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Planning

• The methods which focus on ways of 

decomposing the original problem into 

appropriate subparts and on ways of recording 

and handling interactions among the subparts as 

they are detected during the problem-solving 

process are often called as planning.

• Planning refers to the process of computing 

several steps of a problem-solving procedure 

before executing any of them. 
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Components of a planning system

• Choose the best rule to apply next based on the 
best available heuristic information.

• Apply the chosen rule to compute the new 
problem state that arises from its application.

• Detect when a solution has been found.

• Detect dead ends so that they can be 
abandoned and the system’s effort directed in 
more fruitful directions.

• Detect when an almost correct solution has been 
found and employ special techniques to make it 
totally correct.
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Choose the rules to apply

• The most widely used technique for 
selecting an appropriate rules to apply is 
first to isolate a set of differences between 
desired goal state and then to identify 
those rules that are relevant to reducing 
those differences.

• If several rules, a variety of other heuristic 
information can be exploited to choose 
among them
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Applying Rules

• In  simple systems, applying rules is easy. 
Each rule simply specified the problem 
state that would result from its application.

• In complex systems, we must be able to 
deal with rules that specify only a small 
part of the complete problem state.

• One way is to describe, for each action, 
each of the changes it makes to the state 
description. 
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Detecting a solution

• A planning system has succeeded in finding a solution to 
a problem when it has found a sequence of operators 
that transforms the initial problem state into the goal 
state. 

• How will it know when this has been done?

• In simple problem-solving systems, this question is 
easily answered by a straightforward match of the state 
descriptions.

• One of the representative systems for planning systems 
is, predicate logic. Suppose that as a part of our goal, we 
have the predicate P(x).  To see whether P(x) is satisfied 
in some state, we ask whether we can prove P(x) given 
the assertions that describe that state and the axioms 
that define the world model.
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Detecting Dead Ends

• As a planning system is searching for a sequence of 
operators to solve a particular problem, it must be able to 
detect when it is exploring a path that can never lead to 
a solution.

• The same reasoning mechanisms that can be used to 
detect a solution can often be used for detecting a dead 
end.

• If the search process is reasoning forward from the initial 
state, it can prune any path that leads to a state from 
which the goal state cannot be reached. 

• If search process is reasoning backward from the goal 
state, it can also terminate a path either because it is 
sure that the initial state cannot be reached  or because 
little progress is being made.
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Repairing an Almost Correct 

Solution

• The kinds of techniques we are discussing are 

often useful in solving nearly decomposable 

problems. 

• One good way of solving such problems is to 

assume that they are completely decomposable, 

proceed to solve the subproblems separately, 

and then check that when the subsolutions are 

combined, they do infact yield a solution to the 

original problem.
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Goal Stack Planning

• In this method, the problem solver makes use of a single 
stack that contains both goals and operators that have 
been proposed to satisfy those goals. 

• The problem solver also relies on a database that 
describes the current situation and a set of operators 
described as PRECONDITION, ADD, and DELETE lists.

• The goal stack planning method attacks problems 
involving conjoined goals by solving the goals  one at a 
time, in order.

• A plan generated by this method contains a sequence of 
operators for attaining the first goal, followed by a 
complete sequence for the second goal etc.
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Goal Stack Planning

• At each succeeding step of the problem solving process, the top 
goal on the stack will be pursued.

• When a sequence of operators that satisfies it is found, that 
sequence is applied to the state description, yielding new 
description.

• Next, the goal that is then at the top of the stack is explored and an 
attempt is made to satisfy it, starting from the situation that was 
produced as a result of satisfying the first goal.

• This process continues until the goal stack is empty.

• Then as one last check, the original goal is compared to the final 
state derived from the application of the chosen operators.

• If any components of the goal are not satisfied in that state, then 
those unsolved parts of the goal are reinserted onto the stack and 
the process is resumed.
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Nonlinear Planning using 

Constraint  Posting.

• Difficult problems cause goal interactions, 

• The operators used to solve one subproblem 
may interfere with the solution to a previous 
subproblem.

• Most problems require an interwined plan in 
which multiple subproblems are worked on 
simultaneously.

• Such a plan is called nonlinear plan because it is 
not composed of a linear sequence of complete 
subplans. 
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Constraint Posting

• The idea of constraint posting is to build up a plan by 
incrementally hypothesizing operators, partial orderings 
between operators, and binding of variables within 
operators. 

• At any given time in the problem-solving process, we 
may have a set of useful operators but perhaps no clear 
idea of how those operators should be ordered with 
respect to each other.

• A solution is a partially ordered, partially instantiated set 
of operators to generate an actual plan, we convert the 
partial order into any of a number of total orders. 
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Constraint Posting versus State 

Space search

State Space Search

• Moves in the space:

– Modify world state via 

operator

• Model of time:

– Depth of node in search 

space

• Plan stored in:

– Series of state 

transitions

Constraint Posting Search

•Moves in the space:

•Add operators

•Oder Operators

•Bind variables

•Or Otherwise constrain plan

•Model of Time:

•Partially ordered set of 
operators

•Plan stored in:

•Single node 13



Algorithm: Nonlinear Planning 

1. Initialize S to be the set of propositions in the goal 
state.

2. Remove some unachieved proposition P from S.

3. Achieve P by using step addition, promotion, 
declobbering, simple establishment or separation.

4. Review all the steps in the plan, including any new 
steps introduced by step addition, to see if any of their 
preconditions are unachieved. Add to S the new set of 
unachieved preconditions.

