
Prepared by
Arun Kumar Dewangan
Prepared by
Arun Kumar Dewangan

Unit - 1

Introduction

By: A. K. Dewangan Slide No. 2

Introduction

Finite Automata and Lexical Analysis

Introduction

By: A. K. Dewangan Slide No. 3

Introduction

What is Compilers & Translators

A translator is a program that takes as input a program written in one

programming language (called source language) and produces as output a

program in another language (called object or target language).

Source

Language
Translator

Target

Language

Unit 1: Introduction to Compilers

By: A. K. Dewangan Slide No. 4

High Level

Language
Compiler

Low Level

Language

if the source language is high level language (e.g. FORTRAN, COBOL) and the

object language is low level language (e.g. assembly language, machine language), then

such a translator is called a compiler.

Unit 1: Introduction to Compilers

Compilation and Execution

Executing a program written in a high level programming language is

basically a two step process.

1. The source program must first be compiled, i.e. translated into object

program.

2. Then the resulting object program is loaded into memory and executed.

Source

Program
Compiler

Object

Program

Object Program

Input

Object

Program
Object Program

Output

By: A. K. Dewangan Slide No. 5

Unit 1: Introduction to Compilers

Other Translators

Interpreter:

There are other translators too, which transform a programming

language into a simplified language, called intermediate code, which can be

directly executed using a program called an interpreter.

Interpreters are often smaller than compilers.

Main disadvantage of interpreters is the execution time of an interpreted

program is usually slower than that of a corresponding compiled object

program.

By: A. K. Dewangan Slide No. 6

Unit 1: Introduction to Compilers

Assembler:

If the source language is assembly language and the target language is

machine language, then the translator is called an assembler.

Assembly

Language
Assembler Machine Language

Preprocessor:Preprocessor:

Translators that take programs in one high level language and

translate into equivalent programs in another high level language are called

preprocessor.

High Level

Language
Preprocessor High Level Language

By: A. K. Dewangan Slide No. 7

Compiler Vs Interpreter

� Both are written in some high level programming language and they are

translated into machine code.

� Interpreter source program is machine independent as it does not generate

machine code.

� Interpreter is slower than compiler because it processes and interprets

each statement in program as many time get executed.

Unit 1: Introduction to Compilers

Need of Translators

By: A. K. Dewangan Slide No. 8

� With machine language we have to communicate directly in terms of bits,

registers and very primitive machine operations.

� Machine language is nothing more than a sequence of 0’s and 1’s.

� Programming an algorithm in such a language is tedious task and there

may be opportunities of mistakes.

� Another disadvantage of machine language coding is that all operations

and operands must be specified in a numeric code.

Symbolic Assembly Language

Because of difficulties with machine language programming, higher

level language have been invented to enable the programmer to code in a way

that looks like his own thought processes.

The most immediate step away from machine language is symbolic

assembly language.

In this language programmer uses mnemonic names for both

operation codes and data addresses.

To add values of X and Y, in assembly language programmer could write

ADD X, Y

Unit 1: Introduction to Compilers

ADD X, Y

that may be

0110 001110 010101 in machine language

where 0110 is machine operation code for “add” and 001110 and 010101 are

the address of X and Y resp.

Computer cannot execute a program written in assembly language. The

program has to be first translated to machine language, which computer can

understand. This task is performed by assembler.

By: A. K. Dewangan Slide No. 9

Consider a situation if machine does not have ADD X, Y as a single statement

(add the contents of one memory address to another)

Suppose machine has an instruction

• LOAD (moves datum from memory to a register)

Unit 1: Introduction to Compilers

Macros

Many programming languages provide a macro facility where a macro

statement will translate into a sequence of assembly language statements and

other statements before being translated into machine code.

Two aspects of macro : definition and use

• LOAD (moves datum from memory to a register)

• ADD (adds the contents of memory address to that of register)

• STORE (moves data from a register to memory)

Using these instructions, we can create a macro as

MACRO ADD2 X, Y

LOAD Y

ADD X

STORE Y

ENDMACRO

By: A. K. Dewangan Slide No. 10

First statement gives name ADD2 to the macro with X and Y as dummy

arguments (formal parameters)

If ADD2 A, B encounters somewhere after the definition of ADD2, then we have

a macro use, with A and B as actual parameters.

The macro processor substitute ADD2 A,B the three statements with actual

parameters A and B for X and Y respectively.

Hence Add2 A, B is translated to

LOAD B

ADD A

Unit 1: Introduction to Compilers

ADD A

STORE B

Drawback

� Programmer must know the details of how a specific computer operates.

