitance (Data Buffers)

CONTROL INPUTS [Note: CLK IN (Pin 4) is the input of a Schmitt trigger circuit and is therefore specified separately]

VIN (1) Logical “1” Input Voltage VCC=5.25 VDC 2.0 15 VDC

(Except Pin 4 CLK IN)

VIN (0) Logical “0” Input Voltage VCC=4.75 VDC 0.8 VDC

(Except Pin 4 CLK IN)

IIN (1) Logical “1” Input Current VIN=5 VDC 0.005 1 µADC

(All Inputs)

IIN (0) Logical “0” Input Current VIN=0 VDC −1 −0.005 µADC

(All Inputs)

CLOCK IN AND CLOCK R

VT+ CLK IN (Pin 4) Positive Going 2.7 3.1 3.5 VDC

Threshold Voltage

VT− CLK IN (Pin 4) Negative 1.5 1.8 2.1 VDC

Going Threshold Voltage

VH CLK IN (Pin 4) Hysteresis 0.6 1.3 2.0 VDC

(VT+)−(VT−)

VOUT (0) Logical “0” CLK R Output IO=360 µA 0.4 VDC

Voltage VCC=4.75 VDC

VOUT (1) Logical “1” CLK R Output IO=−360 µA 2.4 VDC

Voltage VCC=4.75 VDC

DATA OUTPUTS AND INTR

VOUT (0) Logical “0” Output Voltage

Data Outputs IOUT=1.6 mA, VCC=4.75 VDC 0.4 VDC

INTR Output IOUT=1.0 mA, VCC=4.75 VDC 0.4 VDC

VOUT (1) Logical “1” Output Voltage IO=−360 µA, VCC=4.75 VDC 2.4 VDC

VOUT (1) Logical “1” Output Voltage IO=−10 µA, VCC=4.75 VDC 4.5 VDC

IOUT TRI-STATE Disabled Output VOUT=0 VDC −3 µADC

Leakage (All Data Buffers) VOUT=5 VDC 3 µADC

ISOURCE VOUT Short to Gnd, TA=25˚C 4.5 6 mADC

ISINK VOUT Short to VCC, TA=25˚C 9.0 16 mADC

POWER SUPPLY

ICC Supply Current (Includes fCLK=640 kHz,

Ladder Current) VREF/2=NC, TA=25˚C

and CS =5V

ADC0801/02/03/04LCJ/05 1.1 1.8 mA

ADC0804LCN/LCWM 1.9 2.5 mA

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating
the device beyond its specified operating conditions.

Note 2: All voltages are measured with respect to Gnd, unless otherwise specified. The separate A Gnd point should always be wired to the D Gnd.

Note 3: A zener diode exists, internally, from VCC to Gnd and has a typical breakdown voltage of 7 VDC.

Note 4: For VIN(−)≥ VIN(+) the digital output code will be 0000 0000. Two on-chip diodes are tied to each analog input (see block diagram) which will forward conduct
for analog input voltages one diode drop below ground or one diode drop greater than the VCC supply. Be careful, during testing at low VCC levels (4.5V), as high
level analog inputs (5V) can cause this input diode to conduct–especially at elevated temperatures, and cause errors for analog inputs near full-scale. The spec allows
50 mV forward bias of either diode. This means that as long as the analog VIN does not exceed the supply voltage by more than 50 mV, the output code will be correct.
To achieve an absolute 0 VDC to 5 VDC input voltage range will therefore require a minimum supply voltage of 4.950 VDC over temperature variations, initial tolerance
and loading.

Note 5: Accuracy is guaranteed at fCLK = 640 kHz. At higher clock frequencies accuracy can degrade. For lower clock frequencies, the duty cycle limits can be ex-
tended so long as the minimum clock high time interval or minimum clock low time interval is no less than 275 ns.

Note 6: With an asynchronous start pulse, up to 8 clock periods may be required before the internal clock phases are proper to start the conversion process. The
start request is internally latched, see Figure 4 and section 2.0.

A
D

C
08

01
/A

D
C

08
02

/A
D

C
08

03
/A

D
C

08
04

/A
D

C
08

05

www.national.com 4



AC Electrical Characteristics (Continued)

Note 7: The CS input is assumed to bracket the WR strobe input and therefore timing is dependent on the WR pulse width. An arbitrarily wide pulse width will hold
the converter in a reset mode and the start of conversion is initiated by the low to high transition of the WR pulse (see timing diagrams).

Note 8: None of these A/Ds requires a zero adjust (see section 2.5.1). To obtain zero code at other analog input voltages see section 2.5 and Figure 7.

Note 9: The VREF/2 pin is the center point of a two-resistor divider connected from VCC to ground. In all versions of the ADC0801, ADC0802, ADC0803, and
ADC0805, and in the ADC0804LCJ, each resistor is typically 16 kΩ. In all versions of the ADC0804 except the ADC0804LCJ, each resistor is typically 2.2 kΩ.

Note 10: Human body model, 100 pF discharged through a 1.5 kΩ resistor.

Typical Performance Characteristics

Logic Input Threshold Voltage
vs. Supply Voltage

DS005671-38

Delay From Falling Edge of
RD to Output Data Valid
vs. Load Capacitance

DS005671-39

CLK IN Schmitt Trip Levels
vs. Supply Voltage

DS005671-40

fCLK vs. Clock Capacitor

DS005671-41

Full-Scale Error vs
Conversion Time

DS005671-42

Effect of Unadjusted Offset Error
vs. VREF/2 Voltage

DS005671-43

Output Current vs
Temperature

DS005671-44

Power Supply Current
vs Temperature (Note 9)

DS005671-45

Linearity Error at Low
VREF/2 Voltages

DS005671-46

A
D

C
0801/A

D
C

0802/A
D

C
0803/A

D
C

0804/A
D

C
0805

www.national.com5



TRI-STATE Test Circuits and Waveforms

Timing Diagrams (All timing is measured from the 50% voltage points)

t1H

DS005671-47

t1H, CL=10 pF

DS005671-48

tr=20 ns

t0H

DS005671-49

t0H, CL=10 pF

DS005671-50

tr=20 ns

DS005671-51

A
D

C
08

01
/A

D
C

08
02

/A
D

C
08

03
/A

D
C

08
04

/A
D

C
08

05

www.national.com 6



Timing Diagrams (All timing is measured from the 50% voltage points) (Continued)

Typical Applications

Output Enable and Reset with INTR

DS005671-52

Note: Read strobe must occur 8 clock periods (8/fCLK) after assertion of interrupt to guarantee reset of INTR .

6800 Interface

DS005671-53

Ratiometeric with Full-Scale Adjust

DS005671-54

Note: before using caps at VIN or VREF/2,
see section 2.3.2 Input Bypass Capacitors.

A
D

C
0801/A

D
C

0802/A
D

C
0803/A

D
C

0804/A
D

C
0805

www.national.com7



Typical Applications (Continued)

Absolute with a 2.500V Reference

DS005671-55

*For low power, see also LM385–2.5

Absolute with a 5V Reference

DS005671-56

Zero-Shift and Span Adjust: 2V ≤ VIN ≤ 5V

DS005671-57

Span Adjust: 0V ≤ VIN ≤ 3V

DS005671-58

A
D

C
08

01
/A

D
C

08
02

/A
D

C
08

03
/A

D
C

08
04

/A
D

C
08

05

www.national.com 8



Typical Applications (Continued)

Directly Converting a Low-Level Signal

DS005671-59

VREF/2=256 mV

A µP Interfaced Comparator

DS005671-60

For:
VIN(+)>VIN(−)
Output=FFHEX
For:
VIN(+)<VIN(−)
Output=00HEX

1 mV Resolution with µP Controlled Range

DS005671-61

VREF/2=128 mV
1 LSB=1 mV
VDAC≤VIN≤(VDAC+256 mV)
0 ≤ VDAC < 2.5V

A
D

C
0801/A

D
C

0802/A
D

C
0803/A

D
C

0804/A
D

C
0805

www.national.com9



Typical Applications (Continued)

Digitizing a Current Flow

DS005671-62

Self-Clocking Multiple A/Ds

DS005671-63

* Use a large R value
to reduce loading
at CLK R output.

External Clocking

DS005671-64

100 kHz≤fCLK≤1460 kHz

A
D

C
08

01
/A

D
C

08
02

/A
D

C
08

03
/A

D
C

08
04

/A
D

C
08

05

www.national.com 10



Typical Applications (Continued)

Self-Clocking in Free-Running Mode

DS005671-65

*After power-up, a momentary grounding of the WR input is needed to
guarantee operation.

µP Interface for Free-Running A/D

DS005671-66

Operating with “Automotive” Ratiometric Transducers

DS005671-67

*VIN(−)=0.15 VCC
15% of VCC≤VXDR≤85% of VCC

Ratiometric with V REF/2 Forced

DS005671-68

µP Compatible Differential-Input Comparator with Pre-Set V OS (with or without Hysteresis)

DS005671-69

*See Figure 5 to select R value
DB7=“1” for VIN(+)>VIN(−)+(VREF/2)
Omit circuitry within the dotted area if
hysteresis is not needed

A
D

C
0801/A

D
C

0802/A
D

C
0803/A

D
C

0804/A
D

C
0805

www.national.com11



Typical Applications (Continued)

Handling ±10V Analog Inputs

DS005671-70

*Beckman Instruments #694-3-R10K resistor array

Low-Cost, µP Interfaced, Temperature-to-Digital
Converter

DS005671-71

µP Interfaced Temperature-to-Digital Converter

DS005671-72

*Circuit values shown are for 0˚C≤TA≤+128˚C
***Can calibrate each sensor to allow easy replacement, then A/D can be calibrated with a pre-set input voltage.

A
D

C
08

01
/A

D
C

08
02

/A
D

C
08

03
/A

D
C

08
04

/A
D

C
08

05

www.national.com 12



Typical Applications (Continued)

Handling ±5V Analog Inputs

DS005671-33

*Beckman Instruments #694-3-R10K resistor array

Read-Only Interface

DS005671-34

µP Interfaced Comparator with Hysteresis

DS005671-35

Protecting the Input

DS005671-9

Diodes are 1N914

A
D

C
0801/A

D
C

0802/A
D

C
0803/A

D
C

0804/A
D

C
0805

www.national.com13



Typical Applications (Continued)

Analog Self-Test for a System

DS005671-36

A Low-Cost, 3-Decade Logarithmic Converter

DS005671-37

*LM389 transistors
A, B, C, D = LM324A quad op amp

A
D

C
08

01
/A

D
C

08
02

/A
D

C
08

03
/A

D
C

08
04

/A
D

C
08

05

www.national.com 14



Typical Applications (Continued)

3-Decade Logarithmic A/D Converter

DS005671-73

Noise Filtering the Analog Input

DS005671-74

fC=20 Hz
Uses Chebyshev implementation for steeper roll-off unity-gain, 2nd order,
low-pass filter
Adding a separate filter for each channel increases system response time
if an analog multiplexer is used

Multiplexing Differential Inputs

DS005671-75

Output Buffers with A/D Data Enabled

DS005671-76

*A/D output data is updated 1 CLK period prior to assertion of INTR

Increasing Bus Drive and/or Reducing Time on Bus

DS005671-77

*Allows output data to set-up at falling edge of CS

A
D

C
0801/A

D
C

0802/A
D

C
0803/A

D
C

0804/A
D

C
0805

www.national.com15



Typical Applications (Continued)

Functional Description

1.0 UNDERSTANDING A/D ERROR SPECS

A perfect A/D transfer characteristic (staircase waveform) is
shown in Figure 1. The horizontal scale is analog input volt-
age and the particular points labeled are in steps of 1 LSB
(19.53 mV with 2.5V tied to the VREF/2 pin). The digital out-
put codes that correspond to these inputs are shown as D−1,
D, and D+1. For the perfect A/D, not only will center-value

(A−1, A, A+1, . . . . ) analog inputs produce the correct out-
put digital codes, but also each riser (the transitions between
adjacent output codes) will be located ±1⁄2 LSB away from
each center-value. As shown, the risers are ideal and have
no width. Correct digital output codes will be provided for a
range of analog input voltages that extend ±1⁄2 LSB from the
ideal center-values. Each tread (the range of analog input
voltage that provides the same digital output code) is there-
fore 1 LSB wide.

Sampling an AC Input Signal

DS005671-78

Note 11: Oversample whenever possible [keep fs > 2f(−60)] to eliminate input frequency folding (aliasing) and to allow for the skirt response of the filter.

Note 12: Consider the amplitude errors which are introduced within the passband of the filter.

70% Power Savings by Clock Gating

DS005671-79

(Complete shutdown takes ≈ 30 seconds.)

Power Savings by A/D and V REF Shutdown

DS005671-80

*Use ADC0801, 02, 03 or 05 for lowest power consumption.
Note: Logic inputs can be driven to VCC with A/D supply at zero volts.
Buffer prevents data bus from overdriving output of A/D when in shutdown mode.

A
D

C
08

01
/A

D
C

08
02

/A
D

C
08

03
/A

D
C

08
04

/A
D

C
08

05

www.national.com 16



Functional Description (Continued)

Figure 2 shows a worst case error plot for the ADC0801. All
center-valued inputs are guaranteed to produce the correct
output codes and the adjacent risers are guaranteed to be
no closer to the center-value points than ±1⁄4 LSB. In other
words, if we apply an analog input equal to the center-value
±1⁄4 LSB, we guarantee that the A/D will produce the correct
digital code. The maximum range of the position of the code
transition is indicated by the horizontal arrow and it is guar-
anteed to be no more than 1⁄2 LSB.

The error curve of Figure 3 shows a worst case error plot for
the ADC0802. Here we guarantee that if we apply an analog
input equal to the LSB analog voltage center-value the A/D
will produce the correct digital code.

Next to each transfer function is shown the corresponding
error plot. Many people may be more familiar with error plots
than transfer functions. The analog input voltage to the A/D
is provided by either a linear ramp or by the discrete output
steps of a high resolution DAC. Notice that the error is con-
tinuously displayed and includes the quantization uncertainty
of the A/D. For example the error at point 1 of Figure 1 is +1⁄2
LSB because the digital code appeared 1⁄2 LSB in advance
of the center-value of the tread. The error plots always have
a constant negative slope and the abrupt upside steps are
always 1 LSB in magnitude.

Transfer Function

DS005671-81

Error Plot

DS005671-82

FIGURE 1. Clarifying the Error Specs of an A/D Converter
Accuracy =±0 LSB: A Perfect A/D

Transfer Function

DS005671-83

Error Plot

DS005671-84

FIGURE 2. Clarifying the Error Specs of an A/D Converter
Accuracy =±1⁄4 LSB

A
D

C
0801/A

D
C

0802/A
D

C
0803/A

D
C

0804/A
D

C
0805

www.national.com17



Functional Description (Continued)

2.0 FUNCTIONAL DESCRIPTION

The ADC0801 series contains a circuit equivalent of the
256R network. Analog switches are sequenced by succes-
sive approximation logic to match the analog difference input
voltage [VIN(+) − VIN(−)] to a corresponding tap on the R net-
work. The most significant bit is tested first and after 8 com-
parisons (64 clock cycles) a digital 8-bit binary code (1111
1111 = full-scale) is transferred to an output latch and then
an interrupt is asserted (INTR makes a high-to-low transi-
tion). A conversion in process can be interrupted by issuing a
second start command. The device may be operated in the
free-running mode by connecting INTR to the WR input with
CS =0. To ensure start-up under all possible conditions, an
external WR pulse is required during the first power-up
cycle.

On the high-to-low transition of the WR input the internal
SAR latches and the shift register stages are reset. As long
as the CS input and WR input remain low, the A/D will remain
in a reset state. Conversion will start from 1 to 8 clock peri-
ods after at least one of these inputs makes a low-to-high
transition.

A functional diagram of the A/D converter is shown in Figure
4. All of the package pinouts are shown and the major logic
control paths are drawn in heavier weight lines.

The converter is started by having CS and WR simulta-
neously low. This sets the start flip-flop (F/F) and the result-
ing “1” level resets the 8-bit shift register, resets the Interrupt
(INTR) F/F and inputs a “1” to the D flop, F/F1, which is at the
input end of the 8-bit shift register. Internal clock signals then
transfer this “1” to the Q output of F/F1. The AND gate, G1,
combines this “1” output with a clock signal to provide a reset
signal to the start F/F. If the set signal is no longer present
(either WR or CS is a “1”) the start F/F is reset and the 8-bit
shift register then can have the “1” clocked in, which starts
the conversion process. If the set signal were to still be
present, this reset pulse would have no effect (both outputs
of the start F/F would momentarily be at a “1” level) and the
8-bit shift register would continue to be held in the reset
mode. This logic therefore allows for wide CS and WR sig-
nals and the converter will start after at least one of these
signals returns high and the internal clocks again provide a
reset signal for the start F/F.

Transfer Function

DS005671-85

Error Plot

DS005671-86

FIGURE 3. Clarifying the Error Specs of an A/D Converter
Accuracy =±1⁄2 LSB

A
D

C
08

01
/A

D
C

08
02

/A
D

C
08

03
/A

D
C

08
04

/A
D

C
08

05

www.national.com 18



Functional Description (Continued)

After the “1” is clocked through the 8-bit shift register (which
completes the SAR search) it appears as the input to the
D-type latch, LATCH 1. As soon as this “1” is output from the
shift register, the AND gate, G2, causes the new digital word
to transfer to the TRI-STATE output latches. When LATCH 1
is subsequently enabled, the Q output makes a high-to-low
transition which causes the INTR F/F to set. An inverting
buffer then supplies the INTR input signal.

Note that this SET control of the INTR F/F remains low for 8
of the external clock periods (as the internal clocks run at 1⁄8
of the frequency of the external clock). If the data output is
continuously enabled (CS and RD both held low), the INTR
output will still signal the end of conversion (by a high-to-low
transition), because the SET input can control the Q output
of the INTR F/F even though the RESET input is constantly
at a “1” level in this operating mode. This INTR output will
therefore stay low for the duration of the SET signal, which is
8 periods of the external clock frequency (assuming the A/D
is not started during this interval).

When operating in the free-running or continuous conversion
mode (INTR pin tied to WR and CS wired low — see also
section 2.8), the START F/F is SET by the high-to-low tran-
sition of the INTR signal. This resets the SHIFT REGISTER

which causes the input to the D-type latch, LATCH 1, to go
low. As the latch enable input is still present, the Q output will
go high, which then allows the INTR F/F to be RESET. This
reduces the width of the resulting INTR output pulse to only
a few propagation delays (approximately 300 ns).

When data is to be read, the combination of both CS and RD
being low will cause the INTR F/F to be reset and the
TRI-STATE output latches will be enabled to provide the 8-bit
digital outputs.

2.1 Digital Control Inputs

The digital control inputs (CS, RD, and WR) meet standard
T2L logic voltage levels. These signals have been renamed
when compared to the standard A/D Start and Output Enable
labels. In addition, these inputs are active low to allow an
easy interface to microprocessor control busses. For
non-microprocessor based applications, the CS input (pin 1)
can be grounded and the standard A/D Start function is ob-
tained by an active low pulse applied at the WR input (pin 3)
and the Output Enable function is caused by an active low
pulse at the RD input (pin 2).

DS005671-13

Note 13: CS shown twice for clarity.

Note 14: SAR = Successive Approximation Register.

FIGURE 4. Block Diagram

A
D

C
0801/A

D
C

0802/A
D

C
0803/A

D
C

0804/A
D

C
0805

www.national.com19



Functional Description (Continued)

2.2 Analog Differential Voltage Inputs and
Common-Mode Rejection

This A/D has additional applications flexibility due to the ana-
log differential voltage input. The VIN(−) input (pin 7) can be
used to automatically subtract a fixed voltage value from the
input reading (tare correction). This is also useful in 4 mA–20
mA current loop conversion. In addition, common-mode
noise can be reduced by use of the differential input.

The time interval between sampling VIN(+) and VIN(−) is 4-1⁄2
clock periods. The maximum error voltage due to this slight
time difference between the input voltage samples is given
by:

where:

∆Ve is the error voltage due to sampling delay

VP is the peak value of the common-mode voltage

fcm is the common-mode frequency

As an example, to keep this error to 1⁄4 LSB (∼5 mV) when
operating with a 60 Hz common-mode frequency, fcm, and
using a 640 kHz A/D clock, fCLK, would allow a peak value of
the common-mode voltage, VP, which is given by:

or

which gives

VP≅1.9V.

The allowed range of analog input voltages usually places
more severe restrictions on input common-mode noise lev-
els.

An analog input voltage with a reduced span and a relatively
large zero offset can be handled easily by making use of the
differential input (see section 2.4 Reference Voltage).

2.3 Analog Inputs

2.3 1 Input Current

Normal Mode

Due to the internal switching action, displacement currents
will flow at the analog inputs. This is due to on-chip stray ca-
pacitance to ground as shown in Figure 5.

The voltage on this capacitance is switched and will result in
currents entering the VIN(+) input pin and leaving the VIN(−)
input which will depend on the analog differential input volt-
age levels. These current transients occur at the leading
edge of the internal clocks. They rapidly decay and do not
cause errors as the on-chip comparator is strobed at the end
of the clock period.

Fault Mode

If the voltage source applied to the VIN(+) or VIN(−) pin ex-
ceeds the allowed operating range of VCC+50 mV, large in-
put currents can flow through a parasitic diode to the VCC

pin. If these currents can exceed the 1 mA max allowed
spec, an external diode (1N914) should be added to bypass
this current to the VCC pin (with the current bypassed with
this diode, the voltage at the VIN(+) pin can exceed the VCC

voltage by the forward voltage of this diode).

2.3.2 Input Bypass Capacitors

Bypass capacitors at the inputs will average these charges
and cause a DC current to flow through the output resis-
tances of the analog signal sources. This charge pumping
action is worse for continuous conversions with the VIN(+) in-
put voltage at full-scale. For continuous conversions with a
640 kHz clock frequency with the VIN(+) input at 5V, this DC
current is at a maximum of approximately 5 µA. Therefore,
bypass capacitors should not be used at the analog inputs or
the VREF/2 pin for high resistance sources (> 1 kΩ). If input
bypass capacitors are necessary for noise filtering and high
source resistance is desirable to minimize capacitor size, the
detrimental effects of the voltage drop across this input resis-
tance, which is due to the average value of the input current,
can be eliminated with a full-scale adjustment while the
given source resistor and input bypass capacitor are both in
place. This is possible because the average value of the in-
put current is a precise linear function of the differential input
voltage.

2.3.3 Input Source Resistance

Large values of source resistance where an input bypass ca-
pacitor is not used, will not cause errors as the input currents
settle out prior to the comparison time. If a low pass filter is
required in the system, use a low valued series resistor
(≤ 1 kΩ) for a passive RC section or add an op amp RC ac-
tive low pass filter. For low source resistance applications,
(≤ 1 kΩ), a 0.1 µF bypass capacitor at the inputs will prevent
noise pickup due to series lead inductance of a long wire. A

DS005671-14

rON of SW 1 and SW 2 ≅ 5 kΩ
r=rON CSTRAY ≅ 5 kΩ x 12 pF = 60 ns

FIGURE 5. Analog Input Impedance

A
D

C
08

01
/A

D
C

08
02

/A
D

C
08

03
/A

D
C

08
04

/A
D

C
08

05

www.national.com 20



Functional Description (Continued)

100Ω series resistor can be used to isolate this
capacitor — both the R and C are placed outside the feed-
back loop — from the output of an op amp, if used.

2.3.4 Noise

The leads to the analog inputs (pins 6 and 7) should be kept
as short as possible to minimize input noise coupling. Both
noise and undesired digital clock coupling to these inputs
can cause system errors. The source resistance for these in-
puts should, in general, be kept below 5 kΩ. Larger values of
source resistance can cause undesired system noise
pickup. Input bypass capacitors, placed from the analog in-
puts to ground, will eliminate system noise pickup but can
create analog scale errors as these capacitors will average
the transient input switching currents of the A/D (see section
2.3.1.). This scale error depends on both a large source re-
sistance and the use of an input bypass capacitor. This error
can be eliminated by doing a full-scale adjustment of the A/D
(adjust VREF/2 for a proper full-scale reading — see section
2.5.2 on Full-Scale Adjustment) with the source resistance
and input bypass capacitor in place.

2.4 Reference Voltage

2.4.1 Span Adjust

For maximum applications flexibility, these A/Ds have been
designed to accommodate a 5 VDC, 2.5 VDC or an adjusted
voltage reference. This has been achieved in the design of
the IC as shown in Figure 6.

Notice that the reference voltage for the IC is either 1⁄2 of the
voltage applied to the VCC supply pin, or is equal to the volt-
age that is externally forced at the VREF/2 pin. This allows for
a ratiometric voltage reference using the VCC supply, a 5
VDC reference voltage can be used for the VCC supply or a
voltage less than 2.5 VDC can be applied to the VREF/2 input
for increased application flexibility. The internal gain to the
VREF/2 input is 2, making the full-scale differential input volt-
age twice the voltage at pin 9.

An example of the use of an adjusted reference voltage is to
accommodate a reduced span — or dynamic voltage range
of the analog input voltage. If the analog input voltage were
to range from 0.5 VDC to 3.5 VDC, instead of 0V to 5 VDC, the
span would be 3V as shown in Figure 7. With 0.5 VDC ap-
plied to the VIN(−) pin to absorb the offset, the reference volt-
age can be made equal to 1⁄2 of the 3V span or 1.5 VDC. The
A/D now will encode the VIN(+) signal from 0.5V to 3.5 V with
the 0.5V input corresponding to zero and the 3.5 VDC input
corresponding to full-scale. The full 8 bits of resolution are
therefore applied over this reduced analog input voltage
range.

2.4.2 Reference Accuracy Requirements

The converter can be operated in a ratiometric mode or an
absolute mode. In ratiometric converter applications, the
magnitude of the reference voltage is a factor in both the out-
put of the source transducer and the output of the A/D con-
verter and therefore cancels out in the final digital output
code. The ADC0805 is specified particularly for use in ratio-
metric applications with no adjustments required. In absolute
conversion applications, both the initial value and the tem-
perature stability of the reference voltage are important fac-
tors in the accuracy of the A/D converter. For VREF/2 volt-
ages of 2.4 VDC nominal value, initial errors of ±10 mVDC will
cause conversion errors of ±1 LSB due to the gain of 2 of the
VREF/2 input. In reduced span applications, the initial value
and the stability of the VREF/2 input voltage become even
more important. For example, if the span is reduced to 2.5V,
the analog input LSB voltage value is correspondingly re-
duced from 20 mV (5V span) to 10 mV and 1 LSB at the
VREF/2 input becomes 5 mV. As can be seen, this reduces
the allowed initial tolerance of the reference voltage and re-
quires correspondingly less absolute change with tempera-
ture variations. Note that spans smaller than 2.5V place
even tighter requirements on the initial accuracy and stability
of the reference source.

In general, the magnitude of the reference voltage will re-
quire an initial adjustment. Errors due to an improper value
of reference voltage appear as full-scale errors in the A/D
transfer function. IC voltage regulators may be used for ref-
erences if the ambient temperature changes are not exces-
sive. The LM336B 2.5V IC reference diode (from National
Semiconductor) has a temperature stability of 1.8 mV typ
(6 mV max) over 0˚C≤TA≤+70˚C. Other temperature range
parts are also available.

DS005671-15

FIGURE 6. The VREFERENCE Design on the IC

A
D

C
0801/A

D
C

0802/A
D

C
0803/A

D
C

0804/A
D

C
0805

www.national.com21



Functional Description (Continued)

2.5 Errors and Reference Voltage Adjustments

2.5.1 Zero Error

The zero of the A/D does not require adjustment. If the mini-
mum analog input voltage value, VIN(MIN), is not ground, a
zero offset can be done. The converter can be made to out-
put 0000 0000 digital code for this minimum input voltage by
biasing the A/D VIN(−) input at this VIN(MIN) value (see Appli-
cations section). This utilizes the differential mode operation
of the A/D.

The zero error of the A/D converter relates to the location of
the first riser of the transfer function and can be measured by
grounding the VIN (−) input and applying a small magnitude
positive voltage to the VIN (+) input. Zero error is the differ-
ence between the actual DC input voltage that is necessary
to just cause an output digital code transition from 0000 0000
to 0000 0001 and the ideal 1⁄2 LSB value (1⁄2 LSB = 9.8 mV
for VREF/2=2.500 VDC).

2.5.2 Full-Scale

The full-scale adjustment can be made by applying a differ-
ential input voltage that is 11⁄2 LSB less than the desired ana-
log full-scale voltage range and then adjusting the magni-
tude of the VREF/2 input (pin 9 or the VCC supply if pin 9 is
not used) for a digital output code that is just changing from
1111 1110 to 1111 1111.

2.5.3 Adjusting for an Arbitrary Analog Input Voltage
Range

If the analog zero voltage of the A/D is shifted away from
ground (for example, to accommodate an analog input signal
that does not go to ground) this new zero reference should
be properly adjusted first. A VIN(+) voltage that equals this
desired zero reference plus 1⁄2 LSB (where the LSB is calcu-
lated for the desired analog span, 1 LSB=analog span/256)

is applied to pin 6 and the zero reference voltage at pin 7
should then be adjusted to just obtain the 00HEX to 01HEX

code transition.

The full-scale adjustment should then be made (with the
proper VIN(−) voltage applied) by forcing a voltage to the
VIN(+) input which is given by:

where:

VMAX=The high end of the analog input range

and

VMIN=the low end (the offset zero) of the analog range.
(Both are ground referenced.)

The VREF/2 (or VCC) voltage is then adjusted to provide a
code change from FEHEX to FFHEX. This completes the ad-
justment procedure.

2.6 Clocking Option

The clock for the A/D can be derived from the CPU clock or
an external RC can be added to provide self-clocking. The
CLK IN (pin 4) makes use of a Schmitt trigger as shown in
Figure 8.

DS005671-87

a) Analog Input Signal Example

DS005671-88

*Add if VREF/2 ≤ 1 VDC with LM358 to draw 3 mA to ground.

b) Accommodating an Analog Input from
0.5V (Digital Out = 00HEX) to 3.5V

(Digital Out =FFHEX)

FIGURE 7. Adapting the A/D Analog Input Voltages to Match an Arbitrary Input Signal Range

A
D

C
08

01
/A

D
C

08
02

/A
D

C
08

03
/A

D
C

08
04

/A
D

C
08

05

www.national.com 22



Functional Description (Continued)

Heavy capacitive or DC loading of the clock R pin should be
avoided as this will disturb normal converter operation.
Loads less than 50 pF, such as driving up to 7 A/D converter
clock inputs from a single clock R pin of 1 converter, are al-
lowed. For larger clock line loading, a CMOS or low power
TTL buffer or PNP input logic should be used to minimize the
loading on the clock R pin (do not use a standard TTL
buffer).

2.7 Restart During a Conversion

If the A/D is restarted (CS and WR go low and return high)
during a conversion, the converter is reset and a new con-
version is started. The output data latch is not updated if the
conversion in process is not allowed to be completed, there-
fore the data of the previous conversion remains in this latch.
The INTR output simply remains at the “1” level.

2.8 Continuous Conversions

For operation in the free-running mode an initializing pulse
should be used, following power-up, to ensure circuit opera-
tion. In this application, the CS input is grounded and the WR
input is tied to the INTR output. This WR and INTR node
should be momentarily forced to logic low following a
power-up cycle to guarantee operation.

2.9 Driving the Data Bus

This MOS A/D, like MOS microprocessors and memories,
will require a bus driver when the total capacitance of the
data bus gets large. Other circuitry, which is tied to the data
bus, will add to the total capacitive loading, even in
TRI-STATE (high impedance mode). Backplane bussing
also greatly adds to the stray capacitance of the data bus.

There are some alternatives available to the designer to
handle this problem. Basically, the capacitive loading of the
data bus slows down the response time, even though DC
specifications are still met. For systems operating with a
relatively slow CPU clock frequency, more time is available
in which to establish proper logic levels on the bus and there-
fore higher capacitive loads can be driven (see typical char-
acteristics curves).

At higher CPU clock frequencies time can be extended for
I/O reads (and/or writes) by inserting wait states (8080) or
using clock extending circuits (6800).

Finally, if time is short and capacitive loading is high, external
bus drivers must be used. These can be TRI-STATE buffers

(low power Schottky such as the DM74LS240 series is rec-
ommended) or special higher drive current products which
are designed as bus drivers. High current bipolar bus drivers
with PNP inputs are recommended.

2.10 Power Supplies

Noise spikes on the VCC supply line can cause conversion
errors as the comparator will respond to this noise. A low in-
ductance tantalum filter capacitor should be used close to
the converter VCC pin and values of 1 µF or greater are rec-
ommended. If an unregulated voltage is available in the sys-
tem, a separate LM340LAZ-5.0, TO-92, 5V voltage regulator
for the converter (and other analog circuitry) will greatly re-
duce digital noise on the VCC supply.

2.11 Wiring and Hook-Up Precautions

Standard digital wire wrap sockets are not satisfactory for
breadboarding this A/D converter. Sockets on PC boards
can be used and all logic signal wires and leads should be
grouped and kept as far away as possible from the analog
signal leads. Exposed leads to the analog inputs can cause
undesired digital noise and hum pickup, therefore shielded
leads may be necessary in many applications.

A single point analog ground that is separate from the logic
ground points should be used. The power supply bypass ca-
pacitor and the self-clocking capacitor (if used) should both
be returned to digital ground. Any VREF/2 bypass capacitors,
analog input filter capacitors, or input signal shielding should
be returned to the analog ground point. A test for proper
grounding is to measure the zero error of the A/D converter.
Zero errors in excess of 1⁄4 LSB can usually be traced to im-
proper board layout and wiring (see section 2.5.1 for mea-
suring the zero error).

3.0 TESTING THE A/D CONVERTER

There are many degrees of complexity associated with test-
ing an A/D converter. One of the simplest tests is to apply a
known analog input voltage to the converter and use LEDs to
display the resulting digital output code as shown in Figure 9.

For ease of testing, the VREF/2 (pin 9) should be supplied
with 2.560 VDC and a VCC supply voltage of 5.12 VDC should
be used. This provides an LSB value of 20 mV.

If a full-scale adjustment is to be made, an analog input volt-
age of 5.090 VDC (5.120–11⁄2 LSB) should be applied to the
VIN(+) pin with the VIN(−) pin grounded. The value of the
VREF/2 input voltage should then be adjusted until the digital
output code is just changing from 1111 1110 to 1111 1111.
This value of VREF/2 should then be used for all the tests.

The digital output LED display can be decoded by dividing
the 8 bits into 2 hex characters, the 4 most significant (MS)
and the 4 least significant (LS). Table 1 shows the fractional
binary equivalent of these two 4-bit groups. By adding the
voltages obtained from the “VMS” and “VLS” columns in
Table 1, the nominal value of the digital display (when
VREF/2 = 2.560V) can be determined. For example, for an
output LED display of 1011 0110 or B6 (in hex), the voltage
values from the table are 3.520 + 0.120 or 3.640 VDC. These
voltage values represent the center-values of a perfect A/D
converter. The effects of quantization error have to be ac-
counted for in the interpretation of the test results.

DS005671-17

FIGURE 8. Self-Clocking the A/D

A
D

C
0801/A

D
C

0802/A
D

C
0803/A

D
C

0804/A
D

C
0805

www.national.com23



Functional Description (Continued) For a higher speed test system, or to obtain plotted data, a
digital-to-analog converter is needed for the test set-up. An
accurate 10-bit DAC can serve as the precision voltage
source for the A/D. Errors of the A/D under test can be ex-
pressed as either analog voltages or differences in 2 digital
words.

A basic A/D tester that uses a DAC and provides the error as
an analog output voltage is shown in Figure 8. The 2 op
amps can be eliminated if a lab DVM with a numerical sub-
traction feature is available to read the difference voltage,
“A–C”, directly. The analog input voltage can be supplied by
a low frequency ramp generator and an X-Y plotter can be
used to provide analog error (Y axis) versus analog input (X
axis).

For operation with a microprocessor or a computer-based
test system, it is more convenient to present the errors digi-
tally. This can be done with the circuit of Figure 11, where the
output code transitions can be detected as the 10-bit DAC is
incremented. This provides 1⁄4 LSB steps for the 8-bit A/D un-
der test. If the results of this test are automatically plotted
with the analog input on the X axis and the error (in LSB’s)
as the Y axis, a useful transfer function of the A/D under test
results. For acceptance testing, the plot is not necessary and
the testing speed can be increased by establishing internal
limits on the allowed error for each code.

4.0 MICROPROCESSOR INTERFACING

To dicuss the interface with 8080A and 6800 microproces-
sors, a common sample subroutine structure is used. The
microprocessor starts the A/D, reads and stores the results
of 16 successive conversions, then returns to the user’s pro-
gram. The 16 data bytes are stored in 16 successive
memory locations. All Data and Addresses will be given in
hexadecimal form. Software and hardware details are pro-
vided separately for each type of microprocessor.

4.1 Interfacing 8080 Microprocessor Derivatives (8048,
8085)

This converter has been designed to directly interface with
derivatives of the 8080 microprocessor. The A/D can be
mapped into memory space (using standard memory ad-
dress decoding for CS and the MEMR and MEMW strobes)
or it can be controlled as an I/O device by using the I/O R
and I/O W strobes and decoding the address bits A0 → A7
(or address bits A8 → A15 as they will contain the same 8-bit
address information) to obtain the CS input. Using the I/O
space provides 256 additional addresses and may allow a
simpler 8-bit address decoder but the data can only be input
to the accumulator. To make use of the additional memory
reference instructions, the A/D should be mapped into
memory space. An example of an A/D in I/O space is shown
in Figure 12.

DS005671-18

FIGURE 9. Basic A/D Tester

A
D

C
08

01
/A

D
C

08
02

/A
D

C
08

03
/A

D
C

08
04

/A
D

C
08

05

www.national.com 24



Functional Description (Continued)

TABLE 1. DECODING THE DIGITAL OUTPUT LEDs

OUTPUT VOLTAGE

FRACTIONAL BINARY VALUE FOR CENTER VALUES

HEX BINARY WITH

VREF/2=2.560 VDC

MS GROUP LS GROUP VMS
GROUP
(Note 15)

VLS
GROUP
(Note 15)

F 1 1 1 1 15/16 15/256 4.800 0.300

E 1 1 1 0 7/8 7/128 4.480 0.280

D 1 1 0 1 13/16 13/256 4.160 0.260

C 1 1 0 0 3/4 3/64 3.840 0.240

B 1 0 1 1 11/16 11/256 3.520 0.220

A 1 0 1 0 5/8 5/128 3.200 0.200

9 1 0 0 1 9/16 9/256 2.880 0.180

8 1 0 0 0 1/2 1/32 2.560 0.160

7 0 1 1 1 7/16 7/256 2.240 0.140

6 0 1 1 0 3/8 3/128 1.920 0.120

5 0 1 0 1 5/16 2/256 1.600 0.100

4 0 1 0 0 1/4 1/64 1.280 0.080

3 0 0 1 1 3/16 3/256 0.960 0.060

2 0 0 1 0 1/8 1/128 0.640 0.040

1 0 0 0 1 1/16 1/256 0.320 0.020

0 0 0 0 0 0 0

Note 15: Display Output=VMS Group + VLS Group

DS005671-89

FIGURE 10. A/D Tester with Analog Error Output

DS005671-90

FIGURE 11. Basic “Digital” A/D Tester

A
D

C
0801/A

D
C

0802/A
D

C
0803/A

D
C

0804/A
D

C
0805

www.national.com25



Functional Description (Continued)

DS005671-20

Note 16: *Pin numbers for the DP8228 system controller, others are INS8080A.

Note 17: Pin 23 of the INS8228 must be tied to +12V through a 1 kΩ resistor to generate the RST 7

instruction when an interrupt is acknowledged as required by the accompanying sample program.

FIGURE 12. ADC0801_INS8080A CPU Interface

A
D

C
08

01
/A

D
C

08
02

/A
D

C
08

03
/A

D
C

08
04

/A
D

C
08

05

www.national.com 26



Functional Description (Continued)

Note 18: The stack pointer must be dimensioned because a RST 7 instruction pushes the PC onto the stack.

Note 19: All address used were arbitrarily chosen.

The standard control bus signals of the 8080 CS, RD and
WR) can be directly wired to the digital control inputs of the
A/D and the bus timing requirements are met to allow both
starting the converter and outputting the data onto the data
bus. A bus driver should be used for larger microprocessor
systems where the data bus leaves the PC board and/or
must drive capacitive loads larger than 100 pF.

4.1.1 Sample 8080A CPU Interfacing Circuitry and
Program

The following sample program and associated hardware
shown in Figure 12 may be used to input data from the con-
verter to the INS8080A CPU chip set (comprised of the
INS8080A microprocessor, the INS8228 system controller
and the INS8224 clock generator). For simplicity, the A/D is
controlled as an I/O device, specifically an 8-bit bi-directional
port located at an arbitrarily chosen port address, E0. The
TRI-STATE output capability of the A/D eliminates the need
for a peripheral interface device, however address decoding
is still required to generate the appropriate CS for the con-
verter.

It is important to note that in systems where the A/D con-
verter is 1-of-8 or less I/O mapped devices, no address de-
coding circuitry is necessary. Each of the 8 address bits (A0
to A7) can be directly used as CS inputs — one for each I/O
device.

4.1.2 INS8048 Interface

The INS8048 interface technique with the ADC0801 series
(see Figure 13) is simpler than the 8080A CPU interface.
There are 24 I/O lines and three test input lines in the 8048.
With these extra I/O lines available, one of the I/O lines (bit
0 of port 1) is used as the chip select signal to the A/D, thus
eliminating the use of an external address decoder. Bus con-
trol signals RD, WR and INT of the 8048 are tied directly to
the A/D. The 16 converted data words are stored at on-chip
RAM locations from 20 to 2F (Hex). The RD and WR signals
are generated by reading from and writing into a dummy ad-
dress, respectively. A sample interface program is shown
below.

SAMPLE PROGRAM FOR Figure 12 ADC0801–INS8080A CPU INTERFACE

DS005671-99

A
D

C
0801/A

D
C

0802/A
D

C
0803/A

D
C

0804/A
D

C
0805

www.national.com27



Functional Description (Continued)

4.2 Interfacing the Z-80

The Z-80 control bus is slightly different from that of the
8080. General RD and WR strobes are provided and sepa-
rate memory request, MREQ, and I/O request, IORQ, sig-
nals are used which have to be combined with the general-
ized strobes to provide the equivalent 8080 signals. An
advantage of operating the A/D in I/O space with the Z-80 is
that the CPU will automatically insert one wait state (the RD
and WR strobes are extended one clock period) to allow
more time for the I/O devices to respond. Logic to map the
A/D in I/O space is shown in Figure 14. Additional I/O advantages exist as software DMA routines

are available and use can be made of the output data trans-
fer which exists on the upper 8 address lines (A8 to A15) dur-

DS005671-21

FIGURE 13. INS8048 Interface

SAMPLE PROGRAM FOR Figure 13 INS8048 INTERFACE

DS005671-A0

DS005671-23

FIGURE 14. Mapping the A/D as an I/O Device
for Use with the Z-80 CPU

A
D

C
08

01
/A

D
C

08
02

/A
D

C
08

03
/A

D
C

08
04

/A
D

C
08

05

www.national.com 28



Functional Description (Continued)

ing I/O input instructions. For example, MUX channel selec-
tion for the A/D can be accomplished with this operating
mode.

4.3 Interfacing 6800 Microprocessor Derivatives
(6502, etc.)

The control bus for the 6800 microprocessor derivatives
does not use the RD and WR strobe signals. Instead it em-
ploys a single R/W line and additional timing, if needed, can
be derived fom the φ2 clock. All I/O devices are memory
mapped in the 6800 system, and a special signal, VMA, indi-
cates that the current address is valid. Figure 15 shows an
interface schematic where the A/D is memory mapped in the
6800 system. For simplicity, the CS decoding is shown using
1⁄2 DM8092. Note that in many 6800 systems, an already de-
coded 4/5 line is brought out to the common bus at pin 21.
This can be tied directly to the CS pin of the A/D, provided
that no other devices are addressed at HX ADDR: 4XXX or
5XXX.

The following subroutine performs essentially the same func-
tion as in the case of the 8080A interface and it can be called
from anywhere in the user’s program.

In Figure 16 the ADC0801 series is interfaced to the M6800
microprocessor through (the arbitrarily chosen) Port B of the
MC6820 or MC6821 Peripheral Interface Adapter, (PIA).
Here the CS pin of the A/D is grounded since the PIA is al-

ready memory mapped in the M6800 system and no CS de-
coding is necessary. Also notice that the A/D output data
lines are connected to the microprocessor bus under pro-
gram control through the PIA and therefore the A/D RD pin
can be grounded.

A sample interface program equivalent to the previous one is
shown below Figure 16. The PIA Data and Control Registers
of Port B are located at HEX addresses 8006 and 8007, re-
spectively.

5.0 GENERAL APPLICATIONS

The following applications show some interesting uses for
the A/D. The fact that one particular microprocessor is used
is not meant to be restrictive. Each of these application cir-
cuits would have its counterpart using any microprocessor
that is desired.

5.1 Multiple ADC0801 Series to MC6800 CPU Interface

To transfer analog data from several channels to a single mi-
croprocessor system, a multiple converter scheme presents
several advantages over the conventional multiplexer
single-converter approach. With the ADC0801 series, the dif-
ferential inputs allow individual span adjustment for each
channel. Furthermore, all analog input channels are sensed
simultaneously, which essentially divides the microproces-
sor’s total system servicing time by the number of channels,
since all conversions occur simultaneously. This scheme is
shown in Figure 17.

DS005671-24

Note 20: Numbers in parentheses refer to MC6800 CPU pin out.

Note 21: Number or letters in brackets refer to standard M6800 system common bus code.

FIGURE 15. ADC0801-MC6800 CPU Interface

A
D

C
0801/A

D
C

0802/A
D

C
0803/A

D
C

0804/A
D

C
0805

www.national.com29



Functional Description (Continued)

Note 22: In order for the microprocessor to service subroutines and interrupts, the stack pointer must be dimensioned in the user’s program.

SAMPLE PROGRAM FOR Figure 15 ADC0801-MC6800 CPU INTERFACE

DS005671-A1

DS005671-25

FIGURE 16. ADC0801–MC6820 PIA Interface

A
D

C
08

01
/A

D
C

08
02

/A
D

C
08

03
/A

D
C

08
04

/A
D

C
08

05

www.national.com 30



Functional Description (Continued)

The following schematic and sample subroutine (DATA IN)
may be used to interface (up to) 8 ADC0801’s directly to the
MC6800 CPU. This scheme can easily be extended to allow
the interface of more converters. In this configuration the
converters are (arbitrarily) located at HEX address 5000 in
the MC6800 memory space. To save components, the clock
signal is derived from just one RC pair on the first converter.
This output drives the other A/Ds.

All the converters are started simultaneously with a STORE
instruction at HEX address 5000. Note that any other HEX
address of the form 5XXX will be decoded by the circuit, pull-
ing all the CS inputs low. This can easily be avoided by using
a more definitive address decoding scheme. All the inter-
rupts are ORed together to insure that all A/Ds have com-
pleted their conversion before the microprocessor is inter-
rupted.

The subroutine, DATA IN, may be called from anywhere in
the user’s program. Once called, this routine initializes the

CPU, starts all the converters simultaneously and waits for
the interrupt signal. Upon receiving the interrupt, it reads the
converters (from HEX addresses 5000 through 5007) and
stores the data successively at (arbitrarily chosen) HEX ad-
dresses 0200 to 0207, before returning to the user’s pro-
gram. All CPU registers then recover the original data they
had before servicing DATA IN.

5.2 Auto-Zeroed Differential Transducer Amplifier
and A/D Converter

The differential inputs of the ADC0801 series eliminate the
need to perform a differential to single ended conversion for
a differential transducer. Thus, one op amp can be elimi-
nated since the differential to single ended conversion is pro-
vided by the differential input of the ADC0801 series. In gen-
eral, a transducer preamp is required to take advantage of
the full A/D converter input dynamic range.

SAMPLE PROGRAM FOR Figure 16 ADC0801–MC6820 PIA INTERFACE

DS005671-A2

A
D

C
0801/A

D
C

0802/A
D

C
0803/A

D
C

0804/A
D

C
0805

www.national.com31



Functional Description (Continued)

DS005671-26

Note 23: Numbers in parentheses refer to MC6800 CPU pin out.

Note 24: Numbers of letters in brackets refer to standard M6800 system common bus code.

FIGURE 17. Interfacing Multiple A/Ds in an MC6800 System

A
D

C
08

01
/A

D
C

08
02

/A
D

C
08

03
/A

D
C

08
04

/A
D

C
08

05

www.national.com 32



Functional Description (Continued)

Note 25: In order for the microprocessor to service subroutines and interrupts, the stack pointer must be dimensioned in the user’s program.

For amplification of DC input signals, a major system error is
the input offset voltage of the amplifiers used for the preamp.
Figure 18 is a gain of 100 differential preamp whose offset
voltage errors will be cancelled by a zeroing subroutine
which is performed by the INS8080A microprocessor sys-
tem. The total allowable input offset voltage error for this
preamp is only 50 µV for 1⁄4 LSB error. This would obviously
require very precise amplifiers. The expression for the differ-
ential output voltage of the preamp is:

where IX is the current through resistor RX. All of the offset
error terms can be cancelled by making ±IXRX= VOS1 +
VOS3 − VOS2. This is the principle of this auto-zeroing
scheme.

The INS8080A uses the 3 I/O ports of an INS8255 Program-
able Peripheral Interface (PPI) to control the auto zeroing
and input data from the ADC0801 as shown in Figure 19.
The PPI is programmed for basic I/O operation (mode 0) with
Port A being an input port and Ports B and C being output
ports. Two bits of Port C are used to alternately open or close
the 2 switches at the input of the preamp. Switch SW1 is
closed to force the preamp’s differential input to be zero dur-
ing the zeroing subroutine and then opened and SW2 is then
closed for conversion of the actual differential input signal.
Using 2 switches in this manner eliminates concern for the
ON resistance of the switches as they must conduct only the
input bias current of the input amplifiers.

Output Port B is used as a successive approximation regis-
ter by the 8080 and the binary scaled resistors in series with
each output bit create a D/A converter. During the zeroing
subroutine, the voltage at Vx increases or decreases as re-
quired to make the differential output voltage equal to zero.
This is accomplished by ensuring that the voltage at the out-
put of A1 is approximately 2.5V so that a logic “1” (5V) on

SAMPLE PROGRAM FOR Figure 17 INTERFACING MULTIPLE A/D’s IN AN MC6800 SYSTEM

DS005671-A3

SAMPLE PROGRAM FOR Figure 17 INTERFACING MULTIPLE A/D’s IN AN MC6800 SYSTEM

DS005671-A4

A
D

C
0801/A

D
C

0802/A
D

C
0803/A

D
C

0804/A
D

C
0805

www.national.com33



Functional Description (Continued)

any output of Port B will source current into node VX thus
raising the voltage at VX and making the output differential
more negative. Conversely, a logic “0” (0V) will pull current
out of node VX and decrease the voltage, causing the differ-
ential output to become more positive. For the resistor val-
ues shown, VX can move ±12 mV with a resolution of 50 µV,
which will null the offset error term to 1⁄4 LSB of full-scale for

the ADC0801. It is important that the voltage levels that drive
the auto-zero resistors be constant. Also, for symmetry, a
logic swing of 0V to 5V is convenient. To achieve this, a
CMOS buffer is used for the logic output signals of Port B
and this CMOS package is powered with a stable 5V source.
Buffer amplifier A1 is necessary so that it can source or sink
the D/A output current.

DS005671-91

Note 26: R2 = 49.5 R1

Note 27: Switches are LMC13334 CMOS analog switches.

Note 28: The 9 resistors used in the auto-zero section can be ±5% tolerance.

FIGURE 18. Gain of 100 Differential Transducer Preamp

A
D

C
08

01
/A

D
C

08
02

/A
D

C
08

03
/A

D
C

08
04

/A
D

C
08

05

www.national.com 34



Functional Description (Continued)

A flow chart for the zeroing subroutine is shown in Figure 20.
It must be noted that the ADC0801 series will output an all
zero code when it converts a negative input [VIN(−) ≥ VIN(+)].
Also, a logic inversion exists as all of the I/O ports are buff-
ered with inverting gates.

Basically, if the data read is zero, the differential output volt-
age is negative, so a bit in Port B is cleared to pull VX more
negative which will make the output more positive for the
next conversion. If the data read is not zero, the output volt-
age is positive so a bit in Port B is set to make VX more posi-
tive and the output more negative. This continues for 8 ap-
proximations and the differential output eventually
converges to within 5 mV of zero.

The actual program is given in Figure 21. All addresses used
are compatible with the BLC 80/10 microcomputer system.
In particular:

Port A and the ADC0801 are at port address E4

Port B is at port address E5

Port C is at port address E6

PPI control word port is at port address E7

Program Counter automatically goes to ADDR:3C3D upon

acknowledgement of an interrupt from the ADC0801

5.3 Multiple A/D Converters in a Z-80 Interrupt
Driven Mode

In data acquisition systems where more than one A/D con-
verter (or other peripheral device) will be interrupting pro-
gram execution of a microprocessor, there is obviously a

need for the CPU to determine which device requires servic-
ing. Figure 22 and the accompanying software is a method
of determining which of 7 ADC0801 converters has com-
pleted a conversion (INTR asserted) and is requesting an in-
terrupt. This circuit allows starting the A/D converters in any
sequence, but will input and store valid data from the con-
verters with a priority sequence of A/D 1 being read first, A/D
2 second, etc., through A/D 7 which would have the lowest
priority for data being read. Only the converters whose INT is
asserted will be read.

The key to decoding circuitry is the DM74LS373, 8-bit D type
flip-flop. When the Z-80 acknowledges the interrupt, the pro-
gram is vectored to a data input Z-80 subroutine. This sub-
routine will read a peripheral status word from the
DM74LS373 which contains the logic state of the INTR out-
puts of all the converters. Each converter which initiates an
interrupt will place a logic “0” in a unique bit position in the
status word and the subroutine will determine the identity of
the converter and execute a data read. An identifier word
(which indicates which A/D the data came from) is stored in
the next sequential memory location above the location of
the data so the program can keep track of the identity of the
data entered.

DS005671-92

FIGURE 19. Microprocessor Interface Circuitry for Differential Preamp

A
D

C
0801/A

D
C

0802/A
D

C
0803/A

D
C

0804/A
D

C
0805

www.national.com35



Functional Description (Continued)

DS005671-28

FIGURE 20. Flow Chart for Auto-Zero Routine

A
D

C
08

01
/A

D
C

08
02

/A
D

C
08

03
/A

D
C

08
04

/A
D

C
08

05

www.national.com 36



Functional Description (Continued)

5.3 Multiple A/D Converters in a Z-80 Interrupt Driven
Mode (Continued)

The following notes apply:

• It is assumed that the CPU automatically performs a RST
7 instruction when a valid interrupt is acknowledged
(CPU is in interrupt mode 1). Hence, the subroutine start-
ing address of X0038.

• The address bus from the Z-80 and the data bus to the
Z-80 are assumed to be inverted by bus drivers.

• A/D data and identifying words will be stored in sequen-
tial memory locations starting at the arbitrarily chosen ad-
dress X 3E00.

• The stack pointer must be dimensioned in the main pro-
gram as the RST 7 instruction automatically pushes the
PC onto the stack and the subroutine uses an additional
6 stack addresses.

• The peripherals of concern are mapped into I/O space
with the following port assignments:

DS005671-A5

Note 29: All numerical values are hexadecimal representations.

FIGURE 21. Software for Auto-Zeroed Differential A/D

A
D

C
0801/A

D
C

0802/A
D

C
0803/A

D
C

0804/A
D

C
0805

www.national.com37



Functional Description (Continued)

HEX PORT ADDRESS PERIPHERAL

00 MM74C374 8-bit flip-flop

01 A/D 1

02 A/D 2

03 A/D 3

HEX PORT ADDRESS PERIPHERAL

04 A/D 4

05 A/D 5

06 A/D 6

07 A/D 7

This port address also serves as the A/D identifying word in
the program.

DS005671-29

FIGURE 22. Multiple A/Ds with Z-80 Type Microprocessor

A
D

C
08

01
/A

D
C

08
02

/A
D

C
08

03
/A

D
C

08
04

/A
D

C
08

05

www.national.com 38



Functional Description (Continued)

DS005671-A6

A
D

C
0801/A

D
C

0802/A
D

C
0803/A

D
C

0804/A
D

C
0805

www.national.com39



Physical Dimensions inches (millimeters) unless otherwise noted

SO Package (M)
Order Number ADC0802LCWM or ADC0804LCWM

NS Package Number M20B

Molded Dual-In-Line Package (N)
Order Number ADC0801LCN, ADC0802LCN,

ADC0803LCN, ADC0804LCN or ADC0805LCN
NS Package Number N20A

A
D

C
08

01
/A

D
C

08
02

/A
D

C
08

03
/A

D
C

08
04

/A
D

C
08

05

www.national.com 40



Notes

LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL
COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or
systems which, (a) are intended for surgical implant
into the body, or (b) support or sustain life, and
whose failure to perform when properly used in
accordance with instructions for use provided in the
labeling, can be reasonably expected to result in a
significant injury to the user.

2. A critical component is any component of a life
support device or system whose failure to perform
can be reasonably expected to cause the failure of
the life support device or system, or to affect its
safety or effectiveness.

National Semiconductor
Corporation
Americas
Tel: 1-800-272-9959
Fax: 1-800-737-7018
Email: support@nsc.com

National Semiconductor
Europe

Fax: +49 (0) 1 80-530 85 86
Email: europe.support@nsc.com

Deutsch Tel: +49 (0) 1 80-530 85 85
English Tel: +49 (0) 1 80-532 78 32
Français Tel: +49 (0) 1 80-532 93 58
Italiano Tel: +49 (0) 1 80-534 16 80

National Semiconductor
Asia Pacific Customer
Response Group
Tel: 65-2544466
Fax: 65-2504466
Email: sea.support@nsc.com

National Semiconductor
Japan Ltd.
Tel: 81-3-5639-7560
Fax: 81-3-5639-7507

www.national.com

A
D

C
0801/A

D
C

0802/A
D

C
0803/A

D
C

0804/A
D

C
0805

8-B
itµP

C
om

patible
A

/D
C

onverters

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.



Philips Semiconductors Linear Products Product specification

ADC0803/4-1CMOS 8-bit A/D converters

555August 31, 1994 853-0034 13721

DESCRIPTION
The ADC0803 family is a series of three CMOS 8-bit successive
approximation A/D converters using a resistive ladder and
capacitive array together with an auto-zero comparator. These
converters are designed to operate with microprocessor-controlled
buses using a minimum of external circuitry. The 3-State output data
lines can be connected directly to the data bus.

The differential analog voltage input allows for increased
common-mode rejection and provides a means to adjust the
zero-scale offset. Additionally, the voltage reference input provides a
means of encoding small analog voltages to the full 8 bits of
resolution.

FEATURES
• Compatible with most microprocessors

• Differential inputs

• 3-State outputs

• Logic levels TTL and MOS compatible

• Can be used with internal or external clock

• Analog input range 0V to VCC

• Single 5V supply

• Guaranteed specification with 1MHz clock

PIN CONFIGURATION

1

2

3

4

5

6

7

8

9

10 11

12

13

14

20

19

18

17

16

15

D1
, N PACKAGES

CS

RD

WR

INTR

CLK IN

VIN(+)

VIN(–)

A GND

VREF/2

D GND

VCC

CLK R

D0

D1

D2

D3

D4

D5

D6

D7

TOP VIEW
NOTE:
SOL — Released in large SO package only.

APPLICATIONS
• Transducer-to-microprocessor interface

• Digital thermometer

• Digitally-controlled thermostat

• Microprocessor-based monitoring and control systems

ORDERING INFORMATION
DESCRIPTION TEMPERATURE RANGE ORDER CODE DWG #

20-Pin Plastic Dual In-Line Package (DIP) -40 to +85°C ADC0803/04-1 LCN 0408B

20-Pin Plastic Dual In-Line Package (DIP) 0 to 70°C ADC0803/04-1 CN 0408B

20-Pin Plastic Small Outline (SO) Package 0 to 70°C ADC0803/04-1 CD 1021B

20-Pin Plastic Small Outline (SO) Package -40 to 85°C ADC0803/04-1 LCD 1021B

ABSOLUTE MAXIMUM RATINGS
SYMBOL PARAMETER RATING UNIT

VCC Supply voltage 6.5 V

Logic control input voltages -0.3 to +16 V

All other input voltages
-0.3 to

(VCC +0.3)
V

TA Operating temperature range

ADC0803/04-1 LCD -40 to +85 °C
ADC0803/04-1 LCN -40 to +85 °C
ADC0803/04-1 CD 0 to +70 °C
ADC0803/04-1 CN 0 to +70 °C

TSTG Storage temperature -65 to +150 °C
TSOLD Lead soldering temperature (10 seconds) 300 °C

PD
Maximum power dissipation 
TA=25°C (still air)1

N package 1690 mW

D package 1390 mW

NOTES:
1. Derate above 25°C, at the following rates:  N package at 13.5mW/°C;  D package at 11.1mW/°C



Philips Semiconductors Linear Products Product specification

ADC0803/4-1CMOS 8-bit A/D converters

August 31, 1994 556

BLOCK DIAGRAM

M

VIN (+) VIN (–)
76

+ –

LADDER AND 
DECODER

+

–

AUTO ZERO
COMPARATOR

VREF/2

A GND

9

8

VCC
20

10

D GND

WR

CS

RD

3

1

2

SAR

8–BIT
SHIFT REGISTER

INTR
FF

CLOCK

OUTPUT
LATCHES

LE OE

D7 (MSB) (11)

D6 (12)
D5 (13)
D4 (14)

D3 (15)
D2 (16)
D1 (17)
D0 (LSB) (18)

INTR CLK IN CLK R

S

R Q

5 4 19



Philips Semiconductors Linear Products Product specification

ADC0803/4-1CMOS 8-bit A/D converters

August 31, 1994 557

DC ELECTRICAL CHARACTERISTICS
VCC = 5.0V, fCLK = 1MHz, TMIN ≤ TA ≤ TMAX, unless otherwise specified.

SYMBOL PARAMETER TEST CONDITIONS
ADC0803/4

UNITSYMBOL PARAMETER TEST CONDITIONS
Min Typ Max

UNIT

ADC0803 relative accuracy error (adjusted) Full-Scale adjusted 0.50 LSB

ADC0804 relative accuracy error (unadjusted) VREF/2 = 2.500VDC 1 LSB

RIN VREF/2 input resistance3 VCC = 0V2 400 680 Ω

Analog input voltage range3 –0.05 VCC+0.05 V

DC common-mode error
Over analog input voltage

range
1/16 1/8 LSB

Power supply sensitivity VCC = 5V ±10%1 1/16 LSB

Control inputs

VIH Logical “1” input voltage VCC = 5.25VDC 2.0 15 VDC

VIL Logical “0” input voltage VCC = 4.75VDC 0.8 VDC

IIH Logical “1” input current VIN = 5VDC 0.005 1 µADC

IIL Logical “0” input current VIN = 0VDC –1 –0.005 µADC

Clock in and clock R

VT+ Clock in positive-going threshold voltage 2.7 3.1 3.5 VDC

VT– Clock in negative-going threshold voltage 1.5 1.8 2.1 VDC

VH Clock in hysteresis (VT+)–(VT–) 0.6 1.3 2.0 VDC

VOL Logical “0” clock R output voltage IOL = 360µA, VCC = 4.75VDC 0.4 VDC

VOH Logical “1” clock R output voltage IOH = –360µA, VCC = 4.75VDC 2.4 VDC

Data output and INTR

VOL Logical “0” output voltage

Data outputs IOL = 1.6mA, VCC = 4.75VDC 0.4 VDC

INTR outputs IOL = 1.0mA, VCC = 4.75VDC 0.4 VDC

VOH Logical “1” output voltage
IOH = –360µA, VCC = 4.75VDC 2.4

VDCVOH Logical “1” output voltage
IOH = –10µA, VCC = 4.75VDC 4.5

VDC

IOZL 3-state output leakage VOUT = 0VDC, CS = logical “1” –3 µADC

IOZH 3-state output leakage VOUT = 5VDC, CS = logical “1” 3 µADC

ISC +Output short-circuit current VOUT = 0V, TA = 25°C 4.5 12 mADC

ISC –Output short-circuit current VOUT = VCC, TA = 25°C 9.0 30 mADC

ICC Power supply current
fCLK = 1MHz, VREF/2 = OPEN,

CS = Logical “1”, TA = 25°C 3.0 3.5 mA

NOTES:
1. Analog inputs must remain within the range: –0.05 ≤ VIN ≤ VCC + 0.05V.
2. See typical performance characteristics for input resistance at VCC = 5V.
3. VREF/2 and VIN must be applied after the VCC has been turned on to prevent the possibility of latching.



Philips Semiconductors Linear Products Product specification

ADC0803/4-1CMOS 8-bit A/D converters

August 31, 1994 558

AC ELECTRICAL CHARACTERISTICS

SYMBOL PARAMETER TO FROM TEST CONDITIONS
ADC0803/4

UNITSYMBOL PARAMETER TO FROM TEST CONDITIONS
Min Typ Max

UNIT

Conversion time fCLK=1MHz1 66 73 µs

fCLK Clock frequency1 0.1 1.0 3.0 MHz

Clock duty cycle1 40 60 %

CR Free-running conversion rate
CS=0, fCLK=1MHz
INTR tied to WR

13690 conv/s

tW(WR)L Start pulse width CS=0 30 ns

tACC Access time Output RD CS=0, CL=100pF 75 100 ns

t1H, t0H 3-State control Output RD
CL=10pF, RL=10kΩ

See 3-State test circuit
70 100 ns

tW1, tR1 INTR delay INTR
WD

 or RD
100 150 ns

CIN Logic input=capacitance 5 7.5 pF

COUT 3-State output capacitance 5 7.5 pF

NOTES:
1. Accuracy is guaranteed at fCLK=1MHz. Accuracy may degrade at higher clock frequencies.

FUNCTIONAL DESCRIPTION
These devices operate on the Successive Approximation principle.
Analog switches are closed sequentially by successive
approximation logic until the input to the auto-zero comparator
[ VIN(+)-VIN(-) ] matches the voltage from the decoder. After all bits
are tested and determined, the 8-bit binary code corresponding to
the input voltage is transferred to an output latch. Conversion begins
with the arrival of a pulse at the WR input if the CS input is low. On
the High-to-Low transition of the signal at the WR or the CS input,
the SAR is initialized, the shift register is reset, and the INTR output
is set high. The A/D will remain in the reset state as long as the CS
and WR inputs remain low. Conversion will start from one to eight
clock periods after one or both of these inputs makes a Low-to-High
transition. After the conversion is complete, the INTR pin will make a
High-to-Low transition. This can be used to interrupt a processor, or
otherwise signal the availability of a new conversion result. A read
(RD) operation (with CS low) will clear the INTR line and enable the
output latches. The device may be run in the free-running mode as
described later. A conversion in progress can be interrupted by
issuing another start command.

Digital Control Inputs
The digital control inputs (CS, WR, RD) are compatible with
standard TTL logic voltage levels. The required signals at these
inputs correspond to Chip Select, START Conversion, and Output
Enable control signals, respectively. They are active-Low for easy
interface to microprocessor and microcontroller control buses. For
applications not using microprocessors, the CS input (Pin 1) can be
grounded and the A/D START function is achieved by a
negative-going pulse to the WR input (Pin 3). The Output Enable
function is achieved by a logic low signal at the RD input (Pin 2),
which may be grounded to constantly have the latest conversion
present at the output.

ANALOG OPERATION

Analog Input Current
The analog comparisons are performed by a capacitive charge
summing circuit. The input capacitor is switched between VIN(+)4
and VIN(-), while reference capacitors are switched between taps on
the reference voltage divider string. The net charge corresponds to
the weighted difference between the input and the most recent total
value set by the successive approximation register.

The internal switching action causes displacement currents to flow
at the analog inputs. The voltage on the on-chip capacitance is
switched through the analog differential input voltage, resulting in
proportional currents entering the VIN(+) input and leaving the VIN(-)
input. These transient currents occur at the leading edge of the
internal clock pulses. They decay rapidly so do not inherently cause
errors as the on-chip comparator is strobed at the end of the clock
period.

Input Bypass Capacitors and Source Resistance
Bypass capacitors at the input will average the charges mentioned
above, causing a DC and an AC current to flow through the output
resistance of the analog signal sources. This charge pumping action
is worse for continuous conversions with the VIN(+) input at full
scale. This current can be a few microamps, so bypass capacitors
should NOT be used at the analog inputs of the VREF/2 input for
high resistance sources (> 1kΩ). If input bypass capacitors are
desired for noise filtering and a high source resistance is desired to
minimize capacitor size, detrimental effects of the voltage drop
across the input resistance can be eliminated by adjusting the full
scale with both the input resistance and the input bypass capacitor
in place. This is possible because the magnitude of the input current
is a precise linear function of the differential voltage.



Philips Semiconductors Linear Products Product specification

ADC0803/4-1CMOS 8-bit A/D converters

August 31, 1994 559

Large values of source resistance where an input bypass capacitor
is not used will not cause errors as the input currents settle out prior
to the comparison time. If a low pass filter is required in the system,
use a low valued series resistor (< 1kΩ) for a passive RC section or
add an op amp active filter (low pass). For applications with source
resistances at or below 1kΩ, a 0.1µF bypass capacitor at the inputs
will prevent pickup due to series lead inductance or a long wire. A
100Ω series resistor can be used to isolate this capacitor (both the
resistor and capacitor should be placed out of the feedback loop)
from the output of the op amp, if used.

Analog Differential Voltage Inputs and Common-
Mode Rejection
These A/D converters have additional flexibility due to the analog
differential voltage input. The VIN(-) input (Pin 7) can be used to
subtract a fixed voltage from the input reading (tare correction). This
is also useful in a 4/20mA current loop conversion. Common-mode
noise can also be reduced by the use of the differential input.

The time interval between sampling VIN(+) and VIN(-) is 4.5 clock
periods. The maximum error due to this time difference is given by:

V(max)=(VP) (2fCM) (4.5/fCLK),

where:

V=error voltage due to sampling delay

VP=peak value of common-mode voltage

fCM=common mode frequency

For example, with a 60Hz common-mode frequency, fcm, and a
1MHz A/D clock, FCLK, keeping this error to 1/4 LSB (about 5mV)
would allow a common-mode voltage, VP, which is given by:

VP �
[V(max) (fCLK)

(2fCM)(4.5)

or

VP �
(5 x 10�3) (104)
(6.28) (60) (4.5)

� 2.95V

The allowed range of analog input voltages usually places more
severe restrictions on input common-mode voltage levels than this,
however.

An analog input span less than the full 5V capability of the device,
together with a relatively large zero offset, can be easily handled by
use of the differential input. (See Reference Voltage Span Adjust).

Noise and Stray Pickup
The leads of the analog inputs (Pins 6 and 7) should be kept as
short as possible to minimize input noise coupling and stray signal
pick-up. Both EMI and undesired digital signal coupling to these
inputs can cause system errors. The source resistance for these
inputs should generally be below 5kΩ to help avoid undesired noise
pickup. Input bypass capacitors at the analog inputs can create
errors as described previously. Full scale adjustment with any input
bypass capacitors in place will eliminate these errors.

Reference Voltage
For application flexibility, these A/D converters have been designed
to accommodate fixed reference voltages of 5V to Pin 20 or 2.5V to
Pin 9, or an adjusted reference voltage at Pin 9. The reference can
be set by forcing it at VREF/2 input, or can be determined by the
supply voltage (Pin 20). Figure 1 indicates how this is accomplished.

Reference Voltage Span Adjust
Note that the Pin 9 (VREF/2) voltage is either 1/2 the voltage applied
to the VCC supply pin, or is equal to the voltage which is externally
forced at the VREF/2 pin. In addition to allowing for flexible
references and full span voltages, this also allows for a ratiometric
voltage reference. The internal gain of the VREF/2 input is 2, making
the full-scale differential input voltage twice the voltage at Pin 9.

For example, a dynamic voltage range of the analog input voltage
that extends from 0 to 4V gives a span of 4V (4-0), so the VREF/2
voltage can be made equal to 2V (half of the 4V span) and full scale
output would correspond to 4V at the input.

On the other hand, if the dynamic input voltage had a range of 0.5 to
3.5V, the span or dynamic input range is 3V (3.5-0.5). To encode
this 3V span with 0.5V yielding a code of zero, the minimum
expected input (0.5V, in this case) is applied to the VIN(-) pin to
account for the offset, and the VREF/2 pin is set to 1/2 the 3V span,
or 1.5V. The A/D converter will now encode the VIN(+) signal
between 0.5 and 3.5V with 0.5V at the input corresponding to a code
of zero and 3.5V at the input producing a full scale output code. The
full 8 bits of resolution are thus applied over this reduced input
voltage range. The required connections are shown in Figure 2.

Operating Mode
These converters can be operated in two modes:

1) absolute mode
2) ratiometric mode

In absolute mode applications, both the initial accuracy and the
temperature stability of the reference voltage are important factors in
the accuracy of the conversion. For VREF/2 voltages of 2.5V, initial
errors of ±10mV will cause conversion errors of ±1 LSB due to the
gain of 2 at the VREF/2 input. In reduced span applications, the initial
value and stability of the VREF/2 input voltage become even more
important as the same error is a larger percentage of the VREF/2
nominal value. See Figure 3.

In ratiometric converter applications, the magnitude of the reference
voltage is a factor in both the output of the source transducer and
the output of the A/D converter, and, therefore, cancels out in the
final digital code. See Figure 4.

Generally, the reference voltage will require an initial adjustment.
Errors due to an improper reference voltage value appear as
full-scale errors in the A/D transfer function.

ERRORS AND INPUT SPAN ADJUSTMENTS
There are many sources of error in any data converter, some of
which can be adjusted out. Inherent errors, such as relative
accuracy, cannot be eliminated, but such errors as full-scale and
zero scale offset errors can be eliminated quite easily. See Figure 2.

Zero Scale Error
Zero scale error of an A/D is the difference of potential between the
ideal 1/2 LSB value (9.8mV for VREF/2=2.500V) and that input
voltage which just causes an output transition from code 0000 0000
to a code of 0000 0001.

If the minimum input value is not ground potential, a zero offset can
be made. The converter can be made to output a digital code of
0000 0000 for the minimum expected input voltage by biasing the
VIN(-) input to that minimum value expected at the VIN(-) input to
that minimum value expected at the VIN(+) input. This uses the



Philips Semiconductors Linear Products Product specification

ADC0803/4-1CMOS 8-bit A/D converters

August 31, 1994 560

differential mode of the converter. Any offset adjustment should be
done prior to full scale adjustment.

Full Scale Adjustment
Full scale gain is adjusted by applying any desired offset voltage to
VIN(-), then applying the VIN(+) a voltage that is 1-1/2 LSB less than
the desired analog full-scale voltage range and then adjusting the
magnitude of VREF/2 input voltage (or the VCC supply if there is no
VREF/2 input connection) for a digital output code which just
changes from 1111 1110 to 1111 1111. The ideal VIN(+) voltage for
this full-scale adjustment is given by:

VIN( � ) � VIN(�)� 1.5 x
VMAX� VMIN

255

where:

VMAX=high end of analog input range (ground referenced)

VMIN=low end (zero offset) of analog input (ground referenced)

CLOCKING OPTION
The clock signal for these A/Ds can be derived from external
sources, such as a system clock, or self-clocking can be
accomplished by adding an external resistor and capacitor, as
shown in Figure 6.

Heavy capacitive or DC loading of the CLK R pin should be avoided
as this will disturb normal converter operation. Loads less than 50pF
are allowed. This permits driving up to seven A/D converter CLK IN
pins of this family from a single CLK R pin of one converter. For
larger loading of the clock line, a CMOS or low power TTL buffer or
PNP input logic should be used to minimize the loading on the CLK
R pin.

Restart During a Conversion
A conversion in process can be halted and a new conversion began
by bringing the CS and WR inputs low and allowing at least one of
them to go high again. The output data latch is not updated if the
conversion in progress is not completed; the data from the
previously completed conversion will remain in the output data
latches until a subsequent conversion is completed.

Continuous Conversion
To provide continuous conversion of input data, the CS and RD
inputs are grounded and INTR output is tied to the WR input. This
INTR/WR connection should be momentarily forced to a logic low
upon power-up to insure circuit operation. See Figure 5 for one way
to accomplish this.

DRIVING THE DATA BUS
This CMOS A/D converter, like MOS microprocessors and
memories, will require a bus driver when the total capacitance of the
data bus gets large. Other circuitry tied to the data bus will add to
the total capacitive loading, even in the high impedance mode.

There are alternatives in handling this problem. The capacitive
loading of the data bus slows down the response time, although DC
specifications are still met. For systems with a relatively low CPU
clock frequency, more time is available in which to establish proper
logic levels on the bus, allowing higher capacitive loads to be driven
(see Typical Performance Characteristics).

At higher CPU clock frequencies, time can be extended for I/O
reads (and/or writes) by inserting wait states (8880) or using
clock-extending circuits (6800, 8035).

Finally, if time is critical and capacitive loading is high, external bus
drivers must be used. These can be 3-State buffers (low power
Schottky is recommended, such as the N74LS240 series) or special
higher current drive products designed as bus drivers. High current
bipolar bus drivers with PNP inputs are recommended as the PNP
input offers low loading of the A/D output, allowing better response
time.

POWER SUPPLIES
Noise spikes on the VCC line can cause conversion errors as the
internal comparator will respond to them. A low inductance filter
capacitor should be used close to the converter VCC pin and values
of 1µF or greater are recommended. A separate 5V regulator for the
converter (and other 5V linear circuitry) will greatly reduce digital
noise on the VCC supply and the attendant problems.

WIRING AND LAYOUT PRECAUTIONS
Digital wire-wrap sockets and connections are not satisfactory for
breadboarding this (or any) A/D converter. Sockets on PC boards
can be used. All logic signal wires and leads should be grouped or
kept as far as possible from the analog signal leads. Single wire
analog input leads may pick up undesired hum and noise, requiring
the use of shielded leads to the analog inputs in many applications.

A single-point analog ground separate from the logic or digital
ground points should be used. The power supply bypass capacitor
and the self-clocking capacitor, if used, should be returned to digital
ground. Any VREF/2 bypass capacitor, analog input filter capacitors,
and any input shielding should be returned to the analog ground
point. Proper grounding will minimize zero-scale errors which are
present in every code. Zero-scale errors can usually be traced to
improper board layout and wiring.

APPLICATIONS

Microprocessor Interfacing
This family of A/D converters was designed for easy microprocessor
interfacing. These converters can be memory mapped with
appropriate memory address decoding for CS (read) input. The
active-Low write pulse from the processor is then connected to the
WR input of the A/D converter, while the processor active-Low read
pulse is fed to the converter RD input to read the converted data. If
the clock signal is derived from the microprocessor system clock,
the designer/programmer should be sure that there is no attempt to
read the converter until 74 converter clock pulses after the start
pulse goes high. Alternatively, the INTR pin may be used to interrupt
the processor to cause reading of the converted data. Of course, the
converter can be connected and addressed as a peripheral (in I/O
space), as shown in Figure 7. A bus driver should be used as a
buffer to the A/D output in large microprocessor systems where the
data leaves the PC board and/or must drive capacitive loads in
excess of 100pF. See Figure 9.

Interfacing the SCN8048 microcomputer family is pretty simple, as
shown in Figure 8. Since the SCN8048 family has 24 I/O lines, one
of these (shown here as bit 0 or port 1) can be used as the chip
select signal to the converter, eliminating the need for an address



Philips Semiconductors Linear Products Product specification

ADC0803/4-1CMOS 8-bit A/D converters

August 31, 1994 561

decoder. The RD and WR signals are generated by reading from
and writing to a dummy address.

Digitizing a Transducer Interface Output

Circuit Description
Figure 10 shows an example of digitizing transducer interface output
voltage. In this case, the transducer interface is the NE5521, an
LVDT (Linear Variable Differential Transformer) Signal Conditioner.
The diode at the A/D input is used to insure that the input to the A/D
does not go excessively beyond the supply voltage of the A/D. See
the NE5521 data sheet for a complete description of the operation of
that part.

Circuit Adjustment
To adjust the full scale and zero scale of the A/D, determine the
range of voltages that the transducer interface output will take on.
Set the LVDT core for null and set the Zero Scale Scale Adjust
Potentiometer for a digital output from the A/D of 1000 000. Set the
LVDT core for maximum voltage from the interface and set the Full
Scale Adjust potentiometer so the A/D output is just barely 1111
1111.

A Digital Thermostat

Circuit Description
The schematic of a Digital Thermostat is shown in Figure 11. The
A/D digitizes the output of the LM35, a temperature transducer IC
with an output of 10mV per °C. With VREF/2 set for 2.56V, this 10mV
corresponds to 1/2 LSB and the circuit resolution is 2°C. Reducing
VREF/2 to 1.28 yields a resolution of 1°C. Of course, the lower
VREF/2 is, the more sensitive the A/D will be to noise.

The desired temperature is set by holding either of the set buttons
closed. The SCC80C451 programming could cause the desired
(set) temperature to be displayed while either button is depressed
and for a short time after it is released. At other times the ambient
temperature could be displayed.

The set temperature is stored in an SCN8051 internal register. The
A/D conversion is started by writing anything at all to the A/D with
port pin P10 set high. The desired temperature is compared with the
digitized actual temperature, and the heater is turned on or off by
clearing setting port pin P12. If desired, another port pin could be
used to turn on or off an air conditioner.

The display drivers are NE587s if common anode LED displays are
used. Of course, it is possible to interface to LCD displays as well.



Philips Semiconductors Linear Products Product specification

ADC0803/4-1CMOS 8-bit A/D converters

August 31, 1994 562

TYPICAL PERFORMANCE CHARACTERISTICS

fCLK = 1MHz
CS = H

3.2

3.0

2.8

2.6

2.4

2.2

2.0

1.8
–50 –25 0 25 50 75 100 125

AMBIENT TEMPERATURE (C o)

P
O

W
E

R
 S

U
P

P
LY

 C
U

R
R

E
N

T
 (

m
A

)

10.0
8.0
6.0

4.0

2.0

1.0
0.8
0.6

0.4

0.2

0.1
10 20 40 60 80100 200 400 6001000

CLOCK CAP (pF)

C
LO

C
K

 F
R

Q
 (

M
H

z)

MAX.

TYP.

MIN.

VCC =
5.0V
TA = 25oC

5

4

3

2

1

0

–1

–2

–3

–4

–5
0 1 2 3 4 5

f  
   

   
   

(m
A

)
R

E
F

/2

APPLIED VREF/2 (V)

1.70

1.60

1.50

1.40

1.30
4.50 4.75 5.00 5.25 5.50

–55oC

+25oC

+125oC

LO
G

IC
 IN

P
U

T
 (

V
)

VCC SUPPLY VOLTAGE (V)

–55oC < TA 125oC

VT+

VT

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0
4.50 4.75 5.00 5.25 5.50

C
LK

–I
N

 T
H

R
E

S
H

O
LD

 V
O

L
TA

G
E

 (
V

)

VCC SUPPLY VOLTAGE (V)

18

16

14

12

10

8

6
–50 –25 0 25 50 75 100 125

AMBIENT TEMPERATURE ( oC)

O
U

T
P

U
T

 C
U

R
R

E
N

T
 (

m
A

)

VCC = 5.0V

VO = 2.5V

VO = 0.4V

VCC = 5.0V
VREF/2 =
2.5V

4

3

2

1

0
0 20 40 60 80 100 120

CONVERSION TIME (µs)

E
R

R
O

R
 (

LS
B

)

VCC =
5.0V
TA = 25oC

350

300

250

200

150

100

50

0
0 200 400 600 800 1000

LOAD CAPACITANCE (pF)

D
E

A
LY

 (
ns

)

Power Supply Current vs
Temperature

Clock Frequency vs
Clock Capacitor

Input Current vs
Applied Voltage at V REF/2 Pin

Logic Input Threshold
Voltage vs Supply Voltage

CLK–IN Threshold Voltage vs
Supply Voltage

Output Current vs
Temperature

Full Scale Error vs
Conversion Time

Delay From RD  Falling
Edge to Data Valid vs

Load Capacitance

5.5V

5.0V

4.5V



Philips Semiconductors Linear Products Product specification

ADC0803/4-1CMOS 8-bit A/D converters

August 31, 1994 563

3-STATE TEST CIRCUITS AND WAVEFORMS (ADC0801-1)

tr
90%

50%
10%

t0H

10%

VCC

GND

VOH

GND

RD

DATA
OUTPUTCL

VCC

DATA
OUTPUT

10KCL

CS
RD

tr
90%

50%
10%

t1H

90%

VCC

GND

VOH

GND

RD

DATA
OUTPUT

VCC

10K

CS
RD DATA

OUTPUT

VCC
20ns

10pF

tOH
t1H

10pF

TIMING DIAGRAMS  (All timing is measured from the 50% voltage points)

START
CONVERSION

CS

WR

tWI
tW(WR)L

ACTUAL INTERNAL
STATUS OF THE

CONVERTER
(LAST DATA WAS READ)

(LAST DATA WAS NOT READ)
INTR

INTR

CS

RD

DATA
OUTPUTS

INTR RESET

tRI

tACC
t1H, t0H

THREE–STATE

1 TO 8 X 1/fCLK

”NOT BUSY”

”BUSY”

INTERNAL TC

DATA IS VALID IN
OUTPUT LATCHES

INT ASSERTED

1/2 TCLK

NOTE

NOTE:
Read strobe must occur 8 clock periods (8/fCLK) after assertion of interrupt to guarantee reset of INTR.

Output Enable and Reset INTR



Philips Semiconductors Linear Products Product specification

ADC0803/4-1CMOS 8-bit A/D converters

August 31, 1994 564

NOTE: 
The VREF/2 voltage is either 1/2 the VCC voltage or is that which is forced at Pin 9.

Figure 1.  Internal Reference Design

VREF/2

VCC
20 VREF

R

R

DIGITAL
CIRCUITS

ANALOG
CIRCUITS

8 10

9

Figure 2.  Offsetting the Zero Scale and Adjusting
the Input Range (Span)

(5V)
VREF

FS
OFFSET
ADJUST

ZS
OFFSET
ADJUST

330

0.1µF
TO VREF/2

TO VIN(–)

+

–

VOLTAGE
REFERENCE

VREF/2

a. Fixed Reference b. Fixed Reference Derived from V CC
c. Optional Full

Scale Adjustment

VIN(+)

VIN(–)

VCC

+5V

+

VREF/2

10µF

A/D

A/D

VIN(+)

VIN(–)

VCC

VREF/2

+
10µF

+5V

2k

2k

+5V

2k

2k

100

Figure 3.  Absolute Mode of Operation

A/D

VIN(+)

VIN(–)

VCC

VREF/2

+
10µF

2k

2k

100
FULL SCALE
OPTIONAL

TRANSDUCER

VCC

Figure  4.  Ratiometric Mode of Operation with Optional
Full Scale Adjustment



Philips Semiconductors Linear Products Product specification

ADC0803/4-1CMOS 8-bit A/D converters

August 31, 1994 565

CLK IN

A GND

VREF/2

VIN(–)

A/D

+5V

10K 2.7k

10k 47µF TO
100µF

56pF

10k

CS 1

2

3

4

5

6

7

8

9

10

RD

INTR

WR

VIN(+)

D GND

20

CLK R

18

17

16

15

14

13

12

11

VCC

D0
DB0

D1

D2

D3

D4

D5

D6

D7

DB1

DB2

DB3

DB4

DB5

DB6

DB7

+5V

19

Figure 5.  Connection for Continuous Conversion

R

CLK IN  4

C

CLK

A/D

fCLK = 1/1.7 R C
R = 10K

CLK R 19

Figure 6.  Self-Clocking the Converter

D GND

VREF/2

CLK IN

A GND

VIN(–)

A/D

10k

CS 1

2

3

4

5

6

7

8

9

10

RD

INTR

WR

VIN(+)

20

CLK R

18

17

16

15

14

13

12

11

VCC

D0
DB0

D1

D2

D3

D4

D5

D6

D7

DB1

DB2

DB3

DB4

DB5

DB6

DB7

+5V

19

ADDRESS
DECODE

LOGIC

INT

I/O WR

I/O RD

ANALOG
INPUTS

56pF

Figure  7.  Interfacing to 8080A Microprocessor

20VCC

D GND

VREF/2

A GND

A/D

CS

1

2

3

4

5

6

7

8

17 RD

INTO

WR

VIN(+)

VCC
D0

D1

D2

D3

D4

D5

D6

D7

+5V

40

16

12

39

P1.0

P1.1

P1.2

P1.3

P1.4

P1.5

P1.6

P1.7

P0.0

SCN8051
OR

SCN80C51

18

17

16

15

14

13

12

11

2

3

5

1

RD

INTR

WR

19 CLK R

10k

4 CLK IN

6

7

ANALOG
INPUTS

12

11

Figure 8.  SCN8051 Interfacing

56pF

18

17

16

15

14

13

12

11

D0

D1

D2

D3

D4

D5

D6

D7

A/D

OE

DATA
BUS

8–BIT
BUFFER

N74LS241
N74LS244
N74LS541

Figure 9.  Buffering the A/D Output to Drive High
Capacitance Loads and for Driving Off-Board Loads



Philips Semiconductors Linear Products Product specification

ADC0803/4-1CMOS 8-bit A/D converters

August 31, 1994 566

A/D

4.7k

1.5k

1µF

4.7k 0.47µF 22k

470

Ct

18k

+5V

NE5521

LVDT

IN4148

VIN(–)

3.3k

2k

VCC
VIN(+)

2k

+5V

100

2k

FULL
SCALE

ADJUST

820

VREF/2

Figure 10.  Digitizing a Transducer Interface Output



Philips Semiconductors Linear Products Product specification

ADC0803/4-1CMOS 8-bit A/D converters

August 31, 1994 567

SCC80C51
A/D

CS

18

17

16

15

14

13

12

11

8 RD

INT

WR

D0

D1

D2

D3

D4

D5

D6

D7

10

6

27

DB0

DB1

DB2

DB3

DB4

DB5

DB6

DB7

P10

18

17

16

15

14

13

12

11

2

3

5

1

RD

INTR

WR

LOWER
P15

RAISE
P16

13 14

1/4
HEF4071

20 GND29 P12
+V

2N3906

1N4148 TO HEATER

1/4
HEF4071

6

2

1

7

3

6

2

1

7

3

RBI 5

NE587

NE587

RBO 4

RBI 5

7

8

10K

7

8

10K

20

19

+5V

VCC

CLK R

10K

CLK IN

56pF

4

+
10µF

VIN(–)

VIN(+)

7

D GND 10 8 AGND

LM35
6

Figure 11.  Digital Thermostat



2/21/97 12:57 PM    24329102.DOC

INTEL CONFIDENTIAL
(until publication date)

APPLICATION
NOTE

AP-578

Software and
Hardware
Considerations for
FPU Exception
Handlers for Intel
Architecture
Processors

Order Number: 243291-002

February 1997



AP-578

3/11/97 10:25 AM    24329102.DOC

INTEL CONFIDENTIAL
(until publication date)

2

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or
otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditions of
Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to
sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or
infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life
saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

The Pentium®  and Pentium Pro processor may contain design defects or errors known as errata which may cause the product
to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature, may be
obtained from:

        Intel Corporation
        P.O. Box 7641
        Mt. Prospect IL 60056-7641

or call 1-800-879-4683
or visit Intel’s website at http:\\www.intel.com

Copyright © Intel Corporation 1996, 1997.

* Third-party brands and names are the property of their respective owners.



AP-578

2/21/97 12:57 PM    24329102.DOC

INTEL CONFIDENTIAL
(until publication date)

3

CONTENTS

PAGE PAGE

1.0 INTRODUCTION AND READING GUIDE .3

2.0 MS-DOS* COMPATIBLE HANDLERS AND
THEIR ISSUES OVER GENERATIONS ...5

2.1 Origin of MS-DOS* Mode: 8088 and
8087 .....................................................5

2.2 Development of MS-DOS* Mode with 80286
and 80287; Intel386  Processor and
Intel387 Math Coprocessor ...................5

2.2.1 SPECIAL HARDWARE FOR THE
80287 INTERFACE ........................6

2.2.2 SPECIAL HARDWARE FOR THE
INTEL387 MATH COPROCESSOR
INTERFACE ..................................6

2.3 FERR# & IGNNE# with Intel486™  and
Pentium  Processors with CR0.NE=0 ..7

2.3.1 BASIC RULES: WHEN FERR# IS
GENERATED ................................7

2.3.2 RECOMMENDED EXTERNAL
HARDWARE TO SUPPORT MS-DOS*
COMPATIBILITY ...........................8

2.3.3 “NO-WAIT” FPU INSTRUCTIONS CAN
GET FPU INTERRUPT IN
WINDOW ..................................... 10

2.4 Pentium  Pro Processor with
CR0.NE=0 .......................................... 13

3.0 RECOMMENDED PROTOCOL FOR
MS-DOS™  AND WINDOWS* 95
COMPATIBLE HANDLERS ................... 14

3.1 Numeric Exceptions and their Defaults 14
3.1.1 TWO OPTIONS FOR HANDLING

NUMERIC EXCEPTIONS ............ 14
3.1.2 AUTOMATIC EXCEPTION HANDLING :

USING MASKED EXCEPTIONS ..15

3.2 Software Exception Handling ...............16
3.3 Synchronization Required for Use of FPU

Exception Handlers .............................17
3.3.1 EXCEPTION SYNCHRONIZATION:

WHAT, WHY AND WHEN ............17
3.3.2 EXCEPTION SYNCHRONIZATION

EXAMPLES..................................17
3.3.3 PROPER EXCEPTION

SYNCHRONIZATION IN GENERAL 18
3.4 FPU Exception Handling Examples .....18
3.5 Need for Preserving the State of IGNNE#

Circuit if Use FPU and SMM ...............22
3.6 Considerations When FPU Shared

Between Tasks ...................................22
3.6.1 SPECULATIVELY DEFERRING FPU

SAVES, GENERAL OVERVIEW ..23
3.6.2 TRACKING FPU OWNERSHIP .....24
3.6.3 INTERACTION OF FPU STATE

 SAVES AND FP EXCEPTION
ASSOCIATION ............................24

3.6.4 INTERRUPT ROUTING FROM THE
KERNEL.......................................26

4.0 DIFFERENCES FOR HANDLERS USING
NATIVE MODE .......................................27

4.1 Origin with 80286 and 80287; Intel386™
Processor
and Intel387 Math Coprocessor ..........27

4.2 Changes with Intel486  , Pentium  and
Pentium
Pro Processors with CR0.NE=1 ..........27

4.3 Considerations When FPU Shared Between
Tasks Using Native Mode ...................27



AP-578

2/21/97 12:57 PM    24329102.DOC

INTEL CONFIDENTIAL
(until publication date)

4

1.0 INTRODUCTION AND READING
GUIDE

The primary purpose of this application note is to
provide information to help software engineers
write the most robust Floating-Point Unit (FPU)
exception handlers possible. This note also
provides the basic hardware information needed to
design the MS-DOS* compatible interface1 for the
most recent generations of Intel Architecture
processors, starting with the Intel486™  processor.
(Because of the small amount of new design
activity, the hardware interfaces for the 8086
through the Intel386™  processors are treated only
briefly.) The third purpose is to provide a
compendium of the history of the development and
variations of the Intel Architecture Floating-Point
Units (FPUs) as relevant to their exception
handling. Following is a list of Intel Architecture
processors and math coprocessors in
chronological order.

• 8086 processor

• 8087 math coprocessor

• 80286 processor

• 80287 math coprocessor

• Intel386™  processor

• Intel387 math coprocessor

• Intel486™  DX processor
(with integrated FPU)

• Intel486 SX processor

• Intel487 math coprocessor

• Pentium®  processor (with integrated FPU)

• Pentium Pro processor (with integrated FPU)

Much of this material is in various sections of the
Pentium  Processor Family Developer’s Manual,
Volume 3. There is also some material in this
application note that is not published elsewhere.
On the other hand, there is much additional

                                                                
Footnotes
1 WINDOWS* 95 and WINDOWS 3.1 (and earlier

versions) use almost the same interface as MS-
DOS*, and the recommendations herein for an
MS-DOS compatable system apply to all three
operating systems.

material on the FPU from the Pentium  Processor
Family Developer’s Manual, Volume 3 which has
not been reproduced here, including the details on
each of its specific exceptions. Much of this will be
useful in writing FPU exception handlers, so
Volume 3 should be used as an essential
reference along with this appliction note.

NOTE

The following manuals referenced in this
document are archived and are available on
Intel’s web site at http://www.intel.com:
Pentium®  Processor Family Developer’s
Manual, Volume 1: Pentium Processor
(Order Number 241428-004) and the
Pentium®  Processor Family Developer’s
Manual, Volume 3:  Architecture and
Programming Manual (Order Number
241430-004).

The materials are presented in a mostly
chronological order, which supports the history
preservation purpose, and also minimizes forward
references. Thus the main body of this application
note begins with Section 2 which covers the six
presently available generations of Intel
Architecture FPUs in chronological order starting
with the 8087. The history of the FPU exception
handling has been complicated both by Intel’s
successful efforts to improve the performance and
flexibility of the FPU through the generations, and
by the decision to support upward compatibility for
a large customer base which was implementing
FPU exception handling in a way compatible with
the first 8088 Personal Computers (PCs) and
major Operating Systems (OSs). This second
complication has resulted in two different systems
or modes for FPU exception handling starting with
the 80286 and 80287.

Beginning with the 80286 and 80287, Intel
provided a dedicated input pin (ERROR#) on the
80286, to be connected to the ERROR# output pin
on the 80287, for the FPU exceptions. When
asserted, the ERROR# input triggers interrupt 16.
The use of this dedicated interrupt for the FPU
exception handler is referred to as the “native
mode”, and is recommended by Intel. However, for
reasons explained in Sections 2.1 and 2.2, the
majority of the Intel Architecture (IA) customer
base has not been using the native mode, but
rather the “MS-DOS compatible mode” for FPU
exception handling. Since the MS-DOS compatible
mode has the largest customer base, is the more
complicated mode, and has changed the most
between generations, it is the main focus of
Section 2. In addition to the history of the



AP-578

2/21/97 12:57 PM    24329102.DOC

INTEL CONFIDENTIAL
(until publication date)

5

architecture and interfaces for FPU exception
handling, Section 2 provides the basic hardware
information needed to design the MS-DOS
compatible interface for the most recent
generations of IA processors, and discusses in
detail several important system implications.

Section 3 describes the recommended protocol for
writing MS-DOS compatible FPU exception
handlers, with various options, along with
discussions of several problems and how to avoid
them. Most of the material is also applicable to
native mode handlers.

Although the native mode of FPU exception
handling was available from the second generation
of the six presently available generations of the
Intel Architecture FPUs (and brief discussions of it
are provided in Section 2), we give the main
presentation of it last, in Section 4. This is more
chronologically consistent than it would seem
because it has not become widely used until
recently.

A software engineer who needs to write an MS-
DOS compatible FPU exception handler but does
not want to review the FPU history (or read any
more about hardware than necessary) may skip
Section 2 and begin reading Section 3. Then some
subsections of Section 2 should be read as
needed when referenced in Section 3. Someone
writing a native mode exception handler that wants
to read only what’s necessary should start with
Section 4, but then should also read Section 3, as
most of the recommended protocol for FPU
exception handling is the same for MS-DOS
compatible and native modes and is not repeated
in Section 4. Studying Section 4 first will allow this
reader more easily to skip references back into
Section 2 which are not relevant to the native
mode.

A note on TERMINOLOGY: There are many
variations of the words which are used to label an
(unmasked) FPU error condition, and also the
code which handles it. “Error”, “exception” and
“fault” are used to refer to the condition. Such a
condition results in an interrupt, if no mask or
block is in effect along the interrupt pathway. The
code which handles the interrupt can be referred
to as an error or exception or fault handler, or an
interrupt or exception service routine, etc. The
phrase “exception handler” has been used
consistently (as much as possible) in this
application note, for several reasons: “Exception”
is less general than interrupt (which includes
external hardware interrupts and software

interrupts, as well as the processor problem
conditions called exceptions or faults), but
correctly more general than error or fault (because
e.g. a precision exception caused by the fact that
the number 1/3 cannot be exactly represented in
the 80 bit FPU format is not really due to any
mistake or error!). However, the reader should be
aware that a number of the variations given above
can be found in the literature, and that when
applied to the FPU, they all mean the same thing.

2.0 MS-DOS* COMPATIBLE
HANDLERS AND THEIR ISSUES
OVER GENERATIONS

2.1 Origin of MS-DOS* Mode: 8088
and 8087

The 8087 has an output pin, INT, which it asserts
when an unmasked exception occurs. There is no
dedicated pin or interrupt vector number in the
8088 or 8086  specific for an FPU error assertion.
Intel recommended that the FPU INT be routed to
the 8088 or 8086 INTR pin through an 8259A
Programmable Interrupt Controller (PIC), and not
to the NMI input. However, the original PC design
attached INT to NMI anyway, because by the time
the 8087 was available, the original PC had
already assigned other functions to the 8 inputs of
the single PIC used in that design.

2.2 Development of MS-DOS*
Mode with 80286 and 80287;
Intel386  Processor and
Intel387 Math Coprocessor

The 80286 and 80287 and Intel386 processor and
Intel387 math coprocessor pairs are each provided
with ERROR# pins that are recommended to be
connected between the processor and FPU. If this
is done, when an unmasked FPU exception
occurs, the FPU records the exception, and
asserts its ERROR# pin. The processor
recognizes this active condition of the ERROR#
status line at the next WAIT or ESC instruction in
its instruction stream, and branches to the FPU
exception handler at interrupt vector 16. This is the
native mode.

However, it was important to maintain maximum
compatibility with the already significant 8088 and
8086 PC software base, where the NMI vector (#2)
was used for FPU exceptions and vector 16 was



AP-578

2/21/97 12:57 PM    24329102.DOC

INTEL CONFIDENTIAL
(until publication date)

6

used for the BIOS video software interrupt. So the
original IBM PC-AT* design for the 80286 and
80287 maintained Vector #16 for the BIOS video,
and vector 2 was shared between the FPU
exception and the new parity checking feature. A
parity error detected by external hardware directly
triggered vector 2 through the NMI pin. The FPU
exception was handled by tying the 80286 RROR#
input permanently high, and the 80287 ERROR#
output was tied to the IRQ13 interrupt input on the
second (cascaded) PIC in the PC-AT design. The
PIC was programmed to issue vector 75H when
IRQ13 was triggered.2 But to maintain
compatibility with older PC software that expected
to access its own FPU exception handler by
changing vector 2, the BIOS routine activated by
INT 75H branches to INT 2. The standard INT 2
routine tests to see if the signal is due to the NMI
pin (in which case it branches to the Parity Error
handler) or an FPU exception.

2.2.1 SPECIAL HARDWARE FOR THE
80287 INTERFACE

It is necessary to guarantee, in the case of an
80287 exception, that the exception will be
handled through the external loop using IRQ13 in
the cascaded PIC before other 80287 instructions
are sent over from the 80286. This is done by
asserting BUSY# to the 80286, which normally
means that the 80287 is still busy with a previous
instruction, and so blocks the 80286 from sending
another until BUSY# is de-asserted. This
additional use of BUSY# is implemented by an
edge triggered flip-flop which latches BUSY# using
ERROR# from the 80287 as a clock. The output of
this latch is OR’ed with the BUSY# output of the
80287 and drives the BUSY# input of the 80286.
This PC-AT scheme effectively delays

deactivation of BUSY# at the 80286 whenever an
80287 ERROR# is signaled.

Since the BUSY# signal to the 80286 remains
active after an exception, the IRQ13 interrupt

                                                                
Footnotes
2 WINDOWS 95 and WINDOWS 3.1 (and earlier

versions) use interrupt 5DH instead of 75H, but
the recommendations herein apply to systems
using these WINDOWS operating systems, as
well as MS-DOS.

(exception) handler (accessed through interrupt
vector 75H) is guaranteed to execute before any
other 80287 instruction can begin (except for
some special control instructions).The IRQ13
handler clears the BUSY# latch (by writing to a
special I/O port defined at 0F0H), thus allowing
execution of 80287 instructions to proceed. The
handler then branches to the NMI handler
(interrupt vector 2), where the user defined
numeric exception handler resides in PC
compatible systems. Thus the PC-AT scheme
approximates the exception reporting scheme
between the 8087 and 8088 in the original PC.

2.2.2 SPECIAL HARDWARE FOR THE
INTEL387™  MATH COPROCESSOR
INTERFACE

The Intel386 processor can use a PC-AT
compatible interface to communicate with an
Intel387 math coprocessor, that is similar to the
one in the 80286 and 80287 system above. As
with the 80286, the Intel386 processor ERROR#
pin should be tied permanently inactive (high), and
the Intel387 ERROR# output used both to drive
IRQ13, and to latch BUSY# in a flip-flop. The
IRQ13 handler (vector 75H) should clear the
BUSY# latch and branch to the NMI handler, as in
the 80286 case.

However, an additional hardware feature is
needed to manage the PEREQ signal to the
Intel386 processor. After the Intel387 math
coprocessor asserts ERROR#, and then its
BUSY# signal has gone inactive, external
hardware must re-assert the PEREQ signal to the
Intel386 processor. This is needed for store
instructions (for example, FST mem ) because the
Intel387 math coprocessor drops PEREQ once it



AP-578

2/21/97 12:57 PM    24329102.DOC

INTEL CONFIDENTIAL
(until publication date)

7

signals an exception. While the Intel386 processor
has not yet recognized the occurrence of the
exception, it still expects the data transfers to
complete via PEREQ re-activation. It is
permissible for the Intel386 processor to receive
undefined data during such I/O read cycles.
Disabling the Intel387 math coprocessor is not
necessary, because the dummy data transfer
cycles directed to the Intel387 math co processor
when PEREQ is externally reactivated for the
Intel386 processor will not disturb the operation of
the Intel387math coprocessor. The IRQ13
interrupt handler should remove the extension of
BUSY# and also the re-activation of PEREQ via a
write to PC/AT compatible hardware at I/O port
0F0H.

An Intel387 math coprocessoroffers significant
performance improvements over the 80287, but
because the Intel386 processor was ready for
production before the Intel387math coprocessor,
the Intel386 processor was designed to work with
either the 80287 or Intel387 math coprcoessors.
The Intel386 processor automatically configures
itself for the attached FPU on reset by testing the
ERROR# pin, and setting or clearing bit 4 in CR0
(see Section 10.1.3 in the Pentium  Processor
Family Developer’s Manual, Volume 3). This bit is
the ET (Extension Type) bit, and it will be set if
ERROR# is low (meaning an Intel387 is attached)
and cleared if ERROR# is high (meaning there is
an 80287 or no FPU attached). The MS-DOS
compatible hardware interface is similar to that for
the Intel386 processor  and Intel387 math
coprocessor combination.

2.3 FERR# & IGNNE# with
Intel486™  and Pentium
Processors with CR0.NE=0

In the Intel486 and Pentium  processors, more
enhancements and speedup features have been
added to the corresponding FPUs. Also, the FPU
is built into the same chip as the processor, which
allows further increases in speed. MS-DOS
compatibility for exception handling has also been
built in, with the NE bit in control register CR0
selecting the MS-DOS compatible mode if made
zero. (NE=1 selects the native or internal mode,
which generates Interrupt 16, which is the same
as the native version of exception handling for the
80286 and 80287 and the Intel386 processors and
Intel 387 math coprocessor.)

In MS-DOS compatible mode, the FERR#
(Floating-point ERRor) output replaces the

ERROR# signal from the previous generations,
and is connected to a PIC. A new input signal,
IGNNE# ( IGNore Numeric Error), is provided to
allow the FPU exception handler to execute FPU
instructions, if desired, without first clearing the
error condition and without triggering the interrupt
a second time. This IGNNE# feature is needed to
replicate the capability that was provided on MS-
DOS compatible Intel 80286 and 80287 and the
Intel386 processors and INtel 387 math
coprocessor-based systems by turning off the
BUSY# signal, when inside the FPU exception
handler, before clearing the error condition.

Note that Intel, in order to provide Intel486
processors for market segments which had no
need for an FPU, created the “SX” versions.
These Intel486 SX processors did not contain the
floating-point unit. Intel also produced Intel487 SX
math coprocessors for end users who later
decided to upgrade to a system with an FPU.
These Intel487 SX math coprocessors are similar
to standard Intel486 processors with a working
FPU on board. Thus the external circuitry
necessary to support the MS-DOS compatible
mode for Intel487 SX math coprocessors is the
same as for standard Intel486 DX processors.

Note that the special DP (Dual Processing) mode
for Pentium processors, and also the more general
Intel MultiProcessor Specification for systems with
multiple Pentium or Pentium Pro processors,
support FPU exception handling only in the native
mode. Intel does not recommend using the MS-
DOS compatible FPU mode for systems using
more than one processor.

2.3.1 BASIC RULES: WHEN FERR# IS
GENERATED

• Assume the following conditions: NE=0, the
IGNNE# input is de-asserted, and then an
FPU instruction causes an unmasked FPU
exception. Then in most cases, deferred error
reporting occurs. This means that the
processor does not respond immediately, but
rather freezes just before executing the next
WAIT or FPU instruction (except for “No-
Wait” instructions, which the FPU executes
regardless of an error condition).

• At the same time that the processor freezes,
it also asserts the FERR# output.



AP-578

2/21/97 12:57 PM    24329102.DOC

INTEL CONFIDENTIAL
(until publication date)

8

• The frozen processor waits for an external
interrupt, which must be supplied by external
hardware in response to the FERR#
assertion.

• In MS-DOS compatible systems, FERR# is
fed to the IRQ13 input in the cascaded PIC,
which generates interrupt 75H, which then
branches to interrupt 2, as described above
for the 80286and 80287 and Intel386
processor and Intel387 processor-based
systems.

These cases in which FERR# is not asserted at
the time of the error, but rather at the next FPU or
WAIT instruction, include all exceptions caused by
the basic arithmetic instructions (including FADD,
FSUB, FMUL, FDIV, FSQRT, FCOM and
FUCOM), precision exceptions caused by all types
of FPU instructions, and numeric underflow and
overflow on all types of FPU instructions except
stores to memory. We will refer to these cases as
deferred (error reporting).

On the other hand, there are some exceptions,
which when caused by some instructions, drive
FERR# at the time that the exception occurs.
These include FPU stack fault, invalid operation
and denormal exceptions caused by all
transcendental instructions, FSCALE, FXTRACT,
FPREM and others, and all exceptions (except
precision) when caused by FPU store instructions.
These cases are called immediate (error
reporting). (These cases will, like the deferred,
cause the processor to freeze just before
executing the next WAIT or FPU instruction if the
error condition has not been cleared by that time.)
Note that in general, whether an FPU exception
case is deferred or immediate depends both on
which exception occurred, and which instruction
caused that exception. A complete specification of
these cases, which applies also to the Intel486, is
given in Section 5.1.21 in the Pentium  Processor
Family Developer’s Manual,  Volume 1.

If NE=0 but the IGNNE# input is active while an
unmasked FPU exception is in effect, the
processor disregards the exception, does not
assert FERR#, and continues. If IGNNE# is then
de-asserted and the FPU exception has not been
cleared, the processor will respond as described

above. (That is, an immediate exception case will
assert FERR# immediately. A deferred exception
case will assert FERR# and freeze just before the

next FPU or WAIT instruction.) The assertion of
IGNNE# is intended for use only inside the FPU
exception handler, where it is needed if one wants
to execute non-control FPU instructions for
diagnosis, before clearing the exception condition.
When IGNNE# is asserted inside the exception

handler, a preceding FPU exception has already
caused FERR# to be asserted, and the external
interrupt hardware has responded, but IGNNE#
assertion still prevents the freeze at FPU
instructions. Note that if IGNNE# is left active
outside of the FPU exception handler, additional
FPU instructions may be executed after a given
instruction has caused an FPU exception. In this
case, if the FPU exception handler ever did get
invoked, it could not determine which instruction
caused the exception.

To properly manage the interface between the
processor’s FERR# output, its IGNNE# input, and
the IRQ13 input of the PIC, additional external
hardware is needed. A recommended
configuration is described below.

2.3.2 RECOMMENDED EXTERNAL
HARDWARE TO SUPPORT MS-DOS*
COMPATIBILITY

Figure 1 below provides an external circuit which
will assure proper handling of FERR# and IGNNE#
when an FPU exception occurs. In particular, it
assures that IGNNE# will be active only inside the
FPU exception handler without depending on the
order of actions by the exception handler. Some
hardware implementations have been less robust
because they have depended on the exception
handler to clear the FPU exception interrupt
request to the PIC (FP_IRQ signal) before the
handler causes FERR# to be de-asserted by
clearing the exception from the FPU itself. Figure
2 below shows the details of how IGNNE# will
behave when the circuit in Figure 1 is
implemented. The temporal regions within the FPU
exception handler activity are described as
follows:

1. The FERR# signal is activated by an FPU
exception and sends an interrupt request
through the PIC to the processor’s INTR pin.