5. If S is empty, complete the plan by converting the 
partial order of steps into a total order, instantiate any 
variables as necessary.

6. Otherwise go to step 2.
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Modal Truth Criterion

• A proposition P is necessarily true in a state S if 
and only if two conditions hold: there is a state T 
equal or necessarily previous to S in which P is 
necessarily asserted; and for every step C 
possibly before S and every proposition Q 
possibly codesignating with P which C denies, 
there is a step W necessarily between C and S 
which asserts R, a proposition such that R and P 
codesignate whenever P and Q codesignate.

• Modal truth Criterion tells us when a proposition 
is true.
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Hierarchical Planning

• In order to solve hard problems, a problem solver may have to 
generate long plans.

• It is important to be able to eliminate some of the details of the 
problem until a solution that addresses the main issues is found.

• Then an attempt can be made to fill the appropriate details. 

• Early attempts to do this involved the use of macro operators.

• But in this approach, no details were eliminated from actual 
descriptions of the operators.

• As an example,  suppose you want to visit a friend in Europe but you 
have a limited amount of cash to spend. First preference will be find 
the airfares, since finding an affordable flight will be the most difficult 
part of the task. You should not worry about getting out of your 
driveway, planning a route to the airport etc, until you are sure you 
have a flight.
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ABSTRIPS

• ABSTRIPS actually planned in a hierarchy of abstraction spaces, in 
each of which preconditions at a lower level of abstraction were 
ignored.

• ABSTRIPS approach is as follows:
– First solve the problem completely, considering only preconditions 

whose criticality value is the highest possible.

– These values reflect the expected difficulty of satisfying the 
precondition.

– To do this, do exactly what STRIPS did, but simply ignore the 
preconditions of lower than peak criticality.

– Once this is done, use the constructed plan as the outline of a complete 
plan and consider preconditions at the next-lowest criticality level.

– Because this approach explores entire plans at one level of detail before 
it looks at the lower-level details of any one of them, it has been called 
length-first approach.
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Hierarchical Planning

• The assignment of appropriate criticality value is 
critical to the success of this hierarchical 
planning method.

• Those preconditions that no operator can satisfy 
are clearly the most critical.

• Example, solving a problem of moving robot, for 
applying an operator, PUSH-THROUGH DOOR, 
the precondition that there exist a door big 
enough for the robot to get through is of high 
criticality since there is nothing we can do about 
it if it is not true.
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Reactive Systems

• The idea of reactive systems is to avoid planning 
altogether, and instead use the observable situation as a 
clue to which one can simply react.

• A reactive system must have access to a knowledge 
base of some sort that describes what actions should be 
taken under what circumstances.

• A reactive system is very different from the other kinds of 
planning systems we have discussed because it 
chooses actions one at a time.

• It does not anticipate and select an entire action 
sequence before it does the first thing.

• Example is a Thermostat. The job of the thermostat is to 
keep the temperature constant. 
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Thermostat

• Is an example for reactive systems.

• Its job is to keep the temperature constant inside a 
room.

• One might imagine a solution to this problem that 
requires significant amounts of planning, taking into 
account how the external temperature rises and falls 
during the day, how heat flows from room to room, and 
so forth.

• Real thermostat uses simple pair of situation-action 
rules:

1. If the temperature in the room is k degrees above the desired 
temperature, then turn the airconditioner on.

2. If the temperature in the room is k degrees below desired 
temperature, then turn the airconditioner off.
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Reactive Systems

• Ractive systems are capable of surprisingly complex 
behaviours.

• The main advantage reactive systems have over 
traditional planners is that they operate robustly in 
domains that are difficult to model completely and 
accurately.

• Reactive systems dispense with modeling altogether and 
base their actions directly on their perception of the 
world.

• Another advantage of reactive systems is that they are 
extremely responsive, since they avoid the combinatorial 
explosion involved in deliberative planning.

• This makes them attractive for real time tasks such as 
driving and walking.
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Other Planning Techniques

• Triangle tables

• Metaplanning

• Macro-operators

• Case based planning.
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Blocks World

• Inorder to compare the variety of methods 

of planning, we should find it useful to look 

at all of them in a single domain that is 

complex enough that the need for each of 

the mechanisms is apparent yet simple 

enough that easy-to follow examples can 

be found.
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Blocks world problem

• There is a flat surface on which blocks can 

be placed

• There are a number of square blocks, all 

the same size.

• They can be stacked one upon the other.

• There is robot arm that can manipulate the 

blocks
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Actions of the robot arm

• UNSTACK(A,B)

• STACK(A,B)

• PICKUP(A)

• PUTDOWN(A)

• Notice that the robot arm can 

hold only one block at a time.

