
Shikha sharma RCET,Bhilai 1

What is Artificial intelligence?

• It is the science and engineering of
making intelligent machines, especially
intelligent computer programs. It is related
to the similar task of using computers to
understand human intelligence.

• ―Intelligence implies that a machine must
be able to adapt to new situations‖

Shikha sharma RCET,Bhilai 2

– Ability to learn

– Ability to think abstractly

– To solve problems

– To percieve relationship

– To adjust to one’s environment

– To profit by experience

Shikha sharma RCET,Bhilai 3

• Woodworth  intelligence is a way of acting.

• Woadrow intelligence is an acquiring capacity

• Binet comprehension, invention , direction and

criticism– intelligence contained in these four words.

• Ryburn intelligence is the power which enables us to

solve problems and to achieve our purpose.

Shikha sharma RCET,Bhilai 4

• Intelligence is not a single power or capacity or

abilitiy which operates equally well in all

situations.

• It is rather than composite of several different

abilities.

Shikha sharma RCET,Bhilai 5

What is the objective of ―AI‖

One term is

• ―the ability to reason, to trigger new thoughts, to
perceive and learn is intelligence‖.

Second term is

―thought‖

A thought is a mechanism which

1. Stimulates
a. action

b. further thought

c.information generation

d. knowledge generation

Shikha sharma RCET,Bhilai 6

2. Is triggered by

a. External stimulus or

b. internal stimulus

3. Acts through

a. Present environment

b. past memory

4. Is stored as

a. charged /discharged state of neurons.

b. electromagnetic thought waves

Shikha sharma RCET,Bhilai 7

Definition of AI

• ―John McCarthy ― gives in 1956 ―Developing computer

programs to solve complex problems by applications of

processes that are analogous to human reasoning

processes

• ―Ai is the branch of computer science that is concerned

with the automation of intelligent behavior.‖

• AI is the study of how to make computers do things

which, at the moment, people do better.

Shikha sharma RCET,Bhilai 8

• the intelligent is behavior , when we call this man

Intelligent, we mean by that (he have the ability to Think,

understand, learn and make decision) so if we a

combine this word with system to become (Intelligent

System(IS))we mean by that , the system able to (Think,

understand, learn and make decision) in other word :

Shikha sharma RCET,Bhilai 9

Definitions of AI:

systems that

– think like humans

– act like humans

– think rationally

– act rationally

Shikha sharma RCET,Bhilai 10

AI Tree

Shikha sharma RCET,Bhilai 11

Fruits: Applications

Branches: Expert Systems, Natural
Language processing, Speech

Understanding, Robotics and Sensory

Systems, Computer Vision, Neural

Computing, Fuzzy Logic, GA

Roots: Psychology, Philosophy,

Electrical Engg, Management Science,

Computer science, Linguistics

• Artificial Intelligence

*primary symbolic process

*Heuristic search

-steps are implicit (hidden)

*usually easy to modify update and enlarge
*some incorrect answers are tolerable

*satisfactory answers usually acceptable

• Conventional Programming
*numeric

*Algorithmic--steps are explicit (open)

*information and control are integrated together

*difficult to modify

*correct answers are required
*best possible solution usually sought (required)

Shikha sharma RCET,Bhilai 12

Difference between AI & conventional S/W

Features AI programs Conventional

s/w

Processing type Symbolic type Numeric

Technique used Heuristic search Algorithm search

Solutions steps Indefinite definite

Answers sought Satisfactory Optimal

Knowledge Imprecise Precise

Modification Frequent Rare

Involves Large knowledge Large DB

Process Inferential repetitive

Shikha sharma RCET,Bhilai 13

Examples of artificially intelligent systems include computer
programs that perform

• medical diagnoses,

• mineral prospecting,

• legal reasoning,

• speech understanding,

• vision interpretation,

• natural-language processing,

• problem solving, and learning.

• Most of these systems are far from being perfected.
Most have proved valuable, however, either as research
vehicles or in specific, practical applications.

Shikha sharma RCET,Bhilai 14

Applications of AI

• Game playing

• Speech recognition

• Understanding natural language

• Computer vision

• Expert system

• Heuristic classification

Shikha sharma RCET,Bhilai 15

Areas of Artificial Intelligence

• . Perception
– Machine vision

– Speech understanding

– Touch (tactile or haptic) sensation

• Robotics

• Natural Language Processing
– Natural Language Understanding

– Speech Understanding

– Language Generation

– Machine Translation

• Planning

• Expert Systems

• Machine Learning

• Theorem Proving
• Symbolic Mathematics

• Game Playing

Shikha sharma RCET,Bhilai 16

How problems can be represented in AI

• Before a solution can be found the prime

condition is that the problem must be very

precisely defined.

• So to build a system to solve a particular

problem, we need to do four things.

Shikha sharma RCET,Bhilai 17

How problems can be represented in AI

1. Define the problem precisely. like what is
initial situation, what will be the final,
acceptable solutions.

2. Analyze the problem. various possible
techniques for solving the problem.

3. Isolate and represent the task knowledge
that is necessary to solve the problem.

4. Choose the best problem solving
technique and apply it

Shikha sharma RCET,Bhilai 18

The most common methods of problem

representation in AI

State space representation

―A set of all possible states for a given

problem is known as the state space of the

problem.‖

or

―A state space represents a problem in

terms of states and operators that change

states.‖

Shikha sharma RCET,Bhilai 19

A problem space consists of

1. Precondition/An initial state

2. Post condition/Final states

3. Actions

4. Total Cost

Shikha sharma RCET,Bhilai 20

Shikha sharma RCET,Bhilai 21

State Space Search: Summary
1. Define a state space that contains all the

possible configurations of the relevant

objects.

2. Specify the initial states.

3. Specify the goal states.

4. Specify a set of rules:
What are unstated assumptions?

How general should the rules be?

How much knowledge for solutions should be in the

rules?
Shikha sharma RCET,Bhilai 22

For example

If one wants to make a cup of coffee.

What one have to do:

analyze the problem

check necessary ingredients are available or not.

if they are available.

Shikha sharma RCET,Bhilai 23

Shikha sharma RCET,Bhilai 24

Water jug problem?

• States– amount of water in both jugs.

• Actions—Empty large/small, pour from large/small

• Goal—specified amount of water in both jug

• Path cost—total no of actions applied

Shikha sharma RCET,Bhilai 25

State Space Search: Playing

Chess

• State space is a set of legal positions.

• Starting at the initial state.

• Using the set of rules to move from one

state to another.

• Attempting to end up in a goal state.

Shikha sharma RCET,Bhilai 26

State Space Search: Water Jug Problem

―You are given two jugs, a 4-litre one and a 3-litre

one. Neither has any measuring markers on it.

There is a pump that can be used to fill the jugs

with water. How can you get exactly 2 litres of

water into 4-litre jug.‖

Shikha sharma RCET,Bhilai 27

State Space Search: Water Jug

Problem
• State: (x, y)

x = 0, 1, 2, 3, or 4 y = 0, 1, 2, 3

• Start state: (0, 0).

• Goal state: (2, n) for any n.

• Attempting to end up in a goal state.

Shikha sharma RCET,Bhilai 28

State Space Search: Water Jug

Problem
1. (x, y) (4, y)

if x 4

2. (x, y) (x, 3)

if y 3

3. (x, y) (x d, y)

if x 0

4. (x, y) (x, y d)

if y 0
Shikha sharma RCET,Bhilai 29

State Space Search: Water Jug

Problem
5. (x, y) (0, y)

if x 0

6. (x, y) (x, 0)

if y 0

7. (x, y) (4, y (4 x))

if x y 4, y 0

8. (x, y) (x (3 y), 3)

if x y 3, x 0
Shikha sharma RCET,Bhilai 30

State Space Search: Water Jug

Problem
9. (x, y) (x y, 0)

if x y 4, y 0

10. (x, y) (0, x y)

if x y 3, x 0

11. (0, 2) (2, 0)

12. (2, y) (0, y)

Shikha sharma RCET,Bhilai 31

State Space Search: Water Jug

Problem

1. current state = (0, 0)

2. Loop until reaching the goal state (2, 0)

Apply a rule whose left side matches the current state

Set the new current state to be the resulting state

(0, 0)

(0, 3)

(3, 0)

(3, 3)

(4, 2)

(0, 2)

Shikha sharma RCET,Bhilai 32

State Space Search: Water Jug

Problem

The role of the condition in the left side of

a rule

restrict the application of the rule

more efficient

1. (x, y) (4, y)

if x 4

2. (x, y) (x, 3)

if y 3 Shikha sharma RCET,Bhilai 33

Find a driving route from city A to city B

• States– location specified by city .