2. During the FPU interrupt service routine
(exception handler) the processor will need to
clear the interrupt request latch (Flip Flop #1).
It may also want to execute non-control FPU
instructions before the exception is cleared



AP-578

2/21/97 12:57 PM    24329102.DOC

INTEL CONFIDENTIAL
(until publication date)

9

from the FPU. For this purpose the IGNNE#
must be driven low. Typically in the PC
environment an I/O access to Port 0F0H
clears the external FPU exception interrupt
request (FP_IRQ). In the recommended
circuit, this access also is used to activate
IGNNE#. With IGNNE# active the FPU
exception handler may execute any FPU
instruction without being blocked by an active
FPU exception.

3. Clearing the exception within the FPU will
cause the FERR# signal to be deactivated
and then there is no further need for IGNNE#
to be active. In the recommended circuit, the

deactivation of FERR# is used to deactivate
IGNNE#. If another circuit is used, the
software and circuit together must assure that
IGNNE# is deactivated no later than the exit
from the FPU exception handler.

4. In the circuit in Figure 1 when the FPU
exception handler accesses I/O port 0F0H it
clears the IRQ13 interrupt request output
from Flip Flop #1 and also clocks out the
IGNNE# signal (active) from Flip Flop #2. So
the handler can activate IGNNE#, if needed,
by doing this 0F0H access before clearing



AP-578

2/21/97 12:57 PM    24329102.DOC

INTEL CONFIDENTIAL
(until publication date)

10

Intel486 ,
Pentium® , or
Pentium Pro
processor

FF #1

FF #2

FP_IRQ

LEGEND
FF #n: Flip Flop #n
CLR: Clear or reset

Figure 1.  Recommended Circuit for MS-DOS* Compatible FPU Exception Handling

the FPU exception condition (which de-asserts
FERR#). However, the circuit does not depend on
the order of actions by the FPU exception handler
to guarantee the correct hardware state upon exit
from the handler. The flip flop which drives IGNNE#
to the processor has its CLEAR input attached to
the inverted FERR#. This ensures that IGNNE# can
never be active when FERR# is inactive. So if the
handler clears the FPU exception condition before
the 0F0H access, IGNNE# does not get activated
and left on after exit from the handler.

2.3.3 “NO-WAIT” FPU INSTRUCTIONS CAN
GET FPU INTERRUPT IN WINDOW

The Pentium and the Intel486 processors
implement the “No-Wait” Floating-Point instructions
(FNINIT, FNCLEX, FNSTENV, FNSAVE, FNSTSW,
FNSTCW, FNENI, FNDISI or FNSETPM - See
Section 6.3.7 in the Pentium®  Processor Family
Developer's Manual, Volume 3) in the MS-DOS
Compatibility mode (CR0.NE = 0) in the following
manner:



AP-578

2/21/97 12:57 PM    24329102.DOC

INTEL CONFIDENTIAL
(until publication date)

11

If an unmasked numeric exception is pending from
a preceding FPU instruction, a member of the “No-
Wait” class of instructions will, at the beginning of
its execution, assert the FERR# pin in response to
that exception just like other FPU instructions, but
then, unlike the other FPU instructions, FERR# will
be de-asserted. This de-assertion was implemented
to allow the “No-Wait” class of instructions to
proceed without an interrupt due to any pending
numeric exception. However, the brief assertion of
FERR# is sufficient to latch the FPU exception
request into most hardware interface
implementations (including Intel’s recommended
circuit).

All the FPU instructions are implemented such that
during their execution, there is a window in which
the processor will sample and accept external
interrupts. If there is a pending interrupt, the
processor services the interrupt first before
resuming the execution of the instruction.
Consequently, it is possible that the “No-Wait”
Floating-Point instruction may accept the external
interrupt caused by it’s own assertion of the FERR#
pin in the event of a pending unmasked numeric
exception, which is not an explicitly documented
behavior of a “No-Wait” instruction. This process is
illustrated by Figure 3, which is followed by a
detailed description of the several cases possible.

0F0H Address
   Decode

Figure 2.  Behavior of Signals During FPU Exception Handling



AP-578

2/21/97 12:57 PM    24329102.DOC

INTEL CONFIDENTIAL
(until publication date)

12

E x c e p t io n  g e n e ra t in g
F P  i n s t r u c t i o n

S t a r t  o f  th e  
“N o - W a it” F P

i n s t r u c t i o n

A s s e r t io n  O f   F E R R #
b y  t h e  p r o c e s s o r

S y s t e m  D e p e n d e n t
D e l a y

E x t e r n a l  I n t e r r u p t  
S a m p lin g  W i n d o w

W i n d o w  C L O S E D

C a s e  I

C a s e  I I

A s s e r t io n  O f   IN T R
p i n  b y  t h e  s y s t e m

Figure 3: Timing of Receipt of External Interrupt

Figure 3 assumes that a floating-point instruction
which generates a “deferred” error (as defined
above in the Section 2.3.1), which asserts the
FERR# pin only on encountering the next floating-
point instruction, causes an unmasked numeric
exception. Assume that the next floating-point
instruction following this instruction is one of the
“No-Wait” floating-point instructions. The FERR#
pin is asserted by the processor to indicate the
pending exception on encountering the “No-Wait”
floating-point instruction. After the assertion of the
FERR# pin the “No-Wait” floating-point instruction
opens a window where the pending external
interrupts are sampled.

Then there are two cases possible depending on
the timing of the receipt of the interrupt via the INTR
pin (asserted by the system in response to the
FERR# pin) by the processor.

Case 1
If the system responds to the assertion of FERR#
pin by the “No-Wait” floating-point instruction via the
INTR pin during this window then the interrupt is
serviced first, before resuming the execution of the
“No-Wait” floating-point instruction.

Case 2
If the system responds via the INTR pin after the
window has closed then the interrupt is recognized
only at the next instruction boundary.

There are two other ways, in addition to Case I
above, in which a “No-Wait” floating-point
instruction can service a numeric exception inside
its interrupt window. First, the first floating-point
error condition could be of the “immediate” category
(as defined in Section 2.3.1) that assert FERR#



AP-578

2/21/97 12:57 PM    24329102.DOC

INTEL CONFIDENTIAL
(until publication date)

13

immediately. If the system delay before asserting
INTR is long enough, relative to the time elapsed
before the “No-Wait” floating-point instruction, INTR
can be asserted inside the interrupt window for the
latter. Second, consider two “No-Wait” FPU
instructions in close sequence, and assume that a
previous FPU instruction has caused an unmasked
numeric exception. Then if the INTR timing is too
long for an FERR# signal triggered by the first “No-
Wait” instruction to hit the first instruction’s interrupt
window, it could catch the interrupt window of the
second.

The possible malfunction of a “No-Wait” FPU
instruction explained above cannot happen if the
instruction is being used in the manner for which
Intel originally designed it. The “No-Wait
instructions were intended to be used inside the
FPU exception handler, to allow manipulation of the
FPU before the error condition is cleared, without
hanging the processor because of the FPU error
condition, and without the need to assert IGNNE#.
They will perform this function correctly, since
before the error condition is cleared, the assertion
of FERR# that caused the FPU error handler to be
invoked is still active. Thus the logic that would
assert FERR# briefly at a “No-Wait” instruction
causes no change since FERR# is already
asserted. The “No-Wait” instructions may also be
used without problem in the handler after the error
condition is cleared, since now they will not cause
FERR# to be asserted at all.

If a “No-Wait” instruction is used outside of the FPU
exception handler, it may malfunction as explained
above, depending on the details of the hardware
interface implementation and which particular
processor is involved. The actual interrupt inside
the window in the “No-Wait” instruction may be
blocked by surrounding it with the instructions:
PUSHFD, CLI, “No-Wait”, then POPFD. (CLI blocks
interrupts, and the push and pop of flags preserves
and restores the original value of the interrupt flag.)
However, if FERR# was triggered by the “No-Wait”,
its latched value and the PIC response will still be in
effect. Further code can be used to check for and
correct such a condition, if needed. Section 3.6
(Considerations When FPU Shared Between
Tasks) discusses an important example of this type
of problem and gives a solution.

2.4 Pentium  Pro Processor with
CR0.NE=0

When bit NE=0 in CR0, the MS-DOS* compatible
mode of the Pentium Pro processor provides
FERR# and IGNNE# functionality that is almost
identical to the Intel486 and Pentium processors.
The same external hardware, as described in
Section 2.3.2 above, is recommended for the
Pentium Pro processor as well as the two previous
generations. The only change to MS-DOS
compatible FPU exception handling with the
Pentium Pro processor is that all exceptions for all
FPU instructions cause immediate error reporting.
That is, FERR# is asserted as soon as the FPU
detects an unmasked exception; there are no cases
in which error reporting is deferred to the next FPU
or WAIT instruction. (As is discussed in Section
2.3.1, most exception cases in the Intel486 and
Pentium processors are of the deferred type.)

Although FERR# is asserted immediately upon
detection of an unmasked FPU error, this certainly
does not mean that therequested interrupt will
always be serviced before the next instruction in the
code sequence is executed. To begin with, the
Pentium Pro processor executes several
instructions simultaneously. There also will be a
delay, which depends on the external hardware
implementation, between the FERR# assertion from
the processor and the responding INTR assertion to
the processor. Further, the interrupt request to the
PICs (IRQ13) may be temporarily blocked by the
OS, or delayed by higher priority interrupts, and
processor response to INTR itself is blocked if the
OS has cleared the IF bit in EFLAGS.

However, just as with the Intel486 and Pentium
processors, if the IGNNE# input is inactive, a
floating-point exception which occurred in the
previous FPU instruction and is unmasked causes
the processor to freeze immediately when
encountering the next WAIT or FPU instruction
(except for “No-Wait” instructions). This means that
if the FPU exception handler has not already been
invoked due to the earlier exception (and therefore
the handler has not cleared that exception state
from the FPU), the processor is forced to wait for
the handler to be invoked and handle the exception,
before the processor can execute another WAIT or
FPU instruction.



AP-578

14

2/21/97 12:57 PM    24329102.DOC

INTEL CONFIDENTIAL
(until publication date)

As explained in Section 2.3.3, if a “No-Wait”
instruction is used outside of the FPU exception
handler, in the Intel486 and Pentium processors, it
may accept an unmasked exception from a
previous FPU instruction which happens to fall
within the external interrupt sampling window that is
opened near the beginning of execution of all FPU
instructions. This will not happen in the Pentium Pro
processor, because this sampling window has been
removed from the “No-Wait” group of FPU
instructions.

3.0 RECOMMENDED PROTOCOL
FOR MS-DOS  AND
WINDOWS* 95 COMPATIBLE
HANDLERS3

The activities of numeric programs can be split into
two major areas: program control and arithmetic.
The program control part performs activities such
as deciding what functions to perform, calculating
addresses of numeric operands, and loop control.
The arithmetic part simply adds, subtracts,
multiplies, and performs other operations on the
numeric operands. The processor is designed to
handle these two parts separately and efficiently.
An FPU exception handler, if a system chooses to
implement one, is often one of the most
complicated parts of the program control code.

3.1 Numeric Exceptions and their
Defaults

The FPU can recognize six classes of numeric
exception conditions while executing numeric
instructions:

                                                                
Footnotes
3 Although there are some differences in the way

FPU exceptions are handled between MS-DOS,
and WINDOWS 95 and WINDOWS 3.1 (and
earlier versions), the WINDOWS operating
systems operate the processor in the MS-DOS
compatable mode, and the recommended protocol
given here applies to all these systems. On the
other hand, current versions of WINDOWS NT
use the FPU native mode.

1. #I —  Invalid operation
#IS Stack fault
#IA IEEE standard invalid operation

2. #Z Divide-by-zero

3. #D Denormalized operand

4. #O Numeric overflow

5. #U Numeric underflow

6. #P Inexact result (precision)

For complete details on these exceptions and their
defaults, see the Pentium  Processor Family
Developer’s Manual, Volume 3, Sections 7.1.7
through 7.1.13.

3.1.1 TWO OPTIONS FOR HANDLING
NUMERIC EXCEPTIONS

Depending on options determined by the software
system designer, the processor takes one of two
possible courses of action when a numeric
exception occurs:

1. The FPU can handle selected exceptions
itself, producing a default fix-up that is
reasonable in most situations. This allows the
numeric program execution to continue
undisturbed. Programs can mask individual
exception types to indicate that the FPU
should generate this safe, reasonable result
whenever the exception occurs. The default
exception fix-up activity is treated by the FPU
as part of the instruction causing the
exception; no external indication of the
exception is given (except that the instruction
takes longer to execute when it handles a
masked exception.) When masked exceptions
are detected, a flag is set in the numeric status
register, but no information is preserved
regarding where or when it was set.



AP-578

2/21/97 12:57 PM    24329102.DOC

INTEL CONFIDENTIAL
(until publication date)

15

2. Alternatively, a software exception handler can
be invoked to handle the exception. When a
numeric exception is unmasked and the
exception occurs, the FPU stops further
execution of the numeric instruction and
causes a branch to a software exception
handler. The exception handler can then
implement any sort of recovery procedures
desired for any numeric exception detectable
by the FPU.

3.1.2 AUTOMATIC EXCEPTION HANDLING:
USING MASKED EXCEPTIONS

Each of the six exception conditions described
above has a corresponding flag bit in the FPU
status word and a mask bit in the FPU control word.
If an exception is masked (the corresponding mask
bit in the control word = 1), the processor takes an
appropriate default action and continues with the
computation. The processor has a default fix-up
activity for every possible exception condition it
may encounter. These masked-exception
responses are designed to be safe and are
generally acceptable for most numeric applications.

For example, if the Inexact result (Precision)
exception is masked, the system can specify
whether the FPU should handle a result that cannot
be represented exactly by one of four modes of
rounding: rounding it normally, chopping it toward
zero, always rounding it up, or always down. If the
Underflow exception is masked, the FPU will store
a number that is too small to be represented in
normalized form as a denormal (or zero if it’s
smaller than the smallest denormal). Note that
when exceptions are masked, the FPU may detect
multiple exceptions in a single instruction, because
it continues executing the instruction after
performing its masked response. For example, the
FPU could detect a denormalized operand, perform
its masked response to this exception, and then
detect an underflow.

As an example of how even severe exceptions can
be handled safely and automatically using the
default exception responses, consider a calculation
of the parallel resistance of several values using
only the standard formula (Figure 4). If R1 becomes
zero, the circuit resistance becomes zero. With the
divide-by-zero and precision exceptions masked,
the processor will produce the correct result. FDIV
of R1 into 1 gives infinity, and then FDIV of (infinity
+R2 +R3) into 1 gives zero.

Figure 4. Arithmetic Example Using Infinity

By masking or unmasking specific numeric
exceptions in the FPU control word, programmers
can delegate responsibility for most exceptions to
the processor, reserving the most severe
exceptions for programmed exception handlers.
Exception-handling software is often difficult to
write, and the masked responses have been
tailored to deliver the most reasonable result for
each condition. For the majority of applications,
masking all exceptions yields satisfactory results
with the least programming effort. Certain
exceptions can usefully be left unmasked during the
debugging phase of software development, and
then masked when the clean software is actually
run. An invalid-operation exception for example,
typically indicates a program error that must be
corrected.

The exception flags in the FPU status word provide
a cumulative record of exceptions that have
occurred since these flags were last cleared. Once
set, these flags can be cleared only by executing
the FCLEX/FNCLEX (clear exceptions) instruction,
by reinitializing the FPU with FINIT/FNINIT or
FSAVE/FNSAVE, or by overwriting the flags with an
FRSTOR or FLDENV instruction. This allows a
programmer to mask all exceptions, run a
calculation, and then inspect the status word to see



AP-578

16

2/21/97 12:57 PM    24329102.DOC

INTEL CONFIDENTIAL
(until publication date)

if any exceptions were detected at any point in the
calculation.

3.2 Software Exception Handling

If the FPU in or with an Intel family processor
(80286 and onwards) encounters an unmasked
exception condition, with the system operated in the
MS-DOS compatible mode and with IGNNE# not
asserted, a software exception handler is invoked
through a PIC and the processor’s INTR pin. The
FERR# (or ERROR# ) output from the FPU that
begins the process of invoking the exception
handler may occur when the error condition is first
detected, or when the processor encounters the
next WAIT or FPU instruction. Which of these two
cases occurs depends on the processor generation
and also on which exception and which FPU
instruction triggered it, as discussed earlier in
Section 2. The elapsed time between the initial
error signal and the invocation of the FPU exception
handler depends of course on the external
hardware interface, and also on whether the
external interrupt for FPU errors is enabled. But the
architecture ensures that the handler will be
invoked before execution of the next WAIT or
floating-point instruction since an unmasked
floating-point exception causes the processor to
freeze just before executing such an instruction
(unless the IGNNE# input is active, or it is a “No-
Wait” FPU instruction).

The frozen processor waits for an external interrupt,
which must be supplied by external hardware in
response to the FERR# (or ERROR#) output of the
processor (or coprocessor), usually through IRQ13
on the “slave” PIC, and then through INTR. Then
the external interrupt invokes the exception
handling routine. Note that if the external interrupt
for FPU errors is disabled when the processor
executes an FPU instruction, the processor will
freeze until some other (enabled) interrupt occurs if
an unmasked FPU exception condition is in effect.
If NE = 0 but the IGNNE# input is active, the
processor disregards the exception and continues.
Error reporting via an external interrupt is supported
for MS-DOS compatibility. Chapter 23 of the
Pentium  Processor Family Developer’s Manual,
Volume 3 contains further discussion of
compatibility issues.

The references above to the ERROR# output from
the FPU apply to the Intel387 and 80287 math
coprocessors (NPX chips). If one of these
coprocessors encounters an unmasked exception
condition, it signals the exception to the 80286 or
Intel386 processor using the ERROR# status line
between the processor and the coprocessor. See
Section 2.2 above, and Chapter 23 of the Pentium

Processor Family Developer’s Manual,  Volume 3
for differences in FPU exception handling.

The exception-handling routine is normally a part of
the systems software. The routine must clear (or
disable) the active exception flags in the FPU status
word before executing any FP instructions that
cannot complete execution when there is a pending
FP exception. Otherwise, the FP instruction will
trigger the FPU interrupt again, and the system will
be caught in an endless loop of nested FP
exceptions, and hang. In any event, the routine
must clear (or disable) the active exception flags in
the FPU status word after handling them, and
before IRET(D). Typical exception responses may
include:

• Incrementing an exception counter for later
display or printing

• Printing or displaying diagnostic information
(e.g., the FPU environment and registers)

• Aborting further execution, or using the
exception pointers to build an instruction that
will run without exception and executing it

Applications programmers should consult their
operating system's reference manuals for the
appropriate system response to numerical
exceptions. For systems programmers, some
details on writing software exception handlers are
provided in Chapter 14 of the Pentium  Processor
Family Developer’s Manual, Volume 3, as well as in
this application note.

As discussed in Section 2.3.2, some early FERR#
to INTR hardware interface implementations are
less robust than the recommended circuit. This is
because they depended on the exception handler to
clear the FPU exception interrupt request to the PIC
(by accessing port 0F0H) before the handler causes
FERR# to be de-asserted by clearing the exception
from the FPU itself. To eliminate the chance of a



AP-578

2/21/97 12:57 PM    24329102.DOC

INTEL CONFIDENTIAL
(until publication date)

17

problem with this early hardware, Intel recommends
that FPU exception handlers always access port
0F0H before clearing the error condition from the
FPU.

3.3 Synchronization Required for
Use of FPU Exception Handlers

Concurrency or synchronization management
requires a check for exceptions before letting the
processor change a value just used by the FPU. It
is important to remember that almost any numeric
instruction can, under the wrong circumstances,
produce a numeric exception.

3.3.1 EXCEPTION SYNCHRONIZATION:
WHAT, WHY AND WHEN

Exception synchronization means that the
exception handler inspects and deals with the
exception in the context in which it occurred. If
concurrent execution is allowed, the state of the
processor when it recognizes the exception is often
not in the context in which it occurred. The
processor may have changed many of its internal
registers and be executing a totally different
program by the time the exception occurs. If the
exception handler cannot recapture the original
context, it cannot reliably determine the cause of
the exception or to recover successfully from the
exception. To handle this situation, the FPU has
special registers updated at the start of each
numeric instruction to describe the state of the
numeric program when the failed instruction was
attempted. This provides tools to help the exception
handler recapture the original context, but the
application code must also be written with
synchronization in mind. Overall, exception
synchronization must ensure that the FPU and
other relevant parts of the context are in a well
defined state when the handler is invoked after an
unmasked numeric exception occurs.

When the FPU signals an unmasked exception
condition, it is requesting help. The fact that the
exception was unmasked indicates that further
numeric program execution under the arithmetic
and programming rules of the FPU will probably
yield invalid results. Thus the exception must be
handled, and with proper synchronization, or the
program will not operate reliably.

For programmers in higher-level languages, all
required synchronization is automatically provided
by the appropriate compiler. However, for assembly

language programmers exception synchronization
remains the responsibility of the programmer. It is
not uncommon for a programmer to expect that
their numeric program will not cause numeric
exceptions after it has been tested and debugged,
but in a different system or numeric environment,
exceptions may occur regularly nonetheless. An
obvious example would be use of the program with
some numbers beyond the range for which it was
designed and tested. The example in Section 3.3.2
shows a more subtle way in which unexpected
exceptions can occur.

As described in Section 3.1.1, depending on
options determined by the software system
designer, the processor can perform one of two
possible courses of action when a numeric
exception occurs.

• The FPU can provide a default fix-up for
selected numeric exceptions. If the FPU
performs its default action for all exceptions,
then the need for exception synchronization is
not manifest. However, code is often ported to
contexts and operating systems for which it
was not originally designed. The example
below illustrates that it is safest to always
consider exception synchronization when
designing code that uses the FPU.

• Alternatively, a software exception handler can
be invoked to handle the exception. When a
numeric exception is unmasked and the
exception occurs, the FPU stops further
execution of the numeric instruction and
causes a branch to a software exception
handler. When an FPU exception handler will
be invoked, synchronization must always be
considered to assure reliable performance.

The following examples illustrate the need to
always consider exception synchronization when
writing numeric code, even when the code is initially
intended for execution with exceptions masked.

3.3.2 EXCEPTION SYNCHRONIZATION:
EXAMPLES

In the following examples, three instructions are
shown to load an integer, calculate its square root,
then increment the integer. The synchronous
execution of the FPU will allow both of these



AP-578

18

2/21/97 12:57 PM    24329102.DOC

INTEL CONFIDENTIAL
(until publication date)

Incorrect Error Synchronization:

FILD COUNT ; FPU instruction
INC COUNT ; integer instruction alters operand
FSQRT ; subsequent FPU instruction -- error

; from previous FPU instruction detected here

Proper Error Synchronization:

FILD COUNT ; FPU instruction
FSQRT ; subsequent FPU instruction -- error from

; previous FPU instruction detected here
INC COUNT ; integer instruction alters operand

programs to execute correctly, with INC COUNT
being executed in parallel in the processor, as long
as no exceptions occur on the FILD instruction.
However, if the code is later moved to an
environment where exceptions are unmasked, the
code in the first example will not work correctly:

In some operating systems supporting the FPU, the
numeric register stack is extended to memory. To
extend the FPU stack to memory, the invalid
exception is unmasked. A push to a full register or
pop from an empty register sets SF (Stack Fault
flag) and causes an invalid operation exception.
The recovery routine for the exception must
recognize this situation, fix up the stack, then
perform the original operation. The recovery routine
will not work correctly in the first example shown in
the figure. The problem is that the value of COUNT
is incremented before the exception handler is
invoked, so that the recovery routine will load an
incorrect value of COUNT, causing the program to
fail or behave unreliably.

3.3.3 PROPER EXCEPTI ON
SYNCHRONIZATION IN GENERAL

As explained before (see Section 3.2), if the FPU
encounters an unmasked exception condition a
software exception handler is invoked before
execution of the next WAIT or floating-point
instruction. This is because an unmasked floating-
point exception causes the processor to freeze
immediately before executing such an instruction
(unless the IGNNE# input is active, or it is a “No-
Wait” FPU instruction). Exactly when the exception
handler will be invoked (in the interval between
when the exception is detected and the next WAIT
or FPU instruction) is dependent on the processor
generation, the system, and which FPU instruction
and exception is involved.

To be safe in exception synchronization, one
should assume the handler will be invoked at the
end of the interval. Thus the program should not
change any value that might be needed by the
handler (such as COUNT in the above example)
until after the next FPU instruction following an FPU
instruction that could cause an error. If the program
needs to modify such a value before the next FPU
instruction (or if the next FPU instruction could also
cause an error), then a WAIT instruction should be
inserted before the value is modified. This will force
the handling of any exception before the value is
modified. A WAIT instruction should also be placed
after the last floating-point instruction in an
application so that any unmasked exceptions will be
serviced before the task completes.

3.4 FPU Exception Handling
Examples

There are many approaches to writing exception
handlers. One useful technique is to consider the
exception handler procedure as consisting of
"prologue," "body," and "epilogue" sections of code.

In the transfer of control to the exception handler
due to an INTR, NMI, or SMI, external interrupts
have been disabled by hardware. The prologue
performs all functions that must be protected from
possible interruption by higher-priority sources.
Typically, this involves saving registers and
transferring diagnostic information from the FPU to
memory. When the critical processing has been
completed, the prologue may re-enable interrupts to
allow higher-priority interrupt handlers to preempt
the exception handler. The standard "prologue" not
only saves the registers and transfers diagnostic
information from the FPU to memory but also clears
the FP exception flags in the status word.
Alternatively, when it is not necessary for the



AP-578

2/21/97 12:57 PM    24329102.DOC

INTEL CONFIDENTIAL
(until publication date)

19

handler to be re-entrant, another technique may
also be used. In this technique, the exception flags
are not cleared in the "prologue" and the body of
the handler must not contain any FP instructions
that cannot complete execution when there is a
pending FP exception. (The “No-Wait” instructions
are discussed in Section 6.3.7 of the Pentium

Processor Family Developer’s Manual, Volume 3).
Note that the handler must still clear the exception
flag(s) before executing the IRET. If the exception
handler uses neither of these techniques the
system will be caught in an endless loop of nested
FP exceptions, and hang.

The body of the exception handler examines the
diagnostic information and makes a response that
is necessarily application-dependent. This response
may range from halting execution, to displaying a
message, to attempting to repair the problem and
proceed with normal execution. The epilogue
essentially reverses the actions of the prologue,
restoring the processor so that normal execution
can be resumed. The epilogue must not load an
unmasked exception flag into the FPU or another
exception will be requested immediately.

The following code examples show the ASM386
and ASM486 coding of three skeleton exception
handlers, with the save spaces given as correct for
32 bit protected mode. They show how prologues
and epilogues can be written for various situations,
but the application dependent exception handling
body is just indicated by comments showing where
it should be placed.

The first two are very similar; their only substantial
difference is their choice of instructions to save and
restore the FPU. The tradeoff here is between the
increased diagnostic information provided by
FNSAVE and the faster execution of FNSTENV.
(Also, after saving the original contents, FNSAVE
re-initializes the FPU, while FNSTENV only masks
all FPU exceptions.) For applications that are
sensitive to interrupt latency or that do not need to
examine register contents, FNSTENV reduces the
duration of the "critical region," during which the
processor does not recognize another
interrupt request. (See the Pentium  Processor
Family Developer’s Manual, Volume 3, Section
6.2.1.6 for a complete description of the FPU save
image.)

After the exception handler body, the epilogues
prepare the processor to resume execution from the
point of interruption (i.e., the instruction following
the one that generated the unmasked exception).
Notice that the exception flags in the memory
image that is loaded into the FPU are cleared to
zero prior to reloading (in fact, in these examples,
the entire status word image is cleared).

Example 1 and Example 2 assume that the
exception handler itself will not cause an unmasked
exception. Where this is a possibility, the general
approach shown in 3 can be employed. The basic
technique is to save the full FPU state and then to
load a new control word in the prologue. Note that
considerable care should be taken when designing
an exception handler of this type to prevent the
handler from being reentered endlessly.

Example 1. Full-State Exception Handler

SAVE_ALL PROC
;
; SAVE REGISTERS, ALLOCATE STACK SPACE FOR FPU STATE IMAGE

PUSH EBP
.
.
MOV EBP, ESP
SUB ESP, 108 ; ALLOCATES 108 BYTES (32-bit PROTECTED MODE SIZE)

;SAVE FULL FPU STATE, RESTORE INTERRUPT ENABLE FLAG (IF)
FNSAVE [EBP-108]
PUSH [EBP + OFFSET_TO_EFLAGS] ; COPY OLD EFLAGS TO STACK TOP
POPFD ; RESTORE IF TO VALUE BEFORE FPU EXCEPTION

;
; APPLICATION-DEPENDENT EXCEPTION HANDLING CODE GOES HERE
;
; CLEAR EXCEPTION FLAGS IN STATUS WORD (WHICH IS IN MEMORY)



AP-578

20

2/21/97 12:57 PM    24329102.DOC

INTEL CONFIDENTIAL
(until publication date)

; RESTORE MODIFIED STATE IMAGE
MOV BYTE PTR [EBP-104], 0H
FRSTOR [EBP-108]

; DE-ALLOCATE STACK SPACE, RESTORE REGISTERS
MOV ESP, EBP
.
.
POP EBP

;
; RETURN TO INTERRUPTED CALCULATION

IRETD
SAVE_ALL ENDP

Example 2. Reduced-Latency Exception Handler

SAVE_ENVIRONMENT PROC
;
; SAVE REGISTERS, ALLOCATE STACK SPACE FOR FPU ENVIRONMENT

PUSH  EBP
.
.
MOV EBP, ESP
SUB ESP, 28 ; ALLOCATES 28 BYTES (32-bit PROTECTED MODE SIZE)

;SAVE ENVIRONMENT, RESTORE INTERRUPT ENABLE FLAG (IF)
FNSTENV [EBP-28]
PUSH [EBP + OFFSET_TO_EFLAGS] ; COPY OLD EFLAGS TO STACK TOP
POPFD ; RESTORE IF TO VALUE BEFORE FPU EXCEPTION

;
; APPLICATION-DEPENDENT EXCEPTION HANDLING CODE GOES HERE
;
; CLEAR EXCEPTION FLAGS IN STATUS WORD (WHICH IS IN MEMORY)
; RESTORE MODIFIED ENVIRONMENT IMAGE

MOV BYTE PTR [EBP-24], 0H
FLDENV [EBP-28]

; DE-ALLOCATE STACK SPACE, RESTORE REGISTERS
MOV ESP, EBP
.
.
POP EBP

;
; RETURN TO INTERRUPTED CALCULATION

IRETD
SAVE_ENVIRONMENT ENDP

Example 3. Reentrant Exception Handler

LOCAL_CONTROL DW ? ; ASSUME INITIALIZED
.
.

REENTRANT PROC
;
; SAVE REGISTERS, ALLOCATE STACK SPACE FOR FPU STATE IMAGE



AP-578

2/21/97 12:57 PM    24329102.DOC

INTEL CONFIDENTIAL
(until publication date)

21

PUSH EBP
.
.
MOV EBP, ESP
SUB ESP, 108 ; ALLOCATES 108 BYTES (32-bit PROTECTED MODE SIZE)

; SAVE STATE, LOAD NEW CONTROL WORD, RESTORE INTERRUPT ENABLE FLAG (IF)
FNSAVE [EBP-108]
FLDCW LOCAL_CONTROL
PUSH [EBP + OFFSET_TO_EFLAGS] ; COPY OLD EFLAGS TO STACK TOP
POPFD ; RESTORE IF TO VALUE BEFORE FPU EXCEPTION

.

.
;
; APPLICATION-DEPENDENT EXCEPTION HANDLING CODE GOES HERE. AN UNMASKED EXCEPTION
; GENERATED HERE WILL CAUSE THE EXCEPTION HANDLER TO BE REENTERED.
; IF LOCAL STORAGE IS NEEDED, IT MUST BE ALLOCATED ON THE STACK.
;

.

.
; CLEAR EXCEPTION FLAGS IN STATUS WORD (WHICH IS IN MEMORY)
; RESTORE MODIFIED STATE IMAGE

MOV BYTE PTR [EBP-104], 0H
FRSTOR [EBP-108]

; DE-ALLOCATE STACK SPACE, RESTORE REGISTERS
MOV ESP, EBP
.
.
POP EBP

;
; RETURN TO POINT OF INTERRUPTION

IRETD
REENTRANT ENDP



AP-578

22

2/21/97 12:57 PM    24329102.DOC

INTEL CONFIDENTIAL
(until publication date)

3.5 Need for Preserving the State
of IGNNE# Circuit if Use FPU
and SMM

In Section 2.3.2 the recommended circuit (Figure 2)
for MS-DOS compatible FPU exception handling for
Intel486 processors and beyond contains two flip
flops. When the FPU exception handler accesses
I/O port 0F0H it clears the IRQ13 interrupt request
output from Flip Flop #1 and also clocks out the
IGNNE# signal (active) from Flip Flop #2. The
assertion of IGNNE# may be used by the handler if
needed to execute any FPU instruction while
ignoring the pending FPU errors. The problem here
is that the state of Flip Flop #2 is effectively an
additional (but hidden) status bit that can affect
processor behavior, and so ideally should be saved
upon entering SMM, and restored before resuming
to normal operation. If this is not done, and also the
SMM code saves the FPU state, AND an FPU error
handler is being used which relies on IGNNE#
assertion, then (very rarely) the FPU handler will
nest inside itself and malfunction. The following
example shows how this can happen.

The problem will only occur if the processor enters
SMM between the OUT and the FLDCW
instructions. But if that happens, AND the SMM
code saves the FPU state using FNSAVE, then the
IGNNE# Flip Flop will be cleared (because
FNSAVE clears the FPU errors and thus de-asserts
FERR#). When the processor returns from SMM it
will restore the FPU state with FRSTOR, which will
re-assert FERR#, but the IGNNE# Flip Flop will not
get set. Then when the FPU error handler executes
the FLDCW instruction, the active error condition
will cause the processor to re-enter the FPU error
handler from the beginning. This may cause the
handler to malfunction.

Note that NMI (or any interrupt through INTR that is
enabled inside the FPU exception handler) will
cause this same problem, if the interrupt routine
saves and restores the FPU state, and it happens
to occur between the OUT and the FLDCW
instructions. SMI is the main focus here because it
is much more likely to invoke FNSAVE/FRSTOR
than other interrupts because of 0V suspend (see
below). The problem can easily be eliminated from
all interrupts besides SMI and NMI by not enabling
INTR inside the FPU exception handler.

To avoid this problem, Intel recommends two
measures:

1. Do not use the FPU for calculations inside
SMM code (or code for NMI, or any other
interrupts enabled inside the FPU exception
handler). (The normal power management,
and sometimes security, functions provided by
SMM have no need for FPU calculations; if
they are needed for some special case, use
scaling or emulation instead.) This eliminates
the need to do FNSAVE/FRSTOR inside SMM
code, except when going into an 0V suspend
state (in which, in order to save power, the
processor is turned off completely, requiring its
complete state to be saved).

2. The system should not call upon SMM code to
put the processor into 0V suspend while the
processor is running FPU calculations, or just
after an interrupt has occurred. Normal power
management protocol avoids this by going into
power down states only after timed intervals in
which no system activity occurs.

3.6 Considerations When FPU
Shared Between Tasks

The Intel Architecture allows speculative deferral of
floating-point state swaps on task switches. This
feature allows postponing an FPU state swap until
an FPU instruction is actually encountered in
another task. Since kernel tasks rarely use floating-
point, and some applications do not use floating-
point or use it infrequently, the amount of time
saved by avoiding unnecessary stores of the
floating-point state is significant. Speculative
deferral of FPU saves does, however, place an
extra burden on the kernel in three key ways:

1. The kernel must keep track of which thread
owns the FPU, which may be different from
the currently executing thread.

2. The kernel must associate any floating-point
exceptions with the generating task. This
requires special handling since floating-point
exceptions are delivered asynchronous with
other system activity.

3. There are conditions under which spurious
floating-point exception interrupts are
generated, which the kernel must recognize
and discard.



AP-578

2/21/97 12:57 PM    24329102.DOC

INTEL CONFIDENTIAL
(until publication date)

23

Suppose that the FPU exception handler includes the following sequence:

FNSTSW save_sw ; save the FPU status word using a “No-Wait” FPU instruction

OUT 0F0H, AL ; clears IRQ13 & activates IGNNE#

  . . . .

FLDCW new_cw ; loads new CW ignoring FPU errors, since IGNNE# is assumed active; or any 
; other FPU instruction that is not a “No-Wait” type will cause the

same problem

   . . . .

FCLEX ; clear the FPU error conditions & thus turn off FERR# & reset the
IGNNE# FF

3.6.1 SPECULATIVELY DEFERRING FPU
SAVES, GENERAL OVERVIEW

In order to support multi-tasking, each thread in the
system needs a save area for the general purpose
registers, and each task that is allowed to use
floating-point needs an FPU save area large
enough to hold the entire FPU stack and associated
FPU state such as the control word and status
word. (See the Pentium  Processor Family
Developer’s Manual, Volume 3, Section 6.2.1.6 for
a complete description of the FPU save image.)

On a task switch, the general purpose registers are
swapped out to their save area for the suspending
thread, and the registers of the resuming thread are
loaded. The FPU state does not need to be saved
at this point. If the resuming thread does not use
the FPU before it is itself suspended, then both a
save and a load of the FPU state has been
avoided. It is often the case that several threads
may be executed without any usage of the FPU.

The processor supports speculative deferral of FPU
saves via interrupt 7 “Device Not Available” (DNA),
used in conjunction with CR0 bit 3, the “Task
Switched” bit (TS). (See the Pentium  Processor
Family Developer’s Manual, Volume 3, Sections
10.1.3 & 14.9.7) Every task switch via the hardware
supported task switching mechanism (see Section
13.5 of the Pentium  Processor Family Developer’s
Manual, Volume 3) sets TS. Multi-threaded kernels
that use software task switching4 can set the TS bit
by reading CR0, ORing a ‘1’ into bit 3, and writing
back CR05. Any subsequent floating-point
instructions (now being executed in a new thread
context) will fault via interrupt 7 before execution.

                                                                
Footnotes
4In a software task switch, the operating system

uses a sequence of instructions to save the
suspending thread’s state and restore the
resuming thread’s state instead of the single long,
noninterruptable task switch operation provided by
the Intel Architecture.

5 Although CR0, bit 2, the emulation flag (EM), also
causes a DNA exception, do not use the EM bit
as a surrogate for TS. EM means that no floating-
point unit is available and that FP instructions
must be emulated. Using EM to trap on task
switches is not compatible with Intel Architecture
MMX  Technology. If the EM flag is set, MMX
instructions raise the invalid opcode exception.



AP-578

2/21/97 12:57 PM    24329102.DOC

INTEL CONFIDENTIAL
(until publication date)

24

This allows the DNA handler to save the old
floating-point context and reload the FPU state for
the current thread. The handler should clear the TS
bit before exit using the CLTS instruction. On return
from the handler the faulting thread will proceed
with its floating-point computation.

Some operating systems save the FPU context on
every task switch, typically because they also
change the linear address space between tasks.
The problem and its solution discussed below apply
to these operating systems also.

3.6.2 TRACKING FPU OWNERSHIP

Since the contents of the FPU may not belong to
the currently executing thread, the thread identifier
for the last FPU user needs to be tracked
separately. This is not complicated -- the kernel
should simply provide a variable to store the thread
identifier of the FPU owner, separate from the
variable that stores the identifier for the currently
executing thread. This variable is updated in the
DNA exception handler, and is used by the DNA
exception handler to find the FPU save areas of the
old and new threads. A simplified flow for a DNA
exception handler is then:

1. Use the ‘FPU Owner’ variable to find the FPU
save area of the last thread to use the FPU.

2. Save the FPU contents to the old thread’s
save area, typically using an FNSAVE
instruction.

3. Set the ‘FPU Owner’ variable to the identify
the currently executing thread.

4. Reload the FPU contents from the new
thread’s save area, typically using an
FRSTOR instruction.

5.  Clear TS using the CLTS instruction and exit
the DNA exception handler.

While this flow covers the basic requirements for
speculatively deferred FPU state swaps, there are
some additional subtleties that need to be handled
in a robust implementation.

3.6.3 INTERACTION OF FPU STATE SAVES
AND FP EXCEPTION ASSOCIATION

Recall these key points from earlier in this
document: When considering FP exceptions across
all implementations of the Intel Architecture, and
across all FP instructions, an FP exception can be

initiated from any time during the excepting FP
instruction, up to just before the next FP instruction.
The ‘next’ FP instruction may be the FNSAVE used
to save the FPU state for a task switch. In the case
of “no-wait:” instructions such as FNSAVE, the
interrupt from a previously excepting instruction
(NE=0 case) may arrive just before the “no-wait”
instruction, during, or shortly thereafter with a
system dependent delay. Note that this implies that
an FP exception might be registered during the
state swap process itself, and the kernel and FP
exception interrupt handler must be prepared for
this case.

A simple way to handle the case of exceptions
arriving during FPU state swaps is to allow the
kernel to be one of the FPU owning threads. A
reserved thread identifier is used to indicate kernel
ownership of the FPU. During an FP state swap,
the ‘FPU owner’ variable should be set to indicate
the kernel as the current owner. At the completion
of the state swap, the variable should be set to
indicate the new owning thread. The numeric
exception handler needs to check the FPU owner
and discard any numeric exceptions that occur
while the kernel is the FPU owner. A more general
flow for a DNA exception handler that handles this
case is shown next:



AP-578

2/21/97 3:11 PM    24329102.DOC

INTEL CONFIDENTIAL
(until publication date)

25

DNA Handler Entry

Current Thread
same as

FPU Owner?

FPU Owner := Kernel

FNSAVE to Old Thread’s
FP Save Area

(may cause numeric exception)

<other handler set up code>

<other handler code>

FPU Owner := Current Thread

FRSTOR from Current Thread’s
FP Save Area

CLTS (clears CR0.TS)

Exit DNA Handler

No

Yes

<handler final clean-up>

Numeric exceptions received while the kernel owns the FPU for a state swap must be discarded in the kernel
without being dispatched to a handler. A flow for a numeric exception dispatch routine is shown below:

Numeric Exception Entry

Is Kernel
FPU Owner?

Normal Dispatch to
Numeric Exception Handler Exit

No

Yes



AP-578 

2/21/97 12:57 PM    24329102.DOC

INTEL CONFIDENTIAL
(until publication date)

26

It may at first glance seem that there is a possibility
of FP exceptions being lost because of exceptions
that are discarded during state swaps. This is not
the case, as the exception will be re-issued when
the FP state is reloaded. Walking through state
swaps both with and without pending numeric
exceptions will clarify the operation of these two
handlers.

Case 1: FPU State Swap Without Numeric
Exception

Assume two threads ‘A’ and ‘B’, both using the
floating-point unit. Let A be the thread to have most
recently executed a FP instruction, with no pending
numeric exceptions. Let B be the currently
executing thread. CR0.TS was set when thread A
was suspended. When B starts to execute a FP
instruction the instruction will fault with the DNA
exception because TS is set.

At this point the handler is entered, and eventually it
finds that the current FPU Owner is not the
currently executing thread. To guard the FPU state
swap from extraneous numeric exceptions, the FPU
Owner is set to be the kernel. The old owner’s FPU
state is saved with FNSAVE, and the current
thread’s FPU state is restored with FRSTOR.
Before exiting, the FPU owner is set to thread B,
and the TS bit is cleared.

On exit, thread B resumes execution of the faulting
FP instruction and continues.

Case 2: FPU State Swap with Discarded
Numeric Exception

Again, assume two threads ‘A’ and ‘B’, both using
the floating-point unit. Let A be the thread to have
most recently executed a FP instruction, but this
time let there be a pending numeric exception. Let
B be the currently executing thread. When B starts
to execute a FP instruction the instruction will fault
with the DNA exception and enter the DNA handler.
(If both numeric and DNA exceptions are pending,
the DNA exception takes precedence, in order to
support handling the numeric exception in its own
context.)

When the FNSAVE starts, it will trigger an interrupt
via FERR# because of the pending numeric
exception. After some system dependent delay, the
numeric exception handler is entered. It may be
entered before the FNSAVE starts to execute, or it
may be entered shortly after execution of the
FNSAVE. Since the FPU

Owner is the kernel, the numeric exception handler
simply exits, discarding the exception. The DNA
handler resumes execution, completing the
FNSAVE of the old FP context of thread A and the
FRSTOR of the FP context for thread B.

Thread A eventually gets an opportunity to handle
the exception that was discarded during the task
switch. After some time, thread B is suspended,
and thread A resumes execution. When thread A
starts to execute an FP instruction, once again the
DNA exception handler is entered. B’s FPU state is
FNSAVE’ed, and A’s FPU state is FRSTOR’ed.
Note that in restoring the FPU state from A’s save
area, the pending numeric exception flags are
reloaded in to the FP status word. Now when the
DNA exception handler returns, thread A resumes
execution of the faulting FP instruction just long
enough to immediately generate a numeric
exception, which now gets handled in the normal
way. The net result is that the task switch and
resulting FPU state swap via the DNA exception
handler causes an ‘extra’ numeric exception which
can be safely discarded.

3.6.4 INTERRUPT ROUTING FROM THE
KERNEL

In MS-DOS, an application that wishes to handle
numeric exceptions hooks interrupt 2 by placing its
handler address in the interrupt vector table, and
exiting via a jump to the previous interrupt 2
handler. Protected mode systems that run MS-DOS
programs under a subsystem can emulate this
exception delivery mechanism. For example,
assume a protected mode O.S. that runs with
CR.NE = 1, and that runs MS-DOS programs in a
virtual machine subsystem. The MS-DOS program
is set up in a virtual machine that provides a
virtualized interrupt table. The MS-DOS application
hooks interrupt 2 in the virtual machine in the
normal way. A numeric exception will trap to the
kernel via the real INT 16 residing in the kernel at
ring 0. The INT 16 handler in the kernel then
locates the correct MS-DOS virtual machine, and
reflects the interrupt to the virtual machine monitor.
The virtual machine monitor then emulates an
interrupt by jumping through the address in the
virtualized interrupt table, eventually reaching the
application’s numeric exception handler.



AP-578

2/21/97 12:57 PM    24329102.DOC

INTEL CONFIDENTIAL
(until publication date)

27

4.0 DIFFERENCES FOR HANDLERS
USING NATIVE MODE

The 8087 has a pin INT which it asserts when an
unmasked exception occurs. But there is no
interrupt input pin in the 8086 or 8088 dedicated to
its attachment, nor an interrupt vector number in the
8086 or 8088 specific for an FPU error assertion.
But beginning with the Intel 80286 and 80287,
hardware connections were dedicated to support
the FPU exception, and interrupt vector 16
assigned to it.

4.1 Origin with 80286 and 80287;
Intel386™  Processor and
Intel387 Math Coprocessor

The 80286 and 80287 and Intel386 processor and
Intel387 math coprocessor pairs are each provided
with ERROR# pins that are recommended to be
connected between the processor and FPU. If this
is done, when an unmasked FPU exception occurs,
the FPU records the exception, and asserts its
ERROR# pin. The processor recognizes this active
condition of the ERROR# status line immediately
before execution of the next WAIT or FPU
instruction (except for the “N0-Wait” type) in its
instruction stream, and branches to the routine at
interrupt vector 16. Thus an FPU exception will be
handled before any other FPU instruction (after the
one causing the error) is executed (except for “No-
Wait” instructions, which will be executed without
triggering the FPU exception interrupt, but it will
remain pending).

Using the dedicated interrupt 16 for FPU exception
handling is referred to as the native mode. It is the
simplest approach, and the one recommended
most highly by Intel.

4.2 Changes with Intel486 ,
Pentium  and Pentium Pro
Processors with CR0.NE=1

With these latest three generations of the Intel
Architecture, more enhancements and speedup
features have been added to the corresponding
FPUs. Also, the FPU is now built into the same chip
as the processor, which allows further increases in
the speed at which the FPU can operate as part of
the integrated system. This also means that the
native mode of FPU exception handling, selected
by setting bit NE of register CR0 to 1, is now
entirely internal.

If an unmasked exception occurs during an FPU
instruction, the FPU records the exception
internally, and triggers the exception handler
through interrupt 16 immediately before execution
of the next WAIT or FPU instruction (except for “No-
Wait” instructions, which will be executed as
described in Section 4.1  above).

An unmasked numerical exception causes the
FERR# output to be activated even with NE=1, and
at exactly the same point in the program flow as it
would have been asserted if NE were zero.
However, the system would not connect FERR# to
a PIC to generate INTR when operating in the
native, internal mode. (If the hardware of a system
has FERR# connected to trigger IRQ13 in order to
support MS-DOS, but an OS using the native mode
is actually running the system, it is the OSs
responsibility to make sure that IRQ13 is not
enabled in the slave PIC.) With this configuration a
system is immune to the problem discussed in
Section 2.3.3, where for Intel486 and Pentium
processors a “No-Wait” FPU instruction can get an
FPU exception.

4.3 Considerations When FPU
Shared Between Tasks Using
Native Mode

The protocols recommended in Section 3.6 for
MS-DOS compatible FPU exception handlers that
are shared between tasks may be used without
change with the native mode. However, the
protocols for a handler written specifically for native
mode can be simplified, because the problem of a
spurious floating-point exception interrupt occurring
while the kernel is executing cannot happen in
native mode.

The problem as actually found in practical code in a
MS-DOS compatible system happens when the
DNA handler uses FNSAVE to switch FPU
contexts. If an FPU exception is active, then
FNSAVE triggers FERR# briefly, which usually will
cause the FPU exception handler to be invoked
inside the DNA handler. In native mode, neither
FNSAVE nor any other “No-Wait” instructions can
trigger interrupt 16. (As discussed above, FERR#
gets asserted independent of the value of the NE
bit, but when NE=1, the OS should not enable its
path through the PIC.) Another possible (very rare)
way a floating-point exception interrupt could occur
while the kernel is executing is by an FPU
immediate exception case having its interrupt
delayed by the external hardware until execution
has switched to the kernel. This also cannot



AP-578 

2/21/97 12:57 PM    24329102.DOC

INTEL CONFIDENTIAL
(until publication date)

28

happen in native mode because there is no delay
through external hardware.

Thus the native mode FPU exception handler can
omit the test to see if the kernel is the FPU owner,
and the DNA handler for a native mode system can
omit the step of setting the kernel as the FPU
owner at the handler’s beginning. Since however
these simplifications are minor and save little code,
it would be a reasonable and conservative habit (as
long as the MS-DOS compatible mode is widely
used) to include these steps in all systems.

Note that the special DP (Dual Processing) mode
for Pentium processors, and also the more general
Intel MultiProcessor Specification for systems with
multiple Pentium or Pentium Pro processors,
support FPU exception handling only in the native
mode. Intel does not recommend using the
MS-DOS compatible FPU mode for systems using
more than one processor.



XA User Guide



Philips Semiconductors and Philips Electronics North America Corporation reserve the right to
make changes, without notice, in the products, including circuits, standard cells, and/or software,
described or contained herein in order to improve design and/or performance. Philips
Semiconductors assumes no responsibility or liability for the use of any of these products,
conveys no license or title under any patent, copyright, or mask work right to these products, and
makes no representations or warranties that these products are free from patent, copyright, or
mask work right infringement, unless otherwise specified. Applications that are de scribed herein
for any of these products are for illustrative purposes only. Philips Semiconductors makes no
representation or warranty that such applications will be suitable for the specified use without
further testing or modification.

LIFE SUPPORT APPLICATIONS

Philips Semiconductors and Philips Electronics North America Corporation Products are not
designed for use in life support appliances, devices, or systems where malfunction of a Philips
Semiconductors and Philips Electronics North America Corporation Product can reasonably be
expected to result in a personal injury. Philips Semiconductors and Philips Electronics North
America Corporation customers using or selling Philips Semiconductors and Philips Electronics
North America Corporation Products for use in such applications do so at their own risk and
agree to fully indemnify Philips Semiconductors and Philips Electronics North America
Corporation for any damages resulting from such improper use or sale.

Copyright Philips Electronics North America Corporation, 1998

All rights reserved.

Printed in U.S.A.



s as
have

hile
ed so

overall

than a
” or
vel of

d for
on has
more
ore
today.
ging
ingent

ose
ratio
time,
cific
nts of
family
ports
events

ers
anced
1   The XA Family - High Performance, Enhanced
Architecture 80C51-Compatible 16-Bit CMOS
Microcontrollers

1.1  Introduction
The role of the microcontroller is becoming increasingly important in the world of electronic
systems which in the past relied on mechanical or simple analog electrical control systems
microcontrollers embedded in them that dramatically improve functionality and reliability, w
reducing size and cost. Microcontrollers also provide the general purpose solutions need
that common software and hardware can be shared among multiple designs to reduce
design-in time and costs.

The requirements of systems using microcontrollers are also much more demanding now
few years ago. Whether called by the name “microcontrollers”, “embedded controllers
“single-chip microcomputers”, the systems that use these devices require a much higher le
performance and on-chip integration.

As microcontrollers begin to enter into more complex control environments, the deman
increased throughput, increased addressing capability, and higher level of on-chip integrati
led to the development of 16-bit microcontrollers that are capable of processing much
information than 8-bit microcontrollers. However, simply integrating more bits or m
peripheral functions does not solve the demand of the control systems being developed
New microcontrollers must provide high-level-language support, powerful debug
environments, and advanced methods of real time control in order to meet the more str
functionality and cost requirements of these systems.

To meet the above goals The XA or “eXtended Architecture” family of general-purp
microcontrollers from Philips is being introduced to provide the highest performance/cost
for a variety of high performance embedded-systems-control applications including real-
multi-tasking environments. The XA family members add to the CPU core a spe
complement of on-chip memory, I/Os, and peripherals aimed at meeting the requireme
different application areas. The core-based architecture allows easy expansion of the
according to a wide variety of customer requirements. The powerful instruction set sup
faster computing power, faster data transfer, multi-tasking, improved response to external
and efficient high-level language programming.

Upward (assembly-level) code compatibility with the Philips 80C51 family of controll
provides a smooth design transition for system upgrades by providing tremendously enh
performance.
XA User Guide 1-1 3/24/97



1.2  Architectural Features of XA
• Upward compatibility with the standard 8XC51 core (assembly source level)
• 24-bit address range (16 Megabytes code and data space)
• 16-bit static CPU
• Enhanced architecture using both 16-bit words and 8-bit bytes
• Enhanced instruction set
• High code efficiency; most of the instructions are 2-4 bytes in length
• Fast 16X16 Multiply and 32x16 Divide Instructions
• 16-bit Stack Pointers and general pointer registers
• Capability to support 32 vectored interrupts - 31 maskable and 1 NMI
• Supports 16 hardware and 16 software traps
• Power Down and Idle power reduction modes
• Hardware support for multi-tasking software

Automotive Electronics

Data Processing Industrial Control
- Disk Drives
- Laser Printers

- Copiers

- Mass Storage
- Computer Peripherals

- Multi-processor Communications

- Protocol Handling

- Power train Electronics

XA

- Robotic Control

- Stepper Motor Control

- Asynchronous Motor Control

- Process Automation
- Drive Control

- Fuzzy Control

- Vehicle Control Electronics
- Ignition Control
- Fuel Injection Control
- Anti-lock Braking
- Active Suspension

Figure 1.    Applications of Philips XA microcontrollers
3/24/97 1-2 The XA Family



e to
ing
ed

r, the
 such

n for

ion

 the

rds
 are
le at

s are

tack
emory.

ns.

f 8
nd

or
2   Architectural Overview

2.1  Introduction
The Philips XA (eXtended Architecture) has a general purpose register-register architectur
provide the best cost-to-performance trade-off available for a high speed microcontroller us
today’s technology. Intended as both an upward compatibility path for 80C51 users who ne
greater performance or more memory, and as a powerful, general-purpose 16-bit controlle
XA also incorporates support for multi-tasking operating systems and high-level languages
as C, while retaining the comprehensive bit-oriented operations that are the hallmark of the
80C51.

This overview introduces the concepts and terminology of the XA architecture in preparatio
the detailed descriptions in the following sections of this manual.

2.2  Memory Organization
The XA architecture has several distinct memory spaces. The architecture and the instruct
encoding are optimized for register based operations; in addition, arithmetic and logical
operations may be done directly on data memory as well. Thus, the XA architecture avoids
bottleneck of having a single accumulator register.

2.2.1  Register File

The register file (Figure 2.1) allows access to 8 words of data at any one time; the eight wo
are also addressable as 16 bytes. The bottom 4 word registers are “banked”. That is, there
four groups of registers, any one of which may occupy the bottom 4 words of the register fi
any one time. This feature may be used to minimize the time required for context switching
during interrupt service, and to provide more register space for complicated algorithms.

For some instructions –32-bit shifts, multiplies, and divides– adjacent pairs of word register
referenced as double words.

The upper four words of the register file are not banked. The topmost word register is the s
pointer, while any other word register may be used as a general purpose pointer to data m

The entire register file is bit addressable. That is, any bit in the register file (except the 3
unselected banks of the bottom 4 words) may be operated on by bit manipulation instructio

The XA instruction encoding allows for future expansion of the register file by the addition o
word registers. If implemented, these additional registers will be word data registers only a
cannot be used as pointers or addressed as bytes.

The overall XA register file structure provides a superset of the 80C51 register structure. F
details, refer to the section on 80C51 compatibility.
XA User Guide 2-1 3/24/97



Some

roll

ic
isters
s that

ister
he
ciation

nt
2.2.2  Data Memory

The XA architecture supports a 16 megabyte data memory space with a full 24-bit address.
derivative parts may implement fewer address lines for a smaller range. The data space
beginning at address 0 is normally on-chip and extends to the limit of the RAM size of a
particular XA derivative. For addresses above that on a derivative, the XA will automatically
over to external data memory.

Data memory in the XA is divided into 64K byte segments (Figure 2.2) to provide an intrins
protection mechanism for multi-tasking systems and to improve performance. Segment reg
provide the upper 8 address bits needed to obtain a complete 24-bit address in application
require large data memories (Figure 2.3).

The XA provides 2 segment registers used to access data memory, the Data Segment reg
(DS) and the Extra Segment register (ES). Each pointer register is associated with one of t
segment registers via the Segment Select (SSEL) register. Pointer registers retain this asso
until it is changed under program control.

The XA provides flexible data addressing modes. Most arithmetic, logic, and data moveme
instructions support the following modes of addressing data memory:

Figure 2.1  XA register file diagram

R7

R6

R5

R4

R3

R2

R1

R0

R7H

R6H

R5H

R4H

R3L

R2L

R1L

R0L

R7L

R6L

R5L

R3H

R2H

R1H

R0H

R4L

Global registers.

Banked Registers

User Stack
Pointer

System Stack Pointer
3/24/97 2-2 Architectural Overview



Figure 2.2  XA data memory segments

Figure 2.3  Simplified XA data memory diagram

Segment 0

Segment 255

(Segment n)

Segment 1

64K bytes

0

FFFFh (64K)

The on-chip/off-chip data
memory boundary varies

for different XA derivatives On-chip
data memory

Off-chip
data memory

The direct
addressing mode

limit is at 1K (3FFh)

The entire memory is
addressable in the
indirect and indirect
with offset modes
XA User Guide 2-3 3/24/97



ed

o
uce a
ontains
d on the

the

ta

. For

rate.

 on-
Direct. The first 1K bytes of data on each segment may be accessed by an address contain
within the instruction.

Indirect. A complete 24-bit data memory address is formed by an 8-bit segment register
concatenated with 16-bits from a pointer register.

Indirect with offset. An 8-bit or 16-bit signed offset contained within the instruction is added t
the contents of a pointer register, then concatenated with an 8-bit segment register to prod
complete address. This mode allows access into a data structure when a pointer register c
the starting address of the structure. It also allows subroutines to access parameters passe
stack.

Indirect with auto-increment. The address is formed in the same manner as plain indirect, but
pointer register contents are automatically incremented following the operation.

Data movement instructions and some special purpose instructions also have additional da
addressing modes.

The XA data memory addressing scheme provides for upward compatibility with the 80C51
details, refer to Chapter 9.

2.2.3  Code Memory

The XA is a Harvard architecture device, meaning that the code and data spaces are sepa
The XA provides a continuous, unsegmented linear code space that may be as large as 16
megabytes (Figure 2.4). In XA derivatives with on-chip ROM or EPROM code memory, the

Figure 2.4  XA code memory map

0

FFFFFFh (16M)

16 Mbytes of linear
code space

The on-chip/off-chip code
memory boundary varies

for different XA derivatives On-chip
code memory

Off-chip
code memory
3/24/97 2-4 Architectural Overview



emory.
us
de

ss to the
 the
ory

ternal
m at
tirely

he
. This
 SFR

PU
nted
chip space always begins at code address 0 and extends to the limit of the on-chip code m
Above that, code will be fetched from off-chip. Most XA derivatives will support an external b
for off-chip data and code memory, and may also be used in a ROM-less mode, with no co
memory used on-chip.

In some cases, code memory may be addressed as data. Special instructions provide acce
entire code space via pointers. Either a special segment register (CS or Code Segment) or
upper 8-bits of the Program Counter (PC) may be used to identify the portion of code mem
referenced by the pointer.

2.2.4  Special Function Registers

Special Function Registers (SFRs) provide a means for the XA to access Core registers, in
control registers, peripheral devices, and I/O ports. Any SFR may be accessed by a progra
any time without regard to any pointer or segment. An SFR address is always contained en
within an instruction. See Figure 2.5.

The total SFR space is 1K bytes in size. This is further divided into two 512 byte regions. T
lower half is assigned to on-chip SFRs, while the second half is reserved for off-chip SFRs
allows provides a means to add off-chip I/O devices mapped into the XA as SFRs. Off-chip
access is not implemented on all XA derivatives.

On-chip SFRs are implemented as needed to provide control for peripherals or access to C
features and functions. Each XA derivative may have a different number of SFRs impleme

Figure 2.5  SFR Address Space

Bit-Addressable

1 K bytes

Off-Chip
SFRs

On-Chip
SFRs

512 bytes

512 bytes

64 bytes
XA User Guide 2-5 3/24/97



ed on

r that

in this
because each has a different set of peripheral functions. Many SFR addresses will be unus
any particular XA derivative.

The first 64 bytes of on-chip SFR space are bit-addressable. Any CPU or peripheral registe
allows bit access will be allocated an address within that range.

2.3  CPU
Figure 2.6 shows the XA architecture as a whole. Each of the blocks shown are described 
section.

Figure 2.6  The XA Architecture

SFR bus
interface

Exception
Controller

Program
Counter

On-chip
Peripherals

On-chip
EPROM/

ROM

PSWLPSWH SCR

SSELPCON ES DS

Data/Address/Control Bus

RESET

Oscillator

16-bit

CS

External
Program
Memory

External
Data

Memory

On-chip
RAM

Program
Memory
Interface

ALU
16-bit

Data Memory
Interface

External
SFR

Devices

Register
File

Execution
Unit

IREG

CPU
Clock

SFR bus
8 or 16 bits
3/24/97 2-6 Architectural Overview



ers;
;

may
r bus
rupt

e,

w
 the

d

ams.

e
the
lags.
he

gister

the
e

tch
en,
cides
2.3.1  CPU Blocks

The XA processor is composed of several functional blocks: Instruction fetch and decode;
Execution unit; ALU; Exception controller; Interrupt controller; Register File and core regist
Program memory (ROM or EPROM), Data memory (RAM); SFR and external bus interface
Oscillator; and on-chip peripherals and I/O ports.

Certain functional blocks that exist on most XA derivatives are not part of the CPU core and
vary in each derivative. These are: the external bus interface, the Special Function Registe
(SFR bus) interface, specific peripherals, I/O ports, code and data memories, and the inter
controller.

CPU Performance Features
The XA core is partially pipelined and performs some CPU functions in parallel. For instanc
instruction fetch and decode, and in some cases data write-back, are done in parallel with
instruction execution. This partial pipelining gives very fast instruction execution at a very lo
cost. For instance, the instruction execution time for most register-to-register operations on
XA is 3 CPU clocks, or 100 nanoseconds with a 30 MHz oscillator.

ALU
Data operations in the XA core are accomplished with a 16-bit ALU, providing both 8-bit an
16-bit functions. Special circuitry has been included to allow some 32-bit functions, such as
shifts, multiply, and divide.

Core Registers
The XA core includes several key Special Function Registers which are accessed by progr

The System Configuration Register (SCR) sets up the basic operating modes of the XA. Th
Program Status Word (PSW) contains status flags that show the result of ALU operations, 
register select bits for the four register file banks, the interrupt mask bit, and other system f
The Data Segment (DS), Extra Segment (ES), and Code Segment (CS) registers contain t
segment numbers of active data memory segments. The Segment Select register (SSEL),
contains bits that determine which segment register is used by each pointer register in the re
file. Bits in the Power Control register (PCON) control the reduced power modes of the
processor.

Execution and Control
The Execution and Control block fetches instructions from the code memory and decodes 
instructions prior to execution. The XA normally attempts to fetch instructions from the cod
memory ahead of what is immediately needed by the execution unit. These pre-fetched
instructions are stored in a 7 byte queue contained in the fetch and decode unit.

If the fetch unit has instructions in the queue, the execution unit will not have to wait for a fe
to occur when it is ready to begin execution of a new instruction. If a program branch is tak
the queue is flushed and instructions are fetched from the new location. This block also de
whether to attempt instruction fetches from on or off-chip code memory.
XA User Guide 2-7 3/24/97



the
aging

utes
ntrol

t all of

ular
ty for
o the
ing

se are

e: stack

e
 dealt

le that

e first

ck,
ress of
ble.
The instruction at the head of the queue is decoded into separate functional fields that tell 
other CPU blocks what to do when the instruction is executed. These fields are stored in st
registers that hold the information until the next instruction begins executing.

Execution Unit
The execution unit controls many of the other CPU blocks during instruction execution. It ro
addressing information, sends read and write commands to the register file and memory co
blocks, tells the fetch and decode unit when to branch, controls the stack, and ensures tha
these operations are performed in the proper sequence. The execution unit obtains control
information for each instruction from a microcode ROM.

Interrupt Controller
The interrupt controller can receive an interrupt request from any of the sources on a partic
XA derivative. It prioritizes these based on user programmable registers containing a priori
each interrupt source. It then compares the priority of the highest pending interrupt (if any) t
interrupt mask bits from the PSW. If the interrupt has a higher priority than the currently runn
code, the interrupt controller issues a request to the execution unit.

The interrupt controller also contains extra registers for processing software interrupts. The
used to run non-critical portions of interrupt service routines at a decreased priority without
risking “priority inversion.”

While the interrupt controller is not part of the XA core, it is present in some form on all XA
derivatives.

Exception Controller
The exception controller is similar to the interrupt controller except that it processes CPU
exceptions rather than hardware and software interrupt requests. Sources of exceptions ar
overflow; divide by zero; user execution of an RETI instruction; hardware breakpoint; trace
mode; and non-maskable interrupt (NMI).

Exceptions are serviced according to a fixed priority ranking. Generally, exceptions must b
serviced immediately since each represents some important event or problem that must be
with before normal operation can resume.

The Exception Controller is part of the XA core and is always present.

Interrupt and Exception Processing
Interrupt and exception processing both make use of a vector table that resides in the low
addresses of the code memory. Each interrupt and exception has an entry in the vector tab
includes the starting address of the service routine and a new PSW value to be used at the
beginning of the service routine. The starting address of a service routine must be within th
64K of code memory.

When the XA services an exception or interrupt, it first saves the return address on the sta
followed by the PSW contents. Next, the PC and the PSW are loaded with the starting add
the appropriate service routine and the new PSW contents, respectively, from the vector ta
3/24/97 2-8 Architectural Overview



TI

 and
ters or
ister

set
set

 that
e EA

n

rs to

.
de
rnal
e

-chip
ver
e

as
 RAM
e the

as well
 the
 user
When the service routine completes, it returns to the interrupted code by executing the RE
(return from interrupt) instruction. This instruction loads first the PSW and then the Program
Counter from the stack, resuming operation at the point of interruption. If more than the PC
PSW are used by the service routine, it is up to that routine to save and restore those regis
other portions of the machine state, normally by using the stack, and often by switching reg
banks.

Reset
Power up reset and any other external reset of the XA is accomplished via an active low re
pin. A simple resistor and capacitor reset circuit is typically used to provide the power-on re
pulse. the reset pin is a Schmitt trigger input, in order to prevent noise on the reset pin from
causing spurious or incomplete resets.

The XA may be reset under program control by executing the RESET instruction. This
instruction has the effect of resetting the processor as if an external reset occurred, except
some hardware features that are latched following a hardware reset (such as the state of th
pin and bus width programming) are not re-latched by a software reset. This distinction is
necessary because external circuitry driving those inputs cannot determine that a reset is i
progress.

Some XA derivatives also have a hardware watchdog timer peripheral that will trigger an
equivalent chip reset if it is allowed to time out.

Oscillator and Power Saving Modes
XA derivatives have an on-chip oscillator that may be used with crystals or ceramic resonato
provide a clock source for the processor.

The XA supports two power saving modes of operation: Idle mode and Power Down mode
Either mode is activated by setting a bit in the Power Control (PCON) register. The Idle mo
shuts down all processor functions, but leaves most of the on-chip peripherals and the exte
interrupts functioning. The oscillator continues to run. An interrupt from any operating sourc
will cause the XA to resume operation where it left off.

The Power Down mode goes one step further and shuts down everything, including the on
oscillator. This reduces power consumption to a tiny amount of CMOS leakage plus whate
loads are placed on chip pins. Resuming operation from the power down mode requires th
oscillator to be restarted, which takes about 10 milliseconds. Power down mode can be
terminated either by resetting the XA or by asserting one of the external interrupts, if one w
left enabled when power down mode was entered. In Power Down mode, data in on-board
is retained. Further power savings may be made by reducing Vdd in Power Down mode; se
device data sheet for details.

Stack
The processor stack provides a means to store interrupt and subroutine return addresses, 
as temporary data. The XA includes 2 stack pointers, the System Stack Pointer (SSP) and
User Stack Pointer (USP), which correspond to 2 different stacks: the system stack and the
stack. See Figure 2.7. The system stack always resides in the first data memory segment,
XA User Guide 2-9 3/24/97



lue of
a time,

more

mory.
ck is
n to

 even

ing.
ugger
utine,

ction
other

le to

ply
segment 0. The user stack resides in the data memory segment identified by the current va
the data segment (DS) register. Executing code has access to only one of these stacks at 
via the Stack Pointer, R7. Since each stack resides in a single data memory segment, its
maximum size is 64K bytes. The purpose of having two stack pointers will be discussed in 
detail in the section on Task Management below.

The XA stack grows downwards, from higher addresses to lower addresses within data me
The current stack pointer always points to the last item pushed on the stack, unless the sta
empty. Prior to a push operation, the stack pointer is decremented by 2, then data is writte
memory. When the stack is popped, the reverse procedure is used. First, data is read from
memory, then the stack pointer is incremented by 2. Data on the stack always occupies an
number of bytes and is word aligned in data memory.

Debugging Features
The XA incorporates some special features designed to aid in program and system debugg
There is a software breakpoint instruction that may be inserted in a user’s program by a deb
program, causing the user program to break at that point and go to the breakpoint service ro
which can transmit the CPU state so that it can be viewed by the user.

The trace mode is similar to a breakpoint, but is forced by hardware in the XA after the
execution of every instruction. The trace service routine can then keep track of every instru
executed by a user program and transmit information about the CPU state to a serial port or
peripheral for display or storage. Trace mode is controlled by a bit in the PSW. The XA is ab
alter the trace mode bit whenever an interrupt or exception vector is taken. This gives very
flexible use of trace mode, for instance by allowing all interrupts to run at full speed to com
with system hardware requirements, while single stepping through mainline code.

Figure 2.7  XA Stacks

System Stack
 Pointer

System
Stack User Stack

 Pointer

User
Stack

R7 Stack Pointer

System Mode User Mode

in Segment 0 in DS Segment
3/24/97 2-10 Architectural Overview



s a

be

shares
 state

 for a
oller
e can

re not

asic
.". A
up and

ter
in the
 user
ct that
ntally

 are
ata
e to
r
e thus

ask.

each
ust be
With these two features, a simple monitor debugger routine can allow a user to single step
through a program, or to run a program at full speed, stopping only when execution reache
breakpoint, in either case viewing the CPU state before continuing.

2.4  Task Management
Several features of the XA have been included to facilitate multi-tasking. Multi-tasking can 
thought of as running several programs at once on the same processor, with a supervisory
program determining when each program, or task, runs, and for how long. Since each task
the same CPU, the system resources required by each must be kept separate and the CPU
restored when switching execution from one task to another. The problem is much simpler
microcontroller than it is for a microprocessor, because the code executed by a microcontr
always comes from the same source: the designers of the system it runs on. Thus, this cod
be considered to be basically trustworthy and extreme measures to prevent misbehavior a
necessary. The emphasis in the XA design is to protect against simple accidents.

The first step in supporting multi-tasking is to provide two execution contexts, one for the b
tasks –on the XA termed “user mode”– and one for the supervisory program –"system mode
program running in system mode has access to all of the processor’s resources and can set
launch tasks.

Code running in system and user mode use different stack pointers, the System Stack Poin
(SSP) and the User Stack Pointer (USP) respectively. The system stack is always located 
first 64K data memory segment, where it can take advantage of the fast on-chip RAM. The
stack is located within each task’s local data segment, identified by the DS register. The fa
user mode code uses a different stack than system mode code prevents tasks from accide
destroying data on the system stack and in other task spaces.

Additional protection mechanisms are provided in the form of control bits and registers that
only writable by system mode code. For instance the DS register, that identifies the local d
segment for user mode code, is only writable in the system mode. While tasks can still writ
the other segment register, the ES register, they cannot write to memory via the ES registe
unless specifically allowed to do so by the system. The data memory segmentation schem
prevents tasks from accessing data memory in unpredictable ways.

Other protected features include enabling of the Trace Mode and alteration of the Interrupt M

The 4 register banks are a feature that can be useful in small multi-tasking systems by using
bank for a different task, including one for system code. This means less CPU state that m
saved during task switching.
XA User Guide 2-11 3/24/97



ter
hes.
ither 2
ns.

k

pical

of

d
a 16-

dress)
e 2.9.

 R1.
ry, as

ter
ory

ize
s a
2.5  Instruction Set
The XA instruction set is designed to support common control applications. The instruction
encoding is optimized for the most commonly used instructions: register to register or regis
with indirect arithmetic and logic operations; and short conditional and unconditional branc
These instructions are all encoded as 2 bytes. The bulk of XA instructions are encoded as e
or 3 bytes, although there are a few 1 byte instructions as well as 4, 5, and 6 byte instructio

The execution of instructions normally overlaps instruction fetch, and sometimes write-bac
operations, in order to further speed processing.

2.5.1  Instruction Syntax

The instruction syntax chosen for the XA is similar in many ways to that of the 80C51. A ty
XA instruction has a basic mnemonic, such as "ADD", followed by the operands that the
operation is to be performed on. The basic syntax is illustrated in Figure 2.8. The direction 
operation flow is determined by the order in which operands occur in the source line. For
instance, the instruction: "ADD  R1, R2" would cause the contents of R1 and R2 to be adde
together and the result stored in R1. Since R1 and R2 are word registers in the XA, this is 
bit operation.

An indirect reference (a reference to data memory using the contents of a register as an ad
is specified by enclosing the operand in square brackets, as in: "ADD  R1, [R2]". See Figur
This instruction causes the contents of R1 and the data memory location pointed to by R2
(appended to its associated segment register) to be added together and the result stored in
Reversing the operand order ("ADD [R2], R1") causes the result to be stored in data memo
shown in Figure 2.10.

Most instructions support an additional feature called auto-increment that causes the regis
used to supply the indirect memory address to be automatically incremented after the mem
access takes place. The source line for such an operation is written as follows: "ADD  R1,
[R2+]". As illustrated in Figure 2.11, the auto-increment amount always matches the data s
used in the instruction. In the previous example, R2 will have 2 added to it because this wa
word operation.

Figure 2.8  Basic Instruction Syntax

op-code
mnemonic

target
operand

source
operand

ADD R1      ,    R2

operand delimiter (comma)
3/24/97 2-12 Architectural Overview



n
nded
e

7
 that
n

 12
Another version of indirect addressing is called indirect with offset mode. In this version, an
immediate value from the instruction word is added to the contents of the indirect register i
order to form the actual address. This result of the add is 16 bits in size, which is then appe
to the segment register for that pointer register. If the offset calculation overflows 16 bits, th
overflow is ignored, so the indirect reference always remains on the same segment. The
immediate data from the instruction is a signed 8-bit or 16-bit offset. Thus, the range is +12
bytes to -128 bytes for an 8-bit offset, and +32,767 to -32,768 bytes for a 16-bit offset. Note
since the address calculation is limited to 16-bits, the 16-bit offset mode allows access to a
entire data segment.

When an instruction requires an immediate data value (a value stored within the instruction
itself), it is written using the "#" symbol. For example: "ADD  R1, #12" says to add the value
to register R1.

Figure 2.9  Basic Indirect Addressing Syntax, to register

Figure 2.10  Basic Indirect Addressing Syntax, from Register

ADD  R1, [R2]R1

R2

register file

data memory

1000

1002

1004

1006

1004

45

1000

Before

R1

R2

register file

data memory

1000

1002

1004

1006

1004

45

1045

After

ADD  [R2], R1R1

R2

register file

data memory

1000

1002

1004

1006

1004

45

1000

Before

R1

R2

register file

data memory

1000

1002

1004

1006

1004

1045

1000

After
XA User Guide 2-13 3/24/97



ze of

 to by
ifier
ould

tion:
d at
 make

sing
to read

en a
n
"C")

eriod
entify

ples
Since indirect memory references and immediate data values do not implicitly identify the si
the operation to be performed, a few XA instructions must have an operation size explicitly
called out. An example would be the instruction: "MOV [R1], #1". The immediate data value
does not specify the operation size, and the value stored in memory at the location pointed
R1 could be either a byte or a word. To clarify the intent of such an instruction, a size ident
is added to the mnemonic as follows: "MOV.b  [R1], #1". This tells us that the operation sh
be performed on a byte. If the line read "MOV.w  [R1], #1", it would be a word operation.

If a direct data address is used in an instruction, the address is simply written into the instruc
"ADD 123, R1", meaning to add the contents of register R1 to the data memory value store
direct address 123. In an actual program, the direct data address could be given a name to
the program more readable, such as "ADD Count, R1".

Operations using Special Function Registers (SFRs) are written in a way similar to direct
addresses, except that they are normally called out by their names only: "MOV PSW,#12". U
actual SFR addresses rather than their names in instructions makes the code both harder 
and less transportable between XA derivatives.

Bit addresses within instructions may be specified in one of several ways. A bit may be giv
unique name, or it may be referred to by its position within some larger register or entity. A
example of a bit name would be one of the status flags in the PSW, for instance the carry (
flag. To clear the carry flag, the following instruction could be used: "CLR C". The same bit
could be addressed by its position within the PSW as follows: "CLR PSWL.7", where the p
(".") character indicates that this is a bit reference. A program may use its own names to id
bits that are defined as part of the application program.

Finally, code addresses are written within instructions either by name or by value. Again, a
program is more readable and easier to modify if addresses are called out by name. Exam
are: "JMP  Loop" and "JMP 124".

Figure 2.11  Indirect Addressing with Auto-Increment

ADD  R1, [R2+]R1

R2

register file

data memory

1000

1002

1004

1006

1004

45

1000

Before

R1

R2

register file

data memory

1000

1002

1004

1006

1006

45

1045

After
3/24/97 2-14 Architectural Overview



r 6.

tions::
2.5.2  Instruction Set Summary
The following pages give a summary of the XA instruction set. For full details, consult Chapte

Basic Arithmetic, Logic, and Data Movement Instructions
The most used operations in most programs are likely to be the basic arithmetic and logic
instructions, plus the MOV (move data) instruction. The XA supports the following basic
operations:

ADD Simple addition.
ADDC Add with carry.
SUB Subtract.
SUBB Subtract with borrow.
CMP Compare.
AND Logical AND.
OR Logical OR.
XOR Exclusive-OR.

These instructions support all of the following standard XA data addressing mode combina

Operands Description

R, R The source and destination operands are both registers.

R, [R] The source operand is indirect, the destination operand is a
register.

[R], R The source operand is a register, the destination operand is
indirect.

R, [R+] The source operand is indirect with auto-increment, the destination
operand is a register.

[R+], R The source operand is a register, the destination operand is
indirect with auto-increment.

R, [R+offset] The source operand is indirect with an 8 or 16-bit offset, the
destination operand is a register.

[R+offset], R The source operand is a register, the destination operand is
indirect with an 8 or 16-bit offset.

direct, R The source operand is a register, the destination operand is a
direct address.

R, direct The source operand is a direct address, the destination operand is
a register.

R, #data The source operand is an 8 or 16-bit immediate value, the
destination operand is a register.

[R], #data The source operand is an 8 or 16-bit immediate value, the
destination operand is indirect.
XA User Guide 2-15 3/24/97



Other instructions on the XA use different operand combinations. All XA instructions are
covered in detail in the Instruction Set section. Following is a summary of other instruction
types:Additional arithmetic instructions

Additional arithmetic instructions
ADDS Add short immediate (4-bit signed value).
NEG Negate (twos complement).
SEXT Sign extend.
MUL Multiply.
DIV Divide.
DA Decimal adjust.
ASL Arithmetic shift left.
ASR Arithmetic shift right.
LEA Load effective address.

Additional logic instructions
CPL Complement (ones complement or logical inverse).
LSR Logical shift right.
NORM Normalize.
RL Rotate left.
RLC Rotate left through carry.
RR Rotate right.
RRC Rotate right through carry.

Other data movement instructions
MOVS Move short immediate (4-bit signed value).
MOVC Move to or from code memory.
MOVX Move to or from external data memory.
PUSH Push data onto the stack.
POP Pop data from the stack.
XCH Exchange data in two locations.

Bit manipulation instructions
SETB Set (write a 1 to) a bit.
CLR Clear (write a 0 to) a bit.
MOV Move a bit to or from the carry flag.
ANL Logical AND a bit (or its inverse) to the carry flag.
ORL Logical OR a bit (or its inverse) to the carry flag.

[R+], #data The source operand is an 8 or 16-bit immediate value, the
destination operand is indirect with auto-increment.

[R+offset], #data The source operand is an 8 or 16-bit immediate value, the
destination operand is indirect with an 8 or 16-bit offset.

direct, #data The source operand is an 8 or 16 bit immediate value, the
destination operand is a direct address.

Operands Description
3/24/97 2-16 Architectural Overview



Jump, branch, and call instructions
BR Branch to code address (plus or minus 256 byte range).
JMP Jump to code address (range depends on specific JMP variation).
CALL Call subroutine (range depends on specific CALL variation).
RET Return from subroutine or interrupt.
Bcc Conditional branches with 15 possible condition variations.
JB, JNB Jump if a bit set or not set.
CJNE Compare two operands and jump if they not equal.
DJNZ Decrement and jump if the result is not zero.
JZ, JNZ Jump on zero or not zero (included for 80C51 compatibility).

Other instructions
NOP No operation (used mainly to align branch targets).
BKPT Breakpoint (used for debugging).
TRAP Software trap (used to call system services in a multitasking system).
RESET Reset the entire chip.
XA User Guide 2-17 3/24/97



rough
s, and
ned to

s. The
r

gured
er

l

2.6  External Bus
Most XA derivatives have the capability of accessing external code and/or data memory th
the use of an external bus. The external bus provides address information to external device
initiates code read, data read, or data write strobes. The standard XA external bus is desig
provide flexibility, simplicity of connection, and optimization for external code fetches.

As described in section 4.4.4, the initial external bus width is hardware settable, and the XA
determines its value (8 or 16 bits) during the reset sequence.

2.6.1  External Bus Signals

The standard XA external bus supports 8 or 16-bit data transfers and up to 24 address line
precise number of address lines varies by derivative. The standard control signals and thei
functions for the external bus are as follows:

2.6.2  Bus Configuration

The standard XA bus is user configurable in several ways. First, the bus size may be confi
to either 8 bits or 16 bits. This may be configured by the logic level on a pin at reset, or und
firmware control (if code is initially executed from on-chip code memory) prior to any actua
external bus operations. As on the 80C51, theEA pin determines whether or not on-chip code
memory is used for initial code fetches.

Signal name Function

ALE Address Latch Enable. This signal directs an external address
latch to store a portion of the address for the next bus operation.
This may be a data address or a code address.

PSEN Program Store Enable. Indicates that the XA is reading code
information over the bus. Typically connected to the Output
Enable pin of external EPROMs.

RD Read. The external data read strobe. Typically connected to the
RD pin of external peripheral devices.

WRL Write. The low byte write strobe for external data. Typically
connected to the WR pin of external peripheral devices. For an 8-
bit data bus, this is the only write strobe. For a 16-bit data bus,
this strobe applies only to the lower data byte.

WRH Write High. This is the upper byte write strobe for external data
when using a 16-bit data bus.

WAIT Wait. Allows slowing down any type external bus cycle. When
asserted during a bus operation, that operation waits for this
signal to be de-asserted before it is completed.
3/24/97 2-18 Architectural Overview



a

ut the

sses.
Second, the number of address lines may be configured in order to make optimal use of I/O
ports. Since external bus functions are typically shared with I/O ports and/or peripheral I/O
functions, it is advantageous to set the number of address lines to only what is needed for 
particular application, freeing I/O pins for other uses.

2.6.3  Bus Timing

The standard XA bus also provides a high degree of bus timing configurability. There are
separate controls for ALE width,PSEN width,RD andWRL/WRH width, and data hold time
from WRL/WRH. These times are programmable in a range that will support most RAMs,
ROMs, EPROMs, and peripheral devices over a wide range of oscillator frequencies witho
need for additional external latches, buffers, or WAIT state generators.

The following figures show the basic sequence of events and timing of typical XA bus acce
For more detailed information, consult Section 7 and the device data sheet.

Figure 2.12  Typical External Code Read.

Figure 2.13  Optimized (Sequential Burst) External Code Read.

ALE

PSEN

Address bus

Data bus address instruction data

code address

ALE

PSEN

Address bus

Data bus instruction datainstruction data

code addresscode address
XA User Guide 2-19 3/24/97



cess
ay be

l

Figure 2.14  Typical External Data Read.

Figure 2.15  Typical External Data Write.

2.7  Ports
Standard I/O ports on the XA have been enhanced to provide better versatility and
programmability than was previously available in the 80C51 and most of its derivatives. Ac
to the I/O ports from a program is through SFR addresses assigned to those ports. Ports m
read and written is the same manner as any other SFR.

The XA provides more flexibility in the use of I/O ports by allowing different output
configurations. See Figure 2.16. Port outputs may be programmed to be quasi-bidirectiona
(80C51 style ports), open drain, push-pull, and high impedance (input only).

ALE

RD

Address bus

Data bus address data in to XA

data address

ALE

WRL/WRH

Address bus

Data bus address data out from XA

data address
3/24/97 2-20 Architectural Overview



re not
FR
y

st,

ld,
ho
nt is

me
igns
re.
2.8  Peripherals
The XA CPU core is designed to make derivative design fast and easy. Peripheral devices a
part of the core, but are attached by means of a Special Function Register bus, called the S
bus, which is distinct from the CPU internal buses. So, a new XA derivative may be made b
designing a new SFR bus compatible peripheral function block, if one does not already exi
then attaching it to the XA core.

2.9  80C51 Compatibility
The 80C51 is the most extensively designed-in 8-bit microcontroller architecture in the wor
and a vast amount of public and private code exists for this device family. For customers w
use the 80C51 or one of its derivatives, preservation of their investment in code developme
an important consideration. By permitting simple translation of source code, the XA allows
existing 80C51 code to be re-used with this higher-performance 16-bit controller. At the sa
time, the XA hardware was designed with the clear goal of upward compatibility. 80C51 des
may be migrated to the XA with very few changes necessary to software source or hardwa

Figure 2.16  XA Port Pins with Driver Option Detail

input output

hi-Z

XA

+V+V

R

Write

Read

Write Write

Quasi-bidirectional open drain push-pull
XA User Guide 2-21 3/24/97



ister
XA
of the

nvert
r one

ter 9

XA,

s
ent

ns.

 XA

d to

ram
tor can
 are

rd

s
ata
The XA provides an 80C51 Compatibility Mode, which essentially replicates the 80C51 reg
architecture for the best possible upward compatibility. In the alternative Native Mode, the 
operates as an optimized 16-bit microcontroller incorporating the best conceptual features 
original 80C51 architecture.

Many trade-offs and considerations were taken into account in the creation of the XA
architecture. The most important goal was to make it possible for a software translator to co
80C51 assembler source code to XA source code on a 1:1 basis, i.e., one XA instruction fo
80C51 instruction.

Some specific compatibility issues are summarized in the following two sections. See Chap
for a complete description of compatibility.

2.9.1  Software Compatibility

Several basic goals were observed in order to design 80C51 software compatibility for the 
while avoiding over-complicating the XA design. Following are some key issues for XA
software:

• Instruction mapping. Each 80C51 instruction translates into one XA instruction. Multi-
instruction combinations that could result in problems if split by an interrupt were avoided a
much as possible. Only one 80C51 instruction does not have a one-to-one direct replacem
with an XA instruction (this instruction, XCHD, is extremely rarely used).

• "As-is" instructions. Most XA instructions are more powerful supersets of 80C51 instructio
Where this was not possible, the original 80C51 instruction is included "as-is" in the XA
instruction set.

• Timing. Instruction timing must necessarily change in order to improve performance. The
does not attempt to retain timing compatibility with the 80C51; rather, the design simply
maximizes instruction execution speed. When 80C51 code that is timing critical is translate
the XA, the user must re-analyze the timing and make adjustments.

• SFR Access. Translation of SFR accesses is usually simple, since SFRs are normally
referenced by name. Such references are simply retained in the translated XA code. If prog
source code from a specific 80C51 derivative references an SFR by its address, the transla
directly substitute the appropriate XA SFR, provided both the 80C51 and the XA derivative
correctly identified to the translator.

2.9.2  Hardware Compatibility

The key goal for hardware was to produce a familiar architecture with a good deal of upwa
compatibility.

• Memory Map. A major consideration in hardware compatibility of the XA with the 80C51 i
the memory map. The XA approaches this issue by having each memory area (registers, d
memory, code memory, stack, SFRs) be a superset of the corresponding 80C51 area.
3/24/97 2-22 Architectural Overview



essor
o
rder
nt

ple,
ese
0C51
operate

ce,
section
• Stack. One area where a functional change could not be avoided is in the use of the proc
stack. Due to the fact that the XA supports 16-bit operations in memory, it was necessary t
change the direction of stack growth to downward –the standard for 16-bit processors– in o
to match stack usage with efficient access of 16-bit variables in memory. This is an importa
consideration for support of high-level language compilers such as C.

• Pin-for-pin compatibility. XA derivatives are not intended to be exactly pin-compatible with
other 80C51 derivatives that have similar features. Many on-chip XA peripherals, for exam
have improved capabilities, and maintaining pin-for-pin compatibility would limit access to th
capabilities. In general, peripherals have been made upward compatible with the original 8
devices, and most enhancements are added transparently. In these cases, 80C51 code will
correctly on the 80C51 functional subset.

• Bus Interface. The external bus on the XA is an example of a trade-off between 80C51
compatibility and performance. In order to provide more flexibility and maximum performan
the 80C51 bus had to be changed somewhat. The differences are described in detail in the
on the external bus.
XA User Guide 2-23 3/24/97



3/24/97 2-24 Architectural Overview



nd
re
f

M,

w

s on

le for
fect,
r all
d

ific
yte
le)

ode;

ess to
– is a
d as

 the
3   XA Memory Organization

3.1  Introduction
The memory space of XA is configured in a Harvard architecture which means that code a
data memory (including sfrs) are organized in separate address spaces. The XA architectu
supports 16 Megabytes (24-bit address) of both code and data space. The size and type o
memory are specific to an XA derivative.

The XA supports different types of both code and data memory e.g.,code memory could be
Eprom, EEProm, OTP ROM, Flash, and Masked ROM whereas data memory could be RA
EEProm or Flash.

This chapter describes the XA Memory Organization of register, code, and data spaces; ho
each of these spaces are accessed, and how the spaces are related.

3.2   The XA Register File
The XA architecture is optimized for arithmetic, logical, and address-computation operation
the contents of one or more registers in the XA Register File.

3.2.1  Register File Overview

The XA architecture defines a total of 16 word registers in the Register File:
In the baseline XA core, only R0 through R7 are implemented. These registers are availab
unrestricted use except R7– which is the XA stack pointer, as illustrated in Figure 3.1. In ef
the XA registers provide users with at least 7 distinct “accumulators” which may be used fo
operations. As will be seen below, the XA registers are accessible at the bit, byte, word, an
doubleword level.

Additional global registers, R8 through R15, are reserved and may be implemented in spec
XA derivatives. These registers, when available, are equivalent to R0 through R7 except b
access and use as pointers will not be possible (only word, double-word, and bit-addressab.
The Register File is independent of all other XA memory spaces (except in Compatibility M
see chapter 9).

Register File Detail
Figure 3.2 describes R0 through R7 in greater detail.

Byte, Word, and Doubleword Registers
All registers are accessible as bits, bytes, words, and –in a few cases– doublewords. Bit acc
registers is described in the next section. As for byte and word accesses, R1 –for example
word register that can be word referenced simply as “R1”. The more significant byte is labele
“R1H” and the less significant byte of R1 is referenced as “R1L”. Double-word registers are
always formed by adjacent pairs of registers and are used for 32 bit shifts, multiplies, and
divides. The pair is referenced by the name of the lower-numbered register (which contains
XA User Guide 3-1 3/24/97



 are

r
7.
 is 1,

n
 of the

f the
less significant word), and this must have an even number. Thus valid double-register pairs
(R0,R1), (R2,R3), (R4,R5) and (R6, R7).

As described in section 4.7, there are two stack pointers, one for user mode and another fo
system mode. At any given instant only one stack pointer is accessible and its value is in R
When PSW.SM is 0, user mode is active and the USP is accessible via R7. When PSW.SM
the XA is operating in system mode, and SSP is in SP (R7). (Note however, as described i
Chapter 4, all interrupts save stack frames on the system stack, using the SSP, regardless
current operating mode.)

There are four distinct instances of registers R0 through R3. At any given time, only 1 set o
4 banks is active, referenced as R0 through R3, and the contents of the other banks are
inaccessible. This allows high-speed context-switching, for example, for interrupt service
routines.PSW bitsRS1 andRS0 select the active register bank:

RS1  RS0 visible register bank
----   ----- ------------------------
0 0 bank 0
0 1 bank 1
1 0 bank 2
1 1 bank 3

Figure 3.1    XA Register File Overview

16 bits

R7

R6

R5

R4

R3

R2

R1

R0

R15

R14

R13

R12

R11

R10

R9

R8

general registers

general registers
derivative-optional

present in all
XA derivatives

(word-accessible only)
3/24/97 3-2 XA Memory Organization



nning
e.
PSW.RSn are writable when the XA is operating in system or user mode, and programs ru
in either mode may explicitly change these bits to make selected banks visible one at a tim
More commonly, the interrupt mechanism, as described in Chapter 4, provides automatic
implicit register bank switching so interrupt handlers may immediately begin operating in a
reserved register context.

Figure 3.2    XA Register File

SP(R7)

R6

R5

R4

R3

R2

R1

R0

R7H

R6H

R5H

R4H

R3L

R2L

R1L

R0L

R7L

R6L

R5L

R3H

R2H

R1H

R0H

R4L

Global registers.

SSP

Banked Registers

USP

R11

R10

R9

R8

Global registers

R15

R14

R13

R12
(word only)
XA User Guide 3-3 3/24/97



asic
 XA
 may

ank, as
ted

ess
ven
 is

ser
t

Bit Access to Registers
The XA Registers are all bit addressable. Figure 3.3 shows how bit addresses overlie the b
register file map. In general, absolute bit references as given in this map are unnecessary.
software development tools provide symbolic access to bits in registers. For example, bit 7
be designated as “R0.7” with no ambiguity

Bit references to banked registers R0 through R3 access the currently accessible register b
set byPSW bitsRS1, RS0and the currently selected stack pointer USP or SSP. The unselec
registers are inaccessible..

3.3  The XA Memory Spaces
The XA divides physical memory into program and data memory spaces. Twenty-four addr
bits, corresponding to a 16MB address space, are defined in the XA architecture. In any gi
XA implementation, fewer than all twenty-four address bits may actually be used, and there
provision for a small-memory mode which uses only 16-bit addresses; see Chapter 4.

Code and data memory may be on-chip or external, depending on the XA variant and the u
implementation. Whether a specific region is on-chip or external does not, in general, affec
access to the memory.

Figure 3.3    Bit Address to Registers

0F 0E 0D 0C 0B 0A 09 08 07 06 05 04 03 02 01 00R0

1F 1E 1D 1C 1B 1A 19 18 17 16 15 14 13 12 11 10R1
R2
R3
R4
R5
R6

R14
R15

2F 2E 2D 2C 2B 2A 29 28 27 26 25 24 23 22 21 20

3F 3E 3D 3C 3B 3A 39 38 37 36 35 34 33 32 31 30

4F 4E 4D 4C 4B 4A 49 48 47 46 45 44 43 42 41 40

5F 5E 5D 5C 5B 5A 59 58 57 56 55 54 53 52 51 50

R7
6F 6E 6D 6C 6B 6A 69 68 67 66 65 64 63 62 61 60

7F 7E 7D 7C 7B 7A 79 78 77 76 75 74 73 72 71 70

EF EE ED EC EB EA E9 E8 E7 E6 E5 E4 E3 E2 E1 E0

FF FE FD FC FB FA F9 F8 F7 F6 F5 F4 F3 F2 F1 F0

RnH RnL
3/24/97 3-4 XA Memory Organization



word

 word
0 will

access

ce is

ere

al) are
mory

ll
d

a
 the
3.3.1  Bytes, Words, and Alignment

XA memory is addressed in units ofbytes, where each byte consists of 8 bits. Aword consists of
two bytes, and the word storage order is “Little-Endian”, that is, the less significant byte of 
data is located at a lower memory address. See Figure 3.4.

Any word access must be aligned at an even address (Address bit A0=0). If an odd-aligned
access is attempted the word at the next-smallest even address will be accessed, that is, A
be set to 0.

The external XA memory spaces may be accessed in byte or word units but the hardware 
method does not affect the even alignment restriction on word accesses.

3.4  Data Memory
The data memory space starts at address 0 and extends to the highest valid address in the
implementation, at maximum, FFFFFFh. As will be described below, the data memory spa
segmented into 256 segments of 64K bytes each.External Data Memorystarts at the first address
following the highestInternal Data Memorylocation. In general, at least 512 bytes of Internal
Data Memory, starting at location 0, will be provided in all XA implementations; however, th
is no inherent minimum or maximum architectural limitation on Internal Data Memory.

The upper 16 segments of data memory (addresses F0:0000 through FF:FFFF hexadecim
reserved for special functions in XA derivatives. A similar range is reserved in the code me
space, see section 3.5.

3.4.1  Alignment in Data Memory

There are no data memory alignment restrictions except that placed on word accesses to a
memory: Words must be fetched from even addresses. An attempt to fetch a word at an od
address will fetch a word from the preceding even address.

3.4.2  External and Internal Overlap

If External Data Memory is placed by external logic at addresses that overlaps Internal Dat
Memory, the Internal Data Memory generally takes precedence. The overlapped portion of
External memory may be accessed only by using a form of the MOVX instruction; see
Chapter 6. The use of MOVX always forces external data memory fetch in XA. For non-
overlapped portion of external data memory, no MOVX is required.

Figure 3.4    Memory byte order

address

n

n + 1

L.S. Byte

M.S. Byte

A0

0

1
WORD at address n
XA User Guide 3-5 3/24/97



ally
tice,
o

e

mory
m

ress in
s are
ter
d

gment

d 1
rmed
nt
wed as
3.4.3  Use and Read/Write Access

Data memory is defined as read-write, and is intended to contain read/write data. It is logic
impossible to execute instructions from XA Data Memory. It is possible, and a common prac
to add logic to overlap external code and data memory spaces. In this case it is important t
understand that the memory spaces are logically separate. In such a modified Harvard
architecture, implemented with external logic, it is possible –but not recommended– to writ
self-modifying XA code. No such overlap is possible for internal data memory.

3.4.4  Data Memory Addressing

XA data memory addressing is optimized for the needs of embedded processing. Data me
in the XA is divided into 64K byte segments. This provides an intrinsic protection mechanis
for multitasking applications and improves performance by requiring fewer address bits for
localized accesses.

Addressing through Segment Registers
Segment registers provide the upper 8 address bits needed to obtain a complete 24-bit add
applications that require full use of the XA 16 Mbyte address space. Two segment register
defined in the XA architecture for use in accessing data memory, the Data Segment Regis
(DS), and the Extra Segment Register(ES). As user stacks are located in the segment specifie
by DS, it is probably most convenient to address user data structures throughES. Each pointer
register, namely R0 through R6, is associated with one of the segment registers via the Se
Select (SSEL) register as illustrated in Figure 3.5.

A 0 in the SSEL bit corresponding to the pointer register selects DS (default on RESET) an
selects the ES. For example, when R3 contains a pointer value, the full 24 bit address is fo
by concatenating DS or ES, as determined by the state of SSEL bit 3, as the most significa
8 bits. As a consequence of segmented addressing, the XA data memory space may be vie
256 segments of 64K bytes each (Figure 3.6).

Figure 3.5    Address generation

SSEL ESWEN R6SEG R5SEG R4SEG R3SEG R2SEG R1SEG

DS

ES R3

complete
24-bit memory
address

segment
registers

8-bit segment
identifier

16-bit segment offset

0

1

R0SEG
3/24/97 3-6 XA Memory Organization



ill
n

lts to

ed

 the

r

If R7 (the stack pointer) is used as a normal indirect pointer, the data segment addressed w
always be segment 0 in System Mode and the DS segment in User Mode. More informatio
about the System and User modes may be found in sections 4 and 5.

The ESWEN (bit 7 of SSEL) can be programmed only in the System Mode to enable (1) or
disable (0) write privileges to data segment via ES register in the User Mode. This bit defau
the disabled (0) state after reset.

Addressing Modes
The XA provides flexible data addressing modes. Arithmetic, logic, and data movement
instructions generally support the following data memory access:

Indirect. A complete 24-bit data memory address is formed by an 8-bit segment register
concatenated with a 16-bit pointer in a register.

Direct. The first 1K bytes of data in each segment may be accessed by an address contain
within the instruction.Indirect with offset. A signed byte/word offset contained within the
instruction is added to the contents of a pointer register, and the result is concatenated with
8-bit segment register DS to produce a complete 24-bit address.

Indirect with auto-increment. Indirect addresses are formed as above and the pointer registe
contents are automatically incremented.

Figure 3.6    Data memory segmentation

400h

Data Memory
(only indirectly

addressed)

RAM
(directly and

indirectly
addressable)

Standard
bit-addressable

RAM

RAM
(directly and

indirectly
addressable)

0
FFFFh

1

64K Segments

3FFh

40h
3Fh

20h
1Fh

0

Directly
addressed

data
(1Kb per
segment)

255
XA User Guide 3-7 3/24/97



gment
the

it or
ister,

e gives
ture. It

e

sing

nd 3.9.
 odd
 not

 long
 odd.
Bit-level.  Bit-level addresses are absolute references to specific bits.

Data move instructions and some special purpose instructions also have additional data
addressing modes as described in Chapter 6.

Indirect Addressing
The entire 16 MByte address space is accessible via register-indirect addressing with a se
register, as illustrated by Figure 3.7 (Note that for simplicity, this figure omits showing how 
Extra Segment or Data Segment Register is chosen usingSSEL.).

Indirect addressing with an offset is a variant of general indirect addressing in which an 8-b
16-bit signed offset contained within the instruction is added to the contents of a pointer reg
then concatenated with an 8-bit segment register to produce a complete address. This mod
access to data structures when a pointer register contains the starting address of the struc
also supports stack-based parameter passing.

Indirect addressing with autoincrement is another variant of indirect addressing in which th
pointer register contents are automatically incremented following the operation. When the
operand is a byte, the increment is one; when the operand is a word, the increment is 2. U
indirect addressing with auto-increment provides a convenient method of traversing data
structures smaller than 64K bytes. For data structures exceeding 64K bytes in length, the
program code must explicitly adjust the segment register at page boundaries.

Address generation in these two modes of indirect addressing is illustrated inFigures 3.8 a
When using indirect addressing care is necessary to avoid accessing a word quantity at an
address. This will result in an access using the next-lower even address, which is generally
desirable. Note that the indirect addressing with an offset will be successful in this case as
as the final, effective address is even. That is, both the base address and the offset may be

Figure 3.7    Indirect Access to 24 Bit Address Space

0

FFFFFFh

Rn16 bits

Seg
Reg

+ 8 bits

24 bit address
3/24/97 3-8 XA Memory Organization



ress

ended
direct

R
ents a
e. See

t 20h
data

t

Direct Addressing
The first 1K of each segment is directly addressable. Address generation for the direct add
mode is summarized in Figure 3.10. Segment register DS is always used.
Direct data-reference instructions encode a maximum of 10 address bits, which are zero ext
to sixteen bits and concatenated with DS to form an absolute 24 bit address. In all segments,
addressing can be used to access any byte in the first 1K bytes of the segment.

SFR Addressing
A 1K portion of the direct address space, addresses 400h through 7FFh, is reserved for SF
addresses. The SFR address space uses a portion of the direct address space, but repres
completely distinct logical area that is not related to the data memory segmentation schem
section 3.6 for a complete description of SFR access.

Bit Addressing
Thirty-two bytes of each segment of data memory are also bit-addressable, starting at offse
in the segment addressed by the DS register. Address generation for bit addressing in the 
memory space is shown in Figure 3.10. As described in chapter 6, bits are encoded in
instructions as 10 bits. Figure 3.11 shows the bit addresses as they appear in memory .

Figure 3.8    Indirect Addressing

Figure 3.9    Direct address generation

Rn

16 bits

Seg
Reg

+ 8 bits

24 bit address

a) Indirect addressing with offset b) indirect addressing with auto incremen

8 or 16-bit
signed offset

+
partial
indirect addr

Rn16 bits

Seg
Reg

+ 8 bits

24 bit address

1

2
Rn <-- Rn + data size

Direct address from instruction10 bits

DS (data segment register)
+ 8 bits

24 bit address

0

XA User Guide 3-9 3/24/97



tation,

l) are
 data

e
rgets,
ress.
3.5  Code Memory
Code memory starts at address 0 and extends to the highest valid address in the implemen
at maximum, FFFFFFh.External Code Memory(off-chip) starts at the first address following the
highestInternal Code Memory(on-chip) location, if any. If code memory is present on-chip, it
always starts at location 0.

The upper sixteen 64K byte code pages (addresses F00000 through FFFFFF hexadecima
reserved for special functions in XA derivatives. The same address range is reserved in the
memory space, see section 3.4.

3.5.1  Alignment in Code Memory

As instructions are variable in length, from 1 to 6 bytes (see Chapter 6), instructions in cod
memory can be located at odd addresses. As described in Chapter 6, instruction branch ta
i.e., targets of jumps, calls, branches, traps, and interrupts must be aligned on an even add

Figure 3.10    Bit address generation in direct memory space

Figure 3.11    Direct memory bit addressing

9     8     7     6     5     4     3     2     1     0

byte offset from 20h

identifies 1 of 8 bits in a byte.

0 1

Segment n

20h

3Fh

 3Eh 1EF 1EE 1ED 1EC 1EB 1EA 1E9 1E8 1E7 1E6 1E5 1E4 1E3 1E2 1E1 1E0

byte at odd address byte even address

 28h 14F 14E 14D 14C 14B 14A 149 148 147 146 145 144 143 142 141 140

 26h 13F 13E 13D 13C 13B 13A 139 138 137 136 135 134 133 132 131 130

 24h 12F 12E 12D 12C 12B 12A 129 128 127 126 125 124 123 122 121 120

 22h 11F 11E 11D 11C 11B 11A 119 118 117 116 115 114 113 112 111 110

 20h 10F 10E 10D 10C 10B 10A 109 108 107 106 105 104 103 102 101 100

 3Fh 1FF 1FE 1FD 1FC 1FB 1FA 1F9 1F8 1F7 1F6 1F5 1F4 1F3 1F2 1F1 1F0
3/24/97 3-10 XA Memory Organization



o

is
ion

n this
n
that
l code

hat
bility;
t
r the

for the
1= CS)
3.5.2  External and Internal Overlap

If External Code Memory is placed by external logic at locations that overlap Internal Code
Memory, the Internal Code Memory takes precedence, and the overlapped portion of the
External memory will in not be accessed. However, on XA implementations that provide an
External Address (EA) hardware input, setting EA low will cause external program memory t
be used.

3.5.3  Access

Code memory is intended to contain executable XA instructions. The XA architecture supports
storing constant data in Code Memory and provides special access modes for retrieving th
information. Constant data is implicitly stored within the instruction of many data manipulat
instructions when immediate operands are specified.

It is possible, and a common practice, to overlap external code and data memory spaces. I
case it is important to understand that the memory spaces are logically separate. In such a
architecture, implemented with external logic, code memory is logically read-only memory 
is writable when accessed as external data memory. No such overlap is possible for interna
memory.

MOVC addressing in Code Memory
A special instruction, MOVC, is defined in the XA for accessing constant data (e.g lookup
tables, string constants etc.) stored in code memory.   There is a standard form of MOVC t
reflects the native XA architecture, and there are two variations that reflect 80C51 compati
see Chapter 9 for details of 80C51 compatibility. The standard form of MOVC uses a 16-bi
register value as a pointer, appended to either the top 8 bits of the Program Counter (PC) o
Code Segment register (CS) to form a 24-bit address, as shown in Figure 3.12. The source
upper 8 address bits is determined by the setting of the segment selection bit (0 = PC and 
in the SSEL register that corresponds to the operand register.

Figure 3.12    MOVC addressing in code memory

SSEL ESWEN R6SEG R5SEG R4SEG R3SEG R2SEG R1SEG

PC

CS R4

complete
24-bit memory
address

segment
registers

8-bit segment
identifier

16-bit segment offset

0

1

R0SEG
XA User Guide 3-11 3/24/97



nd
ent
he

ices

h
. SFRs
3.6  Special Function Registers (SFRs)
Special Function Registers (SFRs) provide a means for programs to access CPU control a
status registers, peripheral devices, and I/O ports. The SFR mechanism provides a consist
mechanism for accessing standard portions of the XA core, peripheral functions added to t
core within each XA derivative, and external devices as implemented in future derivatives.

Figure 3.13 highlights the core registers that are accessed as SFRs:PCON, SCR, SSEL, PSWH,
PSWL, CS, ES, DS.   Communication with these registers as well as on-chip peripheral dev
is performed via the dedicated Special Function Register Bus (see section 8).

The SFR address space is 1K bytes (Figure 3.14). The first half of this space (400h throug
5FFh) is dedicated to accessing core registers and on-chip peripherals outside the XA core

Figure 3.13    XA Core with SFRs highlighted

SFR bus
interface

Exception
Controller

Program
Counter

On-chip
Peripherals

On-chip
EPROM/

ROM

PSWLPSWH SCR

SSELPCON ES DS

Data/Address/Control Bus

RESET

Oscillator

16-bit

CS

External
Program
Memory

External
Data

Memory

On-chip
RAM

Program
Memory
Interface

ALU
16-bit

Data Memory
Interface

External
SFR

Devices

Register
File

Execution
Unit

IREG

CPU
Clock

SFR bus
8 or 16 bits
3/24/97 3-12 XA Memory Organization



second
s.

vices

to
ment
ls

or
e

ss

dress –
assigned addresses in the range 400h through 43Fh are both byte and bit-addressable. The
half (600h through 7FFh) of the SFR space is reserved for providing access to off-chip SFR
The off-chip sfr space is provided to allow faster access of off-chip memory mapped I/O de
without having to create a pointer for each access.

Following are some key points to remember when using SFRs:

SFRs should be symbolically addressed. Because SFR assignments may vary from derivative 
derivative, it is important to always use symbolic references to SFRs. XA software develop
tools provide symbolic constants for all SFRs in the form of header/include files and the too
will be updated as new SFRs are added with each added XA derivative.

Verify that your application uses the right header/include files. Although baseline SFRs are
likely to retain their addresses in future XA derivatives, this is not guaranteed. SFRs used f
optional peripherals may well have different addresses on different derivatives, and the sam
address on one derivative may access a different peripheral SFR.

Any SFR may be accessed at any time without reference to a pointer or segment.SFR access is
independent of any segment register, so SFRs are always accessible with the 10 bit addre
encoded in instructions accessing SFRs.

SFRs may not be accessed via indirect address. Any time indirection is used, data memory is
accessed. If an SFR address is referenced as an indirect address, physical RAM at that ad
if it exists– is accessed.

Figure 3.14    SFR address space

Reserved for off-chip,
 non-bit addressable

SFRs
(memory-mapped I/O)

Standard
non-bit addressable

on-chip SFRs

64 bytes of bit
addressable on-chip

 SFRs

7FFh

600h

5FFh

440h

43Fh

400h

512 bytes

512 bytes

1K directly
addressable
SFR space
XA User Guide 3-13 3/24/97



 SFR.

duct

There
ortant

XA.5
An SFR address is always contained entirely within an instruction. The SFR address is always
encoded in the instruction providing the access, and there is no other way of addressing an

Details of access to external SFRs is determined by derivative implementation. Access to off-
chip SFRs is a reserved feature not implemented in the baseline XA. Consult derivative pro
datasheets for details of external SFR access, e.g., timing.