A

B
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Predicates 

• Inorder to specify both the conditions 
under which an operation may be 
performed and the results of performing it, 
we need the following predicates:

• ON(A,B)

• ONTABLES(A)

• CLEAR(A)

• HOLDING(A)

• ARMEMPTY
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Simple position

• State S0

• ON(A,B, S0) ̂  ONTABLE(B, S0)^CLEAR(A,S0)

If we execute UNSTACK(A,B) in state S0, in the 
resulting state S1:

HOLDING(A,S1)^CLEAR(B,S1)

To enable the complete situation to be described, we 
provide a set of rules called frame axioms, that 
describe components of the state that are not 
affected by each operator. 

• ONTABLE(x,s) -> ONTABLE(z, 
DO(UNSTACK(x,y),s))

• DO is a function that specifies for a given state and 
a given action, the new state that results from the 
execution of the action. 

A

B
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Robot –problem solving system 

(STRIPS)

• List of new predicates that the operator 

causes: ADD, DELETE

• PRECONDITIONS list contains those 

predicates that must be true for the 

operator to be applied.
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STRIPS style operators for 

BLOCKs World

• STACK(x,y)
• P: CLEAR(y)^HOLDING(x)

• D: CLEAR(y)^HOLDING(x)

• A: ARMEMPTY^ON(x,y)

• PICKUP(x)
• P: CLEAR(x) ^ ONTABLE(x) ^ARMEMPTY

• D: ONTABLE(x) ^ ARMEMPTY

• A: HOLDING(x)
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A simple Search Tree

A B

1

UNSTACK(A,B)

2

PUTDOWN(A)

3 Global Database at this point

ONTABLE(B)^CLEAR(A)^CLEAR
(B)^ONTABLE(A)

A

B
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Goal Stack Planning

• To start with goal stack is simply:
• ON(C,A)^ON(B,D)^ONTABLE(A)^ONTABLE(

D)

• This problem is separate into four 
subproblems, one for each component of the 
goal.

• Two of the subproblems ONTABLE(A) and 
ONTABLE(D) are already true in the initial 
state.

• Alternative 1: Goal Stack:

• ON(C,A)

• ON(B,D)
• ON(C,A)^ON(B,D)^OTAD

• Alternative 2: Goal stack:

• ON(B,D)

• ON(C,A)

• ON(C,A)^ON(B,D)^OTAD

A

B C D

Start: 

ON(B,A)^ONTABLE(A) ^ 

ONTABLE(C) 

^ONTABLE(D) 

^ARMEMPTY

C B

A D

Goal: ON(C,A)^ON(B,D)^ 

ONTABLE(A)^ONTABLE(

D)
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Exploring Operators

• Pursuing alternative 1, we check for operators that could cause ON(C,A)
• Of the 4 operators, there is only one STACK. So it yields:

• STACK(C,A)

• ON(B,D)

• ON(C,A)^ON(B,D)^OTAD

• Preconditions for STACK(C,A) should be satisfied, we must establish them 
as subgoals:

• CLEAR(A)

• HOLDING(C)

• CLEAR(A)^HOLDING(C)

• STACK(C,A)

• ON(B,D)
• ON(C,A)^ON(B,D)^OTAD

• Here we exploit the Heuristic that if HOLDING is one of the several  goals to 
be achieved at once, it should be tackled last.
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Goal stack Planning contd

• Next we see if CLEAR(A) is true. It is not. 
The only operator that could make it true is 
UNSTACK(B,A). This produces the goal 
stack:

• ON(B,A)
• CLEAR(B)

• ON(B,A)^CLEAR(B)^ARMEMPTY
• UNSTACK(B,A)
• HOLDING(C)

• CLEAR(A)^HOLDING(C)
• STACK(C,A)

• ON(B,D)
• ON(C,A)^ON(B,D)^OTAD
• We see that we can pop predicates on the 

stack till we reach HOLDING(C)  for which 
we need to find suitable operator

• The operators that might make 
HOLDING(C) true : PICKUP(C) and 
UNSTACK(C,x). Without looking ahead, 
since we cannot tell which of these 
operators is appropriate, we create two 
branches of the search tree corresponding 
to the following goal stacks:

ALT1:

ONTABLE(C)

CLEAR(C)

ARMEMPTY

ONTABLE(C) 
^CLEAR(C)^ARMEM
PTY

PICKUP(C)

CLEAR(A)^HOLDING

(C)

STACK(C,A)

ON(B,D)

ON(C,A)^ON(B,D)^OT

AD

ALT2:

ON(C,x)

CLEAR(C)

ARMEMPTY

ON(C,x)^CLEAR(C)^
ARMEMPTY

UNSTACK(C,x)

CLEAR(A)^HOLDING
(C)

STACK(C,A)

ON(B,D)

ON(C,A)^ON(B,D)^OT
AD
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Choosing Alternative

• How should our program choose now between alternative 1 and alternative 2?
• We can tell that picking up C ( alt 1) is better than unstacking it because it is not currently on 

anything. So to unstack it, we would first have to stack it.This would be waste of effort. 
• But how could the program know that?

• If we pursue the alternative 1, the top element on the goal stack is ONTABLE(C) which is already 
satisfied, so we pop it off. CLEAR(C) is also satisfied and is popped off.