� Complex task to sequence low level operation which includes only

primitive data types that machine language provides .

� Difficult to concern with how and where data is represented within the

machine.

� Detailed knowledge is required for efficiency (leads to wasting of time)

By: A. K. Dewangan Slide No. 11

High Level Languages

� To avoid problems with assembly language, high level programming

languages are developed.

� Allows programmers to write expression in natural way like A + B instead

of ADD A, B.

� We need a program to translate high level language into language the

machine can understand.

� Some compilers makes use of assembler as an appendage.

� Compiler producing assembly code is assembled and loaded before being

Unit 1: Introduction to Compilers

� Compiler producing assembly code is assembled and loaded before being

executed in machine language form.

COBOL, FORTRAN, PASCAL, LISP and C are some high level languages

By: A. K. Dewangan Slide No. 12

Lexical

Analysis

Source Program

Syntax

Analysis

Intermediate

Code
Error

Handling

Table

Management

Phases of Compiler

Unit 1: Introduction to Compilers

Code

Generation

Code

Optimization

Code

Generation

HandlingManagement

Target Program

By: A. K. Dewangan Slide No. 13

Phases of Compiler

A phase is a logically cohesive operation that takes as input one

representation of the source program and produces as output another

representation. A compiler takes as input a source program and produces as

output an equivalent sequence of machine instructions.

Unit 1: Introduction to Compilers

By: A. K. Dewangan Slide No. 14

1. Lexical Analyzer

� This is first phase of compiler.

� Also called scanner.

� Separates characters of source language into groups that logically belong

together.

� Groups are called tokens (DO or IF, identifiers, operator symbols like <= or

Unit 1: Introduction to Compilers

� Groups are called tokens (DO or IF, identifiers, operator symbols like <= or

+, punctuation symbols like parentheses or commas).

� Output of lexical analyzer is stream of tokens.

� These tokens are passed to the next phase.

� The tokens are represented by codes (e.g. DO might by 1, + by 2, identifier

by 3 etc.).

By: A. K. Dewangan Slide No. 15

2. Syntax Analyzer

� This is second phase of compiler.

� Also called parser.

� Groups tokens together into syntactic structure called expression.

� Expressions might be combined to form statements.

� Syntactic structure can be regarded as a tree whose leaves are tokens.

Unit 1: Introduction to Compilers

� The interior nodes of the tree represent strings of tokens that logically

belong together.

By: A. K. Dewangan Slide No. 16

3. Intermediate Code Generator

� This is third phase of compiler.

� Uses the structure produced by syntax analyzer to create stream of simple

instruction.

� There may be many styles of intermediate code.

� Most common style is instruction with one operator and small no. of

Unit 1: Introduction to Compilers

operands.

� Instructions are like macros.

� Intermediate code need not specify the registers to be used for each

operation.

By: A. K. Dewangan Slide No. 17

4. Code Optimization

� This is fourth and optional phase of compiler.

� Designed to improve the intermediate code.

� Ultimate object program runs faster, takes less space.

� Its output is another intermediate code program doing same job as original.

� Saves time or space.

5. Code Generation

Unit 1: Introduction to Compilers

5. Code Generation

� This is last phase of compiler.

� Produces object code by deciding

� Memory locations for data.

� Selecting code to access each datum.

� Selecting the registers in which each computation is to be done.

� One of the difficult part of compiler.

By: A. K. Dewangan Slide No. 18

Apart from these phases

Routines that interact with all phases of compiler are

Table Management

� Also called book keeping.

� Compiler keeps track of the names used by the program.

� Records essential information about each (such as integer, real, etc.).

� The data structure used to record these information is called symbol table.

Unit 1: Introduction to Compilers

� The data structure used to record these information is called symbol table.

Error Handler

� Invoked when a flaw in source program is detected.

� Must warn the programmer by issuing diagnostic information.

� Compilation be completed on flawed programs, at least through the syntax

analysis phase, so that as many errors can be detected in one compilation.

By: A. K. Dewangan Slide No. 19

Passes

In a compiler, portions of one or more phases are combined into a

module called a pass.

� A pass reads source program or output of previous pass.

� Makes the transformations specified by its phases.

� Writes output into an intermediate file, which may be read by a subsequent

pass.

A multi-pass compiler is slower than a single pass compiler because each

Unit 1: Introduction to Compilers

� A multi-pass compiler is slower than a single pass compiler because each

pass reads and writes an intermediate file.

� Compiler running on small memory computer would use several passes.

� Computer with a large RAM, a fewer passes would be possible.