3.7  Summary of Bit Addressing
Several sections of this chapter have described portions of the XA that are bit-addressable.
are a total of 1024 addressable bits distributed in the XA architecture, chosen to make imp
data structures immediately accessible via XA bit-processing instructions, specifically, all
registers in the register file, R0 through R7 (and R8 through R15 if implemented); directly
addressable RAM addresses 20h through 3Fh in the page currently specified by DS, and a
portion of the on-chip SFRs. Figure 3.15 summarizes all the bit-addressable portions of the

Figure 3.15    Bit addressing summary

bit space overlaps bytes...

start end type

0 0FFh

100h 1FFh

200h 3FFh

registers

direct RAM

on-chip SFRs

R0

start end

R15

20h 3Fh

43Fh400h
3/24/97 3-14 XA Memory Organization



ins all
illator
d

k.
4  CPU Organization

This chapter describes the Central Processing Unit (CPU) of the XA Core. The CPU conta
status and control logic for the XA architecture. The XA reset sequence and the system osc
interface with the CPU, and power control is handled here. The CPU performs interrupt an
exception handling. The XA CPU is equipped with special functions to support debugging.

4.1 Introduction
Figure 4.1 is a block diagram of the XA Core.

Figure 4.1  The XA Core
Here is an overview of core elements: The XA Core oscillator provides a basic system cloc
Timing and control logic are initialized by an external reset signal; once initialized, this logic

SFR bus
interface

Exception
Controller

Program
Counter

On-chip
Peripherals

On-chip
EPROM/

ROM

PSWLPSWH SCR

SSELPCON ES DS

Data/Address/Control Bus

RESET

Oscillator

16-bit

CS

External
Program
Memory

External
Data

Memory

On-chip
RAM

Program
Memory
Interface

ALU
16-bit

Data Memory
Interface

External
SFR

Devices

Register
File

Execution
Unit

IREG

CPU
Clock

SFR bus
8 or 16 bits
3/24/97 4-1 CPU Organization



rvises
rface
from
ical

t

d for
rently

t the
ning

s
ion
 by

ro.
s
er to

U

provides internal and external timing for program and data memory access. This logic supe
loading the Program Counter and storing instructions fetched by the Program Memory Inte
into the Instruction Register. The timing and control logic sequences data transfers to and 
the Data Memory Interface. Under the same control, the ALU performs Arithmetic and Log
operations. The ALU stores status information in the low byte of the Program Status Word
(PSWL). The on-board register file is used for intermediate storage and contains the curren
value of the Stack Pointer (SP). The high byte of the Program Status Word (PSWH) chooses
between a privileged System Mode and a restricted User Mode; controls a Trace Mode use
single-step debugging, chooses the active register bank, and records the priority of the cur
executing process. The System Configuration Register (SCR) is initialized to choose native XA
mode execution or an 80C51 family compatibility mode. The Segment Selection Register (SSL)
controls the use of the Code Segment (CS), Data Segment (DS), and the Extra Segment (ES)
registers. The XA Core architecture supports interfaces to on- and off-chip RAM, ROM/
EPROM, and Special Function Registers (SFRs).

This chapter describes all these core elements in detail.

4.2 Program Status Word
The Program Status Word (PSW) is a two-byte SFR register that is a focal point of XA
operations. The least significant byte contains the CPU status flags, which generally reflec
result of each XA instruction execution. This byte is readable and writable by programs run
in both User and System modes.

The most significant byte ofPSW is written by programs to set important XA operating mode
and parameters: system/user mode, trace mode, register bank select bits, and task execut
priority. PSWH is readable by any process but only the register select bits may be modified
User mode code. All of the flags may be modified by code running in System Mode.

It should be noted that the XA includes a special SFR that mimics the original 80C51 PSW
register. This register, called PSW51, allows complete compatibility with 80C51 code that
manipulates bits in the PSW. See Chapter 9 for details of 80C51 compatibility.

4.2.1   CPU Status Flags

The PSW CPU flags (Figure 4.3) signify Carry, Auxiliary Carry, Overflow, Negative, and Ze
Some instructions affect all these flags, others only some of them, and a few XA instruction
have no effect on the PSW status flags. In general, these flags are read by programs in ord
make logical decisions about program flow. Chapter 6 describes comprehensively how CP

Figure 4.2  XA PSW

PSW Operating Mode Flags

PSWH PSWL

CPU Flags
XA User Guide 4-2 3/24/97



r

ins

iate

A).

2)
d. For

y
to the
t

etic
,

by

iven
3/24/97 4-3 CPU Organization

Status Flags are affected by each instruction type. Consult reference pages in Chapter 6 fo
details about how individual instructions affect the PSW Status Flags.

C, the Carry Flag, generally reflects the results of arithmetic and logical operations. It conta
the carry out of the most significant bit of an arithmetic operation, if any, for the instructions
ADD, ADDC, CMP, CJNE, DA, SUB, and SUBB.The carry flag is also used as an intermed
bit for shift and rotate instructions ASL, ASR, LSR, RLC, and RRC.

The multiply and divide instructions (MUL16, MULU8, MULU16, DIV16, DIV32, DIVU8,
DIVU16, and DIVU32) unconditionally clear the carry flag.

AC, the auxiliary carry flag, is updated to reflect the result of arithmetic instructions ADD,
ADDC, CMP, SUB, and SUBB with the carry out of the least significant nibble of the ALU.
This flag is used primarily to support BCD arithmetic using the decimal adjust instruction (D

V is the overflow flag. It is set by an arithmetic overflow condition during signed arithmetic
using instructions ADD, ADDC, CMP, NEG, SUB, and SUBB.

V is also set when the result of a divide instruction (DIV16, DIV32, DIVU8, DIVU16, DIVU3
exceeds the size of the specified destination register and when a divide-by-zero has occurre
multiply instructions (MUL16, MULU8, MULU16) this flag is set when the result of a multipl
instruction exceeds the source operand size. In this case “overflow” provides an indication 
program that the result is a larger data type than the source, such as a long integer produc
resulting from the multiply of two integers).

N reflects the twos complement sign (the high-order or “negative” bit) of the result of arithm
operations and the value transferred by data moves. This flag is unaffected by PUSH, POP
SEXT, LEA, and XCH instructions.

Z (“zero”) reflects the value of the result of arithmetic operations and the value transferred 
data moves. This flag is set if the result or value is zero, otherwise it is cleared. The flag is
unaffected by PUSH, POP, SEXT, LEA, and XCH instructions.

Other bits (marked with “-” in the register diagram) are reserved for possible future use.
Programs should take care when writing to registers with reserved bits that those bits are g
the value 0. This will prevent accidental activation of any function those bits may acquire in
future XA CPU implementations.

Figure 4.3  PSW CPU status flags

PSWL   C  AC ZV N -    -    -



All of
fied

 can

d

lue 0

alue
that

usly

ere is a
n
licit
4.2.2   Operating Mode Flags

The PSW operating mode flags (Figure 4.4) set several aspects of the XA operating mode.
the flags in the upper byte of the PSW (PSWH) except the bits RS1 and RS0 may be modi
only by code running in system mode.

The System Mode bit, SM, when asserted, allows the currently running program full System
Mode access to all XA registers, instructions, and memories. (For example, most of PSWH
only be modified whenSM is asserted.) When this bit is cleared, the XA is running in User
Mode and some privileges are denied to the currently running program.

The Trace Mode bit,TM , when set to 1, enables the built-in XA debugging facilities describe
in section 4.9. WhenTM  is cleared, the XA debugging features are disabled.

The bitsRS1 andRS0 identify one of the four banks of word registers R0 through R3 as the
active register set. The other three banks are not accessible as registers (but also see the
Compatibility Mode description in the System Configuration Register section).

The 4 bitsIM3  throughIM0  (Interrupt Mask bits) identify the execution priority of the current
executing program. The event interrupt controller compares the setting of the IM bits to the
priority of any pending interrupts to decide whether to initiate an interrupt sequence. The va
in the IM bits indicates the lowest priority, or fully interruptible code. The value 15 (or F
hexadecimal) indicates the highest priority, not interruptible by event interrupts. Note that
priority 15 does not inhibit servicing of exception interrupts or NMI.

The value of the IM bits may be written only by code operating in the system mode. Their v
may be read by interrupt handler code to implement software-based interrupt priorities. Note
simply writing a new value to the interrupt mask bits can sometimes cause what is called a
priority inversion, that is, the currently executing code may have a lower priority than previo
interrupted code. The Software Interrupt mechanism is included on some XA derivatives
specifically to avoid priority inversion in complex systems. Refer to the section on Software
Interrupts for details.

4.2.3  Program Writes to PSW

The bytes comprising the PSW, namely PSWH and PSWL, are accessible as SFRs, and th
potential ambiguity when a write to the PSW is performed by an instruction whose executio
also modifies one or more PSW bits. The XA resolves this by giving full precedence to exp
writes to the PSW.

Figure 4.4  PSW operating mode flags

PSWH SM IM3 IM2 IM1 IM0TM RS1 RS0
XA User Guide 4-4 3/24/97



r.

r

ed at
set
y
sion

her

our

 in
For example, executing

MOV.b R0L,#81h

sets PSW bitN to 1, since the byte value transferred is a twos complement negative numbe
However, executing

MOV.b PSWL, #81h

will set PSW bitsC andZ and leave bitN cleared, since the value explicitly written to PSW
takes precedence.

This precedence rule suppressesall PSW flag updates. When a value is written to the PSW, fo
example when executing

OR.b PSWH, #30

the contents of PSWL are unaffected.

4.2.4  PSW Initialization

As described below, at XA reset, the initial PSW value is loaded from the reset vector locat
program memory address 0. Philips recommends that the PSW initialization value in the re
vector setsIM3  throughIM0  to all 1’s so that XA initialization is marked as the highest priorit
process (and therefore cannot be interrupted except by an exception or NMI). At the conclu
of the initialization code, the execution priority is typically reduced, often to 0, to allow all ot
tasks to run. It is also recommended that the reset vector set theSM bit to 1, so that execution
begins in System Mode.

4.3 System Configuration Register
The System Configuration Register (SCR), described in Figure 4.5, sets XA global operating
mode.SCR is intended to be written once during system start-up and left alone thereafter. F
bits are currently defined:

PZ set to 0 (the default) puts the XA in the Large-Memory mode that uses full 24-bit XA
addressing. WhenPZ = 1 the XA uses a small-memory “Page 0” mode that uses 16 bit
addresses. The intent of Page 0 mode is to save stack space and improve interrupt latency
systems with less than 64K bytes of code and data memory. See the following sections for
details.

Figure 4.5  System Configuration Register (SCR)

-        -        -        -      PT1   PT0   CM    PZSCR
3/24/97 4-5 CPU Organization



.
of
the

51
s the
) as

nd R1
n of

, in
s for

iven

cific
ess
d

is
 The
 other
re, in

k.
CM chooses between standard “native” mode XA operation and 80C51 compatibility mode
When 80C51 compatibility mode is enabled, two things happen. First, the bottom 32 bytes 
data memory in each data segment are replaced by the four banks of R0 through R3 from 
register file. R0L of bank 0 will appear at data address 0, R0H of bank 0 will appear at data
address 1, etc. Second, the use of R0 and R1 as indirect pointers is altered. To mimic 80C
indirect addressing, indirect references to R0 use the byte R0L (zero extended to 16-bits) a
actual pointer value. References to R1 similarly use the byte R0H (zero extended to 16-bits
the actual pointer value. Note that R0L and R0H on the XA are the same registers as R0 a
on the 80C51. No other XA features are altered or affected by compatibility mode. Operatio
the XA with compatibility mode off (CM = 0) is reflected in descriptions found in the first 8
chapters of this User Guide. Operation with compatibility mode on (CM = 1) is discussed in
Chapter 9.

PT1 andPT0 select a submultiple of the oscillator clock as a Peripheral Timing clock source
particular for timers but possibly for other peripherals in XA derivatives. Here are the value
these bits and the resulting clock frequency:

PT1 PT0 Peripheral Clock

0 0 oscillator/4

0 1 oscillator/16

1 0 oscillator/64

1 1 reserved

Other bits (marked with “-” in the register diagram) are reserved for possible future use.
Programs should take care when writing to registers with reserved bits that those bits are g
the value 0. This will prevent accidental activation of any function those bits may acquire in
future XA CPU implementations.

4.3.1  XA Large-Memory Model Description

When the default XA operation is chosen via theSCR (CM  = 0 andPZ = 0), all addresses are
maintained by the core as 24 bit values, providing a full 16 MByte address space. On a spe
XA derivative, fewer than 24 bits may be available at the external bus interface. All 24 addr
bits are pushed on the stack during calls and interrupts and 24 bits are popped by RETs an
RETIs.

4.3.2   XA Page 0 Memory Model Description

When XA Page 0 mode is chosen, only 16 address bits are maintained by the XA core. Th
operating mode supports XA applications for which a 64K byte address space is sufficient.
external memory interface port used for the upper 8 address bits, if present, is available for
uses.   A single 16-bit word is pushed on the stack during calls and interrupts and 16 bits a
turn popped by RETs and RETIs. Using Page 0 mode when only a small memory model is
needed saves stack space and speeds up address PUSH and POP operations on the stac
XA User Guide 4-6 3/24/97



rst,
ddress
 XA

es that
is
 any

d to

ee

evice
ot

 to
cal
riod
 the
Switching into or out of Page 0 mode after the original initialization is not recommended. Fi
switching into Page 0 mode can only be done by code running on Page 0, since the code a
will be truncated to 16-bits as soon as Page 0 mode takes effect. Instructions already in the
pre-fetch queue would have been fetched prior to Page 0 mode taking effect. Any address
may have been pushed onto the stack previously also become invalid when Page 0 mode 
changed. Thus Page 0 mode could not be changed while in an interrupt service routine, or
subroutine.

4.4 Reset
The term “reset” refers specifically to the hardware input required when power is first applie
the XA device, and generally to the sequence of initialization that follows a hardware reset,
which may occur at any time. The term also refers to the effect of the RESET instruction (s
Chapter 6); in addition, an overflowing Watchdog timer (if this peripheral is present) has an
identical effect.

This section describes the XA reset sequence and its implications for user hardware and
software.

4.4.1  Reset Sequence Overview

A specific hardware reset sequence must be initiated by external hardware when the XA d
is powered-up, before execution of a program may begin. If a proper reset at power up is n
done, the XA may fail wholly or in part. The XA reset sequence includes the following
sequential components:

• Reset signal generated by external hardware
• Internal Reset Sequence occurs
• RST line goes high
• External bus width and memory configuration determined
• Reset exception interrupt generated
• Startup Code executed

Figure 4.6 illustrates this process.

4.4.2  Power-up Reset

This section describes the reset sequence for powering up an XA device.

The XA RST input must be held low for a minimum reset period after Vdd has been applied
the XA device and has stabilized within specifications. The minimum reset period for a typi
system with a reasonably fast power supply ramp-up time is 10 milliseconds. This reset pe
provides sufficient time for the XA oscillator to start and stabilize and for the CPU to detect
reset condition. At this point, the CPU initiates an internal reset sequence.RST must continue to
be low for a sufficient time for the internal reset sequence to complete.
3/24/97 4-7 CPU Organization



pulse
10

periph-

 that

the
nal

hex)
4.4.3  Internal Reset Sequence

The XA internal reset sequence occurs after power-up or any time a sufficiently long reset 
is applied to theRST input while the XA is operating. This sequence requires a minimum of a
microseconds (or 10 clocks, whichever is greater) to complete, andRST must remain low for at
least this long.

The internal reset sequence does the following:
• Writes a 00 to most core and many peripheral SFRs. Other values are written to some 

eral SFRs. Consult the data sheet of a specific device for details.
• SetsCS, DS, andES to 0.
• Sets SSEL = 0, i.e., sets all accesses through DS.
• Sets all registers in the Register File to 0.
• Sets the user and the system stack pointers (USP andSSP) to 0100h.
• Clears SCR bitPZ, i.e., 24-bit memory addresses will be used by default.
• Clears SCR bitCM , i.e., starts execution in XA Native Mode.
• Clears IE bitEA, disabling all maskable interrupts.

Note that the internal reset sequence does not initialize internal or external RAM. Note also
the contents of PSW at this point is not important, as it will immediately be replaced as
described further below.

The effect of the internal reset sequence on components outside the XA core depends on 
peripheral complement and configuration of the specific XA derivative. In general, the inter
reset sequence has the following effects:

• Sets all port pins to inputs (quasi-bidirectional output configuration with port value = FF 
• Clears most SFRs to 0
• Initializes most other SFRs to appropriate non-zero values

Figure 4.6  XA power-up sequence

Vdd

RST

Vmin

reset exception
generated

XA configuration signals sampled
first instruction executed

XA
internal
reset

sequence
XA User Guide 4-8 3/24/97



nt) are

ory

e of

ay
ill

ss

A the
-bit
W).

. The

tives.
 be
Note that serial port buffers, PCA capture registers, and WatchDog feed registers (if prese
unaffected. Consult the XA derivative data sheet for more information.

After the XA internal reset sequence has been completed, the device is quiescent until theRST
line goes high.

4.4.4   XA Configuration at Reset

As theRST line goes high, the value on two input pins is sampled to determine the XA mem
and bus configuration. TheEA and BUSW pins (if present on a specific XA derivative) have
special function during the reset sequence, to allow external hardware to determine the us
internal or external program memory, and to select the default external bus width.

Immediately after theRST line goes high, the CPU triggers a reset exception interrupt, as
described in the next section.

Selecting Internal or External Program Memory
The XA is capable of reading instructions from internal or external memory, both of which m
be present. The XAEA input pin determines whether internal or external program memory w
be used. TheEA pin is sampled on the rising edge of theRST pulse. IfEA = 0, the XA will
operate out of external program memory, otherwise it will use internal code memory. The
selection of external or internal code memory is fixed until the next timeRST is asserted and
released; until then all code fetches will access the selected code memory.

The XA cannot detect inconsistencies between the setting detected on theEA input and the
hardware memory configuration. For example, settingEA = 1 on a ROMless XA variant will
cause the XA to attempt to execute internal code memory, which is undefined on a ROMle
device, typically resulting in a system failure.

Selecting External Bus Width
The XA is capable of accessing an 8 or 16 bit external data bus. The BUSW pin tells the X
external data bus configuration. BUSW=0 selects an 8-bit bus and BUSW=1 selects an 16
bus. On power-up, the XA defaults to the 16-bit bus (due to an on-chip weak pull-up on BUS
The BUSW pin is sampled on the rising edge of theRST pulse. If BUSW is low, the XA
operates its external bus interface in 8 bit mode, otherwise, the XA uses 16 bit bus operation
bus width may also be set under software control on derivatives equipped with theBCR (“Bus
Configuration Register”) SFR.

After RST is released, the BUSW pin may be used an alternate function on some XA deriva
Consult derivative data sheets for exact pinouts and details of how pins such as these may
shared to keep package size small.
3/24/97 4-9 CPU Organization



s a
the

mat of

the

sible
s the
ff all
ble

out
4.4.5  The Reset Exception Interrupt

Immediately after theRST line goes high, the CPU generates a Reset Exception Interrupt. A
result, the initial PSW and address of the first instruction (the “start-up code”) is fetched from
reset vector in code memory at location 0. Here’s an example in generalized assembler for
the setup for the Reset Exception:

code_seg ; establish code segment
org 0h ; start at address 0

; reset_vector
dw initial_PSW ; define a word constant
dw startup_code ; define a word constant

org 120h ; move to address 120h
; (above vector table)

startup_code:
... ; put startup code here

The initial value ofPSWL set in the Reset Vector is generally of no special system-wide
importance and may be set to zero or some other value to meet special needs of the XA
application.  The  initialPSWH value sets the stage for  system software initialization and its
value requires more attention.   Here’s an example set of declarations that create the
recommended initial value ofPSWH:

system_mode equ 8000h
max_priority equ 0F00h
initial_PSW equ system_mode + max_priority

It is generally appropriate to initialize the XA in System Mode so that the start-up code has
unrestricted access to the entire architecture. This is done by using a initial value that sets 
PSWH bitSM.

Philips recommends initializing the execution priority of the start-up code to the highest pos
value of 15 (that is, IM0 through IM3 to all ones) so that the start-up code is recognizable a
highest priority process.   As described above, the hardware initialization sequence turns o
possible interrupts, so the only potential interrupting process would arise from a non-maska
interrupt (NMI). It is generally a good idea to prevent NMI generation with a hardware lock-
until XA start-up procedures are completed.

ThePSWH initialization value given in this example sets System Mode (SM), selects register
bank 0 (any register bank could be used) and clearsTM  so that Trace Mode is inactive.
XA User Guide 4-10 3/24/97



ode. A
es the
k

 will

n-
,

 so
xter-
cilla-
de.

ecial
an that
4.4.6  Startup Code

Philips recommends that the first instruction of start-up code set the value of the System
Configuration Register (SCR), described in section 4.3, to reflect the system architecture.

The next recommended step is explicitly initializing the stack pointers. The default values
(section 4.7) are usually insufficient for application needs.

The start-up code sequence may be concluded by a simple branch or jump to application c
RETI may not be used at the conclusion of a Reset Exception Interrupt handler (which caus
start-up code to run) because a reset initializes the SP and does not leave an interrupt stac
frame.

4.4.7   Reset Interactions with XA Subsystems

The following describes how the reset process interacts with some key subsystems:

• Trace Exception. The trace exception is aborted by an external reset; see section 4.9.
• WatchDog. In XA derivatives equipped with a WatchDog timer feature, an internal reset

be asserted for a derivative-defined number of clocks.
• Resets while in Idle Mode or during normal code execution. Since the XA oscillator is ru

ning in Idle Mode, theRST input must be kept low for only 10 microseconds (or 10 clocks
whichever is greater) to achieve a complete reset.

• Resets while in Power-Down Mode. The XA oscillator is stopped in Power-Down mode,
theRST input must be low for at least 10 milliseconds. An exception to this is when an e
nal oscillator is used and the XA is in Power-Down mode. In this case, if the external os
tor is running, a reset during Power-Down mode may be the same as a reset in Idle Mo

4.4.8   An External Reset Circuit

TheRST pin is a high-impedance Schmitt trigger input pin. For applications that have no sp
start-up requirements, it is practical to generate a reset period known to be much longer th
required by the power supply rise time and by the XA under all foreseeable conditions. One
simple way to build a reset circuit is illustrated in Figure 4.7.

Figure 4.7  An external reset circuit

Vdd

C

R

RST XA

Some typical values for R and C:

          R = 100K, C = 1.0µF

          R = 1M, C = 0.1µF

(assuming that the Vdd rise time is
1 millisecond or less)
3/24/97 4-11 CPU Organization



PU,
nected

s a

to the

ed in

bove

ate
4.5 Oscillator
The XA contains an on-chip oscillator which may be used as the clock source for the XA C
or an external clock source may be used. A quartz crystal or ceramic resonator may be con
as shown in Figure 4.8a to use the internal oscillator. To use an external clock, connect the
source to pin XTAL1 and leave pin XTAL2 open, as shown in Figure 4.8b.

The on-chip oscillator of the XA consists of a single stage linear inverter intended for use a
positive reactance oscillator. In this application, the crystal is operated in its fundamental
response mode as an inductive reactance in parallel resonance with capacitance external 
crystal.

A quartz crystal or ceramic resonator is connected between the XTAL1 and XTAL2 pins,
capacitors ar connected from both pins to ground. In the case of a quartz crystal, a parallel
resonant crystal must be used in order to obtain reliable operation. The capacitor values us
the oscillator circuit should normally be those recommended by the crystal or resonator
manufacturer. For crystals, the values may generally be from 18 to 24 pF for frequencies a
25 MHz and 28 to 34 pF for lower frequencies. Too large or too small capacitor values may
prevent oscillator start-up or adversely affect oscillator start-up time.

4.6 Power Control
The XA CPU implements two modes of reduced power consumption: Idle mode, for moder
power savings, and Power-Down mode. Power-Down reduces XA consumption to a bare
minimum. These modes are initiated by writing SFRPCON, as illustrated in Figure 4.9.

Idle Mode is activated by setting the PCON bitIDL . This stops CPU execution while leaving the
oscillator and some peripherals running.

Figure 4.8  XA clock sources

Figure 4.9  PCON

XA

XTAL2

a) using the on-chip oscillator

XA

XTAL2

b) using an external clock

nc

XTAL1
XTAL1

C1

C2

-        -        -        -         -      -       PD     IDLPCON
XA User Guide 4-12 3/24/97



iven

tive.
ts (if
pped.

 pins

LE
a an

ps all
er

e re-

ill

re not

ally
via

r-
heir
a an
ogic
ts its
ng
 at
Power-Down mode is activated set by setting the PCON bitPD. This shuts down the XA
entirely, stopping the oscillator.

The reset values ofIDL  andPD are 0. If a 1 is written to both bits simultaneously,PD takes
precedence and the XA goes into Power-Down mode.

Other bits (marked with “-” in the register diagram) are reserved for possible future use.
Programs should take care when writing to registers with reserved bits that those bits are g
the value 0. This will prevent accidental activation of any function those bits may acquire in
future XA CPU implementations.

4.6.1  Idle Mode

Idle mode stops program execution while leaving the oscillator and selected peripherals ac
This greatly reduces XA power consumption. Those peripheral functions may cause interrup
the interrupt is enabled) that will cause the processor to resume execution where it was sto

In the Idle mode, the port pins retains their logical states from their pre-idle mode. Any port
that may have been acting as a portion of the external bus revert to the port latch and
configuration value (normally push-pull outputs with data equal to 1 for bus related pins). A
andPSEN are held in their respective non-asserted states. When Idle is exited normally (vi
active interrupt), port values and configurations will remain in their original state.

4.6.2  Power-Down Mode

Power-Down mode stops program execution and shuts down the on-chip oscillator. This sto
XA activity. The contents of internal registers, SFRs and internal RAM are preserved. Furth
power savings may be gained by reducing XA Vdd to the RAM retention voltage in Power
Down mode; see the device data sheet for the applicable Vdd value. The processor may b
activated by the assertion ofRST or by assertion of one of an external interrupt, if enabled.
When the processor is re-activated, the oscillator will be restarted and program execution w
resume where it left off.

In Power-Down mode, the ALE andPSEN outputs are held in their respective non-asserted
states. The port pins output the values held by their respective SFRs. Thus, port pins that a
configured to be part of an external bus retain their state. Any port pins that may have been
acting as a portion of the external bus revert to the port latch and configuration value (norm
push-pull outputs with data equal to 1 for bus related pins). If Power-Down mode is exited 
Reset, all port values and configurations will be set to the default Reset state.

In order to use an external interrupt to re-activate the XA while in Power-Down mode, the
external interrupt must be enabled and be configured to level sensitive mode. When Powe
Down mode is exited via an external interrupt, port values and configurations will remain in t
original state. Since the XA oscillator is stopped when the XA leaves Power-Down mode vi
interrupt, time must be allowed for the oscillator to re-start. Rather than force the external l
asserting the interrupt to remain active during the oscillator start-up time, the XA implemen
own timer to insure proper wake-up. This timer counts 9,892 oscillator clocks before allowi
the XA to resume program execution, thus insuring that the oscillator is running and stable
3/24/97 4-13 CPU Organization



up,

n

 it

g

,
r
ssion

 User
n the

d stack
nly
 may
k

at the

s
ode

 in

isting
that time. Once the oscillator counter times out, the XA will execute the interrupt that woke it
if that interrupt is of a higher priority than the currently executing code.

Note that if an external oscillator is used, power supply current reduction in the Power-Dow
mode is reduced from what would be obtained when using the XA on-chip oscillator. In this
case, full power savings may be gained by turning off the external clock source or stopping
from reaching the XTAL1 pin of the XA. If the clock source may be turned off, it may be
advantageous to use Idle mode rather than Power-Down mode, to allow more ways of
terminating the power reduction mode and to avoid the 9,892 clock waiting period for exitin
Power-Down mode.

4.7 XA Stacks
The XA stacks are word-aligned LIFO data structures that grow downward in data memory
from high to low address. This and some other details of the XA stack implementation diffe
from 80C51 stack operation. Refer to the chapter on 8051 compatibility for a detailed discu
of this topic.

The XA implements two distinct stacks, one for User Mode and one for System Mode. The
Stack may be placed anywhere in data memory, while the System Stack must be located i
first 64K bytes, i.e., segment 0.

4.7.1  The Stack Pointers

The XA has two stacks, the system stack and the user stack. Each stack has an associate
pointer, the System Stack Pointer (SSP) and the User Stack Pointer (USP), respectively. O
one of these stacks is active at a given time. The current stack pointer at any instant (which
be the SSP or the USP) appears as word register SP (R7) in the register file; the other stac
pointer will not be visible. The value of the PSW bitSM determines which stack is active (and
whose stack pointer therefore appears as R7). In User Mode (SM = 0), SP (R7) contains the User
Stack Pointer. In System Mode (SM =1), SP (R7) contains the System Stack Pointer. The XA
automatically switches SSP and USP values when the operating mode is changed. Note th
terms “USP” and “SSP” are logical terms, denoting the value of SP (R7) in each mode.

Segments and Protection
The User stack is always addressed relative to the current data segment (DS) value. This i
consistent with each user task being associated with a specific data segment. Moreover, c
running in User Mode cannot modifyDS, so there is no possibility of changing the segment in
which the stack resides within the User context. The System Stack must always be located
segment 0, that is, the first 64K of data memory.

4.7.2   PUSH and POP

The PUSH operation is illustrated by Figure 4.10. The stack pointer always points to an ex
data item at the top of the stack, and is decremented by 2 prior to writing data.
XA User Guide 4-14 3/24/97



ointer,

 it is

ster
The POP operation copies the data at the top of the stack and then adds two to the stack p
as follows shown in Figure 4.11.

All stack pushes and pops occur in word multiples. If a byte quantity is pushed on the stack
stored as the least significant byte of a word and the high byte is left unwritten;
see Figure 4.12. A POP to a byte register removes a word from the stack and the byte regi
receives the least significant 8 bits of the word, as shown in Figure 4.13.

Figure 4.10   PUSH operation

Figure 4.11  POP operation

Figure 4.12  POP a byte

before after

SP

12 SP

MOV  R0,#1234h
PUSH R0

34(empty)

(empty)
(empty)

(empty)
(empty)

2n + 6 existing data existing data

2n + 4

2n + 2

....

2n + 6

2n + 4
2n + 2

....

before after

AA
SP

POP R1

55

(empty)
(empty)

2n + 6

2n + 4
2n + 2

....

AA SP55
(empty)
(empty)

2n + 6

2n + 4
2n + 2

....

R1 = AA55h

before after

AA

SP

POP   R1H

55
(empty)
(empty)

2n + 6

2n + 4
2n + 2

....

AA SP55

(empty)
(empty)

2n + 6

2n + 4
2n + 2

....

R1 = 5569h

MOV R1,#6869h
3/24/97 4-15 CPU Organization



is

ll

elative
 code

ed.

 stack

gers

tack

e
erates a
nce
The stack should always be word-aligned. If the SP (R7) is modified to an odd value, the
offending LSB of the stack pointer is ignored and the word at the next-lower even address 
accessed.

Note that neither PUSH or POP operations have any effect on the PSW flags.

4.7.3  Stack-Based Addressing

Stack-based data addressing is fully supported by the XA. R0 through R7 may be used in a
indexed address modes; the stack pointer in R7 is equally valid as an index.
Figure 4.14 illustrates an example of stack-based addressing. The segment used for stack r
addressing is always the same as for other stack operations (Segment 0 for System mode
and DS for User mode code).

Note that the precautions mentioned in section 3.3.4 apply here: when referencing a word
quantity, the final (effective) address must be even, otherwise incorrect data will be access
This topic is discussed further in the section Stack Pointer Misalignment.

4.7.4  Stack Errors

Special attention is required to avoid problems due to stack overflow, stack underflow, and
pointer misalignment

Stack Overflow
Stack overflow occurs when too many items are pushed, either explicitly or as the result of
interrupts. As items are pushed on to the stack, it may grow downward past the memory
allocated to it. It is not always possible for programs to detect stack overflow, so the XA trig
a Stack Overflow Exception Interrupt whenever the value of thecurrent stack pointer (SSP or
USP) decrements from 80h to 7Eh (simply setting SP to a value lower than 80h would NOT
cause a stack overflow). This value was chosen so that stack space sufficient to handle a s
overflow exception interrupt is always guaranteed, as follows:

The 80h limit leaves 64 bytes available for stack overflow processing. A worst case might b
occurs when the Stack Pointer is at 80h and a program executes an 8 word push; this gen
stack overflow. If an NMI occurs at the same time, 3 additional words are pushed. The bala

Figure 4.13  PUSH a byte

before after

SP
00 SP

MOV  R0,#9876h
PUSH R0H

98(empty)

(empty)
(empty)

(empty)
(empty)

2n + 6 existing data existing data

2n + 4

2n + 2

....

2n + 6

2n + 4
2n + 2

....
XA User Guide 4-16 3/24/97



mes

ction
orced
r and

s
will
of the 64 bytes on the stack is available for handler processing, which should carefully limit
further use of the stack.

Stack Underflow
Stack underflow occurs when too many items are popped and the stack pointer value beco
greater than its initial value, i.e., the stack top. The XA does not support stack underflow
detection.

Stack Pointer Misalignment
Pointer misalignment occurs when a pointer contains an odd value and is used by an instru
to access a word value in memory. The same situation could occur if some program action f
the stack pointer to an odd value. In these cases, the XA ignores the bottom bit of the pointe
continues with a word memory access.

4.7.5  Stack Initialization

At power-on reset,both USP and SSP in all XA derivatives are initialized to 100h. Since SP i
pre-decremented, the first PUSH operation will store a word at location FEh and the stack 
grow downwards from there.

Figure 4.14  Stack-based addressing

MOV     Rn, [R7+offset]
MOV     [R7+offset], Rn

DS

SP (R7)

8-bit segment
identifier

16-bit pointer

0

1

SM bit in PSW

complete 24-bit
memory address

00h

[SP+2]
[SP+4]
[SP+6]
[SP+8]

[SP+0]

Data Memory

8 or 16-bit offset
(from instruction)

+

16 bits8 bits
3/24/97 4-17 CPU Organization



licable

sic

 timer
rupt

 a
her

upt

 A
mory.
, i.e., at

e

These default stack pointer start-up values overlap the System and User stacks and are app
only when one of these stacks will never be used.

Since the System stack is used for all exception and interrupt processing, this may not be
appropriate in all XA applications. The startup code should normally set new and different
values of both USP and SSP.

4.8  XA Interrupts
The XA architecture defines four kinds of interrupts. These are listed below in order of intrin
priority:

• Exception Interrupts
• Event Interrupts
• Software Interrupts
• Trap Interrupts

Exception interrupts reflect system events of overriding importance. Examples are stack
overflow, divide-by-zero, and Non-Maskable Interrupt. Exceptions are always processed
immediately as they occur, regardless of the priority of currently executing code.

Event interrupts reflect less critical hardware events, such as a UART needing service or a
overflow. Event interrupts may be associated with some on-chip device or an external inter
input. Event interrupts are processed only when their priority is higher than that of currently
executing code. Event interrupt priorities are settable by software.

Software interrupts are an extension of event interrupts, but are caused by software setting
request bit in an SFR. Software interrupts are also processed only when their priority is hig
than that of currently executing code. Software interrupt priorities are fixed at levels from 1
through 7.

Trap interrupts are processed as part of the execution of a TRAP instruction. So, the interr
vector is always taken when the instruction is executed.

All forms of interrupts trigger the same sequence:   First, astack frame containing the address of
the next instruction and then the current value of the PSW is pushed on the System Stack.
vector containing a new PSW value and a new execution address is fetched from code me
The new PSW value entirely replaces the old, and execution continues at the new address
the specific interrupt handler.

The new PSW value may include a new setting of PSW bitSM, allowing handler routines to be
executed in System or User mode, and a new value of PSW bitsIM3 throughIM0 , reflecting the
executionpriority of the new task. These capabilities are basic to multi-tasking support on th
XA. See Chapter 5 for more details.
XA User Guide 4-18 3/24/97



which
I

pt
s soon
an

ccur
lict

core,
ion

they

s
and

bits
e, there
st

ck
he
Returns from all interrupts should in most cases be accomplished by the RETI instruction, 
pops the System Stack and continues execution with the restored PSW context. Since RET
executed while in User Mode will result in an exception trap, as described further below,
interrupt service routines will normally be executed in System Mode.

The XA architecture contains sophisticated mechanisms for deciding when and if an interru
sequence actually occurs. As described below, Exception Interrupts are always serviced a
as they are triggered. Event Interrupts are deferred until their execution priority is higher th
that of the currently executing code. For both exception and event interrupts, there is a
systematic way of handling multiple simultaneous interrupts. Software and trap interrupts o
only when program instructions generating them are executed so there is no need for conf
resolution.

The Non-Maskable Interrupt requires special consideration. It is generated outside the XA 
and in that respect is an event interrupt. However, it shares many characteristics of except
interrupts, since it is not maskable. Note that NMI, while part of the XA CPU core, may not
always be connected to a pin or other event source on all XA derivatives.

4.8.1  Interrupt Type Detailed Descriptions

This section describes the four kinds of interrupts in detail.

Exception Interrupts
Exception interrupts reflect events of overriding importance and are always serviced when 
occur. Exceptions currently defined in the XA core include: Reset, Breakpoint, Divide-by-0,
Stack overflow, Return from Interrupt (RETI) executed in User Mode, and Trace. Nine
additional exception interrupts are reserved. NMI is listed in the table of exception interrupt
(Table 4.1) below because NMI is handled by the XA core in same manner as exceptions, 
factors into the precedence order of exception processing.

Since exception interrupts are by definition not maskable, they must always be serviced
immediately regardless of the priority level of currently executing code, as defined by the IM
in the PSW. In the unusual case that more than one exception is triggered at the same tim
is a hard-wiredservice precedenceranking. This determines which exception vector is taken fir
if multiple exceptions occur. In these cases, the exception vector takenlast may be considered
the highest priority, since its code will execute first. Of course, being non-maskable, any
exception occurring during execution of the ISR for another exception will still be serviced
immediately.

Programmers should be aware of the following when writing exception handlers:

1. Since another exception could interrupt a stack overflow exception handler routine, care
should be taken in all exception handler code to minimize the possibility of a destructive sta
overflow. Remember that stack overflow exceptions only occur once as the stack crosses t
bottom address limit, 80h.
3/24/97 4-19 CPU Organization



in an
es, the

ints

n-chip

nts

not
l

 a
e

choose
e

for a
2. The breakpoint (caused by execution of the BKPT instruction, or a hardware breakpoint 
emulation system) and Trace exceptions are intended to be mutually exclusive. In both cas
handler code will want to know the address in user code where the exception occurred. If a
breakpoint occurs during trace mode, or if trace mode is activated during execution of the
breakpoint handler code, one of the handlers will see a return address on the stack that po
within the other handler code.

Event Interrupts
Event Interrupts are typically related to on-chip or off-chip peripheral devices and so occur
asynchronously with respect to XA core activities. The XA core contains no inherent event
interrupt sources, so event interrupts are handled by an interrupt control unit that resides o
but outside of the processor core.

On typical XA derivatives, event interrupts will arise from on-chip peripherals and from eve
detected on interrupt input pins. Event interrupts may be globally disabled via theEA bit in the
Interrupt Enable register (IE) and individually masked by specific bits the IE register or its
extension. When an event interrupt for a peripheral device is disabled but the peripheral is 
turned off, the peripheral interrupt flag can still be set by the peripheral and an interrupt wil
occur if the peripheral is re-enabled. An event interrupt that is enabled is serviced when its
priority is higher than that of the currently executing code. Each event interrupt is assigned
priority level in the Interrupt Priority register(s). If more than one event interrupt occurs at th
same time, the priority setting will determine which one is serviced first. If more than one
interrupt is pending at the same level priority, a hardwares precedence scheme is used to 
the first to service. The XA architecture defines 15 interrupt occurrence priorities that may b
programmed into the Interrupt Priority registers for Event Interrupts. Note that some XA
implementations may not support all 15 levels of occurrence priority. Consult the data sheet
specific XA derivative for details.

Table 4.1: Exception interrupts, vectors, and precedence

Exception Interrupt Vector Address Service Precedence

Breakpoint 0004h:0007h 0

Trace 0008h:000Bh 1

Stack Overflow 000Ch:000Fh 2

Divide-by-zero 0010h:0013h 3

User RETI 0014h:0017h 4

<reserved> 0018h - 003Fh 5

NMI 009Ch:009Fh 6

Reset 0000h:0003h 7
(always serviced

immediately, aborts
other exceptions)
XA User Guide 4-20 3/24/97



ded
the

tion
ll be

ution

iting
t

ne
ftware
 each

hen it

r to

are
t be

 one
Note that, like all other forms of interrupts, the PSW (including the Interrupt Mask bits) is loa
from the interrupt vector table when an event interrupt is serviced. Thus, the priority at which
interrupt service routine executes could be different than the priority at which the interrupt
occurred (since that was determined not by the PSW image in the vector table, but by the
Interrupt Priority register setting for that interrupt). Normally, it is advisable to set the execu
priority in the interrupt vector to be the same as the Interrupt Priority register setting that wi
used in the program.

Furthermore, the occurrence priority of an interrupt should never be set higher than the exec
priority. This could lead to infinite interrupt nesting where the interrupt service routine is re-
interrupted immediately upon entry by the same interrupt source.

Software Interrupts
Software Interrupts act just like event interrupts, except that they are caused by software wr
to an interrupt request bit in an SFR. The standard implementation of the software interrup
mechanism provides 7 interrupts which are associated with 2 Special Function Registers. O
SFR, the software interrupt request register (SWR), contains 7 request bits: one for each so
interrupt. The second SFR is an enable register (SWE), containing one enable bit matching
software interrupt request bit.

Software interrupts are initiated by setting one of the request bits in the SWR register. If the
corresponding enable bit in the SWE register is also set, the software interrupt will occur w
becomes the highest priority pending interrupt and its priority is higher than the current
execution level. The software interrupt request bit in SWR must be cleared by software prio
returning from the software interrupt service routine.

Software interrupts have fixed interrupt priorities, one each at priorities 1 through 7. These 
shown in Table 4.2 below. Software Interrupts are defined outside the XA core and may no
present on all XA derivatives; consult the specific XA derivative data sheet for details.

The primary purpose of the software interrupt mechanism is to provide an organized way in
which portions of event interrupt routines may be executed at a lower priority level than the

Table 4.2: Software interrupts, vectors, and fixed priorities

Software Interrupt Vector Address Fixed Priority

SWI1 0100h:0103h 1

SWI2 0104h:0107h 2

SWI3 0108h:010Bh 3

SWI4 010Ch:010Fh 4

SWI5 0110h:0113h 5

SWI6 0114h:0117h 6

SWI7 0118h:011Bh 7
3/24/97 4-21 CPU Organization



tion
upts

y

r by

vel 10.

its,
nt
lso
 re-

igher

t be
at which the service routine began. An example of this would be an event Interrupt Service
Routine that has been given a very high priority in order to respond quickly to some critical
external event. This ISR has a relatively small portion of code that must be executed
immediately, and a larger portion of follow-up or “clean-up” code which does not need to be
completed right away. Overall system performance may be improved if the lower priority por
of the ISR is actually executed at a lower priority level, allowing other more important interr
to be serviced.

If the high priority ISR simply lowers its execution priority at the point where it enters the
follow-up code, by writing a lower value to the IM bits in the PSW, a situation called “priorit
inversion” could occur. Priority inversion describes a case where code at a lower priority is
executing while a higher priority routine is kept waiting. An example of how this could occu
writing to the IM bits follows, and is illustrated in Figure 4.15.

Suppose code is executing at level 0 and is interrupted by an event interrupt that runs at le
This is again interrupted by a level 12 interrupt. The level 12 ISR completes a time-critical
portion of its code and wants to lower the priority of the remainder of its code (the non-time
critical portion) in order to allow more important interrupts to occur. So, it writes to the IM b
setting the execution priority to 5. The ISR continues executing at level 5 until a level 8 eve
interrupt occurs. The level 8 ISR runs to completion and returns to the level 5 ISR, which a
runs to completion. When the level 5 ISR returns, the previously interrupted level 10 ISR is
activated and eventually competes.

It can be seen in this example that lower priority ISR code executed and completed while h
priority code was kept waiting on the stack. This is priority inversion.

In those cases where it is desirable to alter the priority level of part of an ISR, a software
interrupt may be used to accomplish this without risk of priority inversion. The ISR must firs

Figure 4.15  Example of priority inversion (see text)

Level 12
interrupt
occurs

Level 10
interrupt
occurs

Level 8
interrupt
occurs

Time

Execution
Priority

0

8

10

5

12

Priority
lowered

Return to
level 5

Return to
level 10

Return to
level 0
XA User Guide 4-22 3/24/97



s. the
es

ity
utes in

ed
cation-
llow
e
taneous

n

ated
inning
split into 2 pieces: the high priority portion, and the lower priority portion. The high priority
portion remains associated with the original interrupt vector. The lower priority portion is
associated with the interrupt vector for software interrupt 5. At the completion of the high
priority portion of the ISR, the code sets the request bit for software interrupt 5, then return
remainder of the ISR, now actually the ISR for software interrupt 5, executes when it becom
the highest priority pending interrupt.

The diagram in Figure 4.16 shows the same sequence of events as in the example of prior
inversion, except using software interrupt 5 as just described. Note that the code now exec
the correct order (higher priority first).

Trap Interrupts
Trap Interrupts are generated by the TRAP instruction. TRAP 0 through TRAP 15 are defin
and may be used as required by applications. Trap Interrupts are intended to support appli
specific requirements, as a convenient mechanism to enter globally used routines, and to a
transitions between user mode and system mode. A trap interrupt will occur if and only if th
instruction is executed, so there is no need for a precedence scheme with respect to simul
traps.

The effect of a TRAP is immediate, the corresponding TRAP service routine is entered upo
completion of the TRAP instruction.

See Chapter 6 for a detailed description of the TRAP instruction.

4.8.2  Interrupt Service Data Elements

There are two data elements associated with XA interrupts. The first is the stack frame cre
when each interrupt is serviced. The second is the interrupt vector table located at the beg

Figure 4.16  Example use of software interrupt (see text)

Level 12
interrupt
occurs

Level 10
interrupt
occurs

Level 8
interrupt
occurs,

but waits
for level

10 to
complete

Software
interrupt
5 issued,
return to
level 10

Return
from level
level 10,
level 8

interrupt
serviced

Return to
level 0

Time

Execution
Priority

0

8

10

5

12

Return
from level
8, level 5
software
interrupt
serviced
3/24/97 4-23 CPU Organization



to and
gered
. See
d in
low-
 next
a
 PSW

,
Mode
t be
of code memory. Understanding the structure and contents of each is essential to the
understanding of how XA interrupts are processed.

Interrupt Stack Frame
A stack frame is generated, always on the System Stack, for each XA interrupt. With one
exception, the stack frame is stored for the duration of interrupt service and used to return 
restore the CPU state of the interrupted code. (The exception is an Exception Interrupt trig
by a Reset event. Since Reset re-initializes the stack pointers, no stack frame is preserved
section 4.4 for details.) The stack frame in the native 24-bit XA operating mode is illustrate
Figure 4.17. Three words are stored on the stack in this case. The first word pushed is the 
order 16 bits of the current PC, i.e., the address of the next instruction to be executed. The
word contains the high-order byte of the current PC. A zero byte is used as a pad. In sum, 
complete 24-bit address is stored in the stack frame. The third word contains a copy of the
at the instant the interrupt was serviced.

When the XA is operating in Page 0 Mode (SCR bitPZ = 1) the stack frame is smaller because
in this mode, only 16 address bits are used throughout the XA. The stack frame in Page 0 
is illustrated in Figure 4.18. Obviously it is very important that stack frames of both sizes no
mixed; this is one reason for the admonition in section 4.3 to set the System Configuration
Register once during XA initialization and leave it unchanged thereafter.

Figure 4.17  Interrupt stack frame (non- page zero mode)

Figure 4.18  Interrupt stack frame (page 0 mode)

PC (hi-byte)0x00

SSP

6-bytes

SSP

After

Before interrupt

Low-order 16-bits of PC

PSW

SSP
4-bytes

SSP

After

Before interrupt

PSW

16-bits of PC
XA User Guide 4-24 3/24/97



rrupt

ress
tion of
f all
e

t
n the
.
he
re
 are
 XA

an
MI,
f these
ected

ze
these

rams

nce
uence
Interrupt Vector Table
The XA uses the first 284 bytes of code memory (addresses 0 through 11B hex) for an inte
vector table. The table may contain up to 71 double-word entries, each corresponding to a
particular interrupt event.

The double-word entries each consist of a 16 bit address of an interrupt service routine add
and a 16 bit PSW replacement value. Because vector addresses are 16-bit, the first instruc
service routines must be located in the first 64K bytes of XA memory. The first instruction o
service routines must be word-aligned. Key elements of the replacement PSW value are th
choice of System or User mode for the service routine, the Register Bank selection, and an
Execution Priority setting. For more details on PSW elements, see section 4.2.2.

The first 16 vectors, starting at code memory address 0 are reserved for Exception Interrup
vectors. The second 16 vectors are reserved for Trap Interrupts. The following 32 vectors i
table are reserved for Event Interrupts. The final 7 vectors are used for Software Interrupts
Figure 4.19 illustrates the XA vector table and the structure of each component vector. Of t
vectors assigned to Exceptions, 6 are assigned to events specific to the XA CPU and 10 a
reserved. All 16 Trap Interrupts may be used freely. Assignments of Event Interrupt vectors
derivative-independent and vary with the peripheral device complement and pinout of each
derivative.

Unused interrupt vectors should normally be set to point to a dummy service routine. The
dummy service routine should clear the interrupt flag (if it is not self-clearing) and execute 
RETI to return to the user program. This is especially true of the exception interrupts and N
since these could conceivably occur in a system where the designer did not expect them. I
vectors are routed to a dummy service routine, the system can essentially ignore the unexp
exception or interrupt condition and continue operation.

Note that when using some hardware development tools, it may be preferable not to initiali
unused vector locations, allowing the development tool to flag unexpected occurrences of 
conditions.

4.9 Trace Mode Debugging
The XA has an optional Trace Mode in which a special trace exception is generated at the
conclusion of each instruction. Trace Mode supports user-supplied debugger/monitor prog
which can single-step through any code, even code in ROM.

4.9.1  Trace Mode Operation

Trace Mode is initiated by assertingPSW.TM in the context of the program to be traced.

Using Trace Mode requires a detailed understanding of the XA instruction execution seque
because when and if a trace exception occurs depends on events within the execution seq
of a single instruction. Figure 4.20 illustrates the XA instruction sequence in overview.
3/24/97 4-25 CPU Organization



it is
are
s for
ted
ions
een
cle

1.
A detailed model of this sequence is shown in Figure 4.21: First, at the beginning of the
instruction cycle, the state of the TM flag is latched. Next, the instruction is checked to see if
valid; undefined instructions or disallowed operations (like a write through ES in User Mode)
simply not executed, and there is no chance for a trace to occur. The sequence then check
instructions illegal in the current context (currently only an IRET while in User Mode is detec
here) and services an exception if one is found. If, and only if, none of these special condit
occur, the instruction is actually executed. Just after execution, if the Trace Mode bit had b
latched TRUE at the beginning of the instruction cycle, the Trace is serviced. Finally, the cy
checks for a pending interrupt and performs interrupt service if one is found
Note that an external reset may occur at any point during the cycle illustrated in Figure 4.2
This will abort processing when it occurs.

Figure 4.19  Interrupt vectors

Figure 4.20  XA Instruction Sequence Overview

Increasing
addresses

16 bits

0100h

80h

40h

0
Code Memory

32
Event

Interrupt
Vectors

16
Trap

Interrupt
Vectors

16
Exception
Vectors

Interrupt
Vectors

7 Software

Service Routine Address

Replacement PSW

Instruction n-1 Instruction n Instruction n+1
XA User Guide 4-26 3/24/97



 a
nce is
rupt
P

in
 a
hetic
s:

t prior
mode.
 stack.
me is
One consequence of this sequence is that the instruction that sets TM = 1 cannot generate
Trace, since TM is not latched when the instruction is actually executed. Another conseque
that an instruction that generates an exception will never be traced. Finally if an event inter
occurs during an instruction clock when the instruction being executed is a TRAP, the TRA
will be executed, then the trace service, and finally the interrupt will be serviced.

4.9.2  Trace Mode Initialization and Deactivation

SincePSW.TM is in the protected portion of the PSW (i.e., in PSWH), only code executing 
System Mode can initiate or turn off Trace Mode. In practice, this may be done by invoking
trap whose replacement PSW clears this bit, or by executing a RETI instruction with a synt
Exception/Interrupt stack frame explicitly pushed on the top of the System Stack, as follow

Tracing will continue until the PSW bitTM  is cleared. This may be done by the trace service
routine by examining the stack frame at the top of the system stack and clearing the TM bi
to returning to the currently traced process. A similar method may be used to initiate trace 
Note that stack frames generated by exception interrupts are always placed on the System
It is probably a good idea for the trace service routine to verify that the item in the stack fra
consistent with the traced process before modifying the TM bit.

Figure 4.21  Instruction Execution Clock Detail

Instruction n

latch
TM
state Y

instruction
allowed?

N

Instruction
illegal?

Execute
Instruction

service
exception

Check latch;
TM = 1?

Y

service
trace

Interrupt
pending?

Y

service
interrupt

PC (hi-byte)0x00
address of next instruction

TM set in saved PSW image

Lo-order 16-bits of PC

PSW

in traced routine
3/24/97 4-27 CPU Organization



XA User Guide 4-28 3/24/97



uties,
 same

 high
ABS)
dded

a

ding to

 able

real-time

s.

es
e
tions

USP).
g

 also
stacks
,
e

till
5   Real-time Multi-tasking

Multi-taskingas the name suggests, allows tasks, which are pieces of code that do specific d
to run in an apparently concurrent manner. This means that tasks will seem to all run at the
time, doing many specific jobs simultaneously.

High end applications (like automotive) require instantaneous responses when dealing with
speed events, such as engine management, traction control and adaptive braking system (
and hence there is a trend towards multi-tasking in a wide variety of high performance embe
control applications.

Real-time application programs are often comprised of multiple tasks. Each task manages 
specific facet of application program. Building a real-time application from individual tasks
allows subdividing a complicated application program into independent and manageable
modules. Each task shares the processor with other tasks in the application program accor
an assigned priority level.

In real-time multi-tasking, the main concern is thesystem overhead. Switching tasks involve
moving lots of data of the terminated and initiated tasks, and extensive book-keeping to be
to restore dormant tasks when required. Thus it is extremely crucial to minimize the system
overhead as much as possible. In some cases, some of the tasks may be associated with 
response, which further complicates the requirements from the system.

The following section analyzes the requirements and the XA suitability to these application

5.1  Multi-tasking Support in XA
The XA has numerous provisions to support multi-tasking systems. The architecture provid
direct support for the concept of a multi-tasking OS by providing two (System/User) privileg
levels for isolation between tasks. High performance, interrupt driven, multi-tasking applica
systems requiring protection are feasible with the XA.

The XA architecture offers the following features which will appeal to multi-tasking
implementations.

5.1.1  Dual stack approach

 The architecture defines a System Stack Pointer (SSP) as well as an User Stack Pointer (
The dual stack feature supports fast task switching, and ease the creation of a multi-taskin
monitor kernel. The separation of the two offers a reduction is storing and retrieving stack
pointers or using a single stack, when switching to the kernel and back to an application. It
serves to speed up interrupt processing in large systems with external data memory. User 
can be allocated in the slower external memory, while system memory is in internal SRAM
allowing for fast interrupt latency in this environment. The dual stack approach also adds th
benefit of a better potential to recover from an ill-behaved task, since the system stack is s
intact when an error is sensed.
3/24/97 5-1 Multi-tasking



. In
ntly

ing
igned

de flag
l data

tive
he

 at
state

. The
d at
ng

o not
 from
 is

 in
5.1.2  Register Banks

The XA also supports 4 banks of 8 byte/4 word registers, in addition to 12 shared registers
some applications, the register banks can be designated statically to tasks, cutting significa
on the overhead for saving and restoring registers on context switching.

5.1.3  Interrupt Latency and Overhead

Interrupt latency is extremely critical in a multitasking environment. For a real-time multitask
environment, a fast interrupt response is crucial for switching between tasks. The XA is des
to provide such fast task switching environment through improved interrupt latency time.

The interrupt service mechanism saves the PC (1 or 2 words, depending on the Page0 mo
PZ) and the PSW (1 word) on the stack. The interrupt stack normally resides in the interna
memory, and interrupt call including saving of three words takes 23 clocks. Prefetching the
service routine takes 3 additional clocks.

When interrupt or an exception/trap occurs, the current instruction in progress always gets
executed prior servicing the interrupt. This present an overhead, while increasing the effec
interrupt latency, since the event that interrupted the machine cannot be dealt with before t
book-keeping is completed. In XA, the longest uninterrupted instruction is the signed 32x16
Divide, which takes 24 clocks.

This puts the worst case interrupt latency at [24 + 23 + 3] = 50 clocks (3.125 microseconds
16.0 MHz, 2.5 microseconds at 20.0 MHz, and 1.67 microseconds at 30.0 MHz). Saving the
of the lower registers can be done by simply switching the register bank.

In the general case, up to 16 registers would be saved on the stack, which takes 32 clocks
total latency+overhead at start of an interrupt is a maximum of 68 clocks (4.25 microsecon
16 MHz, 3.4 at 20 MHz and 2.27 at 30 MHz). This allows for extremely fast context switchi
for multitasking environments.

5.1.4  Protection

The issue is mentioned here simply to clarify what is and what is not supported by the XA
architecture. Dual stack pointer and minor privileges to what looks like a supervisor mode d
mean full protection. It is assumed that code in a microcontroller does not require guarding
intentional system break-in by a lower privilege task. A table of the protected features in XA
given below. Note that features marked “disallowed” are simply not completed if attempted
the User mode. There are no exceptions or flags associated with these occurrences.
XA User Guide 5-2 3/24/97



.

ution

User
, the

ords,

paces
o

address

area
 to

 XA
 the

t,

.

Protected Features in the XA

Table 5.1:  Segment and Stack Register Protection

Note 1: The MSB of SSEL (bit 7) selects whether write through ES is allowed in User mode
However, this bit is accessible only in System mode.

Table 5.2: PSW bit protection

In addition to the above, the System Stack is protected from corruption by User Mode exec
of the RETI instruction. If User Mode code attempts to execute that instruction, it causes an
exception interrupt. If it is necessary to run TRAP routines, for instance, in User Mode, the 
RETI exception handler can perform the return for the User Mode code. To accomplish this
User RETI exception handler may pop the topmost return address from the stack (2 or 3 w
depending on whether the XA is in Page Zero mode) and then execute the RETI.

Protection Via Data Memory Segmentation
In User/Application mode, each task is protected from all others via the separation of data s
(unless explicit sharing is planned in advance). If the address spaces of two tasks include n
shared data, one task cannot affect the data of another, but it can read any data in the full 

space. Code sharing is always safe since code memory may never be written1. An application
mode program is prohibited from writing the segment registers, thus confining the writable 
per an ill-behaved task to its dedicated segment. Most applications, which are not expected
utilize multi-tasking or use external memory, do not require any protection. They will remain
after reset in system mode, and could access all system resources.

At any given instant, two segments of memory are immediately accessible to an executing
program. These are the data segment DS, where the stack and local variables reside, and
extra segment ES, which may be used to read remote data structures. Restricting the
addressability of task modules helps gain complete control of system resources for efficien
reliable operation in a multi-tasking environment.

Mode
Write to
DS

Write
through
DS

Write to
ES

Write
through
ES

Read
through
DS

Read
through
ES

Read
through
SSP

Write to
SSP

Write to
SSEL
bit 7

System Allowed Allowed Allowed Allowed Allowed Allowed Allowed Allowed Allowed

User Dis-
allowed

Allowed Allowed Select-

able 1
Allowed Allowed Not

possible
Not
possible

Dis-
allowed

Mode
Write to SM
bit

Write to RS0:1
bits

Write to TM bit
Write to IM0:3
bits

System Allowed Allowed Allowed Allowed

User Disallowed Allowed Disallowed Disallowed

1. True for non-writable code memory only like EPROM, ROM, OTP. This might change for FLASH parts
3/24/97 5-3 Multi-tasking



nd

d for

 may
Protection Via Dual Stack Pointers

The XA provides a two-level user/supervisor protection mechanism. These are theuseror
application mode and thesystemor supervisor mode. In a multitasking environment, tasks in a
supervisor level are protected from tasks in the application level.

The XA has two stack pointers (in the register file) called the System Stack Pointer (SSP) a
the User Stack Pointer (USP). In multitasking systems one stack pointer is used for the
supervisory system and another for the currently active task. This helps in the protection
mechanism by providing isolation of system software from user applications. The two stack
pointers also help to improve the performance of interrupts. If the stack for a particular
application would exceed the space available in the on-chip RAM, or on-chip RAM is neede
other time critical purposes (since on-chip RAM is accessed more quickly than off-chip
memory), the main stack can be put off-chip and the interrupt stack (using the System SP)
be put in on-chip RAM.

These features of the XA place it well above the competition in suitability to multi-tasking
applications.
XA User Guide 5-4 3/24/97



A.

 seven
rget

ge
ction
ation

6]

y the

 is
6   Instruction Set and Addressing

This section contains information about the addressing modes and data types used in the X
The intent is to help the user become familiar with the programming capabilities of the
processor.

6.1  Addressing Modes
Addressing modes are ways to form effective addresses of the operands. The XA provides
basic powerful addressing modes for access on word, byte, and bit data, or to specify the ta
address of a branch instruction. Thesebasic addressing modes are uniformly available on a lar
number of instructions. Table 6.1 includes the basic addressing modes in the XA. An instru
could use a combination of these basic addressing modes, e.g., ADD R0, #020 is a combin
of Register and Immediate addressing modes.

All modes (non-register) generate ADDR[15:0]. This address is combined with DS/ES[23:1

for data and PC/CS[23:16] for code to form a 24-bit address1.

An XA instruction can have zero, one, two, or three operands, whose locations are defined b
addressing mode. Adestination operand is one that is replaced by a result, or is in some way
affected by the instruction. The destination operand is listed first in an addressing mode
expression. Asource operand is a value that is moved or manipulated by the instruction, but
not altered. The source is listed second in an addressing mode expression.

1. Exception is Page 0 mode, where all addresses are 16-bit.

Table 6.1    Basic Addressing Modes

MODE MNEMONIC OPERANDS

Register R operand(s) in register (in Register file)

Indirect  [R] Byte/Word whose 16-bit address is in R

Indirect-Offset  [R+off 8/16] Byte or Word data whose address (16-bit) contained in R, is
offset by 8/16-bit signed integer “off 8/16’

Direct  mem_addr Byte/Word at given memory “mem_addr’

SFR 1

1. This is a special case of direct addressing mode but separately identified, as SFR space is sepa-
rate from data memory.

sfr_addr Byte/Word at “sfr_addr’ address

Immediate #data 4/5
#data 8/16

Immediate 4/5 and 8/16-bit integer constants “data8/16”

Bit bit 10-bit address field specifying Register File, Data Memory or
SFR bit address space
4/17/98 6-1 Addressing Modes and Data Types



t

6.2  Description of the Modes

6.2.1  Register Addressing

Instructions using this addressing mode contain a field that addresses the Register File tha

contains an operand. The Register file is byte2, word, double-word or bit addressable.

Example: ADD R6, R4 Before: R4 contains 005Ah
R6 contains A5A5h

After: R4 contains 005Ah
R6 contains A5FFh

Figure 6.1

2. The unimplemented 8 word registers are not Byte addressable

ALU

ADD     R6, R4

REGISTER - REGISTER

REGISTER FILE

DESTINATION

R6

R4

SOURCE

005Ah

A5FFh (result)
A5A5h (original contents)
XA User Guide 6-2 4/17/98



d in 1
 in
e ES

EL.bit
 for
he
6.2.2  Indirect Addressing

Instructions using this addressing mode contain a 16-bit address field. This field is containe
out of 8 pointer registers in the Register File (that contain the 16-bit address of the operand
any 64K data segment). For data, the segment is identified by the 8-bit contents of DS or th
and for code by the 8-bit contents of PC23-16 or CS as selected by the appropriate bit (SS
n = 0 selects DS and 1 selects ES for data and SSEL.bitn = 0 selects PC and 1 selects CS
code) in the segment select register SSEL corresponding to the indirect register number. T
address of the pointer word for word operands should be even

Example: ADD R6, [R4] Before: R6 contains 1005h
SSEL.4 = 1 R4 contains A000h
i.e., the operand is in Word at A000h contains A5A5h
segment determined
by the contents of ES After: R4 contains A000h
So, if ES = 08, the R6 contains B5AAh
operand is in Word at A000h in segment 8
segment 8 of data memory. of data memory contains A5A5h

Figure 6.2

ALU

ADD     R6, [R4]

0H

DATA MEMORY

A5A5h

REGISTER - INDIRECT

REGISTER FILE

 A000h

B5AAh (result)

FFFFh

R6

POINTER

SSEL.4 = 1

ES = 8h

A000h

Seg8

R4

1005h
4/17/98 6-3 Addressing Modes and Data Types



 an
ing
t field.

ded to

e 8-bit
nd 1
t select
6.2.3  Indirect-Offset Addressing

This addressing mode is just like the Register-Indirect addressing mode above except that
additional displacement value is added to obtain the final effective address. Instructions us
this addressing mode contain a 16-bit address field and an 8 or 16-bit signed displacemen
This field addresses 1 out of 8 pointer registers in the Register File that contains the 16-bit
address of the operand in any 64K data segment. The contents of the pointer register are ad

the signed displacement to obtain the effective address3 (whichmust be even) of the operand.
For data the segment is identified by the 8-bit contents of DS or the ES and for code, by th
contents of PC23-16 or CS as selected by the appropriate bit (SSEL.bit n = 0 selects DS a
selects ES for data and SSEL.bitn = 0 selects PC and 1 selects CS for code) in the segmen
register SSEL.

Example: ADD R5, [R3 +30h] Before: R3 contains C000h
SSEL.3 = 1 R5 contains 0065h
i.e., the operand is in Word at C030h = A540h
segment determined
by the contents of ES After: R3 contains C000h
So, if ES = 04, the R5 contains A5A5h
operand is in segment Word at C030h = A540h
4 of data memory.

Figure 6.3

3. In case of an odd address, the XA forces the operand fetch from the next lower even boundary
(address.bit0 = 0)

ALU

ADD     R5, [R3+30]

0h

DATA MEMORY

REGISTER - INDIRECT WITH OFFSET

REGISTER FILE

 C000h

DESTINATION

FFFFh

R5

POINTER

SSEL.3 = 1

ES = 4

Seg4

R3

0065h A5A5h

0030h

C030h
A540h
XA User Guide 6-4 4/17/98



actual
data
a

6.2.4  Direct Addressing

Instructions using this addressing mode contain an 10-bit address field, which contains the
address of the operand in any 64K data memory segment or sfr space.The direct address 
memory space is always the bottom 1K byte (0:3FFh) of any segment. The associated dat
segment is always identified by the 8-bit contents of DS.

Example: SUB R0, 200h Before: R0 contains A5FFh
If DS = 02, the 200H contains 5555h
operand is in segment
2 of data memory.

After: R0 contains 50AAh
200h contains 5555h

Figure 6.4

ALU

SUB    R0, 200h

0h

DATA MEMORY

REGISTER - DIRECT

REGISTER FILE

DESTINATION

FFFFh DS = 2h

Seg2

200h5555h

A5FFh

SOURCE

50AAh (result) R0
4/17/98 6-5 Addressing Modes and Data Types



 SFR
above,
 SFR
tly

iate
rt
6.2.5  SFR Addressing

This is identical to the direct addressing mode described before, except it addresses the 1K
space. Although encoded into the same instruction field as the direct addressing described
this is actually a separate space. Instructions using this addressing mode contain an 10-bit
address. The 1K SFR space is always directly addressed (400:7FFh) and is mapped direc
above the 1K direct-addressed RAM space.

Example: MOV R0H, 406h4 Before: R0H contains 05h
406h contains A5h

After: R0H contains A5h
406h contains A5h

6.2.6  Immediate Addressing

In immediate addressing, the actual operand is given explicitly in the instruction.The immed
operand is either an 4/5, 8 or 16-bit integer which constitutes the source operand. 4-bit sho
immediate operands used with instructions ADDS and MOVS are sign extended.

Example: ADD R0L,#0B9h Before: R0 contains 13h
After: R0L contains CCh

Figure 6.5

4. The syntax always refers to the SFR address starting from the base address of 400H.

IMMEDIATE DATA

ALU

DESTINATION

B9h

R0L

REGISTER - IMMEDIATE

CCh (result)

ADD R0L, #B9h

13h
XA User Guide 6-6 4/17/98



he bit
at. The
mory
ce (byte

emory,

r each
by the
6.2.7  Bit Addressing

Instructions using the bit addressing mode contain a 10-bit field containing the address of t
operand. The XA supports three bit address spaces, which are encoded into the same form
spaces are: 256 bits in the register file (the entire active register file); 256 bits in the data me
(byte addresses 20 through 3F hex on the current data segment); and 512 bits in the SFR spa
addresses 400 through 43F hex).

Bit addresses 0 to FF hex map to the register file, bit addresses 100 to 1FF hex map to data m
and bit addresses 200 to 3FF map to the SFR space.

A separate bit-addressable space (20-3F hex) in the direct-address data memory, exists fo
segment. The current working segment for the direct-address space being always identified
DS register.

The encoding of the 10-bit field for bit addresses is as follows:

Figure 6.6

3-bit field identifies 1 of
8 bits in a byte.

This bit determines whether
the bit address is an SFR or
not (1 = SFR).

If not an SFR bit address, this bit
determines whether the bit address
is in the Register File or the data
memory (0 = Register file, 1 =
data memory).

5 or 6 bit field (6 bits
for an SFR) identifies
the byte that the
addressed bit resides
in.

Bit Address Encoding

9     8     7     6     5     4     3     2     1     0

Examples:
For a given data segment,
1 001100 010 = Bit 2 of an SFR at address 0Ch (i.e., 40Ch in the map)
0 001100 010 = Bit 2 of Register file at address 0Ch, i.e., R6L
0 101100 010 = Bit 2 of Data memory address 0Ch
4/17/98 6-7 Addressing Modes and Data Types



e word
y only

nd to
at

y, the
lue of
anch,

le

t

bytes
e

6.3  Relative Branching and Jumps
Program memory addresses as referenced by Jumps, Calls, and Branch instructions must b
aligned in XA. For instance, a branch instruction may occur at any code address, but it ma
branch to an even address. This forced alignment to even address provides three benefits:

• Branch ranges are doubled without providing an extra bit in the instruction and
• Faster execution as XA always fetches first two byte of an instruction simultaneously.
• Allows translated 8051 code to have branches extended over intervening code that will te

grow when translated and generally increase the chances of a branch target being in th
range.

The rel8 displacement is a 9-bit two’s complement integer which is encoded as 8-bits that
represents the relative distance in words from the current PC to the destination PC. Similarl
rel16displacement is a 17-bit twos complement integer which is encoded as 16-bits. The va
the PC used in the target address calculation is the address of the instruction following the Br
Jump or Call instruction.

The 8-bit signed displacement is between -128 to +127. The branch range for rel8 is (samp
calculation shown below) is really +254 bytes to -256 bytes for instructions located at aneven
address, and +253 to -257 for the same located at anoddaddress, with the limitation that the targe
address is word aligned in code memory.

The 16-bit signed displacement is -32,768 to +32,767. The branch range is therefore +65,534
to -65,536 bytes for instructions located at aneven address, and +65,533 to -65,537 for the sam
located at anodd address, with the limitation that the target address is word aligned in code
memory.

Sample calculation for rel8 range:

Assuming word aligned branch target, forward range as measured from current PC is:

Branch Target Address -  Current PC
Now, maximum positive signed 8-bit displacement  = +127;  So, rel8 << 1 is +254

If Current PC = ODD, then
Range  = 254 - 1 = +253 as PC is forced to an even location, else
If current PC = EVEN, then
Range = +254

Similarly, reverse range as measured from current PC is:

Branch Target Address -  Current PC
Now, maximum positive signed 8-bit displacement  = -128; So, rel8 << 1 is -256

If Current PC = ODD, then
Range  = -257
Else if current PC = EVEN, then
Range = -256
XA User Guide 6-8 4/17/98



essing

ble

tended

rands.

n
king

hows
y the
d

s a
nd
tain to.
able
hat
ch

tions
 byte

st
nts,
6.4  Data Types in XA
The XA uses the following types of data:
• Bits
• 4/5-bit signed integers
• 8-bit (byte) signed and unsigned integers
• 8-bit, two digit BCD numbers
• 16-bit (word) signed and unsigned integers
• 10-bit address for bit-addressing in data memory and SFR space
• 24-bit effective address comprising of 16-bit address and 8-bit segment select. See addr

modes for more information.

A byte consists of 8-bits. A word is a 16-bit value consisting of two contiguous bytes. A dou
word consists of two 16-bit words packed in two contiguous words in memory.

Negative integers are represented in twos complement form. 4-bit signed integers (sign ex
to byte/word) are used as immediate operands in MOVS and ADDS instructions.

Binary coded decimal numbers are packed, 2 digits per byte. BCD operations use byte ope

6.5  Instruction Set Overview
The XA uses a powerful and efficient instruction set, offering several different types of
addressing modes. A versatile set of “branch” and “jump” instructions are available for
controlling program flow based on register or memory contents. Special emphasis has bee
placed on the instruction support of structured high-level languages and real-time multi-tas
operating systems.

This section discusses the set of instructions provided in the XA microcontroller, and also s
how to use them. It includes descriptions of the instruction format and the operands used b
instructions. After a summary of the instructions by category, the section provides a detaile
description of the operation of each instruction, in alphabetical order.

Five summary tables are provided that describes the available instructions. The first table i
summary of instructions available in the XA along with their common usage. The second a
third table are tables of addressing modes and operands, and the instruction type they per
A fourth table that lists the summary of status flags update by different instructions. A fifth t
lists the available instructions with their different addressing modes and briefly describes w
each instruction does along with the number of bytes, and number of clocks required for ea
instruction.

The formats have been chosen to optimize the length and execution speed of those instruc
that would be used the most often in critical code. Only the first and sometimes the second
of an instruction are used for operation encoding. The length of the instruction and the first
execution cycle activity are determined from the first byte. Instruction bytes following the fir
two bytes (if any) are always immediate operands, such as addresses, relative displaceme
offsets, bit addresses, and immediate data.
4/17/98 6-9 Addressing Modes and Data Types



ter to

ter to

e XA.

e XA.

 none
FR)

d.

rs in

n the
Glossary of mnemonics, notations used

General:

offset8 An 8-bit signed offset (immediate data in the instruction) that is added to a regis
produce an absolute address.

offset16 A 16-bit signed offset (immediate data in the instruction) that is added to a regis
produce an absolute address.

direct An 11-bit immediate address contained in the instruction.
#data4 4 bits of immediate data contained in the instruction. (range +7 to -8 for

signed immediate data and 0-15 for shifts)
#data5 5 bits of immediate data contained in the instruction. (0-31 for shifts)
#data8 8 bits of immediate data contained in the instruction. (+127 to -128)
#data16 16 bits of immediate data contained in the instruction. (+32,767 to -32,768)
bit The 10-bit address of an addressable bit.
rel8 An 8-bit relative displacement for branches. (+254 to -256)
rel16 An 16-bit relative displacement for branches.(+65,534 to -65,536)
addr16 A 16-bit absolute branch address within a 64K code page.
addr24 A 24-bit absolute branch address, able to access the entire XA address space.
SP The current Stack Pointer (User or System) depending on the operation mode.
USP The User Stack Pointer.
SSP The System Stack Pointer
C Carry flag from the PSW.
AC Auxiliary Carry flag from the PSW.
V Overflow flag from the PSW.
N Negative flag from the PSW.
Z Zero flag from the PSW.
DS Data segment register. Holds the upper byte of the 24-bit data address space of th

Used mainly for local data segments.
ES Extra segment register. Holds the upper byte of the 24-bit data address space of th

Used mainly for addressing remote data structures.
direct Uses the current DS for data memory for the upper byte of the 24-bit address or

(uses only the low 16-bit address) for accessing the special functions register (S
 space. The interpretation should be as below:

if (data range)
then (direct = (DS:direct)
if (sfr range)
then (direct) = (sfr)

Operation encoding fields:

SZ Data Size. This field encodes whether the operation is byte, word or double-wor
IND This field flags indirect operation in some instructions.
H/L This field selects whether PUSH and POP Rlist use the upper or lower half of the

available registers.
dddd Destination register field, specifies one of 16 registers in the register file.
ddd Destination register field for indirect references, specifies one of 8 pointer registe

the register file.
ssss Source register field, specifies one of 16 registers in the register file.
sss Source register field for indirect references, specifies one of 8 pointer registers i

register file.
XA User Guide 6-10 4/17/98



e

ted
ither

efers

ent in

ystem
 user
). This
SP))”
.

as the
gment

ize
Mnemonic text:

Rs Source register.
Rd Destination register.
[  ] In the instruction mnemonic, indicates an indirect reference (e.g.: [R4] refers to th

memory address pointed to by the contents of register 4).
[R+] Used to indicate an automatic increment of the pointer register in some indirect

addressing modes.
[WS:R] Indicates that the pointer register (R) is extended to a 24-bit pointer by the selec

segment register (either DS or ES for all instructions except MOVC, which uses e
PC23-16 or CS).

Rlist A bitmap that represents each register in the register file during a PUSH or POP
operation. These registers are R0-R7 for word or R0L-R7H for byte.

Pseudocode:

(  ) Used to indicate "contents of" in the instruction operation pseudocode (e.g.: (R4) r
to the contents of register 4).

<--- Pseudocode assignment operator. Occasionally used as <--> to indicate assignm
both directions (interchange of data).

((SP)) Data memory contents at the location pointed to by the current stack pointer. In s
mode, the current SP is the SSP, and the segment used is always segment 0. In
mode, the current SP is the USP, and the segment used is the Data Segment (DS
segment apply to the uses of the SP, not just PUSH and POP. In a few cases, “((S
or “((USP))” indicate that a specific SP is used, regardless of the operating mode

Rn.x Indicates bit x of register n.
Rn.x-y Indicates a range of bits from bit x to bit y of register n.

Note: all indirect addressing is accomplished using the contents of the data segment register
upper 8 address bits unless otherwise specified. Example: [ES:Rs] indicates that the extra se
register generates the upper 8 bits of the address in this case.

Execution time:

PZ  - In Page 0
nt  - Not Taken
t  - Taken

Syntax For Operand size:
.w = For word operands
.b = byte operands
.d = double-word operands

Default operand size is dependant on the operands used e.g MOV R0,R1 is always word-s
whereas MOV R0L, R0H is always byte etc. For INDIRECT_IMMEDIATE,
DIRECT_IMMEDIATE, DIRECT_DIRECT, etc., user must specify operand size.
4/17/98 6-11 Addressing Modes and Data Types



Others

0x = prefix for Hex values
[] = For indirect addressing
[[]] = For Double-indirect addressing
dest = destination
src = source

Table 6.2    Instruction Set in XA

Mnemonic Usage

MOV, MOVC, MOVS, MOVX, LEA, XCH, PUSH, POP,
PUSHU, POPU

Data Movement

ADD, ADDS, ADDC, SUB, SUBB Add and Subtract

MULU.b, MULU.w, MUL.w
DIVU.b, DIVU.w, DIVU.d, DIV.w, DIV.d

Multiply and Divide

RR, RRC, RL, RLC, LSR, ASR, ASL, NORM Shifts and Rotates

CLR, SETB, MOV, ANL, ORL Bit Operations

JB, JBC, JNB, JNZ, JZ, DJNZ, CJNE, Conditional Jumps/Calls

BOV, BNV, BPL, BCC, BCS, BEQ, BNE, BG, BGE,
BGT, BL, BLE, BLT, BMI

Conditional Branches

AND, OR, XOR Boolean Functions

JMP, FJMP, CALL, FCALL, BR Unconditional Jumps/Calls/Branches

RET, RETI Return from subroutines, interrupts

SEXT, NEG, CPL, DA Sign Extend, Negate, Complement, Decimal Adjust

BKPT, TRAP#, RESET Exceptions

NOP No Operation
XA User Guide 6-12 4/17/98



Table 6.3 shows a summary of the basic addressing modes available for data transfer and
calculation related instructions.

Notes:
- Shift class includes rotates, shifts, and normalize.
- USP = User stack pointer.
* : ADDS and MOVS uses a short immediate field (4 bits).
** instructions with no operands include: BKPT, NOP, RESET, RET, RETI.

Table 6.3     Instruction Addressing Modes

Modes/
Operands

MOVX MOV CMP
ADD
ADDC

SUB
SUBB

AND
OR
XOR

ADDS
MOVS

MUL
DIV

Shift XCH bytes

R, R • • • • • • • • 2

R, [R] • • • • • • • 2

[R], R • • • • • • 2

R, [R+off8] • • • • • 3

[R+off8], R • • • • • 3

R, [R+off16] • • • • • 4

[R+off16], R • • • • • 4

R, [R+] • • • • • 2

[R+], R • • • • • 2

[R+], [R+] • 2

dir, R • • • • • 3

R, dir • • • • • • 3

dir, [R] • 3

[R], dir • 3

R, #data • • • • • • • • 2*/3/4

[R], #data • • • • • • 2*/3/4

[R+], #data • • • • • • 2*/3/4

[R+off8],
#data

• • • • • • 3*/4/5

[R+off16],
#data

• • • • • • 4*/5/6

dir, #data • • • • • • 3*/4/5

dir, dir • 4

R, USP • 2
4/17/98 6-13 Addressing Modes and Data Types



Notes:
- Shift class includes rotates, shifts, and normalize.
- USP = User stack pointer.
* : ADDS and MOVS uses a short immediate field (4 bits).
** instructions with no operands include: BKPT, NOP, RESET, RET, RETI.

Modes/
Operands

MOVC PUSH
POP

DA, SEXT
CPL, NEG

JUMP
CALL

DJNZ CJNE BIT
OPS

MISC bytes

R, [R+] • 2

[R+], R • 2

A,
[A+DPTR]

• 2

A, [A+PC] • 2

direct • 3

Rlist • 2

R • 2

addr24 • 4

[R] • 2

[A+DPTR] JMP 2

R, rel • 3

direct, rel • 4

R, direct, rel • 4

R, #data, rel • 4/5

[R], #data,
rel

• 4/5

bit • 3

bit, C; C, bit • 3

C, /bit • 3

rel • Cond.
Branch

2

bit, rel Cond.
Branch

4

#data4 TRAP 2

R, R+off8 LEA 3

r, R+off16 LEA 4

<none> ** • 1/2
XA User Guide 6-14 4/17/98



Table 6.4 summarizes the status flag updates for the various XA instruction types.

Table 6.4    Status Flag Updates

Notes:
-: flag not updated.
X: flag updated according to the standard definition.
*: flag update is non-standard, refer to the individual instruction description.
Note: Explicit writes to PSW flags takes precedence over flag updates.

Instruction Type
Flags Updated

C AC V N Z

ADD, ADDC, CMP, SUB, SUBB X X X X X

ADDS, MOVS - - - X X

AND, OR, XOR - - - X X

ASR, LSR * - - X X

branches, all bit operations, NOP - - - - -

Calls, Jumps, and Returns - - - - -

CJNE X - - X X

CPL - - - X X

DA * - - X X

DIV, MUL * - * X X

DJNZ - - - X X

LEA - - - - -

MOV, MOVC, MOVX - - - X X

NEG - - X X X

NORM - - - X X

PUSH, POP - - - - -

RESET * * * * *

RL, RR - - - X X

RLC, RRC * - - X X

SEXT - - - - -

TRAP, BKPT - - - - -

XCH - - - - -

ASL * - X X X
4/17/98 6-15 Addressing Modes and Data Types



iption

n
al RAM
d data
ns
sumes

time
er
fore
ns up

data.
ailable.

upon

ta from
rite to

res no
.

o
ne

h the
ing
t the
plete

fetch
 odd

the 8-
ssible
ment
r

timing
ences.
Instruction Set Summary

Table 6.5 lists the entire XA instruction set by instruction type. This can be used as a quick
reference to find specific instructions that may be looked up in the detailed alphabetical descr
section.

Instruction timing data given in this table and in the following detailed instruction descriptio
section are based on code execution from internal code memory and data accesses to intern
and registers only. Due to the highly programmable timing of accesses to external code an
memory on the XA and the interaction of pipelined functions, detailed timing for all conditio
cannot be documented in a concise fashion. The instruction timing data given here also as
that the CPU does not need to stall while the instruction is read into the pre-fetch queue.

In the case of branches, one on-chip code fetch (16 bits) is built into the timing numbers. The
given will be valid if the instruction that is branched to is not longer than two bytes. For long
instructions, the CPU will wait until the entire instruction is contained in the pre-fetch queue be
resuming execution. This may take one or two additional fetches since the XA has instructio
to six bytes in length.

Following is a summary of events or conditions that may cause timing differences from the given
These are generally stalls that occur when the CPU must wait for some information to become av

— Instruction fetch. Execution stalls if the pre-fetch queue does not contains a complete
instruction when it is needed. Except following branches, the state of the queue depends
the history of instructions that have previously executed.

— Instruction sequence dependencies. This typically occurs when an instruction that reads da
a resource such as the SFR bus or the external bus follows an instruction that caused a w
the same resource. The CPU must stall while the write completes (which otherwise requi
CPU time) before the read can begin. Execution cannot resume until the read is complete

— Internal data memory versus SFR accesses. SFR reads require an additional 2 clocks t
complete. Because XA peripherals run from the CPU clock divided by 2, there may be o
clock used to synchronize the CPU and the SFR bus.

— Program flow changes. When any change occurs in the program flow, the XA must flus
pre-fetch queue and begin loading it from the new execution address. The published tim
values include one internal code fetch for all branches, jumps, calls, etc. If the instruction a
new address is longer than two bytes, additional fetch cycles must occur to obtain a com
instruction in the queue. In the case of a return from subroutine or interrupt, the first code
may only obtain one byte of the next instruction since returns may resume execution at
code addresses.

— Internal versus external code execution. Programmable bus timing and other bus
considerations result in a different timing for internal and external code accesses. Use of
bit bus width for external code access has a substantial effect on overall performance. Po
use of the WAIT signal adds an additional variable to this effect. The external bus require
for an ALE cycle at 16-byte address boundaries, during program flow changes, and afte
external bus data accesses also adds to the variability.

— Internal versus external data access. Programmable bus timing again causes different 
for internal and external data accesses. The 8-bit data bus setting contributes to the differ
Use of the WAIT signal may vary the timing still further.
XA User Guide 6-16 4/17/98



ten that

— Collision of external code fetch and external data access. When an externally executing

program accesses data on the external bus, the pre-fetch queue tends to starve more of
for internal execution.

Table 6.5

Mnemonic Description Bytes Clocks

Arithmetic Operations

ADD Rd, Rs Add registers direct 2 3

ADD Rd, [Rs] Add register-indirect to register 2 4

ADD [Rd], Rs Add register to register-indirect 2 4

ADD Rd, [Rs+offset8] Add register-indirect with 8-bit offset to
register

3 6

ADD [Rd+offset8], Rs Add register to register-indirect with 8-bit
offset

3 6

ADD Rd, [Rs+offset16] Add register-indirect with 16-bit offset to
register

4 6

ADD [Rd+offset16], Rs Add register to register-indirect with 16-bit
offset

4 6

ADD Rd, [Rs+] Add register-indirect with auto increment to
register

2 5

ADD [Rd+], Rs Add register-indirect with auto increment to
register

2 5

ADD direct, Rs Add register to memory 3 4

ADD Rd, direct Add memory to register 3 4

ADD Rd, #data8 Add 8-bit immediate data to register 3 3

ADD Rd, #data16 Add 16-bit immediate data to register 4 3

ADD [Rd], #data8 Add 8-bit immediate data to register-indirect 3 4

ADD [Rd], #data16 Add 16-bit immediate data to register-indirect 4 4

ADD [Rd+], #data8 Add 8-bit immediate data to register-indirect
with auto-increment

3 5

ADD [Rd+], #data16 Add 16-bit immediate data to register-indirect
with auto-increment

4 5

ADD [Rd+offset8], #data8 Add 8-bit immediate data to register-indirect
with 8-bit offset

4 6

ADD [Rd+offset8], #data16 Add 16-bit immediate data to register-indirect
with 8-bit offset

5 6

ADD [Rd+offset16], #data8 Add 8-bit immediate data to register-indirect
with 16-bit offset

5 6
4/17/98 6-17 Addressing Modes and Data Types



ADD [Rd+offset16], #data16 Add 16-bit immediate data to register-indirect
with 16-bit offset

6 6

ADD direct, #data8 Add 8-bit immediate data to memory 4 4

ADD direct, #data16 Add 16-bit immediate data to memory 5 4

ADDC Rd, Rs Add registers direct with carry 2 3

ADDC Rd, [Rs] Add register-indirect to register with carry 2 4

ADDC [Rd], Rs Add register to register-indirect with carry 2 4

ADDC Rd, [Rs+offset8] Add register-indirect with 8-bit offset to
register with carry

3 6

ADDC [Rd+offset8], Rs Add register to register-indirect with 8-bit
offset with carry

3 6

ADDC Rd, [Rs+offset16] Add register-indirect with 16-bit offset to
register with carry

4 6

ADDC [Rd+offset16], Rs Add register to register-indirect with 16-bit
offset with carry

4 6

ADDC Rd, [Rs+] Add register-indirect with auto increment to
register with carry

2 5

ADDC [Rd+], Rs Add register-indirect with auto increment to
register with carry

2 5

ADDC direct, Rs Add register to memory with carry 3 4

ADDC Rd, direct Add memory to register with carry 3 4

ADDC Rd, #data8 Add 8-bit immediate data to register with
carry

3 3

ADDC Rd, #data16 Add 16-bit immediate data to register with
carry

4 3

ADDC [Rd], #data8 Add 16-bit immediate data to register-indirect
with carry

3 4

ADDC [Rd], #data16 Add 16-bit immediate data to register-indirect
with carry

4 4

ADDC [Rd+], #data8 Add 8-bit immediate data to register-indirect
and auto-increment with carry

3 5

ADDC [Rd+], #data16 Add 16-bit immediate data to register-indirect
and auto-increment with carry

4 5

ADDC [Rd+offset8], #data8 Add 8-bit immediate data to register-indirect
with 8-bit offset and carry

4 6

ADDC [Rd+offset8], #data16 Add 16-bit immediate data to register-indirect
with 8-bit offset and carry

5 6

Table 6.5

Mnemonic Description Bytes Clocks
XA User Guide 6-18 4/17/98



ADDC [Rd+offset16], #data8 Add 8-bit immediate data to register-indirect
with 16-bit offset and carry

5 6

ADDC [Rd+offset16], #data16 Add 16-bit immediate data to register-indirect
with 16-bit offset and carry

6 6

ADDC direct, #data8 Add 8-bit immediate data to memory with
carry

4 4

ADDC direct, #data16 Add 16-bit immediate data to memory with
carry

5 4

ADDS Rd, #data4 Add 4-bit signed immediate data to register 2 3

ADDS [Rd], #data4 Add 4-bit signed immediate data to register-
indirect

2 4

ADDS [Rd+], #data4 Add 4-bit signed immediate data to register-
indirect with auto-increment

2 5

ADDS [Rd+offset8], #data4 Add register-indirect with 8-bit offset to 4-bit
signed immediate data

3 6

ADDS [Rd+offset16], #data4 Add register-indirect with 16-bit offset to 4-bit
signed immediate data

4 6

ADDS direct, #data4 Add 4-bit signed immediate data to memory 3 4

ASL Rd, Rs Logical left shift destination register by the
value in the source register

2 See
Note1

ASL Rd, #data4 Logical left shift register by the 4-bit
immediate value

2 See
Note1

ASR Rd, Rs Arithmetic shift right destination register by
the count in the source

2 See
Note1

ASR Rd, #data4 Arithmetic shift right register by the 4-bit
immediate count

2 See
Note1

CMP Rd, Rs Compare destination and source registers 2 3

CMP [Rd], Rs Compare register with register-indirect 2 4

CMP Rd, [Rs] Compare register-indirect with register 2 4

CMP [Rd+offset8], Rs Compare register with register-indirect with 8-
bit offset

3 6

CMP [Rd+offset16], Rs Compare register with register-indirect with
16-bit offset

4 6

CMP Rd, [Rs+offset8] Compare register-indirect with 8-bit offset
with register

3 6

CMP Rd,[Rs+offset16] Compare register-indirect with 16-bit offset
with register

4 6

Table 6.5

Mnemonic Description Bytes Clocks
4/17/98 6-19 Addressing Modes and Data Types



CMP Rd, [Rs+] Compare auto-increment register-indirect
with register

2 5

CMP [Rd+], Rs Compare register with auto-increment
register-indirect

2 5

CMP direct, Rs Compare register with memory 3 4

CMP Rd, direct Compare memory with register 3 4

CMP Rd, #data8 Compare 8-bit immediate data to register 3 3

CMP Rd, #data16 Compare 16-bit immediate data to register 4 3

CMP [Rd], #data8 Compare 8 -bit immediate data to register-
indirect

3 4

CMP [Rd], #data16 Compare 16-bit immediate data to register-
indirect

4 4

CMP [Rd+], #data8 Compare 8-bit immediate data to register-
indirect with auto-increment

3 5

CMP [Rd+], #data16 Compare 16-bit immediate data to register-
indirect with auto-increment

4 5

CMP [Rd+offset8], #data8 Compare 8-bit immediate data to register-
indirect with 8-bit offset

4 6

CMP [Rd+offset8], #data16 Compare 16-bit immediate data to register-
indirect with 8-bit offset

5 6

CMP [Rd+offset16], #data8 Compare 8-bit immediate data to register-
indirect with 16-bit offset

5 6

CMP [Rd+offset16], #data16 Compare 16-bit immediate data to register-
indirect with 16-bit offset

6 6

CMP direct, #data8 Compare 8-bit immediate data to memory 4 4

CMP direct, #data16 Compare 16-bit immediate data to memory 5 4

DA Rd Decimal Adjust byte register 2 4

DIV.w Rd, Rs 16x8 signed register divide 2 14

DIV.w Rd, #data8 16x8 signed divide register with immediate
word

3 14

DIV.d Rd, Rs 32x16 signed double register divide 2 24

DIV.d Rd, #data16 32x16 signed double register divide with
immediate word

4 24

DIVU.b Rd, Rs 8x8 unsigned register divide 2 12

DIVU.b Rd, #data8 8X8 unsigned register divide with immediate
byte

3 12

Table 6.5

Mnemonic Description Bytes Clocks
XA User Guide 6-20 4/17/98



DIVU.w Rd, Rs 16X8 unsigned register divide 2 12

DIVU.w Rd, #data8 16X8 unsigned register divide with immediate
byte

3 12

DIVU.d Rd, Rs 32X16 unsigned double register divide 2 22

DIVU.d Rd, #data16 32X16 unsigned double register divide with
immediate word

4 22

LEA Rd, Rs+offset8 Load 16-bit effective address with 8-bit offset
to register

3 3

LEA Rd, Rs+offset16 Load 16-bit effective address with 16-bit
offset to register

4 3

MUL.w Rd, Rs 16X16 signed multiply of register contents 2 12

MUL.w Rd, #data16 16X16 signed multiply 16-bit immediate data
with register

4 12

MULU.b Rd, Rs 8X8 unsigned multiply of register contents 2 12

MULU.b Rd, #data8 8X8 unsigned multiply of 8-bit immediate data
with register

3 12

MULU.w Rd, Rs 16X16 unsigned register multiply 2 12

MULU.w Rd, #data16 16X16 unsigned multiply 16-bit immediate
data with register

4 12

NEG Rd Negate (twos complement) register 2 3

SEXT Rd Sign extend last operation to register 2 3

SUB Rd, Rs Subtract registers direct 2 3

SUB Rd, [Rs] Subtract register-indirect to register 2 4

SUB [Rd], Rs Subtract register to register-indirect 2 4

SUB Rd, [Rs+offset8] Subtract register-indirect with 8-bit offset to
register

3 6

SUB [Rd+offset8], Rs Subtract register to register-indirect with 8-bit
offset

3 6

SUB Rd, [Rs+offset16] Subtract register-indirect with 16-bit offset to
register

4 6

SUB [Rd+offset16], Rs Subtract register to register-indirect with 16-
bit offset

4 6

SUB Rd, [Rs+] Subtract register-indirect with auto increment
to register

2 5

SUB [Rd+], Rs Subtract register-indirect with auto increment
to register

2 5

Table 6.5

Mnemonic Description Bytes Clocks
4/17/98 6-21 Addressing Modes and Data Types



SUB direct, Rs Subtract register to memory 3 4

SUB Rd, direct Subtract memory to register 3 4

SUB Rd, #data8 Subtract 8-bit immediate data to register 3 3

SUB Rd, #data16 Subtract 16-bit immediate data to register 4 3

SUB [Rd], #data8 Subtract 8-bit immediate data to register-
indirect

3 4

SUB [Rd], #data16 Subtract 16-bit immediate data to register-
indirect

4 4

SUB [Rd+], #data8 Subtract 8-bit immediate data to register-
indirect with auto-increment

3 5

SUB [Rd+], #data16 Subtract 16-bit immediate data to register-
indirect with auto-increment

4 5

SUB [Rd+offset8], #data8 Subtract 8-bit immediate data to register-
indirect with 8-bit offset

4 6

SUB [Rd+offset8], #data16 Subtract 16-bit immediate data to register-
indirect with 8-bit offset

5 6

SUB [Rd+offset16], #data8 Subtract 8-bit immediate data to register-
indirect with 16-bit offset

5 6

SUB [Rd+offset16], #data16 Subtract 16-bit immediate data to register-
indirect with 16-bit offset

6 6

SUB direct, #data8 Subtract 8-bit immediate data to memory 4 4

SUB direct, #data16 Subtract 16-bit immediate data to memory 5 4

SUBB Rd, Rs Subtract with borrow registers direct 2 3

SUBB Rd, [Rs] Subtract with borrow register-indirect to
register

2 4

SUBB [Rd], Rs Subtract with borrow register to register-
indirect

2 4

SUBB Rd, [Rs+offset8] Subtract with borrow register-indirect with 8-
bit offset to register

3 6

SUBB [Rd+offset8], Rs Subtract with borrow register to register-
indirect with 8-bit offset

3 6

SUBB Rd, [Rs+offset16] Subtract with borrow register-indirect with 16-
bit offset to register

4 6

SUBB [Rd+offset16], Rs Subtract with borrow register to register-
indirect with 16-bit offset

4 6

SUBB Rd, [Rs+] Subtract with borrow register-indirect with
auto increment to register

2 5

Table 6.5

Mnemonic Description Bytes Clocks
XA User Guide 6-22 4/17/98



SUBB [Rd+], Rs Subtract with borrow register-indirect with
auto increment to register

2 5

SUBB direct, Rs Subtract with borrow register to memory 3 4

SUBB Rd, direct Subtract with borrow memory to register 3 4

SUBB Rd, #data8 Subtract with borrow 8-bit immediate data to
register

3 3

SUBB Rd, #data16 Subtract with borrow 16-bit immediate data to
register

4 3

SUBB [Rd], #data8 Subtract with borrow 8-bit immediate data to
register-indirect

3 4

SUBB [Rd], #data16 Subtract with borrow 16-bit immediate data to
register-indirect

4 4

SUBB [Rd+], #data8 Subtract with borrow 8-bit immediate data to
register-indirect with auto-increment

3 5

SUBB [Rd+], #data16 Subtract with borrow 16-bit immediate data to
register-indirect with auto-increment

4 5

SUBB [Rd+offset8], #data8 Subtract with borrow 8-bit immediate data to
register-indirect with 8-bit offset

4 6

SUBB [Rd+offset8], #data16 Subtract with borrow 16-bit immediate data to
register-indirect with 8-bit offset

5 6

SUBB [Rd+offset16], #data8 Subtract with borrow 8-bit immediate data to
register-indirect with 16-bit offset

5 6

SUBB [Rd+offset16], #data16 Subtract with borrow 16-bit immediate data to
register-indirect with 16-bit offset

6 6

SUBB direct, #data8 Subtract with borrow 8-bit immediate data to
memory

4 4

SUBB direct, #data16 Subtract with borrow 16-bit immediate data to
memory

5 4

Logical Operations

AND Rd, Rs Logical AND registers direct 2 3

AND Rd, [Rs] Logical AND register-indirect to register 2 4

AND [Rd], Rs Logical AND register to register-indirect 2 4

AND Rd, [Rs+offset8] Logical AND register-indirect with 8-bit offset
to register

3 6

AND [Rd+offset8], Rs Logical AND register to register-indirect with
8-bit offset

3 6

Table 6.5

Mnemonic Description Bytes Clocks
4/17/98 6-23 Addressing Modes and Data Types



AND Rd, [Rs+offset16] Logical AND register-indirect with 16-bit
offset to register

4 6

AND [Rd+offset16], Rs Logical AND register to register-indirect with
16-bit offset

4 6

AND Rd, [Rs+] Logical AND register-indirect with auto
increment to register

2 5

AND [Rd+], Rs Logical AND register-indirect with auto
increment to register

2 5

AND direct, Rs Logical AND register to memory 3 4

AND Rd, direct Logical AND memory to register 3 4

AND Rd, #data8 Logical AND 8-bit immediate data to register 3 3

AND Rd, #data16 Logical AND 16-bit immediate data to register 4 3

AND [Rd], #data8 Logical AND 8-bit immediate data to register-
indirect

3 4

AND [Rd], #data16 Logical AND16-bit immediate data to register-
indirect

4 4

AND [Rd+], #data8 Logical AND 8-bit immediate data to register-
indirect and auto-increment

3 5

AND [Rd+], #data16 Logical AND16-bit immediate data to register-
indirect and auto-increment

4 5

AND [Rd+offset8], #data8 Logical AND8-bit immediate data to register-
indirect with 8-bit offset

4 6

AND [Rd+offset8], #data16 Logical AND16-bit immediate data to register-
indirect with 8-bit offset

5 6

AND [Rd+offset16], #data8 Logical AND8-bit immediate data to register-
indirect with 16-bit offset

5 6

AND [Rd+offset16], #data16 Logical AND16-bit immediate data to register-
indirect with 16-bit offset

6 6

AND direct, #data8 Logical AND 8-bit immediate data to memory 4 4

AND direct, #data16 Logical AND16-bit immediate data to memory 5 4

CPL Rd Complement (ones complement) register 2 3

LSR Rd, Rs Logical right shift destination register by the
value in the source register

2 See
Note 1

LSR Rd, #data4 Logical right shift register by the 4-bit
immediate value

2 See
Note 1

NORM Rd, Rs Logical shift left destination register by the
value in the source register until MSB set

2 See
Note 1

Table 6.5

Mnemonic Description Bytes Clocks
XA User Guide 6-24 4/17/98



OR Rd, Rs Logical OR registers 2 3

OR Rd, [Rs] Logical OR register-indirect to register 2 4

OR [Rd], Rs Logical OR register to register-indirect 2 4

OR Rd, [Rs+offset8] Logical OR register-indirect with 8-bit offset to
register

3 6

OR [Rd+offset8], Rs Logical OR register to register-indirect with 8-
bit offset

3 6

OR Rd, [Rs+offset16] Logical OR register-indirect with 16-bit offset
to register

4 6

OR [Rd+offset16], Rs Logical OR register to register-indirect with
16-bit offset

4 6

OR Rd, [Rs+] Logical OR register-indirect with auto
increment to register

2 5

OR [Rd+], Rs Logical OR register-indirect with auto
increment to register

2 5

OR direct, Rs Logical OR register to memory 3 4

OR Rd, direct Logical OR memory to register 3 4

OR Rd, #data8 Logical OR 8-bit immediate data to register 3 3

OR Rd, #data16 Logical OR 16-bit immediate data to register 4 3

OR [Rd], #data8 Logical OR 8-bit immediate data to register-
indirect

3 4

OR [Rd], #data16 Logical OR 16-bit immediate data to register-
indirect

4 4

OR [Rd+], #data8 Logical OR 8-bit immediate data to register-
indirect with auto-increment

3 5

OR [Rd+], #data16 Logical OR 16-bit immediate data to register-
indirect with auto-increment

4 5

OR [Rd+offset8], #data8 Logical OR 8-bit immediate data to register-
indirect with 8-bit offset

4 6

OR [Rd+offset8], #data16 Logical OR 16-bit immediate data to register-
indirect with 8-bit offset

5 6

OR [Rd+offset16], #data8 Logical OR 8-bit immediate data to register-
indirect with 16-bit offset

5 6

OR [Rd+offset16], #data16 Logical OR 16-bit immediate data to register-
indirect with 16-bit offset

6 6

OR direct, #data8 Logical OR 8-bit immediate data to memory 4 4

Table 6.5

Mnemonic Description Bytes Clocks
4/17/98 6-25 Addressing Modes and Data Types



OR direct, #data16 Logical OR16-bit immediate data to memory 5 4

RL Rd, #data4 Rotate left register by the 4-bit immediate
value

2 See
Note 1

RLC Rd, #data4 Rotate left register though carry by the 4-bit
immediate value

2 See
Note 1

RR Rd, #data4 Rotate right register by the 4-bit immediate
value

2 See
Note 1

RRC Rd, #data4 Rotate right register though carry by the 4-bit
immediate value

2 See
Note 1

XOR Rd, Rs Logical XOR registers 2 3

XOR Rd, [Rs] Logical XOR register-indirect to register 2 4

XOR [Rd], Rs Logical XOR register to register-indirect 2 4

XOR Rd, [Rs+offset8] Logical XOR register-indirect with 8-bit offset
to register

3 6

XOR [Rd+offset8], Rs Logical XOR register to register-indirect with
8-bit offset

3 6

XOR Rd, [Rs+offset16] Logical XOR register-indirect with 16-bit
offset to register

4 6

XOR [Rd+offset16], Rs Logical XOR register to register-indirect with
16-bit offset

4 6

XOR Rd, [Rs+] Logical XOR register-indirect with auto
increment to register

2 5

XOR [Rd+], Rs Logical XOR register-indirect with auto
increment to register

2 5

XOR direct, Rs Logical XOR register to memory 3 4

XOR Rd, direct Logical XOR memory to register 3 4

XOR Rd, #data8 Logical XOR 8-bit immediate data to register 3 3

XOR Rd, #data16 Logical XOR 16-bit immediate data to register 4 3

XOR [Rd], #data8 Logical XOR 8-bit immediate data to register-
indirect

3 4

XOR [Rd], #data16 Logical XOR 16-bit immediate data to
register-indirect

4 4

XOR [Rd+], #data8 Logical XOR 8-bit immediate data to register-
indirect with auto-increment

3 5

XOR [Rd+], #data16 Logical XOR 16-bit immediate data to
register-indirect with auto-increment

4 5

Table 6.5

Mnemonic Description Bytes Clocks
XA User Guide 6-26 4/17/98



XOR [Rd+offset8], #data8 Logical XOR 8-bit immediate data to register-
indirect with 8-bit offset

4 6

XOR [Rd+offset8], #data16 Logical XOR 16-bit immediate data to
register-indirect with 8-bit offset

5 6

XOR [Rd+offset16], #data8 Logical XOR 8-bit immediate data to register-
indirect with 16-bit offset

5 6

XOR [Rd+offset16], #data16 Logical XOR 16-bit immediate data to
register-indirect with 16-bit offset

6 6

XOR direct, #data8 Logical XOR 8-bit immediate data to memory 4 4

XOR direct, #data16 Logical XOR16-bit immediate data to memory 5 4

Data transfer

MOV Rd, Rs Move register to register 2 3

MOV Rd, [Rs] Move register-indirect to register 2 3

MOV [Rd], Rs Move register to register-indirect 2 3

MOV Rd, [Rs+offset8] Move register-indirect with 8-bit offset to
register

3 5

MOV [Rd+offset8], Rs Move register to register-indirect with 8-bit
offset

3 5

MOV Rd, [Rs+offset16] Move register-indirect with 16-bit offset to
register

4 5

MOV [Rd+offset16], Rs Move register to register-indirect with 16-bit
offset

4 5

MOV Rd, [Rs+] Move register-indirect with auto increment to
register

2 4

MOV [Rd+], Rs Move register-indirect with auto increment to
register

2 4

MOV direct, Rs Move register to memory 3 4

MOV Rd, direct Move memory to register 3 4

MOV [Rd+], [Rs+] Move register-indirect to register-indirect,
both pointers auto-incremented

2 6

MOV direct, [Rs] Move register-indirect to memory 3 4

MOV [Rd], direct Move memory to register-indirect 3 4

MOV Rd, #data8 Move 8-bit immediate data to register 3 3

MOV Rd, #data16 Move 16-bit immediate data to register 4 3

Table 6.5

Mnemonic Description Bytes Clocks
4/17/98 6-27 Addressing Modes and Data Types



MOV [Rd], #data8 Move 16-bit immediate data to register-
indirect

3 3

MOV [Rd], #data16 Move 16-bit immediate data to register-
indirect

4 3

MOV [Rd+], #data8 Move 8-bit immediate data to register-indirect
with auto-increment

3 4

MOV [Rd+], #data16 Move 16-bit immediate data to register-
indirect with auto-increment

4 4

MOV [Rd+offset8], #data8 Move 8-bit immediate data to register-indirect
with 8-bit offset

4 5

MOV [Rd+offset8], #data16 Move 16-bit immediate data to register-
indirect with 8-bit offset

5 5

MOV [Rd+offset16], #data8 Move 8-bit immediate data to register-indirect
with 16-bit offset

5 5

MOV [Rd+offset16], #data16 Move 16-bit immediate data to register-
indirect with 16-bit offset

6 5

MOV direct, #data8 Move 8-bit immediate data to memory 4 3

MOV direct, #data16 Move 16-bit immediate data to memory 5 3

MOV direct, direct Move memory to memory 4 4

MOV Rd, USP Move User Stack Pointer to register (system
mode only)

2 3

MOV USP, Rs Move register to User Stack Pointer (system
mode only)

2 3

MOVC Rd, [Rs+] Move data from WS:Rs address of code
memory to register with auto-increment

2 4

MOVC A, [A+DPTR] Move data from code memory to the
accumulator indirect with DPTR

2 6

MOVC A, [A+PC] Move data from code memory to the
accumulator indirect with PC

2 6

MOVS Rd, #data4 Move 4-bit sign-extended immediate data to
register

2 3

MOVS [Rd], #data4 Move 4-bit sign-extended immediate data to
register-indirect

2 3

MOVS [Rd+], #data4 Move 4-bit sign-extended immediate data to
register-indirect with auto-increment

2 4

MOVS [Rd+offset8], #data4 Move register-indirect with 8-bit offset to 4-bit
sign-extended immediate data

3 5

Table 6.5

Mnemonic Description Bytes Clocks
XA User Guide 6-28 4/17/98



MOVS [Rd+offset16], #data4 Move register-indirect with 16-bit offset to 4-
bit sign-extended immediate data

4 5

MOVS direct, #data4 Move 4-bit sign-extended immediate data to
memory

3 3

MOVX Rd, [Rs] Move external data from memory to register 2 6

MOVX [Rd], Rs Move external data from register to memory 2 6

PUSH direct Push the memory content (byte/word) onto
the current stack

3 5

PUSHU direct Push the memory content (byte/word) onto
the user stack

3 5

PUSH Rlist Push multiple registers (byte/word) onto the
current stack

2 See
Note 2

PUSHU Rlist Push multiple registers (byte/word)from the
user stack

2 See
Note 2

POP direct Pop the memory content (byte/word) from the
current stack

3 5

POPU direct Pop the memory content (byte/word) from the
user stack

3 5

POP Rlist Pop multiple registers (byte/word) from the
current stack

2 See
Note 3

POPU Rlist Pop multiple registers (byte/word) from the
user stack

2 See
Note 3

XCH Rd, Rs Exchange contents of two registers 2 5

XCH Rd, [Rs] Exchange contents of a register-indirect
address with a register

2 6

XCH Rd, direct Exchange contents of memory with a register 3 6

Program Branching

BCC rel8 Branch if the carry flag is clear 2 6t/3nt

BCS rel8 Branch if the carry flag is set 2 6t/3nt

BEQ rel8 Branch if the zero flag is set 2 6t/3nt

BNE rel8 Branch if the zero flag is not set 2 6t/3nt

BG rel8 Branch if greater than (unsigned) 2 6t/3nt

BGE rel8 Branch if greater than or equal to (signed) 2 6t/3nt

BGT rel8 Branch if greater than (signed) 2 6t/3nt

Table 6.5

Mnemonic Description Bytes Clocks
4/17/98 6-29 Addressing Modes and Data Types



BL rel8 Branch if less than or equal to (unsigned) 2 6t/3nt

BLE rel8 Branch if less than or equal to (signed) 2 6t/3nt

BLT rel8 Branch if less than (signed) 2 6t/3nt

BMI rel8 Branch if the negative flag is set 2 6t/3nt

BPL rel8 Branch if the negative flag is clear 2 6t/3nt

BNV rel8 Branch if overflow flag is clear 2 6t/3nt

BOV rel8 Branch if overflow flag is set 2 6t/3nt

BR rel8 Short unconditional branch 2 6

CALL [Rs] Subroutine call indirect with a register 2 8/5(PZ)

CALL rel16 Relative call (+/- 64K) 3 7/4(PZ)

CJNE Rd,direct,rel8 Compare direct byte to register and jump if
not equal

4 10t/7nt

CJNE Rd,#data8,rel8 Compare immediate byte to register and
jump if not equal

4 9t/6nt

CJNE Rd,#data16,rel8 Compare immediate word to register and
jump if not equal

5 9t/6nt

CJNE [Rd],#data8,rel8 Compare immediate word to register-indirect
and jump if not equal

4 10t/7nt

CJNE [Rd],#data16,rel8 Compare immediate word to register-indirect
and jump if not equal

5 10t/7nt

DJNZ Rd,rel8 Decrement register and jump if not zero 3 8t/5nt

DJNZ direct,rel8 Decrement memory and jump if not zero 4 9t/5nt

FCALL addr24 Far call (anywhere in the 24-bit address
space)

4 12/8
(PZ)

FJMP addr24 Far jump (anywhere in the 24-bit address
space)

4 6

JB bit,rel8 Jump if bit set 4 10t/6nt

JBC bit,rel8 Jump if bit set and then clear the bit 4 11t/7nt

JMP rel16 Long unconditional branch 3 6

JMP [Rs] Jump indirect to the address in the register
(64K)

2 7

JMP [A+DPTR] Jump indirect relative to the DPTR 2 5

JMP [[Rs+]] Jump double-indirect to the address (pointer
to a pointer)

2 8

Table 6.5

Mnemonic Description Bytes Clocks
XA User Guide 6-30 4/17/98



ts.
Note 1: For 8 and 16 bit shifts, it is 4+1 per additional two bits. For 32-bit shifts, it is 6+1 per additional two bi
Note 2: 3 clocks per register pushed.
Note 3: 4 clocks for the first register and two clocks for each additional register.