• Actions– driving along the roads between cities

• Goal— city B

• Path cost—total distance or expected travel time.

Shikha sharma RCET,Bhilai 34

• Example: Consider a 4-puzzle
problem, where in a 4-cell board
there are 3 cells filled with digits
and 1 blank cell. The initial state of
the game represents a particular
orientation of the digits in the cells
and the final state to be achieved
is another orientation supplied to
the game player. The problem of
the game is to reach from the
given initial state to the goal (final)
state, if possible, with a minimum
of moves. Let the initial and the
final state be as shown in figures
1(a) and (b) respectively.

Shikha sharma RCET,Bhilai 35

• We now define two operations, blank-up

(BU) / blank-down (BD) and blank-left (BL)

/ blank-right (BR), and the state-space

(tree) for the problem is presented below

using these operators. The algorithm for

the above kind of problems is

straightforward. It consists of three steps,

described by steps 1, 2(a) and 2(b) below.

Shikha sharma RCET,Bhilai 36

Shikha sharma RCET,Bhilai 37

Pegs and Disks problem

• Consider the following problem. We have

3 pegs and 3 disks.

• Operators: one may move the topmost

disk on any needle to the topmost position

to any other needle

• In the goal state all the pegs are in the

needle B as shown in the figure below.

Shikha sharma RCET,Bhilai 38

Initial State

Shikha sharma RCET,Bhilai 39

Goal States

Shikha sharma RCET,Bhilai 40

• Now we will describe a sequence of actions that

can be applied on the initial state.

• Step 1: Move A → C

• Step 2: Move A → B

• Step 3: Move A → C

• Step 4: Move B→ A

• Step 5: Move C → B

• Step 6: Move A → B

• Step 7: Move C→ B

Shikha sharma RCET,Bhilai 41

8 queens problem

• The problem is to place 8 queens on a

chessboard so that no two queens are in

the same row, column or diagonal

Shikha sharma RCET,Bhilai 42

Problem space?

Shikha sharma RCET,Bhilai 43

4- queens problem

X

X

X

X

Shikha sharma RCET,Bhilai 44

N queens problem formulation

• States: Any arrangement of 0 to 8 queens

on the board

• Initial state: 0 queens on the board

• Successor function: Add a queen in any

square

• Goal test: 8 queens on the board, none are

attacked

Shikha sharma RCET,Bhilai 45

One solution

Shikha sharma RCET,Bhilai 46

8 puzzle problem

Shikha sharma RCET,Bhilai 47

Homework
Assignment:

1: Explain the history of AI

2: Analyse each of them and solve using AI

problem solving techniques

(a) Missionaries and cannibals

(b) 8-puzzle

Shikha sharma RCET,Bhilai 48

• A production system (or production rule

system) is a computer program typically used to

provide some form of artificial intelligence, which

consists primarily of a set of rules about

behavior. These rules, termed productions, are

a basic representation found useful in

automated planning, expert systems and action

selection. A production system provides the

mechanism necessary to execute productions in

order to achieve some goal for the system.

Shikha sharma RCET,Bhilai 49

http://en.wikipedia.org/wiki/Artificial_intelligence
http://en.wikipedia.org/wiki/Knowledge_representation
http://en.wikipedia.org/wiki/Automated_planning_and_scheduling
http://en.wikipedia.org/wiki/Expert_systems
http://en.wikipedia.org/wiki/Action_selection
http://en.wikipedia.org/wiki/Action_selection

• Productions consist of two parts: a sensory precondition

(or "IF" statement) and an action (or "THEN").

• If a production's precondition matches the current state

of the world, then the production is said to be triggered.

• If a production's action is executed, it is said to have

fired.

• A production system also contains a database,

sometimes called working memory, which maintains data

about current state or knowledge, and a rule interpreter.

• The rule interpreter must provide a mechanism for

prioritizing productions when more than one is triggered.

Shikha sharma RCET,Bhilai 50

http://en.wikipedia.org/wiki/State_(computer_science)
http://en.wikipedia.org/wiki/Execution_(computers)
http://en.wikipedia.org/wiki/Working_memory

• A production system is a tool used in

artificial intelligence and especially within

the applied AI domain known as expert

systems.

•

• Production systems consist of a database

of rules, a working memory, a matcher,

and a procedure that resolves conflicts

between rules.
Shikha sharma RCET,Bhilai 51

http://ai.eecs.umich.edu/cogarch0/common/theory/ai.html
http://ai.eecs.umich.edu/cogarch0/common/capa/explain.html
http://ai.eecs.umich.edu/cogarch0/common/capa/explain.html

What is a Production System?

• A PS is a computer program typically

used to provide some form of AI, which

consists a set of rules about behavior.

• A PS provides the mechanism necessary

to execute productions in order to achieve

some goal for the system.

• Used as the basis for many rule-based

expert systems

Shikha sharma RCET,Bhilai 52

What is a Production System?

• A production system consists of four

basic components:
1. A set of rules of the form Ci ® Ai or

C1, C2, … Cn => A1 A2 …Am
Left hand side (LHS) Right hand side (RHS)

Conditions/antecedents Conclusion/consequence

where Ci is the condition part and Ai is the action

part.

Shikha sharma RCET,Bhilai 53

1. The condition determines when a given rule is applied, and the

action determines what happens when it is applied.

2. knowledge databases/ working memory that contain whatever

information is relevant for the given problem & also maintains data

about current state or knowledge. Some parts of the database may

be permanent, while others may temporary and only exist during the

solution of the current problem. The information in the databases

may be structured in any appropriate manner.

3. A control strategy that determines the order in which the rules are

applied to the database, and provides a way of resolving any

conflicts that can arise when several rules match at once.

4. A rule applier which is the computational system that implements

the control strategy and applies the rules.

Shikha sharma RCET,Bhilai 54

Production rule for water jug problem

1. (x, y)  (4, y), If x < 4 fill the 4-gallon jug.
2. (x, y)  (x,3), If y < 3 fill the 3-gallon jug.

3. (x, y)  (x- d , y), If x > 0 pour some water out of the 4-gallon jug

4. (x, y)  (x, y - d), If y > 0 pour some water out of the 4-gallon jug

5. (x, y)  (0, y) If x > 0 empty the 4-gallon jug.

6. (x, y)  (x, 0), If y > 0 empty the 3-gallon jug.

7. (x, y)  (4, y – (4 – x)), if x + y >= 4 & y > 0 pour water from the

3-gallon jug into the 4-gallon jug
until the 4-gallon jug is full.

8. (x, y)  (x – (3 – y), 3), if x + y >= 4 & y > 0 pour water from the

4-gallon jug into the 3-gallon jug until
the 3-gallon jug is full.

Shikha sharma RCET,Bhilai 55

Production rule for water jug problem

9. (x, y)  (x + y, 0), if x + y <= 4 & y > 0 pour all the

water from the 3-gallon jug

into the 4-gallon jug.

10. (x, y)  (0, x + y), if x + y <= 3 & x > 0 pour all the

water from the 4-gallon

jug into the 3-gallon jug.

11. (0, 2)  (2, 0), pour 2-g from 3-g to 4-g

12. (2, y)  (0, y)

Shikha sharma RCET,Bhilai 56

One solution of water jug problem

Rule applied 4-Gallon 3-Gallon

Initial state 0 0

Rule 2 0 3

Rule 9 3 0

Rule 2 3 3

Rule 7 4 2

Rule 5 or 12 0 2

Rule 9 or 11 2 0
Shikha sharma RCET,Bhilai 57

Problem of Conflict Resolution

• When there are more then one rule that

can be fired in a situation and the rule

interpreter can not be decide which is to

be fired, what is the order of triggering and

whether to apply it .

Shikha sharma RCET,Bhilai 58

Some Resolution Strategies

• Perform the first. the system chooses the first rule that

matches.