By: A. K. Dewangan Slide No. 20

Backpatching

If output of a phase cannot be determined without looking at the

remainder of the phase’s input, the phase can generate output with slots which

can be filled in later, after more of the input is read.

Unit 1: Introduction to Compilers

Consider an assembler might have statement GOTO L

which precedes a statement with label L.

� Two pass assembler uses its first pass to enter into its symbol table a list of

all identifiers together with machine address.

� Then second pass replaces mnemonic operation codes, such as GOTO, by

their machine language equivalent and replaces uses of identifiers by their

By: A. K. Dewangan Slide No. 21

their machine language equivalent and replaces uses of identifiers by their

machine addresses.

� Append the machine address for this instruction to a list of instructions to

be backpatched once the machine address for L is determined.

L: ADD X

� It scans list of statements referring to L and places the machine address for

statement L: ADD X in the address field of each such instruction.

� The distance over which backpatching occurs must remain accessible until

backpatching is complete.

Lexical Analysis

� It is the interface between source program and compiler.

� It reads source program one character at a time.

� Divides source program into sequence of atomic units called tokens.

� Token represents sequence of characters treated as a single logical entity.

� Identifiers, keywords, constants, operators and punctuation symbols

(comma and parenthesis) are typical tokens.

Unit 1: Introduction to Compilers

(comma and parenthesis) are typical tokens.

By: A. K. Dewangan Slide No. 22

Example (Fortran statement)

IF (5 .EQ. MAX) GOTO 100

Tokens are : IF, (, 5, .EQ., MAX,), GOTO, 100

Types of Tokens:

� Specific Strings: IF or semicolon

� Classes of Strings: Identifiers, constants, or labels

�Token consists of two parts token type and token value.

�Specific strings such as semicolons are treated as having a type but no value.

�Token such as identifier MAX has a type “identifier” and a value consisting of

string MAX.

Unit 1: Introduction to Compilers

�The lexical analyzer and syntax analyzer are grouped together into same pass.

�Lexical analyzer operates either under control of parser or as a co-routine with parser.

�Parser asks the lexical analyzer for next token whenever parser needs one.

By: A. K. Dewangan Slide No. 23

�Lexical analyzer returns a code, for the token that it found, to the parser.

�If token is identifier or another token with a value, the value is also passed to parser.

�Method of providing this information by lexical analyzer is called bookkeeping routine.

�This routine puts the actual value in symbol table if it is not already present.

�Lexical analyzer passes two components of token:

•Code for the token type (identifier)

•A pointer to the place in the symbol table

Unit 1: Introduction to Compilers

Finding Tokens

�The lexical analyzer examines successive characters in the source program, starting

from the first character not yet grouped into a token.

�Lexical analyzer may require to search many characters beyond the next token in order

to determine what the next token actually is.

Example (Fortran statement)

IF(5.EQ.MAX)GOTO100

By: A. K. Dewangan Slide No. 24

�Consider the situation that strings to the left of bracket are already broken up into

tokens.

�When the parser asks for next token, lexical analyzer reads all the characters between

5 and Q including . (dot) to determine that next token is constant 5

�Reason to read up to Q is, until it sees Q, it is not sure that it has seen complete

constant. It could be working on floating point constant such as 5.E-10.

Blanks have been removed

Unit 1: Introduction to Compilers

�After determining that next token is constant 5, lexical analyzer repositions its input

pointer at first . (dot).

�The lexical analyzer return token type “constant” to the parser and value associated

with this constant could be numerical value 5 or a pointer to the string 5.

�After processing the statement, the token stream look like

if ([const, 341] eq [id, 729]) goto [label, 554]

�The relevant entries of symbol tables are

By: A. K. Dewangan Slide No. 25

Constant, integer, value = 5341

Label , value = 100554

Variable, integer, value = MAX729

Fig: Symbol Table

.

.

.

.

.

.

.

.

Syntax Analysis

It has two functions

�It checks that tokens appearing in its input are in proper pattern as per

specification of source language.

�Also imposes on tokens a tree like structure used by subsequent phases of

compiler

Unit 1: Introduction to Compilers

Consider expression

By: A. K. Dewangan Slide No. 26

Consider expression

A + / B

After lexical analysis, this expression appears for syntax analyzer as

id + / id

On seeing the /, parser should detect an error since presence of these two adjacent

binary operators violates the formation rules

Parser makes hierarchical structure of incoming token stream by identifying

which parts of token stream should be grouped together.

A / B * C

has two possible interpretation

�Divide A by B then multiply by C

�Multiply B by C then use result to divide A

Unit 1: Introduction to Compilers

By: A. K. Dewangan Slide No. 27

�The interpretation can be represented in terms of parse tree.