• The remaining precondition of PICKUP(C) is ARMEMPTY which is not satisfied since 
HOLDING(B) is true.So we apply the operator STACK(B,D). This makes the Goal stack:

• CLEAR(D)

• HOLDING(B)
• CLEAR(D)^HOLDING(B)

• STACK(B,D)
• ONTABLE(C)^CLEAR(C)^ARMEMPTY
• PICKUP(C)

• CLEAR(A)^HOLDING(C)
• STACK(C,A)

• ON(B,D)
• ON(C,A)^ON(B,D)^OTAD
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Complete plan 

1. UNSTACK(C,A)

2. PUTDOWN(C)

3. PICKUP(A)

4. STACK(A,B)

5. UNSTACK(A,B)

6. PUTDOWN(A)

7. PICKUP(B)

8. STACK(B,C)

9. PICKUP(A)

10. STAKC(A,B)
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A slightly Harder Blocks problem

• Start

• Alt1:

• ON(A,B)

• ON(B,C)

• ON(A,B)^ON(B,C)

• Alt2:

• ON(B,C)

• ON(A,B)

• ON(A,B)^ON(B,C)

A B

C

Start: 

ON(C,A)^ONTABLE(A) ^ 

ONTABLE(B) 

^ARMEMPTY

C

B

A

Goal: ON(A,B)^ON(B,C)

Complete Plan:

1. UNSTACK(C,A)

2. PUTDOWN(C)

3. PICKUP(A)

4. STACK(A,B)

5. UNSTACK(A,B)

6. PUTDOWN(A)

7. PICKUP(B)

8. STACK(B,C)

9. PICKUP(A)

10.STACK(A,B)
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Problem

• Show how the 

STRIPS would 

solve this problem?

• Show how the 

TWEAK would 

solve this problem?

A

B

C

Start: 

ON(C,D)^ON(A,B)^ONTA

BLE(D) ^ ONTABLE(B) 

^ARMEMPTY

C

BA

Goal: 

ON(C,B)^ON(D,A)^ONTA

BLE(A)^ONTABLE(B)

D

D
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Sussman Anomaly

• it is an anomaly because a non-interleaved 
planner cannot solve the problem

• This problem can be solved, but it cannot be 
attacked by first applying all the operators to 
achieve one goal, and then applying operators 
to achieve another goal. 

• The problem is that we have forced an 
ORDERING on the operators. Sometimes steps 
for multiple goals need to be interleaved. 

• Partial-order planning is a type of plan 
generation in which ordering is imposed on 
operators ONLY when it has to be imposed in 
order to achieve the goals. 

• This is an example for nonlinear plan. A good 
plan for the solution of this problem is the 
following:

1. Begin work on the goal ON(A,B) by clearing A, 
thus putting C on the table.

2. Achieve the goal ON(B,C) by stacking B on C.

3. Complete the goal ON(A,B) by stacking A on B.

A B

C

Start: 

ON(C,A)^ONTABLE(A) ^ 

ONTABLE(B) 

^ARMEMPTY

C

B

A

Goal: ON(A,B)^ON(B,C)
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Heuristics for Planning using 

Constraint Posting ( TWEAK)
1. Step addition – creating new steps for a plan.

2. Promotion – Constraining one step to come before 
another in a final plan.

3. Declobbering – Placing one ( possibly new ) step S2 
between two old steps S1 and S3 such that S2 
reasserts some precondition of S3 that was neglected 
(or “clobbered”) by S1.

4. Simple establishment – Assigning a value to a 
variable, in order to ensure the preconditions of some 
step.

5. Separation – Preventing the assigment of certain 
values to a variable.
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Two steps with respect to ON(A,B) 

and ON(B,C)
CLEAR(B)

*HOLDING(A)

CLEAR(C)

*HOLDING(B)

STACK(A,

B)

STACK(B,

C)

ARMEMPTY

ON(A,B)

¬CLEAR(B)

¬HOLDING(A)

ARMEMPTY

ON(B,C)

¬CLEAR(C)

¬HOLDING(B)

Each step is written with its 

preconditions above it and its 

postconditions below it.

Delete postconditions are 

marked with a negation symbol 

( ¬)

Neither can be executed right 

away because some of their 

preconditions are not satisfied.

An unachieved precondition is 

marked with *.
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Step Addition

• Introducing new steps to 
achieve goals or preconditions 
is called Step addition.

• It is one of the heuristics used 
in generating nonlinear plans.

• Step addition is a very basic 
method dating back to GPS, 
where Means-Ends Analysis 
was used to pick operators 
with postconditions 
corresponding to desired 
states.

• To achive the preconditions of 
the two steps, we can use step 
addition again:

*CLEAR(A)

ONTABLE(A)

*ARMEMPTY

*CLEAR(B)

ONTABLE(B)

*ARMEMPTY

PICKUP(A) PICKUP(B)

¬ONTABLE(A)

¬ARMEMPTY

HOLDING(A)

¬ONTABLE(B)

¬ARMEMPTY

HOLDING(B)
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Partial Ordering and Promotion

• Adding PICKUP steps is not enough to satisfy the *HOLDING preconditions of the 
STACK steps.