• Sequencing techniques. adopt the rules in the

sequence they are.

• Perform the most specific. if there are two matching

rules and one rule is more specific than the other, activate the most

specific.

• Most recent policy. chooses newly added rule.

Shikha sharma RCET,Bhilai 59

Shikha sharma RCET,Bhilai 60

• Search  process of locating a solution to a

problem by any method in a search tree or

search space until a goal node is found.

• Search Space  A set of possible permutation

that can be examined by any search method in

order to find solution.

• Search Tree  A tree that is used to represent a

search problem and is examined by search

method to search for a solution.

Shikha sharma RCET,Bhilai 61

To do a search process the following are

needed :--

The initial state description.

A set of legal operators.

The final or goal state.

Shikha sharma RCET,Bhilai 62

Search Tree – Terminology

• Root Node: The node from which the search starts.

• Leaf Node: A node in the search tree having no children.

• Ancestor/Descendant: X is an ancestor of Y is either X is Y’s parent

or X is an ancestor of the parent of Y. If S is an ancestor of Y, Y is

said to be a descendant of X.

• Branching factor: the maximum number of children of a non-leaf

node in the search tree

• Path: A path in the search tree is a complete path if it begins with

the start node and ends with a goal node. Otherwise it is a partial

path.

• We also need to introduce some data structures that will be used in

the search algorithms.

Shikha sharma RCET,Bhilai 63

Shikha sharma RCET,Bhilai 64

Shikha sharma RCET,Bhilai 65

Evaluating Search strategies

• We will look at various search strategies

and evaluate their problem solving

performance. What are the characteristics

of the different search algorithms and what

is their efficiency? We will look at the

following three factors to measure this.

Shikha sharma RCET,Bhilai 66

Search Strategy Evaluation

Completeness: We will say a search method is ―complete‖

if it has both the following properties:

– if a goal exists then the search will always find it

– if no goal exists then the search will eventually finish and be able to

say that no goal exists

Time complexity: how long does it take?(number of nodes expanded)

Space complexity: how much memory is needed?

Optimality: is a high-quality solution found? Does the solution have

low cost or the minimal cost? What is the search cost associated
with the time and memory required to find a solution?

Shikha sharma RCET,Bhilai 67

• Which path to find?

• The objective of a search problem is to

find a path from the initial state to a goal

state. If there are several paths which path

should be chosen? Our objective could be

to find any path, or we may need to find

the shortest path or least cost path.

Shikha sharma RCET,Bhilai 68

• The different search strategies that we will consider

include the following:

• 1. Blind Search strategies or Uninformed search

– a. Depth first search

– b. Breadth first search

– c. Iterative deepening search

– d. Iterative broadening search

• 2. Informed Search

• 3. Constraint Satisfaction Search

• 4. Adversary Search

Shikha sharma RCET,Bhilai 69

Types of Search

• Uninformed or blind or Brute force search

– No information about the number of steps

– No information about the path cost

– blind search or uninformed search that does

not use any extra information about the

problem domain.

• Informed or heuristic search

– Information about possible path costs or

number of steps is used

Shikha sharma RCET,Bhilai 70

Uninformed Search

Breadth-first search
• Root node is expanded

first

• All nodes at depth d in the
search tree are expanded
before the nodes at depth
d+1

• Implemented by putting all
the newly generated
nodes at the end of the
queue

Shikha sharma RCET,Bhilai 71

s

1 2

3 4

7 8 9 10 11 12 13 14

5 6

Breadth first search queues

Loopno nodes expanded

0 [s]

1 [1 2] [s]

2 [2 3 4] [1 s]

3 [3 4 5 6] [2 1 s]

4 [4 5 6 7 8] [3 2 1 s]

5 [5 6 7 8 9 10] [4 3 2 1 s]

6 [6 7 8 9 10 11 12] [5 4 3 2 1 s]

: : :
Shikha sharma RCET,Bhilai 72

Algorithm of BFS

Step 1: put the initial node on a list S.

Step 2 : if (S is empty) or (S = goal) terminate
search.

Step 3 : remove the first node from S. call this

node a.

Step 4 : if (a = goal) terminate search with
success.

Step 5 :Else if node a has successor, generate all

of them and add them at the tail of S.

Step 6 : go to to step 2.

Shikha sharma RCET,Bhilai 73

A

C D E FB

G H I J K L M N O P

Q R S T U V W X Y Z

The example node set

Initial state

Goal state

A

L

Press space to see a BFS of the example node set
Shikha sharma RCET,Bhilai 74

A

C D E FB

G H I J K L

Q R S T U

A

B C D

We begin with our initial state: the node

labeled A. Press space to continue

This node is then expanded to reveal

further (unexpanded) nodes. Press space

Node A is removed from the queue. Each

revealed node is added to the END of the

queue. Press space to continue the search.

The search then moves to the first node

in the queue. Press space to continue.

Node B is expanded then removed from the

queue. The revealed nodes are added to the

END of the queue. Press space.

Size of Queue: 0

Nodes expanded: 0 Current Action: Current level: n/a

Queue: EmptyQueue: ASize of Queue: 1

Nodes expanded: 1

Queue: B, C, D, E, F

Press space to begin the search

Size of Queue: 5

Current level: 0Current Action: Expanding

Queue: C, D, E, F, G, HSize of Queue: 6

Nodes expanded: 2 Current level: 1

We then backtrack to expand node C,

and the process continues. Press space

Current Action: Backtracking Current level: 0Current level: 1

Queue: D, E, F, G, H, I, JSize of Queue: 7

Nodes expanded: 3 Current Action: ExpandingCurrent Action: Backtracking Current level: 0Current level: 1

Queue: E, F, G, H, I, J, K, LSize of Queue: 8

Nodes expanded: 4 Current Action: ExpandingCurrent Action: Backtracking Current level: 0Current level: 1Current Action: Expanding

NM

Queue: F, G, H, I, J, K, L, M, NSize of Queue: 9

Nodes expanded: 5

E

Current Action: Backtracking Current level: 0Current Action: Expanding Current level: 1

O P

Queue: G, H, I, J, K, L, M, N, O, PSize of Queue: 10

Nodes expanded: 6

F

Current Action: Backtracking Current level: 0Current level: 1Current level: 2Current Action: Expanding

Queue: H, I, J, K, L, M, N, O, P, Q

Nodes expanded: 7

G

Current Action: Backtracking Current level: 1Current Action: Expanding

Queue: I, J, K, L, M, N, O, P, Q, R

Nodes expanded: 8

H

Current Action: Backtracking Current level: 2Current level: 1Current level: 0Current level: 1Current level: 2Current Action: Expanding

Queue: J, K, L, M, N, O, P, Q, R, S

Nodes expanded: 9

I

Current Action: Backtracking Current level: 1Current level: 2Current Action: Expanding

Queue: K, L, M, N, O, P, Q, R, S, T

Nodes expanded: 10

J

Current Action: Backtracking Current level: 1Current level: 0Current level: 1Current level: 2Current Action: Expanding

Queue: L, M, N, O, P, Q, R, S, T, U

Nodes expanded: 11

K

Current Action: Backtracking Current level: 1

LLLL

Node L is located and the search returns

a solution. Press space to end.

FINISHED SEARCH

Queue: EmptySize of Queue: 0

Current level: 2

BREADTH-FIRST SEARCH PATTERN

L

Press space to continue the searchPress space to continue the searchPress space to continue the searchPress space to continue the searchPress space to continue the searchPress space to continue the searchPress space to continue the searchPress space to continue the searchPress space to continue the search

Shikha sharma RCET,Bhilai 75

Time Complexity :

1 + b + b2 + b3 +…+……bd.

Hence Time complexity = O (bd)

Space Complexity :

1 + b + b2 + b3 +…+……bd.

Hence Time complexity = O (bd)

Shikha sharma RCET,Bhilai 76

Uninformed Search

Breadth-first search

• Breadth-first search merits

– Complete: If there is a solution, it will be found

– Optimal: Finds the nearest goal state

• Breadth-first search problem:

• Time complexity

• Memory intensive

• Remembers all unwanted nodes

Shikha sharma RCET,Bhilai 77

show how breadth first search works on this graph.