JNB bit,rel8 Jump if bit not set 4 10t/6nt

JNZ rel8 Jump if accumulator not equal zero 2 6t/3nt

JZ rel8 Jump if accumulator equals zero 2 6t/3nt

NOP No operation 1 3

RET Return from subroutine 2 8/6(PZ)

RETI Return from interrupt 2 10/
8(PZ)

Bit Manipulation

ANL C, bit Logical AND bit to carry 3 4

ANL C, /bit Logical AND complement of a bit to carry 3 4

CLR bit Clear bit 3 4

MOV C, bit Move bit to the carry flag 3 4

MOV bit, C Move carry to bit 3 4

ORL C, bit Logical OR a bit to carry 3 4

ORL C, /bit Logical OR complement of a bit to carry 3 4

SETB bit Sets the bit specified 3 4

Exception / Trap

BKPT Cause the breakpoint trap to be executed. 1 23/
19(PZ)

RESET Causes a hardware Reset, identical to an
external Reset

2 18

TRAP #data4 Causes 1 of 16 hardware traps to be
executed

2 23/
19(PZ)

Table 6.5

Mnemonic Description Bytes Clocks
4/17/98 6-31 Addressing Modes and Data Types



nds,
eration.
ADD Integer Addition

Syntax: ADD   dest, source

Operation: dest <- src + dest

Description: Performs a twos complement binary addition of the source and destination opera
and the result is placed in the destination operand. The source data is not affected by the op

Note: If used with write to PSWL, takes precedence to flag updates

Sizes: Byte-Byte, Word-Word

Flags Updated: C, AC, V, N, Z

ADD    Rd, Rs

Bytes: 2
Clocks: 3
Operation: (Rd) <-- (Rd) + (Rs)
Encoding:

ADD    Rd, [Rs]

Bytes: 2
Clocks: 4
Operation: (Rd) <-- (Rd) + ((WS:Rs))
Encoding:

ADD    [Rd], Rs

Bytes: 2
Clocks: 4
Operation: (WS:Rd) <-- (WS:Rd) + (Rs)
Encoding:

0 0 00 0 0 1SZ d ssd d d s s

0      0     0     0   SZ    0     1     0 d     d     d     d     0     s     s     s

0      0     0     0   SZ    0     1     0  s     s     s     s     1     d     d     d
XA User Guide 6-32 4/17/98



ADD    Rd, [Rs+offset8]

Bytes: 3
Clocks: 6
Operation: (Rd) <-- (Rd) + ((WS:Rs)+offset8)
Encoding:

byte 3: offset8

ADD    [Rd+offset8], Rs

Bytes: 3
Clocks: 6
Operation: ((WS:Rd)+offset8) <-- ((WS:Rd)+offset8) + (Rs)
Encoding:

byte 3: offset8

ADD    Rd, [Rs+offset16]

Bytes: 4
Clocks: 6
Operation: (Rd) <-- (Rd) + ((WS:Rs)+offset16)
Encoding:

byte 3:  upper 8 bits of offset16
byte 4: lower 8 bits of offset16

ADD    [Rd+offset16], Rs

Bytes: 4
Clocks: 6
Operation: ((WS:Rd)+offset16) <-- ((WS:Rd)+offset16) + (Rs)
Encoding:

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16

0      0     0     0   SZ    1     0     0 d     d     d     d     0     s     s     s

0      0     0     0   SZ    1     0     0  s     s     s     s     1     d     d     d

0      0     0     0   SZ    1     0     1 d     d     d     d     0     s     s     s

0      0     0     0   SZ    1     0     1  s     s     s     s     1     d     d     d
4/17/98 6-33 Addressing Modes and Data Types



ADD    Rd, [Rs+]

Bytes: 2
Clocks: 5
Operation: (Rd) <-- (Rd) + ((WS:Rs))

(Rs) <-- (Rs) + 1 (byte operation) or 2 (word operation)
Encoding:

ADD    [Rd+], Rs

Bytes: 2
Clocks: 5
Operation: ((WS:Rd)) <-- ((WS:Rd)) + (Rs)

(Rd) <-- (Rd) + 1 (byte operation) or 2 (word operation)
Encoding:

ADD    direct, Rs

Bytes: 3
Clocks: 4
Operation: (direct) <-- (direct) + (Rs)
Encoding:

byte 3: lower 8 bits of direct

ADD    Rd, direct

Bytes: 3
Clocks: 4
Operation: (Rd) <-- (Rd) + (direct)
Encoding:

byte 3: lower 8 bits of direct

0      0     0     0   SZ    0     1     1 d     d     d     d     0     s     s     s

0      0     0     0   SZ    0     1     1 s     s     s     s     1     d     d     d

0      0     0     0   SZ    1     1     0  s     s     s     s     1    direct: 3 bits

0      0     0     0   SZ    1     1     0 d     d     d     d     0    direct: 3 bits
XA User Guide 6-34 4/17/98



ADD    Rd, #data8

Bytes: 3
Clocks: 3
Operation: (Rd) <-- (Rd) + #data8
Encoding:

byte 3: #data8

ADD    Rd, #data16

Bytes: 4
Clocks: 3
Operation: (Rd) <-- (Rd) + #data16
Encoding:

byte 3: upper 8 bits of #data16
byte 4: lower 8 bits of #data16

ADD    [Rd], #data8

Bytes: 3
Clocks: 4
Operation: ((WS:Rd)) <-- ((WS:Rd)) + #data8
Encoding:

byte 3: #data8

ADD    [Rd], #data16

Bytes: 4
Clocks: 4
Operation: ((WS:Rd)) <-- ((WS:Rd)) + #data16
Encoding:

byte 3: upper 8 bits of #data16
byte 4: lower 8 bits of #data16

1      0     0     1     0     0     0     1 d     d     d     d      0     0     0    0

1      0     0     1     1     0     0     1 d     d     d     d      0     0     0    0

1      0     0     1     0     0     1     0 0     d     d     d      0     0     0    0

1      0     0     1     1     0     1     0 0     d     d     d      0     0     0    0
4/17/98 6-35 Addressing Modes and Data Types



ADD    [Rd+], #data8

Bytes: 3
Clocks: 5
Operation: ((WS:Rd)) <-- ((WS:Rd)) + #data8

(Rd) <-- (Rd) + 1
Encoding:

byte 3: #data8

ADD    [Rd+], #data16

Bytes: 4
Clocks: 5
Operation: ((WS:Rd)) <-- ((WS:Rd)) + #data16

(Rd) <-- (Rd) + 2
Encoding:

byte 3: upper 8 bits of #data16
byte 4: lower 8 bits of #data16

ADD    [Rd+offset8], #data8

Bytes: 4
Clocks: 6
Operation: ((WS:Rd)+offset8) <-- ((WS:Rd)+offset8) + #data8
Encoding:

byte 3: offset8
byte 4: #data8

ADD    [Rd+offset8], #data16

Bytes: 5
Clocks: 6
Operation: ((WS:Rd)+offset8) <-- ((WS:Rd)+offset8) + #data16
Encoding:

byte 3: offset8
byte 4: upper 8 bits of #data16
byte 5: lower 8 bits of #data16

1      0     0     1     0     0     1     1 0     d     d     d      0     0     0    0

1      0     0     1     1     0     1     1 0     d     d     d      0     0     0    0

1      0     0     1     0    1     0     0 0     d     d     d    0      0     0     0

1      0     0     1     1    1     0     0  0     d     d     d     0     0     0     0
XA User Guide 6-36 4/17/98



ADD    [Rd+offset16], #data8

Bytes: 5
Clocks: 6
Operation: ((WS:Rd)+offset16) <-- ((WS:Rd)+offset16) + #data8
Encoding:

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16
byte 5: #data8

ADD    [Rd+offset16], #data16

Bytes: 6
Clocks: 6
Operation: ((WS:Rd)+offset16) <-- ((WS:Rd)+offset16) + #data16
Encoding:

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16
byte 5: upper 8 bits of #data16
byte 6: lower 8 bits of #data16

ADD    direct, #data8
Bytes: 4
Clocks: 4
Operation: (direct) <-- (direct) + #data8
Encoding:

byte 3: lower 8 bits of direct
byte 4: #data8

ADD    direct, #data16

Bytes: 5
Clocks: 4
Operation: (direct) <-- (direct) + #data16
Encoding:

byte 3: lower 8 bits of direct
byte 4: upper 8 bits of #data16
byte 5: lower 8 bits of #data16

1      0     0     1     0    1     0     1  0     d     d     d     0     0     0     0

1      0     0     1     1    1     0     1 0     d     d     d     0     0     0     0

1      0     0     1     0    1     1     0 0   direct: 3 bits    0     0     0     0

1      0     0     1     1    1     1     0 0   direct: 3 bits    0     0     0     0
4/17/98 6-37 Addressing Modes and Data Types



ation

ands;

arry
east-
ADDC Integer addition with Carry

Syntax: ADDC   dest, source

Operation: dest <- dest + src + C

Description: Performs a two’s complement binary addition of the source operand and the
previously generated carry bit with the destination operand. The result is stored in the destin
operand.The source data is not affected by the operation.

If the carry from previous operation is one (C=1), the result is greater than the sum of the oper
if it is zero (C=0), the result is the exact sum.

This form of addition is intended to support multiple-precision arithmetic. For this use, the c
bit is first reset, then ADDC is used to add the portions of the multiple-precision values from l
significant to most-significant.

Size: Byte-Byte, Word-Word

Flags Updated: C, AC, V, N, Z

ADDC    Rd, Rs

Bytes: 2
Clocks: 3
Operation: (Rd) <-- (Rd) + (Rs) + (C)
Encoding:

ADDC    Rd, [Rs]

Bytes: 2
Clocks: 4
Operation: (Rd) <-- (Rd) + ((WS:Rs)) + (C)
Encoding:

0      0     0     1   SZ    0     0     1 d     d     d     d      s     s     s     s

0      0     0     1   SZ    0     1     0 d     d     d     d      0     s     s     s
XA User Guide 6-38 4/17/98



ADDC    [Rd], Rs

Bytes: 2
Clocks: 4
Operation: ((WS:Rd)) <-- ((WS:Rd)) + (Rs) + (C)
Encoding:

ADDC    Rd, [Rs+offset8]

Bytes: 3
Clocks: 6
Operation: (Rd) <-- (Rd) + ((WS:Rs)+offset8) + (C)
Encoding:

byte 3: offset8

ADDC    [Rd+offset8], Rs

Bytes: 3
Clocks: 6
Operation: ((WS:Rd)+offset8) <-- ((WS:Rd)+offset8) + (Rs) + (C)
Encoding:

byte 3: offset8

ADDC    Rd, [Rs+offset16]

Bytes: 4
Clocks: 6
Operation: (Rd) <-- (Rd) + ((WS:Rs)+offset16) + (C)
Encoding:

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16

0      0     0     1   SZ    0     1     0  s     s     s     s      1     d     d     d

0      0     0     1   SZ    1     0     0 d     d     d     d      0     s     s     s

0      0     0     1   SZ    1     0     0  s     s     s     s      1     d     d     d

0     0     0     1    SZ   1     0     1 d     d     d     d     0     s      s     s
4/17/98 6-39 Addressing Modes and Data Types



ADDC    [Rd+offset16], Rs

Bytes: 4
Clocks: 6
Operation: ((WS:Rd)+offset16) <-- ((WS:Rd)+offset16) + (Rs) + (C)
Encoding:

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16

ADDC    Rd, [Rs+]

Bytes: 2
Clocks: 5
Operation: (Rd) <-- (Rd) + ((WS:Rs)) + (C)

(Rs) <-- (Rs) + 1 (byte operation) or 2 (word operation)
Encoding:

ADDC    [Rd+], Rs

Bytes: 2
Clocks: 5
Operation: ((WS:Rd)) <-- ((WS:Rd)) + (Rs) + (C)

(Rd) <-- (Rd) + 1 (byte operation) or 2 (word operation)
Encoding:

ADDC    direct, Rs

Bytes: 3
Clocks: 4
Operation: (direct) <-- (direct) + (Rs) + (C)
Encoding:

byte 3: lower 8 bits of direct

0     0     0     1    SZ   1     0     1  s    s      s     s     1     d     d     d

0     0     0     1    SZ   0     1     1 d    d     d     d     0     s     s      s

0     0      0     1   SZ   0     1     1 s     s     s     s     1     d     d     d

0     0     0     1    SZ   1     1     0  s     s     s      s    1    direct: 3 bits
XA User Guide 6-40 4/17/98



ADDC    Rd, direct

Bytes: 3
Clocks: 4
Operation: (Rd) <-- (Rd) + (direct) + (C)
Encoding:

byte 3: lower 8 bits of direct

ADDC    Rd, #data8

Bytes: 3
Clocks: 3
Operation: (Rd) <-- (Rd) + #data8 + (C)
Encoding:

byte 3: #data8

ADDC    Rd, #data16

Bytes: 4
Clocks: 3
Operation: (Rd) <-- (Rd) + #data16 + (C)
Encoding:

byte 3: upper 8 bits of #data16
byte 4: lower 8 bits of #data16

ADDC    [Rd], #data8

Bytes: 3
Clocks : 4
Operation: ((WS:Rd)) <-- ((WS:Rd)) + #data8 + (C)
Encoding:

byte 3: #data8

0     0     0     1    SZ   1     1     0 d      d    d     d     0    direct: 3 bits

1     0     0     1     0     0      0     1 d     d     d     d     0     0      0     1

1     0      0     1     1     0     0     1 d     d     d     d     0     0      0     1

1     0      0     1     0    0     1     0 0     d     d     d     0     0      0     1
4/17/98 6-41 Addressing Modes and Data Types



ADDC    [Rd], #data16

Bytes: 4
Clocks: 4
Operation: ((WS:Rd)) <-- ((WS:Rd)) + #data16 + (C)

Encoding:

byte 3: upper 8 bits of #data16
byte 4: lower 8 bits of #data16

ADDC    [Rd+], #data8

Bytes: 3
Clocks: 5
Operation: ((WS:Rd)) <-- ((WS:Rd)) + #data8 + (C)

(Rd) <-- (Rd) + 1

Encoding:

byte 3: #data8

ADDC    [Rd+], #data16

Bytes: 4
Clocks: 5
Operation: ((WS:Rd)) <-- ((WS:Rd)) + #data16 + (C)

(Rd) <-- (Rd) + 2
Encoding:

byte 3: upper 8 bits of #data16
byte 4: lower 8 bits of #data16

ADDC    [Rd+offset8], #data8

Bytes: 4
Clocks: 6
Operation: ((WS:Rd)+offset8) <-- ((WS:Rd)+offset8) + #data8 + (C)
Encoding:

byte 3: offset8
byte 4: #data8

1     0     0      1    1     0     1     0 0     d     d      d     0    0      0    1

1      0     0    1     0      0     1     1 0     d     d     d     0     0      0     1

1      0     0    1      1     0     1     1 0     d     d     d     0     0      0     1

1      0     0     1     0    1     0     0 0     d     d     d     0      0     0     1
XA User Guide 6-42 4/17/98



ADDC    [Rd+offset8], #data16

Bytes: 5
Clocks: 6
Operation: ((WS:Rd)+offset8) <-- ((WS:Rd)+offset8) + #data16 + (C)
Encoding:

byte 3: offset8
byte 4: upper 8 bits of #data16
byte 4: lower 8 bits of #data16

ADDC    [Rd+offset16], #data8

Bytes: 5
Clocks: 6
Operation: ((WS:Rd)+offset16) <-- ((WS:Rd)+offset16) + #data8 + (C)
Encoding:

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16
byte 5: #data8

ADDC    [Rd+offset16], #data16

Bytes: 6
Clocks: 6
Operation: ((WS:Rd)+offset16) <-- ((WS:Rd)+offset16) + #data16 + (C)
Encoding:

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16
byte 5: upper 8 bits of #data16
byte 6: lower 8 bits of #data16

ADDC    direct, #data8

Bytes: 4
Clocks: 4
Operation: (direct) <-- (direct) + #data8 + (C)
Encoding:

byte 3: lower 8 bits of direct
byte 4: #data8

1      0     0     1     1    1     0     0  0     d     d     d     0     0     0     1

1      0     0     1     0    1     0     1 0     d     d     d     0     0     0     1

1      0     0     1     1    1     0     1 0    d     d     d      0    0     0     1

1      0     0    1     0     1     1    0 0   direct: 3 bits   0     0      0     1
4/17/98 6-43 Addressing Modes and Data Types



ADDC    direct, #data16

Bytes: 5
Clocks: 4
Operation: (direct) <-- (direct) + #data16 + (C)
Encoding:

byte 3: lower 8 bits of direct
byte 4: upper 8 bits of #data16
byte 5: lower 8 bits of #data16

1     0      0    1     1     1     1     0 0   direct: 3 bits   0     0     0     1
XA User Guide 6-44 4/17/98



data
erand,
used

ace
ADDS Add Short

Syntax: ADDS    dest, #value

Operation: dest <- dest + #data4

Description: Four bits of signed immediate data are added to the destination. The immediate
is sign-extended to the proper size, then added to the variable specified by the destination op
which may be either a byte or a word. The immediate data range is +7 to -8. This instruction is
primarily to increment or decrement pointers and counters.

Size:  Byte-Byte, Word-Word

Flags Updated:   N, Z

(Note: the C and AC flags mustnot be updated by ADDS since this instruction is used to repl
the 80C51 INC and DEC instructions, which do not update the flags.)

ADDS    Rd, #data4

Bytes: 2
Clocks: 3
Operation: (Rd) <-- (Rd) + #data4
Encoding:

ADDS    [Rd], #data4

Bytes: 2
Clocks: 4
Operation:((WS:Rd)) <-- ((WS:Rd)) + #data4
Encoding:

ADDS    [Rd+], #data4

Bytes: 2
Clocks: 5
Operation: ((WS:Rd)) <-- ((WS:Rd)) + #data4

(Rd) <-- (Rd) + 1 (byte operation) or 2 (word operation)
Encoding:

1      0     1     0   SZ    0     0     1 d     d     d     d           #data4

1      0     1     0   SZ    0     1     0  0     d     d     d           #data4

1      0     1     0   SZ    0     1     1  0     d     d     d           #data4
4/17/98 6-45 Addressing Modes and Data Types



ADDS    [Rd+offset8], #data4

Bytes: 3
Clocks: 6
Operation: ((WS:Rd)+offset8) <-- ((WS:Rd)+offset8) + #data4
Encoding:

byte 3: offset8

ADDS    [Rd+offset16], #data4

Bytes: 4
Clocks: 6
Operation:((WS:Rd)+offset16) <-- ((WS:Rd)+offset16) + #data4
Encoding:

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16

ADDS    direct, #data4

Bytes: 3
Clocks: 4
Operation:(direct) <-- (direct) + #data4

Encoding:

byte 3: lower 8 bits of direct

1      0     1     0   SZ    1     0     0  0     d     d     d           #data4

1      0     1     0   SZ    1     0     1  0     d     d     d           #data4

1      0     1     0   SZ    1     1     0 0    direct: 3 bits        #data4
XA User Guide 6-46 4/17/98



ord
tion
AND Logical AND

Syntax: AND dest, src

Operation: dest <- dest AND src

Description: Bitwise logical AND the contents of the source to the destination. The byte or w
specified by the source operand is logically ANDed to the variable specified by the destina
operand. The source data is not affected by the operation.

Size: Byte-Byte, Word-Word

Flags Updated: N, Z

AND    Rd, Rs

Bytes: 2
Clocks: 3
Operation: (Rd) <-- (Rd) • (Rs)
Encoding:

AND    Rd, [Rs]

Bytes: 2
Clocks: 4
Operation: (Rd) <-- (Rd) • ((WS:Rs))
Encoding:

AND    [Rd], Rs

Bytes: 2
Clocks: 4
Operation: ((WS:Rd)) <-- ((WS:Rd)) • (Rs)
Encoding:

0      1     0     1   SZ    0     0     1 d     d     d     d      s     s     s     s

0      1     0     1   SZ    0     1     0 d     d     d     d      0    s     s     s

0      1     0     1   SZ    0     1     0 s     s     s     s     1     d     d     d
4/17/98 6-47 Addressing Modes and Data Types



AND    Rd, [Rs+offset8]

Bytes: 3
Clocks: 6
Operation: (Rd) <-- (Rd) • ((WS:Rs)+offset8)
Encoding:

byte 3: offset8

AND    [Rd+offset8], Rs

Bytes: 3
Clocks: 6
Operation: ((WS:Rd)+offset8) <-- ((WS:Rd)+offset8) • (Rs)
Encoding:

byte 3: offset8

AND    Rd, [Rs+offset16]

Bytes: 4
Clocks: 6
Operation: (Rd) <-- (Rd) • ((WS:Rs)+offset16)
Encoding:

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16

AND    [Rd+offset16], Rs

Bytes: 4
Clocks: 6
Operation: ((WS:Rd)+offset16) <-- ((WS:Rd)+offset16) • (Rs)
Encoding:

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16

0      1     0     1   SZ    1     0     0 d     d     d     d     0     s     s     s

0      1     0     1   SZ    1     0     0  s     s     s     s     1     d     d     d

0      1     0     1   SZ    1     0     1 d     d     d     d     0     s     s     s

0      1     0     1   SZ    1     0     1  s     s     s     s     1     d     d     d
XA User Guide 6-48 4/17/98



AND    Rd, [Rs+]

Bytes: 2
Clocks: 5
Operation: (Rd) <-- (Rd) • ((WS:Rs))

(Rs) <-- (Rs) + 1 (byte operation) or 2 (word operation)

Encoding:

AND    [Rd+], Rs

Bytes: 2
Clocks: 5
Operation: ((WS:Rd)) <-- ((WS:Rd)) • (Rs)

(Rd) <-- (Rd) + 1 (byte operation) or 2 (word operation)
Encoding:

AND    direct, Rs

Bytes: 3
Clocks: 4
Operation: (direct) <-- (direct) • (Rs)
Encoding:

byte 3: lower 8 bits of direct

AND    Rd, direct

Bytes: 3
Clocks: 4
Operation: (Rd) <-- (Rd) • (direct)
Encoding:

byte 3: lower 8 bits of direct

0      1     0     1   SZ    0     1     1 d     d     d     d     0     s     s     s

0      1     0     1   SZ    0     1     1 s     s     s     s     1     d     d     d

0      1     0     1   SZ    1     1     0  s     s     s     s     1    direct: 3 bits

0      1     0     1   SZ    1     1     0 d     d     d     d     0    direct: 3 bits
4/17/98 6-49 Addressing Modes and Data Types



AND    Rd, #data8

Bytes: 3
Clocks: 3
Operation: (Rd) <-- (Rd) • #data8
Encoding:

byte 3: #data8

AND    Rd, #data16

Bytes: 4
Clocks: 3
Operation: (Rd) <-- (Rd) • #data16
Encoding:

byte 3: upper 8 bits of #data16
byte 4: lower 8 bits of #data16

AND    [Rd], #data8

Bytes: 3
Clocks: 4
Operation: ((WS:Rd)) <-- ((WS:Rd)) • #data8
Encoding:

byte 3: #data8

AND    [Rd], #data16

Bytes: 4
Clocks: 4
Operation: ((WS:Rd)) <-- ((WS:Rd)) • #data16
Encoding:

byte 3: upper 8 bits of #data16
byte 4: lower 8 bits of #data16

1      0     0     1     0     0     0     1 d     d     d     d      0     1     0    1

1      0     0     1     1     0     0     1 d     d     d     d      0     1     0    1

1      0     0     1     0     0     1     0 0     d     d     d      0     1     0    1

1      0     0     1     1     0     1     0 0     d     d     d      0     1     0    1
XA User Guide 6-50 4/17/98



AND    [Rd+], #data8

Bytes: 3
Clocks: 5
Operation: ((WS:Rd)) <-- ((WS:Rd)) • #data8

(Rd) <-- (Rd) + 1
Encoding:

byte 3: #data8

AND    [Rd+], #data16

Bytes: 4
Clocks: 5
Operation: ((WS:Rd)) <-- ((WS:Rd)) • #data16

(Rd) <-- (Rd) + 2
Encoding:

byte 3: upper 8 bits of #data16
byte 4: lower 8 bits of #data16

AND    [Rd+offset8], #data8

Bytes: 4
Clocks: 6
Operation: ((WS:Rd)+offset8) <-- ((WS:Rd)+offset8) • #data8
Encoding:

byte 3: offset8
byte 4: #data8

AND    [Rd+offset8], #data16

Bytes: 5
Clocks: 6
Operation: ((WS:Rd)+offset8) <-- ((WS:Rd)+offset8) • #data16
Encoding:

byte 3: offset8
byte 4: upper 8 bits of #data16
byte 5: lower 8 bits of #data16

1      0     0     1     0     0     1     1 0     d     d     d      0     1     0    1

1      0     0     1     1     0     1     1 0     d     d     d      0     1     0    1

1      0     0     1     0    1     0     0  0     d     d     d     0     1     0     1

1      0     0     1     1    1     0     0  0     d     d     d     0     1     0     1
4/17/98 6-51 Addressing Modes and Data Types



AND    [Rd+offset16], #data8

Bytes: 5
Clocks: 6
Operation: ((WS:Rd)+offset16) <-- ((WS:Rd)+offset16) • #data8
Encoding:

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16
byte 5: #data8

AND    [Rd+offset16], #data16

Bytes: 6
Clocks: 6
Operation: ((WS:Rd)+offset16) <-- ((WS:Rd)+offset16) • #data16
Encoding:

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16
byte 5: upper 8 bits of #data16
byte 6: lower 8 bits of #data16

AND    direct, #data8

Bytes: 4
Clocks: 4
Operation: (direct) <-- (direct) • #data8
Encoding:

byte 3: lower 8 bits of direct
byte 4: #data8

AND    direct, #data16

Bytes: 5
Clocks: 4
Operation: (direct) <-- (direct) • #data16
Encoding:

byte 3: lower 8 bits of direct
byte 4: upper 8 bits of #data16
byte 5: lower 8 bits of #data16

1      0     0     1     0    1     0     1 0     d     d     d     0     1     0     1

1      0     0     1     1    1     0     1  0     d     d     d     0     1     0     1

1      0     0     1     0    1     1     0 0   direct: 3 bits   0     1     0     1

1      0     0     1     1    1     1     0 0   direct: 3 bits   0     1     0     1
XA User Guide 6-52 4/17/98



rry
ANL Logical AND a bit to the Carry flag

Syntax: ANL     C, bit

Operation: C <- C (AND) Bit

Description: Read the specified bit and logically AND it to the Carry flag.

Size: Bit

Flags Updated:none

Note: Here the Carry bit is implicitly written by the instruction, and not to be confused with ca
affected by the result of an ALU operation

Bytes: 3
Clocks: 4

Encoding:

byte 3: lower 8 bits of bit address

0      0     0     0     1    0     0     0 0     1     0     0     0     0      bit: 2
4/17/98 6-53 Addressing Modes and Data Types



rry
ANL Logical AND the complement of a bit to the Carry flag

Syntax: ANL     C, /bit

Operation: Carry <- C (AND)bit

Description: Read the specified bit, complement it, and logically AND it to the Carry flag.

Size: Bit

Flags Updated:none

Note: Here the Carry bit is implicitly written by the instruction, and not to be confused with ca
affected by the result of an ALU operation

Bytes: 3
Clocks: 4

Encoding:

byte 3: lower 8 bits of bit address

0      0     0     0     1    0     0     0  0     1     0     1     0     0      bit: 2
XA User Guide 6-54 4/17/98



and
ift is

igned
its. In
le

r

r

s set
to its
f the
ASL Arithmetic Shift Left

Syntax: ASL dest, count

Operation:

Description:
If the count operand is greater than 0, the destination operand is logically shifted left by the
number of bits specified by the count operand. The Low-order bits shifted in are zero-filled 
the high-order bits are shifted out through the C (carry) bit. If the count operand is 0, no sh
performed.

The count operand could be:
- An immediate value (#data4 or #data5)
- A Register (Only 5 bits are used to implement up to 31 bit shifts)

The count is a positive value which may be from 1 to 31 and the destination operand is a s
integer (twos complement form).The destination operand (data size) may be 8, 16, or 32 b
the case of 32-bit shifts, the destination operand must be the least significant half of a doub
word register.The count operand is not affected by the operation.

Note:
- a double word register is double-word aligned in the register file (R1:R0, R3:R2, R5:R4, o
R7:R6).
- If shift count (count in Rs) exceeds data size, the count value is truncated to 5 bits, else fo
immediate shift count, shifting is continued until count is 0.

Size: Byte, word, and double word

Flags Updated: C, V, N, Z

Note: The V flag is set if the sign changes at any time during the shift operation and remain
until the end of the shift operation i.e., the V flag does not get cleared even if the sign reverts
original state because of continued shifts within the same instruction. ASL clears the V flag i
condition to set it does not occur.

(C) <- (dest.msb)
(dest.bit n+1) <- (dest.bit n)
count = count-1

Do While (count not equal to 0)

End While

if sign change during shift,
(V) <- 1
4/17/98 6-55 Addressing Modes and Data Types



ord
ASL    Rd, Rs

Operation:

Bytes: 2
Clocks: For 8/16 bit shifts -> 4 + 1 for each 2 bits of shift

For 32 bit shifts -> 6 + 1 for each 2 bits of shift
Encoding:

ASL Rd, #data4
              Rd,#data5

Bytes: 2
Clocks: For 8/16 bit shifts -> 4 + 1 for each 2 bits of shift

For 32 bit shifts -> 6 + 1 for each 2 bits of shift
Operation:

Encoding: (for byte and word data sizes)

(for double word data size)

Note: SZ1/SZ0 = 00 : byte operation; SZ1/SZ0 = 10 : word operation; SZ1/SZ0 = 11 : double w
operation.

C MSB 0LSB

(Rd)

d     d     d     d      s     s     s     s1 1 0 0 SZ1 SZ0  0 1

C MSB 0LSB

(Rd)

d     d     d     d            #data41 1 0 1 SZ1 SZ0 0 1

1      1     0     1     1     1    0      1 d     d     d              #data5
XA User Guide 6-56 4/17/98



e
e C
al

which
 not
, the

r

r

r

ASR Arithmetic Shift Right

Syntax: ASR    dest, count

Operation:

Description:
If the count operand is greater than 0, the destination operand is logically shifted right by th
number of bits specified by the count operand. The low-order bits are shifted out through th
(carry) bit. If the count operand is 0, no shift is performed. To preserve the sign of the origin
operand, the MSBs of the result are sign-extended with the sign bit.

The count operand could be:
- An immediate value (#data4/5)
- A Register (Only 5 bits are used to implement up to 31 bit shifts)

The count operand could be an immediate value or a register. The count is a positive value
may be from 0 to 31 and the destination operand is a signed integer. The count operand is
affected by the operation. The data size may be 8, 16, or 32 bits. In the case of 32-bit shifts
destination operand must be the least significant half of a double word register.

Note:
- a double word register is double-word aligned in the register file (R1:R0, R3:R2, R5:R4, o
R7:R6).
- If shift count (count in Rs) exceeds data size, the count value is truncated to 5 bits, else fo
immediate shift count, shifting is continued until count is 0.
- a double word register is double-word aligned in the register file (R1:R0, R3:R2, R5:R4, o
R7:R6).

Size: Byte, Word, Double Word

Flags Updated: C, N, Z

(C) <- (dest.0)

(dest.bit n) <- (dest.bit n+1)

count = count-1

Do While (count not equal to 0)

End While

dest.msb <- Sign bit
4/17/98 6-57 Addressing Modes and Data Types



ord
ASR  Rd, Rs

Bytes: 2
Clocks: For 8/16 bit shifts -> 4 + 1 for each 2 bits of shift

For 32 bit shifts -> 6 + 1 for each 2 bits of shift
Operation:

Encoding:

ASR Rd, #data4
            Rd,#data5

Operation:

Bytes: 2
Clocks: For 8/16 bit shifts -> 4 + 1 for each 2 bits of shift

For 32 bit shifts -> 6 + 1 for each 2 bits of shift

Encoding: (for byte and word data sizes)

(for double word data size)

Note: SZ1/SZ0 = 00: byte operation; SZ1/SZ0 = 10: word operation; SZ1/SZ0 = 11: double w
operation.

CMSB LSB

(Rd)

d     d     d     d      s     s     s     s1 1 0 0 SZ1 SZ0 1 0

CMSB LSB

(Rd)

d     d     d     d            #data41 1 0 1 SZ1 SZ0 1 0

d     d     d              #data51 1 0 1 SZ1 SZ0 1 0
XA User Guide 6-58 4/17/98



ates
m
nch
code
BCC Branch if carry clear

Syntax: BCC    rel8

Operation:
(PC) <-- (PC) + 2
if (C) = 0 then
(PC) <-- (PC + rel8*2)
(PC.0) <-- 0

Description: The branch is taken if the last arithmetic instruction (or other instruction that upd
the C flag) did not generate a carry (the carry flag contains a 0). If Carry is clear, the progra
execution branches at the location of the PC, plus the specified displacement, rel8. The bra
range is +254 bytes to -256 bytes, with the limitation that the target address is word aligned in
memory.

Note: Refer to section 6.3 for details of branch range

Size: Bit

Flags Updated:none

Bytes: 2
Clocks: 6 (t) / 3 (nt)

Encoding:

1     1     1     1      0     0     0     0 rel8
4/17/98 6-59 Addressing Modes and Data Types



ates
-256
BCS  Branch if carry set

Syntax: BCS     rel8

Operation:
(PC) <-- (PC) + 2
if (C) = 1 then
(PC) <-- (PC + rel8*2)
(PC.0) <-- 0

Description: The branch is taken if the last arithmetic instruction (or other instruction that upd
the C flag) generated a carry (the carry flag contains a 1). The branch range is +254 bytes to
bytes, with the limitation that the target address is word aligned in code memory.

Note: Refer to section 6.3 for details of branch range

Size: Bit

Flags Updated:none

Bytes: 2
Clocks: 6t/3nt

Encoding:

1     1     1     1      0     0     0     1 rel8
XA User Guide 6-60 4/17/98



hat
tes to
BEQ  Branch if zero

Syntax: BEQ    rel8

Operation:
(PC) <-- (PC) + 2
if (Z) = 1 then
(PC) <-- (PC + rel8*2)
(PC.0) <-- 0

Description: The branch is taken if the last arithmetic/logic instruction (or other instruction t
updates the Z flag) had a result of zero (the Z flag contains a 1). The branch range is +254 by
-256 bytes, with the limitation that the target address is word aligned in code memory.

Note: Refer to section 6.3 for details of branch range

Size: Bit

Flags Updated: none

Bytes: 2
Clocks: 6t/3nt

Encoding:

1     1     1     1      0     0     1     1 rel8
4/17/98 6-61 Addressing Modes and Data Types



t was
 -256
BG  Branch if greater than (unsigned)

Syntax: BG    rel8

Operation: (PC) <-- (PC) + 2
if (Z) OR (C) = 0 then
(PC) <-- (PC + rel8*2)
(PC.0) <-- 0

Description: The branch is taken if the last compare instruction had a destination value tha
greater than the source value, in an unsigned operation. The branch range is +254 bytes to
bytes, with the limitation that the target address is word aligned in code memory.

Note: Refer to section 6.3 for details of branch range

Size: Bit

Flags Updated:none

Bytes: 2
Clocks: 6t/3nt

Encoding:

1     1     1     1      1     0     0     0 rel8
XA User Guide 6-62 4/17/98



t was
ytes to
BGE Branch if greater than or equal to (signed)

Syntax: BGE  rel8

Operation: (PC) <-- (PC) + 2
if (N) XOR (V) = 0 then
(PC) <-- (PC + rel8*2)
(PC.0) <-- 0

Description: The branch is taken if the last compare instruction had a destination value tha
greater than or equal to the source value, in a signed operation. The branch range is +254 b
-256 bytes, with the limitation that the target address is word aligned in code memory.

Note: Refer to section 6.3 for details of branch range

Size: Bit

Flags Updated: none

Bytes: 2
Clocks: 6t/3nt

Encoding:

1     1     1     1      1     0     1     0 rel8
4/17/98 6-63 Addressing Modes and Data Types



t was
bytes,
BGT Branch if greater than (signed)

Syntax: BGT rel8

Operation: (PC) <-- (PC) + 2
if  ((Z) OR (N)) XOR (V) = 0 then
(PC) <-- (PC + rel8*2)
(PC.0) <-- 0

Description: The branch is taken if the last compare instruction had a destination value tha
greater than the source value, in a signed operation. The branch range is +254 bytes to -256
with the limitation that the target address is word aligned in code memory.

Note: Refer to section 6.3 for details of branch range

Size: Bit

Flags Updated:none

Bytes: 2
Clocks: 6t/3nt

Encoding:

1     1     1     1      1     1     0     0 rel8
XA User Guide 6-64 4/17/98



sing
on is
e

eater

d by
point.
 in

 is so

ctions.

d

BKPT Breakpoint

Syntax: BKPT

Operation: (PC) <-- (PC) + 1
(SSP) <-- (SSP) - 6
((SSP)) <-- (PC)
((SSP)) <-- (PSW)
(PSW) <-- code memory (bkpt vector)
(PC.15-0) <-- code memory (bkpt vector)
(PC.23-16) <-- 0; (PC.0) <-- 0

Description: Causes a breakpoint trap. The breakpoint trap acts like an immediate interrupt, u
a vector to call a specific piece of code that will be executed in system mode. This instructi
intended for use in emulator systems to provide a simple method of implementing hardwar
breakpoints.

For a breakpoint to work properly under all conditions, it must have an instruction length no gr
than the smallest other instruction on the processor, in this case the one byte NOP. This
requirement exists because a breakpoint may be inserted in place of a NOP that is followe
another instruction that is branched to or otherwise executed without going through the break
If the breakpoint instruction were longer than the NOP, it would corrupt the next instruction
sequence if that instruction were executed.

The opcode for the breakpoint instruction is specifically assigned to be all ones (FFh). This
that un-programmed EPROM code memory will contain breakpoints. Similarly, the NOP
instruction is assigned to opcode 00 so that both "blank" code states map to innocuous instru

Size: None

Flags Updated:none5

Bytes: 1
Clocks: 23/19 (PZ)

Encoding:

5. All flags are affected during the PSW load from the vector table. It is possible that these flags are restore
by the debugger, but does not have to be the case.

 1    1     1     1      1     1     1     1
4/17/98 6-65 Addressing Modes and Data Types



t was
ytes to
BL Branch if less than or equal to (unsigned)

Syntax: BL rel8

Operation: (PC) <-- (PC) + 2
if (Z) OR (C) = 1 then
(PC) <-- (PC + rel8*2)
(PC.0) <-- 0

Description: The branch is taken if the last compare instruction had a destination value tha
less than or equal to the source value, in an unsigned operation. The branch range is +254 b
-256 bytes, with the limitation that the target address is word aligned in code memory.

Note: Refer to section 6.3 for details of branch range

Size: Bit

Flags Updated: none

Bytes: 2
Clocks: 6t/3nt

Encoding:

1     1     1     1      1     0     0     1 rel8
XA User Guide 6-66 4/17/98



t was
tes to -
BLE  Branch if less than or equal (signed)

Syntax: BLE rel8

Operation: (PC) <-- (PC) + 2
if ((Z) OR (N)) XOR (V) = 1 then
(PC) <-- (PC + rel8*2)
(PC.0) <-- 0

Description: The branch is taken if the last compare instruction had a destination value tha
less than or equal to the source value, in a signed operation. The branch range is +254 by
256 bytes, with the limitation that the target address is word aligned in code memory.

Note: Refer to section 6.3 for details of branch range

Size: Bit

Flags Updated: none

Bytes: 2
Clocks: 6t/3nt

Encoding:

1     1     1     1      1     1     0     1 rel8
4/17/98 6-67 Addressing Modes and Data Types



t was
s, with
BLT Branch if less than (signed)

Syntax: BLT rel8

Operation: (PC) <-- (PC) + 2
if (N) XOR (V) = 1 then
(PC) <-- (PC + rel8*2)
(PC.0) <-- 0

Description: The branch is taken if the last compare instruction had a destination value tha
less than the source value, in a signed operation. The branch range is +254 bytes to -256 byte
the limitation that the target address is word aligned in code memory.

Note: Refer to section 6.3 for details of branch range

Size: Bit

Flags Updated:none

Bytes: 2
Clocks: 6t/3nt

Encoding:

1     1     1     1      1     0     1     1 rel8
XA User Guide 6-68 4/17/98



hat
ge is
BMI Branch if negative

Syntax: BMI rel8

Operation: (PC) <-- (PC) + 2
if (N) = 1 then
(PC) <-- (PC + rel8*2)
(PC.0) <-- 0

Description: The branch is taken if the last arithmetic/logic instruction (or other instruction t
updates the N flag) had a result that is less than 0 (the N flag contains a 1). The branch ran
+254 bytes to -256 bytes, with the limitation that the target address is word aligned in code
memory.

Note: Refer to section 6.3 for details of branch range

Size: Bit

Flags Updated:none

Bytes: 2
Clocks: 6t/3nt

Encoding:

1     1     1     1      0     1     1     1 rel8
4/17/98 6-69 Addressing Modes and Data Types



hat
bytes
BNE Branch if not equal

Syntax: BNE rel8

Operation: (PC) <-- (PC) + 2
if (Z) = 0 then
(PC) <-- (PC + rel8*2)
(PC.0) <-- 0

Description: The branch is taken if the last arithmetic/logic instruction (or other instruction t
updates the Z flag) had a non-zero result (the Z flag contains a 0). The branch range is +254
to -256 bytes, with the limitation that the target address is word aligned in code memory.

Note: Refer to section 6.3 for details of branch range

Size: Bit

Flags Updated:none

Bytes: 2
Clocks: 6t/3nt

Encoding:

1     1     1     1      0     0     1     0 rel8
XA User Guide 6-70 4/17/98



hat
ge is
BNV Branch if no overflow

Syntax: BNV  rel8

Operation: (PC) <-- (PC) + 2
if (V) = 0 then
(PC) <-- (PC + rel8*2)
(PC.0) <-- 0

Description: The branch is taken if the last arithmetic/logic instruction (or other instruction t
updates the V flag) did not generate an overflow (The V flag contains a 0). The branch ran
+254 bytes to -256 bytes, with the limitation that the target address is word aligned in code
memory.

Note: Refer to section 6.3 for details of branch range

Size: Bit

Flags Updated:none

Bytes: 2
Clocks: 6t/3nt

Encoding:

1     1     1     1      0     1     0     0 rel8
4/17/98 6-71 Addressing Modes and Data Types



hat
bytes
BOV Branch if overflow flag

Syntax: BOV rel8

Operation: (PC) <-- (PC) + 2
if (V) = 1 then
(PC) <-- (PC + rel8*2)
(PC.0) <-- 0

Description: The branch is taken if the last arithmetic/logic instruction (or other instruction t
updates the V flag) generated an overflow (the V flag contains a 1). The branch range is +254
to -256 bytes, with the limitation that the target address is word aligned in code memory.

Note: Refer to section 6.3 for details of branch range

Size: Bit

Flags Updated:none

Bytes: 2
Clocks: 6t/3nt

Encoding:

1     1     1     1      0     1     0     1 rel8
XA User Guide 6-72 4/17/98



hat
nge is
BPL  Branch if positive

Syntax: BPL rel8

Operation: (PC) <-- (PC) + 2
if (N) = 0 then
(PC) <-- (PC + rel8*2)
(PC.0) <-- 0

Description: The branch is taken if the last arithmetic/logic instruction (or other instruction t
updates the N flag) had a result that is greater than 0 (the N flag contains a 0). The branch ra
+254 bytes to -256 bytes, with the limitation that the target address is word aligned in code
memory.

Note: Refer to section 6.3 for details of branch range

Size: Bit

Flags Updated:none

Bytes: 2
Clocks: 6t/3nt

Encoding:

1     1     1     1      0     1     1     0 rel8
4/17/98 6-73 Addressing Modes and Data Types



tion
BR Unconditional Branch

Syntax: BR rel8

Operation: (PC) <-- (PC) + 2
(PC) <-- (PC + rel8*2)
(PC.0) <-- 0

Description: Branches unconditionally in the range of +254 bytes to -256 bytes, with the limita
that the target address is word aligned in code memory.

Note: Refer to section 6.3 for details of branch range

Size: None

Flags Updated:none

Bytes: 2
Clocks: 6

Encoding:

1     1     1     1      1     1     1     0 rel8

1     1     0     0     0     1     0    1
XA User Guide 6-74 4/17/98



the
s is
CALL  Call Subroutine Relative

Syntax: CALL rel16

Operation: (PC) <-- (PC) + 3
(SP) <-- (SP) - 4
((SP)) <-- (PC.23-0)
(PC) <-- (PC + rel16*2)
(PC.0) <-- 0

Description: Branches unconditionally in the range of +65,534 bytes to -65,536 bytes, with 
limitation that the target address is word aligned in code memory. The 24-bit return addres
saved on the stack.

Note: if the XA is in page 0 mode, only a 16-bit address will be pushed to the stack.

Note: Refer to section 6.3 for details of branch range

Size: None

Flags Updated:none

Bytes: 3
Clocks: 7/4(PZ)

Encoding:

byte 2: upper 8 bits of rel16
byte 3: lower 8 bits of rel16
4/17/98 6-75 Addressing Modes and Data Types



ter,
ess
ss

4K)
CALL Call Subroutine Indirect

Syntax: CALL    [Rs]

Operation: (PC) <-- (PC) + 2
(SP) <-- (SP) - 4
((SP)) <-- (PC.23-0)
(PC.15-1) <-- (Rs.15-1)
(PC.0) <-- 0

Description: Causes an unconditional branch to the address contained in the operand regis
anywhere within the 64K page following the CALL instruction.The return address (the addr
following the CALL instruction) of the calling routine is saved on the stack. The target addre
must be word aligned, as CALL or branch will force PC.bit0 to 0.

Note:
(1) Since the PC always points to the instruction following the CALL instruction and if that
happens to be on a different page, then the called routine should be located in that page (6

(2) if the XA is in page 0 mode, only a 16-bit address will be pushed to the stack.

Size: None

Flags Updated: none

Bytes: 2
Clocks: 8/5(PZ)

Encoding:

 1     1     0     0     0     1     1     0 0     0     0     0     0     s     s     s
XA User Guide 6-76 4/17/98



ddress
on. The
igned

1

CJNE Compare and jump if not equal

Syntax: CJNE    dest, src, rel8

Operation: (PC) <-- (PC) + # of instruction bytes
(dest) - (direct)      (result not stored)
if (Z) = 0 then
(PC) <-- (PC + rel8*2); (PC.0) <-- 0

Description: The byte or word specified by the source operand is compared to the variable
specified by the destination operand and the status flags are updated. Jump to the specified a
if the values are not equal. The source and destination data are not affected by the operati
branch range is +254 bytes to -256 bytes, with the limitation that the target address is word al
in code memory.

Note: Refer to section 6.3 for details of jump range

Size: Byte-Byte, Word-Word

Flags Updated: C, N, Z

(Note: this particular type of compare mustnot update the V or AC flags to duplicate the 80C5
function.)

CJNE Rd, direct, rel8

Bytes: 4
Clocks: 10t/7nt
Encoding:

byte 3: lower 8 bits of direct
byte 4: rel8

1      1     1     0   SZ   0     1     0 d     d     d     d      0   direct: 3 bits
4/17/98 6-77 Addressing Modes and Data Types



CJNE    Rd, #data8, rel8

Bytes: 4
Clocks: 9t/6nt

Encoding:

byte 3: rel8
byte 4: data#8

CJNE Rd, #data16, rel8

Bytes: 5
Clocks: 9t/6nt

Encoding:

byte 3: rel8
byte 4: upper 8 bits of #data16
byte 5: lower 8 bits of #data16

CJNE    [Rd], #data8, rel8

Bytes: 4
Clocks: 10t/7nt
Encoding:

byte 3: rel8
byte 4: #data8

CJNE    [Rd], #data16, rel8

Bytes: 5
Clocks: 10t/7nt

Encoding:

byte 3: rel8
byte 4: upper 8 bits of #data16
byte 5: lower 8 bits of #data16

1      1     1     0     0     0     1     1 d     d     d     d      0     0     0     0

1      1     1     0     1     0     1     1 d     d     d     d      0     0     0     0

1      1     1     0     0     0     1     1 0     d     d     d      1     0     0     0

1      1     1     0     1     0     1     1 0     d     d     d      1     0     0     0
XA User Guide 6-78 4/17/98



CLR Clear Bit

Syntax: CLR    bit

Operation: (bit) <-- 0

Description: Writes a 0 (clears) to the specified bit.

Size:Bit

Flags Updated:none

Bytes: 3
Clocks: 4

Encoding:

byte 3: lower 8 bits of bit address

0      0     0     0     1    0     0     0  0     0     0     0     0     0      bit: 2
4/17/98 6-79 Addressing Modes and Data Types



The
ffected
CMP  Integer Compare

Syntax: CMP dest, src

Operation: dest - src

Description: The byte or word specified by the source operand is compared to the specified
destination operand by performing a twos complement binary subtraction of src from dest. 
flags are set according to the rules of subtraction. The source and destination data are not a
by the operation.

Size: byte-byte, word-word

Flags Updated: C, AC, V, N, Z

CMP    Rd, Rs

Operation: (Rd) - (Rs)

Bytes: 2
Clocks: 3

Encoding:

CMP    Rd, [Rs]

Operation: (Rd) - ((WS:Rs))

Bytes: 2
Clocks: 4

Encoding:

0      1     0     0   SZ    0     0     1 d     d     d     d      s     s     s     s

0      1     0     0   SZ    0     1     0 d     d     d     d     0     s     s     s
XA User Guide 6-80 4/17/98



CMP    [Rd], Rs

Operation:  ((WS:Rd)) - (Rs)

Bytes: 2
Clocks: 4
Encoding:

CMP    Rd, [Rs+offset8]

Bytes: 3
Clocks: 6
Operation: (Rd) - ((WS:Rs)+offset8)
Encoding:

byte 3: offset8

CMP    [Rd+offset8], Rs

Bytes: 3
Clocks: 6
Operation: ((WS:Rd)+offset8) - (Rs)
Encoding:

byte 3: offset8

CMP    Rd, [Rs+offset16]

Bytes: 4
Clocks: 6
Operation: (Rd) - ((WS:Rs)+offset16)
Encoding:

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16

0      1     0     0   SZ    0     1     0 s     s     s     s     1     d     d     d

0      1     0     0   SZ    1     0     0 d     d     d     d     0     s     s     s

0      1     0     0   SZ    1     0     0  s     s     s     s     1     d     d     d

0      1     0     0   SZ    1     0     1 d     d     d     d     0     s     s     s
4/17/98 6-81 Addressing Modes and Data Types



CMP    [Rd+offset16], Rs

Bytes: 4
Clocks: 6
Operation: ((WS:Rd)+offset16) - (Rs)
Encoding:

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16

CMP    Rd, [Rs+]

Bytes: 2
Clocks: 5
Operation: (Rd) - ((WS:Rs))

(Rs) <-- (Rs) + 1 (byte operation) or 2 (word operation)
Encoding:

CMP    [Rd+], Rs

Bytes: 2
Clocks: 5

Operation: ((WS:Rd)) - (Rs)
(Rd) <-- (Rd) + 1 (byte operation) or 2 (word operation)

Encoding:

CMP    direct, Rs

Bytes: 3
Clocks: 4
Operation: (direct) - (Rs)
Encoding:

byte 3: lower 8 bits of direct

0      1     0     0   SZ    1     0     1 s     s     s     s     1     d     d     d

0      1     0     0   SZ    0     1     1 d     d     d     d     0     s     s     s

0      1     0     0   SZ 0     1     1  s     s     s     s     1     d     d     d

0      1     0     0   SZ 1     1     0 s     s     s     s     1    direct: 3 bits
XA User Guide 6-82 4/17/98



CMP    Rd, direct

Bytes: 3
Clocks: 4
Operation: (Rd) - (direct)
Encoding:

byte 3: lower 8 bits of direct

CMP    Rd, #data8

Bytes: 3
Clocks: 3
Operation: (Rd) - #data8
Encoding:

byte 3: #data8

CMP    Rd, #data16

Bytes: 4
Clocks: 3
Operation: (Rd) - #data16
Encoding:

byte 3: upper 8 bits of #data16
byte 4: lower 8 bits of #data16

CMP    [Rd], #data8

Bytes: 3
Clocks: 4
Operation: ((WS:Rd)) - #data8
Encoding:

byte 3: #data8

0      1     0     0   SZ 1     1     0 d     d     d     d     0    direct: 3 bits

1      0     0     1     0     0     0     1 d     d     d     d      0     1     0    0

1      0     0     1     1     0     0     1 d     d     d     d      0     1     0    0

1      0     0     1     0     0     1     0 0     d     d     d      0     1     0    0
4/17/98 6-83 Addressing Modes and Data Types



CMP    [Rd], #data16

Bytes: 4
Clocks: 4
Operation: ((WS:Rd)) - #data16
Encoding:

byte 3: upper 8 bits of #data16
byte 4: lower 8 bits of #data16

CMP    [Rd+], #data8

Bytes: 3
Clocks: 5
Operation: ((WS:Rd)) - #data8

(Rd) <-- (Rd) + 1
Encoding:

byte 3: #data8

CMP    [Rd+], #data16

Bytes: 4
Clocks: 5
Operation: ((WS:Rd)) - #data16

(Rd) <-- (Rd) + 2
Encoding:

byte 3: upper 8 bits of #data16
byte 4: lower 8 bits of #data16

CMP    [Rd+offset8], #data8

Bytes: 4
Clocks: 6
Operation: ((WS:Rd)+offset8) - #data8
Encoding:

byte 3: offset8
byte 4: #data8

1      0     0     1     1     0     1     0 0     d     d     d      0     1     0    0

1      0     0     1     0     0     1     1 0     d     d     d      0     1     0    0

1      0     0     1     1     0     1     1 0     d     d     d      0     1     0    0

1      0     0     1     0    1     0     0 0     d     d     d     0      1     0     0
XA User Guide 6-84 4/17/98



CMP    [Rd+offset8], #data16

Bytes: 5
Clocks: 6
Operation: ((WS:Rd)+offset8) - #data16
Encoding:

byte 3: offset8
byte 4: upper 8 bits of #data16
byte 5: lower 8 bits of #data16

CMP    [Rd+offset16], #data8

Bytes: 5
Clocks: 6
Operation: ((WS:Rd)+offset16) - #data8
Encoding:

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16
byte 5: #data8

CMP    [Rd+offset16], #data16

Bytes: 6
Clocks: 6
Operation: ((WS:Rd)+offset16) - #data16
Encoding:

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16
byte 5: upper 8 bits of #data16
byte 6: lower 8 bits of #data16

CMP    direct, #data8

Bytes: 4
Clocks: 4
Operation: (direct) - #data8
Encoding:

byte 3: lower 8 bits of direct
byte 4: #data8

1      0     0     1     1    1     0     0  0     d     d     d     0     1     0     0

1      0     0     1     0    1     0     1  0     d     d     d     0     1     0     0

1      0     0     1     1    1     0     1 0     d     d     d     0     1     0     0

1      0     0     1     0    1     1     0 0   direct: 3 bits   0     1     0     0
4/17/98 6-85 Addressing Modes and Data Types



CMP    direct, #data16

Bytes: 5
Clocks: 4
Operation: (direct) - #data16
Encoding:

byte 3: lower 8 bits of direct
byte 4: upper 8 bits of #data16
byte 5: lower 8 bits of #data16

1      0     0     1     1    1     1     0 0   direct: 3 bits   0     1     0     0
XA User Guide 6-86 4/17/98



r Rd.
CPL Integer Ones Complement

Syntax: CPL    Rd

Operation: Rd <-- (Rd)

Description: Performs a ones complement of the destination operand specified by the registe
The result is stored back into Rd. The destination may be either a byte or a word.

Size: Byte, Word

Flags Updated: N, Z

Bytes: 2
Clocks: 3

Encoding:

1      0     0     1   SZ    0     0     0 d     d     d     d      1     0     1     0
4/17/98 6-87 Addressing Modes and Data Types



an
er.

d to
per 4

e add
dition
ction

e.
DA Decimal Adjust

Syntax: DA    Rd

Operation: if (Rd.3-0) > 9 or (AC) = 1
then (Rd.3-0) <-- (Rd.3-0) + 6

if (Rd.7-4) > 9 or (C) = 1
then (Rd.7-4) <-- (Rd.7-4) + 6

Description: Adjusts the destination register to BCD format (binary-coded decimal) following
ADD or ADDC operation on BCD values. This operation may only be done on a byte regist

If the lower 4 bits of the destination value are greater than 9, or if the AC flag is set, 6 is adde
the value. This may cause the carry flag to be set if this addition caused a carry out of the up
bits of the value.

If the upper 4 bits of the destination value are greater than 9, or if the carry flag was set by th
to the lower bits, 60 hex is added to the value. This may cause the carry flag to be set if this ad
caused a carry out of the upper 4 bits of the value. Carry will never be cleared by the DA instru
if it was already set.

Size: Byte

Flags Updated: C, N, Z

The carry flag may be set but not cleared. See the description of the carry flag update abov

Bytes: 2
Clocks: 4

Encoding:

Note: Please refer to the table on the next page.

1      0     0     1     0    0     0     0 d     d     d     d      1     0     0     0
XA User Guide 6-88 4/17/98



lated

to

es,
 12F

es,
hex.
The following table shows the possible actions that may occur during the DA instruction, re
to the input conditions.

: The largest digit that could result from adding two BCD digits that caused the AC flag
be set is 3. This is with an ADDC instruction where 9 + 9 + 1 (the carry flag) = 13 hex.

** : The largest digit that could result in the upper nibble of a value by adding two BCD byt
with no carry from the bottom nibble (the AC flag = 0) is 2. For instance, 98 hex + 97 hex =
hex.

*** : The largest digit that could result in the upper nibble of a value by adding two BCD byt
with a carry from the bottom nibble (the AC flag = 1) is 3. For instance, 99 hex + 99 hex = 132

Table 6.6

Low nibble
(bits 3-0)

AC
Carry to
high
nibble

High
nibble
(bits 7-4)

Initial
C flag

Number
added to
value

Resulting
C flag

0 - 9 0 0 0 - 9 0 00 0

A - F 0 1 0 - 8 0 06 0

0 - 3 * 1 0 0 - 9 0 06 0

0 - 9 0 0 A - F 0 60 1

A - F 0 1 9 - F 0 66 1

0 - 3 * 1 0 A - F 0 66 1

0 - 9 0 0 0 - 2 ** 1 60 1

A - F 0 1 0 - 2 ** 1 66 1

0 - 3 * 1 0 0 - 3 *** 1 66 1
4/17/98 6-89 Addressing Modes and Data Types



of a
d for
d of
he

ficant
half

4, or

red:

n the
DIV.w 16x8     Signed Division
DIV.d 32x16  Signed Division
DIVU.b 8x8  Unsigned Division
DIVU.w 16x8     Unsigned Division
DIVU.d 32x16   Unsigned Division

Description: The byte or word specified by the source operand is divided into the variable
specified by the destination operand.

For DIVU.b, the destination operand can be any byte register that is the least significant byte
word register. For DIV.w and DIVU.w, the destination operand must be a word register, an
DIV.d and DIVU.d, the destination operand must identify a word register that is the low-wor
a double-word register (see note below). The result is stored in the destination register as t
quotient (8 bits for DIVU.b, DIVU.w, DIV.w, and DIVU.w, and 16-bits for DIV.d and DIVU.d)
in the least significant half and the remainder (same size as the quotient), in the most signi
half (except for DIVU.b which stores the quotient in the destination as identified by the lower
of a word register and the remainder at upper half of the same word register).

Note: a double word register is double-word aligned in the register file (R1:R0, R3:R2, R5:R
R7:R6).

Size: Byte-Byte, Word-Byte, Double word-Word

Flags Updated: C, V, N, Z

The carry flag is always cleared. The V flag is set in the following cases, otherwise it is clea

- DIVU.b: V is set if a divide by 0 occurred. A divide by 0 also causes a hardware trap
to be generated.
- DIV.w, DIVU.w: V is set if the result of the divide is larger than 8 bits (the result does
not fit in the destination).
- DIV.d, DIVU.d: V is set if the result of the divide is larger than 16 bits (the result does
not fit in the destination).

The Z, and N flags are set based on the quotient (integer) portion of the result only and not o
remainder.

Examples:

a) DIVU.b R4L, R4H - will store the result of the division of R4L by R4H in
R4L and R4H (quotient in register R4L, remainder in register R4H).

b) DIV.w R0, R2L - will store the result of word register R0 divided by byte register
R2L in word register R0 (quotient in register R0L, remainder in register R0H).

c) DIV.d R4,R2 - will store the result of double-word register R5:R4 divided by word
register R2 in double-word register R5:R4 (quotient in R4, remainder in R5)
XA User Guide 6-90 4/17/98



y the
Note: For all divides except DIVU.b, the destination register size is the same as indicated b
instruction (by the “.b”, “.w”, or “.d”) and the source register is half that size.

DIV.w        Rd, Rs
(signed 16 bits / 8 bits --> 8 bit quotient, 8 bit remainder)

Bytes: 2
Clocks: 14
Operation: (RdL) <-- 8-bit integer portion of (Rd) / (Rs) (signed divide)

(RdH) <-- 8-bit remainder of (Rd) / (Rs)
Encoding:

DIV.w    Rd, #data8
(signed 16 bits / 8 bits --> 8 bit quotient, 8 bit remainder)

Bytes: 3
Clocks: 14
Operation: (RdL) <-- 8-bit integer portion of (Rd) / #data8 (signed divide)

(RdH) <-- 8-bit remainder of (Rd) / #data8
Encoding:

byte 3: #data8

DIV.d    Rd, Rs
(signed 32 bits / 16 bits --> 16 bit quotient, 16 bit remainder)

Bytes: 2
Clocks: 24
Operation: (Rd) <-- 16-bit integer portion of (Rd) / (Rs) (signed divide)

(Rd+1)<-- 16-bit remainder of (Rd) / (Rs)
Encoding:

1      1     1     0     0     1     1     1 d     d     d     d      s     s     s     s

1      1     1     0     1     0     0     0 d     d     d     d      1     0     1     1

1      1     1     0     1     1     1     1 d     d     d     0      s     s     s     s
4/17/98 6-91 Addressing Modes and Data Types



DIV.d    Rd, #data16
(signed 32 bits / 16 bits --> 16 bit quotient, 16 bit remainder)

Bytes: 4
Clocks: 24
Operation: (Rd) <-- 16-bit integer portion of (Rd) / #data16 (signed divide)

(Rd+1)<-- 16-bit remainder of (Rd) / #data16
Encoding:

byte 3: upper 8 bits of #data16
byte 4: lower 8 bits of #data16

DIVU.b    Rd, Rs
(unsigned 8 bits / 8 bits --> 8 bit quotient, 8 bit remainder)

Bytes: 2
Clocks: 12
Operation: (RdL) <-- 8-bit integer portion of (RdL) / (Rs) (unsigned divide)

(RdH) <-- 8-bit remainder of (RdL) / (Rs)
Encoding:

DIVU.b    Rd, #data8
(unsigned 8 bits / 8 bits --> 8 bit quotient, 8 bit remainder)

Bytes: 3
Clocks: 12
Operation: (RdL) <-- 8-bit integer portion of (RdL) / #data8 (unsigned divide)

(RdH) <-- 8-bit remainder of (RdL) / #data8
Encoding:

byte 3: #data8

1      1     1     0     1     0     0     1 d     d     d     0      1     0     0     1

1      1     1     0     0     0     0     1 d     d     d     d      s     s     s     s

1      1     1     0     1     0     0     0 d     d     d     d      0     0     0     1
XA User Guide 6-92 4/17/98



DIVU.w    Rd, Rs
(unsigned 16 bits / 8 bits --> 8 bit quotient, 8 bit remainder)

Bytes: 2
Clocks: 12
Operation: (RdL) <-- 8-bit integer portion of (Rd) / (Rs) (unsigned divide)

(RdH) <-- 8-bit remainder of (Rd) / (Rs)
Encoding:

DIVU.w    Rd, #data8
(unsigned 16 bits / 8 bits --> 8 bit quotient, 8 bit remainder)

Bytes: 3
Clocks: 12

Operation: (RdL) <-- 8-bit integer portion of (Rd) / #data8 (unsigned divide)
(RdH) <-- 8-bit remainder of (Rd) / #data8

Encoding:

byte 3: #data8

DIVU.d    Rd, Rs
(unsigned 32 bits / 16 bits --> 16 bit quotient, 16 bit remainder)

Bytes: 2
Clocks: 22
Operation: (Rd) <-- 16-bit integer portion of (Rd) / (Rs) (unsigned divide)

(Rd+1)<-- 16-bit remainder of (Rd) / (Rs)
Encoding:

1      1     1     0     0     1     0     1 d     d     d     d      s     s     s     s

1      1     1     0     1     0     0     0 d     d     d     d      0     0     1     1

1      1     1     0     1     1     0     1 d     d     d     0      s     s     s     s
4/17/98 6-93 Addressing Modes and Data Types



DIVU.d    Rd, #data16
(unsigned 32 bits / 16 bits --> 16 bit quotient, 16 bit remainder)

Bytes: 4
Clocks: 22
Operation: (Rd) <-- 16-bit integer portion of (Rd) / #data16 (unsigned divide)

(Rd+1)<-- 16-bit remainder of (Rd) / #data16
Encoding:

byte 3: upper 8 bits of #data16
byte 4: lower 8 bits of #data16

1      1     1     0     1     0     0     1 d     d     d     0      0     0     0     1
XA User Guide 6-94 4/17/98



unter
er by
se,
ated
 the

word
DJNZ  Decrement and jump if not zero

Syntax: DJNZ    dest, rel8

Operation: (PC) <-- (PC) + 3
(dest) <-- (dest) - 1
if (Z) = 0 then
(PC) <-- (PC + rel8*2); (PC.0) <-- 0

Description: Controls a loop of instructions. The parameters are: a condition code (Z), a co
(register or memory), and a displacement value. The instruction first decrements the count
one, tests the condition if the result of decrement is 0 (for termination of the loop); if it is fal
execution continues with the next instruction. If true, execution branches to the location indic
by the current value of the PC plus the sign extended displacement. The value in the PC is
address of the instruction following DJNZ.

The branch range is +254 bytes to -256 bytes, with the limitation that the target address is 
aligned in code memory.The destination operand could be byte or word.

Note: Refer to section 6.3 for details of jump range

Size: Byte, Word

Flags Updated: N, Z

DJNZ    Rd, rel8

Bytes: 3
Clocks: 8t/5nt
Encoding:

byte 3: rel8

DJNZ    direct, rel8

Bytes: 4
Clocks: 9t/5nt
Encoding:

byte 3: lower 8 bits of direct
byte 4: rel8

1      0     0     0   SZ   1     1     1 d     d     d     d      1     0     0     0

1      1     1     0   SZ   0     1     0 0     0     0     0     1   direct: 3 bits
4/17/98 6-95 Addressing Modes and Data Types



 the
ess (the
get
FCALL Far Call Subroutine Absolute

Syntax: FCALL    addr24

Operation: (PC) <-- (PC) + 4
(SP) <-- (SP) - 4
((SP)) <-- (PC)
(PC.23-0) <-- addr24
(PC.0) <-- 0

Description: Causes an unconditional branch to the absolute memory location specified by
second operand, anywhere in the 16 megabytes XA address space. The 24-bit return addr
address following the CALL instruction) of the calling routine is saved on the stack. The tar
address must be word aligned as CALL or branch will force PC.bit0 to 0.

Note: if the XA is in page 0 mode, only a 16-bit address will be pushed to the stack.

Size:None

Flags Updated: none

Bytes: 4
Clocks: 12/8(PZ)

Encoding:

byte 3: lower 8 bits of address (bits 7-0)
byte 4: upper 8 bits of address (bits 23-16)

1     1     0     0     0     1     0     0 address: middle 8 bits (bits 15-8)
XA User Guide 6-96 4/17/98



 the

ss.
FJMP Far Jump Absolute

Syntax: FJMP    addr24

Operation: (PC.23-0) <-- addr24
(PC.0) <-- 0

Description: Causes an unconditional branch to the absolute memory location specified by
second operand, anywhere in the 16 megabytes XA address space.
Note: The target address must be word aligned as JMP always forces PC to an even addre

Note: if the XA is in page 0 mode, only 16-bits of the address will be used.

Size: None

Flags Updated: none

Bytes: 4
Clocks: 6

Encoding:

byte 3: lower 8 bits of address (bits 7-0)
byte 4: upper 8 bits of address (bits 23-16)

1     1     0     1     0     1     0     0 address: middle 8 bits (bits 15-8)
4/17/98 6-97 Addressing Modes and Data Types



lus
.The
igned
JB Relative Jump if bit set

Syntax: JB    bit, rel8

Operation: (PC) <-- (PC) + 4
if (bit) = 1 then
(PC) <-- (PC + rel8*2);
(PC.0) <-- 0

Description: If the specified bit is a one, program execution jumps at the location of the PC, p
the specified displacement. If the specified bit is clear, the instruction following JB is executed
branch range is +254 bytes to -256 bytes, with the limitation that the target address is word al
in code memory.

Note: Refer to section 6.3 for details of jump range

Size: Bit

Flags Updated:none

Bytes: 4
Clocks: 10t/6nt

Encoding:

byte 3: lower 8 bits of bit address
byte 4: rel8

1      0     0     1     0    1     1     1  1     0     0     0     0     0     bit: 2
XA User Guide 6-98 4/17/98



ified
tions.
254
ory.
JBC Jump if bit is set then clear bit

Syntax: JBC    bit, rel8

Operation: (PC) <-- (PC) + 4
if (bit) = 1 then
(PC) <-- (PC + rel8*2);
(PC.0) <-- 0; (bit) <-- 0

Description: If the bit specified is set, branch to the address pointed to by the PC plus the spec
displacement. The specified bit is then cleared allowing implementation of semaphore opera
If the specified bit is clear, the instruction following JBC is executed. The branch range is +
bytes to -256 bytes, with the limitation that the target address is word aligned in code mem

Note: Refer to section 6.3 for details of jump range

Size: Bit

Flags Updated:none

Bytes: 4
Clocks: 11t/7nt

Encoding:

byte 3: lower 8 bits of bit address
byte 4: rel8

1      0     0     1     0    1     1     1 1     1     0     0     0     0     bit: 2
4/17/98 6-99 Addressing Modes and Data Types



the
JMP Relative Jump

Syntax: JMP rel16

Operation: (PC) <-- (PC) + 3
(PC) <-- (PC + rel16*2)
(PC.0) <-- 0

Description: Jumps unconditionally. The branch range is +65,535 bytes to -65,536 bytes, with
limitation that the target address is word aligned in code memory.

Note: Refer to section 6.3 for details of jump range

Size: None

Flags Updated: none

Bytes: 3
Clocks: 6

Encoding:

byte 3: lower 8 bits of rel16

1     1     0     1     0     1     0     1             rel16: upper 8 bits
XA User Guide 6-100 4/17/98



 PC
JMP Jump Indirect through Register

Syntax: JMP    [Rs]

Operation: (PC) <-- (PC) + 2
(PC.15-1) <-- (Rs.15-1)      (note that PC.23-16 is not affected)
(PC.0) <-- 0

Description: Causes an unconditional branch to the address contained in the operand word
register, anywhere within the 64K code page following the JMP instruction.The value of the
used in the target address calculation is the address of the instruction following the JMP
instruction.
The target address must be word aligned as JMP will force PC.bit0 to 0.

Size: none

Flags Updated: none

Bytes: 2
Clocks: 7

Encoding:

1     1     0     1     0     1     1     0  0     1     1     1     0     s     s     s
4/17/98 6-101 Addressing Modes and Data Types



51
JMP Jump indirect through register

Syntax: JMP    [A+DPTR]

Operation: (PC) <-- (PC) + 2
(PC15-1) <-- (A) + (DPTR)
(PC.0) <-- 0

Description: Causes an unconditional branch to the address formed by the sum of the 80C
compatibility registers A and DPTR, anywhere within the 64K code page following the JMP
instruction. This instruction is included for 80C51 compatibility. See Chapter 9 for details of
80C51 compatibility features.

Note: The target address must be word aligned as JMP will force PC.bit0 to 0.

Flags Updated:none

Bytes: 2
Clocks: 5

Note: A and DPTR are pre-defined registers used for 80C51 code translation.

Encoding:

1      1     0     1     0     1     1     0  0     1     0     0     0     1     1     0
XA User Guide 6-102 4/17/98



dress
nted.

ble of
her JMP

uble-

ts. The
of the
ither
ugh a
JMP Jump double indirect

Syntax: JMP    [[Rs+]]

Operation: (PC) <-- (PC) + 2
(PC.15-0) <-- code memory ((WS:Rs))
(PC.0) <-- 0
(Rs) <-- (Rs) + 2

Description: Causes an unconditional branch to the address contained in memory at the ad
pointed to by the register specified in the instruction. The specified register is post-increme

This 2-byte instruction may be used to compress code size by using it to index through a ta
procedure addresses that are accessed in sequence. Each procedure would end with anot
[[R+]] that would immediately go to the next procedure whose address is in the table.

The procedures must be located in the same 64K address page of the executed “Jump Do
indirect” instruction (although the table could be in any page). This instruction can result in
substantial code compression and hence cost reduction through smaller memory requiremen
register pointer (index to the table) being automatically post-incremented after the execution
instruction. The 24-bit address is identified by combining the low order 16-bit of the PC and e
of high 8-bits of PC or the contents of a byte-size CS register as chosen by the program thro
segment select Special Function Register (SFR).

Note: The subroutine addresses must be word aligned as JMP will force PC.bit0 to 0.

Flags Updated: none

Bytes: 2
Clocks: 8

Encoding:

1     1     0     1     0     1     1     0 0     1     1     0     0     s     s     s
4/17/98 6-103 Addressing Modes and Data Types



lus
d.
word
JNB Jump if bit not set

Syntax: JNB    bit, rel8

Operation: (PC) <-- (PC) + 4
if (bit) = 0 then

(PC.15-0) <-- (PC + rel8*2); (PC.0) <-- 0

Description: If the specified bit is a zero, program execution jumps at the location of the PC, p
the specified displacement. If the specified bit is set, the instruction following JB is execute
The branch range is +254 bytes to -256 bytes, with the limitation that the target address is 
aligned in code memory.

Note: Refer to section 6.3 for details of jump range

Size: Bit

Flags Updated:none

Bytes: 4
Clocks: 10t/6nt

Encoding:

byte 3: lower 8 bits of bit address
byte 4: rel8

1      0     0     1     0    1     1     1 1     0     1    0      0     0     bit: 2
XA User Guide 6-104 4/17/98



The
igned
JNZ Jump if the A register is not zero

Syntax: JNZ    rel8

Operation: (PC) <-- (PC) + 2
if (A) not equal to 0, then
(PC.15-0) <-- (PC + rel8*2); (PC.0) <-- 0

Description: A relative branch is taken if the contents of the 80C51 Accumulator are not zero.
branch range is +254 bytes to -256 bytes, with the limitation that the target address is word al
in code memory.

The contents of the accumulator remain unaffected. This instruction is included for 80C51
compatibility. See Chapter 9 for details of 80C51 compatibility features.

Note: Refer to section 6.3 for details of jump range

Size: Bit

Flags Updated: none

Bytes: 2
Clocks: 6t/3nt

Encoding:

 1     1     1     0     1     1     1     0 rel8
4/17/98 6-105 Addressing Modes and Data Types



he
igned
JZ Jump if the A register is zero

Syntax: JZ    rel8

Operation: (PC) <-- (PC) + 2
If (A) = 0 then
(PC.15-0) <-- (PC + rel8*2);
(PC.0) <-- 0

Description: A relative branch is taken if the contents of the 80C51 Accumulator are zero. T
branch range is +254 bytes to -256 bytes, with the limitation that the target address is word al
in code memory.

The contents of the accumulator remain unaffected. This instruction is included for 80C51
compatibility. See Chapter 9 for details of 80C51 compatibility features.

Note: Refer to section 6.3 for details of jump range

Size: Bit

Flags Updated: none

Bytes: 2
Clocks: 6t/3nt

Encoding:

1     1     1     0     1     1     0     0  rel8
XA User Guide 6-106 4/17/98



esult
erands
. The

ister
 other

irect
LEA Load effective address

Syntax: LEA    Rd, Rs+offset8/16

Operation: (Rd) <-- (Rs)+offset8/16

Description: The word specified by the source operand is added to the offset value and the r
is stored into the register specified by the destination operand. The source and destination op
are both registers. The offset value is an immediate data field of either 8 or 16 bits in length
source data is not affected by the operation.

This instruction mimics the address calculation done during other instructions when the reg
indirect with offset addressing mode is used, allowing the resulting address to be saved for
purposes.

Note: The result of this operation is always a word since it duplicates the calculation of the ind
with offset addressing mode.

Size: Word-Word

Flags Updated: none

LEA    Rd, Rs+offset8

Bytes: 3
Clocks: 3
Encoding:

byte 3: offset8

LEA    Rd, Rs+offset16

Bytes: 4
Clocks: 3
Operation: (Rd) <-- (Rs)+offset16
Encoding:

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16

0      1     0     0     0    0     0     0 0     d     d     d     0      s     s     s

0      1     0     0     1    0     0     0 0     d     d     d     0      s     s     s
4/17/98 6-107 Addressing Modes and Data Types



arry)
hich

is not

or

or
LSR Logical Shift Right

Syntax: LSR dest, count

Operation:

Description: If the count operand is greater than the variable specified by the destination
operand is logically shifted right by the number of bits specified by the count operand. The
MSBs of the result are filled with zeroes.The low-order bits are shifted out through the C (c
bit. If the count operand is 0, no shift is performed.The count operand is a positive value w
may be from 0 to 31. The data size may be 8, 16, or 32 bits. In the case of 32-bit shifts, the
destination operand must be the least significant half of a double word register. The count 
affected by the operation.

Note:
 - For Logical Shift Left, use ASL ignoring the N flag.
 - If shift count (count in Rs) exceeds data size, the count value is truncated to 5 bits, else f
immediate shift count, shifting is continued until count is 0.
 -  a double word register is double-word aligned in the register file (R1:R0, R3:R2, R5:R4, 
R7:R6).

Size: Byte, Word, Double Word

Flags Updated: C, N, Z (N = 0 after an LSR unless count = 0, then it is unchanged)

LSR    Rd, Rs (Rs = Byte-register)

Operation:

Bytes: 2
Clocks: For 8/16 bit shifts --> 4+1 for each 2 bits of shift

For 32 bit shifts --> 6+1 for each 2 bits of shift

Encoding:

(C) <- (dest.0)
(dest.bit n) <- (dest.bit n+1)

count = count-1

Do While (count not equal to 0)

End While

(dest.msb) <- 0

CMSB0 LSB

(Rd)

d     d     d     d      s     s     s     s1 1 0 0 SZ1 SZ0  0 0
XA User Guide 6-108 4/17/98



on;
LSR    Rd, #data4
Rd, #data5

Operation:

Bytes: 2
Clocks: For 8/16 bit shifts --> 4+1 for each 2 bits of shift

For 32 bit shifts --> 6+1 for each 2 bits of shift

Encoding: (for byte and word data sizes)

(for double word data size)

Note: SZ1/SZ0 = 00: byte operation; SZ1/SZ0 = 01: reserved; SZ1/SZ0 = 10: word operati
SZ1/SZ0 = 11: double word operation.

CMSB0 LSB

(Rd)

d     d     d     d            #data41 1 0 1 SZ1 SZ0  0 0

1      1     0     1     1    1     0     0 d     d     d              #data5
4/17/98 6-109 Addressing Modes and Data Types



ified

ecified
iate
te data
le
MOV  Move Data

Syntax: MOV    dest, src

Operation: dest <- src

Description: The byte or word specified by the source operand is copied into the variable spec
by the destination operand. The source data is not affected by the operation.

Source and destination operands may be a register in the register file, an indirect address sp
by a pointer register, an indirect address specified by a pointer register added to an immed
offset of 8 or 16 bits, or a direct address. Source operands may also be specified as immedia
contained within the instruction. Auto-increment of the indirect pointers is available for simp
indirect (not offset) addressing.

Size: Byte-Byte, Word-Word

Flags Updated: N, Z

MOV    Rd, Rs

Bytes: 2
Clocks: 3
Operation: (Rd) <-- (Rs)
Encoding:

MOV    Rd, [Rs]

Bytes: 2
Clocks: 3
Operation: (Rd) <-- ((WS:Rs))
Encoding:

1      0     0     0   SZ    0     0     1 d     d     d     d      s     s     s     s

1      0     0     0   SZ    0     1     0 d     d     d     d     0     s     s     s
XA User Guide 6-110 4/17/98



MOV    [Rd], Rs

Bytes: 2
Clocks: 3

Operation: ((WS:Rd)) <-- (Rs)
Encoding:

MOV    Rd, [Rs+offset8]

Bytes: 3
Clocks: 5
Operation: (Rd) <-- ((WS:Rs)+offset8)
Encoding:

byte 3: offset8

MOV    [Rd+offset8], Rs

Bytes: 3
Clocks: 5
Operation: ((WS:Rd)+offset8) <-- (Rs)
Encoding:

byte 3: offset8

MOV    Rd, [Rs+offset16]

Bytes: 4
Clocks: 5
Operation: (Rd) <-- ((WS:Rs)+offset16)
Encoding:

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16

1      0     0     0   SZ    0     1     0  s     s     s     s     1     d     d     d

1      0     0     0   SZ    1     0     0 d     d     d     d     0     s     s     s

1      0     0     0   SZ    1     0     0 s     s     s     s     1     d     d     d

1      0     0     0   SZ    1     0     1 d     d     d     d     0     s     s     s
4/17/98 6-111 Addressing Modes and Data Types



MOV    [Rd+offset16], Rs

Bytes: 4
Clocks: 5
Operation: ((WS:Rd)+offset16) <-- (Rs)

Encoding:

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16

MOV    Rd, [Rs+]

Bytes: 2
Clocks: 4
Operation: (Rd) <-- ((WS:Rs))

(Rs) <-- (Rs) + 1 (byte operation) or 2 (word operation)

Encoding:

MOV    [Rd+], Rs

Bytes: 2
Clocks: 4

Operation: ((WS:Rd)) <-- (Rs)
(Rd) <-- (Rd) + 1 (byte operation) or 2 (word operation)

Encoding:

MOV    [Rd+], [Rs+]

Bytes: 2
Clocks: 6
Operation: ((WS:Rd)) <-- ((WS:Rs))

(Rs) <-- (Rs) + 1 (byte operation) or 2 (word operation)
(Rd) <-- (Rd) + 1 (byte operation) or 2 (word operation)

Encoding:

1      0     0     0   SZ    1     0     1  s     s     s     s     1     d     d     d

1      0     0     0   SZ    0     1     1 d     d     d     d     0     s     s     s

1      0     0     0   SZ    0     1     1 s     s     s     s     1     d     d     d

1      0     0     1   SZ    0     0     0  0     d     d     d    0     s     s     s
XA User Guide 6-112 4/17/98



MOV    direct, Rs

Bytes: 3
Clocks: 4
Operation: (direct) <-- (Rs)
Encoding:

byte 3: lower 8 bits of direct

MOV    Rd, direct

Bytes: 3
Clocks: 4
Operation: (Rd) <-- (direct)
Encoding:

byte 3: lower 8 bits of direct

MOV    direct, [Rs]

Bytes: 3
Clocks: 4
Operation: (direct) <-- ((WS:Rs))
Encoding:

byte 3: lower 8 bits of direct

MOV    [Rd], direct

Bytes: 3
Clocks: 4
Operation: ((WS:Rd)) <-- (direct)
Encoding:

byte 3: lower 8 bits of direct

1      0     0     0   SZ    1     1     0  s     s     s     s     1    direct:3 bits

1      0     0     0   SZ    1     1     0  d     d     d     d     0   direct:3 bits

1      0     1     0   SZ    0     0     0  1     s     s     s     0    direct:3 bits

1      0     1     0   SZ    0     0     0  0    d      d     d     0   direct:3 bits
4/17/98 6-113 Addressing Modes and Data Types



MOV    Rd, #data8

Bytes: 3
Clocks: 3
Operation: (Rd) <-- #data8
Encoding:

byte 3: #data8

MOV    Rd, #data16

Bytes: 4
Clocks: 3
Operation: (Rd) <-- #data16
Encoding:

byte 3: upper 8 bits of #data16
byte 4: lower 8 bits of #data16

MOV    [Rd], #data8

Bytes: 3
Clocks: 3
Operation: ((WS:Rd)) <-- #data8
Encoding:

byte 3: #data8

MOV    [Rd], #data16

Bytes: 4
Clocks: 3
Operation: ((WS:Rd)) <-- #data16
Encoding:

byte 3: upper 8 bits of #data16
byte 4: lower 8 bits of #data16

1      0     0     1     0    0     0     1 d     d     d     d      1     0     0     0

1      0     0     1     1    0     0     1 d     d     d     d      1     0     0     0

1      0     0     1     0    0     1     0 0     d     d     d      1     0     0     0

1      0     0     1     1    0     1     0 0     d     d     d      1     0     0     0
XA User Guide 6-114 4/17/98



MOV    [Rd+], #data8

Bytes: 3
Clocks: 4
Operation: ((WS:Rd)) <-- #data8

(Rd) <-- (Rd) + 1
Encoding:

byte 3: #data8

MOV    [Rd+], #data16

Bytes: 4
Clocks: 4
Operation: ((WS:Rd)) <-- #data16

(Rd) <-- (Rd) + 2
Encoding:

byte 3: upper 8 bits of #data16
byte 4: lower 8 bits of #data16

MOV    [Rd+offset8], #data8

Bytes: 4
Clocks: 5
Operation: ((WS:Rd)+offset8) <-- #data8
Encoding:

byte 3: offset8
byte 4: #data8

MOV    [Rd+offset8], #data16

Bytes: 5
Clocks: 5
Operation: ((WS:Rd)+offset8) <-- #data16
Encoding:

byte 3: offset8
byte 4: upper 8 bits of #data16
byte 5: lower 8 bits of #data16

1      0     0     1     0    0     1     1 0     d     d     d      1     0     0     0

1      0     0     1     1    0     1     1 0     d     d     d      1     0     0     0

1      0     0     1     0     1     0     0  0     d     d     d      1    0     0     0

1      0     0     1     1     1     0     0 0     d     d     d      1    0     0     0
4/17/98 6-115 Addressing Modes and Data Types



MOV    [Rd+offset16], #data8

Bytes: 5
Clocks: 5
Operation: ((WS:Rd)+offset16) <-- #data8
Encoding:

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16
byte 5: #data8

MOV    [Rd+offset16], #data16

Bytes: 6
Clocks: 5
Operation: ((WS:Rd)+offset16) <-- #data16
Encoding:

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16
byte 5: upper 8 bits of #data16
byte 6: lower 8 bits of #data16

MOV    direct, #data8

Bytes: 4
Clocks: 3
Operation: (direct) <-- #data8
Encoding:

byte 3: lower 8 bits of direct
byte 4: #data8

MOV    direct, #data16

Bytes: 5
Clocks: 3
Operation: (direct) <-- #data16
Encoding:

byte 3: lower 8 bits of direct
byte 4: upper 8 bits of #data16
byte 5: lower 8 bits of #data16

1      0     0     1     0     1     0     1 0     d     d     d      1    0     0     0

1      0     0     1     1     1     0     1  0     d     d     d      1    0     0     0

1      0     0     1     0     1     1     0 0   direct: 3 bits   1    0     0     0

1      0     0     1     1     1     1     0 0   direct: 3 bits    1    0     0     0
XA User Guide 6-116 4/17/98



MOV    direct, direct

Bytes: 4
Clocks: 4
Operation: (direct) <-- (direct)
Encoding:

byte 3: lower 8 bits of direct (dest)
byte 4: lower 8 bits of direct (src)

MOV    Rd, USP (move from user stack pointer)

Bytes: 2
Clocks: 3
Operation: (Rd) <-- (USP)
Encoding:

MOV    USP, Rs (move to user stack pointer)

Bytes: 2
Clocks: 3
Operation: (USP) <-- (Rs)
Encoding:

1      0     0     1   SZ    1     1     1 0   d dir: 3 bits     0    s dir: 3 bits

1     0     0     1     0     0     0     0 d     d     d     d     1     1     1     1

1     0     0     1     1     0     0     0  s     s     s     s     1     1     1     1
4/17/98 6-117 Addressing Modes and Data Types



MOV Move Bit to Carry

Syntax: MOV   C, bit

Operation: (C) <-- (bit)

Description: Copies the specified bit to the carry flag.

Size: Bit

Flags Updated: none

Note: C is written as the destination of the move, not as a status flag

Bytes: 3
Clocks: 4

Encoding:

byte 3: lower 8 bits of bit address

0      0     0     0     1    0     0     0 0     0     1     0     0     0     bit: 2
XA User Guide 6-118 4/17/98



MOV Move Carry to Bit

Syntax: MOV   bit, C

Operation: (bit) <-- (C)

Description: Copies the carry flag to the specified bit.

Size: Bit

Flags Updated:none

Bytes: 3
Clocks: 4

Encoding:

byte 3: lower 8 bits of bit address

0      0     0     0     1    0     0     0 0     0     1     1     0     0      bit: 2
4/17/98 6-119 Addressing Modes and Data Types



nd. In
MOVC Move Code

Syntax: MOVC    Rd, [Rs+]

Operation: (Rd) <-- code memory ((WS:Rs))
(Rs) <-- (Rs) + 1 (byte operation) or 2 (word operation)

Description: Contents of code memory are copied to an internal register. The byte or word
specified by the source operand is copied to the variable specified by the destination opera
the case of MOVC, the pointer segment selection gives the choices of PC23-16 or CS segment
(currentworking segment referred here as WS), rather than DS or ES as is used for all other
instructions.

Size: Byte-Byte, Word-Word

Flags Updated: N, Z

Bytes: 2
Clocks: 4

Encoding:

1      0     0     0   SZ    0     0     0 d     d     d     d     0     s     s     s
XA User Guide 6-120 4/17/98



PTR
C51
 of
MOVC Move Code to A (DPTR)

Syntax: MOVC   A, [A+DPTR]

Operation: PC <- PC+2
(A) <-- code memory (PC.23-16:(A) + (DPTR))

Description: The byte located at the code memory address formed by the sum of A and the D
is copied to the A register. The A and DPTR registers are pre-defined registers used for 80
compatibility. This instruction is included for 80C51 compatibility. See Chapter 9 for details
80C51 compatibility features.

Size: Byte-Byte

Flags Updated: N, Z

Bytes: 2
Clocks: 6

Encoding:

.

1      0     0     1    0     0     0     0 0     1     0     0     1     1      1     0
4/17/98 6-121 Addressing Modes and Data Types



rrent
ed for
MOVC Move Code to A (PC)

Syntax: MOVC A, [A+PC]

Operation: PC <- PC+2
(A) <-- code memory [PC.23-16: (A +PC.15-0)]

Note: Only 16-bits of A+PC are used

Description: The byte located at the code memory address formed by the sum of A and the cu
Program Counter value is copied to the A register. The A register is a pre-defined register us
80C51 compatibility. This instruction is included for 80C51 compatibility. See Chapter 9 for
details of 80C51 compatibility features.

Size: Byte-Byte

Flags Updated: N, Z

Bytes: 2
Clocks: 6

Encoding:

1      0     0     1    0     0     0     0 0     1     0     0     1     1      0     0
XA User Guide 6-122 4/17/98



data
erand,
ed to
 a
MOVS Move Short

Syntax: MOVS   dest, #data

Description: Four bits of signed immediate data are moved to the destination. The immediate
is sign-extended to the proper size, then moved to the variable specified by the destination op
which may be a byte or a word. The immediate data range is +7 to -8. This instruction is us
save time and code space for the many instances where a small data constant is moved to
destination.

Size: Byte-Byte, Word-Word

Flags Updated:N, Z

MOVS    Rd, #data4

Bytes: 2
Clocks: 3
Operation: (Rd) <-- sign-extended #data4
Encoding:

MOVS    [Rd], #data4

Bytes: 2
Clocks: 3
Operation: ((WS:Rd)) <-- sign-extended #data4
Encoding:

MOVS    [Rd+], #data4

Bytes: 2
Clocks: 4
Operation: ((WS:Rd)) <-- sign-extended #data4

(Rd) <-- (Rd) + 1 (byte operation) or 2 (word operation)
Encoding:

1      0     1     1   SZ    0     0     1 d     d     d     d           #data4

1      0     1     1   SZ    0     1     0 0     d     d     d           #data4

1      0     1     1   SZ    0     1     1  0     d     d     d           #data4
4/17/98 6-123 Addressing Modes and Data Types



MOVS    [Rd+offset8], #data4

Bytes: 3
Clocks: 5
Operation: ((WS:Rd)+offset8) <-- sign-extended #data4
Encoding:

byte 3: offset8

MOVS    [Rd+offset16], #data4

Bytes: 4
Clocks: 5
Operation: ((WS:Rd)+offset16) <-- sign-extended #data4
Encoding:

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16

MOVS    direct, #data4

Bytes: 3
Clocks: 3
Operation: (direct) <-- sign-extended #data4

Encoding:

byte 3: lower 8 bits of direct

1      0     1     1   SZ    1     0     0 0     d     d     d           #data4

1      0     1     1   SZ    1     0     1  0     d     d     d           #data4

1      0     1     1   SZ    1     1     0 0   direct: 3 bits        #data4
XA User Guide 6-124 4/17/98



the
ction
ndard
 ends,

 the
s. The
ds on
 of
8 bits
dress
MOVX Move External Data

Syntax: MOVX   dest, src

Description: Move external data to or from an internal register. The byte or word specified by
source operand is copied into the variable specified by the destination operand. This instru
allows access to data external to the microcontroller in the address range of 0 to 64K. The sta
indirect move may access external data only above the boundary where internal data RAM
whereas MOVX always forces an external access. MOVX only operates on the first 64K of
external data memory. This instruction is included to allow compatibility with 80C51 code.

Note that in the 80C51 MOVX instruction using @Ri as a pointer (where i could be 0 or 1),
pointer was eight bits in length and the upper address lines were not driven on the external bu
XA always drives all of the enabled external bus address lines. The use of the pointer depen
whether compatibility mode is in use. If CM = 0 (compatibility mode off, the default), 16 bits
R0 or R1 are used as the address within data segment 0. If CM = 1 (compatibility mode on),
of R0L or R0H are used as the bottom eight bits of the address, while the remainder of the ad
bits, including those corresponding to the data segment are 0.

Size: Byte-Byte, Word-Word

Flags Updated: N, Z

MOVX    Rd, [Rs]

Bytes: 2
Clocks: 6
Operation: (Rd) <-- external data memory ((Rs))

Encoding:

MOVX    [Rd], Rs

Bytes: 2
Clocks: 6
Operation: external data memory ((Rd)) <-- (Rs)
Encoding:

1      0     1     0   SZ    1     1     1 d     d     d     d     0     s     s     s

1      0     1     0   SZ    1     1     1 s     s      s     s     1     d     d     d
4/17/98 6-125 Addressing Modes and Data Types



ltiply

4,

l to

e

R1).

S

MUL.w 16x16 Signed Multiply
MULU.b  8x8    Unsigned Multiply
MULU.w 16x16 Unsigned Multiply

Description: The byte or word specified by the source operand is multiplied by the variable
specified by the destination operand.

The destination operand must be the first half of a double size register (word for a byte mu
and double word for a word multiply). The result is stored in the double size register.

Note: a double word register is double-word aligned in the register file (R1:R0, R3:R2, R5:R
and R7:R6).

Size: Byte-Byte, Word-Word

Flags Updated: C, V, N, Z

The carry flag is always cleared by a multiply instruction. The V flag is set in the following
cases, otherwise it is cleared:
- MULU.b: V is set if the result of the multiply is greater than FFh (the upper byte is not equa
0).
- MULU.w: V is set if the result of the multiply is greater than FFFFh (the upper word is not
equal to 0).
- MUL.w: V is set if the absolute value of the result of the multiply is greater than 7FFFh (th
upper word is not a sign extension of the lower word).

Examples:
a) MUL.w R0,R5 stores the product of word register 0 and word register 5 in double word
register 0 (least significant word in word register R0, most significant word in word register 

b) MULU.b R4L, R4H will store the MS byte of the product of R4L and R4H in R4H and the L
byte in R4L.
XA User Guide 6-126 4/17/98



MUL.w    Rd, Rs
(signed 16 bits * 16 bits --> 32 bits)

Bytes: 2
Clocks: 12
Operation: (Rd+1)<-- Most significant word of (Rd) * (Rs) (signed multiply)

(Rd) <-- Least significant word of (Rd) * (Rs)
Encoding:

MUL.w    Rd, #data16
(signed 16 bits * 16 bits --> 32 bits)

Bytes: 4
Clocks: 12
Operation: (Rd+1)<-- Most significant word of (Rd) * #data16 (signed multiply)

(Rd) <-- Least significant word of (Rd) * #data16
Encoding:

byte 3: upper 8 bits of #data16
byte 4: lower 8 bits of #data16

MULU.b    Rd, Rs
(unsigned 8 bits * 8 bits --> 16 bits)

Bytes: 2
Clocks: 12
Operation: (RdH) <-- Most significant byte of (RdL) * (Rs) (unsigned multiply)

(RdL) <-- Least significant byte of (RdL) * (Rs)
Encoding:

1      1     1     0     0     1     1     0 d     d     d     d      s     s     s     s

1      1     1     0     1     0     0     1 d     d     d     d      1     0     0     0

1      1     1     0     0     0     0     0 d     d     d     d      s     s     s     s
4/17/98 6-127 Addressing Modes and Data Types



)

MULU.b    Rd, #data8
(unsigned 8 bits * 8 bits --> 16 bits)

Bytes: 3
Clocks: 12
Operation: (RdH) <-- Most significant byte of (RdL) * #data8 (unsigned multiply)

(RdL) <-- Least significant byte of (RdL) * #data8
Encoding:

byte 3: #data8

MULU.w    Rd, Rs
(unsigned 16 bits * 16 bits --> 32 bits)

Bytes: 2
Clocks: 12
Operation: (Rd+1)<-- Most significant word of (Rd) * (Rs) (unsigned multiply)

(Rd) <-- Least significant word of (Rd) * (Rs)
Encoding:

MULU.w    Rd, #data16
(unsigned 16 bits * 16 bits --> 32 bits)

Bytes: 4
Clocks: 12
Operation: (Rd+1)<-- Most significant word of (Rd) * #data16 (unsigned multiply

(Rd) <-- Least significant word of (Rd) * #data16
Encoding:

byte 3: upper 8 bits of #data16
byte 4: lower 8 bits of #data16

1      1     1     0     1     0     0     0 d     d     d     d     0     0     0     0

1      1     1     0     0     1     0     0 d     d     d     d      s     s     s     s

1      1     1     0     1     0     0     1 d     d     d     d      0     0     0     0
XA User Guide 6-128 4/17/98



byte

 hex
NEG Negate

Syntax: NEG   Rd

Operation: Rd <-- (Rd) + 1

Description: The destination register is negated (twos complement). The destination may be a
or a word.

Size: Byte, Word

Flags Updated: V, N, Z

The V flag is set if a twos complement overflow occurred: the original value = result = 8000
for a word operation or 80 hex for a byte operation.

Bytes: 2
Clocks: 3

Encoding:

1      0     0     1   SZ   0     0     0 d     d     d     d      1     0     1     1
4/17/98 6-129 Addressing Modes and Data Types



eing
 are
mount
NOP No Operation

Syntax: NOP

Operation: PC <- PC + 1

Description: Execution resumes at the following instruction. This instruction is defined as b
one byte in length in order to allow it to be used to force word alignment of instructions that
branch targets, or for any other purpose. It may also be used to as a delay for a predictable a
of time.

Size: None

Flags Updated:none

Bytes: 1
Clocks: 3

Encoding:

0     0     0     0      0     0     0     0
XA User Guide 6-130 4/17/98



the
2 bits.

tion
r all

4, or

on;
NORM Normalize

Syntax: NORM    Rd, Rs

Operation:

Description: Logically shifts left the contents of the destination until the MSB is set, storing 
number of shifts performed in the count (source) register. The data size may be 8, 16, or 3

If the destination value already has the MSB set, the count returned will be 0. If the destina
value is 0, the count returned will be 0, the N flag will be cleared, and the Z flag will be set. Fo
other conditions, the N flag will be 1 and the Z flag will be 0.

Note: a double word register is double-word aligned in the register file (R1:R0, R3:R2, R5:R
R7:R6).
The last pair, i.e, R7:R6 is probably not a good idea as R7 is the current stack pointer.

Size: Byte, Word, Double Word

Flags Updated: N, Z

Bytes: 2
Clocks: For 8 or 16 bit shifts -> 4 + 1 for each 2 bits of shift

For 32 bit shifts -> 6 + 1 for each 2 bits of shift

Encoding:

Note: SZ1/SZ0 = 00: byte operation; SZ1/SZ0 = 01: reserved; SZ1/SZ0 = 10: word operati
 SZ1/SZ0 = 11: double word operation.

MSB 0LSB

(Rd)

d     d     d     d      s     s     s     s1 1 0 0 SZ1 SZ0 1 1
4/17/98 6-131 Addressing Modes and Data Types



ord
n

OR Logical OR

Syntax: OR   dest, src

Description: Bitwise logical OR the contents of the source to the destination. The byte or w
specified by the source operand is logically ORed to the variable specified by the destinatio
operand. The source data is not affected by the operation.

Size: Byte-Byte, Word-Word

Flags Updated: N, Z

OR    Rd, Rs

Bytes: 2
Clocks: 3
Operation: (Rd) <-- (Rd) + (Rs)
Encoding:

OR    Rd, [Rs]

Bytes: 2
Clocks: 4
Operation: (Rd) <-- (Rd) + ((WS:Rs))
Encoding:

OR    [Rd], Rs

Bytes: 2
Clocks: 4
Operation: ((WS:Rd)) <-- ((WS:Rd)) + (Rs)
Encoding:

0      1     1     0   SZ    0     0     1 d     d     d     d      s     s     s     s

0      1     1     0   SZ    0     1     0 d     d     d     d     0     s     s     s

0      1     1     0   SZ    0     1     0 s     s     s     s     1     d     d     d
XA User Guide 6-132 4/17/98



OR    Rd, [Rs+offset8]

Bytes: 3
Clocks: 6
Operation: (Rd) <-- (Rd) + ((WS:Rs)+offset8)
Encoding:

byte 3: offset8

OR    [Rd+offset8], Rs

Bytes: 3
Clocks: 6
Operation: ((WS:Rd)+offset8) <-- ((WS:Rd)+offset8) + (Rs)
Encoding:

byte 3: offset8

OR    Rd, [Rs+offset16]

Bytes: 4
Clocks: 6
Operation: (Rd) <-- (Rd) + ((WS:Rs)+offset16)
Encoding:

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16

OR    [Rd+offset16], Rs

Bytes: 4
Clocks: 6
Operation: ((WS:Rd)+offset16) <-- ((WS:Rd)+offset16) + (Rs)
Encoding:

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16

0      1     1     0   SZ    1     0     0 d     d     d     d     0     s     s     s

0      1     1     0   SZ    1     0     0 s     s     s     s     1     d     d     d

0      1     1     0   SZ    1     0     1 d     d     d     d     0     s     s     s

0      1     1     0   SZ    1     0     1  s     s     s     s     1     d     d     d
4/17/98 6-133 Addressing Modes and Data Types



OR    Rd, [Rs+]

Bytes: 2
Clocks: 5
Operation: (Rd) <-- (Rd) + ((WS:Rs))

(Rs) <-- (Rs) + 1 (byte operation) or 2 (word operation)
Encoding:

OR    [Rd+], Rs

Bytes: 2
Clocks: 5
Operation: ((WS:Rd)) <-- ((WS:Rd)) + (Rs)

(Rd) <-- (Rd) + 1 (byte operation) or 2 (word operation)
Encoding:

OR    direct, Rs

Bytes: 3
Clocks: 4
Operation: (direct) <-- (direct) + (Rs)
Encoding:

byte 3: lower 8 bits of direct

OR    Rd, direct

Bytes: 3
Clocks: 4
Operation: (Rd) <-- (Rd) + (direct)
Encoding:

byte 3: lower 8 bits of direct

0      1     1     0   SZ    0     1     1 d     d     d     d     0     s     s     s

0      1     1     0   SZ    0     1     1 s     s     s     s     1     d     d     d

0      1     1     0   SZ    1     1     0 s     s     s     s     1    direct: 3 bits

0      1     1     0   SZ    1     1     0 d     d     d     d     0    direct: 3 bits
XA User Guide 6-134 4/17/98



OR    Rd, #data8

Bytes: 3
Clocks: 3
Operation: (Rd) <-- (Rd) + #data8
Encoding:

byte 3: #data8

OR    Rd, #data16

Bytes: 4
Clocks: 3
Operation: (Rd) <-- (Rd) + #data16
Encoding:

byte 3: upper 8 bits of #data16
byte 4: lower 8 bits of #data16

OR    [Rd], #data8

Bytes: 3
Clocks: 4
Operation: ((WS:Rd)) <-- ((WS:Rd)) + #data8
Encoding:

byte 3: #data8

OR    [Rd], #data16

Bytes: 4
Clocks: 4
Operation: ((WS:Rd)) <-- ((WS:Rd)) + #data16
Encoding:

byte 3: upper 8 bits of #data16
byte 4: lower 8 bits of #data16

1      0     0     1     0     0     0     1 d     d     d     d      0     1     1    0

1      0     0     1     1     0     0     1 d     d     d     d      0     1     1    0

1      0     0     1     0     0     1     0 0     d     d     d      0     1     1    0

1      0     0     1     1     0     1     0 0     d     d     d      0     1     1    0
4/17/98 6-135 Addressing Modes and Data Types



OR    [Rd+], #data8

Bytes: 3
Clocks: 5
Operation: ((WS:Rd)) <-- ((WS:Rd)) + #data8

(Rd) <-- (Rd) + 1
Encoding:

byte 3: #data8

OR    [Rd+], #data16

Bytes: 4
Clocks: 5
Operation: ((WS:Rd)) <-- ((WS:Rd)) + #data16

(Rd) <-- (Rd) + 2
Encoding:

byte 3: upper 8 bits of #data16
byte 4: lower 8 bits of #data16

OR    [Rd+offset8], #data8

Bytes: 4
Clocks: 6
Operation: ((WS:Rd)+offset8) <-- ((WS:Rd)+offset8) + #data8
Encoding:

byte 3: offset8
byte 4: #data8

OR    [Rd+offset8], #data16

Bytes: 5
Clocks: 6
Operation: ((WS:Rd)+offset8) <-- ((WS:Rd)+offset8) + #data16
Encoding:

byte 3: offset8
byte 4: upper 8 bits of #data16
byte 5: lower 8 bits of #data16

1      0     0     1     0     0     1     1 0     d     d     d      0     1     1    0

1      0     0     1     1     0     1     1 0     d     d     d      0     1     1    0

1      0     0     1     0    1     0     0 0     d     d     d     0      1     1     0

1      0     0     1     1    1     0     0 0     d     d     d     0     1     1     0
XA User Guide 6-136 4/17/98



OR    [Rd+offset16], #data8

Bytes: 5
Clocks: 6
Operation: ((WS:Rd)+offset16) <-- ((WS:Rd)+offset16) + #data8
Encoding:

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16
byte 5: #data8

OR    [Rd+offset16], #data16

Bytes: 6
Clocks: 6
Operation: ((WS:Rd)+offset16) <-- ((WS:Rd)+offset16) + #data16
Encoding:

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16
byte 5: upper 8 bits of #data16
byte 6: lower 8 bits of #data16

OR    direct, #data8

Bytes: 4
Clocks: 4
Operation: (direct) <-- (direct) + #data8
Encoding:

byte 3: lower 8 bits of direct
byte 4: #data8

OR    direct, #data16

Bytes: 5
Clocks: 4
Operation: (direct) <-- (direct) + #data16
Encoding:

byte 3: lower 8 bits of direct
byte 4: upper 8 bits of #data16
byte 5: lower 8 bits of #data16

1      0     0     1     0    1     0     1  0     d     d     d     0     1     1     0

1      0     0     1     1    1     0     1  0     d     d     d     0     1     1     0

1      0     0     1     0    1     1     0 0   direct: 3 bits    0     1     1     0

1      0     0     1     1    1     1     0 0   direct: 3 bits    0     1     1     0
4/17/98 6-137 Addressing Modes and Data Types



R

ORL Logical OR bit

Syntax: ORL    C, bit

Operation:(C) <-- (C) + (bit)

Description: Logical (inclusive) OR a bit to the Carry flag. Read the specified bit and logically O
it to the Carry flag.
(C is written as the destination of the ORL, not as a status flag)

Size: Bit

Flags Updated:none

Bytes: 3
Clocks: 4

Encoding:

byte 3: lower 8 bits of bit address

0      0     0     0     1    0     0     0 0     1     1     0     0     0     bit: 2
XA User Guide 6-138 4/17/98



ORL Logical OR complement of bit

Syntax: ORL   C, /bit

Operation: (C) <-- (C) + (bit)

Description: Logically OR the complement of a bit to the Carry flag. Read the specified bit,
complement it, and logically OR it to the Carry flag.
(C is written as the destination of the move, not as a status flag)

Flags Updated:none

Bytes: 3
Clocks: 4

Encoding:

byte 3: lower 8 bits of bit address

0      0     0     0     1    0     0     0 0     1     1     1     0     0     bit: 2
4/17/98 6-139 Addressing Modes and Data Types



tion.
s an
POP Pop
POPU Pop User

Syntax: POP    dest

Description: The stack is popped and the data written to the specified directly addressed loca
The data size may be byte or word. POP uses the current stack pointer, while POPU force
access to the user stack.

Size: Byte, Word

Flags Updated:none

POP    direct

Bytes: 3
Clocks: 5
Operation: (direct) <-- ((SP))

(SP) <-- (SP) + 2
Encoding:

byte 3:  8 bits of direct

POPU    direct

Bytes: 3
Clocks: 5
Operation: (direct) <-- ((USP))

(USP) <-- (USP) + 2
Encoding:

byte 3:  8 bits of direct

1      0     0     0   SZ    1     1     1 0     0     0     1     0    direct: 3 bits

1      0     0     0   SZ    1     1     1 0     0     0     0     0    direct: 3 bits
XA User Guide 6-140 4/17/98



from
rs in

ation
gle
ess to

er R7,
rder
etc.
same

cause
POP Pop Multiple
POPU Pop User Multiple

Syntax: POP     Rlist
POPU     Rlist

Description: Pop the specified registers (one or more) from the stack. The stack is popped (
1 to 8 times) and the data stored in the specified registers. Any combination of word registe
the group R0 to R7 may be popped in a single instruction in a word operation. Or, any combin
of byte registers in the group R0L to R3H or the group R4L to R7H may be popped in a sin
instruction in a byte operation. POP uses the current stack pointer, while POPU forces an acc
the user stack.

Note: Rlist is a bit map that represents each register to be popped. The registers are in the ord
R6, R5,......, R0, for word registers or R3H.... R0L, or R7H... R4L for byte registers. The pop o
is from right to left, i.e., the register specified by the rightmost one in Rlist will be popped first,
The order must be the reverse of that used by the preceding PUSH instruction. Note that if the
register list is used first with a PUSH, then with a POP, the original register contents will be
restored. The order in which the registers are called out in the source code is not important be
the Rlist operand is encoded as a fixed order bit map (see below).