• If in the eventual plan, the PICKUP steps were to follow the STACK steps, then the 
*HOLDING preconditions would need to be satisfied by some other set of steps.

• In this case we want each PICKUP step should precede its corresponding STACK 
step

• PICKUP(A) <- STACK(A,B)

• PICKUP(B) <- STACK(B,C)

• We now have four partially ordered steps and four unachieved preconditions.

• To achieve precondition CLEAR(B), we use Heuristic known as PROMOTION.

• Promotion amounts to posting a constraint that one step must precede another in 
eventual plan.

• We can achieve CLEAR(B) by stating that the PICKUP(B) step must come before the 
STACK(A,B) step:

• PICKUP(B) <- STACK(A,B)
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Declobbering

• A third heuristic called Declobbering can help 
achieve *ARMEMPTY precondition in the 
PICKUP(A) step.

• PICKUP(B) asserts ¬ARMEMPTY, but if we can 
insert another step between PICKUP(B) and 
PICKUP(A) to reassert ARMEMPTY, then the 
precondition will be achieved. The STACK(B,C) 
does the trick, so we post another constraint:

• PICKUP(B) <- STACK(B,C) <-PICKUP(A)

• The step PICKUP(B) is said to “clobber” 
PICKUP(A)’s precondition. STACK(B,C) is said 
to “Declobber” it.
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Simple Establishment

• *ON(x, A)

• *CLEAR(x)

• *ARMEMPTY

• --------------

• UNSTACK(x,A)

• ---------------

• ¬ARMEMPTY

• CLEAR(A)

• HOLDING(A)

• ¬ON(x,A)

• A variable x is introduced because the only precondition we are interested in is 
CLEAR(A). Whatever block is on top of A is irrelevent.

• Variables allow us to avoid committing to particular instantiations of operators.

• We have three unachieved preconditions. We can achieve ON(x,A) easily by 
constraining the value of x to be block C. This works because block C is on block A in 
the initial state. 

• This is called Simple establishment and allows us to state that two different 
propositions must be ultimately instantiated to the same proposition.

• x = C in step UNSTACK(x, A)
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Plan ordering and Variable Binding

1. UNSTACK(C,A)

2. PUTDOWN(C)

3. PICKUP(B)

4. STACK(B,C)

5. PICKUP(A)

6. STACK(A,B)

We used four different Heuristics to synthesize it : 

Step addition, promotion, declobbering and 

simple establishment.
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Some examples

• If our goal is to have a white fence around our yard and 
we currently have brown fence, we would select 
operators whose results involves change of colour of an 
object. If on the other hand, we have no fence, we must 
first consider operators that involve constructing a  
fence.

• We have a plan for baking an angel food cake. It 
involves separating some eggs. While carrying out the 
plan, we turn out to be slightly clumsy and one of the egg 
yolk falls into the dish of whites. We do not need to 
create a completely new plan. Instead, we simply redo 
the egg-separating step until we get it right and then 
continue with the rest of the plan.
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Some examples

• Suppose that we want to move all the furnitures out of a 
room. This problem can be decomposed into a set of 
smaller problems, each involving moving one piece of 
furniture out of the room.But if there is a bookcase 
behind the couch, then we must move the couch before 
the bookcase. 

• Suppose we have a fixed supply of paint; some white, 
some pink and some red. We want to paint a room so 
that it has light red walls and a white ceiling. We could 
produce light red paint by adding some white paint to 
red. But then we could not paint the ceiling white. So this 
approach should be abandoned in favor of mixing the 
pink and red paints together.

47



Example problem of cleaning a 

kitchen
• Cleaning the stove or refrigerator will get the floor dirty.

• To clean the oven, it is necessary to apply oven cleaner 
and then to remove the cleaner.

• Before the floor can be washed, it must be swept.

• Before the floor can be swept, the garbage must be 
taken out.

• Cleaning the refrigerator generates garbage and messes 
up the counters.

• Washing the counters or the floor gets the sink dirty.

• Show how the technique of planning using goal stack 
could be used to solve this problem. 
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Agents

An agent is anything that can be viewed as  

--- perceiving its environment through           

sensors and 

---acting upon that environment through 

actuators or effectors.
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Vacuum-cleaner world

• Two locations: A and B

• Percepts: location and contents, e.g., [A, Dirty] •

Actions: Left, Right, Suck, NoOp

Percept sequence Actions

[A, Clean] Right

[A, Dirty] Suck

[B ,Clean] Left

[B, Dirty] Suck

[A, Clean], [A, Clean] Right

[A, Clean ],[A, Dirty] Suck

… …

[A, Clean ],[A .Clean ],[A, Clean] Right

[A, Clean ],[A, Clean ],[A, Clean] Suck

One simple function is :

if the current square is dirty then suck, otherwise move to the other square
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Specifying the task environment   (PEAS) 

- Performance Measure

- Environment 

- Sensors

- Actuators
In designing an agent, the first step must always be to 

specify the task environment (PEAS) as fully as possible 
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PEAS for an automated taxi driver 

• Performance measure: Safe, fast, legal, comfortable trip,
maximize profits

• Environment: Roads, other traffic, pedestrians,
customers

• Actuators: Steering wheel, accelerator, brake, signal,
horn

• Sensors: Cameras, sonar, speedometer, GPS,
odometer, engine sensors, keyboard
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PEAS for a medical diagnosis system 

• Performance measure: Healthy patient, minimize costs,

lawsuits

• Environment: Patient, hospital, staff

• Actuators: Screen display (questions, tests, diagnoses,
treatments, referrals)

• Sensors: Keyboard (entry of symptoms, findings,
patient's answers)
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PEAS for Interactive English tutor 

• Performance measure: Maximize student's score on test

• Environment: Set of students

• Actuators: Screen display (exercises, suggestions,

corrections)

• Sensors: Keyboard
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Environment types 

The critical decision an agent faces is determining which
action to perform to best satisfy its design

objectives.