�Parse tree exhibits the syntactic structure of the expression.

�The language specification must tell us which interpretation is to be used.

�Context free grammars are helpful in specifying syntactic structure of a

language.

Unit 1: Introduction to Compilers

expression

expression

expression

A /

expression

*B

expression

C

Fig: Possible parse tree for A / B * C

By: A. K. Dewangan Slide No. 28

expression

expression

A /

expression

*B

expression

C

expression

Fig: Possible parse tree for A / B * C

Semantic Analyzer

�It gathers type information and checks tree produced by syntax analyzer for

semantic errors.

�Term semantic analysis is applied to determination of the type of

intermediate result (check that arguments are of types that are legal).

�It is required to collect information concerning type and scope of variables.

�Semantic analysis can be done during syntax analysis, intermediate code

Unit 1: Introduction to Compilers

�Semantic analysis can be done during syntax analysis, intermediate code

generation or final code generation phase.

By: A. K. Dewangan Slide No. 29

Intermediate Code Generation

�Transforms parse tree into an intermediate language representation of the

source program.

�Popular type of intermediate language is three address code.

Example A:= B op C

where A,B,C are operands and op is a binary operator.

The parse tree for A / B * C might be converted into three address code

Unit 1: Introduction to Compilers

The parse tree for A / B * C might be converted into three address code

sequence

By: A. K. Dewangan Slide No. 30

T1 := A / B

T2 := T1 * C

or

T1 := B * C

T2 := A / T1

where T1 and T2 are names of temporary variables created by intermediate code

generator.

Optimization

�Object programs that are frequently executed should be fast and small.

�Compilers may have phase in itself to transform output of intermediate code

generator to another version of intermediate language which is faster and

smaller object language program.

�This phase is called optimization phase.

�There is no particular algorithmic way to produce best target program.

Unit 1: Introduction to Compilers

�There is no particular algorithmic way to produce best target program.

�Optimizing compilers just attempt to produce a better target program

compared to no optimization.

By: A. K. Dewangan Slide No. 31

Local Optimization

�Local transformation: Consider a statement

if A > B goto L2

goto L3

L2:

This sequence can be replaced by single statement

if A <= B goto L3

Unit 1: Introduction to Compilers

if A <= B goto L3

�Elimination of common subexpressions: consider statements

A := B + C + D

E := B + C + F might be evaluated as

T1 := B + C

A := T1 + D

E := T1 + F

By: A. K. Dewangan Slide No. 32

Loop Optimization

Consider a for loop

for (int i = 0 ; i < 2000 ; i + +)

{

x := y + 3 ;

q := a * i ;

}

Unit 1: Introduction to Compilers

}

�In this loop the statement x := y + 3 ; has no effect in any part of loop and

executed unnecessarily 2000 times.

�object code can be generated such that machine code for this line is moved

outside for’s body.

�Hence instruction is executed only once, instead of 2000 times. This is called

loop optimization.

By: A. K. Dewangan Slide No. 33

Code Generation

�It converts intermediate code into sequence of machine instructions.

�Example: consider statement A := B + C

�Machine code sequence

LOAD B

ADD C

STORE A

Unit 1: Introduction to Compilers

STORE A

�The machine code contains many redundant load and store and utilizes

resources of target machine inefficiently.

�To avoid redundant load and store, code generator keep track of run time

contents of registers and can generate load and store only when necessary.

�Good code generator utilize registers efficiently as many computers have only

few high speed registers.

By: A. K. Dewangan Slide No. 34

Bookkeeping

�A compiler needs to collect information about all data objects appear in

source program.

�Example: compiler need to know

�Datatype of a variable

�Size of an array

�Number of arguments in a function etc.

Unit 1: Introduction to Compilers

�Number of arguments in a function etc.

�The information about data objects is collected by early phase of compiler

(lexical and syntactic analysis).

�Information about data objects are entered into symbol table.

By: A. K. Dewangan Slide No. 35

Use of Bookkeeping

�Example: consider an expression

A + B

where A is of type integer and B is of real.

�If language permits an integer value to be added to a real value then computer

code must be generated to convert A from integer type to real before addition.

�If expression having such nature is forbidden by the language, then compiler

Unit 1: Introduction to Compilers

�If expression having such nature is forbidden by the language, then compiler

must issue an error message.

By: A. K. Dewangan Slide No. 36

Error Handling

�Main function is detection and reporting of errors in source program.

�Error message should allow programmer to determine exact location of error.

�Error can be encountered by all phases.

�Example:

�Lexical analyzer is unable to process next token due to misspelled.