Size: Byte, Word

Flags Updated: none

POP    Rlist

Bytes: 2
Clocks: 4 + 2 per additional register
Operation: Repeat for all selected registers (Ri):

(Ri) <-- ((SP))
(SP) <-- (SP) + 2

Encoding:

POPU    Rlist

Bytes: 2
Clocks: 4 + 2 per additional register
Operation: Repeat for all selected registers (Ri):

(Ri) <-- ((USP))
(USP) <-- (USP) + 2

Encoding:

 0   H/L   1     0   SZ    1     1     1 Rlist

 0   H/L   1     1   SZ    1     1     1 Rlist
4/17/98 6-141 Addressing Modes and Data Types



7H):

H):
Rlist bit definitions for a byte POP from register(s) in the upper register group (R4L through R

Rlist bit definitions for a byte POP from register(s) in the lower register group (R0L through R3

Rlist bit definitions for a word POP from any register(s) (R0 through R7):

R7H R7L R6H R6L R5H R5L R4H R4L

R3H R3L R2H R2L R1H R1L R0H R0L

R7 R6 R5 R4 R3 R2 R1 R0
XA User Guide 6-142 4/17/98



ay be
r stack.
PUSH Push
PUSHU Push User

Syntax: PUSH        src
PUSHU      src

Description: The specified directly addressed data is pushed onto the stack. The data size m
byte or word. PUSH uses the current stack pointer, while PUSHU forces an access to the use

Size: Byte, Word

Flags Updated:none

PUSH    direct

Bytes: 3
Clocks: 5
Operation: (SP) <-- (SP) - 2

((SP)) <-- (direct)
Encoding:

byte 3:  8 bits of direct

PUSHU    direct

Bytes: 3
Clocks: 5
Operation: (USP) <-- (USP) - 2

((USP)) <-- (direct)
Encoding:

byte 3:  8 bits of direct

1      0     0     0   SZ    1     1     1 0     0     1     1     0    direct: 3 bits

1      0     0     0   SZ    1     1     1 0     0     1     0     0    direct: 3 bits
4/17/98 6-143 Addressing Modes and Data Types



rs are
ed in
L to
data
ess to

der R7,
rder

etc.
t if the
ill be
cause
PUSH Push Multiple
PUSHU Push User Multiple

Syntax: PUSH      Rlist
PUSHU    Rlist

Description: Push the specified registers (one or more) onto the stack. The specified registe
pushed onto the stack. Any combination of word registers in the group R0 to R7 may be push
a single instruction in a word operation. Or, any combination of byte registers in the group R0
R3H or the group R4L to R7H may be pushed in a single instruction in a byte operation. The
size may be byte or word. PUSH uses the current stack pointer, while PUSHU forces an acc
the user stack.

Note: Rlist is a bit map that represents each register to be pushed. The registers are in the or
R6, R5,......, R0, for word registers or R3H.... R0L, or R7H... R4L for byte registers. The push o
is from left to right, i.e., the register specified by the leftmost one in Rlist will be pushed first,
The order must be the reverse of that used by the corresponding POP instruction. Note tha
same register list is used first with a PUSH, then with a POP, the original register contents w
restored. The order in which the registers are called out in the source code is not important be
the Rlist operand is encoded as a fixed order bit map (see below).

Size: Byte, Word

Flags Updated: none

PUSH    Rlist

Bytes: 2
Clocks: 3 + 3 per additional register
Operation: Repeat for all selected registers (Ri):

(SP) <-- (SP) - 2
((SP)) <-- (Ri)

Encoding:

PUSHU    Rlist

Bytes: 2
Clocks: 3 + 3 per additional register
Operation: Repeat for all selected registers (Ri):

(USP) <-- (USP) - 2
((USP)) <-- (Ri)

Encoding:

 0   H/L   0     0   SZ    1     1     1 Rlist

 0   H/L   0     1   SZ    1     1     1 Rlist
XA User Guide 6-144 4/17/98



Rlist bit definitions for a byte PUSH from register(s) in the upper register group
(R4L through R7H):

Rlist bit definitions for a byte PUSH from register(s) in the lower register group
(R0L through R3H):

Rlist bit definitions for a word PUSH from any register(s) (R0 through R7):

R7H R7L R6H R6L R5H R5L R4H R4L

R3H R3L R2H R2L R1H R1L R0H R0L

R7 R6 R5 R4 R3 R2 R1 R0
4/17/98 6-145 Addressing Modes and Data Types



ith the
RESET Software Reset

Syntax: RESET

Operation: (PC) <-- vector(0)
(PSW) <-- vector(0)
(SFRs) <-- reset values (refer to the description of reset for details)

Description: The chip is reset exactly as if the external hardware reset has been asserted w
exception that it does not sample inputs for configuration, e.g.,EA, BUSW, etc. When a RESET
instruction is executed, the chip is internally reset, but no externalRESET pulse is generated.
The above inputs which are latched during rising edge of aRESET pulse, hence does not affect
the chip configuration.

Flags Updated: The entire PSW is set to the value specified in the reset vector.

Bytes: 2
Clocks: 18

Encoding:

1     1     0     1      0     1     1     0 0     0     0     1     0     0     0     0
XA User Guide 6-146 4/17/98



e
led
RET Return from Subroutine

Syntax: RET

Operation: (PC) <-- ((SP))
(SP) <-- (SP) + 4

Description: A 24-bit return address is popped from the stack and used to replace the entir
program counter value (PC23-0). This instruction is used to return from a subroutine that was cal
with a CALL or Far Call (FCALL).

Note: if the XA is in page 0 mode, only a 16-bit address will be popped from the stack.

Size: None

Flags Updated: none

Bytes: 2
Clocks: 8/6 (PZ)

Encoding:

1     1     0     1      0     1     1     0 1     0     0     0     0     0     0     0
4/17/98 6-147 Addressing Modes and Data Types



e
stack.

an
RETI Return from Interrupt

Syntax: RETI

Operation: (PSW) <-- ((SSP))
(PC.23-0) <-- ((SSP))
(SSP) <-- (SSP) + 6

Description: A 24-bit return address is popped from the stack and used to replace the entir
program counter value. The Program Status Word is also restored by being popped from the

This instruction is a privileged instruction (limited to system mode) and is used to return from
interrupt/exception. An attempt to use RETI in user mode will generate a trap.

Note: if the XA is in page 0 mode, only a 16-bit address will be popped from the stack.

Size: None

Flags Updated: All PSW bits are written by the POP of the PSW value in System mode.

Bytes: 2
Clocks: 10/8 (PZ)

Encoding:

1     1     0     1      0     1     1     0 1     0     0     1     0     0     0     0
XA User Guide 6-148 4/17/98



bits
f bit
RL Rotate Left

Syntax: RL   Rd, #data4

Operation:

Description: The variable specified by the destination operand is rotated left by the number of
specified in the immediate data operand. The data size may be 8 or 16 bits. The number o
positions shifted may be from 0 to 15.

Size: Byte, Word

Flags Updated: N, Z

Bytes: 2
Clocks: 4 + 1 for each 2 bits of shift

Encoding:

MSB LSB

(Rd)

 count <- #data4
Do While (count not equal to 0)
 (dest0) <- (destmsb)
 (destn) <- (destn-1)
 (count) <- count -1
End While

1      1     0     1   SZ    0     1     1 d     d     d     d            #data4
4/17/98 6-149 Addressing Modes and Data Types



flag
6 bits.
RLC Rotate Left Through Carry

Syntax: RLC   Rd, #data4

Operation:

Description: The variable specified by the destination operand is rotated left through the carry
by the number of bits specified in the immediate data operand. The data size may be 8 or 1
The number of bit positions shifted may be from 0 to 15.

Size: Byte, Word

Flags Updated: C, N, Z

Bytes: 2
Clocks: 4 + 1 for each 2 bits of shift

Encoding:

C MSB LSB

(Rd)

 count <- #data4
 Do While  (count not equal to 0)
(temp) <- (C)
 (C) <- (destmsb)
 (destn) <- (destn-1)
 (dest0) <- (temp)
 (count) <- count -1
 End While

1      1     0     1   SZ    1     1     1 d     d     d     d            #data4
XA User Guide 6-150 4/17/98



y the
 The
RR Rotate Right

Syntax: RR   Rd, #data4

Operation:

Description: If the count operand is greater than 0, the destination operand is rotated right b
number of bits specified in the immediate data operand. The data size may be 8 or 16 bits.
number of bit positions shifted may be from 0 to 15. If the count operand is 0, no rotate is
performed.

Size: Byte, Word

Flags Updated: N, Z

Bytes: 2
Clocks: 4 + 1 for each 2 bits of shift

Encoding:

MSB LSB

(Rd)

 count <- #data4
 Do While  (count not equal to 0)
 (destmsb) <- (dest0)
 (destn-1) <- (destn)
 (count) <- count -1
End While

1      0     1     1   SZ    0     0     0 d     d     d     d            #data4
4/17/98 6-151 Addressing Modes and Data Types



ough
ay be
RRC Rotate Right Through Carry

Syntax: RRC   Rd, #data4

Operation:

Description: If the count operand is greater than 0, the destination operand is rotated right thr
the carry flag by the number of bits specified in the immediate data operand. The data size m
8 or 16 bits. The number of bit positions shifted may be from 0 to 15.
If the count operand is 0, no rotate is performed.

Size: Byte, Word

Flags Updated:C, N, Z

Bytes: 2
Clocks: 4 + 1 for each 2 bits of shift

Encoding:

C MSB LSB

(Rd)

 count <- #data4
 Do While  (count not equal to 0)
(temp) <- (C)
 (C) <- (dest0)
 (destn) <- (destn+1)
 (destmsb) <- (temp)
 (count) <- count -1
 End While

1      0     1     1   SZ    1     1     1 d     d     d     d            #data4
XA User Guide 6-152 4/17/98



SETB Set Bit

Syntax: SETB   bit

Operation: (bit) <-- 1

Description: Writes (sets) a 1 to the specified bit.

Size: Bit

Flags Updated:none

Bytes: 3
Clocks: 4

Encoding:

byte 3: lower 8 bits of bit address

0      0     0     0     1    0     0     0  0     0     0     1     0     0     bit: 2
4/17/98 6-153 Addressing Modes and Data Types



ter.
SEXT Sign Extend

Syntax: SEXT    Rd

Operation: if N = 1
then (Rd) <-- FF in byte mode or FFFF in word mode

if N = 0
then (Rd) <-- 00 in byte mode or 0000 in word mode

Description: Copies the N flag (the sign bit of the last ALU operation) into the destination regis
The destination register may be a byte or word register.

Example:
SEXT.b    R1
if the result of the previous operation left the N flag set, then R1 <-- FF

Size: Byte, word

Flags Updated: none

Bytes: 2
Clocks: 3

Encoding:

d     d     d     d      1     0     0     11      0     0     1    SZ   0     0     0
XA User Guide 6-154 4/17/98



by the
SUB Integer Subtract

Syntax: SUB   dest, src

Operation: dest <- dest - src

Description: Performs a twos complement binary subtraction of the source and destination
operands, and the result is placed in the destination operand. The source data is not affected
operation.

Size: Byte-Byte, Word-Word

Flags Updated: C, AC, V, N, Z

SUB    Rd, Rs

Bytes: 2
Clocks: 3
Operation: (Rd) <-- (Rd) - (Rs)
Encoding:

SUB    Rd, [Rs]

Bytes: 2
Clocks: 4
Operation: (Rd) <-- (Rd) - ((WS:Rs))
Encoding:

SUB    [Rd], Rs

Bytes: 2
Clocks: 4
Operation: ((WS:Rd)) <-- ((WS:Rd)) - (Rs)
Encoding:

0      0     1     0   SZ    0     0     1 d     d     d     d      s     s     s     s

0      0     1     0   SZ    0     1     0 d     d     d     d     0     s     s     s

0      0     1     0   SZ    0     1     0 s     s     s     s     1     d     d     d
4/17/98 6-155 Addressing Modes and Data Types



SUB    Rd, [Rs+offset8]

Bytes: 3
Clocks: 6
Operation: (Rd) <-- (Rd) - ((WS:Rs)+offset8)
Encoding:

byte 3: offset8

SUB    [Rd+offset8], Rs

Bytes: 3
Clocks: 6
Operation: ((WS:Rd)+offset8) <-- ((WS:Rd)+offset8) - (Rs)
Encoding:

byte 3: offset8

SUB    Rd, [Rs+offset16]

Bytes: 4
Clocks: 6
Operation: (Rd) <-- (Rd) - ((WS:Rs)+offset16)
Encoding:

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16

SUB    [Rd+offset16], Rs

Bytes: 4
Clocks: 6
Operation: ((WS:Rd)+offset16) <-- ((WS:Rd)+offset16) - (Rs)
Encoding:

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16

0      0     1     0   SZ    1     0     0 d     d     d     d     0     s     s     s

0      0     1     0   SZ    1     0     0 s     s     s     s     1     d     d     d

0      0     1     0   SZ    1     0     1 d     d     d     d     0     s     s     s

0      0     1     0   SZ    1     0     1  s     s     s     s     1     d     d     d
XA User Guide 6-156 4/17/98



SUB    Rd, [Rs+]

Bytes: 2
Clocks: 5
Operation: (Rd) <-- (Rd) - ((WS:Rs))

(Rs) <-- (Rs) + 1 (byte operation) or 2 (word operation)
Encoding:

SUB    [Rd+], Rs

Bytes: 2
Clocks: 5
Operation: ((WS:Rd)) <-- ((WS:Rd)) - (Rs)

(Rd) <-- (Rd) + 1 (byte operation) or 2 (word operation)
Encoding:

SUB    direct, Rs

Bytes: 3
Clocks: 4
Operation: (direct) <-- (direct) - (Rs)
Encoding:

byte 3: lower 8 bits of direct

SUB    Rd, direct

Bytes: 3
Clocks: 4
Operation: (Rd) <-- (Rd) - (direct)
Encoding:

byte 3: lower 8 bits of direct

0      0     1     0   SZ    0     1     1 d     d     d     d     0     s     s     s

0      0     1     0   SZ    0     1     1 s     s     s     s     1     d     d     d

0      0     1     0   SZ    1     1     0  s     s     s     s     1    direct: 3 bits

0      0     1     0   SZ    1     1     0 d     d     d     d     0    direct: 3 bits
4/17/98 6-157 Addressing Modes and Data Types



SUB    Rd, #data8

Bytes: 3
Clocks: 3
Operation: (Rd) <-- (Rd) - #data8
Encoding:

byte 3: #data8

SUB    Rd, #data16

Bytes: 4
Clocks: 3
Operation: (Rd) <-- (Rd) - #data16
Encoding:

byte 3: upper 8 bits of #data16
byte 4: lower 8 bits of #data16

SUB    [Rd], #data8

Bytes: 3
Clocks: 4
Operation: ((WS:Rd)) <-- ((WS:Rd)) - #data8
Encoding:

byte 3: #data8

SUB    [Rd], #data16

Bytes: 4
Clocks: 4
Operation: ((WS:Rd)) <-- ((WS:Rd)) - #data16
Encoding:

byte 3: upper 8 bits of #data16
byte 4: lower 8 bits of #data16

1      0     0     1     0     0     0     1 d     d     d     d      0     0     1    0

1      0     0     1     1     0     0     1 d     d     d     d      0     0     1    0

1      0     0     1     0     0     1     0 0     d     d     d      0     0     1    0

1      0     0     1     1     0     1     0 0     d     d     d      0     0     1    0
XA User Guide 6-158 4/17/98



SUB    [Rd+], #data8

Bytes: 3
Clocks: 5
Operation: ((WS:Rd)) <-- ((WS:Rd)) - #data8

(Rd) <-- (Rd) + 1
Encoding:

byte 3: #data8

SUB    [Rd+], #data16

Bytes: 4
Clocks: 5
Operation: ((WS:Rd)) <-- ((WS:Rd)) - #data16

(Rd) <-- (Rd) + 2
Encoding:

byte 3: upper 8 bits of #data16
byte 4: lower 8 bits of #data16

SUB    [Rd+offset8], #data8

Bytes: 4
Clocks: 6
Operation: ((WS:Rd)+offset8) <-- ((WS:Rd)+offset8) - #data8
Encoding:

byte 3: offset8
byte 4: #data8

SUB    [Rd+offset8], #data16

Bytes: 5
Clocks: 6
Operation: ((WS:Rd)+offset8) <-- ((WS:Rd)+offset8) - #data16
Encoding:

byte 3: offset8
byte 4: upper 8 bits of #data16
byte 5: lower 8 bits of #data16

1      0     0     1     0     0     1     1 0     d     d     d      0     0     1    0

1      0     0     1     1     0     1     1 0     d     d     d      0     0     1    0

1      0     0     1     0    1     0     0  0     d     d     d     0      0     1     0

1      0     0     1     1    1     0     0  0     d     d     d     0     0     1     0
4/17/98 6-159 Addressing Modes and Data Types



SUB    [Rd+offset16], #data8

Bytes: 5
Clocks: 6
Operation: ((WS:Rd)+offset16) <-- ((WS:Rd)+offset16) - #data8
Encoding:

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16
byte 5: #data8

SUB    [Rd+offset16], #data16

Bytes: 6
Clocks: 6
Operation: ((WS:Rd)+offset16) <-- ((WS:Rd)+offset16) - #data16
Encoding:

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16
byte 5: upper 8 bits of #data16
byte 6: lower 8 bits of #data16

SUB    direct, #data8

Bytes: 4
Clocks: 4
Operation: (direct) <-- (direct) - #data8
Encoding:

byte 3: lower 8 bits of direct
byte 4: #data8

SUB    direct, #data16

Bytes: 5
Clocks: 4
Operation: (direct) <-- (direct) - #data16
Encoding:

byte 3: lower 8 bits of direct
byte 4: upper 8 bits of #data16
byte 5: lower 8 bits of #data16

1      0     0     1     0    1     0     1 0     d     d     d     0     0     1     0

1      0     0     1     1    1     0     1  0     d     d     d     0     0     1     0

1      0     0     1     0    1     1     0 0   direct: 3 bits   0     0     1     0

1      0     0     1     1    1     1     0 0   direct: 3 bits   0     0     1     0
XA User Guide 6-160 4/17/98



 the

nce
in

arry
east-
SUBB Subtract with Borrow

Syntax: SUBB   dest, src

Operation: dest <- dest - src - C

Description: Performs a twos complement binary addition of the source operand and the
previously generated carry bit (borrow) with the destination operand. The result is stored in
destination operand.The source data is not affected by the operation.

If the carry from previous operation is zero (C = 0, i.e., Borrow = 1), the result is exact differe
of the operands; if it is one (C = 1, i.e., Borrow = 0), the result is 1 less than the difference 
operands.

This form of subtraction is intended to support multiple-precision arithmetic. For this use, the c
bit is first reset, then SUBB is used to add the portions of the multiple-precision values from l
significant to most-significant.

Size:  Byte-Byte, Word-Word

Flags Updated: C, AC, V, N, Z

SUBB    Rd, Rs

Bytes: 2
Clocks: 3
Operation: (Rd) <-- (Rd) - (Rs) - (C)
Encoding:

SUBB    Rd, [Rs]

Bytes: 2
Clocks: 4
Operation: (Rd) <-- (Rd) - ((WS:Rs)) - (C)
Encoding:

0      0     1     1   SZ    0     0     1 d     d     d     d      s     s     s     s

0      0     1     1   SZ    0     1     0 d     d     d     d     0     s     s     s
4/17/98 6-161 Addressing Modes and Data Types



SUBB    [Rd], Rs

Bytes: 2
Clocks: 4
Operation: ((WS:Rd)) <-- ((WS:Rd)) - (Rs) - (C)
Encoding:

SUBB    Rd, [Rs+offset8]

Bytes: 3
Clocks: 6
Operation: (Rd) <-- (Rd) - ((WS:Rs)+offset8) - (C)
Encoding:

byte 3: offset8

SUBB    [Rd+offset8], Rs

Bytes: 3
Clocks: 6
Operation: ((WS:Rd)+offset8) <-- ((WS:Rd)+offset8) - (Rs) - (C)
Encoding:

byte 3: offset8

SUBB    Rd, [Rs+offset16]

Bytes: 4
Clocks: 6
Operation: (Rd) <-- (Rd) - ((WS:Rs)+offset16) - (C)
Encoding:

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16

0      0     1     1   SZ    0     1     0 s     s     s     s     1     d     d     d

0      0     1     1   SZ    1     0     0 d     d     d     d     0     s     s     s

0      0     1     1   SZ    1     0     0  s     s     s     s     1     d     d     d

0      0     1     1   SZ    1     0     1 d     d     d     d     0     s     s     s
XA User Guide 6-162 4/17/98



SUBB    [Rd+offset16], Rs

Bytes: 4
Clocks: 6
Operation: ((WS:Rd)+offset16) <-- ((WS:Rd)+offset16) - (Rs) - (C)
Encoding:

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16

SUBB    Rd, [Rs+]

Bytes: 2
Clocks: 5
Operation: (Rd) <-- (Rd) - ((WS:Rs)) - (C)

(Rs) <-- (Rs) + 1 (byte operation) or 2 (word operation)
Encoding:

SUBB    [Rd+], Rs

Bytes: 2
Clocks: 5
Operation: ((WS:Rd)) <-- ((WS:Rd)) - (Rs) - (C)

(Rd) <-- (Rd) + 1 (byte operation) or 2 (word operation)
Encoding:

SUBB    direct, Rs

Bytes: 3
Clocks: 4
Operation: (direct) <-- (direct) - (Rs) - (C)
Encoding:

byte 3: lower 8 bits of direct

0      0     1     1   SZ    1     0     1  s     s     s     s     1     d     d     d

0      0     1     1   SZ    0     1     1 d     d     d     d     0     s     s     s

0      0     1     1   SZ    0     1     1 s     s     s     s     1     d     d     d

0      0     1     1   SZ    1     1     0 s     s     s     s     1    direct: 3 bits
4/17/98 6-163 Addressing Modes and Data Types



SUBB    Rd, direct

Bytes: 3
Clocks: 4
Operation: (Rd) <-- (Rd) - (direct) - (C)
Encoding:

byte 3: lower 8 bits of direct

SUBB    Rd, #data8

Bytes: 3
Clocks: 3
Operation: (Rd) <-- (Rd) - #data8 - (C)
Encoding:

byte 3: #data8

SUBB    Rd, #data16

Bytes: 4
Clocks: 3
Operation: (Rd) <-- (Rd) - #data16 - (C)
Encoding:

byte 3: upper 8 bits of #data16
byte 4: lower 8 bits of #data16

SUBB    [Rd], #data8

Bytes: 3
Clocks: 4
Operation: ((WS:Rd)) <-- ((WS:Rd)) - #data8 - (C)
Encoding:

byte 3: #data8

0      0     1     1   SZ    1     1     0 d     d     d     d     0    direct: 3 bits

1      0     0     1     0     0     0     1 d     d     d     d      0     0     1    1

1      0     0     1     1     0     0     1 d     d     d     d      0     0     1    1

1      0     0     1     0     0     1     0 0     d     d     d      0     0     1    1
XA User Guide 6-164 4/17/98



SUBB    [Rd], #data16

Bytes: 4
Clocks: 4
Operation: ((WS:Rd)) <-- ((WS:Rd)) - #data16 - (C)
Encoding:

byte 3: upper 8 bits of #data16
byte 4: lower 8 bits of #data16

SUBB    [Rd+], #data8

Bytes: 3
Clocks: 5
Operation: ((WS:Rd)) <-- ((WS:Rd)) - #data8 - (C)

(Rd) <-- (Rd) + 1
Encoding:

byte 3: #data8

SUBB    [Rd+], #data16

Bytes: 4
Clocks: 5
Operation: ((WS:Rd)) <-- ((WS:Rd)) - #data16 - (C)

(Rd) <-- (Rd) + 2
Encoding:

byte 3: upper 8 bits of #data16
byte 4: lower 8 bits of #data16

SUBB    [Rd+offset8], #data8

Bytes: 4
Clocks: 6
Operation: ((WS:Rd)+offset8) <-- ((WS:Rd)+offset8) - #data8 - (C)
Encoding:

byte 3: offset8
byte 4: #data8

1      0     0     1     1     0     1     0 0     d     d     d      0     0     1    1

1      0     0     1     0     0     1     1 0     d     d     d      0     0     1    1

1      0     0     1     1     0     1     1 0     d     d     d      0     0     1    1

1      0     0     1     0    1     0     0 0     d     d     d     0      0     1     1
4/17/98 6-165 Addressing Modes and Data Types



SUBB    [Rd+offset8], #data16

Bytes: 5
Clocks: 6
Operation: ((WS:Rd)+offset8) <-- ((WS:Rd)+offset8) - #data16 - (C)
Encoding:

byte 3: offset8
byte 4: upper 8 bits of #data16
byte 5: lower 8 bits of #data16

SUBB    [Rd+offset16], #data8

Bytes: 5
Clocks: 6
Operation: ((WS:Rd)+offset16) <-- ((WS:Rd)+offset16) - #data8 - (C)
Encoding:

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16
byte 5: #data8

SUBB    [Rd+offset16], #data16

Bytes: 6
Clocks: 6
Operation: ((WS:Rd)+offset16) <-- ((WS:Rd)+offset16) - #data16 - (C)
Encoding:

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16
byte 5: upper 8 bits of #data16
byte 6: lower 8 bits of #data16

SUBB    direct, #data8

Bytes: 4
Clocks: 4
Operation: (direct) <-- (direct) - #data8 - (C)
Encoding:

1      0     0     1     1    1     0     0  0     d     d     d     0     0     1     1

1      0     0     1     0    1     0     1 0     d     d     d     0     0     1     1

1      0     0     1     1    1     0     1 0     d     d     d     0     0     1     1

1      0     0     1     0    1     1     0 0   direct: 3 bits   0     0     1     1
XA User Guide 6-166 4/17/98



byte 3: lower 8 bits of direct
byte 4: #data8

SUBB    direct, #data16

Bytes: 5
Clocks: 4
Operation: (direct) <-- (direct) - #data16 - (C)
Encoding:

byte 3: lower 8 bits of direct
byte 4: upper 8 bits of #data16
byte 5: lower 8 bits of #data16

1      0     0     1     1    1     1     0 0   direct: 3 bits   0     0     1     1
4/17/98 6-167 Addressing Modes and Data Types



hing
 to
errupt,
s may
register.

ced to
TRAP Software Trap

Syntax: TRAP   #data4

Operation: (PC) <-- (PC) + 2
(SSP) <-- (SSP) - 6
((SSP)) <-- (PC)
((SSP)) <-- (PSW)
(PSW) <-- code memory (trap vector (#data4))
(PC.15-0) <-- code memory (trap vector (#data4))
(PC.23-16) <-- 0; (PC.0) <-- 0

Description: Causes the specified software trap. The invoked routine is determined by branc
to the specified vector table entry point. The RETI, return from interrupt, instruction is used
resume execution after the trap routine has been completed. A trap acts like an immediate int
using a vector to call one of several pieces of code that will be executed in system mode. Thi
be used to obtain system services for application code, such as altering the data segment 
This is described in more detail in the section on interrupts and exceptions.

Note: The address of the exception handling routine must be word aligned as the PC is for
an even address before vectoring to the service routine.

Size: None

Flags Updated: none

Bytes: 2
Clocks: 23/19 (PZ)

Encoding:

1     1     0     1     0     1     1     0 0     0     1     1            #data4
XA User Guide 6-168 4/17/98



XCH Exchange

Syntax: XCH   dest, src

Operation: dest <--> src

Description: The data specified by the source and destination operands is exchanged.

Size:Byte-Byte, word-word.

Flags Updated:none

XCH    Rd, Rs

Bytes: 2
Clocks: 5
Operation: (Rd) <--> (Rs)
Encoding:

XCH    Rd, [Rs]

Bytes: 2
Clocks: 6
Operation: (Rd) <--> ((WS:Rs))
Encoding:

XCH    Rd, direct

Bytes: 3
Clocks: 6
Operation: (Rd) <--> (direct)
Encoding:

byte 3: lower 8 bits of direct

0      1     1     0   SZ    0     0     0 d     d     d     d      s     s     s    s

0      1     0     1   SZ    0     0     0 d     d     d     d      0     s     s    s

1      0     1     0   SZ    0     0     0 d     d     d     d     1    direct: 3 bits
4/17/98 6-169 Addressing Modes and Data Types



the
tion.
XOR Exclusive OR

Syntax: XOR   dest, src

Operation: dest <- dest (XOR)     src

Description: The byte or word specified by the source operand is bitwise logically XORed to
variable specified by the destination operand. The source data is not affected by the opera

Size: Byte-Byte, Word-Word

Flags Updated: N, Z

XOR    Rd, Rs

Bytes: 2
Clocks: 3
Operation: (Rd) <-- (Rd) (XOR) (Rs)
Encoding:

XOR    Rd, [Rs]

Bytes: 2
Clocks: 4
Operation: (Rd) <-- (Rd) (XOR) ((WS:Rs))
Encoding:

XOR    [Rd], Rs

Bytes: 2
Clocks: 4
Operation: ((WS:Rd)) <-- ((WS:Rd)) (XOR) (Rs)
Encoding:

0      1     1     1   SZ    0     0     1 d     d     d     d      s     s     s     s

0      1     1     1   SZ    0     1     0 d     d     d     d     0     s     s     s

0      1     1     1   SZ    0     1     0 s     s     s     s     1     d     d     d
XA User Guide 6-170 4/17/98



XOR    Rd, [Rs+offset8]

Bytes: 3
Clocks: 6
Operation: (Rd) <-- (Rd) (XOR) ((WS:Rs)+offset8)
Encoding:

byte 3: offset8

XOR    [Rd+offset8], Rs

Bytes: 3
Clocks: 6
Operation: ((WS:Rd)+offset8) <-- ((WS:Rd)+offset8) (XOR) (Rs)
Encoding:

byte 3: offset8

XOR    Rd, [Rs+offset16]

Bytes: 4
Clocks: 6
Operation: (Rd) <-- (Rd) (XOR) ((WS:Rs)+offset16)
Encoding:

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16

XOR    [Rd+offset16], Rs

Bytes: 4
Clocks: 6
Operation: ((WS:Rd)+offset16) <-- ((WS:Rd)+offset16) (XOR) (Rs)
Encoding:

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16

0      1     1     1   SZ    1     0     0 d     d     d     d     0     s     s     s

0      1     1     1   SZ    1     0     0 s     s     s     s     1     d     d     d

0      1     1     1   SZ    1     0     1 d     d     d     d     0     s     s     s

0      1     1     1   SZ    1     0     1  s     s     s     s     1     d     d     d
4/17/98 6-171 Addressing Modes and Data Types



XOR    Rd, [Rs+]

Bytes: 2
Clocks: 5
Operation: (Rd) <-- (Rd) (XOR) ((WS:Rs))

(Rs) <-- (Rs) + 1 (byte operation) or 2 (word operation)
Encoding:

XOR    [Rd+], Rs

Bytes: 2
Clocks: 5
Operation: ((WS:Rd)) <-- ((WS:Rd)) (XOR) (Rs)

(Rd) <-- (Rd) + 1 (byte operation) or 2 (word operation)
Encoding:

XOR    direct, Rs

Bytes: 3
Clocks: 4
Operation: (direct) <-- (direct) (XOR) (Rs)
Encoding:

byte 3: lower 8 bits of direct

XOR    Rd, direct

Bytes: 3
Clocks: 4
Operation: (Rd) <-- (Rd) (XOR) (direct)
Encoding:

byte 3: lower 8 bits of direct

0      1     1     1   SZ    0     1     1 d     d     d     d     0     s     s     s

0      1     1     1   SZ    0     1     1 s     s     s     s     1     d     d     d

0      1     1     1   SZ    1     1     0  s     s     s     s     1    direct: 3 bits

0      1     1     1   SZ    1     1     0 d     d     d     d     0    direct: 3 bits
XA User Guide 6-172 4/17/98



XOR    Rd, #data8

Bytes: 3
Clocks: 3
Operation: (Rd) <-- (Rd) (XOR) #data8
Encoding:

byte 3: #data8

XOR    Rd, #data16

Bytes: 4
Clocks: 3
Operation: (Rd) <-- (Rd) (XOR) #data16
Encoding:

byte 3: upper 8 bits of #data16
byte 4: lower 8 bits of #data16

XOR    [Rd], #data8

Bytes: 3
Clocks: 4
Operation: ((WS:Rd)) <-- ((WS:Rd)) (XOR) #data8
Encoding:

byte 3: #data8

XOR    [Rd], #data16

Bytes: 4
Clocks: 4
Operation: ((WS:Rd)) <-- ((WS:Rd)) (XOR) #data16
Encoding:

byte 3: upper 8 bits of #data16
byte 4: lower 8 bits of #data16

1      0     0     1     0     0     0     1 d     d     d     d      0     1     1    1

1      0     0     1     1     0     0     1 d     d     d     d      0     1     1    1

1      0     0     1     0     0     1     0 0     d     d     d      0     1     1    1

1      0     0     1     1     0     1     0 0     d     d     d      0     1     1    1
4/17/98 6-173 Addressing Modes and Data Types



XOR    [Rd+], #data8

Bytes: 3
Clocks: 5
Operation: ((WS:Rd)) <-- ((WS:Rd)) (XOR) #data8

(Rd) <-- (Rd) + 1

Encoding:

byte 3: #data8

XOR    [Rd+], #data16

Bytes: 4
Clocks: 5
Operation: ((WS:Rd)) <-- ((WS:Rd)) (XOR) #data16

(Rd) <-- (Rd) + 2
Encoding:

byte 3: upper 8 bits of #data16
byte 4: lower 8 bits of #data16

XOR    [Rd+offset8], #data8

Bytes: 4
Clocks: 6
Operation: ((WS:Rd)+offset8) <-- ((WS:Rd)+offset8) (XOR) #data8
Encoding:

byte 3: offset8
byte 4: #data8

XOR    [Rd+offset8], #data16

Bytes: 5
Clocks: 6
Operation: ((WS:Rd)+offset8) <-- ((WS:Rd)+offset8) (XOR) #data16
Encoding:

byte 3: offset8
byte 4: upper 8 bits of #data16
byte 5: lower 8 bits of #data16

1      0     0     1     0     0     1     1 0     d     d     d      0     1     1    1

1      0     0     1     1     0     1     1 0     d     d     d      0     1     1    1

1      0     0     1     0    1     0     0  0     d     d     d     0      1     1     1

1      0     0     1     1    1     0     0 0     d     d     d     0     1     1     1
XA User Guide 6-174 4/17/98



XOR   [Rd+offset16], #data8

Bytes: 5
Clocks: 6
Operation: ((WS:Rd)+offset16) <-- ((WS:Rd)+offset16) (XOR) #data8
Encoding:

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16
byte 5: #data8

XOR    [Rd+offset16], #data16

Bytes: 6
Clocks: 6
Operation: ((WS:Rd)+offset16) <-- ((WS:Rd)+offset16) (XOR) #data16
Encoding:

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16
byte 5: upper 8 bits of #data16
byte 6: lower 8 bits of #data16

XOR    direct, #data8

Bytes: 4
Clocks: 4
Operation: (direct) <-- (direct) (XOR) #data8
Encoding:

byte 3: lower 8 bits of direct
byte 4: #data8

XOR    direct, #data16

Bytes: 5
Clocks: 4
Operation: (direct) <-- (direct) (XOR) #data16
Encoding:

byte 3: lower 8 bits of direct
byte 4: upper 8 bits of #data16
byte 5: lower 8 bits of #data16

1      0     0     1     0    1     0     1 0     d     d     d     0     1    1    1

1      0     0     1     1    1     0     1 0     d     d     d     0    1     1    1

1      0     0     1     0    1     1     0 0   direct: 3 bits   0     1     1     1

1      0     0     1     1    1     1     0 0   direct: 3 bits   0     1     1     1
4/17/98 6-175 Addressing Modes and Data Types



 file
gister
e. The

use

ld

ter

er

ter
6.6  Summary Of Illegal Operand Combinations On The XA
All but one case are instructions that specify or imply 2 write operations to a single register
location within a single instruction. The other case is a possible corruption of the source re
data by an auto-increment before it is read. These conditions are not detected by XA hardwar
instruction/operand combinations indicated should not be used when writing XA code.

NOTES:
1 This addressing mode is illegal when the source and destination are the same register. This would ca

both a data write and an auto-increment operation to the same register.
2 This instruction is illegal when the source and destination pointer registers are the same register. This

would cause two auto-increment operations to the same register.
3 This instruction is illegal when the source and destination are the same register. The source register wou

be auto-incremented and read at the same time, with an undefined result.
4 This instruction is illegal when the source and destination are the same register. This would cause two

writes to the same register.
5 This addressing mode is illegal when the indirect address of the destination points to the pointer regis

itself in the register file. This is possible only when 8051 compatibility mode is enabled. This would
cause both a data write and an auto-increment operation to the same register.

6 This instruction is illegal when the indirect address of the source operand points to the destination regist
itself in the register file. This is possible only when 8051 compatibility mode is enabled. This would
cause two writes to the same register.

7 This instruction is illegal when the direct address of the source operand points to the destination regis
itself in the register file. This is possible only when 8051 compatibility mode is enabled. This would
cause two writes to the same register.

8 A POP to R7 (the stack pointer) would cause both a data write and an auto-increment operation to the
same register.

Instruction(s) affected Reason for illegal combination

(any op)  Rx, [Rx+] Auto-increment plus explicit write 1

mov  [Rx+], [Rx+] Double auto-increment of one register 2

(any op)  [Rx+], Rx Auto-increment write may corrupt the source register before it is read 3

NORM  Rx, Rx Result and shift count stored in the same register 4

XCH  Rx, Rx Double write of a single register 4

(any op)  [Rx+], Ry Auto-increment plus indirect write to same register 5

(any op)  [Rx+], [Ry+] Auto-increment plus indirect write to same register 5

(any op)  [Rx+], #data Auto-increment plus indirect write to same register 5

XCH  Rx, [Rx] Indirect write plus explicit write to the same register 6

XCH  Rx, direct Direct write plus explicit write to the same register 7

POP  R7 Stack pointer auto-increment plus explicit write to R7/SP 8
XA User Guide 6-176 4/17/98



rough
es that
n or out
ard XA

ecific
 at all.

tive
These

n the
al

 only

e

, that
the
7   External Bus

Most XA derivatives have the capability of accessing external code and/or data memory th
the use of an external bus. The external bus provides address information to external devic
are to be accessed, then generates a strobe for the required operation, with data passing i
on the data bus. Typical bus operations are code read, data read, and data write. The stand
external bus is designed to provide flexibility, simplicity of connection, and optimization for
external code fetches.

The following discussion is based on the standard version of the XA external bus. Some sp
XA derivatives may have a different implementation of the external bus, or no external bus

7.1  External Bus Signals
For flexibility, the standard XA external bus supports 8 or 16-bit data transfers and a user
selectable number of address bits. The maximum number of address lines varies by deriva
but may be up to 24. A standard set of bus control signals coordinates activity on the bus. 
are described in the following sections.

7.1.1 PSEN - Program Store Enable

The program store enable signal is used to activate an external code memory, such as an
EPROM. This active low signal is typically connected to the Output Enable (OE) pin of an
external EPROM.PSEN remains high when a code read is not in progress.

7.1.2 RD - Read

The bus read signal is also active low. Activity of this signal indicates data read operations o
external bus.RD is typically connected to the pin of the same name on an external peripher
device.

7.1.3 WRL - Write Low Byte

WRL is the external bus data write strobe. It is typically connected to theWR pin of an external
peripheral device. When the XA external bus is used in the 16-bit mode, this strobe applies
to the lower data byte, allowing byte writes on the 16-bit bus. TheWRL signal is active low.

7.1.4 WRH - Write High Byte

For a 16-bit data bus, a signal similar toWRL, but for the upper data byte is needed. The activ
low signalWRH serves this purpose.

7.1.5  ALE - Address Latch Enable

Since a portion of the XA external bus is used for multiplexed address and data information
part of the address must be latched outside of the XA so that it will remain constant during 
4/17/98 7-1 External Bus



allow
e and

 bus
ddress
e
This

A.
e
y an
ree to

AIT
 the

s of
e

ode

ory
subsequent read or write operation. The active high ALE signal directs the external latch to
information to be stored for a data address or a code address. The external latch must clos
retain this address when the ALE signal ends, by going low (inactive).

7.1.6  Address Lines

Some of the address lines used by the external bus interface are driven during a complete
operation and do not need to be latched. In the standard XA bus interface, the lower four a
lines are always driven and unlatched in this manner. This is done specifically as part of th
optimization of the bus for fetching instructions from external code memory at high speed. 
feature will be explained in detail in a later section.

7.1.7  Multiplexed Address and Data Lines

The part of the bus that is used for data transfer is also used for address output from the X
Prior to asserting the strobe for the bus operation about to be performed, the XA outputs th
address for the operation. On the multiplexed portion of the bus, this address is captured b
external latch, as commanded by the ALE signal. After that is done, this part of the bus is f
be used for data transfer either into or out of the XA. The control signalsPSEN,RD, WRL, and
WRH determine what type of bus operation takes place.

7.1.8  WAIT - Wait

The WAIT input allows wait states to be inserted into any external bus operation. If WAIT is
asserted (high) after a bus control strobe (PSEN,RD, WRL, orWRH) is driven by the XA, that
bus operation is stretched, and that control strobe continues to be driven by the XA until W
goes low again. For this feature to be used, an external circuit must be present to generate
WAIT signal at the appropriate times.

The XA has an internal bus configuration feature that allows programming the various type
external bus cycles to different lengths, so that in most applications the WAIT line will not b
needed. This feature will be explained in detail in a later section.

7.1.9 EA - External Access

TheEA input determines whether the XA operates in single-chip mode, or begins running c
from the internal program memory after reset. IfEA is low as Reset goes high, the first code
fetch (and all others after that) is made off-chip. IfEA is high as Reset goes high, the XA will
execute the on-chip code first, but will still attempt to execute instructions from external mem
at addresses above the limit of on-chip code. The level on theEA pin is latched as reset goes
high, so whatever mode is selected remains valid until the next reset.

On some XA derivatives, the pin used for theEA function may be shared with another function
that becomes active after the XA begins code execution.
XA User Guide 7-2 4/17/98



idth
ip
cts of

must

this
ntil the
or

ngs in
ature

a bus
es is

 8-bit
to an
in as
7.1.10  BUSW - Bus Width

The external XA bus may be configured to be 8 or 16 bits in width. The XA allows the bus w
to be programmed in 2 ways. In a system where instructions are initially fetched from on-ch
code memory, the user program can configure the external bus size (and many other aspe
the bus) prior to the bus actually being used.

When the initial code fetches must be done using off-chip code memory, however, the XA 
know the bus width before the first off-chip code fetch can begin.

On some XA derivatives, the BUSW function may share a pin with some other function. In 
case, the level on the BUSW pin is latched as Reset is released and that selection is kept u
next Reset. The secondary function on that pin will be active after Reset when the process
begins executing code normally.

Unlike theEA function, the bus width set by the BUSW pin at reset may be over-ridden by a
user program, making setting by use of the BUSW pin unnecessary in most systems. Setti
the Bus Configuration Register allow changing the bus size under program control. This fe
is covered in more detail in the next section.

7.2  Bus Configuration
The standard XA external bus has a number of configuration options. In addition to the dat
width selection discussed previously, the number of address lines used for external access
programmable, as is the bus timing.

7.2.1  8-Bit and 16-Bit Data Bus Widths

The standard XA external bus allows both 8-bit and 16-bit bus widths. BUSW=0 selects an
bus and BUSW=1 selects a 16-bit bus. On power-up, the XA defaults to the 16-bit bus (due
on-chip weak pull-up on BUSW). The bus width is determined by the value of the BUSW p
Reset is released, unless a user program overrides that setting by writing to the Bus
Configuration Register (BCR), shown in Figure7.1.
4/17/98 7-3 External Bus



Figure 7.1  Bus Configuration Register (BCR)

- WAITD-- BUSD BC2 BC1 BC0BCR

WAITD: WAIT disable. Causes the XA external bus interface to ignore the value on the
WAIT input. This allows tying the WAIT input high for applications that use
internal code and do not need the WAIT function.

BUSD: Bus disable. Causes XA external bus functions to be disabled permanently.
The primary purpose of this is to allow prevention of inadvertent activation of
the bus by an instruction pre-fetch when the XA is executing code near the end
of the on-chip code memory.

BC2 - BC0: These bits select the XA external bus configuration, specifically the number of
data bits and the number of address lines. The supported combinations are
shown below.

000 : 8-bit data bus, 12 address lines
001 : 8-bit data bus, 16 address lines
010 : 8-bit data bus, 20 address lines
011 : 8-bit data bus, 24 address lines
100 : < function reserved >
101 : < function reserved >
110 : 16-bit data bus, 20 address lines
111 : 16-bit data bus, 24 address lines

"-" Reserved for possible future use. Programs should take care when writing to
registers with reserved bits that those bits are given the value 0. This will
prevent accidental activation of any function those bits may acquire in future
XA CPU implementations.
XA User Guide 7-4 4/17/98



hen

 will
s
n of
Figures 7.2 and 7.3 show the address and data functions present on XA bus related pins w
used with each available bus width.

Figure 7.2  8-Bit External Bus Configuration

Figure 7.3  16-Bit External Bus Configuration

7.2.2  Typical External Device Connections

Many possibilities exist for connecting and using external devices with the XA bus. The bus
support EPROMs, RAMs, and other memory devices, as well as peripheral devices such a
UARTs, and parallel port expanders. The following diagrams show a generalized connectio
devices for 8-bit and 16-bit XA bus modes.

A3 - A0

A4 - A11/
D0 - D7

A12 - A23

4 low order address lines,
always driven

8 multiplexed address
and data lines

Up to 12 high order address
lines, always driven

XA

A3 - A1

A4 - A19/
D0 - D15

A20 - A23

4 low order address lines,
always driven

16 multiplexed address
and data lines

Up to 4 high order address
lines, always driven

XA
4/17/98 7-5 External Bus



Figure 7.4  Typical XA External Bus Connections for 8-Bit Peripheral Devices

Figure 7.5  Typical XA External Bus Connections for 16-Bit Peripheral Devices

   
   

 8
-b

it
ad

dr
es

s 
la

tc
h

   8-bit
peripheral
   deviceXA

A4 - A11

D0 - D7

A3 - A0,
(A12 - A19)

Address
 decode CS

A4D0-
A11D7

A3 - A0,
(A12 - A19)

ALE

RD

WR

LE

RD

WR

PSEN OE

for data
device

for code
device

   
   

16
-b

it
ad

dr
es

s 
la

tc
h

XA

A4 - A19

Address
 decode

CS

ALE LE

for data
device

for code
device

(low byte)

A4D0-
A19D15

8-bit
Device

A3 - A1

WRH

WRL
RD

PSEN

D0 - D7

A3 - A1

WR

RD
OE

A4 - A19

CS

for data
device

for code
device

(high byte)

8-bit
Device

D8 - D15

A3 - A1

WR

RD
OE
XA User Guide 7-6 4/17/98



E,
rite

"rest
us
clock

he
the
rent

n/off-
-chip
the
n, the
XA

ns
uction
tely.

orter

dress,
ignal
de or

ile
ur
 to 16
t
or
tch
 bus
h an
7.3  Bus Timing and Sequences
The standard XA external bus allows programming the widths of the bus control signals AL
PSEN, WRL, WRH, and RD. There is also an option to extend the data hold time after a w
operation. The combinations available will allow interfacing most devices to the XA directly
without the need for special buffers or a WAIT state generator. Note that there is always a 
clock" after any type of bus cycle except part of a burst mode code read. That is, when a b
cycle is completed and the bus strobe de-asserted, no new bus cycle will be begun until one
has passed with no bus activity.

7.3.1  Code Memory

Interfacing with external code memory, typically in the form of EPROMs, is enabled by the
PSEN control signal. If the XA is configured to execute internal code memory at reset, by t
setting of theEA pin, it will automatically begin to fetch external code if the program crosses
boundary from internal to external code space. The location of this boundary varies for diffe
XA derivatives, depending on the size of the internal code memory for each part.

Since the XA employs a pre-fetch queue in order to optimize instruction execution times,
fetching of external instructions may begin before program execution actually crosses the o
chip code memory boundary. If a branch or subroutine return is located near the end of on
code memory, the off-chip fetch would be unnecessary, and may in fact cause problems if 
XA ports that implement the external bus are being used for other purposes. For this reaso
BUSD (bus disable) bit in the Bus Configuration Register (BCR) is provided to prevent the 
from using the external bus for code or data operations.

Note also that external code read cycles may sometimes be aborted by the XA. This happe
when a code pre-fetch is occurring on the bus and the XA must execute a branch. The instr
data from the code pre-fetch will not be needed, so the bus cycle will be terminated immedia
This may appear as an ALE with no subsequent PSEN strobe, or a PSEN strobe that is sh
than that specified by the bus timing registers.

Code Read with ALE
The classic operation of a multiplexed address and data bus involves the issuance of an ad
along with its associated control signal, for every bus cycle. The XA uses the bus control s
ALE to indicate that an address is on the bus that must be latched through the following co
data operation. The following diagram shows a code memory fetch in a cycle using ALE.

Burst Code Read (No ALE)
The XA does not always require an ALE cycle for every code fetch. This feature is included
specifically to improve performance when the XA executes code from external memory, wh
increasing the access time available for the external memory device. Because the lower fo
address lines of the external bus are always driven, not multiplexed, the XA can access up
bytes (or 8 words) of sequential code memory each time an ALE is issued. This type of fas
sequential code read is called a burst read. Of course, any type of jump, branch, interrupt, 
other change in sequential program flow will require an ALE in order to change the code fe
address in a non-sequential manner. Any data operation (read or write) on the XA external
also requires an ALE cycle and will cause any subsequent external code fetch to begin wit
ALE cycle also.
4/17/98 7-7 External Bus



en
Figure 7.6  Typical External Code Read Using ALE

The following diagram shows a typical sequential code fetch where no ALE is issued betwe
code reads. Also note that thePSEN bus control signal does not toggle, but remains asserted
throughout the burst code read

Figure 7.7  Burst Mode (Sequential) External Code Read

Note: the timing of this type of bus operation is user programmable. The timing shown
here is generated by the Bus Timing Register setup: ALEW = 0, CRA1/0 = 01.

Address/
Data bus

PSEN

Address bus

ALE

address instruction data

XTAL1

Address/
Data bus

PSEN

Address bus

ALE

instruction

XTAL1

address

Note: the timing of this type of bus operation is user programmable. The timing shown here
is generated by the Bus Timing Register setup: ALEW = 0, CR1/0 = 01, CRA1/0 = 00.

data
instruction

data
XA User Guide 7-8 4/17/98



ord
hese

d
/off-
ing

e,
s
 on
7.3.2  Data Memory

Reads and writes on the XA external bus are controlled through the use of theRD, WRL, and
WRH signals. Since the XA bus supports both 8-bit and 16-bit widths, as well as byte and w
read and write operations, several different versions of the basic bus cycles are possible. T
are described in the following sections.

Data memory, like code memory, has a boundary where the internal data memory ends, an
above which the XA will switch to the external bus in order to act on data memory. This on
chip data memory boundary may be in a different place for various XA derivatives, depend
upon the amount of internal data memory built into a specific derivative.

Typical Data Read
A simple byte read on an 8-bit bus or any read on a 16-bit bus both begin with an ALE cycl
where the XA presents the address of the data location that is to be read on the bus. This i
followed by the assertion of theRD strobe, that causes the external device to present its data
the bus. This process is shown in the diagram below.

Figure 7.8  Typical External Data Read

Address/
Data bus

RD

Address bus

ALE

address data in to XA

XTAL1

Note: the timing of this type of bus operation is user programmable. The timing shown
here is generated by the Bus Timing Register setup: ALEW = 0, DRA1/0 = 01.
4/17/98 7-9 External Bus



uires
 byte-
rder

)
e.

ata
ere is
d for
Word Read on an 8-Bit Data Bus
When the XA external bus is configured for an 8-bit data width, a word read operation is
automatically performed as two byte reads at sequential addresses. Since the XA CPU req
word operations to be performed at even addresses, the second half of any word read on a
wide bus always uses the same upper address latched by ALE. for this operation, the low o
byte first is read at the even byte address, then the high order byte is read at the next (odd
address. So, only one ALE is required in this case. The diagram below shows this sequenc

Figure 7.9  Word Read on 8-Bit Data Bus

Byte Read on a 16-Bit Data Bus
When an instruction causes a read of one byte of data from the external bus, when it is
configured for 16-bit width, a simple read operation is performed. This results in 16 bits of d
being received by the XA, which uses only the byte that was requested by the program. Th
no way to distinguish a byte read from a word read on the external bus when it is configure
a 16-bit width.

Address/
Data bus

RD

Address bus

ALE

address data in to XA

XTAL1

data in

even address odd address

Note: the timing of this type of bus operation is user programmable. The timing shown
here is generated by the Bus Timing Register setup: ALEW = 0, DRA1/0 = 01, DR1/0 = 01.

to XA
XA User Guide 7-10 4/17/98



rtion
s

n

Typical Data Write
A data write operation begins with an ALE cycle, like a read operation, followed by the asse
of one or both of the write strobes,WRL andWRH. This simple bus cycle applies to byte write
on an 8-bit data bus and all writes on a 16-bit data bus.

A byte write on an 8-bit data bus will always use only theWRL strobe. A byte write on a 16-bit
data bus will always use either theWRL or WRH strobe, depending on whether the byte is at a
even or odd address. A word write on a 16-bit bus requires the assertion of both theWRL and
WRH strobes. The simple data write cycle is shown below.

Figure 7.10  Typical External Data Write

Address/
Data bus

WRL and/or
WRH

Address bus

ALE

address data out
from XA

XTAL1

Note: the timing of this type of bus operation is user programmable. The timing shown here
is generated by the Bus Timing Register setup: ALEW = 0, DWA1/0 = 00, WM0 = 0, WM1 = 0.
4/17/98 7-11 External Bus



 on an
nce is
Word Write on an 8-Bit Data Bus
When a word write operation is done with the bus configured to an 8-bit width, the XA
automatically performs two byte writes. First, the low order byte is written (at the even byte
address), then the high order byte is written at the next (odd) address. As with a word read
8-bit bus, this requires only a single ALE cycle at the beginning of the process. This seque
shown in the following diagram.

Figure 7.11  Word Write on 8-Bit Data Bus

Address/
Data bus

WRL

Address bus

ALE

address data out
from XA

XTAL1

data out
from XA

even address odd address

Note: the timing of this type of bus operation is user programmable. The timing shown here
is generated by the Bus Timing Register setup: ALEW = 0, DWA1/0 = 00, DW1/0 = 00,
WM0 = 0, WM1 = 0.
XA User Guide 7-12 4/17/98



se

al
External Bus Signal Timing Configuration
The standard XA bus also provides a high degree of bus timing configurability. There are
separate controls for ALE width, data read and write cycle lengths, and data hold time. The
times are programmable in a range that will support most RAMs, ROMs, EPROMs, and
peripheral devices over a wide range of oscillator frequencies without the need for addition
external latches, buffers, or WAIT state generators.

Programmable bus timing is controlled by settings found in the Bus Timing Register SFRs,
named BTRH, and BTRL, shown in Figures 7.12 and 7.13.

Figure 7.12  Bus Timing Register High Byte (BTRH)

DWA1 DWA0 DRA1 DRA0DR0DR1DW1 DW0BTRH

DW1, DW0: Data Write without ALE. Applies only to the second half of a 16-bit write operation when
the bus is configured to 8 bits.

00 : Data write cycle is 2 clock in duration.
01 : Data write cycle is 3 clocks in duration.
10 : Data write cycle is 4 clocks in duration.
11 : Data write cycle is 5 clocks in duration.

DWA1, DWA0: Data Write with ALE. Selects the length (in CPU clocks) of the entire data write cycle,
including ALE.

00 : Data write cycle is 2 clocks in duration.
01 : Data write cycle is 3 clocks in duration.
10 : Data write cycle is 4 clocks in duration.
11 : Data write cycle is 5 clocks in duration.

DR1, DR0: Data Read without ALE. Applies only to the second half of a 16-bit read operation when
the bus is configured to 8 bits.

00 : Data read cycle is 1 clock in duration.
01 : Data read cycle is 2 clocks in duration.
10 : Data read cycle is 3 clocks in duration.
11 : Data read cycle is 4 clocks in duration.

DRA1, DRA0: Data Read with ALE. Selects the length (in CPU clocks) of the entire data read cycle,
including ALE.

00 : Data read cycle is 2 clocks in duration.
01 : Data read cycle is 3 clocks in duration.
10 : Data read cycle is 4 clocks in duration.
11 : Data read cycle is 5 clocks in duration.

Notes:
- See text regarding disallowed bus timing combinations.
- The bit pairs DW1:0, DWA1:0, DR1:0, DRA1:0, CR1:0, and CRA1:0 determine the length of entire

bus cycles of different types. Bus cycles with an ALE begin when ALE is asserted. Bus cycles without
an ALE begin when the bus strobe is asserted or when the address changes (in the case of burst
mode code reads). Bus cycles end either when the bus strobe is de-asserted or when data hold time
is completed (in the case of a data write with extra hold time, see bit WM0).
4/17/98 7-13 External Bus



Figure 7.13  Bus Timing Register Low Byte (BTRL)

WM1 WM0 ALEW - CR0CR1 CRA1 CRA0BTRL

WM1: Write Mode 1. Selects the width of the write pulse.
0 : Write pulse (WR) width is 1 CPU clock.
1 : Write pulse (WR) width is 2 CPU clocks.

WM0: Write Mode 0. Selects the data hold time.
0 : Data hold time is minimum (0 clocks).
1 : Data hold time is 1 CPU clock.

ALEW: ALE width selection. Determines the duration of ALE pulses.
0 : ALE width is one half of one CPU clock.
1 : ALE width is one and a half CPU clocks.

CR1, CR0: Code Read. Selects the length of a code read cycle when ALE is not used.
00 : Code read cycle is 1 clocks in duration.
01 : Code read cycle is 2 clocks in duration.
10 : Code read cycle is 3 clocks in duration.
11 : Code read cycle is 4 clocks in duration.

CRA1, CRA0: Code Read with ALE. Selects the length of a code read cycle when ALE is used prior
to PSEN being asserted.

00 : Code read cycle is 2 clocks in duration.
01 : Code read cycle is 3 clocks in duration.
10 : Code read cycle is 4 clocks in duration.
11 : Code read cycle is 5 clocks in duration.

"-" Reserved for possible future use. Programs should take care when writing to registers
with reserved bits that those bits are given the value 0. This will prevent accidental
activation of any function those bits may acquire in future XA CPU implementations.

Notes:
- See text regarding disallowed bus timing combinations.
- The bit pairs DW1:0, DWA1:0, DR1:0, DRA1:0, CR1:0, and CRA1:0 determine the length of entire

bus cycles of different types. Bus cycles with an ALE begin when ALE is asserted. Bus cycles without
an ALE begin when the bus strobe is asserted or when the address changes (in the case of burst
mode code reads). Bus cycles end either when the bus strobe is de-asserted or when data hold time
is completed (in the case of a data write with extra hold time, see bit WM0).
XA User Guide 7-14 4/17/98



annot
r
e

rules
d ALE

st

ss

lse
ust
d
cture,

s with

ycles

s.

he
s for
The
he
f the
Disallowed Bus Timing Configurations
Some possible combinations of bus timing register settings do not make sense and the XA c
produce working bus signals that match those settings. The disallowed combinations occu
where the sum of the specified components of a bus cycle exceed the specified length of th
entire cycle. Two simple rules define the allowed/disallowed combinations. Violating these 
may result in incomplete bus cycles, for example a data read cycle in which an address an
pulse are output, but no read strobe (RD) is produced.

For data write cycles on the external bus there are two conditions that must be met. The fir
applies to data write cycles with no ALE:

WM1 + WM0 ≤ DW1:0

This says that the sum of the timing values defined by the WM1 and WM0 fields must be le
than or equal to the timing value defined by the DW field. Note that this is the value of the
timing durations that they specify. For example, if the WM1 field specifies a 2 clock write pu
and the WM0 field specifies a 1 clock data hold time, those two times together (3 clocks) m
be less than or equal to the timing specified by the DW1:0 field. In this case the DW1:0 fiel
must specify a total bus cycle duration of at least 3 clocks. The other rule uses the same stru
as follows.

A second requirement applies to write cycles with ALE:

ALEW + WM1 + WM0 ≤ DWA1:0

The configuration for data read has only one requirement, which applies to data read cycle
ALE:

ALEW + 1 ≤ DRA1:0

The configuration for code read also has only one requirement, which applies to code read c
with ALE:

ALEW + 1 ≤ CRA1:0

7.3.3  Reset Configuration

Upon reset, at the time of power up or later, the XA bus is initially configured in certain way
As previously discussed, the pinsEA and BUSW select whether the XA will begin operation
from internal code, and whether the bus will be 8-bits or 16-bits.

The values for the programmable bus timing are also set to a default value at reset. All of t
timing values are set to their maximum, providing the slowest bus cycles. This setting allow
the slowest external devices that may be sued with the XA without WAIT generation logic. 
user program should set the bus timing to the correct values for the specific application in t
system initialization code. Refer to the data sheet for a particular XA derivative for details o
values found in registers and SFRs after reset.
4/17/98 7-15 External Bus



 of
ernal
ee of

wide

 these
 to the

ritten

o it.

he
he
 if a

n a
 port,
7.4  Ports
I/O ports on any microcontroller provide a connection to the outside world. The capabilities
those I/O ports determine how easily the microcontroller can be interfaced to the various ext
devices that make up a complete application. The standard XA I/O ports provide a high degr
versatility through the use of programmable output modes and allow easy connection to a 
variety of hardware.

7.4.1  I/O Port Access

The standard on-chip I/O ports of the XA are accessed as SFRs. The SFR names used for
ports begin with port 0, called P0. Port numbers and names go up in sequence from there,
number of ports on a specific XA derivative. Ports are normally identified by their names in
assembler source code, such as: "MOV P1,#0". This instruction causes the value 0 to be w
to port 1.

XA I/O ports are typically bit addressable, meaning that individual port bits are readable,
writable, and testable. An instruction using a port bit looks like this: "SETB P2.1". This
particular example would result in the second lowest bit in port 2 (bit 1) having a 1 written t

Reading of a Port Pin Versus the Port Latch
Each I/O port has two important logic values associated with it. The first is the contents of t
port latch. When data is written to a port, it is stored in the port latch. The second value is t
logic level of the actual port pin, which may be different than the port latch value, especially
port pin is being used as an input.

When a port is explicitly read by an instruction, the value returned is that from the pin. Whe
port is read intrinsically, in order to perform some operation and store the value back to the
the port latch is read. This type of operation is called a read-modify-write.

Figure 7.14  How ports are read.

1) The following instructions cause read-modify-
write operations, and read the port latch when a
port or port bit is specified as the destination:

ADD Px, ...
ADDC Px, ...
ADDS Px, ...
AND Px, ...
DJNZ Px, ...
OR Px, ...
SUB Px, ...
SUBB Px, ...
XOR Px, ...

CLR Px.y
JBC Px.y, rel8
MOV Px.y, C
SETB Px.y

2) The following instruction reads the
port pins when a port is specified as
the destination operand:

CMP Px, ...

3) When a port or port bit is specified
as a source in any instruction, the port
pin is always read.
XA User Guide 7-16 4/17/98



e
t
rt of

 the

ort
port
e

s the

tput
oth an
e port
n

res
 in the

r a
l pull

d pin
rent
n it is

ink
 input
7.4.2  Port Output Configurations

Standard XA I/O ports provide several different output configurations. One is the 80C51 typ
quasi-bidirectional port output. Others are open drain, push-pull, and high impedance (inpu
only). It is important to note that the port configuration applies to a pin even if that pin is pa
the external bus. Bus pins should normally be configured to push-pull mode. Also, the port
latches for pins that are to be used as part of the external bus must be set to one (which is
reset state). A zero in a port latch will override bus operations and force a zero on the
corresponding bus position.

The port configuration is controlled by settings in two SFRs for each port. One bit in each p
configuration register is associated with a port pin in the corresponding bit position. These 
configuration SFRs are called: PnCFGA and PnCFGB, where "n" is the port number. So, th
configuration registers for port 1 are named P1CFGA and P1CFGB. The table below show
port control bit combinations and the associated port output modes.

7.4.3  Quasi-Bidirectional Output

The default port output configuration for standard XA I/O ports is the quasi-bidirectional ou
that is common on the 80C51 and most of its derivatives. This output type can be used as b
input and output without the need to reconfigure the port. This is possible because when th
outputs a logic high, it is weakly driven, allowing an external device to pull the pin low. Whe
the pin is pulled low, it is driven strongly and able to sink a fairly large current. These featu
are somewhat similar to an open drain output except that there are three pullup transistors
quasi-bidirectional output that serve different purposes.

One of these pullups, called the "very weak" pullup, is turned on whenever the port latch fo
particular pin contains a logic 1. The very weak pullup sources a very small current that wil
the pin high if it is left floating.

A second pullup, called the "weak" pullup, is turned on when the port latch for its associate
contains a logic 1 and the pin itself is a logic 1. This pullup provides the primary source cur
for a pin that is outputting a 1, and can drive several TTL loads. If a pin that has a logic 1 o
pulled low by an external device, the weak pullup turns off, and only the very weak pullup
remains on. In order to pull the pin low under these conditions, the external device has to s
enough current to overpower the weak pullup and pull the voltage on the port pin below its
threshold.

Table 7.1

PnCFGB PnCFGA Port Output Mode

0 0 Open drain.

0 1 Quasi-bidirectional (default).

1 0 High impedance.

1 1 Push-pull.
4/17/98 7-17 External Bus



eed

nd

puts
f
a

urns
 will
eing
y the
nce

it is
ls the

ng the
The third (and final) pullup is referred to as the "strong" pullup. This pullup is included to sp
up low-to-high transitions on a port pin when the port latch changes from 0 to 1. When this
occurs, the strong pullup turns on for a brief time, two CPU clocks, pulling the port pin high
quickly, then turning off again.

The quasi-bidirectional output structure normally provides a means to have mixed inputs a
outputs on port pins without the need for special configurations. However, it has several
drawbacks that can be problems in certain situations. For one thing, quasi-bidirectional out
have a very small source current and are therefore not well suited to driving certain types o
loads. They are especially unsuited to directly drive the bases of external NPN transistors, 
common method of boosting the current of I/O pins.

Also, since the weak pullup turns off when a port pin is actually low, and the strong pullup t
on only for a brief time, it is possible that under certain port loading conditions, the port pin
get "stuck" low and cannot be driven high. This tends to happen when an external device b
driven by the port pin has some leakage to ground that is larger than the current supplied b
very weak pullup of the quasi-bidirectional port output. If there is also a fairly large capacita
on the pin, from a combination of the wiring itself and the pin capacitance of the device(s)
connected to the pin, the strong pullup may not succeed in pulling the pin high enough while
turned on. When the strong pullup is then turned off, the leakage of the external device pul
pin low again, since only the very weak pullup is turned on at that point and the leakage is
greater than the very weak pullup source current. These issues are the reason for enhanci
port configurations of the XA.

A diagram of the quasi-bidirectional output structure is shown in the figure below.

Figure 7.15  Structure of the Quasi-Bidirectional Output Configuration

weakvery
weak

strong

port
 pin

Vdd

2 clock
 delay

input
data

port latch
    data

N

P P P
XA User Guide 7-18 4/17/98



en
ner
 the

veral
the
 the

e quasi-
tains
ode.

 The
Open Drain Output
Another port output configuration provided by the standard XA I/O ports is open drain. This
configuration turns off all pullups and only drives the pulldown transistor of the port driver wh
the port latch contains a logic 0. To be used as a logic output, a port configured in this man
must have an external pullup, typically a resistor tied to Vdd. The pulldown for this mode is
same as for the quasi-bidirectional mode.

An advantage of the open drain output is that is may be used to create wired AND logic. Se
open drain outputs of various devices can be tied together, and any one of them can drive 
wire low, creating a logical AND function without using a logic gate. The figure below show
structure of the open drain output.

Figure 7.16  Structure of the Open Drain Output Configuration

Push-Pull Output
The push-pull output mode has the same pulldown structure as both the open drain and th
bidirectional output modes, but provides a continuous strong pullup when the port latch con
a logic 1. This mode uses the same pullup as the strong pullup for the quasi-bidirectional m
The push-pull mode may be used when more source current is needed from a port output.
output structure for this mode is shown below.

Figure 7.17  Structure of the Push-Pull Output Configuration

port
pin

input
data

port latch
data

N

port
pin

Vdd

input
data

port latch
data

N

P

4/17/98 7-19 External Bus



rns
used

port
wer-
al

ut

t be

ut

tting

ly,
heir

at
an

 ns
0 ns

t rate
High Impedance Output
The final XA port output configuration is called high impedance mode. This mode simply tu
all output drivers on a port pin off. Thus, the pin will not source or sink current and may be 
effectively as an input-only pin with no internal drivers for an external device to overcome.

7.4.4  Reset State and Initialization

Upon chip reset, all of the port output configurations are set to quasi-bidirectional, and the 
latches are written with all ones. The quasi-bidirectional output type is a good default at po
up or reset because it does not source a large amount of current if it is driven by an extern
device, yet it does not allow the port pin to float. A floating input pin on a CMOS device can
cause excess current to flow in the pin’s input circuitry, and of course all port pins have inp
circuits in addition to outputs.

7.4.5  Sharing of I/O Ports with On-Chip Peripherals

Since XA on-chip peripheral devices share device pins with port functions, some care mus
taken not to accidentally disable a desired pin function by inadvertently activating another
function on the same pin. A peripheral that has an output on a pin will use the I/O port outp
configuration for that pin (quasi-bidirectional, open drain, push-pull, or high impedance).

The method of sharing multiple functions on a single pin involves a logic AND of all of the
functions on a pin. So, if a port latch contains a zero, it will drive that port pin low, and any
peripheral output function on that pin is overridden. Conversely, an on-chip peripheral outpu
a zero on a pin prevents the contents of the port latch from controlling the output level. It is
usually not an issue to avoid turning on an alternate peripheral function on a pin accidental
since most peripherals must be either explicitly turned on or activated by a write to one of t
SFRs. It is more likely that a user program could erroneously write a zero to a port latch bit
corresponding to a pin with a peripheral function that is being used and therefore disable th
function. The simple rule to follow is: never write a zero to a port bit that is associated with 
active on-chip peripheral, or that should only be used an input.

When an XA I/O port pin is used as an input for a peripheral function, it is sampled at the
oscillator rate divided by 2. For example, if an XA is running at a 20 MHz clock (giving a 50
clock period), an external timer input would have to remain in the same state for at least 10
in order to guarantee that it is sampled correctly. This gives a maximum frequency for such
inputs as the oscillator rate divided by 4. In this example, the maximum external timer inpu
would be 5 MHz.
XA User Guide 7-20 4/17/98



rams.
ell as
U via
e SFR

core,
his

.
 with

 the

e

8   Special Function Register Bus

The Special Function Register Bus or SFR Bus is the means by which all Special Function
Registers are connected to the XA CPU so that they may be read and written by user prog
This includes all of the registers contained in peripherals such as Timers and UARTs, as w
some CPU registers such as the PSW. CPU registers communicate functionally with the CP
direct connections, but read and write operations performed on them are routed through th
bus.

The SFR bus provides a common interface for the addition of any new functions to the XA 
thus supplying the means for building a large and varied microcontroller derivative family. T
is illustrated in Figure 8.1.

Figure 8.1. Example of peripheral functions connected to the XA SFR bus.

8.1  Implementation and Possible Enhancements
The SFR bus interface is itself not part of the XA CPU core, but a separate functional block
Since the SFR bus controller is a separate block, writes to SFRs may occur simultaneously
the beginning of execution of the next instruction. If the next instruction attempts to access
SFR bus while it is still busy, the instruction execution will stall until the SFR bus becomes
available. SFR bus read and write clocks each take 2 CPU clocks to complete. However, th
starting time of those 2 clocks has a one clock uncertainty, so the time from the SFR bus
controller receiving a request until it is completed can be either 2 or 3 clocks.

XA CPU Core

UART

Timer

I/O Port

I/O Port

SFR bus

Timer
I2C

Interface
3/24/97 8-1 Special Function Register Bus



s.

o 8-bit
as if it
re

us bits
n
d
h
n
le XA

odify
 those
d are

l
, it
nce the
al
ing it.
The SFR bus implementation on initial XA derivatives is an 8-bit interface. This means that
word reads and writes are not allowed. In the future, higher performance XA architecture
implementations may expand the capabilities of the SFR bus by supporting 16-bit accesse

One enhancement to the SFR bus would be to have it divide 16-bit access requests into tw
accesses. This leaves the actual SFR bus width at 8 bits, but allows a user program to act 
was 16-bits. The highest performance alternative is a full 16-bit SFR bus. This would requi
extra hardware in the XA to implement, but may eventually become necessary on order to
achieve very high performance with some future enhanced XA core implementation.

8.2  Read-Modify-Write Lockout
Some of the SFRs that are accessed via the SFR bus contain interrupt flags and other stat
that are set directly by the peripheral device. When a read-modify-write operation is done o
such an SFR, there is a possibility that a peripheral write to a flag bit in the same SFR coul
occur in the middle of this process. A standard mechanism is defined for the XA to deal wit
such cases, which is called Read-Modify-Write lockout. A read- modify-write is defined as a
operation where a particular SFR is read, altered and written during the execution of a sing
instruction.

The instructions that fit this description are those that write to bits in SFRs and those that m
an entire SFR, except for the MOV instruction. This happens to be the same operations as
that read port latches rather than port pins as specified in Chapter 7, only the SFRs involve
different.

The mechanism used throughout XA peripherals to avoid losing status flags during a read-
modify-write operation first involves detecting that such an operation is in progress. A signa
from the CPU to the peripherals indicates such a condition. When a peripheral detects this
prevents the CPU write to just those status flags that the peripheral has already updated si
beginning of the read-modify-write operation. This basically makes it look as if the peripher
flag update happened just after the read-modify-write operation completed, rather than dur
Once the read-modify-write operation is completed, a CPU write may affect all bits in these
SFRs.
XA User Guide 8-2 3/24/97



hen

 have

XA
een
r all
ons
.
he
map
slation

ssible.

low

gister
ware
ctions

nly
ata
tibility
s

9  80C51 Compatibility

Many architectural decisions and features were guided by the goal of 80C51 compatibility w
the XA core specification was written. The processor's memory configuration, memory
addressing modes, instruction set, and many other things had to be taken into account.

9.1  Compatibility Considerations
Source code compatibility of the XA to the 80C51 was chosen as a goal for many reasons.
Complete compatibility with an existing processor is not possible if the new processor is to
substantially higher performance.

The XA architecture makes use of a number of rules for 80C51 compatibility. An 80C51 to 
source code translator program is intended to be the means of providing compatibility betw
the architectures. For the translator software to be fairly simple, a one-to-one translation fo
80C51 instructions is a major consideration. The XA instruction set includes many instructi
that are more powerful than 80C51 instructions and yet perform roughly the same function
80C51 instruction can therefore be translated into those XA instructions. When this is not t
case, an 80C51 instruction may be included in its original form in the XA. The XA memory 
and memory addressing modes are also a superset of the 80C51, making source code tran
easy to accomplish. Other CPU features are made compatible to the extent that such is po
In rare cases, when this compatibility could not be provided for some important reason, the
changes were kept to the minimum while maintaining the XA goals of high performance and
cost.

9.1.1  Compatibility Mode, Memory Map, and Addressing

Specific XA registers are reserved for use as 80C51 registers when translating code. The A
register, the B register, and the data pointer all map to a pre-determined place in the XA re
file (see figure 9.1). The accumulator (A) is the only one of these that required special hard
support in the XA, because the accumulator can be read or tested directly by certain instru
and in order to generate the parity flag.

The 4 banks of 8 byte registers that are found in the 80C51 are duplicated in the XA. The o
difference is that in the XA, these registers do not normally overlap the lower 32 bytes of d
memory space as they do in the 80C51. To allow code translation, a special 80C51 compa
mode causes the XA register file to copy the 80C51 mapping to data memory. This mode i
activated by the CM bit in the System Configuration Register (SCR).
3/24/97 9-1 8051 Compatibility



rd
erved
te
dable

s
only

al
ode
ister

rned

ode.
Figure 9.1. XA Register File

Other important registers of the 80C51 are provided in other ways. The program status wo
(PSW) of the XA is slightly different than the 80C51 PSW, so a special SFR address is res
to provide an 80C51 compatible "view" of the PSW for use by translated code. This alterna
PSW, called PSW51, is shown in the figure 9.2. The F0 flag and the F1 flag are simply rea

and writable bits. The P flag provides an even parity bit for the 80C51 A register and alway
reflects the current contents of that register. Note that the P flag, the F0 flag, and the F1 flag
appear in the PSW51 register.

The 80C51 indirect data memory access mode, using R0 or R1 as pointers, requires speci
support on the XA, where pointers are normally 16 bits in length. The 80C51 compatibility m
also causes the XA to mimic the 80C51 indirect scheme, using the first two bytes of the reg
file as indirect pointers, each zero extended to make a 16-bit address. Due to this and the
previously mentioned register overlap to memory feature, the compatibility mode must be tu
on in order to execute most translated 80C51 code on the XA. Other than the two
aforementioned effects, nothing else about XA functioning is affected by the compatibility m

Figure 9.2. PSW CPU status flags

R7

R6

R5

R4

R3

R2

R1

R0

R7H

R6H = DPH

R5H

R4H = B

R3L

R2L

R1L

R0L

R7L

R6L = DPL

R5L

R3H

R2H

R1H

R0H

R4L = A (ACC)

Global registers.

SSP

Banked Registers

USP

DPTR

PSW51   C  AC POV F1 F0    RS1    RS0
XA User Guide 9-2 3/24/97



m
SFR
ne by

put. If

stack
 the stack

-bits.

rection
, from
ssary,

slated

ons.
. The
 in
oth
ack

ome
A.

long
t for

ork

s are
The 80C51 mapped the special function registers (SFRs) into the direct address space, fro
address 80 hex to FF hex. SFRs were only accessed by instruction that contain the entire 
address, so translation to the XA is fairly simple. Since references to SFRs are normally do
their name in 80C51 source code, the translation just copies the name into the XA code out
an SFR happened to be referred to by its address, its name must be found so that it can be
inserted into the XA code. This would require that an SFR table be available for the 80C51
derivative for which the code was originally written.

The XA has another mode which may be useful for translated 80C51 code. In order to save
space as well as speed up execution, a Page Zero (PZ) mode causes return addresses on
to be saved as 16 bits only, instead of the usual 24 bits (which occupy 32 bits due to word
alignment on the XA stack). All other program and data addresses are also forced to be 16
If an entire 80C51 application program is translated to the XA, it will very likely fit within this
64K limit, allowing the use of this mode.

Other aspects of the processor stack have been altered on the XA. For one, the standard di
of stack growth for 16 bit processors has been adopted. So, the XA stack grows downward
higher to lower addresses in data memory. The stack can now be nearly 64K in size if nece
and begin anywhere in its data segment so may be easily moved to a new location for tran
80C51 applications. This stack direction change is important to match the stack contents to
normal data memory accesses on the XA.

80C51 code translated to run on the XA will also tend to use more stack space for two reas
First, the PSW is automatically saved during interrupt and exception processing on the XA
original 80C51 code should have also saved the PSW explicitly, but the XA PSW is 16 bits
length. Secondly, the initial implementation of the XA allows only word writes to the stack. B
byte and word operations may be performed, but both types of operations use 16 bits of st
space.

The tendency for stack size increase, in addition to the stack growth direction will require s
changes to be made if a complete 80C51 application program is translated to run on the X

9.1.2  Interrupt and Exception Processing

Interrupt handling on the XA is inherently much more powerful than it was on the 80C51. A
with this added power and flexibility comes some difference that must be taken into accoun
80C51 code conversion.

Previously noted was the fact that the XA automatically saves the PSW during interrupt
processing. If an 80C51 program relied on this not being the case somehow, it would not w
without alteration. This type of reliance is not found in code using common programming
practices and should be very rare.

The XA allows up to 15 interrupt priority levels, compared to only 2 in the standard 80C51,
although up to 4 levels are available in a few of the newer 80C51 variations. These prioritie
stored as 4-bit values, with the priority for 2 interrupts found in the same SFR byte. This is
3/24/97 9-3 8051 Compatibility



ges

resses

 vector

ed

made.
the

me
n,

 in
 with
ed by
,

ged.
 4,
uch

ld

o
t, and a

ny

et the
 4 least
ften,
d as
igh.
different (and much more powerful) than any 80C51 derivative, and will require minor chan
to code that is translated.

The method of entering an interrupt routine in the XA uses a vector table stored in low add
of the code memory. Each interrupt or exception source has a vector which consists of the
address of the handler routine for that event and a new PSW value that is loaded when the
is taken. This differs from the 80C51 approach of fixed addresses for the interrupt service
routines, and again is a much more flexible and powerful method. So, if a complete 80C51
application program is converted for the XA, the interrupt service routines must be re-locat
above the XA vector table and the new address stored in the table, a very simple process.

9.1.3  On-Chip Peripherals

Compatibility with standard on-chip peripherals found in the 80C51 has been kept in the XA
whenever possible and reasonable, but not to the extent that some enhancements are not 
The set of standard peripheral devices includes the UART, Timers 0 and 1, and Timer 2 from
80C52.

The XA UART has been enhanced in a way that does not affect translated 80C51 code. So
additional features are added through the use of a new SFR, such as framing error detectio
overrun detection, and break detection.

Timers 0 and 1 remain the same except for one difference in the function, and a difference
timing. The functional change was to remove the 8048 timer mode (mode 0) and replace it
something much more useful: a 16-bit auto-reload mode. Sixteen bit reload registers (form
RTHn and RTLn) had to be added to Timers 0 and 1 to support the new mode 0. In mode 2
RTLn also replaces THn as the 8-bit reload register.

The relationship of all timer count rates to the microcontroller oscillator has also been chan
This adds flexibility since this is now a programmable feature, allowing oscillator divided by
16, or 64 to be used as the base count rate for all of the timers. Since XA performance is m
higher (on a clock-by clock basis), an application converted to the XA from the 80C51 wou
likely not use the same oscillator frequency anyway.

9.1.4  Bus Interface

The customary 80C51 bus control signals are all found on the standard external XA bus. T
provide the best performance, the details of some of these signals have changed somewha
few new ones have been added. In addition to the well known ALE,PSEN,RD, WR, andEA,
there are now also WAIT andWRH. The WAIT signal causes wait states to be inserted into a
XA bus clock as long as it is asserted. TheWRH signal is used to distinguish writes to the high
order byte when the XA bus is configured to be 16 bits wide.

The multiplexed address/data bus has undergone some renovations on the XA as well. To g
most performance in a system executing code from the external bus, the XA separates the
significant address lines on to their own pins. Since these lines normally change the most o
an ALE clock would be required on every external code fetch if these lines were multiplexe
they are on the 80C51. The 80C51 had time to do this since its performance was not that h
XA User Guide 9-4 3/24/97



 an
 (or

ite)
he

 pin

n.
HD is
ue to

s used

must
hows

ct
ritten
 will
on

ble of

of the
ke
istance
The XA, however, uses only as many clocks as are needed to execute each instruction, so
ALE for every fetch would slow things down considerably. With this change, up to 16 bytes
8 words) of code may be accessed without the need to insert an ALE cycle on the XA bus.

The number of XA clocks used for each type of bus cycle (code read, data read, or data wr
can also be programmed, so that slower peripheral devices can work with the XA without t
need for an external WAIT state generator.

Due to the various changes to the bus just mentioned, an XA device cannot be completely
compatible with an 80C51 derivative if the external bus is used. The changes to application
hardware needed are relatively small and easy to make.

9.1.5  Instruction Set

The simplest goal of the XA for instruction set compatibility was to have every 80C51
instruction translate to one XA instruction. That has been achieved but for a single exceptio
The 80C51 instruction, XCHD or exchange digits, cannot be translated in that manner. XC
an instruction that is rarely used on the 80C51 and could not be implemented on the XA, d
its internal architecture, without adding a great deal of extra circuitry. So, if this instructionis
encountered when 80C51 source code is being translated, a sequence of XA instructions i
to duplicate the function:

PUSH R4H ; Save temporary register.
MOV R4H,(Ri) ; Get second operand.
RR R4H,#4 ; Swap one byte.
RR R4L,#4 ; Swap second byte (the "A" register).
RL R4,#4 ; Swap word.

; Result is swapped nibbles in A and R4H.
MOV (Ri),R4H ; Store result.
POP R4H ; Restore temporary register.

If the application requires this sequence to not be interruptible, some additional instruction 
be added in order to disable and re-enable interrupts. The table at the end of this section s
all of the other XA code replacements for 80C51 instructions.

The XA instruction set is much more powerful than the 80C51 instruction set, and as a dire
consequence, the average number of bytes in an instruction is higher on the XA. In code w
for the XA, the capability of a single instruction is high, so the size of an entire XA program
normally be smaller than the same program written for an 80C51. Of course, this depends 
how much the application can take advantage of XA features. When code is translated from
80C51 source, however, the size change can be an issue.

In the case of a jump table, where the JMP @A+DPTR instruction is used to jump into a ta
other jumps composed of the 80C51 AJMP instruction, the XA cannot always duplicate the
function of the jumps in the table with instructions that are 2 bytes in length, as in the case 
AJMP instruction. An adjustment to the calculation of the table index will be required to ma
the translated code work properly. For a data table, accessed using MOVC @A+PC, the d
to the table may change, requiring a similar index adjustment.
3/24/97 9-5 8051 Compatibility



ce to
g of
ed,
Since the XA optimizes the timing of each instruction, there will be very little corresponden
the original 80C51 timing for the same code prior to translation to the XA. If the exact timin
a sequence of instructions is important to the application, the translated code must be alter
perhaps by adding NOPs or delay loops, to provide the necessary timing.

To show how a simple 80C51 to XA source code translator might work, a subroutine was
extracted from a working 80C51 program and translated using the table at the end of this
document and the other rules presented here. The original 80C51 source code was:

;StepCal - Calculates a trip point value for motor movement based on
;  a percent of pointer full scale (0 - 100%).
;  Call with target value in A. Returns result in A and "StepResult".

StepCal: MOV Temp2,A ; Save step target for later use.
MOV B,#Steplow ; Get low byte of step increment.
MUL AB ; Multiply this by the step target.
MOV StepResult,B ; Save high byte as partial result.
MOV Temp1,A ; Save low byte to use for rounding.

MOV A,Temp2 ; Get back the step target.
MOV B,#StepHigh ; Get high byte of step increment,
MUL AB ; and multiply the two.

ADD A,StepResult ; Add the two partial results.
JNB Temp1.7,Exit ; Least significant byte > 80h?
INC A ; If so, round up the final result.

Exit: ADD A,#MotorBot ; Add in the 0 step displacement.
MOV StepResult,A ; Save final step target.
RET

The same code as translated for the XA is as follows:

;StepCal - Calculates a trip point value for motor movement based on
;  a percent of pointer full scale (0 - 100%).
;  Call with target value in A. Returns result in A and "StepResult".

StepCal: MOV Temp2,R4L ; Save step target for later use.
MOV R4H,#Steplow ; Get low byte of step increment.
MULU.b R4,R4H ; Multiply this by the step target.
MOV StepResult,R4H ; Save high byte as partial result.
MOV Temp1,R4L ; Save low byte to use for rounding.

MOV R4L,Temp2 ; Get back the step target.
MOV R4H,#StepHigh ; Get high byte of step increment,
MULU.b R4,R4H ; and multiply the two.

ADD R4L,StepResult ; Add the two partial results.
JNB Temp1.7,Exit ; Least significant byte > 80h?
ADDS R4L,#1 ; If so, round up the final result.

Exit: ADD R4L,#MotorBot ; Add in the 0 step displacement.
MOV StepResult,R4 ; Save final step target.
RET
XA User Guide 9-6 3/24/97



ames

ese
code

’s
In this case, the translated code actually changed very little. Primarily, the 80C51 register n
have been replaced by the new ones reserved for them in the XA. The increment (INC)
instruction became a short add (ADDS), and the mnemonic for multiply (MUL) changed to
MULU8.

Some basic statistical information about these code samples may be found in table 9.1. Th
statistics show a large performance increase for the XA code. This is significant because the
is only simple translated 80C51 code and therefore does not take any advantage of the XA
unique features.

Table 9.1: 80C51 to XA Code Translation Statistics

Statistic 80C51
code

XA
translation Comments

Code bytes 28 40 - one NOP added for branch
alignment on XA

Clocks to execute 300 78 - includes XA pre-fetch queue
analysis, raw execution is 66
clocks

Time to execute
@ 20MHz

15 µsec 3.9 µsec - a nearly 4x improvement
without any optimization
3/24/97 9-7 8051 Compatibility



tual

ade to
9.2  Code Translation
Table 9.2 shows every 80C51 instruction type and the XA instruction that replaces it. An ac
80C51 to XA source code translator can make use of this table, but must also flag the
compatibility exceptions noted in this section, so that any necessary adjustments may be m
the resulting XA source code.

Table 9.2: 80C51 to XA Instruction Translations

80C51 Instruction XA Translation

Arithmetic operations

ADD A, Rn
ADD A, #data8
ADD A,dir8
ADD A, @Ri
ADDC A, Rn
ADDC A, #data8
ADDC A,dir8
ADDC A, @Ri

ADD.b R, R
ADD.b R, #data8
ADD.b R, direct
ADD.b R, [R]
ADDC.bR, R
ADDC.bR, #data8
ADDC.bR, direct
ADDC.bR, [R]

SUBB A, Rn
SUBB A, #data8
SUBB A, dir8
SUBB A, @Ri

SUBB.bR, R
SUBB.bR, #data8
SUBB.bR, direct
SUBB.bR, [R]

INC Rn
INC dir8
INC @Ri
INC A
INC DPTR

ADDS.bR, #1
ADDS.bdirect, #1
ADDS.b[R], #1
ADDS.bR, #1
ADDS.wR, #1

DEC Rn
DEC dir8
DEC @Ri
DEC A

ADDS.bR, #-1
ADDS.bdirect, #-1
ADDS.b[R], #-1
ADDS.bR, #-1

MUL AB
DIV AB
DA A

MULU.bR, R
DIVU.b R, R
DA R
XA User Guide 9-8 3/24/97



Logical operations

ANL A, Rn
ANL A, #data8
ANL A, dir8
ANL A, @Ri
ANL dir8, A
ANL dir8, #data8

AND.b R, R
AND.b R, #data8
AND.b R, direct
AND.b R, [R]
AND.b direct, R
AND.b direct, #data8

ORL A, Rn
ORL A, #data8
ORL A, dir8
ORL A, @Ri
ORL dir8, A
ORL dir8, #data8

OR.b R, R
OR.b R, #data8
OR.b R, direct
OR.b R, [R]
OR.b direct, R
OR.b direct, #data8

XRL A, Rn
XRL A, #data8
XRL A, dir8
XRL A, @Ri
XRL dir8, A
XRL dir8, #data8

XOR.b R, R
XOR.b R, #data8
XOR.b R, direct
XOR.b R, [R]
XOR.b direct, R
XOR.b direct, #data8

CLR A
CPL A
SWAP A

MOVS R, #0
CPL.b R
RL.b R, #4

RL A
RLC A
RR A
RRC A

RL.b R, #1
RLC.b R, #1
RR.b R, #1
RRC.b R, #1

CLR C
CLR bit
SETB C
SETB bit
CPL C
CPL bit
ANL C, bit
ANL C, /bit
ORL C, bit
ORL C, /bit
MOV C, bit
MOV bit, C

CLR bit
CLR bit
SETB bit
SETB bit
XOR.b PSWL, #data8
XOR.b direct, #data8
AND C, bit
AND C, /bit
OR C, bit
OR C, /bit
MOV C, bit
MOV bit, C

Table 9.2: 80C51 to XA Instruction Translations

80C51 Instruction XA Translation
3/24/97 9-9 8051 Compatibility



Data transfer

MOV A, Rn
MOV A, #data8
MOV A, dir8
MOV A, @Ri
MOV Rn, A
MOV Rn, #data8
MOV Rn, dir8
MOV dir8, A
MOV dir8, #data8
MOV dir8, Rn
MOV dir8, dir8
MOV dir8, @Ri
MOV @Ri, A
MOV @Ri, dir8
MOV @Ri, #data8
MOV DPTR, #data16

MOV.b R, R
MOV.b R, #data8
MOV.b R, direct
MOV.b R, [R]
MOV.b R, R
MOV.b R, #data8
MOV.b R, direct
MOV.b direct, R
MOV.b direct, #data8
MOV.b direct, R
MOV.b direct, direct
MOV.b direct, [R]
MOV.b [R], R
MOV.b [R], direct
MOV.b [R], #data8
MOV.w R, #data16

XCH A, Rn
XCH A, dir8
XCH A, @Ri
XCHD A, @Ri

XCH.b R, R
XCH.b R, direct
XCH.b R, R
a sequence (see text)

PUSH dir8
POP dir8

PUSH.bdirect
POP.b direct

MOVX A, @Ri
MOVX A, @DPTR
MOVX @Ri, A
MOVX @DPTR, A

MOVX.bR, [R]
MOVX.bR, [R]
MOVX.b[R], R
MOVX.b[R], R

MOVC A, @A+DPTR
MOVC A, @A+PC

MOVC.bA, [A+DPTR]
MOVC.bA, [A+PC]

Table 9.2: 80C51 to XA Instruction Translations

80C51 Instruction XA Translation
XA User Guide 9-10 3/24/97



nge,
s that
des
ew
9.3  New Instructions on the XA
While the XA instructions that are similar to 80C51 instructions have a larger addressing ra
more status flags, etc., the XA also has many entirely new instructions and addressing mode
make writing new code for the XA much easier and more efficient. The new addressing mo
also make the XA work very well with high level language compilers. A complete list of the n
XA instructions and addressing modes is shown in Table 9.3.

Relative branches

SJMP rel8 BR rel8

CJNE A, dir8, rel
CJNE A, #data8, rel
CJNE Rn, #data8, rel
CJNE @Ri, #data8, rel

CJNE.b R, direct, rel
CJNE.b R, #data8, rel
CJNE.b R, #data8, rel
CJNE.b [R], #data8, rel

DJNZ Rn, rel
DJNZ dir8, rel

DJNZ.b R, rel
DJNZ.b direct, rel

JZ rel
JNZ rel
JC rel
JNC rel

JZ rel
JNZ rel
BCS rel
BCC rel

Jumps, Calls, Returns,
and Misc.

NOP NOP

AJMP addr11
LJMP  addr16
JMP @A+DPTR

JMP rel16
JMP rel16
JUMP [A+DPTR]

ACALL addr11
LCALL addr16

CALL rel16
CALL rel16

RET
RETI

RET
RETI

Table 9.2: 80C51 to XA Instruction Translations

80C51 Instruction XA Translation
3/24/97 9-11 8051 Compatibility



Table 9.3: Instructions and addressing modes new to the XA

New Instructions and Addressing Modes

alu.w ..., ... All of the 80C51 arithmetic and logic instructions
with a 16-bit data size.

SUBB R,... Subtract (without borrow), all addressing modes.

alu [R], R Arithmetic and logic operations (ADD, ADDC,
SUB, SUBB, CMPAND, OR, XOR, and MOV)
from a register to an indirect address.

alu R, [R+] Arithmetic and logic operations from an indirect
address to a register, with the indirect pointer
automatically incremented.

alu R,[R+offset8/16] Arith/Logic operations from an indirect offset
address (with 8 or 16-bit offset) to a register.

alu direct, R The 80C51 has only MOV direct, R.

alu [R], R The 80C51 has only MOV [R], R.

alu [R+], R Arith/Logic operations from a register to an
indirect address, with the indirect pointer
automatically incremented.

alu [R+offset8/16], R Arith/Logic operations from a register to an
indirect offset address (with 8 or 16-bit offset).

alu direct, #data8/16 Arith/Logic operations to a direct address with 8
or 16-bit immediate data.

alu [R], #data8/16 Arith/Logic operations to an indirect address with
8 or 16-bit immediate data.

alu [R+], #data8/16 Arith/Logic operations to an indirect address with
8 or 16-bit immediate data with the indirect
pointer automatically incremented.

alu [R+offset8/16], #data8/16 Arith/Logic operations to an indirect offset
address (with 8 or 16-bit offset), with 8 or 16-bit
immediate data.

MOV direct, [R] Move data from an indirect to a direct address.

ADDS R, #data4 The 80C51 can only increment or decrement a
register by 1. ADDS has a range of +7 to -8.

ADDS [R], #data4 Add a short value to an indirect address.
XA User Guide 9-12 3/24/97



ADDS [R+], #data4 Add a short value to an indirect offset address,
with the indirect pointer automatically
incremented.

ADDS [R+offset8/16], #data4 Add a short value to an indirect offset address
(with 8 or 16-bit offset).

ADDS direct, #data4 Add a short value to a direct address.

MOVS ..., #data4 Move short data to destination using any of the
same addressing modes as ADDS.

ASL R, R Arithmetic shift left a byte, word, or double word,
up to 31 places, shift count read from register.

ASR R, R Arithmetic shift right a byte, word, or double word,
up to 31 places, shift count read from register.

LSR R, R Logical shift right a byte, word, or double word,
up to 31 places, shift count read from register.

ASL R, #DATA4/5 Arithmetic shift left a byte, word, or double word,
up to 31 places, shift count read from instruction.

ASR R, #DATA4/5 Arithmetic shift right a byte, word, or double word,
up to 31 places, shift count read from instruction.

LSR R, #DATA4/5 Logical shift right a byte, word, or double word,
up to 31 places, shift count read from instruction.

DIV R, R Signed divide of 32 bits register by 16 bit register,
or 16 bit register by 8 bit register.

DIVU R, R Unsigned divide of 32 bit register by 16 bit
register, or 16 bit register by 8 bit register.

MUL R, R Signed multiply of 16 bit register by 16 bit
register, or 8 bit register by 8 bit register.

MULU R, R Unsigned multiply of 16 bit register by 16 bit
register.

DIV R, #data8/16 Signed divide of 32 bits register by 16 bit
immediate, or 16 bit register by 8 bit immediate.

DIVU R, #data8/16 Unsigned divide of 32 bit register by 16 bit
immediate, or 16 bit register by 8 bit immediate.

MUL R, #data8/16 Signed multiply of 16 bit register by 16 bit
immediate, or 8 bit register by 8 bit immediate.

Table 9.3: Instructions and addressing modes new to the XA

New Instructions and Addressing Modes
3/24/97 9-13 8051 Compatibility



MULU R, #data8/16 Unsigned multiply of 16 bit register by 16 bit
immediate, or 8 bit register by 8 bit immediate.

LEA R, R+offset8/16 Load effective address, duplicates the offset8 or
16-bit addressing mode calculation but saves the
address in a register.

NEG R Negate, performs a twos complement operation
on a register.

SEXT R Sign extend, copies the sign flag from the last
operation into an 8 or 16-bit register.

NORM R, R Normalize. Shifts a byte, word, or double word
register left until the MSB becomes a 1. The
number of shifts used is stored in a register.

RL, RR, RLC, RRC  R,#data4 All of the 80C51 rotate modes with 16-bit data
size and a variable number of bit positions (up to
15 places).

MOV [R+], [R+] Block move. Move data from an indirect address
to another indirect address, incrementing both
pointers.

MOV R, USP and USP, R Allows system code to move a value to or from
the user stack pointer. Handy in multi-tasking
applications.

MOVC R, [R+] Move data from an indirect address in the code
space to a register, with the indirect pointer
automatically incremented.

PUSH and POP Rlist PUSH and POP up to 8 word registers in one
instruction.

PUSHU and POPU  Rlist or direct Allows system code to write to or read the user
stack. Handy in multi-tasking applications.

conditional branches A complete set of conditional branches, including
BEQ, BNE, BG, BGE, BGT, BL, BLE, BMI, BPL,
BNV, and BOV.

CALL [R] Call indirect, to an address contained in a
register.

CALL rel16 Call anywhere in a +/- 64K range.

Table 9.3: Instructions and addressing modes new to the XA

New Instructions and Addressing Modes
XA User Guide 9-14 3/24/97



FCALL addr24 Far call, anywhere within the XA 16Mbyte code
address space.

JMP [R] Jump indirect, to an address contained in a
register.

JMP rel16 Jump anywhere in a +/- 64K range.

FJMP addr24 Far jump, anywhere within the XA 16Mbyte code
address space.

JMP [[R+]] Jump double indirect with auto-increment. Used
to branch to a sequence of addresses contained
in a table.

BKPT Breakpoint, a debugging feature.

RESET Allows software to completely reset the XA in one
instruction.

TRAP #data4 Call one of up to 16 system services. Acts like an
immediate interrupt.

Table 9.3: Instructions and addressing modes new to the XA

New Instructions and Addressing Modes
3/24/97 9-15 8051 Compatibility



XA User Guide 9-16 3/24/97



80C32/80C52

Rev. G (14 Jan. 97)
1MATRA MHS

Description

TEMIC’s 80C52 and 80C32 are high performance CMOS
versions of the 8052/8032 NMOS single chip 8 bit µC.

The fully static design of the TEMIC 80C52/80C32
allows to reduce system power consumption by bringing
the clock frequency down to any value, even DC, without
loss of data.

The 80C52 retains all the features of the 8052 : 8 K bytes
of ROM ; 256 bytes of RAM ; 32 I/O lines ; three 16 bit
timers ; a 6-source, 2-level interrupt structure ; a full
duplex serial port ; and on-chip oscillator and clock
circuits. In addition, the 80C52 has 2 software-selectable

modes of reduced activity for further reduction in power
consumption. In the idle mode the CPU is frozen while
the RAM, the timers, the serial port and the interrupt
system continue to function. In the power down mode the
RAM is saved and all other functions are inoperative.

The 80C32 is identical to the 80C52 except that it has no
on-chip ROM. TEMIC’s 80C52/80C32 are manufactured
using SCMOS process which allows them to run from 0
up to 44 MHz with Vcc = 5 V.

TEMIC’s 80C52 and 80C32 are also available at 16 MHz
with 2.7 V < VCC < 5.5 V.

� 80C32 : Romless version of the 80C52
� 80C32/80C52-L16 : Low power version

Vcc : 2.7 – 5.5 V Freq : 0-16 MHz
� 80C32/80C52-12 : 0 to 12 MHz
� 80C32/80C52-16 : 0 to 16 MHz
� 80C32/80C52-20 : 0 to 20 MHz
� 80C32/80C52-25 : 0 to 25 MHz
� 80C32/80C52-30 : 0 to 30 MHz

� 80C32/80C52-36 : 0 to 36 MHz
� 80C32-40 : 0 to 40 MHz*
� 80C32-42 : 0 to 42 MHz*
� 80C32-44 : 0 to 44 MHz*

* 0 to 70°C temperature range.
For other speed and temperature range availability please consult your
sales office.

Features

� Power control modes
� 256 bytes of RAM
� 8 Kbytes of ROM (80C52)
� 32 programmable I/O lines
� Three 16 bit timer/counters
� 64 K program memory space
� 64 K data memory space

� Fully static design
� 0.8µ CMOS process
� Boolean processor
� 6 interrupt sources
� Programmable serial port
� Temperature range : commercial, industrial, automotive,

military

Optional

� Secret ROM : Encryption
� Secret TAG : Identification number

CMOS 0 to 44 MHz Single Chip 8–bit Microntroller



80C32/80C52

Rev. G (14 Jan. 97)
2 MATRA MHS

Interface

Figure 1. Block Diagram



80C32/80C52

Rev. G (14 Jan. 97)
3MATRA MHS

Figure 2. Pin Configuration

80C32/80C52

80C32/80C52

Diagrams are for reference only. Package sizes are not to scale.

DIL LCC

Flat Pack

P
1.

4

P
1.

3

P
1.

2

P
1.

1/
T

2E
X

P
1.

0/
T

2

N
C

V
C

C

P
0.

0/
A

0

P
0.

1/
A

1

P
0.

2/
A

2

P
0.

3/
A

3

P0.4/A4P1.5

P1.6

P1.7

RST

RxD/P3.0

NC

TxD/P3.1

INT0/P3.2

INT1/P3.3

T0/P3.4

T1/P3.5

P0.5/A5

P0.6/A6

P0.7/A7

EA

NC

ALE

PSEN

P2.7/A14

P2.6/A13

P2.5/A12

W
R

/P
3.

6

R
D

/P
3.

7

X
TA

L2

X
TA

L1

V
S

S

N
C

P
2.

0/
A

7

P
2.

1/
A

8

P
2.

2/
A

9

P
2.

3/
A

10

P
2.

4/
A

11

15P

16P

17P

30RxD/P

31TxD/P

32INT0/P

33INT1/P

34T0/P

35T1/P

36
W

R
/P

37
R

D
/P

X
TA

L2

X
TA

L1 S
S

V N
C

20P 21P 22P 23P 24P

RST

NC

14P 13P 12P 11P 10P N
C C

C
V

00
A

0/
P

/A
8

/A
9

/A
10

/A
11

/A
12

04P /A4

05P /A5

06P /A6

07P /A7

EA

NC

ALE

PSEN

27P /A15

26P /A14

25P /A13

/T
2E

X

/T
2 01

A
1/

P

02
A

2/
P

03
A

3/
P



80C32/80C52

Rev. G (14 Jan. 97)
4 MATRA MHS

Pin Description

VSS

Circuit ground potential.

VCC

Supply voltage during normal, Idle, and Power Down
operation.

Port 0

Port 0 is an 8 bit open drain bi-directional I/O port. Port 0
pins that have 1’s written to them float, and in that state
can be used as high-impedance inputs.

Port 0 is also the multiplexed low-order address and data
bus during accesses to external Program and Data
Memory. In this application it uses strong internal pullups
when emitting 1’s. Port 0 also outputs the code bytes
during program verification in the 80C52. External
pullups are required during program verification. Port 0
can sink eight LS TTL inputs.

Port 1

Port 1 is an 8 bit bi-directional I/O port with internal
pullups. Port 1 pins that have 1’s written to them are
pulled high by the internal pullups, and in that state can
be used as inputs. As inputs, Port 1 pins that are externally
being pulled low will source current (IIL, on the data
sheet) because of the internal pullups.

Port 1 also receives the low-order address byte during
program verification. In the 80C52, Port 1 can sink/
source three LS TTL inputs. It can drive CMOS inputs
without external pullups.

2 inputs of PORT 1 are also used for timer/counter 2 :

P1.0 [T2] : External clock input for timer/counter 2. P1.1
[T2EX] : A trigger input for timer/counter 2, to be
reloaded or captured causing the timer/counter 2
interrupt.

Port 2

Port 2 is an 8 bit bi-directional I/O port with internal
pullups. Port 2 pins that have 1’s written to them are
pulled high by the internal pullups, and in that state can
be used as inputs. As inputs, Port 2 pins that are externally
being pulled low will source current (ILL, on the data
sheet) because of the internal pullups. Port 2 emits the
high-order address byte during fetches from external
Program Memory and during accesses to external Data

Memory that use 16 bit addresses (MOVX @DPTR). In
this application, it uses strong internal pullups when
emitting 1’s. During accesses to external Data Memory
that use 8 bit addresses (MOVX @Ri), Port 2 emits the
contents of the P2 Special Function Register.

It also receives the high-order address bits and control
signals during program verification in the 80C52. Port 2
can sink/source three LS TTL inputs. It can drive CMOS
inputs without external pullups.

Port 3

Port 3 is an 8 bit bi-directional I/O port with internal
pullups. Port 3 pins that have 1’s written to them are
pulled high by the internal pullups, and in that state can
be used as inputs. As inputs, Port 3 pins that are externally
being pulled low will source current (ILL, on the data
sheet) because of the pullups. It also serves the functions
of various special features of the TEMIC 51 Family, as
listed below.

Port Pin Alternate Function

P3.0
P3.1
P3.2
P3.3
P3.4
P3.5
P3.6
P3.7

RXD (serial input port)
TXD (serial output port)
INT0 (external interrupt 0)
INT1 (external interrupt 1)
TD (Timer 0 external input)
T1 (Timer 1 external input)
WR (external Data Memory write strobe)
RD (external Data Memory read strobe)

Port 3 can sink/source three LS TTL inputs. It can drive
CMOS inputs without external pullups.

RST

A high level on this for two machine cycles while the
oscillator is running resets the device. An internal
pull-down resistor permits Power-On reset using only a
capacitor connected to VCC. As soon as the Reset is
applied (Vin), PORT 1, 2 and 3 are tied to one. This
operation is achieved asynchronously even if the
oscillator does not start-up.

ALE

Address Latch Enable output for latching the low byte of
the address during accesses to external memory. ALE is
activated as though for this purpose at a constant rate of
1/6 the oscillator frequency except during an external
data memory access at which time one ALE pulse is
skipped. ALE can sink/source 8 LS TTL inputs. It can
drive CMOS inputs without an external pullup.



80C32/80C52

Rev. G (14 Jan. 97)
5MATRA MHS

PSEN

Program Store Enable output is the read strobe to external
Program Memory. PSEN is activated twice each machine
cycle during fetches from external Program Memory.
(However, when executing out of external Program
Memory, two activations of PSEN are skipped during
each access to external Data Memory). PSEN is not
activated during fetches from internal Program Memory.
PSEN can sink/source 8 LS TTL inputs. It can drive
CMOS inputs without an external pullup.

EA

When EA is held high, the CPU executes out of internal
Program Memory (unless the Program Counter exceeds

1 FFFH). When EA is held low, the CPU executes only out
of external Program Memory. EA must not be floated.

XTAL1

Input to the inverting amplifier that forms the oscillator.
Receives the external oscillator signal when an external
oscillator is used.

XTAL2

Output of the inverting amplifier that forms the oscillator.
This pin should be floated when an external oscillator is
used.

Idle And Power Down Operation

Figure 3 shows the internal Idle and Power Down clock
configuration. As illustrated, Power Down operation
stops the oscillator. Idle mode operation allows the
interrupt, serial port, and timer blocks to continue to
function, while the clock to the CPU is gated off.

These special modes are activated by software via the
Special Function Register, PCON. Its hardware address is
87H. PCON is not bit addressable.

Figure 3.Idle and Power Down Hardware.

PCON : Power Control Register

(MSB) (LSB)

SMOD – – – GF1 GF0 PD IDL

Symbol Position Name and Function
SMOD PCON.7 Double Baud rate bit. When set to

a 1, the baud rate is doubled when
the serial port is being used in
either modes 1, 2 or 3.

– PCON.6 (Reserved)
– PCON.5 (Reserved)
– PCON.4 (Reserved)

GF1 PCON.3 General-purpose flag bit.
GF0 PCON.2 General-purpose flag bit.
PD PCON.1 Power Down bit. Setting this bit

activates power down operation.
IDL PCON.0 Idle mode bit. Setting this bit

activates idle mode operation.

If 1’s are written to PD and IDL at the same time. PD
takes, precedence. The reset value of PCON is
(000X0000).

Idle Mode

The instruction that sets PCON.0 is the last instruction
executed before the Idle mode is activated. Once in the
Idle mode the CPU status is preserved in its entirety : the
Stack Pointer, Program Counter, Program Status Word,
Accumulator, RAM and all other registers maintain their
data during idle. Table 1 describes the status of the
external pins during Idle mode.



80C32/80C52

Rev. G (14 Jan. 97)
6 MATRA MHS

There are three ways to terminate the Idle mode.
Activation of any enabled interrupt will cause PCON.0 to
be cleared by hardware, terminating Idle mode. The
interrupt is serviced, and following RETI, the next
instruction to be executed will be the one following the
instruction that wrote 1 to PCON.0.

The flag bits GF0 and GF1 may be used to determine
whether the interrupt was received during normal
execution or during the Idle mode. For example, the
instruction that writes to PCON.0 can also set or clear one
or both flag bits. When Idle mode is terminated by an
enabled interrupt, the service routine can examine the
status of the flag bits.

The second way of terminating the Idle mode is with a
hardware reset. Since the oscillator is still running, the
hardware reset needs to be active for only 2 machine
cycles (24 oscillator periods) to complete the reset
operation.

Power Down Mode
The instruction that sets PCON.1 is the last executed prior
to entering power down. Once in power down, the
oscillator is stopped. The contents of the onchip RAM and
the Special Function Register is saved during power down
mode. The hardware reset initiates the Special Fucntion
Register. In the Power Down mode, VCC may be lowered
to minimize circuit power consumption. Care must be
taken to ensure the voltage is not reduced until the power
down mode is entered, and that the voltage is restored
before the hardware reset is applied which freezes the
oscillator. Reset should not be released until the oscillator
has restarted and stabilized.
Table 1 describes the status of the external pins while in
the power down mode. It should be noted that if the power
down mode is activated while in external program
memory, the port data that is held in the Special Function
Register P2 is restored to Port 2. If the data is a 1, the port
pin is held high during the power down mode by the
strong pullup, T1, shown in Figure 4.

Table 1. Status of the external pins during idle and power down modes.

MODE PROGRAM MEMORY ALE PSEN PORT0 PORT1 PORT2 PORT3

Idle Internal 1 1 Port Data Port Data Port Data Port Data

Idle External 1 1 Floating Port Data Address Port Data

Power Down Internal 0 0 Port Data Port Data Port Data Port Data

Power Down External 0 0 Floating Port Data Port Data Port Data

Stop Clock Mode

Due to static design, the TEMIC 80C32/C52 clock speed
can be reduced until 0 MHz without any data loss in
memory or registers. This mode allows step by step
utilization, and permits to reduce system power
consumption by bringing the clock frequency down to
any value. At 0 MHz, the power consumption is the same
as in the Power Down Mode.