• Accessible vs. Inaccessible

• Deterministic vs. stochastic

•  Episodic vs. sequential 

•  Static vs. dynamic 

•  Discrete vs. continuous 

•  Single agent vs. multiagent 
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Accessible vs. Inaccessible:- An environment is fully accessible if an

agent's sensors give it access to the complete state of the

environment at each point in time where as An environment might

be inaccessible because of noisy and inaccurate sensors;

• Examples: vacuum cleaner with local dirt sensor, taxi driver

Deterministic vs. stochastic:- The environment is deterministic if the

next state of the environment is completely determined by the

current state and the action executed by the agent where as If the

environment is partially observable then it could appear to be

stochastic
• Examples: Vacuum world is deterministic while taxi driver is not
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Episodic vs. sequential:-In episodic environments, the agent's

experience is divided into atomic "episodes" (each episode consists

of the agent perceiving and then performing a single action), and the

choice of action in each episode depends only on the episode itself.

Examples: classification tasks.

• In sequential environments, the current decision could affect all future

decisions. Examples: chess and taxi driver

Static vs. dynamic: The static environment is unchanged while an agent

is deliberating where as Dynamic environments continuously ask the

agent what it wants to do.

• Examples: taxi driving is dynamic, crossword puzzles are static.
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Discrete vs. continuous: A limited number of distinct, clearly
defined states, percepts and actions.

Examples: Chess has discrete set of percepts and actions. 
While Taxi driving has continuous states, and actions 

Single agent vs. multiagent: An agent operating by itself in 

an environment is single agent

Examples: Crossword is a single agent while taxi driving is 

a multiagent environment 
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Environment types

Task Observable Deterministic Episodic Static Discrete Agents

Environment

Crossword puzzle Fully Deterministic Sequential Static Discrete Single

Chess with a Fully Strategic Sequential Semi Discrete Multi

clock

Poker Partially Stochastic Sequential Static Discrete Multi

Backgammon Fully Stochastic Sequential Static Discrete Multi

Taxi driving Partially Stochastic Sequential Dynamic Continuous Multi

Medical Partially Stochastic Sequential Dynamic Continuous Single

Diagnosis

ImageAnalysis Fully Deterministic Episodic Semi Continuous Single

Part-picking robot Partially Stochastic Episodic Dynamic Continuous Single

Refinery Partially Stochastic Sequential Dynamic Continuous Single 

controller Interactive 

Partially Stochastic Sequential Dynamic Discrete Multi
English Tutor

•   The environment type largely determines the agent design •   The real 
world is (of course) partially observable, stochastic, sequential, dynamic, 
continuous, multi-agent 61



Agent types 

Four basic types in order to increasing generality:
- Simple reflex agents

- Model-based reflex agents

- Goal based agents

- Utility based agents
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Simple reflex agents
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Model-based reflex agents
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Goal-based agents
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Utility-based agents
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Learning agents
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Agents and Objects

• The designers of an   object oriented system 
work towards a common goal where  as agents  
may  be  built    for  different  and organizations, 
no such common goal can be assumed. 

• “Objects invoke, agents request” or as 

one researcher said that 

“Objects do it for free; agents do it for money”. 
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Agents and Expert systems 

• Expert system could not be considered as agents.

• Expert systems typically do not exist in an 
environment  they are disembodied. 

• expert systems do not act on any environment but 

instead give feedback or advice to a third party. 

• This does not mean that an expert system cannot 
be an agent. 

• In fact, some real-time (typically process control) 

expert systems are agents. 
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What Kinds of Things Can Intelligent Agents Do? 

• Search for information automatically

• Answer specific questions 

• Inform you when an event has occurred.

• Provide custom news to you on a just-in-
time format 

• Provide intelligent tutoring 

• Find you the best prices on nearly any 
item 

• Provide automatic services, such as 
checking web pages for changes or 
broken links 
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Features of an Agent 

• Responsive (explicit: programmed, implicit:learn)
• Predictable
• Interactive (accessible)
• Trustworthy
• Expertise
• Skill
• Quick
• Accurate
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Know how, with no how 

• One way to convey to an agent the task it 

should perform is to simply write a program 

that the agent should execute. 

• The agent will do exactly as told and no more -

if an unforeseen circumstance arises the agent 

will have no clue as to how it should react. 

• Thus, what we really want is to tell our agent 

what to do without really telling it how to do it.
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But how do they do it? 