�Syntax analyzer is unable to determine a structure for input due to

Unit 1: Introduction to Compilers

�Syntax analyzer is unable to determine a structure for input due to

missing parenthesis.

�Intermediate code generator detect an operator having operands of

incompatible type, etc.

�In case of error, compiler must report error to error handler for issuing

appropriate diagnostic message.

By: A. K. Dewangan Slide No. 37

Compiler Writing Tools

�Tools developed to help construct compilers.

�Tools range from scanner, parser generator to compiler compilers, compiler

generators, translator writing system.

�These tools produce a compiler from some form of specification of source

language and target machine.

�Input specification may contain:

Unit 1: Introduction to Compilers

�Input specification may contain:

�Description of lexical and syntactic structure of source language.

�Description of output to be generated for each source language construct.

�Description of target machine.

�Instead of writing a program to perform syntax analysis, user writes a context

free grammar and compiler-compiler automatically converts that grammar into

program for syntax analysis.

By: A. K. Dewangan Slide No. 38

Existing Compiler-Compiler provides

�Scanner generator.

�Parser generator.

�Facilities for code generation.

Unit 1: Introduction to Compilers

Bootstrapping

�A compiler is characterized by three languages:

�Source language.

By: A. K. Dewangan Slide No. 39

�Source language.

�Object language.

�Language in which compiler is written.

�These languages may be quite different.

�Cross Compiler: a compiler run on one machine and produce object code for

another machine. Such compiler is called cross compiler.

A compiler may be written in its own language. HOW??

Suppose we have new language L, to which we want to run on machine A and B.

�For machine A, write small compiler C
A

SA
that translate subset S of language L

(S ⊆ L) into machine/ assembly code of A. This compiler first be written in a

language already available on A.

�Write a compiler C
S

LA
in language S, run through C

A

SA
, becomes C

A

LA
,

Unit 1: Introduction to Compilers

compiler for complete language L, running on machine A, and producing object

code for A.

By: A. K. Dewangan Slide No. 40

Note: C
Z

XY
means - compiler for language X, written in language Z, producing

object code in language Y.

C
S

LA
C

A

SA C
A

LA

Fig: Bootstrapping a compiler

Finite Automata and Lexical Analysis

By: A. K. Dewangan Slide No. 41

Finite Automata and Lexical Analysis

Role of Lexical Analyzer

�Works as an interface between source program and parser.

�It examines input text character by character and separates the source

program into pieces called tokens.

�Acts as a subroutine which is called by the parser for new token.

�It returns to parser a representation for token it found.

�Representation is an integer code if token is simple construct (parenthesis,

Unit 1: Introduction to Compilers

�Representation is an integer code if token is simple construct (parenthesis,

comma, colon, etc.).

�Representation is pair consisting of integer code and a pointer to a table if

token is complex element (identifier, constant, etc.).

�Integer code gives token type, pointer points to the value of that token.

By: A. K. Dewangan Slide No. 42

also

�Remove the content free characters (comment, white spaces, etc.).

�Insert line number during analysis.

�Evaluating constants.

�Detect lexical errors such as numeric literals are too long, identifiers are too

long.

�Output of lexical analysis is input to syntax analysis.

Unit 1: Introduction to Compilers

�Output of lexical analysis is input to syntax analysis.

By: A. K. Dewangan Slide No. 43

Input Buffering

�Lexical analyzer scans one character at a time of source program to discover

tokens.

�Many characters beyond token may have to be examined to determine the

token itself.

�So lexical analyzer reads its input from input buffer.

Unit 1: Introduction to Compilers

Example

By: A. K. Dewangan Slide No. 44

Example

Consider two pointer

�One pointer marks beginning of the token being discovered.

�A lookahead pointer scans ahead of the beginning point, until token is

discovered.

Token beginning Lookahead pointer

Tokens

�A program can be partitioned at lowest level into a sequence of substrings

called tokens.

�Each token is a sequence of characters whose significance is possessed

collectively rather than individually.

�Example of tokens:

�Constants (1, 2.3, 4.5E6)

Unit 1: Introduction to Compilers

�Constants (1, 2.3, 4.5E6)

�Identifiers (A, H2035B, SPEED)

�Operator symbols (+, -, **, :=, .EQ.)

�Keywords (IF, GOTO, SUBROUTINE)

�Punctuation symbols (parenthesis, brackets, comma and semicolon)

By: A. K. Dewangan Slide No. 45

Design of Lexical Analyzer

�Behavior of any program can be represented by flowchart.

�We represent behavior of lexical analyzer by transition diagram.