I/O Ports

The I/O buffers for Ports 1, 2 and 3 are implemented as
shown in figure 4.

Figure 4.I/O Buffers in the 80C52 (Ports 1, 2, 3).



80C32/80C52

Rev. G (14 Jan. 97)
7MATRA MHS

When the port latch contains a 0, all pFETS in figure 4 are
off while the nFET is turned on. When the port latch
makes a 0-to-1 transition, the nFET turns off. The strong
pFET, T1, turns on for two oscillator periods, pulling the
output high very rapidly. As the output line is drawn high,
pFET T3 turns on through the inverter to supply the IOH
source current. This inverter and T form a latch which
holds the 1 and is supported by T2.

When Port 2 is used as an address port, for access to
external program of data memory, any address bit that
contains a 1 will have his strong pullup turned on for the
entire duration of the external memory access.

When an I/O pin on Ports 1, 2, or 3 is used as an input, the
user should be aware that the external circuit must sink
current during the logical 1-to-0 transition. The
maximum sink current is specified as ITL under the D.C.
Specifications. When the input goes below
approximately 2 V, T3 turns off to save ICC current. Note,
when returning to a logical 1, T2 is the only internal
pullup that is on. This will result in a slow rise time if the
user’s circuit does not force the input line high.

Oscillator Characteristics

XTAL1 and XTAL2 are the input and output respectively,
of an inverting amplifier which is configured for use as an
on-chip oscillator, as shown in figure 5. Either a quartz
crystal or ceramic resonator may be used.

Figure 5. Crystal Oscillator.

To drive the device from an external clock source,
XTAL1 should be driven while XTAL2 is left
unconnected as shown in figure 6. There are no
requirements on the duty cycle of the external clock
signal, since the input to the internal clocking circuitry is
through a divide-by-two flip-flop, but minimum and
maximum high and low times specified on the Data Sheet
must be observed.

Figure 6. External Drive Configuration.

Hardware Description

Same as for the 80C51, plus a third timer/counter :

Timer/Event Counter 2

Timer 2 is a 16 bit timer/counter like Timers 0 and 1, it
can operate either as a timer or as an event counter. This
is selected by bit C/T2 in the Special Function Register
T2CON (Figure 1). It has three operating modes :
“capture”, “autoload” and “baud rate generator”, which
are selected by bits in T2CON as shown in Table 2.

In the capture mode there are two options which are
selected by bit EXEN2 in T2CON; If EXEN2 = 0, then
Timer 2 is a 16 bit timer or counter which upon
overflowing sets bit TF2, the Timer 2 overflow bit, which
can be used to generate an interrupt. If EXEN2 = 1, then
Timer 2 still does the above, but with the added feature

that a 1-to-0 transition at external input T2EX causes the
current value in the Timer 2 registers, TL2 and TH2, to
be captured into registers RCAP2L and RCAP2H,
respectively, (RCAP2L and RCAP2H are new Special
Function Register in the 80C52). In addition, the
transition at T2EX causes bit EXF2 in T2CON to be set,
and EXF2, like TF2, can generate an interrupt.

Table 2. Timer 2 Operating Modes.

RCLK +
TCLK CP/RL2 TR2 MODE

0
0
1
X

0
1
X
X

1
1
1
0

16 bit auto-reload
16 bit capture
baud rate generator
(off)



80C32/80C52

Rev. G (14 Jan. 97)
8 MATRA MHS

The capture mode is illustrated in Figure 7.

Figure 7. Timer 2 in Capture Mode.

In the auto-reload mode there are again two options,
which are selected by bit EXEN2 in T2CON.If
EXEN2 = 0, then when Timer 2 rolls over it does not only
set TF2 but also causes the Timer 2 register to be reloaded

with the 16 bit value in registers RCAP2L and RCAP2H,
which are preset by software. If EXEN2 = 1, then Timer
2 still does the above, but with the added feature that a
1-to-0 transition at external input T2EX will also trigger
the 16 bit reload and set EXF2.

The auto-reload mode is illustrated in Figure 8.

Figure 8. Timer in Auto-Reload Mode.

(MSB) (LSB)

TF2 EXF2 RCLK TCLK EXEN2 TR2 C/T2 CP/RL2

The baud rate generator mode is selected by : RCLK = 1 and/or TCLK = 1.

Symbol Position Name and Significance

TF2 T2CON.7 Timer 2 overflow flag set by a Timer 2 overflow and must be cleared by software. TF2
will not be set when either RCLK = 1 OR TCLK = 1.

EXF2 T2CON.6 Timer 2 external flag set when either a capture or reload is caused by a negative
transition on T2EX and EXEN2 = 1. When Timer 2 interrupt is enabled, EXF2 = 1 will
cause the CPU to vector to the Timer 2 interrupt routine. EXF2 must be cleared by
software.

RCLK T2CON.5 Receive clock flag. When set, causes the serial port to use Timer2 overflow pulses for its
receive clock in modes 1 and 3. RCLK = 0 causes Timer 1 overflow to be used for the
receive clock.

TCLK T2CON.4 Transmit clock flag. When set, causes the serial port to use Timer 2 overflow pulses for
its transmit clock in modes 1 and 3. TCLK = 0 causes Timer 1 overflows to be used for
the transmit clock.

EXEN2 T2CON.3 Timer 2 external enable flag. When set, allows capture or reload to occur as a result of a
negative transition on T2EX if Timer 2 is not being used to clock the serial port.
EXEN2 = 0 causes Timer 2 to ignore events at T2EX.

TR2 T2CON.2 Start/stop control for Timer 2. A logic 1 starts the timer.

C/T2 T2CON.1 Timer or counter select. (Timer 2) 0 = Internal timer (OSC/12)
1 = External event counter (falling edge triggered).

CP/RL2 T2CON.0 Capture/Reload flag. When set, captures will occur on negative transitions at T2EX if
EXEN 2 = 1. When cleared, auto reloads will occur either with Timer 2 overflows or
negative transition at T2EX when EXEN2 = 1. When either RCLK = 1 or TCLK = 1, this
bit is ignored and the timer is forced to auto-reload on Timer 2 overflow.



80C32/80C52

Rev. G (14 Jan. 97)
9MATRA MHS

80C52 with Secret ROM

TEMIC offers 80C52 with the encrypted secret ROM
option to secure the ROM code contained in the 80C52
microcontrollers.

The clear reading of the program contained in the ROM
is made impossible due to an encryption through several
random keys implemented during the manufacturing
process.

The keys used to do such encryption are selected
randomwise and are definitely different from one
microcontroller to another.

This encryption is activated during the following phases :
– Everytime a byte is addressed during a verify of the

ROM content, a byte of the encryption array is
selected.

– MOVC instructions executed from external program
memory are disabled when fetching code bytes from
internal memory.

– EA is sampled and latched on reset, thus all state
modification are disabled.

For further information please refer to the application
note (ANM053) available upon request.

80C52 with Secret TAG

TEMIC offers special 64-bit identifier called “SECRET
TAG” on the microcontroller chip.

The Secret Tag option is available on both ROMless and
masked microcontrollers.

The Secret Tag feature allows serialization of each
microcontroller for identification of a specific
equipment. A unique number per device is implemented
in the chip during manufacturing process. The serial
number is a 64-bit binary value which is contained and
addressable in the Special Function Registers (SFR) area.

This Secret Tag option can be read-out by a software
routine and thus enables the user to do an individual
identity check per device. This routine is implemented
inside the microcontroller ROM memory in case of
masked version which can be kept secret (and then the
value of the Secret Tag also) by using a ROM Encryption.

For further information, please refer to the application
note (ANM031) available upon request.



80C32/80C52

Rev. G (14 Jan. 97)
10 MATRA MHS

Electrical Characteristics

Absolute Maximum Ratings*

Ambiant Temperature Under Bias :
C = commercial 0�� to 70��. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
I = industrial –40�� to 85��. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Storage Temperature –65�� to + 150��. . . . . . . . . . . . . . . . . . . . . . . 
Voltage on VCC to VSS –0.5 V to + 7 V. . . . . . . . . . . . . . . . . . . . . . . . 
Voltage on Any Pin to VSS –0.5 V to VCC + 0.5 V. . . . . . . . . . . . . . . . . . . 
Power Dissipation 1 W. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
* This value is based on the maximum allowable die temperature and
the thermal resistance of the package

* Notice

Stresses at or above those listed under “ Absolute Maximum Ratings”
may cause permanent damage to the device. This is a stress rating only
and functional operation of the device at these or any other conditions
above those indicated in the operational sections of this specification is
not implied. Exposure to absolute maximum rating conditions may affect
device reliability.

DC Parameters

TA = 0°C to 70°C ; VSS = 0 V ; VCC = 5 V ± 10 % ; F = 0 to 44 MHz
TA = –40°C + 85°C ; VSS = 0 V ; VCC = 5 V ± 10 % ; F = 0 to 36 MHz

SYMBOL PARAMETER MIN MAX UNIT TEST CONDITIONS

VIL Input Low Voltage – 0.5 0.2 Vcc – 0.1 V

VIH Input High Voltage  (Except XTAL and RST) 0.2 Vcc + 1.4 Vcc + 0.5 V

VIH1 Input High Voltage (for XTAL and RST) 0.7 Vcc Vcc + 0.5 V

VOL Output Low Voltage  (Port 1, 2 and 3) 0.3
0.45
1.0

V
V
V

IOL = 100 µA
IOL = 1.6 mA (note 2)
IOL = 3.5 mA

VOL1 Output Low Voltage  (Port 0, ALE, PSEN) 0.3
0.45
1.0

V
V
V

IOL = 200 µA
IOL = 3.2 mA (note 2)
IOL = 7.0 mA

VOH Output High Voltage Port 1, 2, 3 Vcc – 0.3 V IOH = – 10 µA

Vcc – 0.7 V IOH = – 30 µA

Vcc – 1.5 V IOH = – 60 µA
VCC = 5 V ± 10 %

VOH1 Output High Voltage  (Port 0, ALE, PSEN) Vcc – 0.3 V IOH = – 200 µA

Vcc – 0.7 V IOH = – 3.2 mA

Vcc – 1.5 V IOH = – 7.0 mA
VCC = 5 V ± 10 %

IIL Logical 0 Input Current (Ports 1, 2 and 3) – 50 µA Vin = 0.45 V

ILI Input leakage Current ± 10 µA 0.45 < Vin < Vcc

ITL Logical 1 to 0 Transition Current (Ports 1, 2 and 3) – 650 µA Vin = 2.0 V

IPD Power Down Current 50 µA Vcc = 2.0 V to 5.5 V (note 1)

RRST RST Pulldown Resistor 50 200 KOhm

CIO Capacitance of I/O Buffer 10 pF fc = 1 MHz, Ta = 25�C

ICC Power Supply Current
Freq = 1 MHz Icc op

Icc idle
Freq = 6 MHz Icc op

Icc idle
Freq ≥ 12 MHz Icc op = 1.25 Freq (MHz) + 5 mA

Icc idle = 0.36 Freq (MHz) + 2.7 mA

1.8
1
10
4

mA
mA
mA
mA

Vcc = 5.5 V



80C32/80C52

Rev. G (14 Jan. 97)
11MATRA MHS

Absolute Maximum Ratings*

Ambient Temperature Under Bias :

A = Automotive –40�� to +125��. . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Storage Temperature –65�� to + 150��. . . . . . . . . . . . . . . . . . . . . . . 

Voltage on VCC to VSS –0.5 V to + 7 V. . . . . . . . . . . . . . . . . . . . . . . . 

Voltage on Any Pin to VSS –0.5 V to VCC + 0.5 V. . . . . . . . . . . . . . . 

Power Dissipation 1 W. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

* This value is based on the maximum allowable die temperature and
the thermal resistance of the package

* Notice

Stresses above those listed under “ Absolute Maximum Ratings” may
cause permanent damage to the device. This is a stress rating only and
functional operation of the device at these or any other conditions above
those indicated in the operational sections of this specification is not
implied. Exposure to absolute maximum rating conditions for extended
periods may affect device reliability.

DC Parameters

TA = –40°C + 125°C ; VSS = 0 V ; VCC = 5 V ± 10 % ; F = 0 to 36 MHz

SYMBOL PARAMETER MIN MAX UNIT TEST CONDITIONS

VIL Input Low Voltage – 0.5 0.2 Vcc – 0.1 V

VIH Input High Voltage  (Except XTAL and RST) 0.2 Vcc + 1.4 Vcc + 0.5 V

VIH1 Input High Voltage (for XTAL and RST) 0.7 Vcc Vcc + 0.5 V

VOL Output Low Voltage  (Port 1, 2 and 3) 0.3
0.45
1.0

V
V
V

IOL = 100 µA
IOL = 1.6 mA (note 2)
IOL = 3.5 mA

VOL1 Output Low Voltage  (Port 0, ALE, PSEN) 0.3
0.45
1.0

V
V
V

IOL = 200 µA
IOL = 3.2 mA (note 2)
IOL = 7.0 mA

VOH Output High Voltage Port 1, 2 and 3 Vcc – 0.3 V IOH = – 10 µA

Vcc – 0.7 V IOH = – 30 µA

Vcc – 1.5 V IOH = – 60 µA
VCC = 5 V ± 10 %

VOH1 Output High Voltage  (Port 0, ALE, PSEN) Vcc – 0.3 V IOH = – 200 µΑ

Vcc – 0.7 V IOH = – 3.2 mA

Vcc – 1.5 V IOH = – 7.0 mA
VCC = 5 V ± 10 %

IIL Logical 0 Input Current (Ports 1, 2 and 3) – 75 µA Vin = 0.45 V

ILI Input leakage Current ±10 µA 0.45 < Vin < Vcc

ITL Logical 1 to 0 Transition Current (Ports 1, 2 and 3) – 750 µA Vin = 2.0 V

IPD Power Down Current 75 µA Vcc = 2.0 V to 5.5 V (note 1)

RRST RST Pulldown Resistor 50 200 KOhm

CIO Capacitance of I/O Buffer 10 pF fc = 1 MHz, Ta = 25�C

ICC Power Supply Current
Freq = 1 MHz Icc op

Icc idle
Freq = 6 MHz Icc op

Icc idle
Freq ≥ 12 MHz Icc op = 1.25 Freq (MHz) + 5 mA

Icc idle = 0.36 Freq (MHz) + 2.7 mA

1.8
1
10
4

mA
mA
mA
mA

Vcc = 5.5 V



80C32/80C52

Rev. G (14 Jan. 97)
12 MATRA MHS

Absolute Maximum Ratings*

Ambient Temperature Under Bias :

M = Military –55�� to +125��. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Storage Temperature –65�� to + 150��. . . . . . . . . . . . . . . . . . . . . . . 

Voltage on VCC to VSS –0.5 V to + 7 V. . . . . . . . . . . . . . . . . . . . . . . . 

Voltage on Any Pin to VSS –0.5 V to VCC + 0.5 V. . . . . . . . . . . . . . . 

Power Dissipation 1 W. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

* This value is based on the maximum allowable die temperature and
the thermal resistance of the package

* Notice

Stresses at or above those listed under “ Absolute Maximum Ratings”
may cause permanent damage to the device. This is a stress rating only
and functional operation of the device at these or any other conditions
above those indicated in the operational sections of this specification is
not implied. Exposure to absolute maximum rating conditions may affect
device reliability.

DC Parameters

TA = –55°C + 125°C ; Vss = 0 V ; Vcc = 5 V ± 10 % ; F = 0 to 36 MHz

SYMBOL PARAMETER MIN MAX UNIT TEST CONDITIONS

VIL Input Low Voltage – 0.5 0.2 Vcc – 0.1 V

VIH Input High Voltage  (Except XTAL and RST) 0.2 Vcc + 1.4 Vcc + 0.5 V

VIH1 Input High Voltage (for XTAL and RST) 0.7 Vcc Vcc + 0.5 V

VOL Output Low Voltage (Port 1, 2 and 3) 0.45 V IOL = 1.6 mA (note 2)

VOL1 Output Low Voltage (Port 0, ALE, PSEN) 0.45 V IOL = 3.2 mA (note 2)

VOH Output High Voltage (Port 1, 2 and 3) 2.4 V IOH = – 60 µA
Vcc = 5 V ± 10 %

0.75 Vcc V IOH = – 25 µA

0.9 Vcc V IOH = – 10 µA

VOH1 Output High Voltage
(Port 0 in External Bus Mode, ALE, PEN)

2.4 V IOH = – 400 µA
Vcc = 5 V ± 10 %

0.75 Vcc V IOH = – 150 µA

0.9 Vcc V IOH = – 40 µA

IIL Logical 0 Input Current (Ports 1, 2 and 3) – 75 µA Vin = 0.45 V

ILI Input leakage Current +/– 10 µA 0.45 < Vin < Vcc

ITL Logical 1 to 0 Transition Current (Ports 1, 2 and 3) – 750 µA Vin = 2.0 V

IPD Power Down Current 75 µA Vcc = 2.0 V to 5.5 V (note 1)

RRST RST Pulldown Resistor 50 200 KΩ

CIO Capacitance of I/O Buffer 10 pF fc = 1 MHz, Ta = 25�C

ICC Power Supply Current
Freq = 1 MHz Icc op

Icc idle
Freq = 6 MHz Icc op

Icc idle
Freq ≥ 12 MHz Icc op = 1.25 Freq (MHz) + 5 mA

Icc idle = 0.36 Freq (MHz) + 2.7 mA

1.8
1
10
4

mA
mA
mA
mA

Vcc = 5.5 V



80C32/80C52

Rev. G (14 Jan. 97)
13MATRA MHS

Absolute Maximum Ratings*

Ambient Temperature Under Bias :

C = Commercial 0�	 to 70�	. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 


� �� 
�������� ���� ��� ���	�� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

Storage Temperature –65�	 to + 150�	. . . . . . . . . . . . . . . . . . . . . . . 

Voltage on VCC to VSS –0.5 V to + 7 V. . . . . . . . . . . . . . . . . . . . . . . . 

Voltage on Any Pin to VSS –0.5 V to VCC + 0.5 V. . . . . . . . . . . . . . . 

Power Dissipation 1 W**. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

** This value is based on the maximum allowable die temperature and
the thermal resistance of the package

* Notice

Stresses at or above those listed under “ Absolute Maximum Ratings”
may cause permanent damage to the device. This is a stress rating only
and functional operation of the device at these or any other conditions
above those indicated in the operational sections of this specification is
not implied. Exposure to absolute maximum rating conditions may affect
device reliability.

DC Characteristics

TA = 0°C to 70°C ; Vcc = 2.7 V to 5.5 V ; Vss = 0 V ; F = 0 to 16 MHz
TA = –40°C to 85°C ; Vcc = 2.7 V to 5.5 V

SYMBOL PARAMETER MIN MAX UNIT TEST CONDITIONS

VIL Input Low Voltage – 0.5 0.2 VCC – 0.1 V

VIH Input High Voltage  (Except XTAL and RST) 0.2 VCC + 1.4 VCC  + 0.5 V

VIH2 Input High Voltage to RST for Reset 0.7 VCC VCC  + 0.5 V

VIH1 Input High Voltage to XTAL1 0.7 VCC VCC  + 0.5 V

VPD Power Down Voltage to Vcc in PD Mode 2.0 5.5 V

VOL Output Low Voltage (Ports 1, 2, 3) 0.45 V IOL = 0.8 mA (note 2)

VOL1 Output Low Voltage Port 0, ALE, PSEN 0.45 V IOL = 1.6 mA (note 2)

VOH Output High Voltage Ports 1, 2, 3 0.9 Vcc V IOH = – 10 µA

VOH1 Output High Voltage (Port 0 in External Bus
Mode), ALE, PSEN

0.9 Vcc V IOH =  – 40 µA

IIL Logical 0 Input Current Ports 1, 2, 3 – 50 µA Vin = 0.45 V

ILI Input Leakage Current ± 10 µA 0.45 < Vin < VCC

ITL Logical 1 to 0 Transition Current
(Ports 1, 2, 3)

– 650 µA Vin = 2.0 V

IPD Power Down Current 50 µA VCC = 2.0 V to 5.5 V (note 1)

RRST RST Pulldown Resistor 50 200 kΩ

CIO Capacitance of I/O Buffer 10 pF fc = 1 MHz,  TA = 25�C

Maximum Icc (mA)

OPERATING (NOTE 1) IDLE (NOTE 1)

FREQUENCY/Vcc 2.7 V 3 V 3.3 V 5.5 V 2.7 V 3 V 3.3 V 5.5 V

1 MHz 0.8 mA 1 mA 1.1 mA 1.8 mA 400 µA 500 µA 600 µA 1 mA

6 MHz 4 mA 5 mA 6 mA 10 mA 1.5 mA 1.7 mA 2 mA 4 mA

12 MHz 8 mA 10 mA 12 mA 2.5 mA 3 mA 3.5 mA

16 MHz 10 mA 12 mA 14 mA 3 mA 3.8 mA 4.5 mA

Freq > 12 MHz (Vcc = 5.5 V) Icc (mA) = 1.25 × Freq (MHz) + 5
Icc Idle (mA) = 0.36 × Freq (MHz) + 2.7



80C32/80C52

Rev. G (14 Jan. 97)
14 MATRA MHS

Note 1 : ICC is measured with all output pins
disconnected ; XTAL1 driven with TCLCH, TCHCL =
5 ns, VIL = VSS + .5 V, VIH = VCC –.5 V ; XTAL2
N.C. ; EA = RST = Port 0 = VCC. ICC would be slighty
higher if a crystal oscillator used.

Idle ICC is measured with all output pins disconnected ;
XTAL1 driven with TCLCH, TCHCL = 5 ns, VIL =
VSS + 5 V, VIH = VCC –.5 V ; XTAL2 N.C ; Port 0 =
VCC ; EA = RST = VSS.

Power Down ICC is measured with all output pins
disconnected ; EA = PORT 0 = VCC ; XTAL2 N.C. ;
RST = VSS.

Note 2 : Capacitance loading on Ports 0 and 2 may cause
spurious noise pulses to be superimposed on the VOLS of
ALE and Ports 1 and 3. The noise is due to external bus
capacitance discharging into the Port 0 and Port 2 pins
when these pins make 1 to 0 transitions during bus
operations. In the worst cases (capacitive loading 100
pF), the noise pulse on the ALE line may exceed 0.45 V
may exceed 0,45 V with maxi VOL peak 0.6 V. A Schmitt
Trigger use is not necessary.

Figure 9. ICC Test Condition, Idle Mode.
All other pins are disconnected.

Figure 10. ICC Test Condition, Active Mode.
All other pins are disconnected.

Figure 11. ICC Test Condition, Power Down Mode.
All other pins are disconnected.

Figure 12. Clock Signal Waveform for ICC Tests in Active and Idle Modes. TCLCH = TCHCL = 5 ns.



80C32/80C52

Rev. G (14 Jan. 97)
15MATRA MHS

Explanation of the AC Symbol
Each timing symbol has 5 characters. The first character
is always a “T” (stands for time). The other characters,
depending on their positions, stand for the name of a
signal or the logical status of that signal. The following
is a list of all the characters and what they stand for.

Example :

TAVLL = Time for Address Valid to ALE low.

TLLPL = Time for ALE low to PSEN low.

A : Address.
C : Clock.
D : Input data.
H : Logic level HIGH
I : Instruction (program memory contents).
L : Logic level LOW, or ALE.
P : PSEN.

Q : Output data.
R : READ signal.
T : Time.
V : Valid.
W : WRITE signal.
X : No longer a valid logic level.
Z : Float.

AC Parameters
TA = 0 to + 70°C ; Vss = 0 V ; Vcc = 5 V ± 10 % ; F = 0 to 44 MHz
TA = 0 to +70°C ; Vss = 0 V ; 2.7 V < Vcc < 5.5 V ; F = 0 to 16 MHz
TA = –40° to + 85°C ; Vss = 0 V ; 2.7 V < Vcc < 5.5 V ; F = 0 to 16 MHz
TA = –55° + 125°C ; Vss = 0 V ; Vcc = 5 V ± 10 % ; F = 0 to 36 MHz
(Load Capacitance for PORT 0, ALE and PSEN = 100 pF ; Load Capacitance for all other outputs = 80 pF)

External Program Memory Characteristics (values in ns)

16 MHz 20 MHz 25 MHz 30 MHz 36 MHz 40 MHz 42 MHz 44 MHz

SYM-
BOL

PARAMETER min max min max min max min max min max min max min max min max

TLHLL ALE Pulse Width 110 90 70 60 50 40 35 30

TAVLL Address valid to ALE 40 30 20 15 10 9 8 7

TLLAX Address Hold After ALE 35 35 35 35 35 30 25 17

TLLIV ALE to valid instr in 185 170 130 100 80 70 65 65

TLLPL ALE to PSEN 45 40 30 25 20 15 13 12

TPLPH PSEN pulse Width 165 130 100 80 75 65 60 54

TPLIV PSEN to valid instr in 125 110 85 65 50 45 40 35

TPXIX Input instr Hold After PSEN 0 0 0 0 0 0 0 0

TPXIZ Input instr Float After PSEN 50 45 35 30 25 20 15 10

TPXAV PSEN to Address Valid 55 50 40 35 30 25 20 15

TAVIV Address to Valid instr in 230 210 170 130 90 80 75 70

TPLAZ PSEN low to Address Float 10 10 8 6 5 5 5 5

External Program Memory Read Cycle

TAVIV



80C32/80C52

Rev. G (14 Jan. 97)
16 MATRA MHS

External Data Memory Characteristics (values in ns)

16 MHz 20 MHz 25 MHz 30 MHz 36 MHz 40 MHz 42 MHz 44 MHz

SYM-
BOL PARAMETER min max min max min max min max min max min max min max min max

TRLRH RD pulse Width 340 270 210 180 120 100 90 80

TWLWH WR pulse Width 340 270 210 180 120 100 90 80

TLLAX Address Hold After ALE 85 85 70 55 35 30 25 25

TRLDV RD to Valid Data in 240 210 175 135 110 90 80 70

TRHDX Data hold after RD 0 0 0 0 0 0 0 0

TRHDZ Data float after RD 90 90 80 70 50 45 40 35

TLLDV ALE to Valid Data In 435 370 290 235 170 150 140 130

TAVDV Address to Valid Data IN 480 400 320 260 190 180 175 170

TLLWL ALE to WR or RD 150 250 135 170 120 130 90 115 70 100 60 95 55 90 50 85

TAVWL Address to WR or RD 180 180 140 115 75 65 60 55

TQVWX Data valid to WR transition 35 35 30 20 15 10 8 6

TQVWH Data Setup to WR transition 380 325 250 215 170 160 150 140

TWHQX Data Hold after WR 40 35 30 20 15 10 8 6

TRLAZ RD low to Address Float 0 0 0 0 0 0 0 0

TWHLH RD or WR high to ALE high 35 90 35 60 25 45 20 40 20 40 15 35 13 33 13 33

External Data Memory Write Cycle

TAVWL
TQVWX

External Data Memory Read Cycle



80C32/80C52

Rev. G (14 Jan. 97)
17MATRA MHS

Serial Port Timing – Shift Register Mode (values in ns)

16 MHz 20 MHz 25 MHz 30 MHz 36 MHz 40 MHz 42 MHz 44 MHz

SYM-
BOL PARAMETER min max min max min max min max min max min max min max min max

TXLXL Serial Port Clock Cycle Time 750 600 480 400 330 250 230 227

TQVXH Output Data Setup to Clock
Rising Edge

563 480 380 300 220 170 150 140

TXHQX Output Data Hold after Clock
Rising Edge

63 90 65 50 45 35 30 25

TXHDX Input Data Hold after Clock
Rising Edge

0 0 0 0 0 0 0 0

TXHDV Clock Rising Edge to Input
Data Valid

563 450 350 300 250 200 180 160

Shift Register Timing Waveforms



80C32/80C52

Rev. G (14 Jan. 97)
18 MATRA MHS

External Clock Drive Characteristics (XTAL1)

SYMBOL PARAMETER MIN MAX UNIT

FCLCL Oscillator Frequency 44 MHz

TCLCL Oscillator period 22.7 ns

TCHCX High Time 5 ns

TCLCX Low Time 5 ns

TCLCH Rise Time 5 ns

TCHCL Fall Time 5 ns

External Clock Drive Waveforms

AC Testing Input/Output Waveforms

AC inputs during testing are driven at Vcc – 0.5 for a logic “1” and 0.45 V for a logic “0”. Timing measurements are
made at VIH min for a logic “1” and VIL max for a logic “0”.

Float Waveforms

For timing purposes as port pin is no longer floating when a 100 mV change from load voltage occurs and begins to
float when a 100 mV change from the loaded VOH/VOL level occurs. Iol/IoH ≥ ± 20 mA.



80C32/80C52

Rev. G (14 Jan. 97)
19MATRA MHS

Clock Waveforms

This diagram indicates when signals are clocked internally. The time it takes the signals to propagate to the pins,
however, ranges from 25 to 125 ns. This propagation delay is dependent on variables such as temperature and pin
loading. Propagation also varies from output to output and component. Typically though (TA = 25°C fully loaded) RD
and WR propagation delays are approximately 50 ns. The other signals are typically 85 ns. Propagation delays are
incorporated in the AC specifications.



80C32/80C52

Rev. G (14 Jan. 97)
20 MATRA MHS

Ordering Information

Temperature Range
blank : Commercial
I : Industrial
A : Automotive
M : Military

Part Number
80C52 Rom 8 K × 8
80C32 External ROM
80C52C Secret ROM version
80C52T Secret Tag version
80C32E Radiation Tolerant
80C52E Radiation Tolerant

Customer Rom Code

I ���� 80C52C

–12 : 12 MHz version
–16 : 16 MHz version
–20 : 20 MHz version
–25 : 25 MHz version
–30 : 30 MHz version
–36 : 36 MHz version
–40 : 40 MHz version (1)

–42 : 42 MHz version (1)

–44 : 44 MHz version (1)

–L16 : Low Power
(Vcc : 2.7-5.5 V
Freq : 0-16 MHz)

R : Tape and Reel
D : Dry Pack

��� �

Package Type
P: PDIL 40
S: PLCC 44
F1: PQFP 44 (Foot print 13.9 mm)
F2: PQFP 44 (Foot print 12.3 mm)
V: VQFP (1.4 mm)
T: TQFP (1.0 mm)
D: CDIL 40
Q: CQFP 44
R: LCC 44
C: Side Braze 40 (.6)

(1) Only for 80C31 at commercial range.

Flow
/883 MIL compliant
P883 MIL compliant with PIND test
SB SCC9000 level B
SC SCC9000 level C



1

June 1998

82C55A
CMOS Programmable

Peripheral Interface

Features
• Pin Compatible with NMOS 8255A

• 24 Programmable I/O Pins

• Fully TTL Compatible

• High Speed, No “Wait State” Operation with 5MHz and
8MHz 80C86 and 80C88

• Direct Bit Set/Reset Capability

• Enhanced Control Word Read Capability

• L7 Process

• 2.5mA Drive Capability on All I/O Ports

• Low Standby Power (ICCSB)  . . . . . . . . . . . . . . . . .10 µA

Description
The Intersil 82C55A is a high performance CMOS version of
the industry standard 8255A and is manufactured using a
self-aligned silicon gate CMOS process (Scaled SAJI IV). It
is a general purpose programmable I/O device which may be
used with many different microprocessors. There are 24 I/O
pins which may be individually programmed in 2 groups of
12 and used in 3 major modes of operation. The high
performance and industry standard configuration of the
82C55A make it compatible with the 80C86, 80C88 and
other microprocessors.

Static CMOS circuit design insures low operating power. TTL
compatibility over the full military temperature range and bus
hold circuitry eliminate the need for pull-up resistors. The
Intersil advanced SAJI process results in performance equal
to or greater than existing functionally equivalent products at
a fraction of the power.Ordering Information

PART NUMBERS

PACKAGE
TEMPERATURE

RANGE
PKG.
NO.5MHz 8MHz

CP82C55A-5 CP82C55A
40 Ld PDIP

0oC to 70oC E40.6

IP82C55A-5 IP82C55A -40oC to 85oC E40.6

CS82C55A-5 CS82C55A
44 Ld PLCC

0oC to 70oC N44.65

IS82C55A-5 IS82C55A -40oC to 85oC N44.65

CD82C55A-5 CD82C55A
40 Ld
CERDIP

0oC to 70oC F40.6

ID82C55A-5 ID82C55A -40oC to 85oC F40.6

MD82C55A-5/B MD82C55A/B -55oC to 125oC F40.6

8406601QA 8406602QA SMD# F40.6

MR82C55A-5/B MR82C55A/B
44 Pad
CLCC

-55oC to 125oC J44.A

8406601XA 8406602XA SMD# J44.A

Pinouts
82C55A (DIP)

TOP VIEW
82C55A (CLCC)

TOP VIEW
82C55A (PLCC)

TOP VIEW

PA3
PA2
PA1
PA0
RD
CS

GND
A1
A0

PC7
PC6
PC5
PC4
PC0
PC1
PC2
PC3
PB0
PB1
PB2

PA4
PA5
PA6
PA7
WR
RESET
D0
D1
D2
D3
D4
D5
D6
D7
VCC
PB7
PB6
PB5
PB4
PB3

13

1
2
3
4

5
6
7
8
9
10
11
12

14
15
16
17
18
19
20

28

40
39
38
37
36
35
34
33
32

31
30
29

27
26
25
24
23
22
21

406 5 3 2 1 44 43 42 414

9
10
11

8
7

12
13

17
16

15
14

39
38

37
36
35

34
33
32
31

30
29

18 19 20 21 22 23 24 25 26 27 28

GND
NC
A1
A0

PC7
PC6
PC5
PC4
PC0
PC1
PC2

P
C

3

P
B

0

P
B

1

P
B

2

P
B

3

P
B

4

P
B

5

P
B

6

P
B

7

V
C

C
N

C

NC
RESET
D0
D1
D2
D3
D4
D5
D6
D7
NC

C
S

R
D

PA
0

PA
1

PA
2

PA
3

PA
4

PA
5

PA
6

PA
7

W
R

CS
GND

A1
A0

PC7

PC6
PC5
PC4
PC0
PC1

P
C

3
P

B
0

P
B

1

P
B

2

P
B

3
P

B
4

P
B

5
P

B
6

P
B

7

N
C

NC

RESET
D0
D1
D2
D3

D4
D5
D6
D7
VCC

R
D

PA
0

PA
1

PA
2

PA
3

PA
4

PA
5

PA
6

PA
7

W
R

N
C

P
C

2

NC

44 43 42 41 40

39
38
37
36
35
34
33
32
31
30
29

2827

123456

262524232221201918

7
8
9
10
11
12
13
14
15
16
17

File Number 2969.2CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.
http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999



2

Functional Diagram

Pin Description

SYMBOL
PIN

NUMBER TYPE DESCRIPTION

VCC 26 VCC: The +5V power supply pin. A 0.1µF capacitor between pins 26 and 7 is
recommended for decoupling.

GND 7 GROUND

D0-D7 27-34 I/O DATA BUS: The Data Bus lines are bidirectional three-state pins connected to the
system data bus.

RESET 35 I RESET: A high on this input clears the control register and all ports (A, B, C) are set
to the input mode with the “Bus Hold” circuitry turned on.

CS 6 I CHIP SELECT: Chip select is an active low input used to enable the 82C55A onto the
Data Bus for CPU communications.

RD 5 I READ: Read is an active low input control signal used by the CPU to read status
information or data via the data bus.

WR 36 I WRITE: Write is an active low input control signal used by the CPU to load control
words and data into the 82C55A.

A0-A1 8, 9 I ADDRESS: These input signals, in conjunction with the RD and WR inputs, control
the selection of one of the three ports or the control word register. A0 and A1 are
normally connected to the least significant bits of the Address Bus A0, A1.

PA0-PA7 1-4, 37-40 I/O PORT A: 8-bit input and output port. Both bus hold high and bus hold low circuitry are
present on this port.

PB0-PB7 18-25 I/O PORT B: 8-bit input and output port. Bus hold high circuitry is present on this port.

PC0-PC7 10-17 I/O PORT C: 8-bit input and output port. Bus hold circuitry is present on this port.

GROUP A
PORT A

(8)

GROUP A
PORT C
UPPER

(4)

GROUP B
PORT C
LOWER

(4)

GROUP B
PORT B

(8)

GROUP B
CONTROL

GROUP A
CONTROL

DATA BUS
BUFFER

READ
WRITE

CONTROL
LOGIC

RD

WR

A1

A0

RESET

CS

D7-D0

POWER
SUPPLIES

+5V

GND

BI-DIRECTIONAL
DATA BUS

I/O
PA7-PA0

I/O
PC7-PC4

I/O
PC3-PC0

I/O
PB7-PB0

8-BIT
INTERNAL
DATA BUS

82C55A



3

Functional Description

Data Bus Buffer

This three-state bi-directional 8-bit buffer is used to interface
the 82C55A to the system data bus. Data is transmitted or
received by the buffer upon execution of input or output
instructions by the CPU. Control words and status informa-
tion are also transferred through the data bus buffer.

Read/Write and Control Logic

The function of this block is to manage all of the internal and
external transfers of both Data and Control or Status words.
It accepts inputs from the CPU Address and Control busses
and in turn, issues commands to both of the Control Groups.

(CS) Chip Select. A “low” on this input pin enables the
communcation between the 82C55A and the CPU.

(RD) Read. A “low” on this input pin enables 82C55A to send
the data or status information to the CPU on the data bus. In
essence, it allows the CPU to “read from” the 82C55A.

(WR) Write. A “low” on this input pin enables the CPU to
write data or control words into the 82C55A.

(A0 and A1) Port Select 0 and Port Select 1. These input
signals, in conjunction with the RD and WR inputs, control
the selection of one of the three ports or the control word
register. They are normally connected to the least significant
bits of the address bus (A0 and A1).

(RESET) Reset. A “high” on this input initializes the control
register to 9Bh and all ports (A, B, C) are set to the input
mode. “Bus hold” devices internal to the 82C55A will hold
the I/O port inputs to a logic “1” state with a maximum hold
current of 400µA.

Group A and Group B Controls

The functional configuration of each port is programmed by
the systems software. In essence, the CPU “outputs” a con-
trol word to the 82C55A. The control word contains
information such as “mode”, “bit set”, “bit reset”, etc., that ini-
tializes the functional configuration of the 82C55A.

Each of the Control blocks (Group A and Group B) accepts
“commands” from the Read/Write Control logic, receives
“control words” from the internal data bus and issues the
proper commands to its associated ports.

Control Group A - Port A and Port C upper (C7 - C4)

Control Group B - Port B and Port C lower (C3 - C0)

The control word register can be both written and read as
shown in the “Basic Operation” table. Figure 4 shows the
control word format for both Read and Write operations.
When the control word is read, bit D7 will always be a logic
“1”, as this implies control word mode information.

82C55A BASIC OPERATION

A1 A0 RD WR CS
INPUT OPERATION

(READ)

0 0 0 1 0 Port A → Data Bus

0 1 0 1 0 Port B → Data Bus

1 0 0 1 0 Port C → Data Bus

1 1 0 1 0 Control Word → Data Bus

OUTPUT OPERATION
(WRITE)

0 0 1 0 0 Data Bus → Port A

0 1 1 0 0 Data Bus → Port B

1 0 1 0 0 Data Bus → Port C

1 1 1 0 0 Data Bus → Control

DISABLE FUNCTION

X X X X 1 Data Bus → Three-State

X X 1 1 0 Data Bus → Three-State

FIGURE 1. 82C55A BLOCK DIAGRAM. DATA BUS BUFFER,
READ/WRITE, GROUP A & B CONTROL LOGIC
FUNCTIONS

GROUP A
PORT A

(8)

GROUP A
PORT C
UPPER

(4)

GROUP B
PORT C
LOWER

(4)

GROUP B
PORT B

(8)

GROUP B
CONTROL

GROUP A
CONTROL

DATA

READ
WRITE

CONTROL
LOGIC

RD
WR
A1
A0

RESET

CS

D7-D0

POWER
SUPPLIES

+5V
GND

BI-DIRECTIONAL
DATA BUS

I/O
PA7-

I/O
PC7-

I/O
PC3-

I/O
PB7-

BUFFER
BUS

PB0

PC0

PC4

PA0

8-BIT
INTERNAL
DATA BUS

82C55A



4

Ports A, B, and C

The 82C55A contains three 8-bit ports (A, B, and C). All can
be configured to a wide variety of functional characteristics
by the system software but each has its own special features
or “personality” to further enhance the power and flexibility of
the 82C55A.

Port A One 8-bit data output latch/buffer and one 8-bit data
input latch. Both “pull-up” and “pull-down” bus-hold devices
are present on Port A. See Figure 2A.

Port B One 8-bit data input/output latch/buffer and one 8-bit
data input buffer. See Figure 2B.

Port C One 8-bit data output latch/buffer and one 8-bit data
input buffer (no latch for input). This port can be divided into
two 4-bit ports under the mode control. Each 4-bit port con-
tains a 4-bit latch and it can be used for the control signal
output and status signal inputs in conjunction with ports A
and B. See Figure 2B.

Operational Description
Mode Selection

There are three basic modes of operation than can be
selected by the system software:

Mode 0 - Basic Input/Output
Mode 1 - Strobed Input/Output
Mode 2 - Bi-directional Bus

When the reset input goes “high”, all ports will be set to the
input mode with all 24 port lines held at a logic “one” level by
internal bus hold devices. After the reset is removed, the
82C55A can remain in the input mode with no additional ini-
tialization required. This eliminates the need to pullup or pull-
down resistors in all-CMOS designs. The control word

register will contain 9Bh. During the execution of the system
program, any of the other modes may be selected using a
single output instruction. This allows a single 82C55A to
service a variety of peripheral devices with a simple software
maintenance routine. Any port programmed as an output
port is initialized to all zeros when the control word is written.

FIGURE 2A. PORT A BUS-HOLD CONFIGURATION

FIGURE 2B. PORT B AND C BUS-HOLD CONFIGURATION

FIGURE 2. BUS-HOLD CONFIGURATION

MASTER
RESET

OR MODE
CHANGE

INTERNAL
DATA IN

INTERNAL
DATA OUT

(LATCHED)

EXTERNAL
PORT A PIN

OUTPUT MODE

INPUT MODE

RESET
OR MODE
CHANGE

INTERNAL
DATA IN

INTERNAL
DATA OUT

(LATCHED)

EXTERNAL
PORT B, C

OUTPUT MODE

PIN

P

VCC

FIGURE 3. BASIC MODE DEFINITIONS AND BUS INTERFACE

DATA BUS

8 I/O

B

PB7-PB0

4 I/O

PC3-PC0

4 I/O

C

PC7-PC4

8 I/O

A

PA7-PA0

CONTROL BUS

ADDRESS BUS

RD, WR

82C55A

D7-D0 A0-A1
CS

MODE 0

8 I/O

B

PB7-PB0 CONTROL

C

8 I/O

A

PA7-PA0

MODE 1

OR I/O
CONTROL

OR I/O

8 I/O

B

PB7-PB0

C

BI-

A

PA7-PA0

MODE 2

CONTROL

DIRECTIONAL

FIGURE 4. MODE DEFINITION FORMAT

D7 D6 D5 D4 D3 D2 D1 D0

PORT C (LOWER)
1 = INPUT
0 = OUTPUT

PORT B
1 = INPUT
0 = OUTPUT

MODE SELECTION
0 = MODE 0
1 = MODE 1

GROUP B

PORT C (UPPER)
1 = INPUT
0 = OUTPUT

PORT A
1 = INPUT
0 = OUTPUT

MODE SELECTION
00 = MODE 0
01 = MODE 1

GROUP A

1X = MODE 2

MODE SET FLAG
1 = ACTIVE

CONTROL WORD

82C55A



5

The modes for Port A and Port B can be separately defined,
while Port C is divided into two portions as required by the
Port A and Port B definitions. All of the output registers,
including the status flip-flops, will be reset whenever the
mode is changed. Modes may be combined so that their
functional definition can be “tailored” to almost any I/O
structure. For instance: Group B can be programmed in
Mode 0 to monitor simple switch closings or display compu-
tational results, Group A could be programmed in Mode 1 to
monitor a keyboard or tape reader on an interrupt-driven
basis.

The mode definitions and possible mode combinations may
seem confusing at first, but after a cursory review of the
complete device operation a simple, logical I/O approach will
surface. The design of the 82C55A has taken into account
things such as efficient PC board layout, control signal defi-
nition vs. PC layout and complete functional flexibility to sup-
port almost any peripheral device with no external logic.
Such design represents the maximum use of the available
pins.

Single Bit Set/Reset Feature (Figure 5)

Any of the eight bits of Port C can be Set or Reset using a
single Output instruction. This feature reduces software
requirements in control-based applications.

When Port C is being used as status/control for Port A or B,
these bits can be set or reset by using the Bit Set/Reset
operation just as if they were output ports.

Interrupt Control Functions

When the 82C55A is programmed to operate in mode 1 or
mode 2, control signals are provided that can be used as
interrupt request inputs to the CPU. The interrupt request
signals, generated from port C, can be inhibited or enabled
by setting or resetting the associated INTE flip-flop, using the
bit set/reset function of port C.

This function allows the programmer to enable or disable a
CPU interrupt by a specific I/O device without affecting any
other device in the interrupt structure.

INTE Flip-Flop Definition

(BIT-SET)-INTE is SET - Interrupt Enable

(BIT-RESET)-INTE is Reset - Interrupt Disable

NOTE: All Mask flip-flops are automatically reset during mode se-
lection and device Reset.

Operating Modes
Mode 0 (Basic Input/Output). This functional configuration
provides simple input and output operations for each of the
three ports. No handshaking is required, data is simply writ-
ten to or read from a specific port.

Mode 0 Basic Functional Definitions:

• Two 8-bit ports and two 4-bit ports

• Any Port can be input or output

• Outputs are latched

• Input are not latched

• 16 different Input/Output configurations possible

FIGURE 5. BIT SET/RESET FORMAT

D7 D6 D5 D4 D3 D2 D1 D0

BIT SET/RESET
1 = SET
0 = RESET

BIT SELECT
0

BIT SET/RESET FLAG

CONTROL WORD

DON’T
CARE

XXX

0 = ACTIVE

1 2 3 4 5 6 7
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1

B0
B1
B2

MODE 0 PORT DEFINITION

A B GROUP A

#

GROUP B

D4 D3 D1 D0 PORT A
PORTC
(Upper) PORT B

PORTC
(Lower)

0 0 0 0 Output Output 0 Output Output

0 0 0 1 Output Output 1 Output Input

0 0 1 0 Output Output 2 Input Output

0 0 1 1 Output Output 3 Input Input

0 1 0 0 Output Input 4 Output Output

0 1 0 1 Output Input 5 Output Input

0 1 1 0 Output Input 6 Input Output

0 1 1 1 Output Input 7 Input Input

1 0 0 0 Input Output 8 Output Output

1 0 0 1 Input Output 9 Output Input

1 0 1 0 Input Output 10 Input Output

1 0 1 1 Input Output 11 Input Input

1 1 0 0 Input Input 12 Output Output

1 1 0 1 Input Input 13 Output Input

1 1 1 0 Input Input 14 Input Output

1 1 1 1 Input Input 15 Input Input

82C55A



6

Mode 0 (Basic Input)

Mode 0 (Basic Output)

Mode 0 Configurations

CONTROL WORD #0 CONTROL WORD #2

CONTROL WORD #1 CONTROL WORD #3

tRA

tHR

tRR

tIR

tAR

tRD tDF

RD

INPUT

CS, A1, A0

D7-D0

tAW tWA

tWB

tWW

tWDtDW

WR

D7-D0

CS, A1, A0

OUTPUT

1

D7

0

D6

0

D5

0

D4

0

D3

0

D2

0

D1

0

D0

8
PA7 - PA0

4
PC7 - PC4

4
PC3 - PC0

8
PB7 - PB0

D7 - D0

82C55A

A

B

C

1

D7

0

D6

0

D5

0

D4

0

D3

0

D2

1

D1

0

D0

8
PA7 - PA0

4
PC7 - PC4

4
PC3 - PC0

8
PB7 - PB0

D7 - D0

82C55A

A

B

C

1

D7

0

D6

0

D5

0

D4

0

D3

0

D2

0

D1

1

D0

8
PA7 - PA0

4
PC7 - PC4

4
PC3 - PC0

8
PB7 - PB0

D7 - D0

82C55A

A

B

C

1

D7

0

D6

0

D5

0

D4

0

D3

0

D2

1

D1

1

D0

8
PA7 - PA0

4
PC7 - PC4

4
PC3 - PC0

8
PB7 - PB0

D7 - D0

82C55A

A

B

C

82C55A



7

CONTROL WORD #4 CONTROL WORD #8

CONTROL WORD #5 CONTROL WORD #9

CONTROL WORD #6 CONTROL WORD #10

CONTROL WORD #7 CONTROL WORD #11

Mode 0 Configurations  (Continued)

1

D7

0

D6

0

D5

0

D4

1

D3

0

D2

0

D1

0

D0

8
PA7 - PA0

4
PC7 - PC4

4
PC3 - PC0

8
PB7 - PB0

D7 - D0

82C55A

A

B

C

1

D7

0

D6

0

D5

1

D4

0

D3

0

D2

0

D1

0

D0

8
PA7 - PA0

4
PC7 - PC4

4
PC3 - PC0

8
PB7 - PB0

D7 - D0

82C55A

A

B

C

1

D7

0

D6

0

D5

0

D4

1

D3

0

D2

0

D1

1

D0

8
PA7 - PA0

4
PC7 - PC4

4
PC3 - PC0

8
PB7 - PB0

D7 - D0

82C55A

A

B

C

1

D7

0

D6

0

D5

1

D4

0

D3

0

D2

0

D1

1

D0

8
PA7 - PA0

4
PC7 - PC4

4
PC3 - PC0

8
PB7 - PB0

D7 - D0

82C55A

A

B

C

1

D7

0

D6

0

D5

0

D4

1

D3

0

D2

1

D1

0

D0

8
PA7 - PA0

4
PC7 - PC4

4
PC3 - PC0

8
PB7 - PB0

D7 - D0

82C55A

A

B

C

1

D7

0

D6

0

D5

1

D4

0

D3

0

D2

1

D1

0

D0

8
PA7 - PA0

4
PC7 - PC4

4
PC3 - PC0

8
PB7 - PB0

D7 - D0

82C55A

A

B

C

1

D7

0

D6

0

D5

0

D4

1

D3

0

D2

1

D1

1

D0

8
PA7 - PA0

4
PC7 - PC4

4
PC3 - PC0

8
PB7 - PB0

D7 - D0

82C55A

A

B

C

1

D7

0

D6

0

D5

1

D4

0

D3

0

D2

1

D1

1

D0

8
PA7 - PA0

4
PC7 - PC4

4
PC3 - PC0

8
PB7 - PB0

D7 - D0

82C55A

A

B

C

82C55A



8

Operating Modes
Mode 1 - (Strobed Input/Output). This functional configura-
tion provides a means for transferring I/O data to or from a
specified port in conjunction with strobes or “hand shaking”
signals. In mode 1, port A and port B use the lines on port C
to generate or accept these “hand shaking” signals.

Mode 1 Basic Function Definitions:
• Two Groups (Group A and Group B)
• Each group contains one 8-bit port and one 4-bit

control/data port
• The 8-bit data port can be either input or output. Both

inputs and outputs are latched.
• The 4-bit port is used for control and status of the 8-bit

port.

Input Control Signal Definition

(Figures 6 and 7)

STB (Strobe Input)

A “low” on this input loads data into the input latch.

IBF (Input Buffer Full F/F)

A “high” on this output indicates that the data has been
loaded into the input latch: in essence, and acknowledg-
ment. IBF is set by STB input being low and is reset by the
rising edge of the RD input.

CONTROL WORD #12 CONTROL WORD #14

CONTROL WORD #13 CONTROL WORD #15

Mode 0 Configurations  (Continued)

1

D7

0

D6

0

D5

1

D4

1

D3

0

D2

0

D1

0

D0

8
PA7 - PA0

4
PC7 - PC4

4
PC3 - PC0

8
PB7 - PB0

D7 - D0

82C55A

A

B

C

1

D7

0

D6

0

D5

1

D4

1

D3

0

D2

1

D1

0

D0

8
PA7 - PA0

4
PC7 - PC4

4
PC3 - PC0

8
PB7 - PB0

D7 - D0

82C55A

A

B

C

1

D7

0

D6

0

D5

1

D4

1

D3

0

D2

0

D1

1

D0

8
PA7 - PA0

4
PC7 - PC4

4
PC3 - PC0

8
PB7 - PB0

D7 - D0

82C55A

A

B

C

1

D7

0

D6

0

D5

1

D4

1

D3

0

D2

1

D1

1

D0

8
PA7 - PA0

4
PC7 - PC4

4
PC3 - PC0

8
PB7 - PB0

D7 - D0

82C55A

A

B

C

FIGURE 6. MODE 1 INPUT

1

D7

0

D6

1

D5

1

D4

1/0

D3 D2 D1 D0
CONTROL WORD

MODE 1 (PORT A)

PC4

8

IBFAPC5

INTE
A

PA7-PA0

STBA

INTRAPC3

PC6, PC7 I/O
2RD

PC6, PC7
1 = INPUT
0 = OUTPUT

1

D7 D6 D5 D4 D3 D2 D1 D0
CONTROL WORD

MODE 1 (PORT B)

PC2

8

IBFBPC1

INTE
B

PB7-PB0

STBB

INTRBPC0

RD

1 1

82C55A



9

INTR (Interrupt Request)

A “high” on this output can be used to interrupt the CPU
when and input device is requesting service. INTR is set by
the condition: STB is a “one”, IBF is a “one” and INTE is a
“one”. It is reset by the falling edge of RD. This procedure
allows an input device to request service from the CPU by
simply strobing its data into the port.

INTE A

Controlled by bit set/reset of PC4.

INTE B

Controlled by bit set/reset of PC2.

Output Control Signal Definition

(Figure 8 and 9)

OBF - Output Buffer Full F/F). The OBF output will go “low”
to indicate that the CPU has written data out to be specified
port. This does not mean valid data is sent out of the part at
this time since OBF can go true before data is available.
Data is guaranteed valid at the rising edge of OBF, (See
Note 1). The OBF F/F will be set by the rising edge of the
WR input and reset by ACK input being low.

ACK - Acknowledge Input). A “low” on this input informs the
82C55A that the data from Port A or Port B is ready to be
accepted. In essence, a response from the peripheral device
indicating that it is ready to accept data, (See Note 1).

INTR - (Interrupt Request). A “high” on this output can be
used to interrupt the CPU when an output device has
accepted data transmitted by the CPU. INTR is set when
ACK is a “one”, OBF is a “one” and INTE is a “one”. It is
reset by the falling edge of WR.

INTE A

Controlled by Bit Set/Reset of PC6.

INTE B

Controlled by Bit Set/Reset of PC2.

NOTE:

1. To strobe data into the peripheral device, the user must operate
the strobe line in a hand shaking mode. The user needs to send
OBF to the peripheral device, generates an ACK from the pe-
ripheral device and then latch data into the peripheral device on
the rising edge of OBF.

FIGURE 7. MODE 1 (STROBED INPUT)

tST

STB

INTR

RD

INPUT FROM

IBF

PERIPHERAL

tSIB

tSIT

tPH

tPS

tRIT

tRIB

FIGURE 8. MODE 1 OUTPUT

1

D7

0

D6

1

D5

1

D4

1/0

D3 D2 D1 D0
CONTROL WORD

MODE 1 (PORT A)

PC7

8

ACKAPC6

PA7-PA0

OBFA

INTRAPC3

PC4, PC5
2WR

PC4, PC5
1 = INPUT
0 = OUTPUT

1

D7 D6 D5 D4 D3 D2 D1 D0
CONTROL WORD

MODE 1 (PORT B)

PC1

8

ACKBPC2INTE
B

PB7-PB0

OBFB

INTRBPC0

WR

1 0

INTE
A

82C55A



10

Operating Modes
Mode 2 (Strobed Bi-Directional Bus I/O)

The functional configuration provides a means for communi-
cating with a peripheral device or structure on a single 8-bit
bus for both transmitting and receiving data (bi-directional
bus I/O). “Hand shaking” signals are provided to maintain
proper bus flow discipline similar to Mode 1. Interrupt gener-
ation and enable/disable functions are also available.

Mode 2 Basic Functional Definitions:
• Used in Group A only
• One 8-bit, bi-directional bus Port (Port A) and a 5-bit

control Port (Port C)
• Both inputs and outputs are latched
• The 5-bit control port (Port C) is used for control and

status for the 8-bit, bi-directional bus port (Port A)

Bi-Directional Bus I/O Control Signal Definition
(Figures 11, 12, 13, 14)

INTR - (Interrupt Request). A high on this output can be
used to interrupt the CPU for both input or output operations.

Output Operations

OBF - (Output Buffer Full). The OBF output will go “low” to
indicate that the CPU has written data out to port A.

ACK - (Acknowledge). A “low” on this input enables the
three-state output buffer of port A to send out the data. Oth-
erwise, the output buffer will be in the high impedance state.

INTE 1 - (The INTE flip-flop associated with OBF). Con-
trolled by bit set/reset of PC4.

Input Operations

STB - (Strobe Input). A “low” on this input loads data into the
input latch.

IBF - (Input Buffer Full F/F). A “high” on this output indicates
that data has been loaded into the input latch.

INTE 2 - (The INTE flip-flop associated with IBF). Controlled
by bit set/reset of PC4.

FIGURE 9. MODE 1 (STROBED OUTPUT)

tWOB

tWB

tAK tAIT

tAOB

tWIT

OBF

WR

INTR

ACK

OUTPUT

Combinations of Mode 1: Port A and Port B can be individually defined as input or output in Mode 1 to support a wide variety of strobed I/O
applications.

FIGURE 10. COMBINATIONS OF MODE 1

1

D7

0

D6

1

D5

1

D4

1/0

D3 D2 D1 D0
CONTROL WORD

PORT A - (STROBED INPUT)

PC4

8

OBFB

PA7-PA0

STBA

INTRBPC0

PC6, PC7
2

WR

PC6, PC7
1 = INPUT
0 = OUTPUT

PORT B - (STROBED OUTPUT)

8

IIBFAPC5

INTRAPC3

ACKBPC2

I/O

PC1

PB7, PB0

RD

1 0 1

D7

0

D6

1

D5

0

D4

1/0

D3 D2 D1 D0
CONTROL WORD

PORT A - (STROBED OUTPUT)

PC7

8

STBB

PA7-PA0

OBFA

INTRBPC0

PC4, PC5
2

RD

PC4, PC5
1 = INPUT
0 = OUTPUT

PORT B - (STROBED INPUT)

8

ACKAPC6

INTRAPC3

IBFBPC1

I/O

PC2

PB7, PB0

WR

1 1

82C55A



11

FIGURE 11. MODE CONTROL WORD FIGURE 12. MODE 2

NOTE: Any sequence where WR occurs before ACK and STB occurs before RD is permissible. (INTR = IBF • MASK • STB • RD ÷ OBF •
MASK • ACK • WR)

FIGURE 13. MODE 2 (BI-DIRECTIONAL)

1

D7 D6 D5 D4 D3 D2 D1 D0
CONTROL WORD

1/0 1/01 1/0

PC2-PC0
1 = INPUT
0 = OUTPUT

PORT B
1 = INPUT
0 = OUTPUT

GROUP B MODE
0 = MODE 0
1 = MODE 1

PC7 OBFA

PC6INTE

PA7-PA0

ACKA

IBFA

PC4

WR

INTE

RD

PC3

PC5

PC2-PC0

1

2

8

STBA

3
I/O

INTRA

tWOB

tAOB

tAK

tAD
tKD

tPH

tPS

tSIB

tST

OBF

WR

INTR

ACK

IBF

STB

PERIPHERAL
BUS

RD

tRIB

DATA FROM
PERIPHERAL TO 82C55A

DATA FROM
82C55A TO PERIPHERAL

DATA FROM
82C55A TO CPU

DATA FROM
CPU TO 82C55A

82C55A



12

MODE 2 AND MODE 0 (INPUT) MODE 2 AND MODE 0 (OUTPUT)

MODE 2 AND MODE 1 (OUTPUT) MODE 2 AND MODE 1 (INPUT)

FIGURE 14. MODE 2 COMBINATIONS

1

D7

1

D6 D5 D4 D3 D2 D1 D0
CONTROL WORD

PC7

8

STBA

PA7-PA0

OBFA

IBFAPC5

PC2-PC0
3

RD

PC2-PC0
1 = INPUT
0 = OUTPUT

ACKAPC6

INTRAPC3

I/O

PC4

PB7-PB0

0 1 1/0

8

WR

1

D7

1

D6 D5 D4 D3 D2 D1 D0
CONTROL WORD

PC7

8

STBA

PA7-PA0

OBFA

IBFAPC5

PC2-PC0
3

RD

PC2-PC0
1 = INPUT
0 = OUTPUT

ACKAPC6

INTRAPC3

I/O

PC4

PB7, PB0

0 0 1/0

8

WR

1

D7

1

D6 D5 D4 D3 D2 D1 D0
CONTROL WORD

PC7

8

STBA

PA7-PA0

OBFA

IBFAPC5

RD

ACKAPC6

INTRAPC3

PC4

PB7-PB0

1 0

8

WR

PC1 OBFB

ACKBPC2

PC0 INTRB

1

D7

1

D6 D5 D4 D3 D2 D1 D0
CONTROL WORD

PC7

8

STBA

PA7-PA0

OBFA

IBFAPC5

RD

ACKAPC6

INTRAPC3

PC4

PB7-PB0

1 1

8

WR

PC2 STBB

PC1

PC0 INTRB

IBFB

82C55A



13

Special Mode Combination Considerations

There are several combinations of modes possible. For any
combination, some or all of Port C lines are used for control
or status. The remaining bits are either inputs or outputs as
defined by a “Set Mode” command.

During a read of Port C, the state of all the Port C lines,
except the ACK and STB lines, will be placed on the data
bus. In place of the ACK and STB line states, flag status will
appear on the data bus in the PC2, PC4, and PC6 bit
positions as illustrated by Figure 17.

Through a “Write Port C” command, only the Port C pins
programmed as outputs in a Mode 0 group can be written.
No other pins can be affected by a “Write Port C” command,
nor can the interrupt enable flags be accessed. To write to
any Port C output programmed as an output in Mode 1 group
or to change an interrupt enable flag, the “Set/Reset Port C
Bit” command must be used.

With a “Set/Reset Port Cea Bit” command, any Port C line
programmed as an output (including IBF and OBF) can be
written, or an interrupt enable flag can be either set or reset.
Port C lines programmed as inputs, including ACK and STB
lines, associated with Port C fare not affected by a
“Set/Reset Port C Bit” command. Writing to the correspond-
ing Port C bit positions of the ACK and STB lines with the
“Set Reset Port C Bit” command will affect the Group A and
Group B interrupt enable flags, as illustrated in Figure 17.

Current Drive Capability

Any output on Port A, B or C can sink or source 2.5mA. This
feature allows the 82C55A to directly drive Darlington type
drivers and high-voltage displays that require such sink or
source current.

MODE DEFINITION SUMMARY

MODE 0 MODE 1 MODE 2

IN OUT IN OUT GROUP A ONLY

PA0
PA1
PA2
PA3
PA4
PA5
PA6
PA7

In
In
In
In
In
In
In
In

Out
Out
Out
Out
Out
Out
Out
Out

In
In
In
In
In
In
In
In

Out
Out
Out
Out
Out
Out
Out
Out

PB0
PB1
PB2
PB3
PB4
PB5
PB6
PB7

In
In
In
In
In
In
In
In

Out
Out
Out
Out
Out
Out
Out
Out

In
In
In
In
In
In
In
In

Out
Out
Out
Out
Out
Out
Out
Out

PC0
PC1
PC2
PC3
PC4
PC5
PC6
PC7

In
In
In
In
In
In
In
In

Out
Out
Out
Out
Out
Out
Out
Out

INTRB
IBFB
STBB
INTRA
STBA
IBFA
I/O
I/O

INTRB
OBFB
ACKB
INTRA

I/O
I/O

ACKA
OBFA

I/O
I/O
I/O

INTRA
STBA
IBFA
ACKA
OBFA

Mode 0
or Mode 1
Only

INPUT CONFIGURATION

D7 D6 D5 D4 D3 D2 D1 D0

I/O I/O IBFA INTEA INTRA INTEB IBFB INTRB

OUTPUT CONFIGURATION

D7 D6 D5 D4 D3 D2 D1 D0

OBFA INTEA I/O I/O INTRA INTEB OBFB INTRB

FIGURE 15. MODE 1 STATUS WORD FORMAT

D7 D6 D5 D4 D3 D2 D1 D0

OBFA INTE1 IBFA INTE2 INTRA X X X

(Defined by Mode 0 or Mode 1 Selection)

FIGURE 16. MODE 2 STATUS WORD FORMAT

GROUP A GROUP B

GROUP A GROUP B

GROUP A GROUP B

82C55A



14

Reading Port C Status  (Figures 15 and 16)

In Mode 0, Port C transfers data to or from the peripheral
device. When the 82C55A is programmed to function in
Modes 1 or 2, Port C generates or accepts “hand shaking”
signals with the peripheral device. Reading the contents of
Port C allows the programmer to test or verify the “status” of
each peripheral device and change the program flow
accordingly.

There is not special instruction to read the status information
from Port C. A normal read operation of Port C is executed to
perform this function.

Applications of the 82C55A
The 82C55A is a very powerful tool for interfacing peripheral
equipment to the microcomputer system. It represents the
optimum use of available pins and flexible enough to inter-
face almost any I/O device without the need for additional
external logic.

Each peripheral device in a microcomputer system usually
has a “service routine” associated with it. The routine
manages the software interface between the device and the
CPU. The functional definition of the 82C55A is programmed
by the I/O service routine and becomes an extension of the
system software. By examining the I/O devices interface
characteristics for both data transfer and timing, and
matching this information to the examples and tables in the
detailed operational description, a control word can easily be
developed to initialize the 82C55A to exactly “fit” the
application. Figures 18 through 24 present a few examples
of typical applications of the 82C55A.

INTERRUPT
ENABLE FLAG POSITION

ALTERNATE PORT C
PIN SIGNAL (MODE)

INTE B PC2 ACKB (Output Mode 1)
or STBB (Input Mode 1)

INTE A2 PC4 STBA (Input Mode 1 or
Mode 2)

INTE A1 PC6 ACKA (Output Mode 1 or
Mode 2)

FIGURE 17. INTERRUPT ENABLE FLAGS IN MODES 1 AND 2

FIGURE 18. PRINTER INTERFACE

PA0
PA1
PA2
PA3
PA4
PA5
PA6
PA7

PC7
PC6
PC5
PC4

PB0
PB1
PB2
PB3
PB4
PB5
PB6
PB7

PC1
PC2

DATA READY
ACK
PAPER FEED
FORWARD/REV.

DATA READY
ACK

PAPER FEED
FORWARD/REV.
RIBBON
CARRIAGE SEN.

MODE 1
(OUTPUT)

82C55A

MODE 1
(OUTPUT)

CONTROL LOGIC
AND DRIVERS

INTERRUPT
REQUEST

PC0

INTERRUPT
REQUEST

PC3

HAMMER
RELAYS

HIGH SPEED
PRINTER

82C55A



15

FIGURE 19. KEYBOARD AND DISPLAY INTERFACE FIGURE 20. KEYBOARD AND TERMINAL ADDRESS
INTERFACE

FIGURE 21. DIGITAL TO ANALOG, ANALOG TO DIGITAL FIGURE 22. BASIC CRT CONTROLLER INTERFACE

PA0
PA1
PA2
PA3
PA4
PA5
PA6
PA7

PC4
PC5

PB0
PB1
PB2
PB3
PB4
PB5
PB6
PB7

PC1
PC2

STROBE
ACK

DATA READY
ACK

MODE 1
(OUTPUT)

82C55A

MODE 1
(INPUT)

FULLY
DECODED

INTERRUPT
REQUEST

INTERRUPT
REQUEST

PC3

PC6
PC7

KEYBOARD

R0
R1
R2
R3
R4
R5
SHIFT
CONTROL

B0
B1
B2
B3
B4
B5
BACKSPACE
CLEAR

BURROUGHS
SELF-SCAN

DISPLAY

BLANKING
CANCEL WORD

STROBE
ACK

FULLY
DECODED

KEYBOARD

R0
R1
R2
R3
R4
R5
SHIFT
CONTROL

PA0
PA1
PA2
PA3
PA4
PA5
PA6
PA7

PC4
PC5
PC6
PC7

PB0
PB1
PB2
PB3
PB4
PB5
PB6
PB7

MODE 0
(INPUT)

82C55A

MODE 1
(INPUT)

PC3

BUST LT
TEST LT

TERMINAL
ADDRESS

INTERRUPT
REQUEST

PA0
PA1
PA2
PA3
PA4
PA5
PA6
PA7
PC4
PC5
PC6
PC7

PC1

PC2
PC3

PB0
PB1
PB2

PC4
PC5

LSB

STB DATA

MAB

MODE 0
(INPUT)

82C55A

MODE 0
(OUTPUT)

12-BIT
A/D

CONVERTER
(DAC)

PC0

PB3

PC6
PC7

BIT
SET/RESET SAMPLE EN

STB

LSB

8-BIT
D/A

CONVERTER
(ADC)

ANALOG
INPUT

ANALOG
OUTPUT

PA0
PA1
PA2
PA3
PA4
PA5
PA6
PA7

PC7
PC6
PC5
PC4

PB0
PB1
PB2
PB3
PB4
PB5
PB6
PB7

PC2
PC1

MODE 0
(OUTPUT)

82C55A

MODE 1
(OUTPUT)

PC3

DATA READY
ACK

CRT CONTROLLER
• CHARACTER GEN.

INTERRUPT
REQUEST

• REFRESH BUFFER

R0
R1
R2
R3
R4
R5
SHIFT
CONTROL

ROW STB
COLUMN STB
CURSOR H/V STB

CURSOR/ROW/COLUMN

• CURSOR CONTROL

PC0

ADDRESS
H&V

BLANKED
BLACK/WHITE

82C55A



16

FIGURE 23. BASIC FLOPPY DISC INTERFACE FIGURE 24. MACHINE TOOL CONTROLLER INTERFACE

PA0
PA1
PA2
PA3
PA4
PA5
PA6
PA7

PC4
PC5
PC7
PC6

PB0
PB1
PB2
PB3
PB4
PB5
PB6
PB7

PC1
PC0

MODE 0
(OUTPUT)

82C55A

MODE 2

PC3

DATA STB
ACK (IN)

FLOPPY DISK

INTERRUPT
REQUEST

D0
D1
D2
D3
D4
D5
D6
D7

TRACK “0” SENSOR
SYNC READY
INDEX

DATA READY
ACK (OUT)

PC2

ENGAGE HEAD
FORWARD/REV.
READ ENABLE
WRITE ENABLE
DISC SELECT
ENABLE CRC
TEST
BUSY LT

CONTROLLER
AND DRIVE

PA0
PA1
PA2
PA3
PA4
PA5
PA6
PA7

PC4
PC5
PC6

PB0
PB1
PB2
PB3
PB4
PB5
PB6
PB7

PC1
PC2

MODE 0
(OUTPUT)

82C55A

MODE 1

PC3

STB
ACK

B LEVEL

INTERRUPT
REQUEST

R0
R1
R2
R3
R4
R5
R6
R7

START/STOP
LIMIT SENSOR (H/V)
OUT OF FLUID

STOP/GO

PC0

CHANGE TOOL
LEFT/RIGHT
UP/DOWN
HOR. STEP STROBE
VERT. STEP STROBE
SLEW/STEP
FLUID ENABLE
EMERGENCY STOP

PAPER
TAPE

READER

(INPUT)

MACHINE TOOL

MODE 0
(INPUT)

82C55A



17

Absolute Maximum Ratings TA = 25oC Thermal Information
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .+8.0V
Input, Output or I/O Voltage . . . . . . . . . . . . GND-0.5V to VCC+0.5V
ESD Classification  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Class 1

Operating Conditions
Voltage Range  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +4.5V to 5.5V
Operating Temperature Range

C82C55A  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0oC to 70oC
I82C55A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -40oC to 85oC
M82C55A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -55oC to 125oC

Thermal Resistance (Typical, Note 1) θJA θJC
CERDIP Package  . . . . . . . . . . . . . . . . 50oC/W 10oC/W
CLCC Package  . . . . . . . . . . . . . . . . . . 65oC/W 14oC/W
PDIP Package . . . . . . . . . . . . . . . . . . . 50oC/W N/A
PLCC Package  . . . . . . . . . . . . . . . . . . 46oC/W N/A

Maximum Storage Temperature Range  . . . . . . . . . .-65oC to 150oC
Maximum Junction Temperature

CDIP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175oC
PDIP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150oC

Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . . 300oC
(PLCC Lead Tips Only)

Die Characteristics
Gate Count . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1000 Gates

CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation
of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

1. θJA is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications VCC = 5.0V ±10%; TA = 0oC to +70oC (C82C55A);
TA = -40oC to +85oC (I82C55A);
TA = -55oC to +125oC (M82C55A)

SYMBOL PARAMETER

LIMITS

UNITS TEST CONDITIONSMIN MAX

VIH Logical One Input Voltage 2.0
2.2

- V I82C55A, C82C55A,
M82C55A

VIL Logical Zero Input Voltage - 0.8 V

VOH Logical One Output Voltage 3.0
VCC -0.4

- V IOH = -2.5mA,
IOH = -100µA

VOL Logical Zero Output Voltage - 0.4 V IOL +2.5mA

II Input Leakage Current -1.0 +1.0 µA VIN = VCC or GND,
DIP Pins: 5, 6, 8, 9, 35, 36

IO I/O Pin Leakage Current -10 +10 µA VO = VCC or GND DIP Pins: 27 - 34

IBHH Bus Hold High Current -50 -400 µA VO = 3.0V. Ports A, B, C

IBHL Bus Hold Low Current 50 400 µA VO = 1.0V. Port A ONLY

IDAR Darlington Drive Current -2.5 Note 2, 4 mA Ports A, B, C. Test Condition 3

ICCSB Standby Power Supply Current - 10 µA VCC = 5.5V, VIN = VCC or GND. Output Open

ICCOP Operating Power Supply Current - 1 mA/MHz TA = +25oC, VCC = 5.0V, Typical (See Note 3)

NOTES:

2. No internal current limiting exists on Port Outputs. A resistor must be added externally to limit the current.

3. ICCOP = 1mA/MHz of Peripheral Read/Write cycle time. (Example: 1.0µs I/O Read/Write cycle time = 1mA).

4. Tested as VOH at -2.5mA.

Capacitance TA = 25oC

SYMBOL PARAMETER TYPICAL UNITS TEST CONDITIONS

CIN Input Capacitance 10 pF FREQ = 1MHz, All Measurements are
referenced to device GND

CI/O I/O Capacitance 20 pF

82C55A



18

AC Electrical Specifications VCC = +5V± 10%, GND = 0V; TA = -55oC to +125oC (M82C55A) (M82C55A-5);

TA = -40oC to +85oC (I82C55A) (I82C55A-5);

TA = 0oC to +70oC (C82C55A) (C82C55A-5)

SYMBOL PARAMETER

82C55A-5 82C55A

UNITS
TEST

CONDITIONSMIN MAX MIN MAX

READ TIMING

(1) tAR Address Stable Before RD 0 - 0 - ns

(2) tRA Address Stable After RD 0 - 0 - ns

(3) tRR RD Pulse Width 250 - 150 - ns

(4) tRD Data Valid From RD - 200 - 120 ns 1

(5) tDF Data Float After RD 10 75 10 75 ns 2

(6) tRV Time Between RDs and/or WRs 300 - 300 - ns

WRITE TIMING

(7) tAW Address Stable Before WR 0 - 0 - ns

(8) tWA Address Stable After WR 20 - 20 - ns

(9) tWW WR Pulse Width 100 - 100 - ns

(10) tDW Data Valid to WR High 100 - 100 - ns

(11) tWD Data Valid After WR High 30 - 30 - ns

OTHER TIMING

(12) tWB WR = 1 to Output - 350 - 350 ns 1

(13) tIR Peripheral Data Before RD 0 - 0 - ns

(14) tHR Peripheral Data After RD 0 - 0 - ns

(15) tAK ACK Pulse Width 200 - 200 - ns

(16) tST STB Pulse Width 100 - 100 - ns

(17) tPS Peripheral Data Before STB High 20 - 20 - ns

(18) tPH Peripheral Data After STB High 50 - 50 - ns

(19) tAD ACK = 0 to Output - 175 - 175 ns 1

(20) tKD ACK = 1 to Output Float 20 250 20 250 ns 2

(21) tWOB WR = 1 to OBF = 0 - 150 - 150 ns 1

(22) tAOB ACK = 0 to OBF = 1 - 150 - 150 ns 1

(23) tSIB STB = 0 to IBF = 1 - 150 - 150 ns 1

(24) tRIB RD = 1 to IBF = 0 - 150 - 150 ns 1

(25) tRIT RD = 0 to INTR = 0 - 200 - 200 ns 1

(26) tSIT STB = 1 to INTR = 1 - 150 - 150 ns 1

(27) tAIT ACK = 1 to INTR = 1 - 150 - 150 ns 1

(28) tWIT WR = 0 to INTR = 0 - 200 - 200 ns 1

(29) tRES Reset Pulse Width 500 - 500 - ns 1, (Note)

NOTE: Period of initial Reset pulse after power-on must be at least 50µsec. Subsequent Reset pulses may be 500ns minimum.

82C55A



19

Timing Waveforms

FIGURE 25. MODE 0 (BASIC INPUT)

FIGURE 26. MODE 0 (BASIC OUTPUT)

FIGURE 27. MODE 1 (STROBED INPUT)

tRA (2)

tHR (14)

tRR (3)

tIR (13)

tAR (1)

tRD (4) tDF (5)

RD

INPUT

CS, A1, A0

D7-D0

tAW (7) tWA (8)

tWS (12)

tWW (9)

tWD (11)tDW

WR

D7-D0

CS, A1, A0

OUTPUT

(10)

tST (16)

STB

INTR

RD

INPUT FROM

IBF

PERIPHERAL

tSIB

tSIT

tPH

tPS (17)

tRIT

tRIB (24)

(23)

(26)

(25)

(18)

82C55A



20

FIGURE 28. MODE 1 (STROBED OUTPUT)

FIGURE 29. MODE 2 (BI-DIRECTIONAL)
NOTE: Any sequence where WR occurs before ACK and STB occurs before RD is permissible. (INTR = IBF • MASK • STB • RD • OBF •

MASK • ACK • WR)

Timing Waveforms  (Continued)

tWOB (21)

tWB (12)

tAK (15) tAIT (27)

tAOB (22)

tWIT

OBF

WR

INTR

ACK

OUTPUT

(28)

tWOB

tAOB

tAK

tAD (19)
tKD

tPH (18)

tPS (17)

tSIB

tST

OBF

WR

INTR

ACK

IBF

STB

PERIPHERAL
BUS

RD

tRIB (24)

DATA FROM
PERIPHERAL TO 82C55A

DATA FROM
82C55A TO PERIPHERAL

DATA FROM
82C55A TO CPU

DATA FROM
CPU TO 82C55A

(21)

(22)

(15)

(16)

(20)

(23)

(NOTE)

(NOTE)

82C55A



21

AC Test Circuit AC Testing Input, Output Waveforms

Burn-In Circuits

FIGURE 30. WRITE TIMING FIGURE 31. READ TIMING

Timing Waveforms  (Continued)

WR

DATA

A0-A1,
CS

BUS

tWW (9)

tDW (10) tWD (11)

tWA (8)tAW (7)

RD

DATA

A0-A1,
CS

BUS

tRR (3)

tRA (2)tAR (1)

VALID

(4) tRD tDF (5)

HIGH IMPEDANCE

R1

V1

OUTPUT FROM
DEVICE UNDER

TEST

NOTE:  Includes STRAY and JIG Capacitance

TEST
POINT

C1R2
(SEE NOTE)

TEST CONDITION DEFINITION TABLE

TEST CONDITION V1 R1 R2 C1

1 1.7V 523Ω Open 150pF

2 VCC 2kΩ 1.7kΩ 50pF

3 1.5V 750Ω Open 50pF

INPUT

VIH + 0.4V

VIL - 0.4V

1.5V 1.5V

VOH

VOL

OUTPUT

AC Testing: All AC Parameters tested as per test circuits. Input RISE and
FALL times are driven at 1ns/V.

MD82C55A CERDIP

NOTES:

1. VCC = 5.5V ± 0.5V
2. VIH = 4.5V ± 10%
3. VIL = -0.2V to 0.4V
4. GND = 0V

MR82C55A CLCC

NOTES:

1. C1 = 0.01µF minimum
2. All resistors are 47kΩ ± 5%
3. f0 = 100kHz ± 10%
4. f1 = f0 ÷ 2; f2 = f1 ÷ 2; . . . ; f15 = f14 ÷ 2

F7

F8

F9

F4

F3

GND

F0

F1

F10

F6

F7

F8

F9

F6

F7

F8

F9

F10

F6

33

34

35

36

37

38

40

32

31

30

29

24

25

26

27

28

21

22

23

13

2

3

4

5

6

7

8

9

10

11

12

14

15

16

17

18

19

20

39

1

F12

F13

F14

F2

F5

F15

F11

F12

F13

F14

F15

F11

F12
VCC

F13

F14

F15

F11

F12

F11

C1

F10

V
C

C

F
13

F
14

F
10F
9

F
8

F
7

F
12

F
11

F
15

GND

F0

F10

F6

F7

F8

F9

F10

F6

F1

14

13

12

11

10

9

8

7

17

16

15

25

30

35

39

38

37

36

33

34

32

31

29

46 3 1 4041424344

2827262524232221201918

F
3

F
4

F
9

F
8

F
12

F
13

F
14

F
2

F5

F15

F12

F13

F14

F15

F11

F12

F11

F
11

F
6

F
7

C1

82C55A



22

Die Characteristics

DIE DIMENSIONS:
95 x 100 x 19 ±1mils

METALLIZATION:
Type: Silicon - Aluminum
Thickness: 11kÅ ±1kÅ

GLASSIVATION:
Type: SiO2
Thickness: 8kÅ ±1kÅ

WORST CASE CURRENT DENSITY:
0.78 x 105 A/cm2

Metallization Mask Layout
82C55A

RD PA0 PA1 PA2 PA3 PA4 PA5 PA6 PA7 WR

CS

GND

A1

A0

PC7

PC6

PC5

PC4

PC0

PC1

PC2 PD3 PB0 PB1 PB2 PB3 PB4 PB5 PB6 PB7

VCC

D7

D6

D5

D4

D3

D2

D1

D0

RESET

82C55A



23

82C55A

Dual-In-Line Plastic Packages (PDIP)

NOTES:

1. Controlling Dimensions: INCH. In case of conflict between English
and Metric dimensions, the inch dimensions control.

2. Dimensioning and tolerancing per ANSI Y14.5M-1982.

3. Symbols are defined in the “MO Series Symbol List” in Section 2.2
of Publication No. 95.

4. Dimensions A, A1 and L are measured with the package seated in
JEDEC seating plane gauge GS-3.

5. D, D1, and E1 dimensions do not include mold flash or protrusions.
Mold flash or protrusions shall not exceed 0.010 inch (0.25mm).

6. E and are measured with the leads constrained to be per-
pendicular to datum .

7. eB and eC are measured at the lead tips with the leads uncon-
strained. eC must be zero or greater.

8. B1 maximum dimensions do not include dambar protrusions.
Dambar protrusions shall not exceed 0.010 inch (0.25mm).

9. N is the maximum number of terminal positions.

10. Corner leads (1, N, N/2 and N/2 + 1) for E8.3, E16.3, E18.3, E28.3,
E42.6 will have a B1 dimension of 0.030 - 0.045 inch (0.76 - 1.14mm).

eA
-C-

CL

E

eA

C

eB

eC

-B-

E1
INDEX

1 2 3 N/2

N

AREA

SEATING

BASE
PLANE

PLANE

-C-

D1

B1
B

e

D

D1

AA2

L

A1

-A-

0.010 (0.25) C AM B S

E40.6 (JEDEC MS-011-AC ISSUE B)
40 LEAD DUAL-IN-LINE PLASTIC PACKAGE

SYMBOL

INCHES MILLIMETERS

NOTESMIN MAX MIN MAX

A - 0.250 - 6.35 4

A1 0.015 - 0.39 - 4

A2 0.125 0.195 3.18 4.95 -

B 0.014 0.022 0.356 0.558 -

B1 0.030 0.070 0.77 1.77 8

C 0.008 0.015 0.204 0.381 -

D 1.980 2.095 50.3 53.2 5

D1 0.005 - 0.13 - 5

E 0.600 0.625 15.24 15.87 6

E1 0.485 0.580 12.32 14.73 5

e 0.100 BSC 2.54 BSC -

eA 0.600 BSC 15.24 BSC 6

eB - 0.700 - 17.78 7

L 0.115 0.200 2.93 5.08 4

N 40 40 9

Rev. 0 12/93



24

82C55A

Plastic Leaded Chip Carrier Packages (PLCC)

NOTES:

1. Controlling dimension: INCH. Converted millimeter dimensions
are not necessarily exact.

2. Dimensions and tolerancing per ANSI Y14.5M-1982.

3. Dimensions D1 and E1 do not include mold protrusions. Allow-
able mold protrusion is 0.010 inch (0.25mm) per side. Dimen-
sions D1 and E1 include mold mismatch and are measured at
the extreme material condition at the body parting line.

4. To be measured at seating plane  contact point.

5. Centerline to be determined where center leads exit plastic body.

6. “N” is the number of terminal positions.

-C-

A1
A

SEATING
PLANE

0.020 (0.51)
MIN

VIEW “A”

D2/E2

0.025 (0.64)
0.045 (1.14)

R

0.042 (1.07)
0.056 (1.42)

0.050 (1.27) TP

EE1

0.042 (1.07)
0.048 (1.22)

PIN (1) IDENTIFIER

CL

D1
D

0.020 (0.51) MAX
3 PLCS 0.026 (0.66)

0.032 (0.81)

0.045 (1.14)

MIN

0.013 (0.33)
0.021 (0.53)

0.025 (0.64)
MIN

VIEW “A” TYP.

0.004 (0.10) C

-C-

D2/E2

CL

N44.65 (JEDEC MS-018AC ISSUE A)
44 LEAD PLASTIC LEADED CHIP CARRIER PACKAGE

SYM-
BOL

INCHES MILLIMETERS

NOTESMIN MAX MIN MAX

A 0.165 0.180 4.20 4.57 -

A1 0.090 0.120 2.29 3.04 -

D 0.685 0.695 17.40 17.65 -

D1 0.650 0.656 16.51 16.66 3

D2 0.291 0.319 7.40 8.10 4, 5

E 0.685 0.695 17.40 17.65 -

E1 0.650 0.656 16.51 16.66 3

E2 0.291 0.319 7.40 8.10 4, 5

N 44 44 6

Rev. 2 11/97



25

All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice.
Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reli-
able. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may
result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see web site http://www.intersil.com

Sales Office Headquarters
NORTH AMERICA
Intersil Corporation
P. O. Box 883, Mail Stop 53-204
Melbourne, FL 32902
TEL: (407) 724-7000
FAX: (407) 724-7240

EUROPE
Intersil SA
Mercure Center
100, Rue de la Fusee
1130 Brussels, Belgium
TEL: (32) 2.724.2111
FAX: (32) 2.724.22.05

ASIA
Intersil (Taiwan) Ltd.
Taiwan Limited
7F-6, No. 101 Fu Hsing North Road
Taipei, Taiwan
Republic of China
TEL: (886) 2 2716 9310
FAX: (886) 2 2715 3029

82C55A

Ceramic Dual-In-Line Frit Seal Packages (CERDIP)

NOTES:

1. Index area: A notch or a pin one identification mark shall be locat-
ed adjacent to pin one and shall be located within the shaded
area shown. The manufacturer’s identification shall not be used
as a pin one identification mark.

2. The maximum limits of lead dimensions b and c or M shall be
measured at the centroid of the finished lead surfaces, when
solder dip or tin plate lead finish is applied.

3. Dimensions b1 and c1 apply to lead base metal only. Dimension
M applies to lead plating and finish thickness.

4. Corner leads (1, N, N/2, and N/2+1) may be configured with a
partial lead paddle. For this configuration dimension b3 replaces
dimension b2.

5. This dimension allows for off-center lid, meniscus, and glass
overrun.

6. Dimension Q shall be measured from the seating plane to the
base plane.

7. Measure dimension S1 at all four corners.

8. N is the maximum number of terminal positions.

9. Dimensioning and tolerancing per ANSI Y14.5M - 1982.

10. Controlling dimension: INCH.

bbb C A - BS

c

Q

L

A
SEATING

BASE

D

PLANE

PLANE

-D--A-

-C-

-B-

α

D

E

S1

b2
b

A

e

M

c1

b1

(c)

(b)

SECTION A-A

BASE

LEAD FINISH

METAL

eA/2

A

M

S S

ccc C A - BM DS S aaa C A - BM DS S

eA

F40.6 MIL-STD-1835 GDIP1-T40 (D-5, CONFIGURATION A)
40 LEAD CERAMIC DUAL-IN-LINE FRIT SEAL PACKAGE

SYMBOL

INCHES MILLIMETERS

NOTESMIN MAX MIN MAX

A - 0.225 - 5.72 -

b 0.014 0.026 0.36 0.66 2

b1 0.014 0.023 0.36 0.58 3

b2 0.045 0.065 1.14 1.65 -

b3 0.023 0.045 0.58 1.14 4

c 0.008 0.018 0.20 0.46 2

c1 0.008 0.015 0.20 0.38 3

D - 2.096 - 53.24 5

E 0.510 0.620 12.95 15.75 5

e 0.100 BSC 2.54 BSC -

eA 0.600 BSC 15.24 BSC -

eA/2 0.300 BSC 7.62 BSC -

L 0.125 0.200 3.18 5.08 -

Q 0.015 0.070 0.38 1.78 6

S1 0.005 - 0.13 - 7

α 90o 105o 90o 105o -

aaa - 0.015 - 0.38 -

bbb - 0.030 - 0.76 -

ccc - 0.010 - 0.25 -

M - 0.0015 - 0.038 2, 3

N 40 40 8

Rev. 0 4/94



26

82C55A

Ceramic Leadless Chip Carrier Packages (CLCC)

D

j x 45o

D3

B

h x 45o

A A1

E

L
L3

e

B3

L1

D2

D1

e1

E2

E1

L2

PLANE 2

PLANE 1

E3

B2

0.010 E HS S

0.010 E FS S

-E-

0.007 E FM S H S

B1

-H-

-F-

J44.A MIL-STD-1835 CQCC1-N44 (C-5)
44 PAD CERAMIC LEADLESS CHIP CARRIER PACKAGE

SYMBOL

INCHES MILLIMETERS

NOTESMIN MAX MIN MAX

A 0.064 0.120 1.63 3.05 6, 7

A1 0.054 0.088 1.37 2.24 -

B 0.033 0.039 0.84 0.99 4

B1 0.022 0.028 0.56 0.71 2, 4

B2 0.072 REF 1.83 REF -

B3 0.006 0.022 0.15 0.56 -

D 0.640 0.662 16.26 16.81 -

D1 0.500 BSC 12.70 BSC -

D2 0.250 BSC 6.35 BSC -

D3 - 0.662 - 16.81 2

E 0.640 0.662 16.26 16.81 -

E1 0.500 BSC 12.70 BSC -

E2 0.250 BSC 6.35 BSC -

E3 - 0.662 - 16.81 2

e 0.050 BSC 1.27 BSC -

e1 0.015 - 0.38 - 2

h 0.040 REF 1.02 REF 5

j 0.020 REF 0.51 REF 5

L 0.045 0.055 1.14 1.40 -

L1 0.045 0.055 1.14 1.40 -

L2 0.075 0.095 1.90 2.41 -

L3 0.003 0.015 0.08 0.38 -

ND 11 11 3

NE 11 11 3

N 44 44 3

Rev. 0 5/18/94
NOTES:

1. Metallized castellations shall be connected to plane 1 terminals
and extend toward plane 2 across at least two layers of ceramic
or completely across all of the ceramic layers to make electrical
connection with the optional plane 2 terminals.

2. Unless otherwise specified, a minimum clearance of 0.015 inch
(0.38mm) shall be maintained between all metallized features
(e.g., lid, castellations, terminals, thermal pads, etc.)

3. Symbol “N” is the maximum number of terminals. Symbols “ND”
and “NE” are the number of terminals along the sides of length
“D” and “E”, respectively.

4. The required plane 1 terminals and optional plane 2 terminals (if
used) shall be electrically connected.

5. The corner shape (square, notch, radius, etc.) may vary at the
manufacturer’s option, from that shown on the drawing.

6. Chip carriers shall be constructed of a minimum of two ceramic
layers.

7. Dimension “A” controls the overall package thickness. The maxi-
mum “A” dimension is package height before being solder dipped.

8. Dimensioning and tolerancing per ANSI Y14.5M-1982.

9. Controlling dimension: INCH.



4-1

March 1997

82C59A
CMOS Priority Interrupt Controller

Features
• 12.5MHz, 8MHz and 5MHz Versions Available

- 12.5MHz Operation . . . . . . . . . . . . . . . . . . . 82C59A-12
- 8MHz Operation  . . . . . . . . . . . . . . . . . . . . . . . 82C59A
- 5MHz Operation  . . . . . . . . . . . . . . . . . . . . . . 82C59A-5

• High Speed, “No Wait-State” Operation with 12.5MHz
80C286 and 8MHz 80C86/88

• Pin Compatible with NMOS 8259A

• 80C86/88/286 and 8080/85/86/88/286 Compatible

• Eight-Level Priority Controller, Expandable to
64 Levels

• Programmable Interrupt Modes

• Individual Request Mask Capability

• Fully Static Design

• Fully TTL Compatible

• Low Power Operation
- ICCSB  . . . . . . . . . . . . . . . . . . . . . . . . . 10µA Maximum
- ICCOP . . . . . . . . . . . . . . . . . . . . . 1mA/MHz Maximum

• Single 5V Power Supply

• Operating Temperature Ranges
- C82C59A . . . . . . . . . . . . . . . . . . . . . . . . .0oC to +70oC
- I82C59A . . . . . . . . . . . . . . . . . . . . . . . . -40oC to +85oC
- M82C59A . . . . . . . . . . . . . . . . . . . . . . -55oC to +125oC

Description
The Intersil 82C59A is a high performance CMOS Priority
Interrupt Controller manufactured using an advanced 2µm
CMOS process. The 82C59A is designed to relieve the sys-
tem CPU from the task of polling in a multilevel
priority system. The high speed and industry standard
configuration of the 82C59A make it compatible with micro-
processors such as 80C286, 80286, 80C86/88, 8086/88,
8080/85 and NSC800.

The 82C59A can handle up to eight vectored priority inter-
rupting sources and is cascadable to 64 without additional
circuitry. Individual interrupting sources can be masked or
prioritized to allow custom system configuration. Two modes
of operation make the 82C59A compatible with both 8080/85
and 80C86/88/286 formats.

Static CMOS circuit design ensures low operating power.
The Intersil advanced CMOS process results in performance
equal to or greater than existing equivalent products at a
fraction of the power.

Ordering Information

PART NUMBER

PACKAGE
TEMPERATURE

RANGE PKG. NO.5MHz 8MHz 12.5MHz

CP82C59A-5 CP82C59A CP82C59A-12 28 Ld PDIP 0oC to +70oC E28.6

IP82C59A-5 IP82C59A IP82C59A-12 -40oC to +85oC E28.6

CS82C59A-5 CS82C59A CS82C59A-12 28 Ld PLCC 0oC to +70oC N28.45

IS82C59A-5 IS82C59A IS82C59A-12 -40oC to +85oC N28.45

CD82C59A-5 CD82C59A CD82C59A-12 CERDIP 0oC to +70oC F28.6

ID82C59A-5 ID82C59A ID82C59A-12 -40oC to +85oC F28.6

MD82C59A-5/B MD82C59A/B MD82C59A-12/B -55oC to +125oC F28.6

5962-8501601YA 5962-8501602YA - SMD# F28.6

MR82C59A-5/B MR82C59A/B MR82C59A-12/B 28 Pad CLCC -55oC to +125oC J28.A

5962-85016013A 5962-85016023A - SMD# J28.A

CM82C59A-5 CM82C59A CM82C59A-12 28 Ld SOIC 0oC to +70oC M28.3

File Number 2784.2CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.
http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999



4-2

Functional Diagram

Pinouts
82C59A (PDIP, CERDIP, SOIC)

TOP VIEW
82C59A (PLCC, CLCC)

TOP VIEW

PIN DESCRIPTION

D7 - D0 Data Bus (Bidirectional)

RD Read Input

WR Write Input

A0 Command Select Address

CS Chip Select

CAS 2 - CAS 0 Cascade Lines

SP/EN Slave Program Input Enable

INT Interrupt Output

INTA Interrupt Acknowledge Input

IR0 - IR7 Interrupt Request Inputs

CS

WR

RD

D7

D6

D5

D4

D3

D2

D1

D0

CAS 0

CAS 1

GND

VCC

INTA

IR7

IR6

IR5

IR3

IR1

IR0

INT

SP/EN

CAS 2

A0

IR4

IR2

28

27

26

25

24

23

22

21

20

19

18

17

16

15

1

2

3

4

5

6

7

8

9

10

11

12

13

14

23

24

25

22

21

20

1911

3 2 14

14 15 16 17 1812 13

28 27 26

10

5

6

7

8

9

D
7

V
C

C

A
0

R
D

W
R

C
S

IN
TA

D6

D5

D4

D3

D2

D1

D0

IR7

IR6

IR5

IR4

IR3

IR2

IR1

C
A

S
 0

IR
0

C
A

S
 1

G
N

D

C
A

S
 2

S
P

/E
N

IN
T

PRIORITY
RESOLVER

IR0
IR1
IR2
IR3
IR4
IR5
IR6
IR7

INTERRUPT
REQUEST

REG
(IRR)

INTERRUPT MASK REG
(IMR)

CONTROL LOGIC

INTERNAL BUS

INT

DATA
BUS

BUFFER

CASCADE
BUFFER

COMPARATOR

CAS 0
CAS 1
CAS 2

READ/
WRITE
LOGIC

SP/EN

WR
RD

INTA

IN -
SERVICE

REG
(ISR)

CS

D7-D0

A0

FIGURE 1.

82C59A



4-3

Functional Description

Interrupts in Microcomputer Systems

Microcomputer system design requires that I/O devices such
as keyboards, displays, sensors and other components
receive servicing in an efficient manner so that large
amounts of the total system tasks can be assumed by the
microcomputer with little or no effect on throughput.

The most common method of servicing such devices is the
Polled approach. This is where the processor must test each
device in sequence and in effect “ask” each one if it needs
servicing. It is easy to see that a large portion of the main
program is looping through this continuous polling cycle and
that such a method would have a serious, detrimental effect
on system throughput, thus, limiting the tasks that could be
assumed by the microcomputer and reducing the cost effec-
tiveness of using such devices.

Pin Description

SYMBOL
PIN

NUMBER TYPE DESCRIPTION

VCC 28 I VCC: The +5V power supply pin. A 0.1µF capacitor between pins 28 and 14 is recommended for
decoupling.

GND 14 I GROUND

CS 1 I CHIP SELECT: A low on this pin enables RD and WR communications between the CPU and the
82C59A. INTA functions are independent of CS.

WR 2  I WRITE: A low on this pin when CS is low enables the 82C59A to accept command words from
the CPU.

RD 3 I READ: A low on this pin when CS is low enables the 82C59A to release status onto the data bus
for the CPU.

D7 - D0 4 - 11 I/O BIDIRECTIONAL DATA BUS: Control, status, and interrupt-vector information is transferred via
this bus.

CAS0 - CAS2 12, 13, 15 I/O CASCADE LINES: The CAS lines form a private 82C59A bus to control a multiple 82C59A struc-
ture. These pins are outputs for a master 82C59A and inputs for a slave 82C59A.

SP/EN 16 I/O SLAVE PROGRAM/ENABLE BUFFER: This is a dual function pin. When in the Buffered Mode it
can be used as an output to control buffer transceivers (EN). When not in the Buffered Mode it is
used as an input to designate a master (SP = 1) or slave (SP = 0).

INT 17 O INTERRUPT: This pin goes high whenever a valid interrupt request is asserted. It is used to inter-
rupt the CPU, thus, it is connected to the CPU's interrupt pin.

IR0 - IR7 18 - 25 I INTERRUPT REQUESTS: Asynchronous inputs. An interrupt request is executed by raising an
IR input (low to high), and holding it high until it is acknowledged (Edge Triggered Mode), or just
by a high level on an IR input (Level Triggered Mode). Internal pull-up resistors are implemented
on IR0 - 7.

INTA 26 I INTERRUPT ACKNOWLEDGE: This pin is used to enable 82C59A interrupt-vector data onto the
data bus by a sequence of interrupt acknowledge pulses issued by the CPU.

A0 27 I ADDRESS LINE: This pin acts in conjunction with the CS, WR, and RD pins. It is used by the
82C59A to decipher various Command Words the CPU writes and status the CPU wishes to read.
It is typically connected to the CPU A0 address line (A1 for 80C86/88/286).

ROM

I/O (N)

I/O (2)

I/O (1)RAM

CPU

CPU - DRIVEN
MULTIPLEXER

FIGURE 2. POLLED METHOD

82C59A



4-4

A more desirable method would be one that would allow the
microprocessor to be executing its main program and only
stop to service peripheral devices when it is told to do so by
the device itself. In effect, the method would provide an
external asynchronous input that would inform the processor
that it should complete whatever instruction that is currently
being executed and fetch a new routine that will service the
requesting device. Once this servicing is complete, however,
the processor would resume exactly where it left off.

This is the Interrupt-driven method. It is easy to see that sys-
tem throughput would drastically increase, and thus, more
tasks could be assumed by the microcomputer to further
enhance its cost effectiveness.

The Programmable Interrupt Controller (PlC) functions as an
overall manager in an Interrupt-Driven system. It accepts
requests from the peripheral equipment, determines which
of the incoming requests is of the highest importance (prior-
ity), ascertains whether the incoming request has a higher
priority value than the level currently being serviced, and
issues an interrupt to the CPU based on this determination.

Each peripheral device or structure usually has a special
program or “routine” that is associated with its specific func-
tional or operational requirements; this is referred to as a
“service routine”. The PlC, after issuing an interrupt to the
CPU, must somehow input information into the CPU that can
“point” the Program Counter to the service routine associ-
ated with the requesting device. This “pointer” is an address
in a vectoring table and will often be referred to, in this docu-
ment, as vectoring data.

82C59A Functional Description
The 82C59A is a device specifically designed for use in real
time, interrupt driven microcomputer systems. It manages
eight levels of requests and has built-in features for expand-
ability to other 82C59As (up to 64 levels). It is programmed
by system software as an I/O peripheral. A selection of prior-
ity modes is available to the programmer so that the manner
in which the requests are processed by the 82C59A can be
configured to match system requirements. The priority
modes can be changed or reconfigured dynamically at any
time during main program operation. This means that the
complete interrupt structure can be defined as required,
based on the total system environment.

Interrupt Request Register (IRR) and In-Service Register
(ISR)

The interrupts at the IR input lines are handled by two registers
in cascade, the Interrupt Request Register (lRR) and the In-
Service Register (lSR). The IRR is used to indicate all the inter-
rupt levels which are requesting service, and the ISR is used to
store all the interrupt levels which are currently being serviced.

ROM I/O (2)

RAM

CPU

INT

I/O (1)

I/O (N)

PIC

FIGURE 3. INTERRUPT METHOD

IR0
IR1
IR2

CASCADE
BUFFER

COMPARATOR

READ/
WRITE
LOGIC

DATA
BUS

BUFFER

IN
SERVICE

REG
(ISR)

PRIORITY
RESOLVER

INTERRUPT MASK REG
(IMR)

INTERRUPT
REQUEST

REG
(IRR)

CONTROL LOGIC

INTINTA

IR3
IR4
IR5
IR6
IR7

CAS 0
CAS 1
CAS 2

RD
WR
A0

SP/EN

CS

D7 - D0

INTERNAL BUS

FIGURE 4. 82C59A FUNCTIONAL DIAGRAM

82C59A



4-5

Priority Resolver

This logic block determines the priorities of the bits set in the
lRR. The highest priority is selected and strobed into the cor-
responding bit of the lSR during the INTA sequence.

Interrupt Mask Register (IMR)

The lMR stores the bits which disable the interrupt lines to
be masked. The IMR operates on the output of the IRR.
Masking of a higher priority input will not affect the interrupt
request lines of lower priority.

Interrupt (INT)

This output goes directly to the CPU interrupt input. The
VOH level on this line is designed to be fully compatible with
the 8080, 8085, 8086/88, 80C86/88, 80286, and 80C286
input levels.

Interrupt Acknowledge ( INTA)

INTA pulses will cause the 82C59A to release vectoring
information onto the data bus. The format of this data
depends on the system mode (µPM) of the 82C59A.

Data Bus Buffer

This 3-state, bidirectional 8-bit buffer is used to interface the
82C59A to the System Data Bus. Control words and status
information are transferred through the Data Bus Buffer.

Read/Write Control Logic

The function of this block is to accept output commands from
the CPU. It contains the Initialization Command Word (lCW)
registers and Operation Command Word (OCW) registers
which store the various control formats for device operation.
This function block also allows the status of the 82C59A to
be transferred onto the Data Bus.

Chip Select ( CS)

A LOW on this input enables the 82C59A. No reading or
writing of the device will occur unless the device is selected.

Write ( WR)

A LOW on this input enables the CPU to write control words
(lCWs and OCWs) to the 82C59A.

Read (RD)

A LOW on this input enables the 82C59A to send the status
of the Interrupt Request Register (lRR), In-Service Register
(lSR), the Interrupt Mask Register (lMR), or the interrupt
level (in the poll mode) onto the Data Bus.

A0

This input signal is used in conjunction with WR and RD sig-
nals to write commands into the various command registers,
as well as to read the various status registers of the chip.
This line can be tied directly to one of the system address
lines.

The Cascade Buffer/Comparator

This function block stores and compares the IDs of all
82C59As used in the system. The associated three I/O pins
(CAS0 - 2) are outputs when the 82C59A is used as a mas-
ter and are inputs when the 82C59A is used as a slave. As a
master, the 82C59A sends the ID of the interrupting slave
device onto the CAS0 - 2 lines. The slave, thus selected will
send its preprogrammed subroutine address onto the Data
Bus during the next one or two consecutive INTA pulses.
(See section “Cascading the 82C59A”.)

Interrupt Sequence

The powerful features of the 82C59A in a microcomputer
system are its programmability and the interrupt routine
addressing capability. The latter allows direct or indirect
jumping to the specified interrupt routine requested without
any polling of the interrupting devices. The normal sequence
of events during an interrupt depends on the type of CPU
being used.

These events occur in an 8080/8085 system:

1. One or more of the INTERRUPT REQUEST lines
(IR0 - IR7) are raised high, setting the corresponding IRR
bit(s).

2. The 82C59A evaluates those requests in the priority
resolver and sends an interrupt (INT) to the CPU, if
appropriate.

3. The CPU acknowledges the lNT and responds with an
INTA pulse.

4. Upon receiving an lNTA from the CPU group, the highest
priority lSR bit is set, and the corresponding lRR bit is
reset. The 82C59A will also release a CALL instruction
code (11001101) onto the 8-bit data bus through D0 - D7.

5. This CALL instruction will initiate two additional INTA
pulses to be sent to 82C59A from the CPU group.

6. These two INTA pulses allow the 82C59A to release its
preprogrammed subroutine address onto the data bus.
The lower 8-bit address is released at the first INTA pulse
and the higher 8-bit address is released at the second
INTA pulse.

7. This completes the 3-byte CALL instruction released by
the 82C59A. In the AEOI mode, the lSR bit is reset at the
end of the third INTA pulse. Otherwise, the lSR bit
remains set until an appropriate EOI command is issued
at the end of the interrupt sequence.

The events occurring in an 80C86/88/286 system are the
same until step 4.

4. The 82C59A does not drive the data bus during the first
INTA pulse.

5. The 80C86/88/286 CPU will initiate a second INTA pulse.
During this INTA pulse, the appropriate ISR bit is set and
the corresponding bit in the IRR is reset. The 82C59A
outputs the 8-bit pointer onto the data bus to be read by
the CPU.

82C59A



4-6

6. This completes the interrupt cycle. In the AEOI mode, the
ISR bit is reset at the end of the second INTA pulse. Oth-
erwise, the ISR bit remains set until an appropriate EOI
command is issued at the end of the interrupt subroutine.

If no interrupt request is present at step 4 of either sequence
(i.e., the request was too short in duration), the 82C59A will
issue an interrupt level 7. If a slave is programmed on IR bit
7, the CAS lines remain inactive and vector addresses are
output from the master 82C59A.

Interrupt Sequence Outputs

8080, 8085 Interrupt Response Mode

This sequence is timed by three INTA pulses. During the first
lNTA pulse, the CALL opcode is enabled onto the data bus.

First Interrupt Vector Byte Data: Hex CD

During the second INTA pulse, the lower address of the
appropriate service routine is enabled onto the data bus.
When interval = 4 bits, A5 - A7 are programmed, while
A0 - A4 are automatically inserted by the 82C59A. When
interval = 8, only A6 and A7 are programmed, while A0 - A5
are automatically inserted.

During the third INTA pulse, the higher address of the appro-
priate service routine, which was programmed as byte 2 of the
initialization sequence (A8 - A15), is enabled onto the bus.

D7 D6 D5 D4 D3 D2 D1 D0

Call Code 1 1 0 0 1 1 0 1

ADDRESS BUS (16)

CONTROL BUS

DATA BUS (8)

I/OR I/OW INT INTA

CASCADE
LINES

CAS 0
CAS 1
CAS 2

SP/EN

CS RD WR INTAINTD7 - D0A0

SLAVE PROGRAM/
ENABLE BUFFER

INTERRUPT
REQUESTS

82C59A

IRQ IRQ IRQ IRQ IRQ IRQ IRQ IRQ
7 6 5 4 3 2 1 0

FIGURE 5. 82C59A STANDARD SYSTEM BUS INTERFACE

CONTENT OF SECOND INTERRUPT VECTOR BYTE

IR  INTERVAL = 4

D7 D6 D5 D4 D3 D2 D1 D0

7 A7 A6 A5 1 1 1 0 0

6 A7 A6 A5 1 1 0 0 0

5 A7 A6 A5 1 0 1 0 0

4 A7 A6 A5 1 0 0 0 0

3 A7 A6 A5 0 1 1 0 0

2 A7 A6 A5 0 1 0 0 0

1 A7 A6 A5 0 0 1 0 0

0 A7 A6 A5 0 0 0 0 0

IR INTERVAL = 8

D7 D6 DS D4 D3 D2 D1 D0

7 A7 A6 1 1 1 0 0 0

6 A7 A6 1 1 0 0 0 0

5 A7 A6 1 0 1 0 0 0

4 A7 A6 1 0 0 0 0 0

3 A7 A6 0 1 1 0 0 0

2 A7 A6 0 1 0 0 0 0

1 A7 A6 0 0 1 0 0 0

0 A7 A6 0 0 0 0 0 0

82C59A



4-7

80C86, 8OC88, 80C286 Interrupt Response Mode

80C86/88/286 mode is similar to 8080/85 mode except that
only two Interrupt Acknowledge cycles are issued by the pro-
cessor and no CALL opcode is sent to the processor. The
first interrupt acknowledge cycle is similar to that of 8080/85
systems in that the 82C59A uses it to internally freeze the
state of the interrupts for priority resolution and, as a master,
it issues the interrupt code on the cascade lines. On this first
cycle, it does not issue any data to the processor and leaves
its data bus buffers disabled. On the second interrupt
acknowledge cycle in the 86/88/286 mode, the master (or
slave if so programmed) will send a byte of data to the pro-
cessor with the acknowledged interrupt code composed as
follows (note the state of the ADI mode control is ignored
and A5 - A11 are unused in the 86/88/286 mode).

Programming the 82C59A

The 82C59A accepts two types of command words gener-
ated by the CPU:

1. Initialization Command Words (ICWs):  Before normal
operation can begin, each 82C59A in the system must be
brought to a starting point - by a sequence of 2 to 4 bytes
timed by WR pulses.

2. Operation Command Words (OCWs):  These are the
command words which command the 82C59A to operate
in various interrupt modes. Among these modes are:

a. Fully nested mode.

b. Rotating priority mode.

c. Special mask mode.

d. Polled mode.

The OCWs can be written into the 82C59A anytime after ini-
tialization.

Initialization Command Words (lCWs)

General

Whenever a command is issued with A0 = 0 and D4 = 1, this
is interpreted as Initialization Command Word 1 (lCW1).
lCW1 starts the initialization sequence during which the fol-
lowing automatically occur:

a. The edge sense circuit is reset, which means that follow-
ing initialization, an interrupt request (IR) input must make
a low-to-high transition to generate an interrupt.

b. The Interrupt Mask Register is cleared.

c. lR7 input is assigned priority 7.

d. Special Mask Mode is cleared and Status Read is set to
lRR.

e. If lC4 = 0, then all functions selected in lCW4 are set to
zero. (Non-Buffered mode (see note), no Auto-EOI,
8080/85 system).

NOTE: Master/Slave in ICW4 is only used in the buffered mode.