Shikha sharma RCET,Bhilai 78

• Breadth first search is:

• Complete. : The algorithm is optimal (i.e., admissible) if all

operators have the same cost. Otherwise, breadth first search finds

a solution with the shortest path length.

• The algorithm has exponential time and space complexity. Suppose

the search tree can be modeled as a b-ary tree as shown in Figure

3. Then the time and space complexity of the algorithm is O(bd)

where d is the depth of the solution and b is the branching factor

(i.e., number of children) at each node.

• A complete search tree of depth d where each non-leaf node has b

children, has a total of 1 + b + b2 + ... + bd = (b(d+1) - 1)/(b-1) nodes

Shikha sharma RCET,Bhilai 79

• Consider a complete search tree of depth 15, where

every node at depths 0 to14 has 10 children and every

node at depth 15 is a leaf node. The complete search

tree in this case will have O(1015) nodes. If BFS expands

10000 nodes per second and each node uses 100 bytes

of storage, then BFS will take 3500 years to run in the

worst case, and it will use 11100 terabytes of memory.

So you can see that the breadth first search algorithm

cannot be effectively used unless the search space is

quite small. You may also observe that even if you have

all the time at your disposal, the search algorithm cannot

run because it will run out of memory very soon.

Shikha sharma RCET,Bhilai 80

Uninformed Search

Depth-first search
• Always expands one of

the node at the deepest
level of the tree

• Only returns when the
search hits a dead end

• Implemented by putting
the newly generated
nodes at the front of the
queue

Shikha sharma RCET,Bhilai 81

s

1 2

3 4

5 6 7 8 11 12 13 14

9 10

Depth first search queues

Loopno nodes expanded

0 [s]

1 [1 2] [s]

2 [3 4 2] [1 s]

3 [5 6 4 2] [3 1 s]

4 [6 4 2] [5 3 1 s]

5 [4 2] [6 5 3 1 s]

6 [7 8 2] [4 6 5 3 1 s]

: : :
Shikha sharma RCET,Bhilai 82

Algorithm of DFS

Step 1: put the initial node on a list S.

Step 2 : if (S is empty) or (S = goal) terminate
search.

Step 3 : remove the first node from S. call this

node a.

Step 4 : if (a = goal) terminate search with
success.

Step 5 :Else if node a has successor, generate all

of them and add them at the beginning of
S.

Step 6 : go to to step 2.

Shikha sharma RCET,Bhilai 83

Time Complexity :

1 + b + b2 + b3 +…+……bd.

Hence Time complexity = O (bd)

Space Complexity :

Hence Time complexity = O (d)

Shikha sharma RCET,Bhilai 84

Uninformed Search

Depth-first search

• Depth-first search merits

– Modest memory requirements: only the

current path from the root to the leaf node

needs to be stored.

– Time complexity

• With many solutions, depth-first search is often

faster than breadth-first search, but the worst

case is still O (bm)

Shikha sharma RCET,Bhilai 85

Properties of Depth First Search

• Let us now examine some properties of the DFS

algorithm. The algorithm takes exponential time. If N is

the maximum depth of a node in the search space, in the

worst case the algorithm will take time O(bd). However

the space taken is linear in the depth of the search tree,

O(bN).

• Note that the time taken by the algorithm is related to the

maximum depth of the search tree. If the search tree has

infinite depth, the algorithm may not terminate. This can

happen if the search space is infinite. It can also happen

if the search space contains cycles. The latter case can

be handled by checking for cycles in the algorithm. Thus

Depth First Search is not complete. Shikha sharma RCET,Bhilai 86

Questions

• Give the initial state, goal test, sucessor

function, and cost function for each of the

following. Choose a formulation that is

precise enough to be implemented.

• a) You have to colour a planar map using

only four colours, in such a way that no

two adjacent regions have the same

colour.
Shikha sharma RCET,Bhilai 87

Solutions

• The map is represented by a graph. Each region corresponds to a

vertex of the graph. If two regions are adjacent, there is an edge

connecting the corresponding vertices.

• The vertices are named <v1, v2, … , vN>.

• The colors are represented by c1, c2, c3, c4.

• A state is represented as a N-tuple representing the colors of the

vertices. A vertex has color x if its color has not yet been assigned.

An example state is:

• {c1, x, c1, c3, x, x, x …}

• color(i) denotes the color of si.

• Consider the map below consisting of 5 regions namely A, B, C, D

and E. The adjacency information is represented by the

corresponding graph shown.
Shikha sharma RCET,Bhilai 88

Shikha sharma RCET,Bhilai 89

A state of this problem is shown below.

Shikha sharma RCET,Bhilai 90

• This state is represented as {blue, green, x, x,

blue}.

• The initial state for this problem is given as {x, x,

x, x, x}

• The goal test is as follows. For every pair of

states si and sj that are adjacent, colour(i) must

be different from colour(j).

• The successor functions are of the form:

• • Change (i, c): Change the colour of a state i to

c.
Shikha sharma RCET,Bhilai 91

2. In the travelling salesperson problem (TSP) there is a

map involving N cities some of which are connected by

roads. The aim is to find the shortest tour that starts from

a city, visits all the cities exactly once and comes back to

the starting city.

Shikha sharma RCET,Bhilai 92

Shikha sharma RCET,Bhilai 93

• Y: set of N cities

• d(x,y) : distance between cities x and y. x,y∈Y

• A state is a Hamiltonian path (does not visit any city twice)

• X: set of states

• X: set of states. X = {(x1, x2, …, xn)| n=1, …, N+1, xi ∈Y for all I,

• xi ≠ xj unless i=1, j=N+1}

• Successors of state (x1, x2, …, xn):

• δ (x1, x2, …, xn) = {(x1, x2, …, xn, xn+1) | xn+1∈ Y

• xn+1 ≠ xi for all 1≤ i≤ n }

• The set of goal states include all states of length N+1

Shikha sharma RCET,Bhilai 94

• Missionaries & Cannibals problem: 3 missionaries & 3

cannibals are on one side of the river. 1 boat carries 2.

Missionaries must never be outnumbered by cannibals. Give a

plan for all to cross the river. State: <M, C, B>

• M: no of missionaries on the left bank

• C: no of cannibals on the left bank

• B: position of the boat: L or R

• Initial state: <3, 3, L>

• Goal state: <0, 0, R>

• Operators: <M,C> ► M: No of missionaries on the boat

• ► C: No of cannibals on the boat

• Valid operators: <1,0> <2,0>, <1,1>, <0,1> <0,2>

Shikha sharma RCET,Bhilai 95

Starting from state A, execute DFS. The goal node is G. Show the order in

which the nodes are expanded. Assume that the alphabetically smaller node is

expanded first to break ties.

Shikha sharma RCET,Bhilai 96

Shikha sharma RCET,Bhilai 97

Iterative Deepening Search

Shikha sharma RCET,Bhilai 98

Depth-First Iterative Deepening (DFID)

• First do DFS to depth 0 (i.e., treat start node as having

no successors), then, if no solution found, do DFS to

depth 1, etc. DFID

• until solution found do

• DFS with depth cutoff c

• c = c+1

Advantage

• Linear memory requirements of depth-first search

• Guarantee for goal node of minimal depth

Shikha sharma RCET,Bhilai 99

Iterative deepening search

• The problem with depth-limited search is deciding on a suitable
depth parameter. To avoid this problem there is another search
called iterative deepening search (IDS).

• This search method tries all possible depth limits; first 0, then 1, then
2 etc., until a solution is found.

• IDS may seem wasteful as it is expanding nodes multiple times. But
the overhead is small in comparison to the growth of an exponential
search tree

• For large search spaces where is the depth of the solution is not
known IDS is normally the preferred search method.

• The following slide illustrates an iterative deepening search of 26
nodes (states) with an initial state of node A and a goal state of
node L. Press space to see the example node set.

Shikha sharma RCET,Bhilai 100

A

C D E FB

G H I J K L M N O P

Q R S T U V W X Y Z

The example node set

Initial state

Goal state

A

L

Press space to see a IDS of the example node set
Shikha sharma RCET,Bhilai 101

AA
We begin with our initial state: the node

labeled A. This node is added to the

queue. Press space to continue

Size of Queue: 0

Nodes expanded: 0 Current Action: Expanding Current level: n/a

Queue: EmptyQueue: ASize of Queue: 1

Current level: 0Nodes expanded: 1

Queue: EmptySize of Queue: 0

Press space to begin the search

As this is the 0th iteration of the search, we cannot search past any level greater than

zero. This iteration now ends, and we begin the 1st iteration.