�In transition diagram, boxes of flowchart are drawn as circles called states.

�States are connected by arrows called edges.

�Labels on the edges leaving the state indicate the input characters that can

appear after that state.

Unit 1: Introduction to Compilers

appear after that state.

By: A. K. Dewangan Slide No. 46

0 1 2

start letter delimiter

letter or digit

Fig: Transition diagram for identifier

Description of transition diagram

�Figure shows transition diagram for an identifier.

�Identifier is letter followed by any number of letters or digits.

�Starting state is 0.

�Edge from 0 indicates that first character must be a letter (enter state 1).

�Look for next input character, if letter or digit, reenter state 1.

�Continue reading letters or digits and making transition from state 1 to itself.

Unit 1: Introduction to Compilers

�Continue reading letters or digits and making transition from state 1 to itself.

�If input character is a delimiter (not a letter or digit) for an identifier, enter

state 2.

By: A. K. Dewangan Slide No. 47

Construction of code for transition diagram

�Construct segment of code for each state.

�First step is: obtain next character from input buffer (using GETCHAR

function).

�GETCHAR function returns the next character and advancing the lookahead

pointer at each call.

�Determine edge, out of state is labeled by a character or class of character.

Unit 1: Introduction to Compilers

�Determine edge, out of state is labeled by a character or class of character.

�If such edge is found, control is transferred to state pointed to by that edge.

�If no such edge is found, and state is not one which indicates that token has

been found (final state), we have failed to find this token.

�The lookahead pointer must be retracted to where the beginning pointer is,

and search for another token.

By: A. K. Dewangan Slide No. 48

Code for state 0 might be:

state 0: C := GETCHAR ();

if LETTER (C) then goto state 1

else FAIL ()

�Here LETTER is a procedure, returns true iff C is a letter.

�FAIL is routine which retracts lookahead pointer and starts up next transition

diagram.

Unit 1: Introduction to Compilers

Code for state 1 might be:

0 1 2
start letter delimiter

letter or digit

By: A. K. Dewangan Slide No. 49

Code for state 1 might be:

state 1: C := GETCHAR ();

if LETTER (C) or DIGIT (C) then goto state 1

else if DELIMITER (C) then goto state 2

else FAIL ()

�Here DIGIT is a procedure, returns true iff C is one of the digits (0,1,…,9).

�DELIMITER is procedure which returns true whenever C is character that

could follow an identifier.

�DELIMITER is defined to be any character that is not a letter or digit.

Code for state 2 might be:

state 2: RETRACT ();

return (id, INSTALL ())

�State 2 indicates that an identifier is found.

�Delimiter is not part of identifier, retract lookahead pointer one character

(using RETRACT procedure).

�Use * to indicate state on which input retraction take place.

�Install newly found identifier in symbol table if it is not already there (using

Unit 1: Introduction to Compilers

0 1 2
start letter delimiter

letter or digit

�Install newly found identifier in symbol table if it is not already there (using

procedure INSTALL).

�Return to the parser a pair consisting of integer code (id) for an identifier, and

value that is a pointer to symbol table returned by INSTALL.

By: A. K. Dewangan Slide No. 50

Unit 1: Introduction to Compilers

Token Code Value

begin 1 ---

end 2 ---

if 3 ---

then 4 ---

else 5 ---

identifier 6 Pointer to symbol table

constant 7 Pointer to symbol table

By: A. K. Dewangan Slide No. 51

constant 7 Pointer to symbol table

< 8 1

< = 8 2

= 8 3

< > 8 4

> 8 5

> = 8 6

Fig: Token recognized

Implementation of Transition Diagram

�Keywords:

Unit 1: Introduction to Compilers

0 6

start

1

B

2

E

3

G

4

I

5

N
blank or

newline

return (1,)

7

E

8

N

9

D
10

blank or

newline
return (2,)

By: A. K. Dewangan Slide No. 52

11

L S E blank or

newline
return (5,)12 13 14

15

I F

16

blank or

newline
return (3,)17

18

T H

19

blank or

newline
return (4,)2220

E N

21

�To implement state, generate code that calls GETCHAR.

�Converts resulting character to an integer.

�Produce code that uses that integer to index into an array of labels.

�Each label marks the location of piece of program for next state.

� In last figure, label indexed by B would point to code for state 1.

�Label for E would point to program for state 7 and so on.

Labels for characters that did not begin a keyword would point to code which

Unit 1: Introduction to Compilers

�Labels for characters that did not begin a keyword would point to code which

implemented the transition diagram for identifier.