Initialization Command Words 1 and 2 (ICW1, lCW2)

A5 - A15: Page starting address of service routines. In an
8080/85 system the 8 request levels will generate CALLS to
8 locations equally spaced in memory. These can be pro-
grammed to be spaced at intervals of 4 or 8 memory loca-
tions, thus, the 8 routines will occupy a page of 32 or 64
bytes, respectively.

CONTENT OF THIRD INTERRUPT VECTOR BYTE

D7 D6 D5 D4 D3 D2 D1 D0

A15 A14 A13 A12 A11 A10 A9 A8

CONTENT OF INTERRUPT VECTOR BYTE FOR
80C86/88/286 SYSTEM MODE

D7 D6 D5 D4 D3 D2 D1 D0

lR7 T7 T6 T5 T4 T3 1 1 1

lR6 T7 T6 T5 T4 T3 1 1 0

IR5 T7 T6 T5 T4 T3 1 0 1

IR4 T7 T6 T5 T4 T3 1 0 0

IR3 T7 T6 T5 T4 T3 0 1 1

IR2 T7 T6 T5 T4 T3 0 1 0

IR1 T7 T6 T5 T4 T3 0 0 1

IR0 T7 T6 T5 T4 T3 0 0 0

ICW1

ICW2

IN
CASCADE

MODE

ICW3

IS ICW4
NEEDED

ICW4

READY TO ACCEPT
INTERRUPT REQUESTS

NO (SNGL = 1)

YES (SNGL = 0))

YES (IC4 = 1)

NO (IC4 = 0)

FIGURE 6. 82C59A INITIALIZATION SEQUENCE

82C59A



4-8

D7A0 D6 D5 D4 D3 D2 D1 D0

0 A7 A6 A5 LTIM1 ADI SNGL IC4

ICW1

1 = ICW4 needed
0 = No ICW4 needed

1 = Single
0 = Cascade Mode

CALL address interval
1 = Interval of 4
0 = Interval of 8

1 = Level triggered mode
0 = Edge triggered mode

A7 - A5 of Interrupt vector address
(MCS-80/85 mode only)

D7A0 D6 D5 D4 D3 D2 D1 D0

1
A15 A14 A13 A11 A10 A9 A8A12

T7 T6 T5 T4 T3

ICW2

A15 - A8 of interrupt vector address
(MCS80/85 mode)
T7 - T3 of interrupt vector address
(8086/8088 mode)

D7A0 D6 D5 D4 D3 D2 D1 D0

1 S7 S6 S5 S3 S2 S1 S0S4

ICW3 (MASTER DEVICE)

1 = IR input has a slave
0 = IR input does not have a slave

D7A0 D6 D5 D4 D3 D2 D1 D0

1 0 0 0 0 ID2 ID1 ID00

ICW3 (SLAVE DEVICE)

SLAVE ID (NOTE)

0 1 52 3 4 6 7

0 1 10 1 0 0 1

0 0 01 1 0 1 1

0 0 10 0 1 1 1

D7A0 D6 D5 D4 D3 D2 D1 D0

1 0 0 0 BUF M/S AEOI µPMSFNM

ICW4

1 = 8086/8088 mode
0 = MCS-80/85 mode

1 = Auto EOI
0 = Normal EOI

0

1

1 1

0

X - Non buffered mode

- Buffered mode slave

- Buffered mode master

1 = Special fully nested moded
0 = Not special fully nested mode

FIGURE 7. 82C59A INITIALIZATION COMMAND WORD FORMAT

NOTE: Slave ID is equal to the corresponding master IR input.

82C59A



4-9

The address format is 2 bytes long (A0 - A15). When the
routine interval is 4, A0 - A4 are automatically inserted by
the 82C59A, while A5 - A15 are programmed externally.
When the routine interval is 8, A0 - A5 are automatically
inserted by the 82C59A while A6 - A15 are programmed
externally.

The 8-byte interval will maintain compatibility with current
software, while the 4-byte interval is best for a compact jump
table.

In an 80C86/88/286 system, A15 - A11 are inserted in the
five most significant bits of the vectoring byte and the
82C59A sets the three least significant bits according to the
interrupt level. A10 - A5 are ignored and ADI (Address inter-
val) has no effect.

LTlM: If LTlM = 1, then the 82C59A will operate in the level
interrupt mode. Edge detect logic on the interrupt
inputs will be disabled.

ADI: ALL address interval. ADI = 1 then interval = 4; ADI
= 0 then interval = 8.

SNGL: Single. Means that this is the only 82C59A in the
system. If SNGL = 1, no ICW3 will be issued.

IC4: If this bit is set - lCW4 has to be issued. If lCW4 is
not needed, set lC4 = 0.

Initialization Command Word 3 (ICW3)

This word is read only when there is more than one 82C59A
in the system and cascading is used, in which case
SNGL = 0. It will load the 8-bit slave register. The functions of
this register are:

a. In the master mode (either when SP = 1, or in buffered
mode when M/S = 1 in lCW4) a “1” is set for each slave in
the bit corresponding to the appropriate IR line for the
slave. The master then will release byte 1 of the call
sequence (for 8080/85 system) and will enable the corre-
sponding slave to release bytes 2 and 3 (for 80C86/88/
286, only byte 2) through the cascade lines.

b. In the slave mode (either when SP = 0, or if BUF = 1 and
M/S = 0 in lCW4), bits 2 - 0 identify the slave. The slave
compares its cascade input with these bits and if they are
equal, bytes 2 and 3 of the call sequence (or just byte 2 for
80C86/88/286) are released by it on the Data Bus.

NOTE: (The slave address must correspond to the IR line it is con-
nected to in the master ID).

Initialization Command Word 4 (ICW4)

SFNM: If SFNM = 1, the special fully nested mode is pro-
grammed.

BUF: If BUF = 1, the buffered mode is programmed. In
buffered mode, SP/EN becomes an enable output
and the master/slave determination is by M/S.

M/S: If buffered mode is selected: M/S = 1 means the
82C59A is programmed to be a master, M/S = 0
means the 82C59A is programmed to be a slave. If
BUF = 0, M/S has no function.

AEOI: If AEOI = 1, the automatic end of interrupt mode is
programmed.

µPM: Microprocessor mode: µPM = 0 sets the 82C59A for
8080/85 system operation, µPM = 1 sets the
82C59A for 80C86/88/286 system operation.

Operation Command Words (OCWs)
After the Initialization Command Words (lCWs) are pro-
grammed into the 82C59A, the device is ready to accept
interrupt requests at its input lines. However, during the
82C59A operation, a selection of algorithms can command
the 82C59A to operate in various modes through the Opera-
tion Command Words (OCWs).

Operation Command Word 1 (OCW1)

OCW1 sets and clears the mask bits in the Interrupt Mask
Register (lMR) M7 - M0 represent the eight mask bits. M = 1
indicates the channel is masked (inhibited), M = 0 indicates
the channel is enabled.

Operation Command Word 2 (OCW2)

R, SL, EOI - These three bits control the Rotate and End of
Interrupt modes and combinations of the two. A chart of
these combinations can be found on the Operation Com-
mand Word Format.

L2, L1, L0 - These bits determine the interrupt level acted
upon when the SL bit is active.

Operation Command Word 3 (OCW3)

ESMM - Enable Special Mask Mode. When this bit is set to 1
it enables the SMM bit to set or reset the Special Mask
Mode. When ESMM = 0, the SMM bit becomes a “don’t
care”.

SMM - Special Mask Mode. If ESMM = 1 and SMM = 1, the
82C59A will enter Special Mask Mode. If ESMM = 1 and
SMM = 0, the 82C59A will revert to normal mask mode.
When ESMM = 0, SMM has no effect.

Fully Nested Mode

This mode is entered after initialization unless another mode
is programmed. The interrupt requests are ordered in priority
from 0 through 7 (0 highest). When an interrupt is acknowl-
edged the highest priority request is determined and its vec-
tor placed on the bus. Additionally, a bit of the Interrupt
Service register (IS0 - 7) is set. This bit remains set until the
microprocessor issues an End of Interrupt (EOI) command

OPERATION COMMAND WORDS (OCWs)

 A0 D7 D6 D5 D4 D3 D2 D1 D0

OCW1

1 M7 M6 M5 M4 M3 M2 M1 M0

OCW2

0 R SL EOI 0 0 L2 L1 L0

OCW3

0 0 ESMM SMM 0 1 P RR RIS

82C59A



4-10

immediately before returning from the service routine, or if
the AEOI (Automatic End of Interrupt) bit is set, until the trail-
ing edge of the last INTA. While the IS bit is set, all further
interrupts of the same or lower priority are inhibited, while
higher levels will generate an interrupt (which will be
acknowledged only if the microprocessor internal interrupt
enable flip-flop has been re-enabled through software).

After the initialization sequence, IR0 has the highest priority
and IR7 the lowest. Priorities can be changed, as will be
explained in the rotating priority mode or via the set priority
command.

D7A0 D6 D5 D4 D3 D2 D1 D0

1 M7 M6 M5 M3 M2 M1 M0M4

OCW1

Interrupt Mask
1 = Mask set
0 = Mask reset

D7A0 D6 D5 D4 D3 D2 D1 D0

0 R SL EOI 0 L2 L1 L00

OCW2

IR LEVEL TO BE

0 1 52 3 4 6 7

0 1 10 1 0 0 1

0 0 01 1 0 1 1

0 0 10 0 1 1 10 0 1

0 1 1

1 0 1

1 0 0

0

1

1

0

0

1

1

1 0

0

1

0

Non-specific EOI command

Specific EOI command

Rotate on non-specific EOI command

Rotate in automatic EOI mode (set)

Rotate in automatic EOI mode (clear)

Rotate on specific EOI command

Set priority command

No operation

†

†

†

ACTED UPON

End of interrupt

Automatic rotation

Specific rotation

† L0 - L2 are used

D7A0 D6 D5 D4 D3 D2 D1 D0

0 0 ESMM SMM 1 P RR RIS0

OCW3

0 01 1

1100

No Action
Read IR reg on
next RD pulse

Read IS reg on
next RD pulse

1 = Poll command
0 = No poll command

0 01 1

1100

No Action
Reset special
mask

Set special
mask

READ REGISTER COMMAND

FIGURE 8. 82C59A OPERATION COMMAND WORD FORMAT

SPECIAL MASK MODE

82C59A



4-11

End of Interrupt (EOI)

The In-Service (IS) bit can be reset either automatically fol-
lowing the trailing edge of the last in sequence INTA pulse
(when AEOI bit in lCW1 is set) or by a command word that
must be issued to the 82C59A before returning from a ser-
vice routine (EOI Command). An EOI command must be
issued twice if servicing a slave in the Cascade mode, once
for the master and once for the corresponding slave.

There are two forms of EOl command: Specific and Non-
Specific. When the 82C59A is operated in modes which pre-
serve the fully nested structure, it can determine which IS bit
to reset on EOI. When a Non-Specific command is issued
the 82C59A will automatically reset the highest IS bit of
those that are set, since in the fully nested mode the highest
IS level was necessarily the last level acknowledged and
serviced. A non-specific EOI can be issued with OCW2
(EOl = 1, SL = 0, R = 0).

When a mode is used which may disturb the fully nested
structure, the 82C59A may no longer be able to determine
the last level acknowledged. In this case a Specific End of
Interrupt must be issued which includes as part of the com-
mand the IS level to be reset. A specific EOl can be issued
with OCW2 (EOI = 1, SL = 1, R = 0, and L0 - L2 is the binary
level of the IS bit to be reset).

An lRR bit that is masked by an lMR bit will not be cleared by
a non-specific EOI if the 82C59A is in the Special Mask
Mode.

Automatic End of Interrupt (AEOI) Mode

If AEOI = 1 in lCW4, then the 82C59A will operate in AEOl
mode continuously until reprogrammed by lCW4. In this
mode the 82C59A will automatically perform a non-specific
EOI operation at the trailing edge of the last interrupt
acknowledge pulse (third pulse in 8080/85, second in
80C86/88/286). Note that from a system standpoint, this
mode should be used only when a nested multilevel interrupt
structure is not required within a single 82C59A.

Automatic Rotation (Equal Priority Devices)

In some applications there are a number of interrupting
devices of equal priority. In this mode a device, after being
serviced, receives the lowest priority, so a device requesting
an interrupt will have to wait, in the worst case until each of 7
other devices are serviced at most once. For example, if the
priority and “in service” status is:

Before Rotate (lR4 the highest priority requiring service)

After Rotate (lR4 was serviced, all other priorities rotated
correspondingly)

There are two ways to accomplish Automatic Rotation using
OCW2, the Rotation on Non-Specific EOI Command (R = 1,
SL = 0, EOI = 1) and the Rotate in Automatic EOI Mode
which is set by (R = 1, SL = 0, EOI = 0) and cleared by
(R = 0, SL = 0, EOl = 0).

Specific Rotation (Specific Priority)

The programmer can change priorities by programming the
lowest priority and thus, fixing all other priorities; i.e., if IR5 is
programmed as the lowest priority device, then IR6 will have
the highest one.

The Set Priority command is issued in OCW2 where: R = 1,
SL = 1, L0 - L2 is the binary priority level code of the lowest
priority device.

Observe that in this mode internal status is updated by soft-
ware control during OCW2. However, it is independent of the
End of Interrupt (EOI) command (also executed by OCW2).
Priority changes can be executed during an EOI command
by using the Rotate on Specific EOl command in OCW2
(R = 1, SL = 1, EOI = 1, and L0 - L2 = IR level to receive low-
est priority).

Interrupt Masks

Each Interrupt Request input can be masked individually by
the Interrupt Mask Register (IMR) programmed through
OCW1. Each bit in the lMR masks one interrupt channel if it
is set (1). Bit 0 masks IR0, Bit 1 masks IR1 and so forth.
Masking an IR channel does not affect the operation of other
channels.

Special Mask Mode

Some applications may require an interrupt service routine
to dynamically alter the system priority structure during its
execution under software control. For example, the routine
may wish to inhibit lower priority requests for a portion of its
execution but enable some of them for another portion.

The difficulty here is that if an Interrupt Request is acknowl-
edged and an End of Interrupt command did not reset its IS
bit (i.e., while executing a service routine), the 82C59A
would have inhibited all lower priority requests with no easy
way for the routine to enable them.

That is where the Special Mask Mode comes in. In the Spe-
cial Mask Mode, when a mask bit is set in OCW1, it inhibits
further interrupts at that level and enables interrupts from all
other levels (lower as well as higher) that are not masked.

Thus, any interrupts may be selectively enabled by loading
the mask register.

IS7 IS6 IS5 IS4 IS3 IS2 IS1 IS0

“IS” Status 0 1 0 1 0 0 0 0

Priority
Status

7 6 5 4 3 2 1 0

lowest highest

IS7 IS6 IS5 IS4 IS3 IS2 IS1 IS0

“IS” Status 0 1 0 0 0 0 0 0

Priority
Status

2 1 0 7 6 5 4 3

highest lowest

82C59A



4-12

The Special Mask Mode is set by OCW3 where: ESMM = 1,
SMM = 1, and cleared where ESMM = 1, SMM = 0.

Poll Command

In this mode, the INT output is not used or the microproces-
sor internal Interrupt Enable flip flop is reset, disabling its
interrupt input. Service to devices is achieved by software
using a Poll command.

The Poll command is issued by setting P = 1 in OCW3. The
82C59A treats the next RD pulse to the 82C59A (i.e., RD =
0, CS = 0) as an interrupt acknowledge, sets the appropriate
IS bit if there is a request, and reads the priority level. Inter-
rupt is frozen from WR to RD.

The word enabled onto the data bus during RD is:

W0 - W2: Binary code of the highest priority level request-
ing service.

I: Equal to a “1” if there is an interrupt.

This mode is useful if there is a routine command common to
several levels so that the INTA sequence is not needed (saves
ROM space). Another application is to use the poll mode to
expand the number of priority levels to more than 64.

Reading the 82C59A Status

The input status of several internal registers can be read to
update the user information on the system. The following
registers can be read via OCW3 (lRR and ISR) or OCW1
(lMR).

Interrupt Request Register (IRR):  8-bit register which con-
tains the levels requesting an interrupt to be acknowledged.
The highest request level is reset from the lRR when an
interrupt is acknowledged. lRR is not affected by lMR.

In-Service Register (ISR):  8-bit register which contains the
priority levels that are being serviced. The ISR is updated
when an End of Interrupt Command is issued.

Interrupt Mask Register:  8-bit register which contains the
interrupt request lines which are masked.

The lRR can be read when, prior to the RD pulse, a Read
Register Command is issued with OCW3 (RR = 1, RIS = 0).

The ISR can be read when, prior to the RD pulse, a Read
Register Command is issued with OCW3 (RR = 1, RIS = 1).

There is no need to write an OCW3 before every status read
operation, as long as the status read corresponds with the
previous one: i.e., the 82C59A “remembers” whether the lRR
or ISR has been previously selected by the OCW3. This is
not true when poll is used. In the poll mode, the 82C59A

D7 D6 D5 D4 D3 D2 D1 D0

I - - - - W2 W1 W0

EDGE
SENSE
LATCH

LTIM BIT
0 = EDGE
1 = LEVEL

VCC

IR

8080/85
MODE

80C86/
88/286
MODE

INTA

FREEZE

INTA

FREEZE
FREEZE READ

IRR
WRITE
MASK

READ IMR
READ ISR
MASTER CLEAR

MASK LATCH

REQUEST
LATCH

IN - SERVICE
LATCH

NON-
MASKED
REQ

CLR

Q

SET

TO OTHER PRIORITY CELLS

PRIORITY
RESOLVER

CONTROL
LOGIC

SET ISR

CLR ISR

ISR BIT

QD

C
CLR

QD

C Q

CLR

SET

Q

NOTES:

1. Master clear active only during ICW1.

2. FREEZE is active during INTA and poll sequence only.

3. Truth Table for D-latch.

FIGURE 9. PRIORITY CELL - SIMPLIFIED LOGIC DIAGRAM

C D Q Operation

1 D1 D1 Follow

0 X Qn-1 Hold

82C59A



4-13

treats the RD following a “poll write” operation as an INTA.
After initialization, the 82C59A is set to lRR.

For reading the lMR, no OCW3 is needed. The output data bus
will contain the lMR whenever RD is active and A0 = 1 (OCW1).
Polling overrides status read when P = 1, RR = 1 in OCW3.

Edge and Level Triggered Modes

This mode is programmed using bit 3 in lCW1.

If LTlM = “0”, an interrupt request will be recognized by a low to
high transition on an IR input. The IR input can remain high
without generating another interrupt.

If LTIM = “1”, an interrupt request will be recognized by a “high”
level on an IR input, and there is no need for an edge detection.
The interrupt request must be removed before the EOI com-
mand is issued or the CPU interrupt is enabled to prevent a
second interrupt from occurring.

The priority cell diagram shows a conceptual circuit of the level
sensitive and edge sensitive input circuitry of the 82C59A. Be
sure to note that the request latch is a transparent D type latch.

In both the edge and level triggered modes the IR inputs
must remain high until after the falling edge of the first INTA.
If the IR input goes low before this time a DEFAULT lR7 will
occur when the CPU acknowledges the interrupt. This can
be a useful safeguard for detecting interrupts caused by spu-
rious noise glitches on the IR inputs. To implement this fea-
ture the lR7 routine is used for “clean up” simply executing a
return instruction, thus, ignoring the interrupt. If lR7 is
needed for other purposes a default lR7 can still be detected
by reading the ISR. A normal lR7 interrupt will set the corre-
sponding ISR bit, a default IR7 won’t. If a default IR7 routine
occurs during a normal lR7 routine, however, the ISR will
remain set. In this case it is necessary to keep track of
whether or not the IR7 routine was previously entered. If
another lR7 occurs it is a default.

In power sensitive applications, it is advisable to place the
82C59A in the edge-triggered mode with the IR lines nor-
mally high. This will minimize the current through the internal
pull-up resistors on the IR pins.

The Special Fully Nested Mode

This mode will be used in the case of a big system where
cascading is used, and the priority has to be conserved
within each slave. In this case the special fully nested mode
will be programmed to the master (using lCW4). This mode
is similar to the normal nested mode with the following
exceptions:

a. When an interrupt request from a certain slave is in ser-
vice, this slave is not locked out from the master’s priority
logic and further interrupt requests from higher priority
IRs within the slave will be recognized by the master and
will initiate interrupts to the processor. (In the normal
nested mode a slave is masked out when its request is in
service and no higher requests from the same slave can
be serviced.

b. When exiting the Interrupt Service routine the software
has to check whether the interrupt serviced was the only

one from that slave. This is done by sending a non-spe-
cific End of Interrupt (EOI) command to the slave and
then reading its In-Service register and checking for zero.
If it is empty, a non-specified EOI can be sent to the mas-
ter, too. If not, no EOI should be sent.

Buffered Mode

When the 82C59A is used in a large system where bus driv-
ing buffers are required on the data bus and the cascading
mode is used, there exists the problem of enabling buffers

The buffered mode will structure the 82C59A to send an
enable signal on SP/EN to enable the buffers. In this mode,
whenever the 82C59A’s data bus outputs are enabled, the
SP/EN output becomes active.

LATCH
ARM

(NOTE 1)
EARLIEST IR

CAN BE
REMOVED

LATCH
ARM

(NOTE 1)

8080/85 LATCH
ARM

(NOTE 1)

80C86/88/286

80C86/88/286

8080/85

IR

INT

INTA

NOTE:

1. Edge triggered mode only.

FIGURE 10. IR TRIGGERING TIMING REQUIREMENTS

82C59A



4-14

This modification forces the use of software programming to
determine whether the 82C59A is a master or a slave. Bit 3
in ICW4 programs the buffered mode, and bit 2 in lCW4
determines whether it is a master or a slave.

Cascade Mode

The 82C59A can be easily interconnected in a system of
one master with up to eight slaves to handle up to 64 priority
levels.

The master controls the slaves through the 3 line cascade
bus (CAS2 - 0). The cascade bus acts like chip selects to the
slaves during the INTA sequence.

In a cascade configuration, the slave interrupt outputs (INT)
are connected to the master interrupt request inputs. When
a slave request line is activated and afterwards acknowl-
edged, the master will enable the corresponding slave to

release the device routine address during bytes 2 and 3 of
INTA. (Byte 2 only for 80C86/88/286).

The cascade bus lines are normally low and will contain the
slave address code from the leading edge of the first INTA
pulse to the trailing edge of the last INTA pulse. Each
82C59A in the system must follow a separate initialization
sequence and can be programmed to work in a different
mode. An EOI command must be issued twice: once for the
master and once for the corresponding slave. Chip select
decoding is required to activate each 82C59A.

NOTE: Auto EOI is supported in the slave mode for the 82C59A.

The cascade lines of the Master 82C59A are activated only
for slave inputs, non-slave inputs leave the cascade line
inactive (low). Therefore, it is necessary to use a slave
address of 0 (zero) only after all other addresses are used.

FIGURE 11. CASCADING THE 82C59A

CS

82C59A SLAVE A
CAS 0
CAS 1
CAS 2

INTA0 D7 - D0 INTA

SP/EN 7 56 4 3 2 1 0

GND 7 56 4 3 2 1 0

CS

82C59A SLAVE B
CAS 0
CAS 1
CAS 2

INTA0 D7 - D0 INTA

SP/EN 7 56 4 3 2 1 0

GND 7 56 4 3 2 1 0

CS

MASTER 82C59A
CAS 0
CAS 1
CAS 2

INTA0 D7 - D0 INTA

SP/EN 7 56 4 3 2 1 0

VCC 7 5 4 2 1 036

INT REQ

DATA BUS (8)

CONTROL BUS

ADDRESS BUS (16)

INTERRUPT REQUESTS

82C59A



4-15

Absolute Maximum Ratings Thermal Information
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .+8.0V
Input, Output or I/O Voltage . . . . . . . . . . . . GND-0.5V to VCC+0.5V
ESD Classification  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Class I

Operating Conditions
Operating Voltage Range . . . . . . . . . . . . . . . . . . . . . +4.5V to +5.5V
Operating Temperature Range . . . . . . . . . . . . . . . . -55oC to +125oC
Input Low Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0V to +0.8V

Thermal Resistance (Typical) θJA (oC/W) θJC (oC/W)

CERDIP Package  . . . . . . . . . . . . . . . . 55 12
CLCC Package  . . . . . . . . . . . . . . . . . . 65 14
PDIP Package . . . . . . . . . . . . . . . . . . . 55 N/A
PLCC Package  . . . . . . . . . . . . . . . . . . 65 N/A
SOIC Package . . . . . . . . . . . . . . . . . . . 75 N/A

Storage Temperature Range. . . . . . . . . . . . . . . . . .-65oC to +150oC
Maximum Junction Temperature Ceramic Package  . . . . . . . +175oC
Maximum Junction Temperature Plastic Package. . . . . . . . . +150oC
Maximum Lead Temperature Package (Soldering 10s)  . . . . +300oC

(PLCC and SOIC - Lead Tips Only)

Die Characteristics
Gate Count . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1250 Gates

CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation
of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

DC Electrical Specifications VCC = +5.0V ±10%, TA = 0oC to +70oC (C82C59A), TA = -40oC to +85oC (I82C59A), TA = -55oC to

+125oC (M82C59A)

SYMBOL PARAMETER MIN MAX UNITS TEST CONDITIONS

VlH Logical One Input Voltage 2.0
2.2

- V
V

C82C59A, I82C59A
M82C59A

VIL Logical Zero Input Voltage - 0.8 V

VOH Output HIGH Voltage 3.0
VCC -0.4

- V
V

IOH = -2.5mA
lOH = -100µA

VOL Output LOW Voltage - 0.4 V lOL = +2.5mA

 II Input Leakage Current -1.0 +1.0 µA VIN = GND or VCC, Pins 1-3, 26-27

IO Output Leakage Current -10.0 +10.0 µA VOUT = GND or VCC, Pins 4-13, 15-16

ILIR IR Input Load Current -
-

-200
10

µA
µA

VIN = 0V
VIN = VCC

lCCSB Standby Power Supply Current - 10 µA VCC = 5.5V, VIN = VCC or GND Outputs
Open, (Note 1)

ICCOP Operating Power Supply Current - 1 mA/MHz VCC = 5.0V, VIN = VCC or GND, Outputs Open,
TA = 25oC, (Note 2)

NOTES:

1. Except for IR0 - lR7 where VIN = VCC or open.

2. ICCOP = 1mA/MHz of peripheral read/write cycle time. (ex: 1.0µs I/O read/write cycle time = 1mA).

Capacitance TA = +25oC

SYMBOL PARAMETER TYP UNITS TEST CONDITIONS

CIN Input Capacitance 15 pF FREQ = 1MHz, all measurements reference to
device GND.

COUT Output Capacitance 15 pF

CI/O I/O Capacitance 15 pF

82C59A



4-16

AC Electrical Specifications VCC = +5.0V ±10%, GND = 0V, TA = 0oC to +70oC (C82C59A), TA -40oC to +85oC (l82C59A),

TA = -55oC to +125oC (M82C59A)

SYMBOL PARAMETER

82C59A-5 82C59A 82C59A-12

UNITS
TEST

CONDITIONSMIN MAX MIN MAX MIN MAX

TIMING REQUIREMENTS

(1) TAHRL A0/CS Setup to RD/INTA 10 - 10 - 5 - ns

(2) TRHAX A0/CS Hold after RD/INTA 5 - 5 - 0 - ns

(3) TRLRH RD/lNTA Pulse Width 235 - 160 - 60 - ns

(4) TAHWL A0/CS Setup to WR 0 - 0 - 0 - ns

(5) TWHAX A0/CS Hold after WR 5 - 5 - 0 - ns

(6) TWLWH WR Pulse Width 165 - 95 - 60 - ns

(7) TDVWH Data Setup to WR 240 - 160 - 70 - ns

(8) TWHDX Data Hold after WR 5 - 5 - 0 - ns

(9) TJLJH Interrupt Request Width Low 100 - 100 - 40 - ns

(10) TCVlAL Cascade Setup to Second or Third INTA
(Slave Only)

55 - 40 - 30 - ns

(11) TRHRL End of RD to next RD, End of INTA (within
an INTA sequence only)

160 - 160 - 90 - ns

(12) TWHWL End of WR to next WR 190 - 190 - 60 - ns

(13) TCHCL
(Note 1)

End of Command to next command (not
same command type), End of INTA
sequence to next INTA sequence

500 - 400 - 90 - ns

TIMING RESPONSES

(14) TRLDV Data Valid from RD/INTA - 160 - 120 - 40 ns 1

(15) TRHDZ Data Float after RD/INTA 5 100 5 85 5 22 ns 2

(16) TJHlH Interrupt Output Delay - 350 - 300 - 90 ns 1

(17) TlALCV Cascade Valid from First INTA
(Master Only)

- 565 - 360 - 50 ns 1

(18) TRLEL Enable Active from RD or INTA - 125 - 100 - 40 ns 1

(19) TRHEH Enable Inactive from RD or INTA - 60 - 50 - 22 ns 1

(20) TAHDV Data Valid from Stable Address - 210 - 200 - 60 ns 1

(21) TCVDV Cascade Valid to Valid Data - 300 - 200 - 70 ns 1

NOTE:

1. Worst case timing for TCHCL in an actual microprocessor system is typically greater than the values specified for the 82C59A,
(i.e. 8085A = 1.6µs, 8085A -2 = 1µs, 80C86 = 1µs, 80C286 -10 = 131ns, 80C286 -12 = 98ns).

82C59A



4-17

AC Test Circuit

AC Testing Input, Output Waveform

TEST CONDITION DEFINITION TABLE

TEST
CONDITION V1 R1 R2 C1

1 1.7V 523Ω Open 100pF

2 VCC 1.8kΩ 1.8kΩ 50pF

V1

R1

R2C1
(NOTE)

OUTPUT FROM
DEVICE UNDER

TEST

TEST
POINT

NOTE: Includes stray and jig capacitance.

Timing Waveforms

FIGURE 12. WRITE

INPUT
VIH +0.4V

VIL - 0.4V

1.5V

VOH

OUTPUT

VOL

1.5V

NOTE: AC Testing: All input signals must switch between VIL - 0.4V and VIH + 0.4V. Input rise and fall times are driven at 1ns/V.

WR

CS
ADDRESS BUS

A0

DATA BUS

(7)
TDVWH

(8)
TWHDX

(4)
TAHWL

(5)
TWHAX

(6)
TWLWH

82C59A



4-18

FIGURE 13. READ/INTA

FIGURE 14. OTHER TIMING

NOTES:

1. Interrupt Request (IR) must remain HIGH until leading edge of first INTA.

2. During first INTA the Data Bus is not active in 80C86/88/286 mode.

3. 80C86/88/286 mode.

4. 8080/8085 mode.

FIGURE 15. INTA SEQUENCE

Timing Waveforms  (Continued)

RD/INTA

EN

CS
ADDRESS BUS

DATA BUS
(20)

TAHDV

(14)
TRLDV

(1)
TAHRL

(18)
TRLEL

(3)
TRLRH

(19)
TRHEH

(2)
TRHAX

(15)
TRHDZ

A0

(11)
TRHRL

(12)
TWHWL

(13)
TCHCL

RD

INTA

WR

RD
INTA

WR

RD
INTA

WR

IR

(9)
TJLJH

INT

INTA
SEE NOTE 1

DB

CAS 0 - 2

TCVIAL
(10)

SEE
NOTE 2

(17)
TIALCV

(21)
TCVDV

(10)
TCVIAL

SEE NOTE 3 SEE NOTE 4

(16)
TJHIH

82C59A



4-19

Burn-In Circuits
MD82C59A CERDIP

MR82C59A CLCC

R1

R1

R1

R1

R1

R1

R1

R1

R1

R1

R1

R3

R3

VCC

R1

R2

R2

R2

R2

R2

R2

R3

R3

R1

R2

R2

28

27

26

25

24

23

22

21

20

19

18

17

16

15

1

2

3

4

5

6

7

8

9

10

11

12

13

14

C1

INTA

IR7

IR6

IR5

IR3

IR1

IR0

A

SP/EN

CAS 2

A0

IR4

IR2

WR

RD

D7

D6

D4

D2

D1

D0

CAS 0

CAS 1

GND

D5

D3

GND

VCC

A

R3

R3

23

24

25

22

21

20

1911

3 2 14

14 15 16 17 1812 13

28 27 26

10

5

6

7

8

9

C
A

S
0

C
A

S
1

G
N

D

C
A

S
2

S
P

/E
N

IR
0

V
C

C
/2

R2

R2

R2

R2

R2

R2

R2

IR6

IR5

IR4

IR1

IR7

IR3

IR2

R1

R1

R1

R1

R1

R1

R1

D5

D4

D3

D0

D6

D2

D1

R1 R1 R1 R1 R4 R2

R1 R1 R1R1 R1 R1

D7 RD WR GND A0 INTA

VCC C1

NOTES:

1. VCC = 5.5V ±0.5V.

2. VIH = 4.5V ±10%.

3. VIL = -0.2V to 0.4V.

4. GND = 0V.

5. R1 = 47kΩ ±5%.

6. R2 = 510Ω ±5%.

7. R3 = 10kΩ ±5%.

8. R4 = 1.2kΩ ±5%.

9. C1 = 0.01µF min.

10. F0 = 100kHz ±10%.

11. F1 = F0/2, F2 = F1/2, ...F8 = F7/2.

82C59A



4-20

All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate
and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which
may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see web site http://www.intersil.com

Die Characteristics
DIE DIMENSIONS:

143 x 130 x 19 ±1mils
(3630 x 3310 x 525µm)

METALLIZATION:
Type: Si-Al-Cu
Thickness: Metal 1: 8kÅ ± 0.75kÅ

Metal 2: 12kÅ ± 1.0kÅ

GLASSIVATION:
Type: Nitrox
Thickness: 10kÅ ± 3.0kÅ

Metallization Mask Layout
82C59A

D7

RD

WR

CS

VCC

INTA

CAS0

CAS1

GND

CAS2

SP/EN

INT

D0 D1 D2 D3 D4 D5

IR1 IR2 IR3 IR4 IR5 IR6

A0

D6

IR0

IR7

82C59A



1

AN109.3

http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999

82C59A Priority Interrupt Controller

PAGE

Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.0 Glossary of Terms for the 82C59A  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1 Automatic End of Interrupt (AEOI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Automatic Rotation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Buffered Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Cascade Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.5 End of Interrupt (EOI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.6 Fully Nested Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.7 Master  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.8 Slave  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.9 Special Fully Nested Mode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.10 Special Mask Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.11 Specific Rotation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.0 Initialization Control Words  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 ICW1  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 ICW2  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 ICW3  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 ICW4  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.0 Operation Command Words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1 OCW1  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 OCW2  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.3 OCW3  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.0 Addressing the 82C59A  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5.0 Programming the 82C59A  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5.1 Example 1: Single 82C59A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5.2 Example 2: Cascaded 82C59As . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

6.0 Expansion Past 64 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Application Note April 1999



2

Introduction
The Intersil 82C59A is a CMOS Priority Interrupt Controller,
designed to relieve the system CPU from the task of polling
in a multi-level priority interrupt system. The 82C59A is
compatible with microprocessors such as the 80C86,
80C88, 8086, 8088, 8080/85 and NSC800.

In the following discussion, we will look at the initialization
and operation process for the 82C59A. We will focus our
attention on 80C86/80C88-based systems. However, the
information presented will also be applicable to use of the
82C59A in 8080 and 8085-based systems as well.

Let us look at the sequence of events that occur with the
82C59A during an interrupt request and service. In an
8080/85 based system:

1. One or more of the INTERRUPT REQUEST lines (IR0 -
IR7) are raised high, setting the corresponding bits in the
Interrupt Request Register (IRR).

2. The interrupt is evaluated in the priority resolver. If appropri-
ate, an interrupt is sent to the CPU via the INT line (pin 17).

3. The CPU acknowledges the interrupt by sending a pulse
on the INTA line. Upon reception of this pulse, the
82C59A responds by forcing the opcode for a call instruc-
tion (0CDH) onto the data bus.

4. A second INTA pulse is sent from the CPU. At this time,
the device will respond by placing the lower byte of the
address of the appropriate service routine onto the data
bus. This address is derived from ICW1.

5. A final (third) pulse of INTA occurs, and the 82C59A re-
sponds by placing the upper byte of the address onto the
data bus. This address is taken from ICW2.

6. The three byte call instruction is then complete. If the
AEOI mode has been chosen, the bit set during the first
INTA pulse in the ISR is reset at the end of the third INTA
pulse. Otherwise, it will not get reset until an appropriate
EOI command is issued to the 82C59A.

For 80C86- and 80C88-based systems:

1. and 2. same as above.

2. The CPU responds to the interrupt request by pulsing the
INTA line twice. The first pulse sets the appropriate ISR
bit and resets the IRR bit while the second pulse causes
the interrupt vector to be placed on the data bus. This
byte is composed of the interrupt number in bits 0 through
2, and bits 3 through 7 are taken from bits 3 - 7 of ICW2.

3. The interrupt sequence is complete. If using the AEOI
mode, the bit set earlier in the ISR will be reset. Other-
wise, the interrupt controller will await an appropriate EOI
command at the end of the interrupt service routine.

1.0 Glossary of Terms for the 82C59A

1.1 Automatic End of Interrupt (AEOI)
When the 82C59A is programmed to operate in the
Automatic EOI mode, the device will produce its own End-of-
Interrupt (EOI) at the trailing edge of the last Interrupt

Acknowledge pulse (INTA) from the CPU. Using this mode of
operation frees the software (service routines) from needing
to send an EOI manually to the 82C59A.

However, using the Automatic EOI mode will upset the
priority structure of the 82C59A. When the AEOI is
generated, the bit that was set in the In-Service Register
(ISR) to indicate which interrupt is being serviced, will be
cleared. Because of this, while an interrupt is being serviced
there will be no record in the ISR that it is being serviced.
Unless interrupts are disabled by the CPU, there is a risk
that interrupt requests of lower or equal priority will interrupt
the current request being serviced. If this mode of operation
is not desired, interrupts should not be re-enabled by the
CPU when executing interrupt service routines.

1.2 Automatic Rotation
During normal operation of the 82C59A, we have an
assigned order of priorities for the IR lines. There are
however, instances when it might be useful to assign equal
priorities to all interrupts. Once a particular interrupt has
been serviced, all other equal priority interrupts should have
an opportunity to be serviced before the original peripheral
can be serviced again. This priority equalization can be
achieved through Automatic Rotation of priorities.

Assume, for example, that the assigned priorities of interrupts
has IR0 as the highest priority interrupt and IR7 as the lowest.
Figure 1A shows interrupt requests occurring on IR7 as well
as IR3. Because IR3 is of higher priority, it will be serviced
first. Upon completion of the servicing of IR3, rotation occurs
and IR3 then becomes the lowest priority interrupt. IR4 will
now have the highest priority (See Figure 1B).

There are two methods in which Automatic Rotation can be
implemented. First, if the 82C59A is operating in the AEOI
mode as described above, the 82C59A can be programmed
for “Rotate in Automatic EOI mode”. This is done by writing a
command word to OCW2. The second method occurs when
using normal EOIs. When an EOI is issued by the service
routine, the software can specify that rotation be performed.

IR7 IR6 IR5 IR4 IR3 IR2 IR1 IR0

IRR STATUS 1 0 0 0 1 0 0 0

PRIORITY 7 6 5 4 3 2 1 0

LOWEST
PRIORITY

HIGHEST
PRIORITY

FIGURE 1A. IR PRIORITIES (BEFORE ROTATION)

IR7 IR6 IR5 IR4 IR3 IR2 IR1 IR0

IRR STATUS 1 0 0 0 0 0 0 0

PRIORITY 3 2 1 0 7 6 5 4

HIGHEST
PRIORITY

LOWEST
PRIORITY

FIGURE 1B. IR PRIORITIES (AFTER ROTATION)

Application Note 109



3

1.3 Buffered Mode
When using the 82C59A in a large system, it may be
necessary to use bus buffers to guarantee data integrity and
guard against bus contention.

By selecting buffered mode when initializing the device, the
SP/EN pin (pin 16) will generate an enable signal for the
buffers whenever the data outputs from the 82C59A are
active. In this mode, the dual function SP/EN pin can no
longer be used for specifying whether a particular 82C59A is
being used as a master or a slave in the system. This
specification must be made through setting the proper bit in
ICW4 during the device initialization.

1.4 Cascade Mode
More than one 82C59A can be used in a system to expand
the number of priority interrupts to a maximum of 64 levels
without adding any additional hardware. This method of
expansion is known as “cascading”. An example of
cascading 82C59A is shown in Figure 2.

In a cascaded interrupt scheme, a single 82C59A is utilized
as the “master” interrupt controller. As many as 8 “slave”
82C59As can be connected to the IR inputs of the “master”
82C59A. Each of these slaves can support up to 8 interrupt
inputs, yielding 64 possible prioritized interrupts.

When in cascade mode, the determination of whether a
device is a master or a slave can take either of two forms.
The state of the SP/EN pin will select “master” or “slave”
mode for a device when the buffered mode is not being
used. Should buffered mode be used, then it is necessary

that bit D2 (M/S) of ICW4 be set to indicate if the particular
82C59A is being used as a “master” or “slave” interrupt
controller in the system.

The CAS0-2 pins on the interrupt controllers serve to provide
a private bus for the cascaded 82C59As. These lines allow
the “master” to inform the slaves which is to be serviced for a
particular interrupt.

1.5 End of Interrupt (EOI)
When an interrupt is recognized and acknowledged by the
CPU, its corresponding bit will be set in the In-Service Register
(ISR). If the AEOI mode is in use, the bit will be cleared
automatically through the interrupt acknowledge signal from the
CPU. However, if AEOI is not in effect, it is the task of software
to notify the 82C59A when servicing of an interrupt is
completed. This is done by issuing an End-of-Interrupt (EOI).

There are 2 different types of EOIs that can be issued to the
device; non-specific EOI and specific EOI. In most cases,
when the device is operating in a mode that does not disturb
the fully nested mode such as Special Fully Nested Mode,
we will issue a non-specific EOI. This form of the EOI will
automatically reset the highest priority bit set in the ISR. This
is because for full nested operation, the highest priority IS bit
set is the last interrupt level acknowledged and serviced.

The “specific” EOI is used when the fully nested structure
has not been preserved. The 82C59A may not be able to
determine the last level acknowledged. Thus, the software
must specify which interrupt level is to be reset. This is done
by issuing a “specific” EOI.

FIGURE 2. CASCADING THE 82C59A

DATA BUS (8)

0

CONTROL BUS

ADDRESS BUS (16)

CS

SLAVE B

D0-7 INT
CAS 0
CAS 1
CAS 2

1234567SP/EN

INTAA0

82C59A

GND 01234567

M0

CS

MASTER 82C59A

D0-7 INT
CAS 0
CAS 1
CAS 2

M1M2M3M4M5M6M7SP/EN

INTAA0

VCC 012

3

45
6

7

0

CS

SLAVE A

D0-7 INT
CAS 0
CAS 1
CAS 2

1234567SP/EN

INTAA0

82C59A

GND 01234567

INT
REQ

INTERRUPT REQUEST

Application Note 109



4

1.6 Fully Nested Mode
By default, the 82C59A operates in the Fully Nested Mode. It
will remain in this mode until it is programmed otherwise. In
the Fully Nested Mode, interrupts are ordered by priority
from highest to lowest. Initially, the highest priority level is
IR0 with IR7 having the lowest. This ordering can be
changed through the use of priority rotation (see 1.2).

In the Fully Nested Mode, when an interrupt occurs, its
corresponding bit will get set in the Interrupt Request Register
(IRR). When the processor acknowledges the interrupt, the
82C59A will look to the IRR to determine the highest priority
interrupt requesting service. The bit in the In-service Register
(ISR) corresponding to this interrupt will then be set. This bit
remains set until an EOI is sent to the 82C59A.

While an interrupt is being serviced, only higher priority
interrupts will be allowed to interrupt the current interrupt
being serviced. However, lower priority interrupts can be
allowed to interrupt higher priority requests if the 82C59A is
programmed for operation in the Special Mask Mode.

When using the 82C59A in an 80C86- or 80C88-based
system, interrupts will automatically be disabled when the
processor begins servicing an interrupt request. The current
address and the state of the flags in the processor will be
pushed onto the stack. The interrupt-enable flag is then
cleared. To allow interrupts to occur at this point, the STI
instruction can be used. Upon exiting the service routine using
the IRET instruction, execution of the program is resumed at
the point where the interrupt occurred, and the flags are
restored to their original values, thus re-enabling interrupts.

A configuration in which the Fully Nested structure is not
preserved occurs when one or more of the following
conditions occur:

(a) The Automatic EOI mode is being used.

(b) The Special Mask Mode is in use.

(c) A slave 82C59A has a master that is not programmed to
the Special Fully Nested Mode.

Cases (a) and (b) differ from case (c) in that the 82C59A
would allow lower priority interrupt requests the opportunity
to be serviced before higher priority interrupt requests.

1.7 Master
When using multiple 82C59As in a system, one 82C59A has
control over all other 82C59As. This is known as the
“master” interrupt controller. Communication between the
master and the other (slave) 82C59As occurs via the CAS0 -
2 lines. These lines form a private bus between the multiple
82C59As. Also, the INT lines from the slaves are routed to
the master’s IR input pin(s). See Figure 2.

1.8 Slave
A “slave” 82C59A in a system is controlled by a master
82C59A. There is but one “master” in the system, but there
can be up to 8 slave 82C59As. The INT outputs from the
slaves act as inputs to the master through it’s IR inputs.

Communications between the master and slaves occurs via
the CAS0 - 2 lines. See Figure 2.

1.9 Special Fully Nested Mode
The Special Fully Nested Mode (SFNM) is used in a system
having multiple 82C59As where it is necessary to preserve
the priority of interrupts within a slave 82C59A. Only the
master is programmed for the Special Fully Nested Mode
through ICW4. This mode is similar to the Fully Nested
Mode with the following exceptions:

(a) When an interrupt from a particular slave is being
serviced, additional higher priority interrupts from that
slave can cause an interrupt to the master. Normally, a
slave is masked out when its request is in service.

(b) When exiting the Interrupt Service routine, the software
should first issue a non-specific EOI to the slave. The
Inservice Register (ISR) should then be read and
checked to see if its contents are zero. If the register is
empty, the software should then write a non-specific EOI
to the master. Otherwise, a second EOI need not be
written because there are interrupts from that slave still
being processed.

NOTE: Because the Master 82C59A and its slave 82C59As must
be in Fully Nested Mode for this mode to be functional, we could not
utilize Automatic EOIs. These would disturb the Fully Nested
structure, as described in section 1.6.

1.10 Special Mask Mode
The Special Mask Mode is utilized in order to allow interrupts
from all other levels (higher and lower as well) to interrupt the
IR level that is currently being serviced. Invoking this mode of
operation will disturb the fully nested priority structure.

Generally, the Special Mask Mode is selected during the
servicing of an interrupt. The software should first set the bit
corresponding to the IR level being serviced, in the Interrupt
Mask Register (OCW1). The Special Mask Mode and
interrupts should then be enabled. This will allow any of the
IR levels except for those masked off by OCW1 to interrupt
the IR level currently being serviced.

Because this disturbs the Fully Nested Structure, it is
required that a Specific EOI be issued when servicing
interrupts while the Special Mask Mode is in effect. Before
exiting the original interrupt routine, the Special Mask Mode
should be disabled.

1.11 Specific Rotation
By issuing the proper command word to OCW2, the priority
structure of the 82C59A can be dynamically altered. The
command word written to OCW2 would specify which is to
be the lowest priority IR level.

This specific rotation can be accomplished one of two
ways. The first is through a specific EOI. The software can
specify that rotation is to be applied to the IR level provided
with the EOI. The second method is a simple “set priority”
command, in which the lowest priority level is specified with
the command word.

Application Note 109



5

2.0 Initialization Control Words
The following section gives a description of the Initialization
Control Words (ICW) used for configuring the 82C59A
Interrupt controller. There are four (4) control words used for
initialization of the 82C59A. These ICWs must be
programmed in the proper sequence beginning with ICW1. If
at any time during the course of operation the configuration
of the 82C59A needs to be changed, the user must again
write out the control words to the device in their proper order.
The initialization sequence is shown in Figure 3.

ICW1: The 82C59A recognizes the first Initialization Control
Word (ICW) written to it based on two criteria: (1) the A0 line
from the address bus must be a zero, and (2) the D4 bit must
be a one. If the D4 bit is set to a zero, we would be
programming either OCW2 or OCW3 (these are explained
later). The function of ICW1 is to tell the 82C59A how it is
being used in the system (i.e. Single or cascaded, edge or
level triggered interrupts etc.).

ICW2: This control word is always issued directly after
ICW1. When addressing this ICW, the A0 line from the
address bus must be a one (high). ICW2 is utilized in
providing the CPU with information on where to vector to in
memory when servicing an interrupt.

ICW3: This control word is issued only if the SNGL (D1) bit of
the ICW1 has been programmed with a zero. When
addressing this word, the A0 line from the CPU must be high
(1). This control word is for cascaded 82C59As. It allows the
master and slave 82C59As to communicate via the CAS0-2
lines. With the master, this word indicates which IR lines have
slaves connected to them. For the slave 82C59A(s), this word
indicates to which IR line on the master it is connected.

ICW4: Issuance of this ICW is selectable through the IC4
(D0) bit of ICW1. If ICW4 is to be written to the 82C59A, A0
from the CPU must be high (1) when writing to it. This word
needs to be written only when the 82C59A is operating in
modes other than the default modes. Instances when we
would want to write to ICW4 are one or more of the following:
An 80C86(80C88) processor is being used, buffered outputs
(D0 - D7) are to be used, Automatic EOIs are desired, or the
Special Fully Nested mode is to be used.

2.1 ICW1
ICW1 is the first control word that is written to the 82C59A
during the initialization process. To access this word, the
value of A0 must be a zero (0) in the addressing, and bit D4
of ICW1 must be a one (1). The format of the command word
is as follows:

D7 thru D5 - A7, A6, A5: These bits are used in the
8080/85 mode to form a portion of the low byte call address.
When using the 4 byte address interval, all 3 bits are utilized.
When using the 8 byte interval, only bits A7 and A6 are
used. Bit A5 becomes a “don’t care” bit. If using an
80C86(80C88) system, the value of these bits can be set to
either a one or zero.

D3 - LTIM:

0: The 82C59A will operate in an edge triggered mode. An
interrupt request on one of the IR lines (IR0 - IR7) is
recognized by a low to high transition on the pin. The IR
signal must remain high at least until the falling edge of the
first INTA pulse. Subsequent interrupts on the IR pin(s) will
not occur until another low-to-high transition occurs.

1: Sets up the 82C59A to operate in the level triggered
mode. Interrupts occur when a “high” level is detected on
one or more of the IR pins. The interrupt request must be
removed from this pin before the EOI command is issued
by the CPU. Otherwise, the 82C59A will see the IR line
still in a high state, and consider this to be another
interrupt request.

READY TO ACCEPT
INTERRUPT REQUESTS

ICW4

ICW3

ICW2

ICW1

IN

IS ICW4

CASCADE
MODE

NEEDED

YES (IC4 = 1)

NO (IC4 = 0)

YES (SNGL = 0)

NO (SNGL = 1)

FIGURE 3. 82C59A INITIALIZATION SEQUENCE

A7

D7

A6

D6

A5

D5

1

D4

LTIM

D3

ADI

D2

SNGL

D1

IC4

D0

1 = ICW4 NEEDED
0 = NO ICW4 NEEDED

1 = SINGLE
0 = CASCADE MODE

CALL ADDRESS INTERVAL
1 = INTERVAL OF 4
0 = INTERVAL OF 8

1 = LEVEL TRIGGERED

0 = EDGE TRIGGERED

A7 - A5 OF INTERRUPT
VECTOR ADDRESS
(MCS-80/85 MODE ONLY)

FIGURE 4. ICW1 FORMAT

0

† A0

MODE

MODE

† A0 is an address bit, and not part of the ICW.

Application Note 109



6

A7

D7

A6

D6

A5

D5

1

D4

LTIM

D3

ADI

D2

SNGL

D1

IC4

D0

1 = ICW4 NEEDED
0 = NO ICW4 NEEDED

1 = SINGLE
0 = CASCADE MODE

CALL ADDRESS INTERVAL
1 = INTERVAL OF 4
0 = INTERVAL OF 8

1 = LEVEL TRIGGERED

0 = EDGE TRIGGERED

A7 - A5 OF INTERRUPT
VECTOR ADDRESS
(MCS-80/85 MODE ONLY)

0

A0

MODE

MODE

NOTE: Slave ID is equal to the corresponding master IR input.

FIGURE 5. 82C59A INITIALIZATION COMMAND WORD FORMAT

A15

D7 D6 D5 D4 D3

A10

D2

A9

D1

A8

D0

A15 - A8 OF INTERRUPT1

A0

T7
VECTOR ADDRESS
(MCS80/85 MODE)

T7 - T3 OF INTERRUPT
VECTOR ADDRESS
(8086/8088 MODE)

A14
T6

A13
T5

A11
T3

A12
T4

S7

D7

S6

D6

S5

D5

S4

D4

S3

D3

S2

D2

S1

D1

S0

D0

1 = IR INPUT HAS A SLAVE

0

A0

0 = IR INPUT DOES NOT
HAVE A SLAVE

ICW3 (MASTER DEVICE)

ICW2

ICW1

0

D7

0

D6

0

D5

0

D4

0

D3

ID2

D2

ID1

D1

ID0

D0

SLAVE ID (NOTE)

1

A0

0

ICW3 (SLAVE DEVICE)

1 2 3 4 5 6 7
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1

0

D7

0

D6

0

D5

SFNM

D4

BUF

D3

M/S

D2

AEOI

D1

µPM

D0

1 = 8086/8088 MODE
0 = MCS-80/85 MODE

1 = AUTO EOI
0 = NORMAL EOI

1

A0

ICW4

0 X

1 0

1 1

1 = SPECIAL FULLY

0 = NOT SPECIAL FULLY
NESTED MODE

NESTED MODE

- NON BUFFERED MODE

- BUFFERED MODE/SLAVE

- BUFFERED MODE/MASTER

FIGURE 6. 82C59A OPERATION COMMAND WORD FORMAT

M7

D7

M6

D6

M5

D5

M4

D4

M3

D3

M2

D2

M1

D1

M0

D0

1 = MASK SET

1

A0

0 = MASK RESET

INTERRUPT MASK

OCW1

R

D7

SL

D6

EOI

D5

0

D4

0

D3

L2

D2

L1

D1

L0

D0

0

A0

OCW2

IR LEVEL TO BE

0 1 2 3 4 5 6 7
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1

ACTED UPON

0 1

0 1

1 1

NON-SPECIFIC EOI COMMAND

* SPECIFIC EOI COMMAND

ROTATE ON NON-SPECIFIC EOI COMMAND

ROTATE IN AUTOMATIC EOI MODE (SET)

ROTATE IN AUTOMATIC EOI MODE (CLEAR)

* ROTATE ON SPECIFIC EOI COMMAND
* SET PRIORITY COMMAND

0

1

0

1 0

0 0

1 1

0

0

1
1 01
0 01

END OF INTERRUPT

AUTOMATIC ROTATION

SPECIFIC ROTATION

* L0 - L2 are used.

0

D7

ESMM

D6

SMM

D5

0

D4

1

D3

P

D2

RR

D1

RIS

D0

1 = POLL COMMAND

0

A0

0

OCW3

1 0 1

0 0 1 1

IR REGNO ACTION ON NEXT
RD PULSE

IS REG
ON NEXT

RD PULSE

READ REGISTER COMMAND

0 = NO POLL COMMAND

0 1 0 1

0 0 1 1

RESET
NO ACTION SPECIAL

MASK

SET
SPECIAL

MASK

SPECIAL MASK MODE

READ READ

NO OPERATION

Application Note 109



7

D2 - ADI: Call Address Interval (for 8080/8085 use only). If
using the 82C59A in an 80C86/88 based system, the value
of this bit can be either a 0 or 1.

0: The address interval generated by the 82C59A is 8
bytes. This option provides compatibility with the RST
interrupt vectoring in 8080/8085 systems since the
vector locations are 8 bytes apart. This vector will be
combined with the values specified in bits D7 and D6 of
ICW1. The addresses generated are shown in Table 1.

1: The address interval generated by the interrupt controller
will be 4 bytes. This provides the user with a compact
jump table for 8080/8085 systems. The interrupt number is
effectively multiplied by four and combined with bits D7,
D6, and D5 to form the lower byte of the call instruction
generated and sent to the 8080 and 8085. Table 2 shows
how these addresses are generated for the various
interrupt request (IR) levels.

D1 - SNGL:

0: This tells the 82C59A that more than one 82C59A is
being used in the system, and it should expect to receive
ICW3 following ICW2. How the particular 82C59A is
being used in the system will be determined either
through ICW4 for buffered mode, or through the SP/EN
pin for non-buffered mode operation.

1: Tells the 82C59A that it is being used alone in the
system. Therefore, there will be no need to issue ICW3
to the device.

D0 - IC4: Specifies to the 82C59A whether or not it can
expect to receive ICW4. If this device is being used in an
80C86/80C88 system, ICW4 must be issued.

0: ICW4 will not be issued. Therefore, all of the parameters
associated with ICW4 will default to the zero (0) state.
This should only be done when using the 82C59A in an
8080 or 8085 based system.

1: ICW4 will be issued to the 82C59A.

2.2 ICW2
ICW2 is the second control word that must be sent to the
82C59A. This byte is used in one of two ways by the
82C59A, depending on whether it is being used in an
8080/85 or an 80C86/88 based system.

When used in conjunction with the 8080/85 microprocessor,
the value given to this register is taken as being the high byte
of the address in the CALL instruction sent to the CPU.

In an 80C86- or 80C88-based system, ICW2 is used to send
the processor an interrupt vector. This vector is formed by
taking the value of bits D7 through D3 and combining them
with the interrupt request level to get an eight bit number.
The processor will multiply this number by four and go to that
absolute location in memory to find a starting address for the
interrupt service routine corresponding to the interrupt
request.

For example, if we set ICW2 to “00011000” and an interrupt
is recognized on IR1, the vector sent to the 80C86(80C88)
will be 00011001 (19H). The processor will then look to the
memory location 64H to find the starting address of the
corresponding interrupt service routine. It is the
responsibility of the software to provide this address in the
interrupt table.

2.3 ICW3
ICW3 is only issued when the SNGL bit in ICW1 has been
set to zero. If not set, the next word written to the 82C59A
will be interpreted as ICW4 if A0 = 1 and IC4 from ICW4 was
set to one, or it could see it as one of the Operation
Command Words based upon the state of the A0 line.

Like ICW2, this control word can be interpreted in two ways
by the 82C59A. However the interpretation of this word
depends on whether the 82C59A is being used as a
“master” or “slave” in the system. The definition of the
particular device’s role in the system is assigned through

TABLE 1. ADDRESS INTERVAL (8 BYTES)

D7 D6 D5 D4 D3 D2 D1 D0

A7 A6 1 1 1 0 0 0 IR7

A7 A6 1 1 0 0 0 0 IR6

A7 A6 1 0 1 0 0 0 IR5

A7 A6 1 0 0 0 0 0 IR4

A7 A6 0 1 1 0 0 0 IR3

A7 A6 0 1 0 0 0 0 IR2

A7 A6 0 0 1 0 0 0 IR1

A7 A6 0 0 0 0 0 0 IR0

TABLE 2. ADDRESS INTERVAL (4 BYTES)

D7 D6 D5 D4 D3 D2 D1 D0

A7 A6 A5 1 1 1 0 0 IR7

A7 A6 A5 1 1 0 0 0 IR6

A7 A6 A5 1 0 1 0 0 IR5

A7 A6 A5 1 0 0 0 0 IR4

A7 A6 A5 0 1 1 0 0 IR3

A7 A6 A5 0 1 0 0 0 IR2

A7 A6 A5 0 0 1 0 0 IR1

A7 A6 A5 0 0 0 0 0 IR0

D7 D6 D5 D4 D3 D2 D1 D0

A15 A14 A13 A12 A11 A10 A9 A8

FIGURE 7. ICW2 FORMAT

D7 D6 D5 D4 D3 D2 D1 D0

A7 A6 A5 A4 A3 X X X

FIGURE 8. ICW2 FORMAT (80C86 MODE)

Application Note 109



8

ICW4 (which will be discussed later), or through the state of
the SP/EN pin (pin 16).

82C59A AS A MASTER

If a given 82C59A is being used as a master, the eight (8)
bits in this command word are used to indicate which of the
IR lines are being driven by a slave 82C59A.

D7 THRU D0:

0: The corresponding IR line to this bit is not being driven
by a slave 82C59A. This line can however then be
connected to the interrupt output of another interrupting
device such as a UART. If there are unused bits in this
byte because not all eight of the IR lines are used, set
them to zero.

1: The corresponding IR line to this bit is being driven by a
slave 82C59A.

The bits in this command word are directly related to the IR
lines. For example, to tell the 82C59A that there is a slave
device connected to IR5 (pin 23), bit D5 of the command
word should be set to a one (1).

82C59A AS A SLAVE DEVICE

When the device is being used as a slave device, we must
use ICW3 to inform itself as to which IR line it will be
connected to in the master. Therefore, only the three (3)
least significant bits of ICW3 will be used to specify this
value.

These bits are coded as follows:

For example, if the INT output of a “slave” 82C59A is
connected to the input pin IR5 on the “master” 82C59A,
ICW3 of the “slave” would be programmed with the value

00000101b, or 05H. This informs the “slave” as to which
priority level it holds with the “master”.

D7 thru D3: These bits must be set to zeros (0) for proper
operation of the device.

2.4 ICW4
This control register is written to only when the IC4 bit is set
in ICW1. The purpose of this command word is to set up the
82C59A to operate in a mode other than the default mode of
operation. The default mode of operation is the same as if a
value of 00H were to be written to ICW4 (i.e. all bits set to
zero).

D7 thru D5: These bits must be set to zero for proper
operation.

D4-SFNM: This bit is used in the selection of the Special
Fully Nested Mode (SFNM) of operation. This mode should
only be used when multiple 82C59As are cascaded in a
system. It needs only to be programmed in the Master
82C59A in the system.

0: Special Fully Nested Mode is not selected.

1: Special Fully Nested Mode is selected.

D3 - BUF: This bit tells the 82C59A whether or not the
outputs from the data pins (D0 - D7) will be buffered. If they
are buffered, this bit will cause the SP/EN pin to become an
output signal that can be used to control the “enable” pin on
a buffering device(s).

0: The device will be used in a non-buffered mode.
Therefore, (1) the M/S bit in ICW4 is a don’t care, and (2)
the SP/EN pin becomes an input pin telling the device if it
is being used as a master (pin 16 = High) or a slave (pin
16 = low). For systems using a single 82C59A, the
SP/EN input should be tied high.

1: The device is used in buffered mode. An enable output
signal will be generated on pin 16, and the M/S bit will be

D7 D6 D5 D4 D3 D2 D1 D0

S7 S6 S5 S4 S3 S2 S1 S0

FIGURE 9. ICW3 FORMAT (MASTER)

D7 D6 D5 D4 D3 D2 D1 D0

0 0 0 0 0 ID2 ID1 ID0

FIGURE 10. ICW3 FORMAT (SLAVE)

TABLE 3. SLAVE IDENTIFICATION WITH ICW3

MASTER IR NUMBER ID2 ID1 ID0

IR7 1 1 1

IR6 1 1 0

IR5 1 0 1

IR4 1 0 0

IR3 0 1 1

IR2 0 1 0

IR1 0 0 1

IR0 0 0 0

FIGURE 11. ICW4 FORMAT

0

D7

0

D6

0

D5

SFNM

D4

BUF

D3

M/S

D2

AEOI

D1

µPM

D0

1 = 8086/8088 MODE
0 = MCS-80/85 MODE

1 = AUTO EOI
0 = NORMAL EOI

1

A0

0 X

1 0

1 1

1 = SPECIAL FULLY

0 = NOT SPECIAL FULLY
NESTED MODE

NESTED MODE

- NON BUFFERED MODE

- BUFFERED MODE/SLAVE

- BUFFERED MODE/MASTER

Application Note 109



9

used for determining whether the particular 82C59A is a
“master” or a “slave”.

D2 - M/S: This bit is of significance only when the BUF bit is
set (BUF =1). The purpose of this bit is to determine whether
the particular 82C59A is being used as a “master” or a
“slave” in the target system.

0: The 82C59A is being used as slave.

1: The 82C59A is the master interrupt controller in the
system.

D1 - AEOI: This bit is used to tell the 82C59A to
automatically perform a non-specific End-of-Interrupt on the
trailing edge of the last Interrupt Acknowledge pulse. Users
should note that when this is selected, the nested priority
interrupt structure is lost.

0: Automatic End-of-Interrupt will not be generated.

1: Automatic End-of-Interrupt will be generated on the
trailing edge of the last Interrupt Acknowledge pulse.

D0 - µPM: This bit tells the Interrupt Controller which
microprocessor is being used in the system. An 8080/8085,
or an 80C86/80C88.

0: The 82C59A will be used in an 8080/8085 based system.

1: 82C59A to be used in the 80C86/88 mode of operation.

3.0 Operation Command Words
Once the Initialization Command Words, described in the
previous section, have been written to the 82C59A, the
device is ready to accept interrupt requests. While the
82C59A is operating, we have the ability to select various
options that will put the device in different operating modes,
by writing Operation Command Words (OCWs) to the
82C59A. These OCWs can be sent at any time after the
device has been initialized and in any order. These words
can be changed at any time as well. Note: If A0 = 0 and D4
of the command word = 1, the 82C59A will begin the ICW
initialization sequence.

There are three different OCWs for the 82C59A. Each has a
different purpose. The first control word (OCW1) is used for
masking out interrupt lines that are to be inactive or ignored
during operation. OCW2 is used to select from various
priority resolution algorithms in the device. Finally, OCW3 is
used for (1) controlling the Special Mask Mode, and (2)
telling the 82C59A which Register will be read on the next
RD pulse; the ISR (In-service Register) or the IRR (Interrupt
Request Register).

3.1 OCW1
This control word is used to set or clear the masking of the
eight (8) interrupt lines input to the 82C59A. This control
word performs this function via the Interrupt Mask Register
(IMR). In it’s initial state, the value of this register is 00H. In
other words, all of the interrupt lines are enabled. Therefore,

we need only write this control word when we wish to disable
specific interrupt lines.

A direct mapping occurs between the bits in this control word
and the actual interrupt pins on the device. For example bit 7
(D7) controls interrupt line IR7 (pin 25), bit 6 controls IR6,
and so on.

Even though the user can mask off any of the IR lines, any
interrupt occurring during that time will not be lost. The
request for an interrupt is retained in the IRR; therefore when
that IR is unmasked by issuing a new mask value to OCW1,
the interrupt will be generated when it becomes the highest
requesting priority.

D7 THRU D0:

0: When any of the bits in the control word are reset (0), the
corresponding interrupt is enabled.

1: By setting a bit(s) to a one in the control word, the
corresponding interrupt line(s) is disabled.

For example, if the value 34H (00110100b) were written to
OCW1, interrupts would be disabled from being serviced on
lines IR2, IR4, and IR5.

3.2 OCW2
In ICW4 bit D1 was used to specify whether the 82C59A
should wait for an EOI (End of Interrupt) from the CPU, or
generate its own EOI (Automatic EOI). If bit D1 of ICW4 had
been programmed to be zero, OCW2 would be used for
sending the EOI to the 82C59A. Conversely, if this bit had
been set to a one, OCW2 would be used for specifying
whether or not the 82C59A should perform a priority rotation
on the interrupts when the AEOI is detected.

OCW2 has several EOI options. The EOI issued can be
either specific or non-specific. For each of these EOIs, the
user can specify whether or not priority rotation should be
performed.

R, SL, AND EOI:

These three bits are used for specifying how the device
should handle AEOIs, or for issuing one of several different
EOIs. They are programmed as shown in the following table.

D7 D6 D5 D4 D3 D2 D1 D0

R SL EOI 0 0 L2 L1 L0

FIGURE 13.

FIGURE 12. OCW1 FORMAT

M7

D7

M6

D6

M5

D5

M4

D4

M3

D3

M2

D2

M1

D1

M0

D0

1 = MASK SET

1

A0

0 = MASK RESET

INTERRUPT MASK

Application Note 109



10

L2, L1, AND L0:

These three bits of the control word are used in conjunction
with the issuance of specific EOIs or when specifically
establishing a different priority structure. The bits tell the
82C59A which interrupt level is to be acted upon. Therefore,
the software needs to know which interrupt is being serviced
by the 82C59A

3.3 OCW3
There are two main functions that OCW3 controls: (1)
Interrupt Status, and (2) Interrupt Masking. Interrupt status
can be checked by looking at the ISR or IRR registers, or by
issuing a Poll Command to manually identify the highest
priority interrupt requesting service.

D7: Must be set to zero for proper operation of the 82C59A.

D6 - ESMM: Enable Special Mask Mode - The ESMM bit
when enabled allows the SMM bit to set or clear the Special
Mask Mode. When disabled this bit causes the SMM bit to
have no effect on the 82C59A.

0: Disables the effect of the SMM bit.

1: Enable the SMM bit to control the Special Mask Mode.

D5 - SMM: Special Mask Mode - The SMM bit is used to
enable or disable the Special Mask Mode. This bit will only
affect the 82C59A when the ESMM bit is set to 1.

0: Disable the Special Mask Mode.

1: Put the 82C59A into the Special Mask Mode.

D4, D3: These bits are used to differentiate between
OCW2, OCW3, and ICW1. To properly select OCW3, D4
must be set to zero and D3 must be set to one.

D2 - P: Poll Command - This bit is used to issue the poll
command to the 82C59A. The next read of the 82C59A will
cause a poll word to be returned which tells if an interrupt is
pending, and if so, which is the highest requesting level.

NOTE: The poll command must be issued each time the poll opera-
tion is desired.

0: No poll command issued to the 82C59A.

1: Issue the poll command.

D1 - RR: Read Register - This bit is used to execute the
“read register” command. When this bit is set, the 82C59A
will look at the RIS bit to determine whether the ISR or IRR
register is to be read. When issuing this command, the next
instruction executed by the CPU should be an input from this
same port to get the contents of the specified register.

0: No “Read Register” command will be performed.

1: The next input instruction by the CPU will read either
the contents of the ISR or the IRR as specified by the
RIS bit.

D0 - RIS: This bit is used in conjunction with the RR bit to
select which register is to be read when the “Read Register”
command is issued.

0: The next input instruction will read the contents of the
Interrupt Request Register (IRR).

1: The next input instruction will read the contents of the In-
Service Register (ISR).

The two registers that can be accessed through the Read
Register command are used to determine which interrupts
are requesting service, and which one(s) are currently being
serviced.

The IRR bits get set when corresponding Interrupt requests
are received. For instance, when IR4 is detected, bit D4 of
the IRR will get set. When an interrupt acknowledge comes
back from the CPU, the priority resolution logic will
determine which interrupt request will be serviced. The
corresponding bit in the In-service Register (ISR) will then
be set. Clearing of the correct bits in the ISR occurs through
out use of the AEOI, or by issuing an EOI to the device.

TABLE 4. ROTATE AND EOI MODES

R SL EOI

0 0 1 Non-specific EOI command

0 1 1 *Specific EOI command

1 0 1 Rotate on non-specific EOI command

1 0 0 Rotate in Automatic EOI mode (set)

0 0 0 Rotate in Automatic EOI mode (clear)

1 1 1 *Rotate on specific EOI command

1 1 0 *Set priority command

0 1 0 No operation

* L0 - L2 are used.

TABLE 5. INTERRUPT LEVEL TO ACT UPON

L2 L1 L0

0 0 0 IR level 0

0 0 1 IR level 1

0 1 0 IR level 2

0 1 1 IR level 3

1 0 0 IR level 4

1 0 1 IR level 5

1 1 0 IR level 6

1 1 1 IR level 7

D7 D6 D5 D4 D3 D2 D1 D0

0 ESMM SMM 0 1 P RR RIS

FIGURE 14.

Application Note 109



11

4.0 Addressing the 82C59A
There are two factors that must be taken into account when
addressing the 82C59A in a system. To begin with, the
82C59A is accessed only when the CS pin (chip select) sees
an active signal (low). This signal is generated using control
circuitry in the system. Secondly, the various registers within
the 82C59A are selected based upon the state of the A0
(address pin) as well as specific bits in the command words
(i.e. for ICW1, OCW2, and OCW3 A0 must be a zero).

The circuit in Figure 15 shows that the CS signal is
generated using an HPL-82C338 Programmable Chip Select
Decoder (PCSD). This device is being used as a 3-to-8
decoder. Note that the G1 input is active high and G2 thru
G5 have been programmed to be active low. The A, B, and C
inputs to the 82C338 correspond to address lines AD2, AD3,
and AD4 respectively, from the 80C88. The A0 input to the
82C59A is also taken from the CPUs address bus: AD0 is

used. It should be noted that address line AD1 from the
80C88 is not being used in the addressing of this particular
peripheral. This is done to allow other peripheral devices
that require two address inputs for internal register selection,
to use address lines AD0 and AD1 from the processor.

Because the AD1 address line from the 80C88 is not being
used, the 82C59A will be addressed regardless of whether
AD1 is high or low (1 or 0). The remainder of the address
lines from the 80C88 can either be a zero or one when
addressing the 82C59A. For the examples to be presented,
it can be assumed that all unused address lines will be set to
zero when addressing the 82C59A.

In Figure 15, output Y6 from the HPL-82C338 is being used
as the CS input to the 82C59A. This line is enabled when the
inputs on A, B, and C are: A = 0, B = 1, and C = 1.
Combining this with the A0 input to the 82C59A, we get the
addresses 18H and 19H for accessing the 82C59A.

FIGURE 15. ADDRESSING THE 82C59A

80C88 DATA BUS

INTA
RD
WR

INTR

ALE
IO/M

IR3
IR2
IR1
IR0

IR4
IR5
IR6
IR7

SP/EN
A0

CS

INTA
RD
WR
INTR

VCC

2KΩ

D0 - D7

G4
G5
C
B

G3
G2
G1
ALE Y6

A

82C338

82C59A

80C88 DATA BUS AD0AD2AD3AD4

GND

80C88
CONTROL

BUS

Application Note 109



12

5.0 Programming the 82C59A
As described earlier, there are two different types of
command words that are used for controlling 82C59A
operation; the Initialization Command Words (ICWs) and the
Operation Command Words (OCWs). To properly program
the 82C59A, it is essential that the ICWs be written first.
When writing the ICWs to the 82C59A, they must be written
in the following sequence:

1. Write ICW1 to the 82C59A, A0 = 0.

2. Write ICW2 to the 82C59A, A0 = 1.

3. If using cascaded 82C59As in system, write ICW3 to the
82C59A, A0 = 1.

4. If IC4 bit was set in ICW1, write ICW4 to the 82C59A.

NOTE: When using multiple 82C59As in the system (cascaded),
each one must be initialized following the above sequence.

Once the 82C59A(s) has been configured through the ICWs,
the OCWs can be used to select from the various operation
mode options. These include: masking of interrupt lines,

selection of priority rotation, issuance of EOIs, reading of the
ISR and/or IRR etc. These OCWs can be written to the
82C59A at any time during operation of the 82C59A. The
various command words are identified by the state of
selected bits in the words, rather than by the sequence that
they are written to the 82C59A; as with the ICWs. Therefore,
it is imperative that the fixed bit values in the command
words be written as such to insure proper operation of the
device(s).

5.1 Example 1: Single 82C59A
In Example 1, we are using a single 82C59A in a system to
handle the interrupts caused by an 82C52 Programmable
UART. The system is driven using a 80C86 microprocessor.
The system configuration is shown in Figure 16.

Interrupts are initiated by the 82C52 anytime it receives data
on its Serial Data in pin (SDI), or when it is ready to transmit
more data via its Serial Data Out pin (SDO).

FIGURE 16. EXAMPLE 1: SINGLE 82C59A

AD0

IR2

A0

CS

D0 - D7

C
B
A Y6

DECODER

82C59A

80C86
ADDRESS

BUS

AD2
AD3
AD4

AD0

Y4

AD1

80C86
DATA
BUS

INTR

A0
CS

82C52

A1

DR

DSR

D0 - D7

Application Note 109



13

5.2 Example 2: Cascaded 82C59As
Example 2 illustrates how we can use multiple 82C59As in
Cascade Mode. Figure 17 shows the interconnections
between the master and slave interrupt controllers. In this

example, only one interrupt can occur. This is generated by
the 82C52 UART. Except for the fact that this system is
configured with a Master-Slave interrupt scheme, it is the
same as that in Example 1.

FIGURE 17. EXAMPLE 2: CASCADED 82C59As

C
B
A Y6

DECODER

Y5
AD2
AD3
AD4

Y0

IR5

SP/EN

A0

CS

INTA

RD
WR
INT

GND

2kΩ

AD0AD0

VCC

2 1 0
CAS

MASTER
82C59A

INTA

IR2

SP/EN

A0

CS

INTA

RD
WR
INT

0 1 2
CAS

SLAVE
82C59A

A0

82C52

INTR

DR

DSR

CS

A1

AD0

AD1

Application Note 109



14

All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time with-
out notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see web site http://www.intersil.com

6.0 Expansion Past 64 Interrupts
In some instances, it may be desirable to expand the number
of available interrupts in a system past the maximum of 64
imposed when using cascaded 82C59As. The easiest way
to accomplish this is through the use of the Poll command
with the 82C59A. Figure 18 illustrates one example of how
this expansion can be accomplished. Notice that we are
using two 3 - to -8 decoders to address up to 16 82C59As.
Selection of which decoder is active takes place using the
OE pin driven by AD5 from the CPU’s address bus.

With this type of interrupt structure, we are not using the INT
and INTA lines from our processor (80C88 for this example).
Because of this, no interrupts will break execution of the

system software. Therefore, it is the task of the software to
poll the various 82C59As in the system to see if any
interrupts are pending. Once it has been established which
interrupt requires servicing, the software can take
appropriate action.

There are disadvantages to using the poll mode for the
systems interrupt structure: (1) the overhead of polling each
of the 82C59As reduces the systems efficiency, and (2)
realtime interrupt servicing cannot be guaranteed.

There are several advantages to using the poll mode in this
manner: (1) there can be more than 64 priority interrupts in
the system, and (2) memory in the system is freed because
no interrupt vector table is required.

FIGURE 18. EXPANDING PAST 64 INTERRUPTS

A, B, C Y0

DECODER

Y1
AD2 - AD4

Y7

OEAD5

A0
CS

82C59A

8

3

IR0-IR7

A, B, C Y0

DECODER

Y1

Y7

OE

3

A0
CS

82C59A

8
IR0-IR7

A0
CS

82C59A

8
IR0-IR7

A0
CS

82C59A

8
IR0-IR7

A0
CS

82C59A

8
IR0-IR7

AD0

Application Note 109



Philips Semiconductors Linear Products Product specification

ADC0803/4-1CMOS 8-bit A/D converters

555August 31, 1994 853-0034 13721

DESCRIPTION
The ADC0803 family is a series of three CMOS 8-bit successive
approximation A/D converters using a resistive ladder and
capacitive array together with an auto-zero comparator. These
converters are designed to operate with microprocessor-controlled
buses using a minimum of external circuitry. The 3-State output data
lines can be connected directly to the data bus.

The differential analog voltage input allows for increased
common-mode rejection and provides a means to adjust the
zero-scale offset. Additionally, the voltage reference input provides a
means of encoding small analog voltages to the full 8 bits of
resolution.

FEATURES
• Compatible with most microprocessors

• Differential inputs

• 3-State outputs

• Logic levels TTL and MOS compatible

• Can be used with internal or external clock

• Analog input range 0V to VCC

• Single 5V supply

• Guaranteed specification with 1MHz clock

PIN CONFIGURATION

1

2

3

4

5

6

7

8

9

10 11

12

13

14

20

19

18

17

16

15

D1
, N PACKAGES

CS

RD

WR

INTR

CLK IN

VIN(+)

VIN(–)

A GND

VREF/2

D GND

VCC

CLK R

D0

D1

D2

D3

D4

D5

D6

D7

TOP VIEW
NOTE:
SOL — Released in large SO package only.

APPLICATIONS
• Transducer-to-microprocessor interface

• Digital thermometer

• Digitally-controlled thermostat

• Microprocessor-based monitoring and control systems

ORDERING INFORMATION
DESCRIPTION TEMPERATURE RANGE ORDER CODE DWG #

20-Pin Plastic Dual In-Line Package (DIP) -40 to +85°C ADC0803/04-1 LCN 0408B

20-Pin Plastic Dual In-Line Package (DIP) 0 to 70°C ADC0803/04-1 CN 0408B

20-Pin Plastic Small Outline (SO) Package 0 to 70°C ADC0803/04-1 CD 1021B

20-Pin Plastic Small Outline (SO) Package -40 to 85°C ADC0803/04-1 LCD 1021B

ABSOLUTE MAXIMUM RATINGS
SYMBOL PARAMETER RATING UNIT

VCC Supply voltage 6.5 V

Logic control input voltages -0.3 to +16 V

All other input voltages
-0.3 to

(VCC +0.3)
V

TA Operating temperature range

ADC0803/04-1 LCD -40 to +85 °C
ADC0803/04-1 LCN -40 to +85 °C
ADC0803/04-1 CD 0 to +70 °C
ADC0803/04-1 CN 0 to +70 °C

TSTG Storage temperature -65 to +150 °C
TSOLD Lead soldering temperature (10 seconds) 300 °C

PD
Maximum power dissipation 
TA=25°C (still air)1

N package 1690 mW

D package 1390 mW

NOTES:
1. Derate above 25°C, at the following rates:  N package at 13.5mW/°C;  D package at 11.1mW/°C



Philips Semiconductors Linear Products Product specification

ADC0803/4-1CMOS 8-bit A/D converters

August 31, 1994 556

BLOCK DIAGRAM

M

VIN (+) VIN (–)
76

+ –

LADDER AND 
DECODER

+

–

AUTO ZERO
COMPARATOR

VREF/2

A GND

9

8

VCC
20

10

D GND

WR

CS

RD

3

1

2

SAR

8–BIT
SHIFT REGISTER

INTR
FF

CLOCK

OUTPUT
LATCHES

LE OE

D7 (MSB) (11)

D6 (12)
D5 (13)
D4 (14)

D3 (15)
D2 (16)
D1 (17)
D0 (LSB) (18)

INTR CLK IN CLK R

S

R Q

5 4 19



Philips Semiconductors Linear Products Product specification

ADC0803/4-1CMOS 8-bit A/D converters

August 31, 1994 557

DC ELECTRICAL CHARACTERISTICS
VCC = 5.0V, fCLK = 1MHz, TMIN ≤ TA ≤ TMAX, unless otherwise specified.

SYMBOL PARAMETER TEST CONDITIONS
ADC0803/4

UNITSYMBOL PARAMETER TEST CONDITIONS
Min Typ Max

UNIT

ADC0803 relative accuracy error (adjusted) Full-Scale adjusted 0.50 LSB

ADC0804 relative accuracy error (unadjusted) VREF/2 = 2.500VDC 1 LSB

RIN VREF/2 input resistance3 VCC = 0V2 400 680 Ω

Analog input voltage range3 –0.05 VCC+0.05 V

DC common-mode error
Over analog input voltage

range
1/16 1/8 LSB

Power supply sensitivity VCC = 5V ±10%1 1/16 LSB

Control inputs

VIH Logical “1” input voltage VCC = 5.25VDC 2.0 15 VDC

VIL Logical “0” input voltage VCC = 4.75VDC 0.8 VDC

IIH Logical “1” input current VIN = 5VDC 0.005 1 µADC

IIL Logical “0” input current VIN = 0VDC –1 –0.005 µADC

Clock in and clock R

VT+ Clock in positive-going threshold voltage 2.7 3.1 3.5 VDC

VT– Clock in negative-going threshold voltage 1.5 1.8 2.1 VDC

VH Clock in hysteresis (VT+)–(VT–) 0.6 1.3 2.0 VDC

VOL Logical “0” clock R output voltage IOL = 360µA, VCC = 4.75VDC 0.4 VDC

VOH Logical “1” clock R output voltage IOH = –360µA, VCC = 4.75VDC 2.4 VDC

Data output and INTR

VOL Logical “0” output voltage

Data outputs IOL = 1.6mA, VCC = 4.75VDC 0.4 VDC

INTR outputs IOL = 1.0mA, VCC = 4.75VDC 0.4 VDC

VOH Logical “1” output voltage
IOH = –360µA, VCC = 4.75VDC 2.4

VDCVOH Logical “1” output voltage
IOH = –10µA, VCC = 4.75VDC 4.5

VDC

IOZL 3-state output leakage VOUT = 0VDC, CS = logical “1” –3 µADC

IOZH 3-state output leakage VOUT = 5VDC, CS = logical “1” 3 µADC

ISC +Output short-circuit current VOUT = 0V, TA = 25°C 4.5 12 mADC

ISC –Output short-circuit current VOUT = VCC, TA = 25°C 9.0 30 mADC

ICC Power supply current
fCLK = 1MHz, VREF/2 = OPEN,

CS = Logical “1”, TA = 25°C 3.0 3.5 mA

NOTES:
1. Analog inputs must remain within the range: –0.05 ≤ VIN ≤ VCC + 0.05V.
2. See typical performance characteristics for input resistance at VCC = 5V.
3. VREF/2 and VIN must be applied after the VCC has been turned on to prevent the possibility of latching.



Philips Semiconductors Linear Products Product specification

ADC0803/4-1CMOS 8-bit A/D converters

August 31, 1994 558

AC ELECTRICAL CHARACTERISTICS

SYMBOL PARAMETER TO FROM TEST CONDITIONS
ADC0803/4

UNITSYMBOL PARAMETER TO FROM TEST CONDITIONS
Min Typ Max

UNIT

Conversion time fCLK=1MHz1 66 73 µs

fCLK Clock frequency1 0.1 1.0 3.0 MHz

Clock duty cycle1 40 60 %

CR Free-running conversion rate
CS=0, fCLK=1MHz
INTR tied to WR

13690 conv/s

tW(WR)L Start pulse width CS=0 30 ns

tACC Access time Output RD CS=0, CL=100pF 75 100 ns

t1H, t0H 3-State control Output RD
CL=10pF, RL=10kΩ

See 3-State test circuit
70 100 ns

tW1, tR1 INTR delay INTR
WD

 or RD
100 150 ns

CIN Logic input=capacitance 5 7.5 pF

COUT 3-State output capacitance 5 7.5 pF

NOTES:
1. Accuracy is guaranteed at fCLK=1MHz. Accuracy may degrade at higher clock frequencies.

FUNCTIONAL DESCRIPTION
These devices operate on the Successive Approximation principle.
Analog switches are closed sequentially by successive
approximation logic until the input to the auto-zero comparator
[ VIN(+)-VIN(-) ] matches the voltage from the decoder. After all bits
are tested and determined, the 8-bit binary code corresponding to
the input voltage is transferred to an output latch. Conversion begins
with the arrival of a pulse at the WR input if the CS input is low. On
the High-to-Low transition of the signal at the WR or the CS input,
the SAR is initialized, the shift register is reset, and the INTR output
is set high. The A/D will remain in the reset state as long as the CS
and WR inputs remain low. Conversion will start from one to eight
clock periods after one or both of these inputs makes a Low-to-High
transition. After the conversion is complete, the INTR pin will make a
High-to-Low transition. This can be used to interrupt a processor, or
otherwise signal the availability of a new conversion result. A read
(RD) operation (with CS low) will clear the INTR line and enable the
output latches. The device may be run in the free-running mode as
described later. A conversion in progress can be interrupted by
issuing another start command.

Digital Control Inputs
The digital control inputs (CS, WR, RD) are compatible with
standard TTL logic voltage levels. The required signals at these
inputs correspond to Chip Select, START Conversion, and Output
Enable control signals, respectively. They are active-Low for easy
interface to microprocessor and microcontroller control buses. For
applications not using microprocessors, the CS input (Pin 1) can be
grounded and the A/D START function is achieved by a
negative-going pulse to the WR input (Pin 3). The Output Enable
function is achieved by a logic low signal at the RD input (Pin 2),
which may be grounded to constantly have the latest conversion
present at the output.

ANALOG OPERATION

Analog Input Current
The analog comparisons are performed by a capacitive charge
summing circuit. The input capacitor is switched between VIN(+)4
and VIN(-), while reference capacitors are switched between taps on
the reference voltage divider string. The net charge corresponds to
the weighted difference between the input and the most recent total
value set by the successive approximation register.

The internal switching action causes displacement currents to flow
at the analog inputs. The voltage on the on-chip capacitance is
switched through the analog differential input voltage, resulting in
proportional currents entering the VIN(+) input and leaving the VIN(-)
input. These transient currents occur at the leading edge of the
internal clock pulses. They decay rapidly so do not inherently cause
errors as the on-chip comparator is strobed at the end of the clock
period.

Input Bypass Capacitors and Source Resistance
Bypass capacitors at the input will average the charges mentioned
above, causing a DC and an AC current to flow through the output
resistance of the analog signal sources. This charge pumping action
is worse for continuous conversions with the VIN(+) input at full
scale. This current can be a few microamps, so bypass capacitors
should NOT be used at the analog inputs of the VREF/2 input for
high resistance sources (> 1kΩ). If input bypass capacitors are
desired for noise filtering and a high source resistance is desired to
minimize capacitor size, detrimental effects of the voltage drop
across the input resistance can be eliminated by adjusting the full
scale with both the input resistance and the input bypass capacitor
in place. This is possible because the magnitude of the input current
is a precise linear function of the differential voltage.



Philips Semiconductors Linear Products Product specification

ADC0803/4-1CMOS 8-bit A/D converters

August 31, 1994 559

Large values of source resistance where an input bypass capacitor
is not used will not cause errors as the input currents settle out prior
to the comparison time. If a low pass filter is required in the system,
use a low valued series resistor (< 1kΩ) for a passive RC section or
add an op amp active filter (low pass). For applications with source
resistances at or below 1kΩ, a 0.1µF bypass capacitor at the inputs
will prevent pickup due to series lead inductance or a long wire. A
100Ω series resistor can be used to isolate this capacitor (both the
resistor and capacitor should be placed out of the feedback loop)
from the output of the op amp, if used.

Analog Differential Voltage Inputs and Common-
Mode Rejection
These A/D converters have additional flexibility due to the analog
differential voltage input. The VIN(-) input (Pin 7) can be used to
subtract a fixed voltage from the input reading (tare correction). This
is also useful in a 4/20mA current loop conversion. Common-mode
noise can also be reduced by the use of the differential input.

The time interval between sampling VIN(+) and VIN(-) is 4.5 clock
periods. The maximum error due to this time difference is given by:

V(max)=(VP) (2fCM) (4.5/fCLK),

where:

V=error voltage due to sampling delay

VP=peak value of common-mode voltage

fCM=common mode frequency

For example, with a 60Hz common-mode frequency, fcm, and a
1MHz A/D clock, FCLK, keeping this error to 1/4 LSB (about 5mV)
would allow a common-mode voltage, VP, which is given by:

VP �
[V(max) (fCLK)

(2fCM)(4.5)

or

VP �
(5 x 10�3) (104)
(6.28) (60) (4.5)

� 2.95V

The allowed range of analog input voltages usually places more
severe restrictions on input common-mode voltage levels than this,
however.

An analog input span less than the full 5V capability of the device,
together with a relatively large zero offset, can be easily handled by
use of the differential input. (See Reference Voltage Span Adjust).

Noise and Stray Pickup
The leads of the analog inputs (Pins 6 and 7) should be kept as
short as possible to minimize input noise coupling and stray signal
pick-up. Both EMI and undesired digital signal coupling to these
inputs can cause system errors. The source resistance for these
inputs should generally be below 5kΩ to help avoid undesired noise
pickup. Input bypass capacitors at the analog inputs can create
errors as described previously. Full scale adjustment with any input
bypass capacitors in place will eliminate these errors.

Reference Voltage
For application flexibility, these A/D converters have been designed
to accommodate fixed reference voltages of 5V to Pin 20 or 2.5V to
Pin 9, or an adjusted reference voltage at Pin 9. The reference can
be set by forcing it at VREF/2 input, or can be determined by the
supply voltage (Pin 20). Figure 1 indicates how this is accomplished.

Reference Voltage Span Adjust
Note that the Pin 9 (VREF/2) voltage is either 1/2 the voltage applied
to the VCC supply pin, or is equal to the voltage which is externally
forced at the VREF/2 pin. In addition to allowing for flexible
references and full span voltages, this also allows for a ratiometric
voltage reference. The internal gain of the VREF/2 input is 2, making
the full-scale differential input voltage twice the voltage at Pin 9.

For example, a dynamic voltage range of the analog input voltage
that extends from 0 to 4V gives a span of 4V (4-0), so the VREF/2
voltage can be made equal to 2V (half of the 4V span) and full scale
output would correspond to 4V at the input.

On the other hand, if the dynamic input voltage had a range of 0.5 to
3.5V, the span or dynamic input range is 3V (3.5-0.5). To encode
this 3V span with 0.5V yielding a code of zero, the minimum
expected input (0.5V, in this case) is applied to the VIN(-) pin to
account for the offset, and the VREF/2 pin is set to 1/2 the 3V span,
or 1.5V. The A/D converter will now encode the VIN(+) signal
between 0.5 and 3.5V with 0.5V at the input corresponding to a code
of zero and 3.5V at the input producing a full scale output code. The
full 8 bits of resolution are thus applied over this reduced input
voltage range. The required connections are shown in Figure 2.

Operating Mode
These converters can be operated in two modes:

1) absolute mode
2) ratiometric mode

In absolute mode applications, both the initial accuracy and the
temperature stability of the reference voltage are important factors in
the accuracy of the conversion. For VREF/2 voltages of 2.5V, initial
errors of ±10mV will cause conversion errors of ±1 LSB due to the
gain of 2 at the VREF/2 input. In reduced span applications, the initial
value and stability of the VREF/2 input voltage become even more
important as the same error is a larger percentage of the VREF/2
nominal value. See Figure 3.

In ratiometric converter applications, the magnitude of the reference
voltage is a factor in both the output of the source transducer and
the output of the A/D converter, and, therefore, cancels out in the
final digital code. See Figure 4.

Generally, the reference voltage will require an initial adjustment.
Errors due to an improper reference voltage value appear as
full-scale errors in the A/D transfer function.

ERRORS AND INPUT SPAN ADJUSTMENTS
There are many sources of error in any data converter, some of
which can be adjusted out. Inherent errors, such as relative
accuracy, cannot be eliminated, but such errors as full-scale and
zero scale offset errors can be eliminated quite easily. See Figure 2.

Zero Scale Error
Zero scale error of an A/D is the difference of potential between the
ideal 1/2 LSB value (9.8mV for VREF/2=2.500V) and that input
voltage which just causes an output transition from code 0000 0000
to a code of 0000 0001.

If the minimum input value is not ground potential, a zero offset can
be made. The converter can be made to output a digital code of
0000 0000 for the minimum expected input voltage by biasing the
VIN(-) input to that minimum value expected at the VIN(-) input to
that minimum value expected at the VIN(+) input. This uses the



Philips Semiconductors Linear Products Product specification

ADC0803/4-1CMOS 8-bit A/D converters

August 31, 1994 560

differential mode of the converter. Any offset adjustment should be
done prior to full scale adjustment.

Full Scale Adjustment
Full scale gain is adjusted by applying any desired offset voltage to
VIN(-), then applying the VIN(+) a voltage that is 1-1/2 LSB less than
the desired analog full-scale voltage range and then adjusting the
magnitude of VREF/2 input voltage (or the VCC supply if there is no
VREF/2 input connection) for a digital output code which just
changes from 1111 1110 to 1111 1111. The ideal VIN(+) voltage for
this full-scale adjustment is given by:

VIN( � ) � VIN(�)� 1.5 x
VMAX� VMIN

255

where:

VMAX=high end of analog input range (ground referenced)

VMIN=low end (zero offset) of analog input (ground referenced)

CLOCKING OPTION
The clock signal for these A/Ds can be derived from external
sources, such as a system clock, or self-clocking can be
accomplished by adding an external resistor and capacitor, as
shown in Figure 6.

Heavy capacitive or DC loading of the CLK R pin should be avoided
as this will disturb normal converter operation. Loads less than 50pF
are allowed. This permits driving up to seven A/D converter CLK IN
pins of this family from a single CLK R pin of one converter. For
larger loading of the clock line, a CMOS or low power TTL buffer or
PNP input logic should be used to minimize the loading on the CLK
R pin.

Restart During a Conversion
A conversion in process can be halted and a new conversion began
by bringing the CS and WR inputs low and allowing at least one of
them to go high again. The output data latch is not updated if the
conversion in progress is not completed; the data from the
previously completed conversion will remain in the output data
latches until a subsequent conversion is completed.

Continuous Conversion
To provide continuous conversion of input data, the CS and RD
inputs are grounded and INTR output is tied to the WR input. This
INTR/WR connection should be momentarily forced to a logic low
upon power-up to insure circuit operation. See Figure 5 for one way
to accomplish this.

DRIVING THE DATA BUS
This CMOS A/D converter, like MOS microprocessors and
memories, will require a bus driver when the total capacitance of the
data bus gets large. Other circuitry tied to the data bus will add to
the total capacitive loading, even in the high impedance mode.

There are alternatives in handling this problem. The capacitive
loading of the data bus slows down the response time, although DC
specifications are still met. For systems with a relatively low CPU
clock frequency, more time is available in which to establish proper
logic levels on the bus, allowing higher capacitive loads to be driven
(see Typical Performance Characteristics).

At higher CPU clock frequencies, time can be extended for I/O
reads (and/or writes) by inserting wait states (8880) or using
clock-extending circuits (6800, 8035).

Finally, if time is critical and capacitive loading is high, external bus
drivers must be used. These can be 3-State buffers (low power
Schottky is recommended, such as the N74LS240 series) or special
higher current drive products designed as bus drivers. High current
bipolar bus drivers with PNP inputs are recommended as the PNP
input offers low loading of the A/D output, allowing better response
time.

POWER SUPPLIES
Noise spikes on the VCC line can cause conversion errors as the
internal comparator will respond to them. A low inductance filter
capacitor should be used close to the converter VCC pin and values
of 1µF or greater are recommended. A separate 5V regulator for the
converter (and other 5V linear circuitry) will greatly reduce digital
noise on the VCC supply and the attendant problems.

WIRING AND LAYOUT PRECAUTIONS
Digital wire-wrap sockets and connections are not satisfactory for
breadboarding this (or any) A/D converter. Sockets on PC boards
can be used. All logic signal wires and leads should be grouped or
kept as far as possible from the analog signal leads. Single wire
analog input leads may pick up undesired hum and noise, requiring
the use of shielded leads to the analog inputs in many applications.

A single-point analog ground separate from the logic or digital
ground points should be used. The power supply bypass capacitor
and the self-clocking capacitor, if used, should be returned to digital
ground. Any VREF/2 bypass capacitor, analog input filter capacitors,
and any input shielding should be returned to the analog ground
point. Proper grounding will minimize zero-scale errors which are
present in every code. Zero-scale errors can usually be traced to
improper board layout and wiring.

APPLICATIONS

Microprocessor Interfacing
This family of A/D converters was designed for easy microprocessor
interfacing. These converters can be memory mapped with
appropriate memory address decoding for CS (read) input. The
active-Low write pulse from the processor is then connected to the
WR input of the A/D converter, while the processor active-Low read
pulse is fed to the converter RD input to read the converted data. If
the clock signal is derived from the microprocessor system clock,
the designer/programmer should be sure that there is no attempt to
read the converter until 74 converter clock pulses after the start
pulse goes high. Alternatively, the INTR pin may be used to interrupt
the processor to cause reading of the converted data. Of course, the
converter can be connected and addressed as a peripheral (in I/O
space), as shown in Figure 7. A bus driver should be used as a
buffer to the A/D output in large microprocessor systems where the
data leaves the PC board and/or must drive capacitive loads in
excess of 100pF. See Figure 9.

Interfacing the SCN8048 microcomputer family is pretty simple, as
shown in Figure 8. Since the SCN8048 family has 24 I/O lines, one
of these (shown here as bit 0 or port 1) can be used as the chip
select signal to the converter, eliminating the need for an address



Philips Semiconductors Linear Products Product specification

ADC0803/4-1CMOS 8-bit A/D converters

August 31, 1994 561

decoder. The RD and WR signals are generated by reading from
and writing to a dummy address.

Digitizing a Transducer Interface Output

Circuit Description
Figure 10 shows an example of digitizing transducer interface output
voltage. In this case, the transducer interface is the NE5521, an
LVDT (Linear Variable Differential Transformer) Signal Conditioner.
The diode at the A/D input is used to insure that the input to the A/D
does not go excessively beyond the supply voltage of the A/D. See
the NE5521 data sheet for a complete description of the operation of
that part.

Circuit Adjustment
To adjust the full scale and zero scale of the A/D, determine the
range of voltages that the transducer interface output will take on.
Set the LVDT core for null and set the Zero Scale Scale Adjust
Potentiometer for a digital output from the A/D of 1000 000. Set the
LVDT core for maximum voltage from the interface and set the Full
Scale Adjust potentiometer so the A/D output is just barely 1111
1111.

A Digital Thermostat

Circuit Description
The schematic of a Digital Thermostat is shown in Figure 11. The
A/D digitizes the output of the LM35, a temperature transducer IC
with an output of 10mV per °C. With VREF/2 set for 2.56V, this 10mV
corresponds to 1/2 LSB and the circuit resolution is 2°C. Reducing
VREF/2 to 1.28 yields a resolution of 1°C. Of course, the lower
VREF/2 is, the more sensitive the A/D will be to noise.

The desired temperature is set by holding either of the set buttons
closed. The SCC80C451 programming could cause the desired
(set) temperature to be displayed while either button is depressed
and for a short time after it is released. At other times the ambient
temperature could be displayed.

The set temperature is stored in an SCN8051 internal register. The
A/D conversion is started by writing anything at all to the A/D with
port pin P10 set high. The desired temperature is compared with the
digitized actual temperature, and the heater is turned on or off by
clearing setting port pin P12. If desired, another port pin could be
used to turn on or off an air conditioner.

The display drivers are NE587s if common anode LED displays are
used. Of course, it is possible to interface to LCD displays as well.



Philips Semiconductors Linear Products Product specification

ADC0803/4-1CMOS 8-bit A/D converters

August 31, 1994 562

TYPICAL PERFORMANCE CHARACTERISTICS

fCLK = 1MHz
CS = H

3.2

3.0

2.8

2.6

2.4

2.2

2.0

1.8
–50 –25 0 25 50 75 100 125

AMBIENT TEMPERATURE (C o)

P
O

W
E

R
 S

U
P

P
LY

 C
U

R
R

E
N

T
 (

m
A

)

10.0
8.0
6.0

4.0

2.0

1.0
0.8
0.6

0.4

0.2

0.1
10 20 40 60 80100 200 400 6001000

CLOCK CAP (pF)

C
LO

C
K

 F
R

Q
 (

M
H

z)

MAX.

TYP.

MIN.

VCC =
5.0V
TA = 25oC

5

4

3

2

1

0

–1

–2

–3

–4

–5
0 1 2 3 4 5

f  
   

   
   

(m
A

)
R

E
F

/2

APPLIED VREF/2 (V)

1.70

1.60

1.50

1.40

1.30
4.50 4.75 5.00 5.25 5.50

–55oC

+25oC

+125oC

LO
G

IC
 IN

P
U

T
 (

V
)

VCC SUPPLY VOLTAGE (V)

–55oC < TA 125oC

VT+

VT

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0
4.50 4.75 5.00 5.25 5.50

C
LK

–I
N

 T
H

R
E

S
H

O
LD

 V
O

L
TA

G
E

 (
V

)

VCC SUPPLY VOLTAGE (V)

18

16

14

12

10

8

6
–50 –25 0 25 50 75 100 125

AMBIENT TEMPERATURE ( oC)

O
U

T
P

U
T

 C
U

R
R

E
N

T
 (

m
A

)

VCC = 5.0V

VO = 2.5V

VO = 0.4V

VCC = 5.0V
VREF/2 =
2.5V

4

3

2

1

0
0 20 40 60 80 100 120

CONVERSION TIME (µs)

E
R

R
O

R
 (

LS
B

)

VCC =
5.0V
TA = 25oC

350

300

250

200

150

100

50

0
0 200 400 600 800 1000

LOAD CAPACITANCE (pF)

D
E

A
LY

 (
ns

)

Power Supply Current vs
Temperature

Clock Frequency vs
Clock Capacitor

Input Current vs
Applied Voltage at V REF/2 Pin

Logic Input Threshold
Voltage vs Supply Voltage

CLK–IN Threshold Voltage vs
Supply Voltage

Output Current vs
Temperature

Full Scale Error vs
Conversion Time

Delay From RD  Falling
Edge to Data Valid vs

Load Capacitance

5.5V

5.0V

4.5V



Philips Semiconductors Linear Products Product specification

ADC0803/4-1CMOS 8-bit A/D converters

August 31, 1994 563

3-STATE TEST CIRCUITS AND WAVEFORMS (ADC0801-1)

tr
90%

50%
10%

t0H

10%

VCC

GND

VOH

GND

RD

DATA
OUTPUTCL

VCC

DATA
OUTPUT

10KCL

CS
RD

tr
90%

50%
10%

t1H

90%

VCC

GND

VOH

GND

RD

DATA
OUTPUT

VCC

10K

CS
RD DATA

OUTPUT

VCC
20ns

10pF

tOH
t1H

10pF

TIMING DIAGRAMS  (All timing is measured from the 50% voltage points)

START
CONVERSION

CS

WR

tWI
tW(WR)L

ACTUAL INTERNAL
STATUS OF THE

CONVERTER
(LAST DATA WAS READ)

(LAST DATA WAS NOT READ)
INTR

INTR

CS

RD

DATA
OUTPUTS

INTR RESET

tRI

tACC
t1H, t0H

THREE–STATE

1 TO 8 X 1/fCLK

”NOT BUSY”

”BUSY”

INTERNAL TC

DATA IS VALID IN
OUTPUT LATCHES

INT ASSERTED

1/2 TCLK

NOTE

NOTE:
Read strobe must occur 8 clock periods (8/fCLK) after assertion of interrupt to guarantee reset of INTR.

Output Enable and Reset INTR



Philips Semiconductors Linear Products Product specification

ADC0803/4-1CMOS 8-bit A/D converters

August 31, 1994 564

NOTE: 
The VREF/2 voltage is either 1/2 the VCC voltage or is that which is forced at Pin 9.

Figure 1.  Internal Reference Design

VREF/2

VCC
20 VREF

R

R

DIGITAL
CIRCUITS

ANALOG
CIRCUITS

8 10

9

Figure 2.  Offsetting the Zero Scale and Adjusting
the Input Range (Span)

(5V)
VREF

FS
OFFSET
ADJUST

ZS
OFFSET
ADJUST

330

0.1µF
TO VREF/2

TO VIN(–)

+

–

VOLTAGE
REFERENCE

VREF/2

a. Fixed Reference b. Fixed Reference Derived from V CC
c. Optional Full

Scale Adjustment

VIN(+)

VIN(–)

VCC

+5V

+

VREF/2

10µF

A/D

A/D

VIN(+)

VIN(–)

VCC

VREF/2

+
10µF

+5V

2k

2k

+5V

2k

2k

100

Figure 3.  Absolute Mode of Operation

A/D

VIN(+)

VIN(–)

VCC

VREF/2

+
10µF

2k

2k

100
FULL SCALE
OPTIONAL

TRANSDUCER

VCC

Figure  4.  Ratiometric Mode of Operation with Optional
Full Scale Adjustment



Philips Semiconductors Linear Products Product specification

ADC0803/4-1CMOS 8-bit A/D converters

August 31, 1994 565

CLK IN

A GND

VREF/2

VIN(–)

A/D

+5V

10K 2.7k

10k 47µF TO
100µF

56pF

10k

CS 1

2

3

4

5

6

7

8

9

10

RD

INTR

WR

VIN(+)

D GND

20

CLK R

18

17

16

15

14

13

12

11

VCC

D0
DB0

D1

D2

D3

D4

D5

D6

D7

DB1

DB2

DB3

DB4

DB5

DB6

DB7

+5V

19

Figure 5.  Connection for Continuous Conversion

R

CLK IN  4

C

CLK

A/D

fCLK = 1/1.7 R C
R = 10K

CLK R 19

Figure 6.  Self-Clocking the Converter

D GND

VREF/2

CLK IN

A GND

VIN(–)

A/D

10k

CS 1

2

3

4

5

6

7

8

9

10

RD

INTR

WR

VIN(+)

20

CLK R

18

17

16

15

14

13

12

11

VCC

D0
DB0

D1

D2

D3

D4

D5

D6

D7

DB1

DB2

DB3

DB4

DB5

DB6

DB7

+5V

19

ADDRESS
DECODE

LOGIC

INT

I/O WR

I/O RD

ANALOG
INPUTS

56pF

Figure  7.  Interfacing to 8080A Microprocessor

20VCC

D GND

VREF/2

A GND

A/D

CS

1

2

3

4

5

6

7

8

17 RD

INTO

WR

VIN(+)

VCC
D0

D1

D2

D3

D4

D5

D6

D7

+5V

40

16

12

39

P1.0

P1.1

P1.2

P1.3

P1.4

P1.5

P1.6

P1.7

P0.0

SCN8051
OR

SCN80C51

18

17

16

15

14

13

12

11

2

3

5

1

RD

INTR

WR

19 CLK R

10k

4 CLK IN

6

7

ANALOG
INPUTS

12

11

Figure 8.  SCN8051 Interfacing

56pF

18

17

16

15

14

13

12

11

D0

D1

D2

D3

D4

D5

D6

D7

A/D

OE

DATA
BUS

8–BIT
BUFFER

N74LS241
N74LS244
N74LS541

Figure 9.  Buffering the A/D Output to Drive High
Capacitance Loads and for Driving Off-Board Loads



Philips Semiconductors Linear Products Product specification

ADC0803/4-1CMOS 8-bit A/D converters

August 31, 1994 566

A/D

4.7k

1.5k

1µF

4.7k 0.47µF 22k

470

Ct

18k

+5V

NE5521

LVDT

IN4148

VIN(–)

3.3k

2k

VCC
VIN(+)

2k

+5V

100

2k

FULL
SCALE

ADJUST

820

VREF/2

Figure 10.  Digitizing a Transducer Interface Output



Philips Semiconductors Linear Products Product specification

ADC0803/4-1CMOS 8-bit A/D converters

August 31, 1994 567

SCC80C51
A/D

CS

18

17

16

15

14

13

12

11

8 RD

INT

WR

D0

D1

D2

D3

D4

D5

D6

D7

10

6

27

DB0

DB1

DB2

DB3

DB4

DB5

DB6

DB7

P10

18

17

16

15

14

13

12

11

2

3

5

1

RD

INTR

WR

LOWER
P15

RAISE
P16

13 14

1/4
HEF4071

20 GND29 P12
+V

2N3906

1N4148 TO HEATER

1/4
HEF4071

6

2

1

7

3

6

2

1

7

3

RBI 5

NE587

NE587

RBO 4

RBI 5

7

8

10K

7

8

10K

20

19

+5V

VCC

CLK R

10K

CLK IN

56pF

4

+
10µF

VIN(–)

VIN(+)

7

D GND 10 8 AGND

LM35
6

Figure 11.  Digital Thermostat



Philips Semiconductors Linear Products Product specification

DAC08 Series8-Bit high-speed multiplying D/A converter

716August 31, 1994 853-0045 13721

DESCRIPTION
The DAC08 series of 8-bit monolithic multiplying Digital-to-Analog
Converters provide very high-speed performance coupled with low
cost and outstanding applications flexibility.

Advanced circuit design achieves 70ns settling times with very low
glitch and at low power consumption. Monotonic multiplying
performance is attained over a wide 20-to-1 reference current range.
Matching to within 1 LSB between reference and full-scale currents
eliminates the need for full-scale trimming in most applications.
Direct interface to all popular logic families with full noise immunity is
provided by the high swing, adjustable threshold logic inputs.

Dual complementary outputs are provided, increasing versatility and
enabling differential operation to effectively double the peak-to-peak
output swing. True high voltage compliance outputs allow direct
output voltage conversion and eliminate output op amps in many
applications.

All DAC08 series models guarantee full 8-bit monotonicity and
linearities as tight as 0.1% over the entire operating temperature
range. Device performance is essentially unchanged over the ±4.5V
to ±18V power supply range, with 37mW power consumption
attainable at ±5V supplies.

The compact size and low power consumption make the DAC08
attractive for portable and military aerospace applications.

FEATURES
• Fast settling output current—70ns

• Full-scale current prematched to ±1 LSB

• Direct interface to TTL, CMOS, ECL, HTL, PMOS

• Relative accuracy to 0.1% maximum over temperature range

• High output compliance -10V to +18V

• True and complemented outputs

• Wide range multiplying capability

• Low FS current drift — ±10ppm/°C

• Wide power supply range—±4.5V to ±18V

• Low power consumption—37mW at ±5V

APPLICATIONS
• 8-bit, 1µs A-to-D converters

• Servo-motor and pen drivers

PIN CONFIGURATIONS

1

2

3

4

5

6

7

8 9

10

11

12

13

14

16

15

F, N Packages

D1 Package

1

2

3

4

5

6

7

8 9

10

11

12

13

14

16

15

NOTE:
1. SO and non-standard pinouts.