ITERATIVE DEEPENING SEARCH PATTERN (0th ITERATION)

Node A is then expanded and removed

from the queue. Press space.

Shikha sharma RCET,Bhilai 102

A

C D E FB

A

B C D

We again begin with our initial state: the

node labeled A. Note that the 1st iteration

carries on from the 0th, and therefore the

‘nodes expanded’ value is already set to 1.

Press space to continue

Node A is expanded, then removed from

the queue, and the revealed nodes are

added to the front . Press space.

The search now moves to level one of

the node set. Press space to continue

Node B is expanded and removed from the

queue. Press space.

Size of Queue: 0

Nodes expanded: 1 Current Action: Current level: n/a

Queue: EmptyQueue: ASize of Queue: 1

Nodes expanded: 2

Queue: B, C, D, E, F

Press space to begin the search

Size of Queue: 5

Current level: 0Current Action: Expanding

Queue: C, D, E, FSize of Queue: 4

Nodes expanded: 3 Current level: 1Current Action: Backtracking Current level: 0Current level: 1

Queue: D, E, FSize of Queue: 3

Nodes expanded: 4 Current Action: ExpandingCurrent Action: Backtracking Current level: 0Current level: 1

Queue: E, FSize of Queue: 2

Nodes expanded: 5 Current Action: ExpandingCurrent Action: Backtracking Current level: 0Current level: 1Current Action: Expanding

Queue: F

E

Current Action: Backtracking Current level: 0Current Action: Expanding Current level: 1

Queue: Empty

F

Current level: 0Current level: 1

Press space to continue the searchPress space to continue the searchPress space to continue the search

ITERATIVE DEEPENING SEARCH PATTERN (1st ITERATION)

Size of Queue: 1Size of Queue: 0

As this is the 1st iteration of the search, we cannot search past any level greater than

level one. This iteration now ends, and we begin a 2nd iteration.

Nodes expanded: 6Nodes expanded: 7

We now back track to expand node C, and

the process continues. Press space.

Shikha sharma RCET,Bhilai 103

A

C D E FB

G H I J K L

A

B

G

We again begin with our initial state:

the node labeled A. Note that the 2nd

iteration carries on from the 1st, and

therefore the ‘nodes expanded’ value is

already set to 7 (1+6). Press space to

continue the search

Again, we expand node A to reveal the

level one nodes. Press space.

Node A is removed from the queue and

each revealed node is added to the front of

the queue. Press space.

The search then moves to level one of

the node set. Press space to continue

Node B is expanded and the revealed

nodes added to the front of the queue.

Press space to continue.

Size of Queue: 0

Nodes expanded: 7 Current Action: Current level: n/a

Queue: EmptyQueue: ASize of Queue: 1

Current level: 0Nodes expanded: 8

Queue: B, C, D, E, F

Current level: 1

Queue: G, H, C, D, E, F

Nodes expanded: 9 Current level: 2

ITERATIVE DEEPENING SEARCH PATTERN (2nd ITERATION)

Size of Queue: 5

Current Action: Expanding

We now move to level two of the node

set. Press space to continue.

After expanding node G we backtrack

to expand node H. The process then

continues until goal state. Press space

Queue: H, C, D, E, F

Nodes expanded: 10 Current Action: BacktrackingCurrent Action: Expanding

Queue: C, D, E, FSize of Queue: 6

Nodes expanded: 11

H

Press space to continue the search

Size of Queue: 5Size of Queue: 4

Current Action: BacktrackingCurrent Action: Expanding

Queue: I, J, D, E, FSize of Queue: 5

Nodes expanded: 12

Press space to continue the search

C

Current level: 1Current level: 2Current level: 1Current level: 0Current level: 1Current level: 2

Queue: J, D, E, FSize of Queue: 4

Nodes expanded: 13

I

Press space to continue the search

Current Action: Backtracking Current level: 1Current level: 2

Queue: D, E, F

Current Action: Expanding

Size of Queue: 3

Nodes expanded: 14

J

Press space to continue the search

Current Action: Backtracking Current level: 1Current level: 0Current level: 1Current Action: Expanding

Queue: K, L, E, FSize of Queue: 4

Nodes expanded: 15

D

Press space to continue the search

Current level: 2

Queue: L, E, FSize of Queue: 3

Nodes expanded: 16

K

Press space to continue the search

Current Action: Expanding Current level: 1Current level: 2

LLLLL

Current Action: Backtracking

Queue: EmptySize of Queue: 0

Node L is located on the second level and the search returns a solution

on its second iteration. Press space to end.

SEARCH FINISHED

Shikha sharma RCET,Bhilai 104

Iterative Deepening (become

deeper) Search

Go from Dobreta to Bucharest

Shikha sharma RCET,Bhilai 105

Oradea

Zerind

Arad
Sibiu

Timisoara

Lugoj

Mehadia

Dobreta

Rimnicu Vilcea

Fagaras

Craiova

Pitesti

Giurgiu

Bucharest

Urziceni

Vaslui

Iasi

Neamt

Hirsova

Eforie

Uninformed Search

Iterative deepening search (3)

• Iterative deepening search seems pretty
dumb
– Many states are expanded multiple times

• For most problems the overhead is small!
– Almost all of the nodes are at the bottom level

• Search with branching factor b and depth d
– Depth-limited search

• 1+b+b2+b3+…+bd-2+bd-1+bd

• b = 10 and d = 5: 111,111 expansions

– Iterative deepening search
• (d+1)1+(d)b+(d-1)b2+…+3bd-2+2bd-1+1bd

• b = 10 and d = 5: 123,456 expansions

Only about 11% worse
Shikha sharma RCET,Bhilai 106

Uninformed Search

Iterative deepening search
• How to choose the maximum depth limit?

– Rumania example: the diameter of the state space is 9 instead of
19

– In most problems a good depth limit is unknown

• Iterative deepening search
– Try all possible depths

– Optimal, complete like breadth-first search and has modest
memory requirements like depth-first search

Shikha sharma RCET,Bhilai 107

function Iterative-Deepening-Search(problem) returns a solution sequence

inputs: problem

for depth ← 0 to ∞ do

if Depth-Limited-Search(problem, depth) succeeds

then return its result

end

return failure

Shikha sharma RCET,Bhilai 108

Informed Search Methods

• General-search algorithm

– Knowledge can only be applied in the
queuing function

• Informed search

– Use knowledge about the expected
distance to the goal state

– This knowledge is provided by an
evaluation function

– Returns the desirability of expanding the
node

Shikha sharma RCET,Bhilai 109

• We have seen that uninformed search

methods that systematically explore the

state space and find the goal. They are

inefficient in most cases. Informed search

methods use problem specific knowledge,

and may be more efficient. At the heart of

such algorithms there is the concept of a

heuristic function.

Shikha sharma RCET,Bhilai 110

• Heuristic means ―rule of thumb‖. To quote Judea

Pearl, ―Heuristics are criteria, methods or

principles for deciding which among several

alternative courses of action promises to be the

most effective in order to achieve some goal‖. In

heuristic search or informed search, heuristics

are used to identify the most promising search

path.

Shikha sharma RCET,Bhilai 111

―It is defined as a method that provide a
better guess about the correct choice to
make at any junction that would be
achieved by random guessing.‖ OR

―It is defined as a method or as a rule or as
a trick. it is a piece of information that is
used to make search or another problem
solving method, more effective and more
efficient.‖

Shikha sharma RCET,Bhilai 112

A heuristic is a method that

• Might not always find the best solution.

• But is guaranteed to find a good solution in

reasonable time.

• Heuristics are approximation used to minimize

the search process

• Useful in solving tough problems which

-- could not be solved any other way.

-- solutions take an infinite time or very long

time to compute.

Shikha sharma RCET,Bhilai 113

• Heuristic function : a function that estimate

the value of a state, It is an approximation

used to minimize the search process .

• Heuristic Knowledge : knowledge of

approaches that are likely to work or of

properties that are likely to be true (but not

guaranteed).