• How is this know-how incorporated into software?

• Shoham introduced a new programming paradigm based on 
societal views of computation that he called agent-oriented 
programming. 

• He called the programming language AGENT0.

• In AGENT0, an agent is specified in terms of a set of capabilities  
(things the agent can do), a set of initial beliefs, a set of initial 
commitments  (an agreement to perform a particular action at a 
particular time) and a set of commitment rules. 
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INTELLIGENT AGENTS 

• Some researchers  in 1995 define an intelligent agent as 

one that is capable of flexible autonomous action to meet 

its design objectives. Flexible means:

• Reactivity: intelligent agents perceive and respond in a 

timely fashion to changes that occur in their environment 

in order to satisfy their design objectives. 

• Pro-activeness: reacting to an environment by mapping 

a stimulus into a set of responses is not enough. 

• Social ability: intelligent agents are capable of 

interacting with other agents.
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Other properties 

• Mobility: the ability to move around an electronic 
environment

• veracity: an agent will not knowingly communicate false 
information.

• Benevolence: agents do not have conflicting goals and 
every agent will therefore always try to do what is asked 
of it. 

• Rationality: an agent will act in order to achieve its 
goals insofar as its beliefs permit. 

• Learning/adaptation: agents improve performance over 
time
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Conclusion

• Agent-based systems technology is a  vibrant  and  
rapidly expanding field  of  academic  research  and  

business  world applications. 

• Agent technology is greatly hyped as a panacea for 
the current ills of system design and development, 

but the developer is cautioned to be aware of the 

pitfalls inherent in any new and untested technology.

• The potential is there but the full benefit is yet to be 
realized. 

• Much work is yet to be done. 
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Rule-based Systems

A rule based system is also called a production system.

A production rule is an:

IF situation THEN action

IF premise THEN conclusion

IF antecedent THEN consequent



Rule-based systems are the most popular type of expert 

systems.

Two inference methods are used in rule-based systems

Forward reasoning (Forward chaining, data driven 

reasoning)

start with known data and progress to a 

conclusion.

Backward reasoning (Backward chaining, goal 

driven reasoning)

start with a possible conclusion and try to prove  its      

validity by searching for evidance.

Cont…



Why are rule-based systems more popular?

Modular nature (easy to expand)

Explanation facilities easily implemented (by keeping track of 

the rules that fire)

Similarity to human cognitive process (work of Newell and 

Simon)



Forward Reasoning

Forward Chaining

Data Driven Reasoning



Two types 

• Forward chaining:- starts with the data available 
and uses the inference rules to conclude more data until 
a desired goal is reached.

• An inference engine using forward chaining searches 
the inference rules until it finds one in which the if-clause 
is known to be true. 

• It then concludes the then-clause and adds this 
information to its data.

• It would continue to do this until a goal is reached. 
Because the data available determines which inference 
rules are used.

• this method is also called data driven
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A Simple Example

R1: IF hot AND smoky THEN fire 

R2: IF alarm_beeps THEN smoky 

R3: If fire THEN switch_on_sprinklers 

F1: alarm_beeps [Given]

F2: hot [Given]

83



A Simple Example

R1: IF hot AND smoky THEN ADD fire 

R2: IF alarm_beeps THEN ADD smoky 

R3: If fire THEN ADD switch_on_sprinklers 

F1: alarm_beeps [Given]

F2: hot [Given]

F3: smoky [from F1 by R2]

F4: fire [from F2, F3 by R1]

F5: switch_on_sprinklers [from F4 by R3]

A typical Forward Chaining example
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Working Memory

Knowledge Base

A B C ED

If Y and D then Z

If X & B & E then Y

If A then X

If C then L

If L and M then N

X

Knowledge Base

A B C ED

X

If Y and D then Z

If X & B & E then Y

If A then X

If C then L

If L and M then N

L

Match Fire



Knowledge Base

A B C ED

X

If Y and D then Z

If X & B & E then Y

If A then X

If C then L

If L and M then N

L Y

Knowledge Base

A B C ED

X

If Y and D then Z

If X & B & E then Y

If A then X

If C then L

If L and M then N

L Y Z



Forward Chaining Algorithm

Start from a set of facts (data available) and 

check to see if the premises of any rules are 

satisfied. If there is a match then the rule 

fires (is executed). 

The steps followed in forward chaining are:



1. Matching: Compare rules with known facts 

and find rules that are     satisfied.

2. Conflict Resolution: More than one rule may 

be satisfied. Conflict resolution is the process 

of selecting the one with highest priority  for 

execution.

3. Execution: The rule selected is executed 

(fired). This may result in a new fact(s) to be 

added and the process continues forward.



Backward Reasoning

Backward Chaining

Goal Driven Reasoning



Backward chaining:starts with a list of goals 

and works backwards to see if there is data 

which will allow it to conclude any of these goals.

• An inference engine using backward chaining 

would search the inference rules until it finds 

one which has a then-clause that matches a 

desired goal. 

• If the if-clause of that inference rule is not known 

to be true, then it is added to the list of goals. 
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Backward Chaining

Same rules/facts may be processed differently, using
backward chaining interpreter

Backward chaining means reasoning from goals back
to facts.