By: A. K. Dewangan Slide No. 53

�Identifier:

Unit 1: Introduction to Compilers

start letter

not letter

or digit
return (6, ISTALL())23 24

letter or digit

25

By: A. K. Dewangan Slide No. 54

�Constant:

start digit

not digit

return (7, ISTALL())26 27

digit

28

�Relops:

Unit 1: Introduction to Compilers

start < not =
return (8, 1)29 30 31

=
32 return (8, 2)

>

33 return (8, 4)

By: A. K. Dewangan Slide No. 55

=
return (8, 3)34

35

return (8, 6)37

not =
36 return (8, 5)

>

=

String:

�String is a finite sequence of symbols such as 001.

�Sentence and words are synonyms for string.

�Length of string, |x|, is total number of symbols in x.

�01101 is a string of length 5.

�Special string called empty string, є, is of length zero. We take x0 to be є.

� If x and y are strings, then concatenation of x and y, x.y or xy is the string

formed by placing symbols of y after symbols of x.

Unit 1: Introduction to Compilers

�є x = x є = x.

�xi is the string x repeated i times.

� If x is some string, then string formed by discarding zero or more trailing

symbols of x is called a prefix of x.

�A suffix of x is string formed by deleting zero or more of the leading symbols x.

�abc is prefix of abcde, and cde is suffix of abcde.

�A substring of x is any string obtained by deleting prefix and suffix from x, but

a substring need not be a prefix or suffix.

By: A. K. Dewangan Slide No. 56

Language:

�Any set of strings formed from some specific alphabet.

�∅ (empty set), having no member, or {є}, the set containing only empty string,

is also a language.

�If L and M are languages then L.M or LM is the language consisting of all

strings xy which can be formed by selecting string x from L and y from M.

LM = { xy | x is in L and y is in M }

LM is concatenation of L and M.

Unit 1: Introduction to Compilers

�Example : Let L be { 0, 01, 110 } and M be { 10, 110 }. Then

LM = { 010, 0110, 0110, 01110, 11010, 110110 }

�{є} L = L {є} = L

�L ⋃ M = { x | x is in L or x is in M }

�∅ ⋃ L = L ⋃ ∅ = L

�∅ L = L ∅ = L

By: A. K. Dewangan Slide No. 57

∞

�L* = ⋃ Li

i=0

Regular Expressions:

�Regular expression are useful for describing tokens.

Definition

Set of regular expression is defined by following rules:

1. null string є is a regular expression denoting {є}.

2. For each a in ∑ is a regular expression {a}.

3. If R and S are regular expressions denoting languages LR and LS resp. then

i. (R) | (S) is a regular expression denoting LR ⋃ LS .

.

Unit 1: Introduction to Compilers

i. (R) | (S) is a regular expression denoting LR ⋃ LS .

ii. (R) . (S) is a regular expression denoting LR . LS .

iii. (R)* is a regular expression denoting LR*.

Example:

Regular expression for identifier can be given as

identifier = letter (letter | digit)*

• Identifier is defined to be a letter followed by zero or more letters or digits.

• | means “or” that is union.

By: A. K. Dewangan Slide No. 58

Finite Automata:

�These are machines that represents a computer by providing a medium,

which executes a finite no. of instructions sequentially as per

� algorithm

� accepting valid input

� and producing an output if input is accepted

� These machines have

� input tape

Unit 1: Introduction to Compilers

� input tape

� reading head

� register recording the state for machine

� a set of instructions that govern the transition from one state to another

By: A. K. Dewangan Slide No. 59

Finite Automata:

�x and y are input symbols.

�At regular time the automaton reads one symbol from input tape.

�Then enters in a new state that depends on the current state and input

symbol just read.

� After reading symbol, reading head moves one square to the right.

Unit 1: Introduction to Compilers

x y x y y x y …….

By: A. K. Dewangan Slide No. 60

x y x y y x y …….

Finite

Control

System

Input Tape

Reading Head

Recognizer:

�A recognizer for a language L is a program that takes a string x

�and answers “yes” if x is a sentence of L and “no” otherwise.

�Recognizer is the part of lexical analyzer that identifies the presence of a

token on input.

Unit 1: Introduction to Compilers

Nondeterministic Finite Automata (NFA):

�It is a labeled directed graph.

�Nodes are called states.

By: A. K. Dewangan Slide No. 61

�Nodes are called states.

�Labeled edges are called transitions.

�It looks like a transition diagram.

�Edges can be labeled by є as well as characters.

�Same character can label two or more transitions out of one state.

�Accepting state is indicated by double circle.

�Transitions are represented in tabular form by means of transition table.