Shikha sharma RCET,Bhilai 114

Example of Heuristic Function

• A heuristic function at a node n is an estimate of the

optimum cost from the current node to a goal. It is

denoted by h(n).

h(n) = estimated cost of the cheapest path from node n to a

goal node

Example 1: We want a path from Kolkata to Guwahati

• Heuristic for Guwahati may be straight-line distance

between Kolkata and Guwahati

• h(Kolkata) = euclideanDistance(Kolkata, Guwahati)

Example 2: 8-puzzle: Misplaced Tiles Heuristics is the

number of tiles out of place.

Shikha sharma RCET,Bhilai 115

Shikha sharma RCET,Bhilai 116

• The first picture shows the current state n, and the

second picture the goal state.

• h(n) = 5

• because the tiles 2, 8, 1, 6 and 7 are out of place.

• Manhattan Distance Heuristic: Another heuristic for 8-

puzzle is the Manhattan distance heuristic. This heuristic

sums the distance that the tiles are out of place. The

distance of a tile is measured by the sum of the

differences in the x-positions and the y-positions.

• For the above example, using the Manhattan distance

heuristic,

• h(n) = 1 + 1 + 0 + 0 + 0 + 1 + 1 + 1 + 1 = 6
Shikha sharma RCET,Bhilai 117

Hill Climbing Algorithm

• Hill climbing is a graph search algorithm where the current path is extended

with a successor node which is closer to the solution than the end of the

current path.

• In simple hill climbing, the first closer node is chosen whereas in steepest

ascent hill climbing all successors are compared and the closest to the

solution is chosen.

• Both forms fail if there is no closer node. This may happen if there are local
maxima in the search space which are not solutions. Steepest ascent hill

climbing is similar to best first search but the latter tries all possible

extensions of the current path in order whereas steepest ascent only tries

one.

• Hill climbing is sometimes called greedy local search because it grabs a

good neighbor state without thinking ahead about where to go next.

• Hill climbing often makes very rapid progress towards a solution, because it

is usually quite easy to improve a bad state. Unfortunately, hill climbing
often gets stuck for the following reasons:

Shikha sharma RCET,Bhilai 118

• 1. Local Maxima:

• A local maximum is a peak that is higher than each of its

neighboring states, but lower than the global maximum.

Hill-climbing algorithms that reach the vicinity of a local

maximum will be drawn upwards towards the peak, but

will then be stuck with nowhere else to go.

• 2. Ridges:

• Ridges result in a sequence of local maxima that is very

difficult

• for greedy algorithms to navigate.

Shikha sharma RCET,Bhilai 119

3. Plateaux:

• A plateau is an area of the state space landscape where the

evaluation function is flat. It can be a flat local maximum, from which

no uphill exit exists, or from which it is possible to make progress.

• • Hill climbing operate on complete-state formulations, keeping only

a small number of nodes in memory

• Hill climbing is used widely in artificial intelligence fields, for reaching

a goal state from a starting node. Choice of next node/ starting node

can be varied to give a list of related algorithms.

• • The problem with hill climbing is that it may find only local maxima.

Unless the heuristic is good / smooth, it doesn’t reach global

maxima.

Shikha sharma RCET,Bhilai 120

Hill-climbing Search

• Generate nearby successor states to the

current state based on some knowledge of

the problem.

• Pick the best of the bunch and replace the

current state with that one.

• Loop (until?)

Shikha sharma RCET,Bhilai 121

Hill-Climbing Search

function HILL-CLIMBING(problem) return a state that is a local
maximum

input: problem, a problem

local variables: current, a node.

neighbor, a node.

current MAKE-NODE(INITIAL-STATE[problem])

loop do

neighbor a highest valued successor of current

if VALUE [neighbor] ≤ VALUE[current] then return
STATE[current]

current neighbor

Shikha sharma RCET,Bhilai 122

Hill-climbing

• Implicit in this scheme is the notion of a
neighborhood that in some way preserves
the cost behavior of the solution space…
– Think about the TSP problem again

– If I have a current tour what would a
neighboring tour look like?

• This is a way of asking for a successor function.

Shikha sharma RCET,Bhilai 123

Hill-climbing Search

• The successor function is where the
intelligence lies in hill-climbing search

• It has to be conservative enough to
preserve significant ―good‖ portions of the
current solution

• And liberal enough to allow the state
space to be preserved without
degenerating into a random walk

Shikha sharma RCET,Bhilai 124

Hill-climbing search

• Problem: depending on initial state, can

get stuck in various ways

•

Shikha sharma RCET,Bhilai 125

Local Maxima (Minima)

• Hill-climbing is subject to getting stuck in a

variety of local conditions…

• Two solutions

– Random restart hill-climbing

– Simulated annealing

Shikha sharma RCET,Bhilai 126

Random Restart Hillclimbing

• Pretty obvious what this is….

– Generate a random start state

– Run hill-climbing and store answer

– Iterate, keeping the current best answer as

you go

– Stopping… when?

• Give me an optimality proof for it.

Shikha sharma RCET,Bhilai 127

Annealing

• Based on a metallurgical metaphor

– Start with a temperature set very high and

slowly reduce it.

– Run hillclimbing with the twist that you can

occasionally replace the current state with a

worse state based on the current temperature

and how much worse the new state is.

Shikha sharma RCET,Bhilai 128

Annealing

• More formally…

– Generate a new neighbor from current state.

– If it’s better take it.

– If it’s worse then take it with some probability

proportional to the temperature and the delta

between the new and old states.

Shikha sharma RCET,Bhilai 129

Simulated annealing

function SIMULATED-ANNEALING(problem, schedule) return a solution state

input: problem, a problem

schedule, a mapping from time to temperature

local variables: current, a node.

next, a node.

T, a “temperature” controlling the probability of downward steps

current MAKE-NODE(INITIAL-STATE[problem])

for t 1 to ∞ do

T schedule[t]

if T = 0 then return current

next a randomly selected successor of current

∆E VALUE[next] - VALUE[current]

if ∆E > 0 then current next

else current next only with probability e∆E /T

Shikha sharma RCET,Bhilai 130

Properties of simulated

annealing search
• One can prove: If T decreases slowly enough,

then simulated annealing search will find a

global optimum with probability approaching 1

•

• Widely used in VLSI layout, airline scheduling,

etc

•

Shikha sharma RCET,Bhilai 131

Best first search

• A combination of DFS & BFS.

• DFS is good because a solution can be

found without computing all nodes and

BFS is good because it doesn’t get

trapped in dead ends.

• The best first search allows us to switch

between paths going the benefit of both

approaches.

Shikha sharma RCET,Bhilai 132

How it works

• The algorithm maintains two list, one containing

a list of candidate yet to explore -- OPEN

• One containing a list of visited node – CLOSED

• Since all unvisited successor nodes of every

visited node are included in the OPEN list.

• It takes the advantage s of both DFS and

BrFS.—faster.

Shikha sharma RCET,Bhilai 133

Shikha sharma RCET,Bhilai 134

S

A

B

C

D

E

F

G

H

I

J

K

L

M

3

6

5

9

8

12

14

7
5

6

1

Q

2

Step Node

being

expanded

Children Available

Node

Node

chosen

1 S (A:3)(B:6)(c:5) (A:3)(B:6)(c:5) (A;3)

2 A (D:9)(E:8) (B:6)(c:5) (D:9)(E:8) (C:5)

3 C (H:7) (B:6) (D:9) (E:8) (H:7) (B:6)

4 B (E:12) (G:14) (E:12) (G:14) (D:9) (E:8) (H:7) (H:7)

5 H (I;5) (J:6) (E:12) (G:14) (D:9) (E:8) (I;5) (J:6) (I:5)

6 I K L M All L
Shikha sharma RCET,Bhilai 135

A * algorithm

• This algorithm was given by hart Nilsson &

Rafael in 1968.

• A* is a best first search algorithm with

f(n) = g(n) + h(n)

Where

g(n) = sum of edge costs from start to n

h(n) = estimate of lowest cost path from n to goal

• f(n) = actual distanance so far + estimated

distance remaining

Shikha sharma RCET,Bhilai 136

ANIMATION OF A*.