The idea is that this focuses the search.

Checking hypothesis

Should I switch the sprinklers on?
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Backward Chaining Algorithm

To prove goal G:

If G is in the initial facts, it is proven.

Otherwise, find a rule which can be used to conclude
G, and try to prove each of that rule's conditions.
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Example

Rules:

R1: IF hot AND smoky THEN fire alarm_beeps

R2: IF alarm_beeps THEN smoky

R3: If fire THEN switch_on_sprinklers

Facts:

smoky hot
F1: hot

F2: alarm_beeps

Goal:

Should I switch sprinklers on? fire

switch_on_sprinklers
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Working Memory

Knowledge Base

A B C ED

If Y and D then Z

If X & B & E then Y

If A then X

If C then L

If L and M then N

Knowledge Base

A B C ED

If Y and D then Z

If X & B & E then Y

If A then X

If C then L

If L and M then N

Z Y

?



Knowledge Base

A B C ED

If Y and D then Z

If X & B & E then Y

If A then X

If C then L

If L and M then N

X

?

Knowledge Base

A B C ED

If Y and D then Z

If X & B & E then Y

If A then X

If C then L

If L and M then N

X



Knowledge Base

A B C ED

If Y & D then Z

If X & B & E then Y

If A then X

If C then L

If L & M then N

YX

Knowledge Base

A B C ED

If Y & D then Z

If X & B & E then Y

If A then X

If C then L

If L & M then N

X Y Z



Advantages of Rule Based Systems

•Modularity: Each rule is a separate unit. This 

makes adding, editing or removing of rules easily 

possible giving great flexibility to the system.

•Uniformity: The same format is used for 

representing all of the knowledge.

•Naturalness: In many domains rules are used to 

express the knowledge.



Disadvantages of Rule Based 

Systems

•Infinite Chaining

•Addition of new contradictory knowledge

•Modification of existing Knowledge

•Inefficiency

•Large number of rules needed to cover 

some domains (e.g. air traffic control)



Forward Chaining

In a forward chaining system: Facts are

held in a working memory

Condition-action rules represent actions to take when 

specified facts occur in working memory. 

Typically the actions involve adding or deleting facts 

from working memory. 

facts

InferenceWorking
EngineMemory

facts

rulesfacts

User
Rule Base
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Forward Chaining Algorithm (I)

Repeat

Collect the rule whose condition matches a fact in
WM.

Do actions indicated by the rule

(add facts to WM or delete facts from WM)

Until problem is solved or no condition match
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Forward vs Backward Chaining

Depends on problem, and on properties of rule set. 

If you have clear hypotheses, backward chaining is 

likely to be better. 

Goal driven

Diagnostic problems or classification problems
Medical expert systems

Forward chaining may be better if you have less clear 
hypothesis and want to see what can be concluded 
from current situation. 

Data driven

Synthesis systems
Design / configuration
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Forward-chaining Example (A,B,E, 

and D are given)
• If Y and D then Z

• If X and B and E then Y

• If A then X

• If C then L

• If L and M then N

A

D

B

X

E

Y
Z

C
L
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Backward Chaining Example

• If Y and D then Z

• If X and B and E then Y

• If A then X

• If C then L

• If L and M then N

A

D

B

E

C

ZY

D

X

B

E
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Natural Language Processing



What’s Natural Language 

Processing?
• Depends on your point of view

• Psychology: Understand human language 
processing
– How do we learn language?

– How do we understand language?

– How do we produce language?

– How is language tied to thought?

• Engineering: Build systems to process language
– Build dialogue-based call centers

– Build information retrieval engines

– Build question-answering systems

– Design general algorithms for a range of applications



Brief History of NLP

• 1950s: Machine Translation
– Abandoned due to lack of computing resources

• 1960s: Despair
– Problem considered impossible philosophically (Quine)

– Problem considered impossible linguistically (Chomsky)

• 1970s: Dawn of Artificial Intelligence
– “Full” dialog systems (eg. SHRDLU)

– Symbolic processing in LISP

– Early theories of semantics; first big systems (eg. LUNAR)

– First information retrieval systems

W.V.O. Quine



“Standard” Parse Tree Notation
S

NP VP

PPNP

Jones

followed

him
into

the front room

NP

,

,

S

...



NLP…
• Phrase Structure Rules

– S  NP VP S  V NP PP 
– S  NP VP PP NP  N DET PP
– NP  Det N or ART N
– VP  V  Adj VP  V NP
– VP V PP
– PP  P NP
– VP  V NP PP    VP  AUX V NP   DET  ART ADJ

• Lexical Entries
– N  book, cow, course, …        V printed, want …
– ART  the, a, …
– AUX  was, were …
– PREP  by, on, with …
– ADJ  short, long, fast …

Noam Chomsky
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Problem reduction methods

• I want to be a famous 
musician
– Learn to sing

– Learn to play the guitar

– Learn to play the bass

– Learn to play drums

• If I want to play the guitar 
what do I do?
– Buy a guitar

– Take lessons

– Practice
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Problem reduction methods

Musician

Singer Guitarist Bass player Drummer

Buy Guitar Take lessons Practice

AND/OR tree
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