VLC

IO

V–

IO

B1 (MSB)

B2

B3

B4

COMP

VREF–

VREF+
V+

B8 (LSB)

B7

B6

B5

V+

VREF+

VREF–

COMPEN

VLC

IO

V–

IO

B8 (LSB)

B7

B6

B5

B4

B3

B2

B1 (MSB)

TOP VIEW

TOP VIEW

• Waveform generators

• Audio encoders and attenuators

• Analog meter drivers

• Programmable power supplies

• CRT display drivers

• High-speed modems

• Other applications where low cost, high speed and complete in-
put/output versatility are required

• Programmable gain and attenuation

• Analog-Digital multiplication



Philips Semiconductors Linear Products Product specification

DAC08 Series8-Bit high-speed multiplying D/A converter

August 31, 1994 717

ORDERING INFORMATION
DESCRIPTION TEMPERATURE RANGE ORDER CODE DWG #

16-Pin Hermetic Ceramic Dual In-Line Package (Cerdip) -55°C to +125°C DAC08F 0582B

16-Pin Hermetic Ceramic Dual In-Line Package (Cerdip) -55°C to +125°C DAC08AF 0582B

16-Pin Plastic Dual In-Line Package (DIP) 0 to +70°C DAC08CN 0406C

16-Pin Hermetic Ceramic Dual In-Line Package (Cerdip) 0 to +70°C DAC08CF 0582B

16-Pin Plastic Dual In-Line Package (DIP) 0 to +70°C DAC08EN 0406C

16-Pin Hermetic Ceramic Dual In-Line Package (Cerdip) 0 to +70°C DAC08EF 0582B

16-Pin Plastic Small Outline (SO) Package 0 to +70°C DAC08ED 0005D

16-Pin Plastic Dual In-Line Package (DIP) 0 to +70°C DAC08HN 0406C

BLOCK DIAGRAM

BIAS
NETWORK
CURRENT
SWITCHES

MSB LSB
V+

13 1 5 6 7 8 9 10 11 12

14

15

16 3

4

2

COMP. V–

REFERENCE
AMPLIFIER

VREF(+)

VREF(–)

B1VLC B2 B3 B4 B5 B6 B7 B8

IOUT

+
–

IOUT

ABSOLUTE MAXIMUM RATINGS
SYMBOL PARAMETER RATING UNIT

V+ to V- Power supply voltage 36 V

V5-V12 Digital input voltage V- to V- plus 36V

VLC Logic threshold control V- to V+

V0 Applied output voltage V- to +18 V

I14 Reference current 5.0 mA

V14, V15 Reference amplifier inputs VEE to VCC

PD Maximum power dissipation TA=25°C
(still-air)1

F package 1190 mW

N package 1450 mW

D package 1090 mW

TSOLD Lead soldering temperature (10sec max) 300 °C
TA Operating temperature range

DAC08, DAC08A -55 to +125 °C
DAC08C, E, H 0 to +70 °C

TSTG Storage temperature range -65 to +150 °C
NOTES:
1. Derate above 25°C, at the following rates:

F package at 9.5mW/°C
N package at 11.6mW/°C
D package at 8.7mW/°C



Philips Semiconductors Linear Products Product specification

DAC08 Series8-Bit high-speed multiplying D/A converter

August 31, 1994 718

DC ELECTRICAL CHARACTERISTICS
Pin 3 must be at least 3V more negative than the potential to which R15 is returned. VCC=±15V, IREF=2.0mA. Output characteristics refer to both
IOUT and IOUT unless otherwise noted. DAC08C, E, H: TA=0°C to 70°C DAC08/08A: TA=-55°C to 125°C

SYMBOL PARAMETER TEST CONDITIONS
DAC08C

DAC08E
DAC08 UNITSYMBOL PARAMETER TEST CONDITIONS

Min Typ Max Min Typ Max
UNIT

Resolution 8 8 8 8 8 8 Bits

Monotonicity 8 8 8 8 8 8 Bits

Relative accuracy Over temperature range ±0.39 ±0.19 %FS

Differential non-linearity ±0.78 ±0.39 %FS

TCIFS Full-scale tempco ±10 ±10 ppm/°C

VOC Output voltage compliance Full-scale current change< 1/2LSB -10 +18 -10 +18 V

IFS4 Full-scale current VREF=10.000V, R14, R15=5.000kΩ 1.94 1.99 2.04 1.94 1.99 2.04 mA

IFSS Full-scale symmetry IFS4-IFS2 ±2.0 ±16 ±1.0 ±8.0 µA

IZS Zero-scale current 0.2 4.0 0.2 2.0 µA

IFSR Full-scale output current
range

R14, R15=5.000kΩ 
VREF=+15.0V, V-=-10V 
VREF=+25.0V, V-=-12V

2.1
4.2

2.1
4.2

mA

VIL
VIH

Logic input levels
Low
High

VLC=0V
2.0

0.8
2.0

0.8 V

IIL
IIH

Logic input current
Low
High

VLC=0V
VIN=-10V to +0.8V
VIN=2.0V to 18V

-2.0
0.002

-10
10

-2.0
0.002

-10
10

µA

VIS Logic input swing V-=-15V -10 +18 -10 +18 V

VTHR Logic threshold range VS=±15V -10 +13.5 -10 +13.5 V

I15 Reference bias current -1.0 -3.0 -1.0 -3.0 µA

dl/dt Reference input slew rate 4.0 8.0 4.0 8.0 mA/µs

Power supply sensitivity IREF=1mA

PSSIFS+ Positive V+=4.5 to 5.5V, V-=-15V; 0.0003 0.01 0.0003 0.01

V+=13.5 to 16.5V, V-=-15V %FS/%VS

PSIFS- Negative V-=-4.5 to -5.5V, V+=+15V; 0.002 0.01 0.002 0.01  

V-=-13.5 to -16.5, V+=+15V

I+
I-

Power supply current
Positive
Negative

VS=±5V, IREF=1.0mA
3.1
-4.3

3.8
-5.8

3.1
-4.3

3.8
-5.8

I+
I-

Positive
Negative

VS=+5V, -15V, IREF=2.0mA
3.1
-7.1

3.8
-7.8

3.1
-7.1

3.8
-7.8

mA

I+
I-

Positive
Negative

VS=±15V, IREF=2.0mA
3.2
-7.2

3.8
-7.8

3.2
-7.2

3.8
-7.8

PD Power dissipation

±5V, IREF=1.0mA 37 48 37 48

PD Power dissipation +5V, -15V, IREF=2.0mA 122 136 122 136 mWD

±15V, IREF=2.0mA 156 174 156 174



Philips Semiconductors Linear Products Product specification

DAC08 Series8-Bit high-speed multiplying D/A converter

August 31, 1994 719

DC ELECTRICAL CHARACTERISTICS (Continued)
Pin 3 must be at least 3V more negative than the potential to which R15 is returned.  VCC = +15V, IREF = 2.0mA, Output characteristics refer to
both IOUT and IOUT, unless otherwise noted. DAC08C, E, H: TA = 0°C to 70°C. DAC08/08A: TA = -55°C to 125°C.

SYMBOL PARAMETER TEST CONDITIONS
DAC08H
DAC08A UNITSYMBOL PARAMETER TEST CONDITIONS

Min Typ Max
UNIT

Resolution 8 8 8 Bits

Monotonicity 8 8 8 Bits

Relative accuracy Over temperature range ±0.1 %FS

Differential non-linearity ±0.19 %FS

TCIFS Full-scale tempco ±10 ±50 ppm/°C
VOC Output voltage compliance Full-scale current change  1/2LSB -10 +18 V

IFS4 Full-scale current VREF=10.000V, R14, R15=5.000kΩ 1.984 1.992 2.000 mA

IFSS Full-scale symmetry IFS4-IFS2 ±1.0 ±4.0 µA

IZS Zero-scale current 0.2 1.0 µA

IFSR Full-scale output current range
R14, R15=5.000kΩ 

VREF=+15.0V, V-=-10V 
VREF=+25.0V, V-=-12V

2.1
4.2

mA

VIL
VIH

Logic input levels
Low
High

VLC=0V
2.0

0.8 V

IIL
IIH

Logic input current
Low
High

VLC=0V
VIN=-10V to +0.8V
VIN=2.0V to 18V

-2.0
0.002

-10
10

µA

VIS Logic input swing V-=-15V -10 +18 V

VTHR Logic threshold range VS=±15V -10 +13.5 V

I15 Reference bias current -1.0 -3.0 µA

dl/dt Reference input slew rate 4.0 8.0 mA/µs

Power supply sensitivity IREF=1mA

PSSIFS+ Positive V+=4.5 to 5.5V, V-=-15V; 0.0003 0.01

V+=13.5 to 16.5V, V-=-15V %FS/%VS

PSIFS- Negative V-=-4.5 to -5.5V, V+=+15V; 0.002 0.01

V-=-13.5 to -16.5, V+=+15V

I+
I-

Power supply current
Positive
Negative

VS=±5V, IREF=1.0mA 3.1
-4.3

3.8
-5.8

I+
I-

Positive
Negative

VS=+5V, -15V, IREF=2.0mA
3.1
-7.1

3.8
-7.8

mA

I+
I-

Positive
Negative

VS=±15V, IREF=2.0mA
3.2
-7.2

3.8
-7.8

PD Power dissipation

±5V, IREF=1.0mA 37 48

mWPD Power dissipation +5V, -15V, IREF=2.0mA 122 136 mWD

±15V, IREF=2.0mA 156 174



Philips Semiconductors Linear Products Product specification

DAC08 Series8-Bit high-speed multiplying D/A converter

August 31, 1994 720

AC ELECTRICAL CHARACTERISTICS

SYMBOL PARAMETER TEST CONDITIONS
DAC08C

DAC08E
DAC08

DAC08H
DAC08A UNITSYMBOL PARAMETER TEST CONDITIONS

Min Typ Max Min Typ Max Min Typ Max
UNIT

tS Settling time
To ± 1/2LSB, all bits
switched on or off,

TA=25°C
70 135 70 135 70 135 ns

Propagation delay

tPLH Low-to-High TA=25°C, each bit. ns

tPHL High-to-Low All bits switched 35 60 35 60 35 60

TEST CIRCUITS

Figure 1.  Relative Accuracy Test Circuit

CONTROL
LOGIC

DAC-08

REFERENCE DAC
ACCURACY > 0.006%

NE5534 ERROR
OUTPUT

V– V+

–

+

16
14

15 5-12 1 2

4

133

VREF

RREF

Rf

R15

Figure 2.  Transient Response and Settling Time

FOR SETTLING TIME
MEASUREMENT
(ALL BITS
SWITCHED LOW
TO HIGH)

USE RL to GND
FOR TURN OFF
MEASUREMENTSETTLING TIME

TRANSIENT
RESPONSE

eIN

2.4V

0.4V

1.0V

0

0

-100mV

1.4V

RL = 500Ω

RL = 50Ω
PIN 4 TO GND

tS = 70ns TYPICAL
TO ±1/2 LSB

tPHL = tPLH = 10ns

tPHLtPLH

CO ≤ 25pF15pF51

5

6
7
8

9
10
11
12

3

13

14
15
1
2
4
16

DAC-08

VEE

VCC

eIN

eO

0.1µF

0.1µF

1.0k

1.0k

0.1µF
RL

+2.0VDC



Philips Semiconductors Linear Products Product specification

DAC08 Series8-Bit high-speed multiplying D/A converter

August 31, 1994 721

TEST CIRCUITS (Continued)

Figure  3.  Reference Current Slew Rate Measurement

5

6

7

8

9

10

11

12

3

13

14

15

1

2

4

16

DAC-08

VEE

VCC

0.1µF

OPEN

SCOPE

REQ = 200Ω

RL

RP

1k

RIN
VIN

dI
dt �

I
RL

dV
dt

SLEWING TIME

10%

90%

0

2.0mA

2V

0

Figure 4.  Notation Definitions

NOTES:
(See text for values of C.)

Typical values of R14 = R15 = 1k

VREF = +2.0V
C = 15pF

VI and II apply to inputs A1 through A8
The resistor tied to Pin 15 is to temperature compensate the bias current and may not be necessary for all applications.

IO � K�A1
2 �

A2
4 �

A3
8 �

A4
16 �

A5
32 �

A6
64 �

A7
128 �

A8
256
�

where K �

VREF
R14

and A N = ‘1’ if A N is at High Level
AN = ‘0’ if A N is at Low Level

5

6

7

8

9

10

11

12

3

13

14

15

1

2

4

16

DAC-08

VCC

DIGITAL
INPUTS

OUTPUT

ICC

VO

VREF (+)

IO

RL
C

VEE

IEE

VI
II

(+)

R15

R14

I15

I14

A1
A2
A3

A4
A5
A6
A7
A8



Philips Semiconductors Linear Products Product specification

DAC08 Series8-Bit high-speed multiplying D/A converter

August 31, 1994 722

TYPICAL PERFORMANCE CHARACTERISTICS

10

IFS — OUTPUT FULL SCALE CURRENT (mA)

50ns/DIVISIOM

REQ = 200Ω, RL = 100Ω, CC = 0

2.0mA

NOTES:

Curve 1: CC = 15pF, VIN = 2.0VP-P centered at +1.0V
Curve 1: CC = 15pF, VIN = 5m0VP-P centered at +200mV

Curve 1: CC = 15pF, VIN = 100m0VP-P centered at 0V
and applied through 50Ω connected to Pin 14.
+2.0V applied to R14.

Output Current vs Output Voltage
(Output Voltage Compliance) Fast Pulsed Reference Operation

True and Complementary Output
Operation

Full-Scale Settling Time LSB Switching
Full-Scale Current vs

Reference Current

LSB Propagation Delay vs IFS Reference Input Frequency Response

IREF — REFERENCE CURRENT (mA)

5.0

4.0

3.0

2.0

1.0

0
0 1.0 2.0 3.0 4.0 5.0

I  
   

 –
 O

U
T

P
U

T
 C

U
R

R
E

N
T

 (
m

A
)

F
S

TA = Tmin  TO Tmax
ALL BITS “HIGH”

LIMIT FOR
V–=–15V

LIMIT FOR
V–=–5V

(00000000) (11111111)

0mA

1.0mA

IOUT

IOUT

3.2

2.8

2.4

2.0

1.6

1.2

0.8

0.4

0

O
U

T
P

U
T

 C
U

R
R

E
N

T
 (

m
A

)

OUTPUT VOLTAGE (V)

ALL BITS ON

–14 –10 –6 –2 0 2 6 10 14 18

2.5V

0.5V

–0.5mA

–2.5mA

VIN

IOUT

200ns/division

BIT 8
LOGIC
INPUT

IOUT
8µA

2.4V

0.4V
0V

0

ALL BITS SWITCHED ON

OUTPUT – 1/2LSB

SETTLING +1/2LSB
0

2.4V

0.4V

50ns/DIVISIOM
IFS=2mA, RL=1kΩ 1/2LSB=4µA

500

400

300

200

100

0

.0
5

.0
1

.0
2

.0
5

0.
1

0.
2

0.
5

1.
0

2.
0

5.
0 10

P
R

O
P

A
G

A
T

IO
N

 D
E

LA
Y

 (
ns

)

1LSB=78nA

1LSB=7.8µA

R
E

LA
T

IV
E

 O
U

T
P

U
T

 (
dB

)

FREQUENCY (MHz)

6

4

2

0

–2

–4

–6

–8

–10

–12

–14
0.1 0.2 0.5 1.0 2.0 5.0

R14=R15=1kΩ
3

21

RL ≤ 500Ω
ALL BITS “ON”

VR15 = 0V

IREF = 0.2mA

IREF = 1mA

IREF = 2mAV– = –15V V– = –5V

TA = Tmin TO Tmax



Philips Semiconductors Linear Products Product specification

DAC08 Series8-Bit high-speed multiplying D/A converter

August 31, 1994 723

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

O
U

T
P

U
T

 C
U

R
R

E
N

T
 (

m
A

)

LOGIC INPUT VOLTAGE (V)

LO
G

IC
 IN

P
U

T
 C

U
R

R
E

N
T

 (
   

  A
)

µ

10,000

P
O

W
E

R
 S

U
P

P
LY

 C
U

R
R

E
N

T
 (

m
A

)

P
O

W
E

R
 S

U
P

P
LY

 C
U

R
R

E
N

T
 (

m
A

)

NOTES:

B1 through B8 have identical transfer characteristics.
Bits are fully switched, with less than 1/2LSB error, at
less than ±100mV from actual threshold.  These
switching points are guaranteed to lie between 0.8 and
2.0V over the operating temperature range
(VLC = 0.0V).

Reference AMP Common-Mode Range
All Bits On Logic Input Current vs Input Voltage VTH – VLC vs Temperature

Output Voltage Compliance
vs Temperature

Bit Transfer Characteristics Power Supply Current vs V+

Power Supply Current vs V– Power Supply Current vs Temperature

Maximum Reference Input Frequency
vs Compensation Capacitor Value

2.0
1.8

1.6
1.4

1.2
1.o

0.8
0.6

0.4
0.2

0
–50 0 50 100 150

V
   

   
– 

V
   

   
 (

V
)

T
HL

C

TEMPERATURE (°C)

8

7

6

5

4

3

2

1

0
0 –4.0 –8.0 –12 –16 –20

V– — NEGATIVE POWER SUPPLY (VDC)

I+

BITS MAY BE HIGH OR LOW
I– WITH IREF = 2mA

I– WITH IREF = 1mA

I– WITH IREF = 0.2mA

8

7

6

5

4

3

2

1

0
–50 0 50 100 150

TEMPERATURE (°C)

BITS MAY BE HIGH OR LOW

IREF = 2.0mA

I+

I–

V+ = +15V

V– = +15V
1,000

100

10
1 10 100 1000

CC (pF)

F
   

   
   

 (
kH

z)
M

A
X

8.0

6.0

4.0

2.0

0
–12 –8 –4 0 4 8 12 16

LOGIC INPUT VOLTAGE (V)

1.420

3.2

2.8

2.4

2.0

1.6

1.2

0.8

0.4

0
–14 –10 –6 –2 0 2 6 10 14 18

V15 — REFERENCE COMMON MODE VOLTAGE (V)
POSITIVE COMMON-MODE RANGE IS ALWAYS (V+) –1.5V.

IREF = 2mA

TA = TMIN to TMAX

IREF = 1mA

IREF = 0.2mA

V– = –15V V– = –5V V+ = +5V

P
O

W
E

R
 S

U
P

P
LY

 C
U

R
R

E
N

T
 (

m
A

)

8

7

6

5

4

3

2

1

0
–50 0 50 100 150

V+ – POSITIVE POWER SUPPLY (VDC)

ALL BITS HIGH OR LOW

I+

I–

1.2

1.0

0.8

0.6

0.4

0.2

0
–12 –8 –4 0 4 8 12 16

O
U

T
P

U
T

 C
U

R
R

E
N

T
 (

m
A

) IREF = 2.0mA B1

B2

B3

B4

B5

V– = –15V

V– = –5V

Shaded area indicates
permissible output voltage

range for V– = -15V, IREF ≤ 2.0mA

For other V– or IREF
See “Output Current vs Output

Voltage” curve on previous page

TEMPERATURE (°C)

16

12

8

4

0

–4

–8

–12
–50 0 50 100 150

O
U

T
P

U
T

 V
O

LT
A

G
E

 (
V

)



Philips Semiconductors Linear Products Product specification

DAC08 Series8-Bit high-speed multiplying D/A converter

August 31, 1994 724

TYPICAL APPLICATION

NOTES:
REQ = RIN || RP
Typical Values

RIN = 5kΩ
+VIN = 10V

Pulsed Referenced Operation

OPTIONAL RESISTOR
FOR OFFSET
INPUTS

NO CAP

14

15 16 2

4

+VREF

RREF
REQ
=200Ω

RP

RIN

0V

FUNCTIONAL DESCRIPTION

Reference Amplifier Drive and Compensation
The reference amplifier input current must always flow into Pin 14
regardless of the setup method or reference supply voltage polarity.

Connections for a positive reference voltage are shown in Figure 1.
The reference voltage source supplies the full reference current. For
bipolar reference signals, as in the multiplying mode, R15 can be
tied to a negative voltage corresponding to the minimum input level.
R15 may be eliminated with only a small sacrifice in accuracy and
temperature drift.

The compensation capacitor value must be increased as R14 value
is increased. This is in order to maintain proper phase margin. For
R14 values of 1.0, 2.5, and 5.0kΩ, minimum capacitor values are 15,
37, and 75pF, respectively. The capacitor may be tied to either VEE
or ground, but using VEE increases negative supply rejection.
(Fluctuations in the negative supply have more effect on accuracy
than do any changes in the positive supply.)

A negative reference voltage may be used if R14 is grounded and
the reference voltage is applied to R15 as shown. A high input
impedance is the main advantage of this method. The negative
reference voltage must be at least 3.0V above the VEE supply.
Bipolar input signals may be handled by connecting R14 to a positive
reference voltage equal to the peak positive input level at Pin 15.

When using a DC reference voltage, capacitive bypass to ground is
recommended. The 5.0V logic supply is not recommended as a
reference voltage, but if a well regulated 5.0V supply which drives
logic is to be used as the reference, R14 should be formed of two
series resistors with the junction of the two resistors bypassed with
0.1µF to ground. For reference voltages greater than 5.0V, a clamp
diode is recommended between Pin 14 and ground.

If Pin 14 is driven by a high impedance such as a transistor current
source, none of the above compensation methods applies and the
amplifier must be heavily compensated, decreasing the overall
bandwidth.

Output Voltage Range
The voltage at Pin 4 must always be at least 4.5V more positive than
the voltage of the negative supply (Pin 3) when the reference current

is 2mA or less, and at least 8V more positive than the negative
supply when the reference current is between 2mA and 4mA. This is
necessary to avoid saturation of the output transistors, which would
cause serious accuracy degradation.

Output Current Range
Any time the full-scale current exceeds 2mA, the negative supply
must be at least 8V more negative than the output voltage. This is
due to the increased internal voltage drops between the negative
supply and the outputs with higher reference currents.

Accuracy
Absolute accuracy is the measure of each output current level with
respect to its intended value, and is dependent upon relative
accuracy, full-scale accuracy and full-scale current drift. Relative
accuracy is the measure of each output current level as a fraction of
the full-scale current after zero-scale current has been nulled out.
The relative accuracy of the DAC08 series is essentially constant
over the operating temperature range due to the excellent
temperature tracking of the monolithic resistor ladder. The reference
current may drift with temperature, causing a change in the absolute
accuracy of output current. However, the DAC08 series has a very
low full-scale current drift over the operating temperature range.

The DAC08 series is guaranteed accurate to within ± LSB at +25°C
at a full-scale output current of 1.992mA. The relative accuracy test
circuit is shown in Figure 1. The 12-bit converter is calibrated to a
full-scale output current of 1.99219mA, then the DAC08 full-scale
current is trimmed to the same value with R14 so that a zero value
appears at the error amplifier output. The counter is activated and
the error band may be displayed on the oscilloscope, detected by
comparators, or stored in a peak detector.

Two 8-bit D-to-A converters may not be used to construct a 16-bit
accurate D-to-A converter. 16-bit accuracy implies a total of ± part in
65,536, or ±0.00076%, which is much more accurate than the
±0.19% specification of the DAC08 series.

Monotonicity
A monotonic converter is one which always provides analog output
greater than or equal to the preceding value for a corresponding
increment in the digital input code. The DAC08 series is monotonic
for all values of reference current above 0.5mA. The recommended
range for operation is a DC reference current between 0.5mA and
4.0mA.

Settling Time
The worst-case switching condition occurs when all bits are
switched on, which corresponds to a low-to-high transition for all
input bits. This time is typically 70ns for settling to within LSB for
8-bit accuracy. This time applies when RL<500Ω and CO<25pF. The
slowest single switch is the least significant bit, which typically turns
on and settles in 65ns. In applications where the DAC functions in a
positive-going ramp mode, the worst-case condition does not occur
and settling times less than 70ns may be realized.

Extra care must be taken in board layout since this usually is the
dominant factor in satisfactory test results when measuring settling
time. Short leads, 100µF supply bypassing for low frequencies,
minimum scope lead length, and avoidance of ground loops are all
mandatory.



Philips Semiconductors Linear Products Product specification

DAC08 Series8-Bit high-speed multiplying D/A converter

August 31, 1994 725

SETTLING TIME AND PROPAGATION DELAY

NOTES:
D1, D2 = IN6263 or equivalent
D3 = IN914 or equivalent
C1 = 0.01µF
C2, C3 = 0.1µF

Q1 = 2N3904
C4, C5 = 15pF and includes all probe and fixturing capacitance.

VIN

VS + = +15V

VADJ

VOUT

VS – = –15V

R15 = 5kΩ

IREF = 2mA

VREF = 10V
R14 = 5kΩ

VOUT

R1 = 1000Ω R2 = 1000Ω

R3 = 500Ω

50Ω
C1 C2

C5

C3

D3

D1

D2
C4

DUT

14

15
16 3 1

2

4

12111098765

Q1

BASIC DAC08 CONFIGURATION

NOTES:

IFS �
� VREF

RREF
x

255
256 ; IO � IO � IFS for all logic states

MSB 2 3 4 5 6 7 LSB

5 6 7 8 9 10 11 12
14

15
3 16 13 1

2

4
DAC-08

(LOW T.C.)

V+V–

IO

IO

+VREF

IREFRREF

CCOMP
0.1µF 0.1µF



Philips Semiconductors Linear Products Product specification

DAC08 Series8-Bit high-speed multiplying D/A converter

August 31, 1994 726

RECOMMENDED FULL-SCALE AND ZERO-SCALE ADJUST

NOTES:
R1 = low T.C.
R3 = R1 + R2
R2 ≈ 0.1 R1 to minimize pot. contribution to full-scale drift

14

15 2

4
DAC-08

VREF

V+ V–

R4 = 1MΩ

RS = 20kΩ

R3

R2

R1

UNIPOLAR VOLTAGE OUTPUT FOR LOW IMPEDANCE OUTPUT

VOUT =14

15

DAC-08

–

+

NE531
OR
EQUIV 0 TO +10V

IR = 2mA 4

2

5kΩ

5kΩ (LOW T.C.)



Philips Semiconductors Linear Products Product specification

DAC08 Series8-Bit high-speed multiplying D/A converter

August 31, 1994 727

UNIPOLAR VOLTAGE OUTPUT FOR HIGH IMPEDANCE OUTPUT

14 2

4
DAC-08

IR = 2mA

VOUT

VOUT

5kΩ 5kΩ

V = 10V

14 2

4
DAC-08

IR = 2mA

VOUT

VOUT

a. Positive Output

a. Negative Output

BASIC BIPOLAR OUTPUT OPERATION (OFFSET BINARY)

1

1

1
1

0

0

0

1

1

0
0

1

0

0

1

1

0
0

1

0

0

1

1

0
0

1

0

0

1

1

0
0

1

0

0

1

1

0
0

1

0

0

1

1

0
0

1

0

0

1

0

1
0

1

1

0

Positive full-scale

Positive FS – 1LSB

+ Zero-scale + 1LSB
Zero-scale

Zero-scale – 1LSB

Negative full scale – 1LSB

Negative full scale

–9.920V

–9.840V

–0.080V
0.000

0.080

+9.920

+10.000

+10.000

+9.920

+0.160
+0.080

0.000

–9.840

–9.920

B1 B2 B3 B4 B5 B6 B7 B8 VOUT VOUT

14
2

4

DAC-08
IR = 2mA

VOUT

VOUT

10kΩ

V = 10V

10kΩ



Interfacing I/O Devices
Connecting a peripheral device to a computer is called interfacing the device. This requires three
major steps. The presentation of the steps here necessarily follows a certain order, but as you will
see, the ordering of the steps for a particular device may need to be different. The first step is the
design of a hardware connection scheme that will allow the programmer to address the device.
Second, the programmer must write an interrupt service routine (ISR) to handle interrupts from
the device and install its address in the exception vector table. Finally, the programmer must
initialize, or program,  the device to work in an appropriate way and enable the device. To
perform these steps correctly, the person interfacing the device must have the appropriate
documentation or data sheet for the device.

Hardware Interfacing

The hardware connection scheme for an I/O device includes appropriate connections to all the
buses. A connection to the address bus is necessary to allow the programmer to address the ports.
Assuming an I/O address space of 256 ports (the standard for older Intel processors which is still
compatible with newer members of the Intel family), we need to be able to decode I/O addresses
of just eight bits, since 28 = 256 unique locations. The relevant address lines will therefore be
A0-A7. To be able to send data to the device or receive data from it, a connection to the data bus
is also essential. Some devices now have 16-bit ports, but many still have 8-bit ports. For
simplicity, we will assume that the devices we are interfacing have 8-bit ports, so again, we only
need to worry about the low order eight bits of the data bus: D0-D7. In addition, each device
generally needs to have connections to some of the control bus lines. The task of hardware
interfacing is to connect the device to these lines appropriately. The data sheet for a particular
device will include the pin diagram for the device. This diagram gives the purpose of each pin
and allows the interfacer to connect the bus lines to the correct pins.  

Typically, it is desirable to have the ability to connect more than one device to the CPU. To do
this, we can use a commercially available decoder chip, the 74LS138. This chip is a 3-to-8
decoder. It has three input lines which encode a 3-bit binary number. It also has eight output
lines, logically numbered from zero to eight. Given a particular 3-bit pattern as input, the
74LS138 will activate the output line with the corresponding number. The input pin for the low
order bit of the pattern is A, with pins B and C serving as the inputs for the next bits. For
example, an input on pins A, B, and C of 001, respectively, will activate output line Y4#. This
chip allows interfacing up to eight different devices from a single address bus connection. In
addition the decoder has three "gating signals" that allow a particular set of addresses to activate
the decoder. The output lines connect to various devices, while the input lines connect to the
address and control bus.



As you know, devices (or their controllers) contain various registers or ports that allow for
communication between the CPU and the device. The ports have a specific ordering, just as
memory locations do. To be able to read from or write to these ports, the designer must ensure
that the device is addressable. Each device must have a unique base address. This address
actually provides access to the first port on the device. Subsequent ports are accessible through
subsequent addresses. For example, assume that a particular device, such as the ACIA described
in Peripheral Devices and I/O, has four 8-bit ports. Suppose that the base address of the device is
0040h. The four ports on the device are then at 0040h, 0041h, 0042h, and 0043h. The ordering of
the ports (that is, which one is first, second, third, etc.) is part of the design of the device. The
data sheet for the device will give the relative port addresses (i.e., the offset for each port on the
chip).

We will work an example showing how to interface the Intel 8253 Programmable Interval Timer
(PIT) to an Intel 8088 chip. The timer is a device that we could use to count off the length of a
time slice for the kernel of a multitasking operating system. The timer has other uses as well, but
we will assume this particular application. The 8253 PIT includes three separate counters, each
of which is independently programmable. These are both input and output ports, that is the CPU
can both read from and write to these ports. The counters divide the input frequency by a given
number and counts down. When a counter reaches 0, it generates a pulse on the corresponding
output. If the GATE input (see below) for the counter is high, that is, the counter is still enabled,
it automatically restarts the count. The timer has a total of four ports, one for each counter
(Counter 0, Counter 1, and Counter 2) and a write-only control register. It also has some internal
registers that are not accessible to the programmer. The value in the control register determines
the mode of operation of the timer. The following figure shows the pin diagram for the 8253.

The general technique is to start with a known base address. For example, suppose you want to
connect the CS# pin of the 8253 timer to the Y0# line of the 74LS138 decoder so that the timer



has a base address of 80h. That is, we want the CS# pin of the timer to be active (low voltage)
only when the given address is 80h, 81h, 82h, or 83h. It should not be active for any other
address. The two low order bits of the address will give the addresses for the four ports on the
controller. These lines will connect directly to the timer, rather than to the decoder. This means
that we will route address bus lines A0 and A1 to the devices connected to the decoder. We can
use the next three higher order address lines (A2, A3, and A4) as the inputs to pins A, B, and C
of the decoder. Since the base address has all zeros in these bits (80h = 100000002), connecting
these address lines directly to the input pins of the 74LS138 will have exactly the right effect.
We now have to account for address lines A5-A7. We have three gating signals on the decoder
that must be active if the decoder itself is to be active.

Since the 74LS138 is to serve as a connection strictly to I/O devices, one of the gating pins must
connect to the M/IO# control bus signal of the CPU, so that it is active only when an I/O
instruction (IN or OUT) is executing. Since this signal selects a chip when the line is low, it will
be simplest if we connect this line to one of the negative logic gating pins. We can arbitrarily
choose G2A#. In this way, if M/IO# is low (logic 0), G2A# will also be low and, provided the
other gating signals are also active, the decoder will be selected. Still remaining are pins G2B#
and G1. We will use address lines A5-A7 to activate these signals. When the address is 80h, the
values for these lines will be A7 = 1, A6 = 0, and A5 = 0. Of the two gating signals, G1 is active
high, so again, it makes sense to connect A7 directly to this pin. The last step is to combine lines
A6 and A5 so that only when both are zero, they will send a logic 0 to pin G2B#. To do this, we
invert both signals and connect them to a two-input NAND gate. Notice that the double inversion
(we first invert A5 and A6 and then get a second inversion from the NAND gate) is necessary.
Consider that we try to simplify this connection using no inversion at all. This means we would
connect lines A5 and A6 to a two-input AND gate. In this situation, we would get "false lows"
for certain addresses that would incorrectly activate the decoder and timer. Examine the
following truth table to see why (the starred entries show an incorrect result):

A5 A6 A5&A6 not A5 not A6 not (not A5 & not A6)

0 0 0 (G2B# active) 1 1 0 (G2B# active)

0 1 0 (G2B# active)* 1 0 1 (G2B# inactive)

1 0 0 (G2B# active)* 0 1 1 (G2B# inactive)

1 1 1 (G2B# inactive) 0 0 1 (G2B# inactive)

The following diagram shows the complete connection for the address lines (the x's represent
"don't cares," that is, bits for which the value is unimportant). You should try some other 8-bit
binary addresses with this connection scheme to convince yourself that no other address will ever
activate the Y0# line of the 74LS138 and thus the timer.



Before the hardware connection is complete, we must also connect the other pins of the timer.
The data sheet of the 8253 gives the purpose of these pins. Simplest are the data bus pins: D0-
D7. These obviously must connect to the corresponding lines of the data bus. The Vcc pin is for
power, so it must connect to the power supply of the computer. The GND pin is for electrical
ground. This leaves the RD#, WR#, CLKn, GATEn and OUTn pins. RD# and WR# are for
enabling reading from the timer's ports and writing to them, respectively. The CPU has a single
pin, R/W#, so to get the proper behavior, we must "split" this signal. We will invert the R/W#
signal to feed to the RD# pin of the 8253 and connect the R/W# signal directly (not inverted) to
the WR# pin. The CLKn pins receive the input clock pulse, so we can connect these to the
system clock to provide input for the timer. The OUTn pins provide the output signal from the
timer. Since we will use the timer to generate timer interrupts for the operating system, we will
connect these pins to the interrupt controller. Finally, the GATEn pins serve to individually
enable or disable the three counters on the 8253 chip. Since we want these to be permanently
enabled, we can connect them to a pullup resistor to keep them always at +5 volts. The figure
below shows the completed connection diagram.

The Interrupt Service Routine

The exact nature of the interrupt service routine and the tasks that it performs depend on the the
device itself and the job that it must do. You have already seen an introduction to interrupt
handlers for peripheral devices and you know how to install their starting addresses in the
exception vector table. You also know that exception and interrupt handlers must end with the
IRET instruction. Beyond those general considerations, a few more points deserve special
mention. It is important in many instances to disable interrupts before installing a handler's
address in the Exception Vector, because it is essential that the full address (both segment and
offset) are both correct before the exception of interrupt occurs. If the service routine is an
exception handler, this may not be a critical concern, although it can be. For example, consider
what would happen in a multitasking operating system if the program installing the handler



reaches the end of its time slice after writing the segment but before writing the offset to the
Exception Vector. If the next process to gain the use of the CPU generates the software
exception with the inconsistent address in the vector table, the handler will not execute. In
addition, if a system includes pipelining, interrupts can occur between any two stages of the fetch
execute cycle. This situation increases the chance that an interrupt could occur when the
Exception Vector is in an inconsistent state. For these reasons, disabling interrupts with the CLI
instruction before altering the Exception Vector is always a good idea. If the service routine is
for a hardware device, disabling interrupts before beginning to write to the Exception Vector is
absolutely necessary. If the device for which you are installing a handler's address generates an
interrupt before the installation is complete, the results will be unpredictable at best and perhaps
even catastrophic at worst. Of course, equally important is remembering to reenable interrupts
with the STI instruction as soon as the installation of the address is finished.

Because many I/O devices perform multiple functions and therefore require different kinds of
services from the CPU depending on the reason for the interrupt, another common scenario with
interrupt service routines is for the handler to be a dispatch routine. This means that the main
task of the handler is to determine what the device needs and then to call a subroutine to perform
the service. Sometimes, the most efficient implementation for this is a jump table. Other times,
the interrupt service routine will need to check several conditions and call an appropriate
subroutine based on the results of those checks. Although the 8253 timer is not a good example
of this type of device, since it really only performs one function, the ACIA discussed in
Peripheral Devices and I/O is. Typically, when a device can generate an interrupt for more than
one reason, it includes a status register. This is one of the ports on the device. The service routine
begins by reading this status register. Depending on the value of bits in this register, the handler
calls the proper subroutine to service the particular request. The meaning of the bits of the status
register of a device is available in the data sheet for the device.

The handler for our timer example (using the timer to generate an interrupt at the end of each
time slice) would need to perform a context switch between the currently running process and
the next process in line waiting for the CPU. Although other tasks would also be necessary, the
major job of our interrupt service routine would be to save the values of all the system registers
and then to write the previously saved values into the registers for the next process in line.

Finally, it is important to ensure that the device is disabled until the installation of the service
routine is complete. Many devices include an enable/disable bit in the control register, that
allows a programmer to disable a device through a software instruction. This is particularly
desirable when changing the service routine for a device that is already installed. If the device
does not include this capability, then the service routine installation must be complete before
connecting the device. This is the case with the 8253 timer.

Programming Devices

The data sheet for each peripheral device will include its programming requirements.
Programming a device generally involves writing one or more values to its control register, but
may also require writing values to other ports on the device as well. The 8253 timer is fairly
representative and has the advantage of also being quite simple. The first consideration for
programming virtually any device is to determine the operation required and the meaning of the
bits in the control register. The following figure shows the control register for the 8253 PIT.



Mode 0: Interrupt on terminal count

Mode 1: Programmable one-shot ("alarm" type
pulse)

Mode 2: Rate generator (used to generate a regular
wave signal of a given period)

Mode 3: Square wave rate generator (used to
generate a regular square wave signal of a
given period)

Mode 4: Software triggered strobe

Mode 5: Hardware triggered strobe

The above figure gives us most of the information we need to write the correct control word to
the timer's control register to make it operate in the way we want. A few additional words of
explanation are also necessary, however. Some of the operation modes given in the table above
are fairly self-explanatory, but others are not so obvious. The various modes actually determine
the shape of the OUT signals for a particular timer. The 8253 PIT can generate various types of
square waves by holding the OUT line alternately high and low for given amounts of time. Such
output signals can be useful for determining timing for various kinds of applications, such as
delays. The data sheet for the timer gives timing diagrams for each of the modes. For our
application, we will only need to use Mode 0, since we want the timer to generate an interrupt
when it reaches zero.



The low order bit of the control word gives us the ability to specify the initial count value (the
frequency divisor) as a 16-bit binary number (0001h-10000h) or as a BCD (binary coded
decimal) number in the range of 1-10000. The data sheet also specifies that a value of all zeros
written to the counter signifies the largest number in the range of possible count values. This
explains how it is possible to represent 10000h with only 16 bits. Binary coded decimal
representation uses 4-bit groups to encode each digit of a decimal number. For example, the
binary coded decimal representation of 937 is 1001 0011 0111. To specify a binary coded
decimal number in a program, you should be able to see that a hex representation is appropriate.
That is, if you wanted to use 937 BCD as an immediate operand in an assembly language
instruction, you would use 937h. In some programs such as financial applications, using BCD
representation is more natural than other representations.

The RL bits allow control over the reading and writing of the counter value for a particular
counter. The "counter latching operation" code transfers the current count to an internal storage
buffer so that the count is stable for reading (otherwise, the continued countdown could change
the value of the counter during the read). The other modes specify which part of the initial count
value is to be written or read. It is important to realize that the initial count value is a 16-bit
number, whereas the counter registers are only eight bits wide. This means that the programmer
must read or write the counter register in two instructions. The usual method is to use RL mode
11. In this case, the programmer reads or writes the least significant byte first. If the operation is
a write, the internal logic of the timer transfers this byte to an internal register, so that the next
write does not destroy its value. After reading or writing the least significant byte, the
programmer uses a second instruction to read or write the most significant byte. Finally, the SC
bits allow the programmer to specify which counter he or she is reading or writing.

With this information, we are ready to program the timer to function in a manner that will be
appropriate for our example application. As we mentioned above, we will want to use mode 0, so
we already know that the control byte bits 1, 2, and 3 must be cleared. We will use a binary
number as the initial counter value, so bit 0 must also be 0. We will use a two-byte counter, so
this determines that the RL bits must be 11. Finally, we arbitrarily decide to use counter 1, so this
gives us 01 as the value for bits 6 and 7. Putting these bits together gives us 01110000b (70h) as
the value we must write to the control register.

The next step is to determine the initial count value. If we assume that we are interfacing with a
clock speed of 8 KHz, then that gives us the frequency on the CLKn inputs. Suppose we decide
that we want a time slice to be 500 milliseconds (this is quite long for a time slice, but consider
that we are working with a slow processor!). Recall that one hertz is one cycle per second, so a
period of 500 milliseconds gives a frequency of 0.5 hertz. Of course 8KHz is 8000 hertz. The
problem is to determine the appropriate divisor so that the OUT signal will go high to generate
an interrupt every 500 milliseconds:  8000/0.5 = 16000 = 3E80h.

We now have the values necessary to program the timer. The only remaining step is to determine
the addresses for each of the ports on the timer. We know that the base address is 80h, so we
really only need the relative ordering of the ports. The data sheet will give us this information:



A1 A0 Port

0 0 Counter 0

0 1 Counter 1

1 0 Counter 2

1 1 Control register

The following code shows what we need to do:
Init8253  proc

  push ax
  mov al,70h ;select mode 0, counter 1, binary rep.
  out 80h,al ;write to control register
  mov al,80h ;set up LSB of count divisor
  out 81h,al ;write it to counter 1
  mov al,3eh ;set up MSB of count divisor
  out 81h,al ;write it to counter 1
  pop ax
  ret

Init8253  endp

Of course, the programming requirements for different devices and for different processors will
vary. For example, some devices have a vector number register that allows the programmer to
specify a vector number for the device. When the device generates an interrupt, it sends this
number to the CPU during the exception processing state. In general, programming a device
always requires writing a specific value to its control register(s).

References

Intel. Microprocessor and Peripheral Handbook. Intel Corporation, 1983.

Mazidi, A.M. and J.G. Mazidi. The 80x86 IBM PC and Compatible Computers, Volumes I and
II: Assembly Language, Design and Interfacing. Englewood Cliffs, NJ: Prentice Hall, 1995.

Orejel, Jorge. Personal Communication.

Acknowledgement

Thanks go to Jorge Orejel for checking the correctness of my hardware interface design.

 

 



1 http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999

Interfacing the 80C286-16 with the 80287-10

Introduction
An important requirement in many systems is the ability to
off-load numeric data processing. In an 80C286 system, this
can be accomplished with an 80287 numeric co-processor.
However, as processor speeds increase, it may become
necessary to interface a high speed 80C286 processor with
a lower speed 80287. This Document will briefly describe the
interface between a 16MHz 80C286 (80C286-16) and a
10MHz 80287 (80287-10).

Interfacing the 80C286 with an 80287 can be broken down
into three main areas:

(1) Bus control lines and data lines which coordinate and
implement the flow of data between the two processors
(i.e. the data lines, chip select lines, and read/write
lines).

(2) The clock line(s), which drive the two processors.

(3) The four status lines through which the 80C286 and
80287 directly communicate status information to one
another - comprised of the BUSY, ERROR, Peripheral
Request (PEREQ), and Peripheral Acknowledge
(PEACK) lines.

Bus Control Lines

The various bus control and data lines in most systems
would be coordinated by either a bus controller (such as the
82C288), or a bus controller subsection of an 80C286
oriented chip set. All requisite bus control timing between a
16MHz 80C286, and a 10MHz 80287 would then be handled
by these devices (typically with one wait-state inserted to
allow for the slower 80287-10).

Clock Lines

A system using a 16MHz 80C286 with a 10MHz 80287
requires separate clock lines for the two processors. The
32MHz system clock used by the 80C286-16 is too fast for
the 80287 ±10, necessitating a dedicated clock driver for the
80287. This clock driver should supply a 10MHz clock to the

80287 with a 1/3 duty cycle to allow the 80287-10 to run at
it’s full 10MHz capability. One solution for providing this clock
is the 82C84A-1, which meets this specification with either a
30MHz crystal at it’s crystal inputs, or a 30MHz external
frequency input to it’s EFl pin. In either case, a 10MHz 1/3
duty cycle clock is output to the 80287. Note that when using
a dedicated clock driver such as this, the CKM pin of the
80287 must be pulled up.

Status Lines

The 80C286 and 80287 communicate status information
with one another through four signals; the BUSY line, the
ERROR line, the peripheral request line (PEREQ), and the
PEACK line.

The BUSY and ERROR lines can be connected from the
80287 to a 80C286-oriented chipset, or from the 80287
directly to a 80C286. In the case of the chipset interface, the
signal timing between the 80287 and 80C286 is coordinated
by the chipset. In the case of the direct 80287 to 80C286
interface, the signal timing is handled by the 80C286, and,
since the signal flow direction is from the 80287 to the
80C286 (i.e. from the slower device to the faster device), no
additional hardware is required to achieve proper timing.

The peripheral request (PEREQ) line should be connected
directly from the 80287 to the 80C286, and again, since the
signal flow direction is from the 80287 to the 80C286, no
additional hardware is required.

The peripheral acknowledge (PEACK) line is normally con-
nected directly from the 80C286 to the 80287. In this case
the signal flow direction is from the 80C286 to the 80287 (i.e.
faster device to slower device), and the PEACK active time is
not guaranteed to meet the requirements of the slower
80287-10. Worst case timing for the 80C286-16 reveals that
PEACK output could be as short as 45.5ns (i.e. PEACK
(min) = 45.5ns). The 80287-10 input requirement is PEACK
(min) = 60ns. (min) = 45.5ns). The 80287-10 input require-

FIGURE 1. PEACK STRETCH CIRCUIT

(FROM 82C284 OR
EQUIVALENT)

RESET 1 2

U1 74AC04

3

1

2

3 4

U1 74AC04

PEACK

286_CLK

(FROM 80C286)

(32MHz SYSTEM
CLOCK)

J

C

K

PR Q

Q

4

1
5 R1 10K

+5V

6

5
U2 74AC112

LPEACK 2

1
U3 74AC08

GPEACK (TO 80287
PEACK)

3

Application Note March 1997 AN120.1



2

All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time with-
out notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see web site http://www.intersil.com

Sales Office Headquarters
NORTH AMERICA
Intersil Corporation
P. O. Box 883, Mail Stop 53-204
Melbourne, FL 32902
TEL: (407) 724-7000
FAX: (407) 724-7240

EUROPE
Intersil SA
Mercure Center
100, Rue de la Fusee
1130 Brussels, Belgium
TEL: (32) 2.724.2111
FAX: (32) 2.724.22.05

ASIA
Intersil (Taiwan) Ltd.
7F-6, No. 101 Fu Hsing North Road
Taipei, Taiwan
Republic of China
TEL: (886) 2 2716 9310
FAX: (886) 2 2715 3029

The proper PEACK timing can be achieved using the circuit
shown in Figure 1 comprised of a 74AC04, 74AC08, and a
74AC112. Referring to the timing diagram shown in Figure 2,
it can be seen that this circuit effectively “stretches” the
80C286’s PEACK output (in the form of GPEACK) to 72.7ns,
which satisfies the 80287-10 requirement.

The operation of the circuit shown in Figure 1 is as follows:

(1) The RESET signal (which is also applied to the 80C286)
is used to initialize the ‘AC112 to a known inactive state
(Q = 1).

(2) When the 80C286 asserts the PEACK signal, the gated
version of this signal (GPEACK) is asserted with minimal
delay (7.9ns through the ‘AC08).

(3) On the falling edge of the 80C286 CLK at the beginning
of Phase 2 of the TS cycle, the low state of PEACK is
clocked into the ‘AC112. This effectively holds GPEACK
low for an additional clock cycle longer than standard
PEACK timing.

(4) On the falling edge of the 80C286 CLK at the beginning
of phase 2 of the first TC cycle, the high state of PEACK
is clocked into the ‘AC112, which then causes GPEACK
to go inactive.

The net effect of this circuit operation is to extend the
80C286’s Peripheral Acknowledge signal to the 80287-10
sufficiently to meet it’s requirements.

FIGURE 2. PEACK CYCLE TIMING

φ1 φ2 φ1 φ2

TC TC (WAIT)TS

80C286
CLK

PEACK

GPEACK

PEACK
AT K

LPEACK

31.2ns
(32MHz)

1 18

3.2 25.9

2.7 23.9

2.7 9.4 2.7 9.4

1 20

4.9 17.3

72.7ns (MIN)

2.7 25.9

Application Note 120



Peripheral Devices and I/O
Peripheral devices are the means of communication between the CPU and the outside world. As
human beings, we are accustomed to the interface between ourselves and the devices. For
instance, we know that to operate a keyboard, we press the keys; to operate a mouse, we place a
hand over it and move it or press its buttons. These devices must also communicate with the
CPU. The information we enter via an input device (such as a keyboard or mouse) must
somehow get past the device and into the registers on the CPU or into memory where the CPU
can gain access to it. Similarly, the information that the CPU has must make its way from the
CPU to output devices such as a printer or the monitor. For this to happen, the CPU must be able
to detect when an input device has information for it. An output device must be able to signal to
the CPU when it is ready to process more information so that the CPU can send more
information to it. In other words, these devices need the CPU to perform services for them.

A primitive, but simple means for the CPU to determine when a device needs a service is to poll
the device. In essence, the CPU must periodically check the status of each device to see if it
needs attention. Typically, the CPU checks these devices in a particular order. For example, the
CPU may check a timer to see if it is time to switch programs in a multitasking system. If the
timer does not need service, it may check the monitor next, then the keyboard, then the mouse,
etc. This check is time consuming and often useless. Many times, there is no device that needs
service. The CPU has taken time away from program execution to check on devices that are idle.
Furthermore, it may be that a device does need service, but if it is one of the last in the ordering,
the CPU wastes time checking on all the devices that are "ahead" of it before it gets to the one
that needs attention.

Hardware Interrupts

A more efficient means of servicing the needs of peripheral devices is by having a device itself
signal to the CPU that it needs service. This allows the CPU to continue executing instructions
until a device needs service. In other words, the device interrupts the fetch/execute cycle when it
needs the attention of the CPU. This is the idea behind hardware interrupts. Hardware interrupts
are exceptions caused by hardware external to the CPU, such as peripheral devices or a reset
switch. Hardware interrupts occur because the external device needs the attention of the CPU in
order to carry out some task. For example, imagine that a communications program requests
information from a modem. The modem receives one bit at a time on an incoming telephone line,
since it is a serial device. These bits are stored in a buffer (an 8-bit register) until the modem
receives a complete character, rather than sending the bits to the CPU one bit at a time. Since the
data bus can carry 16 bits at once, it would be wasteful to make eight trips, using only one bit of
the data bus for each trip. When the buffer is full, then, the CPU must assist in transferring the
buffer contents to memory. That is, once the buffer fills up, the modem's controller must
generate an interrupt to alert the CPU and let it know that it needs a service (in this case,
emptying the data buffer).

Interrupts are asynchronous. That is, they occur at any arbitrary time (whenever a device actually
needs the intervention of the CPU); they are unpredictable. Rather than have the CPU
continually check each device to determine whether the device needs the CPU to perform some
service, the CPU can continue its work until a device calls for its attention.



Although a device can assert an interrupt at any time, the CPU usually only services (or
recognizes) interrupts between instructions. In other words, it does not stop in the middle of the
fetch/execute cycle to service an interrupt. This means there may be a delay between the time a
device generates an interrupt and the time the CPU processes it. We can expand the normal
fetch/execute cycle as follows:

Repeat

fetch instruction
decode instruction
fetch any memory operand necessary
execute instruction operation
write result to memory if necessary
check for hardware interrupt

Until Halt

Prioritizing Interrupts

The order in which the CPU checks devices with the polling scheme imposes a priority scheme
on the devices. Devices that the CPU checks first have a higher priority (they are more likely to
receive service). Imagine that two or more devices require service at the same time. The CPU
will service the device that it checks first before it services a device that it checks later. There is
also a priority scheme for interrupts, that is, the CPU considers some interrupt requests to be
more important than others.

Intel Interrupt Prioritization

The implementation of this prioritization is as follows. First, it is important to understand that
peripheral devices do not connect directly to the CPU. Instead, an interrupt controller (the
8259A chip) stands between the devices and the processor. This controller is a hardware device
that receives signals from up to eight different external devices. The chip has eight input lines,
each of which can connect to a peripheral device. The names of these input lines, IRQ0-IRQ7
(Interrupt ReQuest), correspond to the relative priorities of the devices attached to them, with the
device attached to line IRQ0 having the highest priority. The table below shows the standard
IRQ assignments. A device that requires the attention of the processor sends a signal on its line
to the interrupt controller. At any given moment, all, some, or none of the devices may require
the services of the CPU. If more than one device is sending a signal at the same time, the
controller selects the line with the highest priority (lowest numbered) of all the lines currently
active. Only the device connected to this line will actually be able to get the attention of the
CPU. The 8259A encodes the vector number corresponding to the selected signal and stores this
value in an internal register of the controller itself.

Priority IRQ Device

highest 0 System timer

1 Keyboard



2 Available/Secondary Interrupt Controller

3 Serial Communications Port (COM2)

4 Serial Communications Port (COM1)

5 Parallel Communications Port (LPT1)

6 Standard Floppy Disk Controller

lowest 7 Parallel Communications Port (LPT2)

The combination of the separate, prioritized, interrupt request lines and the operation of the
8259A controller chip allows the CPU to ignore at least temporarily some relatively unimportant
interrupts so that it can process more important ones instead. In addition, a programmer can
ensure that the CPU ignores even the interrupt requests that the 8259A sends. The FLAGS
register includes an "interrupt enable" bit. If this bit is zero, the CPU will ignore any incoming
device interrupts and we say that interrupts are disabled. If the bit is one, interrupts are enabled
and the CPU will process the interrupt. The CLI (clear interrupt flag) and STI (set interrupt flag)
instructions give programmers control over when the CPU should ignore interrupts. 

8259A Interrupt Controller ("IBM BIOS Technical Reference", 1984, IBM Corp.)

The interrupt flag in the FLAGs register gives programmers the option of enabling or disabling
all interrupts. Often this is sufficient, but in other cases, the programmer may need to disable
only certain  interrupts. The 8259A chip has an 8-bit internal register called the IMR (interrupt
mask register). Each bit in the register corresponds to one of the interrupt request levels. If bit n
in the mask is zero, IRQ line n is disabled.

In addition to the eight input lines of the 8259A controller, the microprocessor has one other
input line for interrupts. This is the NMI (NonMaskable Interrupt) line. As you can see in the



diagram above, several different types of hardware error conditions can trigger this interrupt
request. This line, unlike the IRQ lines, signal a hardware failure of some sort or a request from
the 8087 floating point processor and therefore it would be inappropriate to attach a normal
peripheral device to the NMI line. In a normal situation, the NMI enable line is always set,
meaning that if a device asserts an interrupt on one of these lines, the CPU will always receive it.
The NMI enable line is inactive only for diagnostic purposes.

The interrupt controller connects to the CPU directly via the INTR (interrupt) line. When one or
more devices are requesting an interrupt, the 8259A selects the highest priority device, as
mentioned, and encodes the corresponding vector number in one of its internal registers. It then
activates the INTR line. When the currently executing instruction finishes, the CPU checks the
status of the INTR line. If the line is active and the interrupt flag in the FLAGS register is set, the
CPU will process the interrupt. To signal to the interrupt controller that the CPU has recognized
the interrupt, it activates the INTA# (interrupt acknowledge) line. The bar over the top of the
signal name in the diagram (or the pound sign following it in the text) indicates that this signal
uses negative logic. This means that a value of zero (no voltage) means "true." As you see from
the diagram above, the CPU itself has no INTA# line. Instead, it negates (sets to negative logic
"true") three status lines, S0, S1, and S2. The lines connect to additional circuitry in the form of
the 8288 chip. When all three lines are zero, the 8388 sets its output line to zero as well, thus
indicating to the 8259A chip that the CPU has recognized the interrupt request. At this moment,
the 8259A "freezes" the priority by setting the ISR (In Service Register), so that if a device at the
same or lower priority device requests an interrupt before the CPU finishes processing the
current interrupt, the controller will not pass the new request on to the CPU until the end of the
exception processing state. Since the controller will normally activate the INTR line whenever
one of the IRQ lines is active, the CPU would continue to receive the interrupt request of the
device that it is already processing. The priority "freeze" ensures that the CPU recognizes an
interrupt only once.

An interesting feature of the 8259 family of interrupt controllers is that it is possible to cascade
multiple controllers to allow adding more interrupt priority levels and thus more devices.
Beginning with the 80286 family of processors, the machines have come standard with a pair of
controllers, thus allowing 15 different levels of interrupts. The diagram below shows the basic
connection scheme. Note that all of the interrupt levels from the slave controller have lower
priorities than that of the device connected to IRQ1, but higher than that of the device connected
to IRQ3.



Cascaded Interrupt Controllers ("IBM BIOS Technical Reference", 1984, IBM Corp.)

Motorola 680x0 Family

The Motorola family uses some of the same general concepts that we have seen with the Intel
family, but interrupt prioritization and recognition also includes some important differences. The
Motorola chips have a status register (SR) that corresponds in many ways to the Intel FLAGS
register. One important difference is that, instead of having a single "interrupt flag" bit, the SR
includes a set of three bits. These are the "PPL" bits,  PPL0, PPL1 and PPL2, where PPL is an
abbreviation for "Processor Priority Level."

Motorola 68000 Status Register

These three bits determine how important an interrupt must be before the CPU will attend to it.
This allows the CPU to ignore at least temporarily some relatively unimportant interrupts so that
it can process more important ones instead. Each type of peripheral device has an assigned
priority level (encoded with a number between 1 and 7). In general, the priority level of an
interrupt must be greater than the value in the interrupt mask before the CPU will process it.
Thus, if the value of the interrupt mask is 0, all interrupts are "enabled". In other words, no
matter what the priority level of an interrupt is, the CPU will recognize it. On the other hand, if
the value of the interrupt mask is 7, we say that interrupts are "disabled", meaning that the CPU
will process (almost) no interrupt.

These three bits correspond to three signal lines (wires) on the control bus, called , and
, where IPL is an abbreviation for "Interrupt Priority Level." These lines bear incoming

signals (high or low voltages) from a priority encoder. This encoder is a hardware device that
receives signals from up to seven different external devices. The encoder selects the highest
numbered incoming signal (just as with the Intel processor, devices may be requesting an
interrupt on more than one line). It then encodes the number of the selected signal as a 3-bit
binary number and outputs this number on the three IPL lines. In general, whenever the priority
encoder outputs a number that is greater than the current value of the interrupt mask, the CPU
will service the interrupt.



Motorola Interrupt Priority Encoder (from Orejel)

There is one exception to this. An interrupt with priority level 7 is a non-maskable interrupt
(NMI). Just as for Intel processors, NMIs are typically reserved for only a few situations,
generally entailing such catastrophic events as power failure and hardware error. Unlike Intel
NMIs, it is impossible to disable an NMI on this chip. Thus, even if the PPL bits are set to seven,
the CPU will always recognize a level 7 interrupt. We can express this relationship with the
following pseudo-code:

if ( : :  PPL2:PPL1:PPL0) or ( : :  = 7)
   process interrupt
else ignore any pending interrupt request

On the Motorola chip, once the CPU recognizes an interrupt request, it must set the interrupt
mask to the same level as the interrupt it is processing. Until the CPU can send a signal to the
device that is generating the interrupt to let it know that it is receiving the attention it is
requesting, it continues to assert the interrupt request. The CPU would accept the interrupt,
complete the actions for the exception processing state, then would detect the (same) interrupt
request. Since the priority level for the device is (still) higher than the processor priority level,
the CPU would again accept the interrupt. Obviously, this process would continue until there
was a supervisor stack overflow and the device would never receive service. To put it more
simply, the continuing interrupt request signal causes the device to "interrupt itself". The Intel
8259A controller solved this problem with the ISR. Since the Motorola machines have a priority
encoder, rather than a controller, the ISR register does not exist. If the Motorola CPU did not
reset the PPL bits, the requesting device would continue to request an interrupt. Setting the PPL
bits to the same level as the interrupt that the CPU is accepting means that the device's priorty
level is no longer high enough to merit a response from the CPU. This in turn allows the CPU to
service the device's request without further interruptions (unless a higher-priority device requests
an interrupt at this moment).

This scheme presents a problem in terms of NMIs, both for Intel and Motorola processors, since
it is impossible to set priority high enough to ignore them. For this reason, NMIs are edge-
sensitive or edge-triggered. This means that the CPU recognizes them only at a specific moment
in relationship to the signals that the system clock generates. This clock emits signal pulses,
alternating between high and low voltages at regular intervals. These transitions can be seen as



the "ticks" of the clock. The CPU recognizes an edge-sensitive interrupt only at the moment of
the transition from low to high voltage. Thus, the detection of this type of interrupt occurs within
one clock pulse of the moment it is asserted and does not occur again. This scheme prevents an
NMI from interrupting itself.

Edge-triggered interrupts

Multiple Simultaneous Exceptions

The discussion of interrupt requests and the response to them of the CPU is explains how a
processor can handle situations where more than one hardware device asserts an interrupt at the
same time. We also need to look at situations when other kinds of exceptions occur
simultaneously. First, we need to specify when the CPU recognizes the various types of
exceptions, since this determines what kinds of exceptions can occur at at the same time.

When the CPU Recognizes Various Kinds of Exceptions

Aside from remembering when the CPU detects hardware interrupts, you should not need to
memorize the times that the CPU recognizes software exceptions. If you realize that the CPU
will recognize an exception as soon as possible, you should be able to determine when it will
recognize a particular exception, just by reasoning about it. As a result, you should look at the
software exceptions in the following list as a means of testing your own reasoning, rather than as
a rote-learning task. It is also important to remember that ultimately, the CPU will recognize any
exception or interrupt at an instruction boundary (that is, between instructions). This is because
the occurrence of a software exception aborts any remaining steps in the fetch/execute cycle.

1. The CPU recognizes nonmaskable interrupts as soon as it detects the signal, as detailed
above.

2. The CPU recognizes peripheral device interrupts only between instructions.
3. The CPU recognizes bus and address errors such as faults or nonexistent addresses

immediately. Since they usually occur during (and as a result of) instruction execution
and since they make it impossible to complete execution of the current instruction, this
makes perfect sense. These exceptions can occur any time the CPU reads from or writes
to memory, so they may occur when the microprocessor fetches an instruction or an
operand or when it writes a result back to memory.

4. The CPU recognizes privilege violations, the INT and INTO instructions and illegal or
unimplemented instructions as soon as the it decodes the instruction, which is the same as
saying that it recognizes them as soon as it detects them.

5. The CPU recognizes a zero divide exception during the execute phase of the divide
instruction.

6. The CPU detects trace and other debug exceptions between instructions.
7. The CPU detects bounds violations during the execute phase of the BOUND instruction.



Understanding when the CPU recognizes different sorts of exceptions and interrupts will also
help you understand that there are actually very few exceptions that can occur truly
simultaneously. For instance, although there are a number of exceptions that the CPU detects
when it decodes an instruction, there is only one instruction at a time (ignoring pipelining). Thus,
you could never have a privilege violation and an unimplemented instruction at the same time.
Although bounds violations and zero divide exceptions both occur during the execute phase of
the fetch/execute cycle, it is impossible to be be both dividing and checking bounds
simultaneously. If we ignore pipelining, in fact, we can never have two software exceptions
occur at the same time unless one is a debug exception such as a trace. Finally, even though two
or more peripheral devices may assert an interrupt request simultaneously, the CPU will detect
only one of them, since the priority encoder ensures that only one interrupt request at a time will
reach the microprocessor.

Prioritizing exceptions

Even with the varying detection times for the different exceptions, certain exceptions can occur
simultaneously. For example, a trace exception and a peripheral device interrupt could occur
together, since the CPU detects both between instructions. In such a case, it is important to
understand what happens. First, not only is there a priority scheme that determines which
peripheral device interrupt will receive the CPU's attention first, there is also a priority scheme
that encompasses all exceptions and interrupts. You can find the priority scheme that appears
below on your reference card. You should also be aware that the INT instruction (not shown with
the other priorities) has higher priority than any other. This priority scheme is not so much meant
to rank exceptions in terms of "importance". Instead, the priorities are meant to ensure that the
behavior of the CPU is appropriate. In fact, it is probably more productive to imagine that a
higher priority means less important in most cases.

Priority Exception

Highest

Lowest

• trace
• breakpoint
• segment not present or general protection fault (for instructions)
• NMI
• maskable interrupt
• illegal instruction, privilege violation
• coprocessor not available
• segment not present, stack fault, general protection fault (for operands)
• alignment faults
• page faults

Note: These groups and priorities are listed on the back of your reference card just below the
Hardware Interrupt Assignment table on the center panel.

Examples of how two exceptions can occur at once:

1. a segment not present fault occurs during the operand fetch of an INT instruction (the
INT instruction has priority)



2. a hardware interrupt occurs during execution of an instruction while the trace bit is set
(the trace exception has priority)

When multiple exceptions occur simultaneously, the CPU enters the exception processing state
for the exception with the highest priority first. It completes the exception processing and then,
immediately, without executing any of the instructions for this handler, the CPU reenters the
exception processing state for the exception with the lower priority level. Once it has obtained
the vector number, it fetches the address of the exception handler for this exception and places it
in the CS and IP registers. Then it executes this handler. Once this routine completes, control
returns to the handler for the exception with the higher priority level. This process seems
counter-intuitive at first glance. You would expect the CPU to execute the handler for the higher
priority exception first. An examination of the second example above (the trace/interrupt
example) shows that scheme just outlined is the right way to handle this situation. If the CPU
executed the trace routine first, you would end up tracing the first instruction of the interrupt
handler, instead of the next instruction of the user program. A programmer using the debugger
(the most common use of the trace exception) would certainly be surprised to see a "foreign"
instruction that has nothing to do with his or her program.

Processing and Handling Interrupts

Although we will need to fill in details later, the following steps will give you a broad overview
of what happens when the CPU recognizes and processes an interrupt. Notice that these steps
include the normal exception processing state, but also include other actions that are not part of
the exception processing state.

1. The CPU saves state (the FLAGS register or SR and the return address)
2. The CPU (Motorola) or interrupt controller (Intel) disables interrupts of the same or

lower priority
3. The CPU clears the trace bit of the SR or FLAGS register (on the Motorola processor, SR

also contains a "mode" bit which the CPU sets to 1. This sets the processor operation to
supervisor mode to allow execution of "privileged" instructions, not available in normal
or user mode)

4. The CPU obtains the vector number for the interrupt, retrieves the address of the interrupt
service routine from the exception vector and places this address in the IP, thus
transferring control to the interrupt handler. At this point, we return to normal execution
state.

5. The handler identifies and services the condition that caused the device to request an
interrupt. The execution of the service routine will include the following (the programmer
of the handler must write code to perform these tasks):

a. Optionally disable interrupts. In some situations, a particular service routine must
be able to perform at least part of its task without interruption, in which case it would set
the interrupt mask or IMR to disable all interrupts.

b. Save scratch registers.
c. Identify the condition that caused the interrupt. A single device often generates

interrupts for various different reasons. For example, either moving a mouse or pressing
one of its buttons will cause it to generate an interrupt. Similarly, the interface for a
modem may generate an interrupt either when its buffer for incoming data is full or when
it has transmitted all the data in its buffer for outgoing data and is ready to have the buffer



refilled. These different situations require different actions on the part of the CPU.
d. Service the condition. Often, the interrupt service routine calls subroutines to

actually handle the cause of the interrupt. In this case the handler itself is a dispatch
routine that evaluates the cause of the interrupt and "delegates" the actual work to an
appropriate subroutine. On Motorola machines, since the ISR itself is running in
supervisor mode, any subroutines it calls will also run in supervisor mode and thus can
include instructions that would be illegal in user mode.

e. Enable interrupts if the handler disabled them in step a.
f. Restore scratch registers.
g. Execute an IRET (RTE, return from exception, on Motorola machines)

instruction. This pops the return address and FLAGS or SR back off the stack. By
popping the FLAGS or SR value, the CPU restores the condition codes that existed
before it recognized the interrupt. It also restores the original values of the control flags,
such as the trace, mode, and interrupt enable bits that processing or handling the
exception might have altered.

Obtaining the Vector Number

There are two methods of determining the vector number for software exceptions. The vector
number is a logical index into the vector table that allows the CPU to retrieve the starting address
of the exception handler. For most software-generated exceptions that are the result of error
conditions (such as divide-by-zero, overflow, address errors, privilege violations, etc.) the
circuitry that detects the error condition is also responsible for determining the vector number.
The mapping from exception to vector number is automatic, because it is hard-wired. The control
unit uses the bits of the instruction opcode itself as inputs to the circuitry that selects the proper
vector number.

The second method of obtaining the vector number also involves the bits of the instruction, but
in this case, it is not the opcode, but the operand that provides the vector number. The INT
instruction includes the interrupt number as an 8-bit immediate operand. This number is the
index into the vector table.

There are also two methods of obtaining the vector number for hardware interrupts, although
Intel chips use only one of them. Devices are either vectored, meaning the device supplies a
vector number to the CPU, or they are autovectored. Intel uses only vectored devices. We have
already seen that the 8259A selects the highest priority IRQ line currently active and places the
vector number for the attached device in an internal register. We saw earlier that the CPU sends
an interrupt acknowledge signal to the interrupt controller when it recognizes an interrupt
request. In fact, it actually sends two "pulses" on this line. The first pulse indicates that the CPU
has recognized the interrupt. The second pulse is a request for the 8259A to place the vector
number on the data bus to send it to the processor. We can summarize the Intel interrupt
acknowledge cycle (a special bus cycle, different from the normal read and write cycles) that
occurs as a response to an interrupt request as follows:

1. The CPU sets the status lines S0-S2 low (no voltage) to indicate a an interrupt
acknowledge cycle. This  activates the INTA# line to the 8259A for its first pulse.

2. The 8259A sets the highest priority bit of the ISR and sends a "call" code (CDh) on the
data bus to signal that it has received the INTA# pulse and is ready to send the vector



number.
3. The CPU responds with another INTA# pulse (S0-S2 low) to indicate its readiness to

receive the vector number.
4. The 8259A sends the preprogrammed vector number to the CPU on the data bus
5. The CPU latches the vector number and completes the exception processing state.

Motorola chips use both vectored and autovectored devices. If a device is autovectored, this
means that it uses a default vector number which depends on the priority level of the interrupt. A
special section of the Exception vector table contains the starting addresses of handlers for
autovectored devices  (vector numbers 25-31). When a hardware interrupt occurs, the MC680x0
also executes an . Unlike the Intel interrupt acknowledge cycle, the Motorola chip will also need
to determine which sort of interrupt is occurring and thus how it should obtain the vector
number. This cycle consists of the following steps:

1. The CPU first sets the function code lines, FC0-FC2, high to indicate what is called a
"CPU space cycle", i.e., a special function CPU cycle, as opposed to a normal instruction
execution. These lines are the counterpart to Intel's S0-S2 lines.

2. The CPU sets the address lines A16-A19 high to indicate that this space cycle is more
specifically an interrupt acknowledge cycle. The function code lines alone are not enough
to determine the exact type of bus cycle, as they are on the Intel chip.

3. The CPU places : :  on lines A1-A3 of the address bus and sets the remaining
address lines high

4. The CPU asserts , and (  is not actually used, since vector numbers are one
byte, but it is set for consistency with other types of CPU cycles (review the Motorola
read and write bus cycle description in Machine Overview if you have forgotten the
meaning of these signals).

5. The CPU sets the R/  signal to read
a. If the interrupt is vectored, the device places the vector number on the data bus and

asserts 
b. If the device is autovectored, the device asserts (Valid Peripheral Address). This

signals the CPU to calculate the vector number from the priority level of the device
(that is, the current value of : : ).

Context Switches and Interrupt Latency

It should be clear that processing interrupts takes time away from processing the instructions of
user programs. Conversely, we might also contend that processing user programs takes time
away from attending to peripheral devices! In either case, it is to our best interest to make
interrupt processing as fast as possible. We also would like to have peripheral device requests to
receive service as promptly as possible. This latter goal leads us to examine what factors affect
the amount of time it will take for a peripheral device to receive the attention of the CPU and
thus affect the performance characteristics of I/O operations. We learned about context switches
when we talked about multi-user or multitasking systems. At that time, we learned that context
switches entail saving the current CPU register values and restoring a set of values that belonged
to the process that was gaining access to the CPU. When we discuss context switches in terms of
interrupt processing, we are talking about a similar process. Context switches are again the action
of saving a state. This time, however, we are not changing from one user or program to another,
but from a normal execution state (typically a user program running in user mode) to another



normal execution state, but this time with the processor executing an interrupt handler.

We can define context switch time as the time it takes to perform a state save. Part of the state
save occurs before entering the handler, the rest occurs as a result of the first instruction(s) of the
service routine itself. More explicitly, context switch includes the following steps:

1. push the FLAGS or SR and the return address to the stack
2. set PPL2:PPL1:PPL0 to : :  (this keeps the request from causing further

interrupts until the device actually removes the source of the interrupt) or set the ISR
3. clear the trace bit and, on the Motorola chip, set the mode bit of the SR to 1
4. obtain the vector number so that the CPU can retrieve the address of the service routine
5. execute the first instruction(s) of the service routine to save scratch registers and

(optionally), to disable interrupts

Context switch time is one component necessary to understanding another important concept for
exception processing: interrupt latency. We can define interrupt latency as the time elapsed from
the appearance of the interrupt to the time that the processor starts to execute the handler. It
should be plain to you that the shorter interrupt latency is, the better performance will be. The
maximum interrupt latency that can occur depends on at least two factors. First and most obvious
is context switch time itself. The second factor is also fairly obvious if we realize that the
microprocessor only recognizes hardware interrupts (with the exception of NMIs) between
instructions. That means that if a device generates an interrupt just as the execution of an
instruction is beginning, it will have to wait until execution is complete before the CPU will
recognize it. Thus, in the simplest case, we can define the maximum interrupt latency possible
(and thus the worst performance possible) as:

WWWWMax Latency = execution time of slowest machine instruction + context switch time

It may not be quite this simple to define maximum interrupt latency, however. If we allow
processes or service routines to temporarily disable interrupts, the latency times may stretch out
considerably, since we also have to add the time for which interrupts are disabled. Thus a more
complete definition of maximum interrupt latency would be:

WWWWMax Latency = execution time of slowest machine instruction + context switch time +
maximum amount of time that interrupts are disabled

Communication Between I/O Devices and the CPU

Typically, I/O devices require additional hardware in the form of a controller or interface (often
an expansion card in the machine or a chip on the device itself or on the motherboard) to make
up the peripheral interface to resolve timing and format differences between the device and CPU.
For example, a keyboard has one line connected to each key. When you press a key, the wire
connected to that key carries voltage (the line is activated). To be useful to the CPU, this voltage
must be translated to an ASCII code. The translation is the task of the encoder/controller.



Keyboard and encoder/controller (from Wakerly)

Interfaces usually have their own sets of registers or ports. We have already mentioned some of
the registers on the 8259A interrupt controller. In general, controllers include one or more status
and control registers. A particular controller may also have more "special purpose" registers,
such as the IMR, ISR, and vector number registers we saw on the 8259A. Other common
registers are transmit and/or receive registers (buffers). The exact number and kind of registers
depends on the device. For example, a video controller may have a cursor register for
coordinates of the cursor.

Communication between the device and the CPU depends on two different (but equally
necessary) factors. First, are the control lines between the device and the CPU. Second, are the
I/O ports, which you should think of as memory locations, but which are typically registers, to
which both the device and the CPU have access. The two basic types of interface for these
registers or ports are isolated I/O and memory mapped I/O.

Isolated I/O

Isolated I/O requires special I/O instructions. Since they have less general requirements than
normal MOVE instructions and they require fewer memory accessing modes, they require less
circuitry to execute. As a result, they are faster than standard MOVE instructions. We can say
they are optimized for I/O. Typically, the mnemonics for these instructions are IN and OUT, as
they are for the Intel family of chips. True isolated I/O also requires a dedicated I/O bus, separate
from normal data and address buses. Having separate buses for I/O means that bus cycles can
occur simultaneously for conventional memory and I/O devices. This reduces bus contention and
provides better performance.



Isolated I/O (from Wakerly)

Intel machines incorporate a less expensive form of isolated I/O. They use a control line to select
between conventional memory and I/O ports rather than a dedicated I/O bus. The bus connects to
a bank of 8-bit I/O ports to which both the device and the CPU have access. The same bus also
connects to conventional memory. The ports are logically an extra bank of memory used strictly
for interfacing with external devices. In the Intel scheme, the M/  line selects which chip(s) will
be active, thus determining whether a particular address maps to standard memory or to the bank
of I/O ports. This means that there can be two separate address spaces. An address space is the
range of addresses possible given a particular width for the address bus. Having two separate
address spaces means that there are actually two different memory locations with address $0000,
two with address $0001, etc.; one in standard memory and another in the set of I/O ports.

Intel's Version of Isolated I/O, Without Dedicated Buses (from Orejel)

Memory Mapped I/O

Memory mapped I/O uses existing instructions. This implies that all the standard addressing
modes available for MOVE instructions are also available for accessing I/O ports. Memory



mapped I/O also uses the existing address and data buses. I/O ports in this scheme occupy part of
standard memory address space. A block of memory addresses is reserved for I/O; usually this
block is in the highest part of the address space. The conventional memory chips installed in the
computer do not include these addresses.

Memory-Mapped I/O (from Wakerly)

Memory-Mapped I/O on the MC68000 (contrast with Intel) (from Orejel)

Advantages of memory mapped I/O:

1. No special opcodes are necessary, making instruction set design simpler (the fewer the
opcode bit patterns, the easier it is to avoid ambiguity in these patterns).

2. No special circuitry is necessary. That is, there is no need for a dedicated bus. This means
it is cheaper.

3. There are more addressing modes available for accessing I/O ports.

Advantages of isolated I/O:

1. I/O ports occupy none of the memory address space. This provides more memory
addresses for user programs.



2. Interfaces (controllers) need less circuitry since they do not have to decode 24-bit
addresses (only one byte is needed to designate a unique I/O port).

3. I/O instructions are quicker because they are optimized for a single special purpose. As a
rule, the more general an operation must be, the more complex and thus the slower it will
be.

4. In the case of true isolated I/O with a dedicated bus, there is less bus contention, which
also leads to increased performance.

5. A machine with isolated I/O can emulate memory-mapped I/O if desired, with no loss of
performance over a true memory mapped system. Note that a system with memory
mapped I/O cannot emulate a machine with isolated I/O without a loss of performance
over a true isolated I/O machine because it inherently lacks the additional hardware and
the "extra" address space of a machine designed to use isolated I/O.

Caution: I/O ports (even in the case of memory mapped I/O) are not part of the physical RAM.
Ports are registers on an I/O interface chip. Unlike the CPU registers, however, they have no
names, but instead have addresses. With memory-mapped I/O, they are logically part of memory,
and their addresses are an extension of the addresses for standard RAM chips, but physically
they are on separate chips. With isolated I/O, they occupy a separate address space from standard
RAM, so obviously they must be on separate chips. In either case, it is well to remember that
standard RAM itself is essentially a large collection of slow "registers," accessed via an address,
rather than a name. If you look at a memory add-on card, you will notice that it includes several
separate chips. Each chip contains a portion of the total memory. If you think about it this way,
the notion of I/O ports should seem more intuitive.

Case study: ACIA (Asynchronous Communications Interface Adapter)

The ACIA is an interface for various serial communications devices (typically a modem), that
can both transmit and receive data, similar in function to the UART (Universal Asynchronous
Receiver Transmitter). Serial devices transmit or receive data one bit at a time over a single wire
(such as a telephone line). Several data bits in succession (usually seven or eight of them, to form
a single character) make up a single data item. If the ACIA is receiving data, it must collect the
bits until there are enough to send to the CPU as a character. If the ACIA is transmitting data, it
receives an entire character from the CPU and it must store the bits until it can send all of them
(one at a time). For this reason, it has a set of buffers, or memory locations (ports), connected to
the data bus that store the incoming or outgoing data bits. The ACIA is also connected to the
address bus so that the CPU can gain access to particular registers on the interface. Finally, the
ACIA is connected to an interrupt line and to the device itself.



Block Diagram of the ACIA (from Motorola MC6850 data sheet)

The ACIA has four onboard registers (ports):

1. the Transmit Data Register (TDR), which is a buffer for data that the ACIA must transmit
2. the Receive data register (RDR), which is a buffer for data that the ACIA is receiving
3. the 8-bit Control register (CR), which is a write-only register that the CPU uses to direct

the permitted actions of the interface*
4. 8-bit Status register (SR), which is a read-only register that the CPU uses to determine the

current status of the interface*
* write-only and read-only are always from the point of view of the CPU

Since the device both receives and transmits data, as programmers, we must solve the problem of
determining what sort of service the device is requesting when an interrupt occurs. The interrupt
service routine must use the control and status registers as a means of both controlling what we
want to allow the device to do and of determining the meaning of an interrupt issuing from the
ACIA. This will allow the interrupt service routine to determine what actions to perform. The
bits of these registers have particular meanings and, when taken collectively, give all the
information necessary for the ISR to perform the correct actions. The meanings of the bits appear
below.

CR: CR0-CR1 used to reset the device to its start-up state (among other purposes)
CR2-CR4 used to select the word length (7 or 8-bits), parity (odd or even) and stop bits

(1 or 2)
CR5-CR6 used as transmitter control bits. Via these bits, the CPU can either enable or

disable transmit interrupts
CR7 used as a receive control bit. Via this bit, the CPU can either enable or disable

receive interrupts
SR: SR0 (RDRF) Receive Data Register Full--cleared when CPU reads data from the RDR

SR1 (TDRE) Transmit Data Register Empty (that is, it is ready to send more data)--cleared
when the CPU writes data written into the TDR

SR2 (DCD) Data Carrier Detect--set when there is no carrier (that is, the device is



disconnected)
SR3 (CTS) Clear to Send--set by modem
SR4 (FE) Framing Error--set when a character was not properly preceded and followed

by a start and/or stop bits, which indicates an error in transmission of some
kind

SR5 (OVRN) OVerRuN--data was lost, that is, it was received but the CPU did not read it
before it was overwritten

SR6 (PE) parity error
SR7 (IRQ) Interrupt ReQuest pending--cleared by a read from the RDR or a write to the

TDR

The interrupt service routine uses information from the status register to determine what to do.
For example, if the ACIA has set SR0, then an interrupt is a request for the interrupt service
routine to read data. If the ACIA has set SR1, then an interrupt is a request for the handler to
write data. Note that other services may be necessary for error recovery, as indicated by other
bits in the SR.

References

Eggebrecht, L.C. Interfacing to the IBM Personal Computer. Indianapolis: Howard W. Sams and
Co. 1983.

Ford, William and William Topp. Assembly Language and Systems Programming for the
M68000 Family (Second Ed.). Lexington, MA: D.C. Heath, 1992.

Intel. i486 Microprocessor: Hardware Reference Manual. Intel Corporation, 1990.

86/88, 186/188 User's Manual: Programmer's Reference. Intel Corporation, 1985.

Intel486™ Microprocessor Family: Programmer's Reference Manual. Intel Corporation, 1992.

Intel. Microprocessor and Peripheral Handbook. Intel Corporation, 1983.

IBM. IBM BIOS Technical Reference. International Business Machines Corporation, 1984.

Motorola. M68000 8-/16-/32-Bit Microprocessors: User's Manual (Sixth Ed.). Englewood
Cliffs, NJ: Prentice Hall, 1989.

Motorola. Data Sheet for MC6850, MC68A50 and MC68B50, 1978.

Orejel, Jorge. Personal Communication.

Wakerly, John. Microcomputer Architecture and Programming: The 68000 Family. NY: Wiley,
1989.



www.dell.com

�

Dell™ PowerEdge™ Systems

MICROPROCESSOR 
UPGRADE GUIDE



Notes, Notices, Cautions, and Warnings
Throughout this guide, blocks of text may be accompanied by an icon and printed in 
bold type or in italic type. These blocks are notes, notices, cautions, and warnings, 
and they are used as follows:

NOTE: A NOTE indicates important information that helps you make better use of your 
computer system.

NOTICE: A NOTICE indicates either potential damage to hardware or loss 
of data and tells you how to avoid the problem.

CAUTION: A CAUTION indicates a potentially hazardous situation which, if 
not avoided, may result in minor or moderate injury.

WARNING: A WARNING indicates a potentially hazardous situation which, 
if not avoided, could result in death or serious bodily injury.

___________________

Information in this document is subject to change without notice.

© 1999-2000 Dell Computer Corporation. All rights reserved. 

Reproduction in any manner whatsoever without the written permission of 
Dell Computer Corporation is strictly forbidden.

Trademarks used in this text: Dell, the DELL logo, and PowerEdge are trademarks of 
Dell Computer Corporation; Intel and Pentium are registered trademarks of Intel Corporation.

Other trademarks and trade names may be used in this document to refer to either the entities 
claiming the marks and names or their products. Dell Computer Corporation disclaims any 
proprietary interest in trademarks and trade names other than its own.

January 2000     P/N 9661P  Rev. A08



Contents

Precautionary Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2
Before You Begin  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3

Recording the System Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3
Updating the ESM Firmware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3
Updating the BIOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3
Saving RCU Configuration Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4

Installing Upgrade Microprocessors in the PowerEdge 1300 . . . . . . . . . . . . . . . . . 1-4
Installing Upgrade Microprocessors in the PowerEdge 2300 . . . . . . . . . . . . . . . . . 1-6
Installing Upgrade Microprocessors in the PowerEdge 2400 . . . . . . . . . . . . . . . . . 1-8
Installing Upgrade Microprocessors in the PowerEdge 4300 . . . . . . . . . . . . . . . . 1-10
Installing Upgrade Microprocessors in the PowerEdge 4350 . . . . . . . . . . . . . . . . 1-13
Removing the Microprocessors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-14
Removing and Replacing the Guide Brackets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-15
Removing and Replacing the Cooling Shroud . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-17

Removing the Cooling Shroud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-17
Replacing the Cooling Shroud  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-18

Installing the Upgrade Microprocessor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-18
Installing a New Cooling Shroud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-20
Reassembling and Checking the System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-20

Figures Figure 1-1. Removing the System Board Assembly . . . . . . . . . . . . . . . . . . . . . . 1-7
Figure 1-2. Removing an SEC Cartridge and Heat Sink . . . . . . . . . . . . . . . . . . . . 1-9
Figure 1-3. Installing an SEC Cartridge and Heat Sink Assembly. . . . . . . . . . . . 1-10
Figure 1-4. Removing the System Board Mounting Tray. . . . . . . . . . . . . . . . . . 1-12
Figure 1-5. Removing the System Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-13
Figure 1-6. Removing the Microprocessor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-15
Figure 1-7. Removing the Old Guide Bracket Assembly . . . . . . . . . . . . . . . . . . 1-16
Figure 1-8. Installing the New Guide Bracket Assembly . . . . . . . . . . . . . . . . . . 1-16
Figure 1-9. Removing the Cooling Shroud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-18
Figure 1-10. Installing the Microprocessor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-19
Figure 1-11. Installing a New Cooling Shroud Assembly . . . . . . . . . . . . . . . . . . . 1-20
iii



iv



Dell™ PowerEdge™ Systems — 
Microprocessor Upgrade Guide

WARNING: The power supplies in a PowerEdge system may produce high 
voltages and energy hazards, which can cause bodily harm. Only trained 
service technicians are authorized to remove the computer cover and 
access any of the components inside the computer. For more information, 
see “Safety Instructions” in your system’s Installation and Troubleshooting 
Guide.

This document provides procedures for upgrading the Intel® Pentium® II or III
microprocessors with either Intel Pentium II or Pentium III microprocessors in the 
following Dell PowerEdge systems:

• PowerEdge 1300

• PowerEdge 2300

• PowerEdge 2400

• PowerEdge 4300

• PowerEdge 4350

Installing one or more microprocessors in your server may involve the following 
activities:

• Verifying the basic input/output system (BIOS) revision and saving the current 
configuration data

• Accessing the system board (see your system’s Installation and Troubleshooting 
Guide)

• Replacing the system board mounting plate or tray (PowerEdge 2300 and 4300)

• Installing the upgrade microprocessor

• Installing the cooling shroud (if applicable)

• Reassembling and checking the system

The upgrade procedure requires a #2 Phillips screwdriver. In addition, you should use 
a wrist grounding strap for electrostatic discharge (ESD) protection. Read the safety 
instructions in the following section.
support.dell.com Dell PowerEdge Systems — Microprocessor Upgrade Guide 1-1



The contents of your kit will vary, depending on the PowerEdge system and the 
number of microprocessors you are installing. Each kit will have one or more new 
Pentium II or Pentium III microprocessor(s), diskettes containing the Resource 
Configuration Utility (RCU), BIOS, embedded server management (ESM) firmware, 
and diagnostics. Also included, for some system models, is a cooling shroud and 
mounting hardware or a replacement system board mounting plate or tray.

Precautionary Measures
Before you perform any of the procedures in this document, take a few moments to 
read the following warning for your personal safety and to prevent damage to the 
computer system from ESD.

WARNING FOR YOUR PERSONAL SAFETY AND PROTECTION OF THE 
EQUIPMENT

Before you start to work on the computer, perform the following steps in the 

sequence listed:

1. Turn off your computer and any devices.

2. Ground yourself by touching an unpainted metal surface on the chassis, such as 
the metal around the card-slot openings at the back of the computer, before 
touching anything inside your computer. 

While you work, periodically touch an unpainted metal surface on the computer 
chassis to dissipate any static electricity that might harm internal components.

3. Disconnect your computer and devices from their power sources. Also, discon-
nect any telephone or telecommunication lines from the computer.

Doing so reduces the potential for personal injury or shock.

In addition, take note of these safety guidelines when appropriate:

• When you disconnect a cable, pull on its connector or on its strain-relief loop, 
not on the cable itself. Some cables have a connector with locking tabs; if 
you are disconnecting this type of cable, press in on the locking tabs before 
disconnecting the cable. As you pull connectors apart, keep them evenly aligned 
to avoid bending any connector pins. Also, before you connect a cable, make sure 
both connectors are correctly oriented and aligned. 

• Handle components and cards with care. Don’t touch the components or 
contacts on a card. Hold a card by its edges or by its metal mounting bracket. 
Hold a component such as a microprocessor chip by its edges, not by its pins.

If your system has two microprocessors installed, the secondary microprocessor 
must be the same type and have the same operating frequency and cache size as the 
primary microprocessor. For example, if the system you are installing has a 
500-megahertz (MHz) Pentium III primary microprocessor, the secondary 
microprocessor must also be a 500-MHz Pentium III microprocessor. 
1-2 Dell PowerEdge Systems — Microprocessor Upgrade Guide



NOTICE: Do not attempt to operate a system with one Pentium II 
microprocessor and one Pentium III microprocessor. Damage to one or both 
of the microprocessors and/or the system board may occur.

NOTICE: All empty microprocessor connectors must be populated with a termi-

nator card. If your system supports more than one microprocessor and you are 

not installing the maximum number of microprocessors, the remaining micro-

processor connectors must have a terminator card.

Before You Begin
Before shutting down your system, perform these preliminary steps:

• Record the system configuration screens.

• Update the ESM firmware.

• Update the BIOS (if necessary).

• Use the RCU diskette (provided in the kit) to save the RCU configuration settings 
(see your User’s Guide for complete information).

Recording the System Configuration
View the system configuration screens in the System Setup program and make a 
record of the settings. 

Updating the ESM Firmware
If an ESM firmware diskette is included with your kit, update your ESM firmware with 
the version contained on that diskette by performing the following steps. The latest 
version of the ESM firmware is available online at http://support.dell.com.

1. Insert the ESM firmware diskette provided in the upgrade kit into the diskette 
drive.

2. Reboot the system.

3. After the system completes the boot routine, follow the instructions on the 
screen.

4. After the ������������	�
������	�
��	message appears on the screen, 
remove the ESM firmware diskette from the diskette drive and follow the instruc-
tions on the screen to reboot the system.

Updating the BIOS
If a BIOS diskette is included with your kit, update your BIOS with the version 
contained on that diskette by performing the following steps. The latest version of 
the BIOS is available online at http://support.dell.com.

1. Insert the BIOS diskette provided in the upgrade kit into the diskette drive.

2. Reboot the system.
support.dell.com Dell PowerEdge Systems — Microprocessor Upgrade Guide 1-3



3. After the system completes the boot routine, follow the instructions on the 
screen.

4. After the ����	���	����	������������	�������� message appears on 
the screen, remove the BIOS diskette from the diskette drive and follow the 
instructions on the screen to reboot the system.

Saving RCU Configuration Settings
Use the RCU to save the current system configuration settings by performing the 
following steps:

1. Insert the RCU diskette into the diskette drive and reboot the system.

2. When the welcome screen appears, press <Enter>. 

The main menu appears.

3. Select Step 5: Save and Exit, and then follow the online instructions to save the 
current system configuration information.

NOTE: The RCU recognizes microprocessors operating at 450 MHz and faster. The lat-
est version of the RCU is available online at http://support.dell.com.

Installing Upgrade Microprocessors in the 
PowerEdge 1300
To upgrade to Pentium II or Pentium III microprocessors in the PowerEdge 1300, per-
form the following steps:

1. Access the system board, which involves the following steps:

a. Disconnecting power and peripheral cables.

b. Removing the covers.

c. Rotating the power supply. 

See your system Installation and Troubleshooting Guide for instructions.

2. Remove the microprocessors.

See “Removing the Microprocessors,” found later in this document.

3. Remove and replace the guide brackets.

See “Removing and Replacing the Guide Brackets,” found later in this document.

4. Remove the cooling shroud.

See “Removing and Replacing the Cooling Shroud,” found later in this document.
1-4 Dell PowerEdge Systems — Microprocessor Upgrade Guide



5. Install the upgrade microprocessor.

See “Installing the Upgrade Microprocessors” found later in this document.

6. Replace the cooling shroud. 

See “Removing and Replacing the Cooling Shroud,” found later in this document.

If the upgrade kit comes with a new cooling shroud, you must install the new 
cooling shroud. See “Installing a New Cooling Shroud,” found later in this 
document.

7. Reassemble and check the system, as follows:

a. Rotate the power supply back into position, making sure that the securing 
tab snaps into place.

b. Replace the covers and front bezel. Reconnect your computer and 
peripherals to their power sources and turn them on.

As the system boots, it detects the presence of the new microprocessor and 
automatically changes the system configuration information in the System 
Setup program.

NOTE: After you remove and replace the cover of a PowerEdge 1300 system, the 
chassis intrusion detector causes the following message to be displayed at the 
next system start-up: 

������	�
�� 	!��	� ���
����	 ��
���"

c. Enter the System Setup program and confirm that the top line in the system 
data area correctly identifies the installed microprocessor(s). By default, the 
serial numbers of Pentium III microprocessors are not displayed. See the 
procedures in "Using the System Setup Program" in your User's Guide for 
accessing and modifying entries in the System Setup screens.

d. Reset the chassis intrusion detector while in the System Setup program by 
changing Chassis Intrusion to Not Detected. 

NOTE: If a setup password has been assigned by someone else, contact your 
network administrator for information on resetting the chassis intrusion detector. 

e. Run the Dell Diagnostics to verify that the new microprocessor is operating 
correctly. 

See your User’s Guide and your computer Installation and Troubleshooting 
Guide for additional information on running the Dell Diagnostics and 
troubleshooting any problems that may occur.
support.dell.com Dell PowerEdge Systems — Microprocessor Upgrade Guide 1-5



Installing Upgrade Microprocessors in the 
PowerEdge 2300
To upgrade to Pentium II or Pentium III microprocessors in the PowerEdge 2300, 
perform the following steps.

WARNING: The power supplies in this computer system produce high 
voltages and energy hazards, which can cause bodily harm. Only trained 
service technicians are authorized to remove the computer cover and 
access any of the components inside the computer.

NOTICE: Observe the safety information given in “Precautionary Mea-
sures” and “Before You Begin” to ensure that the system configuration 
screens are recorded and the system is properly shut down and discon-
nected from all power sources.

NOTES: If you are installing a 600 MHz (or greater) microprocessor in your 
PowerEdge 2300, the system board mounting plate must be replaced. A replacement 
mounting plate is provided with the upgrade kit.

If you are upgrading a PowerEdge 2300 with one or two microprocessors with an 
operating frequency less than 600 MHz, you do not need to replace the system board 
mounting plate.

1. Access the system board, which involves the following steps: 

a. Disconnecting power and peripheral cables.

b. Removing the covers.

c. Removing the front bezel.

d. Removing the cooling fan shroud.

e. Replacing the system board mounting plate or tray. Applies only when install-
ing 600 MHz or greater microprocessors.

See your system Installation and Troubleshooting Guide for specific instructions, 
if needed.

2. If you are installing a 600 MHz or greater microprocessor, replace the system 
board mounting plate as follows.

a. Unlock and remove the front bezel.

b. Remove the right- and left-side computer covers.

c. Record the location and disconnect all external peripheral cables from their 
connectors on the back of the computer.

d. Record the location of any internal expansion card cables, and then record 
the slot number assignments and remove all the expansion cards. 

Place the expansion cards in antistatic bags or on a grounded antistatic mat 
or other antistatic surface.
1-6 Dell PowerEdge Systems — Microprocessor Upgrade Guide



e. Record the locations and disconnect all internal cables attached to the sys-
tem board.

f. At the left side of the system, locate and remove the three screws that 
secure the system board and mounting plate to the chassis (see Figure 1-1).

Figure 1-1.  Removing the System Board Assembly 

g. Slide the system board and mounting plate assembly forward about 
12.7 millimeters (mm) (0.5 inch), rotate it away from the top of the chassis, 
and lift it out of the chassis.

h. Lay the assembly with the system board facing up on a flat surface.

i. Remove the mounting screw from the mounting plate.

j. Slide the system board about 6.3 mm (0.25 inch) toward the front (left edge 
of the mounting plate) and lift the system board up and away from the 
mounting plate. 

3. To install the replacement mounting plate assembly (provided in your upgrade kit) 
in your PowerEdge 2300 system, perform the preceding steps in reverse order.

mounting screws (3)

system board and mounting-
plate assembly
support.dell.com Dell PowerEdge Systems — Microprocessor Upgrade Guide 1-7



4. Remove the microprocessor.

See “Removing the Microprocessors,” found later in this document.

5. Remove the cooling shroud.

See “Removing and Replacing the Cooling Shroud,” found later in this document.

6. Install the upgrade microprocessor.

See “Installing the Upgrade Microprocessor,” found later in this document.

7. Replace the cooling shroud. 

See “Removing and Replacing the Cooling Shroud,” found later in this document.

If the upgrade kit comes with a new cooling shroud, you must install the new 
cooling shroud. See “Installing a New Cooling Shroud,” found later in this 
document.

8. Reassemble and check the system.

See “Reassembling and Checking the System,” found later in this document.

Installing Upgrade Microprocessors in the 
PowerEdge 2400
To upgrade to a faster speed Pentium III microprocessor in the PowerEdge 2400, per-
form the following steps.

NOTE: The microprocessor is contained within a single-edge contact (SEC) cartridge 
and heat sink assembly. The system board has two guide bracket assemblies, which 
hold the SEC cartridge and heat sink assemblies. If your system has only one micro-
processor, the secondary guide bracket assembly connector must contain a 
terminator card. 

NOTICE: The terminator card must be rated to run at 133 MHz. 

NOTE: If you are adding a microprocessor, the secondary microprocessor must have 
the same operating frequency as the first. For example, if the system has a 500-MHz 
primary microprocessor, your secondary microprocessor must also be a 500-MHz 
microprocessor.

1. Remove the right-side computer cover. 

See your system Installation and Troubleshooting Guide for specific instructions, 
if needed.

2. Remove the SEC cartridge and heat sink assembly, as follows.

CAUTION: The SEC cartridge and heat sink assembly can get extremely 
hot during system operation. Be sure the assembly has had sufficient 
time to cool before you touch it. 
1-8 Dell PowerEdge Systems — Microprocessor Upgrade Guide



CAUTION: When handling the SEC cartridge and heat sink assembly, 
take care to avoid sharp edges on the heat sink. 

NOTICE: See "Precautionary Measures," found earlier in this document 
for important information to prevent damage to the system from ESD. 

a. Remove the cooling shroud. 

See “Removing and Replacing the Cooling Shroud,” found later in this 
document.

b. Pull the tab on one side of the guide bracket away from the end of the heat 
sink and pull up slightly on the cartridge. 

c. Deflect the tab on the other end of the guide bracket to disengage the tab on 
the heat sink, and then lift the cartridge and heat sink assembly away from 
the guide bracket assembly (see Figure 1-2). 

Figure 1-2.  Removing an SEC Cartridge and Heat Sink

thumbscrew 
retention pins (2)

threaded stud
support.dell.com Dell PowerEdge Systems — Microprocessor Upgrade Guide 1-9



3. Install the replacement SEC cartridge and heat sink assembly as follows:

a. Remove the terminator card or old SEC cartridge from the guide bracket 
assembly. 

b. Slide the SEC cartridge into the guide bracket assembly, and firmly seat the 
assembly until the tabs on the guide bracket assembly snap into place over 
the ends of the heat sink (see Figure 1-3). 

Figure 1-3.  Installing an SEC Cartridge and Heat Sink Assembly

4. Reassemble and check the system.

See “Reassembling and Checking the System,” found later in this document. 

Installing Upgrade Microprocessors in the 
PowerEdge 4300
To upgrade to Pentium II or Pentium III microprocessors in the PowerEdge 4300, per-
form the following steps.

NOTES: If you are installing a 600-MHz (or greater) microprocessor in your 
PowerEdge 4300, the system board mounting tray must be replaced. A replacement 
mounting tray is provided with the upgrade kit.

thumbscrew 
retention pins (2)

threaded stud
1-10 Dell PowerEdge Systems — Microprocessor Upgrade Guide



If you are upgrading a PowerEdge 4300 with a microprocessor with an 
operating frequency less than 600 MHz, you do not need to replace the system board 
mounting tray.

1. Remove the system board mounting tray as follows.

WARNING: The power supplies in this computer system produce high 
voltages and energy hazards, which can cause bodily harm. Only 
trained service technicians are authorized to remove the computer 
cover and access any of the components inside the computer.

NOTICE: Observe the information given in “Precautionary Measures” 
and “Before You Begin” to ensure that the system configuration screens 
are recorded and the system is properly shut down and disconnected 
from all power sources.

a. Unlock and remove the computer cover.

For instructions, see the Installation and Troubleshooting Guide. 

b. To access the system board, release the system-board tray latch at the back 
lower corner of the tray (see Figure 1-4) and pull the tray open to the first 
stop position (or service position). 

NOTE: From the service position, if you depress and release the tray latch and 
pull the tray out again, you will come to a second stop position that is used by 
manufacturing. To remove the tray completely from any position, depress and 
hold the latch, and pull the tray out of the chassis.

c. Record the location of any internal expansion card cables, record the slot 
number assignments, and then remove all the expansion cards. 

Place the expansion cards in antistatic bags or on a grounded antistatic mat 
or other antistatic surface.

d. Record the locations and disconnect all internal cables attached to the sys-
tem board.

e. Press and hold the tray release latch as you slide the system board and 
mounting tray assembly completely out of the chassis.

f. Lay the tray assembly with the system board facing up on a flat surface.

g. Remove the mounting screw from the mounting tray.

h. Slide the system board 6.3 mm (0.25 inch) toward the front (left edge of the 
mounting tray, as shown in Figure 1-5) and lift the system board away from 
the mounting tray. 

2. To install the upgrade mounting tray assembly (provided in your upgrade kit) in 
your PowerEdge 4300 system, perform the preceding steps in reverse order.

3. Remove the microprocessors.

See “Removing the Microprocessors,” found later in this document.
support.dell.com Dell PowerEdge Systems — Microprocessor Upgrade Guide 1-11



4. Replace the guide brackets.

See “Removing and Replacing the Guide Brackets,” found later in this document.

5. Install the upgrade microprocessor.

See “Installing the Upgrade Microprocessor,” found later in this document.

6. Reassemble and check the system.

See “Reassembling and Checking the System,” found later in this document.

Figure 1-4.  Removing the System Board Mounting Tray

system 
board tray

tray 
latch
1-12 Dell PowerEdge Systems — Microprocessor Upgrade Guide



Figure 1-5.  Removing the System Board

Installing Upgrade Microprocessors in the 
PowerEdge 4350
To upgrade to Pentium II or Pentium III microprocessors in the PowerEdge 4350, per-
form the following steps:

1. Access the system board, which involves the following steps:

a. Disconnecting power and peripheral cables.

b. Removing the covers.

c. Removing the front bezel.

d. Removing the cooling fan shroud.

See your system Installation and Troubleshooting Guide for specific instructions, 
if needed.

thumbscrew

inner card-guide 
brackets (6)
support.dell.com Dell PowerEdge Systems — Microprocessor Upgrade Guide 1-13



2. Remove the microprocessors.

See “Removing the Microprocessors,” found later in this document.

3. Remove and replace the guide brackets.

See “Removing and Replacing the Guide Brackets,” found later in this document.

4. Install the upgrade microprocessor.

See “Installing the Upgrade Microprocessor,” found later in this document.

5. Reassemble and check the system. 

See “Reassembling and Checking the System,” found later in this document.

Removing the Microprocessors
To remove the current microprocessors from the system board, perform the following 
steps.

CAUTION: The microprocessor and heat sink assembly can get extremely 
hot during system operations. Be sure that it has had sufficient time to cool 
before touching it.

CAUTION: When handling the microprocessor and heat sink assembly, take 
care to avoid sharp edges on the heat sink.

1. Unscrew and remove the two large thumbscrew retention pins that secure the 
microprocessor to the system board. 

2. Press the microprocessor’s release latches inward until they snap into position 
(see Figure 1-6). 

NOTE: Figure 1-6 illustrates the SEC cartridge. The heat sink on the single-edge 
connector cartridge 2 (SECC2) package is different. 

3. Grasp the microprocessor assembly firmly and pull it away from the 
microprocessor guide bracket assembly. 

You must use up to 15 pounds (lb) of force to disengage the microprocessor from 
the connector.
1-14 Dell PowerEdge Systems — Microprocessor Upgrade Guide



Figure 1-6.  Removing the Microprocessor

Removing and Replacing the Guide 
Brackets
To remove the guide bracket assembly, perform the following steps:

1. Remove any terminator card installed in the guide bracket.

2. Remove any microprocessor assembly installed in the guide bracket.

3. Use a #2 Phillips screwdriver to loosen the four captive nuts that secure the 
guide bracket assembly to the system board (see Figure 1-7).

4. Lift up the assembly to remove it from the four threaded posts.

To install the new guide bracket assembly, perform the following steps:

1. Position the guide bracket over the four threaded posts (see Figure 1-8). 

You can install the guide bracket only one way (the captive nuts will not align with 
the threaded posts if installed incorrectly).

2. Tighten the four captive nuts using a #2 Phillips screwdriver.

release latches (2)

thumbscrews (2)

heat sink

microprocessor
support.dell.com Dell PowerEdge Systems — Microprocessor Upgrade Guide 1-15



Figure 1-7.  Removing the Old Guide Bracket Assembly 

Figure 1-8.  Installing the New Guide Bracket Assembly 

guide bracket 
assembly

captive nuts (4)

threaded posts (4)

system board
connector

guide 
bracket 
assembly

captive nuts (4)

threaded posts (4)

system board
connector
1-16 Dell PowerEdge Systems — Microprocessor Upgrade Guide



Removing and Replacing the Cooling 
Shroud
The plastic cooling shroud inside the system is used to improve airflow over the 
microprocessors. You may need to remove this shroud to access certain components 
on the system board.

Removing the Cooling Shroud
To remove the cooling shroud, perform the following steps.

NOTICE: Observe the information given in “Precautionary Measures” and 
“Before You Begin” to ensure that the system configuration screens are 
recorded and the system is properly shut down and disconnected from all 
power sources.

1. Turn off the system, including any attached peripherals, and disconnect the power 
cable from the electrical outlet. 

2. Remove the right-side computer cover. 

3. Unscrew and remove the two retention pins (see Figure 1-9). 

4. Remove the shroud by lifting the end of the shroud closest to the microproces-
sor(s) until the opposite end of the shroud disengages from the cooling fan on 
the system back panel. 
support.dell.com Dell PowerEdge Systems — Microprocessor Upgrade Guide 1-17



Figure 1-9.  Removing the Cooling Shroud

Replacing the Cooling Shroud
To replace the cooling shroud, perform the following steps: 

1. Hook the upper edge of the large opening on the end of the cooling shroud over 
the top of the cooling fan on the system back panel. 

2. Lower the other end of the shroud into place over the microprocessor(s). 

3. Secure the shroud by reinstalling the two retention pins. 

Installing the Upgrade Microprocessor
NOTICE: Do not attempt to operate a system with one Pentium II 
microprocessor and one Pentium III microprocessor. Damage to one or both 
of the microprocessors and/or the system board may occur.

NOTICE: All empty microprocessor connectors must be populated with a 
terminator card. If your system supports more than one microprocessor 
and you are not installing the maximum number of microprocessors, the 
remaining microprocessor connectors must have a terminator card.

thumbscrew 
retention pins (2)
1-18 Dell PowerEdge Systems — Microprocessor Upgrade Guide



To install an upgrade microprocessor, perform the following steps:

1. Insert the new microprocessor into the system board connector (see 
Figure 1-10).

2. Press the microprocessor firmly into its connector until it is fully seated and the 
latches snap into place. 

You must use up to 25 lb of force to fully seat the microprocessor.

For Pentium III microprocessors, you do not need to change the jumper settings 
on the system board. 

For Pentium II microprocessors, set the speed jumper to the speed of the 
microprocessor.

Upgrade microprocessors have a heat sink with a notch for engaging a threaded 
stud on the system board, as shown in Figure 1-10. 

3. Repeat steps 1 and 2 for your second upgrade microprocessor or to install a 
terminator card.

Figure 1-10.  Installing the Microprocessor

install this retention 
pin after the cooling 
shroud is installed
on PowerEdge 2300 
systems only

threaded stud
support.dell.com Dell PowerEdge Systems — Microprocessor Upgrade Guide 1-19



Installing a New Cooling Shroud
If a cooling shroud came with your microprocessor upgrade kit and your system is a 
PowerEdge 1300 or PowerEdge 2300, you must install the cooling shroud provided in 
the upgrade kit. 

To install a cooling shroud, perform the following steps:

1. Carefully position the shroud into place with the square opening over the bulk-
head fan and the top of the shroud’s other end resting over the microprocessors, 
as shown in Figure 1-11.

2. Gently squeeze the tabs to compress the latch as you lower the shroud on the 
microprocessor’s heat sink and allow it to snap securely into place on the heat 
sink(s).

Figure 1-11.  Installing a New Cooling Shroud Assembly

Reassembling and Checking the System
To reassemble the system and perform verification checks, perform the following 
steps.

NOTE: The following procedures apply to PowerEdge 2300, 2400, 4300, and 4350 
systems. For PowerEdge 1300 systems, see step 7 under “Installing Upgrade Micro-
processors in the PowerEdge 1300,” found earlier in this document.

tabs (4)
1-20 Dell PowerEdge Systems — Microprocessor Upgrade Guide



1. Close the computer panel doors (for PowerEdge 4350 systems only) or replace 
the covers and front bezel, and reconnect your computer and peripherals to their 
power sources and turn them on.

As the system boots, it detects the presence of the new microprocessor and 
automatically changes the system configuration information in the System Setup 
program. The following message appears:

���
��	� 
����
 	������	

2. Enter the System Setup program and confirm that the top line in the system data 
area correctly identifies the installed microprocessor(s). By default, the serial 
numbers of Pentium III microprocessors are not displayed. See the procedures in 
"Using the System Setup Program" in your User's Guide for accessing and modi-
fying entries in the System Setup screens.

Reset the chassis intrusion detector while in the System Setup program by 
changing Chassis Intrusion to Not Detected.

NOTE: If a setup password has been assigned by someone else, contact your 
network administrator for information on resetting the chassis intrusion detector. 

3. Run the Dell Diagnostics to verify that the new microprocessor is operating 
correctly. 

See your User’s Guide and your Installation and Troubleshooting Guide for addi-
tional information on running the Dell Diagnostics and troubleshooting any 
problems that may occur.
support.dell.com Dell PowerEdge Systems — Microprocessor Upgrade Guide 1-21



1-22 Dell PowerEdge Systems — Microprocessor Upgrade Guide