A

O
Z

F

N

I

V

H

Eforie

U

G

P

S

D

C

R

M

T

L

87

92

142

86

98

86

211

101

90

99

71

75

140
118

111

70

75

120

138

146

97

80

140

B

99+178=277

80+193=273

140+366=506

177+98=275

226+160=386(R)

310+0=310 (F)

Optimal route is (80+97+101) = 278 miles

1.S

278+0=278 (R,P)

2.R 3.P 4.F 5.B 278 GOAL!!

Fringe in RED

Visited in BLUE

Nodes Expanded

0+253=253

Annotations:

“g+h=f”

could use 211?

315+160=475(R)
Shikha sharma RCET,Bhilai 137

A* SEARCH TREE

Press space to begin the search

140

80

99

In terms of a search tree we could represent this as follows

5

The goal state is achieved.

In relation to path cost, A* has found

the optimal route with 5 expansions.

Press space to end.

S.

0+253
=253

P

177+98
=275

A

140+366
=506

F

99+178
=277

R

80+193
=273

B

310+0
=310Maths:

“g + h = f”

2 3

4

1

B

278+0
=278

C

226+160
=386

C

315+160
=475

138

101

211

146

97

Shikha sharma RCET,Bhilai 138

Shikha sharma RCET,Bhilai 139

Shikha sharma RCET,Bhilai 140

Memory Usage of A*

• We store the tree in order to

– to return the route

– avoid repeated states

• Takes a lot of memory

• But scanning a tree is better with DFS

Shikha sharma RCET,Bhilai 141

• Means-Ends Analysis (MEA)

Shikha sharma RCET,Bhilai 142

• Means-Ends Analysis (MEA) is a technique used

in AI for controlling search in problem solving

computer programs.

• It is also a technique used at least since the

1950s as a creativity tool, most frequently

mentioned in engineering books on design

methods. Means-Ends Analysis is also a way to

clarify one's thoughts when embarking on a

mathematical proof.

Shikha sharma RCET,Bhilai 143

Problem-solving as search

• An important aspect of intelligent behavior as studied in AI is goal-based problem

solving, a framework in which the solution of a problem can be described by finding a

sequence of actions that lead to a desirable goal. A goal-seeking system is supposed

to be connected to its outside environment by or sensory, channels through which it

receives information about the environment and motor, channels through which it

acts on the environment. (The term "afferent" is used to describe "inward" sensory

flows, and "efferent" is used to describe "outward" motor commands.) In addition, the

system has some means of storing in a memory information about the state of the

environment (afferent information) and information about actions (efferent

information). Ability to attain goals depends on building up associations, simple or

complex, between particular changes in states and particular actions that will bring

these changes about. Search is the process of discovery and assembly of sequences

of actions that will lead from a given state to a desired state. While this strategy may

be appropriate for machine learning and problem solving, it is not always suggested

for humans (e.g. cognitive load theory and its implications).

Shikha sharma RCET,Bhilai 144

http://en.wikipedia.org/wiki/Cognitive_load

How MEA works

• The MEA technique is a strategy to control search in problem-

solving. Given a current state and a goal state, an action is chosen

which will reduce the difference between the two. The action is

performed on the current state to produce a new state, and the

process is recursively applied to this new state and the goal state.

• Note that, in order for MEA to be effective, the goal-seeking system

must have a means of associating to any kind of detectable

difference those actions that are relevant to reducing that difference.

It must also have means for detecting the progress it is making (the

changes in the differences between the actual and the desired

state), as some attempted sequences of actions may fail and,

hence, some alternate sequences may be tried.

Shikha sharma RCET,Bhilai 145

• When knowledge is available concerning the importance

of differences, the most important difference is selected

first to further improve the average performance of MEA

over other brute-force search strategies. However, even

without the ordering of differences according to

importance, MEA improves over other search heuristics

(again in the average case) by focusing the problem

solving on the actual differences between the current

state and that of the goal.

Shikha sharma RCET,Bhilai 146

• Means-Ends Analysis, a technique that was first used in Newell and

Simon's General Problem Solver (GPS), is a problem-solving

technique in which the current state is compared to the goal state,

and the difference between them is divided up into sub goals in

order to achieve the goal state by the use of the available operators.

• Means-End analysis is one of many weak search methods that have

been utilized in both cognitive architectures and more general

artificial intelligence research.

Shikha sharma RCET,Bhilai 147

Constraint Satisfaction

Shikha sharma RCET,Bhilai 148

What is a constraint problem?

• A constraint problem is a task where you have

to

– Arrange objects

– Schedule tasks

– Assign values

– …

– subject to a number of constraints

Shikha sharma RCET,Bhilai 149

Example of constraint problems

Shikha sharma RCET,Bhilai 150

S E N D

M O R E

M O N E Y+

Each letter stands for a different

digit. Assign digits to the letters so

that the sum is correct.

Cryptarithmetic problems:

Constraint: when the values are assigned, the sum

must add up correctly.

Some easy examples

• AS + A = MOM

• I + DID = TOO

• A + FAT = ASS

• SO + SO = TOO

• US + AS = ALL

• ED + DI = DID

• DI + IS = ILL

Shikha sharma RCET,Bhilai 151

http://www.geocities.com/Athens/Agora/2160/puzzle35.html
http://www.geocities.com/Athens/Agora/2160/puzzle27.html
http://www.geocities.com/Athens/Agora/2160/puzzle26.html
http://www.geocities.com/Athens/Agora/2160/puzzle36.html
http://www.geocities.com/Athens/Agora/2160/puzzle37.html
http://www.geocities.com/Athens/Agora/2160/puzzle38.html
http://www.geocities.com/Athens/Agora/2160/puzzle39.html

1. CROSS

+ ROADS

DANGER

2.

TWO

+ TWO

FOUR

Shikha sharma RCET,Bhilai 152

Another example

Shikha sharma RCET,Bhilai 153

The 8 Queens puzzle

Place 8 queens on a chessboard

so that no two queens are

attacking one another.

Constraints: no two queens must be on the same row, the same

column, or the same diagonal

Example: Map-Coloring Problem

- Variables: WA, NT, Q, NSW, V, SA, T

- Domains: Di= {red, green, blue}

- Constraints: neighboring regions must have different colors

4

Shikha sharma RCET,Bhilai 154

Example: Map-Coloring Problem

• Solutions: assignments satisfying all constraints, e.g.,

{WA=red, NT=green, Q=red, NSW=green, V=red, SA=blue, T=green}

5

Shikha sharma RCET,Bhilai 155

A more practical example

• Timetabling/scheduling

– Assign classes to rooms so that

• Students aren’t required to be in two different rooms at the same

time

• Similarly for lecturers

• Two classes aren’t booked into the same room at the same time

• Rooms are sufficiently large to hold classes assigned to them

• Labs have enough computers for the classes assigned to them

• …

Shikha sharma RCET,Bhilai 156

Formal definition of a constraint problem

• A constraint problem consists of

– A set of variables x1, x2,… xn

– For each variable xi a finite set Di of its possible

values (its domain)

– A set of constraints restricting the values that the

variables can take

• Goal: find an assignment of values to the

variables which satisfies all the constraints

Shikha sharma RCET,Bhilai 157

Summary

• Constraint problem-solving can be applied to

a wide variety of real-world problems

• Formally, a constraint problem consists of

– A set of variables and their domains

– A set of constraints

• The goal

– Find a valid set of values

– Find all sets of values

– Find the best set of values

• The method

– Combine search and constraint propagation
Shikha sharma RCET,Bhilai 158

SOLUTIONS

SEND

+ MORE

MONEY

9 5 6 7

+ 1 0 8 5

1 0 6 5 2

Shikha sharma RCET,Bhilai 159

U S

+ A S

A L L

8 5

+ 1 5

1 0 0

Shikha sharma RCET,Bhilai 160

Game Playing Algorithms

Road Map

Shikha sharma RCET,Bhilai 162

• Motivation behind using AI techniques for Game Playing.

• Categories Of Search

• Search Strategies

• Minmax Search Procedure

• Branch & Bound Technique for limiting search space (alpha-beta cutoff)

• Iterative Deepening

• Othello

Games and AI

Shikha sharma RCET,Bhilai 163

• Games were one of the first tasks undertaken

by researchers in AI field

• A. Turing wrote chess playing program in 1950's

• Why research on games continues?