Unit 1: Introduction to Compilers

start a

0 1

b

3

a

2

b b

State
Input Symbol

a b

0 {0,1} {0}

1 --- {2}

2 --- {3}

By: A. K. Dewangan Slide No. 62

2 --- {3}

3 --- ---

Fig: Transition Table

�The NFA accepts input string x if and only if there is a path from start state to

some accepting state.

Unit 1: Introduction to Compilers

start

a

0

1

є

4

a

3
b

b

2

є

By: A. K. Dewangan Slide No. 63

43
b

Fig: NFA accepting aa* | bb*

Unit 1: Introduction to Compilers

Deterministic Finite Automata (DFA):

�It has no transitions on input є.

�For each state s and input symbol a, there is at most one edge labeled a

leaving s.

start

0 1 2
a

b

3
b

b

b

a

By: A. K. Dewangan Slide No. 64

Fig: DFA accepting (a | b)* abb

a

a

Algorithm: Constructing a DFA from NFA

Do yourself

From Regular Expression to Finite Automata:

Algorithm: Constructing an NFA from a regular expression

Do yourself

Unit 1: Introduction to Compilers

Minimizing Number of States of a DFA:

Algorithm: Minimizing the number of states of a DFA

Do yourself

By: A. K. Dewangan Slide No. 65

Language for Specifying Lexical Analyzers:

� LEX is a tool for constructing a lexical analysis program.

� LEX source program is a specification of lexical analyzer.

� It consists of set of regular expression.

� Code written in LEX source program is executed whenever a token specified

by corresponding regular expression is recognized.

� Action will pass an indication of token found to the parser with making an

entry in symbol table.

Unit 1: Introduction to Compilers

entry in symbol table.

By: A. K. Dewangan Slide No. 66

LEX

Compiler
LEX

source

Lexical

analyzer L

Lexical

analyzer L
Input

text

Sequence

of tokens

Fig: The role of LEX

Unit 1: Introduction to Compilers

Auxiliary Definition:

�LEX source program consists of two parts:

�A sequence of auxiliary definitions followed by

�A sequence of translation rules

�Auxiliary definitions are statements of the form

D1 = R1

D2 = R2
.

.

By: A. K. Dewangan Slide No. 67

.

Dn = Rn

�Di is a distinct name

�Ri is a regular expression whose symbols are chosen from ∑ ⋃ { D1, D2, …, Di-1}

�Di‘s are short names for regular expressions.

�∑ is input symbol alphabet.

Unit 1: Introduction to Compilers

Translation Rules:

�These are statements of the form

P1 {A1}

P2 {A2}
.

.

Pm {Am}

�Pi is a regular expression called pattern over alphabet consisting of ∑ and

auxiliary definition names.

By: A. K. Dewangan Slide No. 68

auxiliary definition names.

�Patterns describe the form of tokens.

�Each Ai is a program fragment describing what action lexical analyzer should

take when token Pi found.

Working of Lexical Analyzer L:

�Let lexical analyzer L is generated by LEX.

�L reads its input one character at a time until it found longest prefix of input

which matches one of regular expression Pi.

�Once L found that prefix, L removes it from its input and places it in a buffer

called TOKEN.

� TOKEN may be pair of pointers to the beginning and end of the matched

string in input buffer itself.

Unit 1: Introduction to Compilers

string in input buffer itself.

�L then executes an action Ai.

�After completing Ai, L returns control to the parser.

�L repeats this series of actions on remaining input.

�If none of regular expressions denoting tokens matches any prefix of input, an

error occurred and L transfers control to some error handling routine.

By: A. K. Dewangan Slide No. 69

Implementation of Lexical Analyzer:

�Create NFA for each translation rule.

�Convert all NFA’s into one NFA.

�Convert NFA into DFA.

Unit 1: Introduction to Compilers

Example

Auxiliary Definitions
(none)

By: A. K. Dewangan Slide No. 70

(none)

Translation Rules

a

abb

a* b+

Unit 1: Introduction to Compilers

start 1 2

a

a b

start 3 64 5

b

a

8start 7

b

b

(a)

(b)
1 2

a

By: A. K. Dewangan Slide No. 71

Fig: NFA recognizing three different tokens

1 2

start 3 64 5

a

87

b
b

0

b ba

є

є

є

Unit 1: Introduction to Compilers

State a b Token Found

0137 247 8 none

247 7 58 a

8 --- 8 a*b+

7 7 8 none

58 --- 68 a*b+

68 --- 8 abb

By: A. K. Dewangan Slide No. 72

Fig: Transition table for DFA

End of Unit 1

By: A. K. Dewangan Slide No. 73

End of Unit 1