➢ Long-standing fascination for games

➢ Some difficult games remain to be won by computers

Motivation

● Some games provide challenges that can be
formulated as abstract competitions with clearly defined
states and rules.

● Games can be used to demonstrate the power of

computer-based techniques and methods.

● More challenging games require the incorporation of

specific knowledge and information.

Shikha sharma RCET,Bhilai 164

Who is better?

Shikha sharma RCET,Bhilai 165

• Machines are better than humans in: Othello

• Machines and humans are about equally good in:

Backgammon, Scrabble

• Humans are better than machines in: Go, Bridge

Game Trees

Shikha sharma RCET,Bhilai 166

● Formal Description of Game :

• Initial State

• Successor function

• Terminal State

• Utility function

● Games are represented by game trees in which

● Each node represents a position

● Each link represents a legal move

● Leaf nodes are final positions(Win,Loss or Draw)

● The aim is to reach the goal node from the root node.

Types of Games

Shikha sharma RCET,Bhilai 167

• Two player vs. Multiplayer

Tic-Tac-Toe vs. Bridge

• Zero-sum vs. General-sum

Chekers vs. Auction

• Perfect information vs. Imperfect information

Othello vs. Bridge

• Deterministic vs. Chance

Chess vs. Backgammon

Search Procedures

● Generate using simple legal-move generator will result
in very large testing space for the tester.

● So use plausible move generator.

● Now test procedure can spend more time evaluating

each of the moves, so more reliable results.

Shikha sharma RCET,Bhilai 168

Search Procedures

● In order to choose the best move, the resulting board
position must be compared to discover which is most
advantageous -

● Use Static Evaluation Function (Utility

Function)

● It estimates how likely the particular state can

eventually lead to a win.

Shikha sharma RCET,Bhilai 169

Minimax Search Procedure

● Depth-limited.

● Use plausible move generator to generate set of

possible successor positions.

● Apply static evaluation function to those positions &

choose the best one.

● Back up that value to the starting point.

Shikha sharma RCET,Bhilai 170

Minimax Example

Shikha sharma RCET,Bhilai 171

Min

4 7 9 6 9 8 8 5 6 7 5 2 3 2 5 4 9 3

Shikha sharma RCET,Bhilai 172

Max

Max

Min

Min

7 9 6 9 8 8 5 6 7 5 2 3 2 5 4 9 3

7 6 2 6 3 4 5 1 2 5 4 1 2 6 3 4 3

Minimax Example

Shikha sharma RCET,Bhilai 173

Max

Max

Min

Min

7 9 6 9 8 8 5 6 7 5 2 3 2 5 4 9 3

7 6 2 6 3 4 5 1 2 5 4 1 2 6 3 4 3

7 6 5 5 6 4

Minimax Example

Shikha sharma RCET,Bhilai 174

Max

Max

Min

Min

7 9 6 9 8 8 5 6 7 5 2 3 2 5 4 9 3

7 6 2 6 3 4 5 1 2 5 4 1 2 6 3 4 3

7 6 5 5 6 4

5 3 4

Minimax Example

Shikha sharma RCET,Bhilai 175

Max

Max

Min

Min

4 7 9 6 9 8 8 5 6 7 5 2 3 2 5 4 9 3

4 7 6 2 6 3 4 5 1 2 5 4 1 2 6 3 4 3

7 6 5 5 6 4

5 3 4

5

Minimax Example

Shikha sharma RCET,Bhilai 176

Max

Max

Min

Min

7 9 6 9 8 8 5 6 7 5 2 3 2 5 4 9 3

7 6 2 6 3 4 5 1 2 5 4 1 2 6 3 4 3

7 6 5 5 6 4

5 3 4

5

Minimax Example

Adding Alpha-Beta Cutoffs

● Minimax is a depth-first process, its efficiency can be
improved by using Branch & Bound Technique.

● Partial solutions that are clearly worse than known

solutions can be abandoned.

● Requires maintanence of 2 threshold values -

● Alpha – lower bound on the value that a

maximized node may be assigned.

● Beta – upper bound on the value that a

minimizing node may be assigned.
Shikha sharma RCET,Bhilai 177

● Search at the minimizing level can be terminated when
a value less than alpha is discovered.

● Search at the maximizing level can be terminated

when a value greater than beta is discovered.

● At maximizing levels, only beta is used to determine

whether to cut-off the search & similarly for minimizing

levels.

Shikha sharma RCET,Bhilai 178

Adding Alpha-Beta Cutoffs

Futility Cutoff

● Cutoff additional paths that appear to be at best only
slight improvements over paths that have already been
explored.

Shikha sharma RCET,Bhilai 179

A

B C D

E F G H

(3)

(3) (5) (3.2)

(>=3)

The best we can hope after

examining node G is move C with a

score of 3.2. Move B guarantees a

score of 3. Since 3.2 is only slightly

better than 3, we should terminate

exploration of C.

Additional Refinements for Mini-max

● Waiting for Quiescence

● Continue the search until no drastic change

occurs from one level to next.

● Using Book Moves

● Use book moves in opening sequences &

endgame sequences, combined with

minimax procedure for the midgame.

Shikha sharma RCET,Bhilai 180

Iterative Deepening

● Neither suffers with the drawbacks of breadth-first nor
depth-first search

● Perform a depth-first search to depth one

● Discarding the nodes generated in the first search,
start over and do a depth-first search to level two

● Next, start over again and do a depth-first search to
depth three, etc., continuing this process until a goal
state is reached.

● Guaranteed to find a shortest-length solution

Shikha sharma RCET,Bhilai 181

Iterative Deepening

● At any given time it is performing a depth-first search,
and never searches deeper than depth d, so the space
it uses is O(d).

● Disadvantage is that it performs wasted computation
prior to reaching the goal depth.

● This wasted computation does not affect the
asymptotic growth of the run time for exponential tree
search

● Intuitive reason is that almost all the work is done at
the deepest level of the search

Shikha sharma RCET,Bhilai 182

Othello

Shikha sharma RCET,Bhilai 183

Othello Rules

● Two Players - Black and White

● Initial Position

● White owns the two central squares on the

main diagonal

● Black owns the two central squares on the

minor diagonal

● Rules

● Black plays first, and then the players take

turns moving until neither side has a legal

move.

Shikha sharma RCET,Bhilai 184

Othello Rules

● At this point, the player with the most discs of his color
is declared the winner (there may be ties).

● Legal Move

● Player takes a turn by placing a disc of his

color in an empty position.

● He must ensure that one or more of the

opponent's discs are sandwiched between

the newly placed disc and his another disc.

● The opponent's discs that are surrounded

then change to his colour.
Shikha sharma RCET,Bhilai 185

Othello Example

Shikha sharma RCET,Bhilai 186

Strategies in Othello

● Maximizing the discs

– Play the move which captures the most discs.

● Weighted square strategy

– The weighted square strategy stems from

the observation that not all of the squares on

the Othello board are of equal value.

Shikha sharma RCET,Bhilai 187

Strategies in Othello

Shikha sharma RCET,Bhilai 188

Strategies in Othello

● Maximising the discs

● Weighted square strategy

● Mobility

Shikha sharma RCET,Bhilai 189

Strategies in Othello: Mobility

Shikha sharma RCET,Bhilai 190

Strategies in Othello

● Maximising the discs

● Weighted square strategy

● Mobility

● Stable discs

– A completely stable disc can never be

recaptured (flipped) by the opponent.

Shikha sharma RCET,Bhilai 191

Strategies in Othello : Stability

Shikha sharma RCET,Bhilai 192

Othello Implementations

● IAGO:Rosenbloom,1982

● Book Moves

● BILL:Lee and Mahajan,1990

● Table based evaluation

● Iterative deepening

● LOGISTELLO:Michael Buro,1997

● PROBCUT

● Automated machine learning
Shikha sharma RCET,Bhilai 193

Conclusion

● The unending fasination towards games is the
important motivation behind the immense progress in
the field of game playing.

● Machine games provide us new challenges and also
act as an excellent tutor. Hence, this area is flourishing
along with all other areas of AI with equal pace.

● It also led us in developing high performance, real time
solutions to the problems in various other fields like
robotics.

Shikha sharma RCET,Bhilai 194

