
Prepared by
Arun Kumar Dewangan
(Lecturer Computer Sc.)

Prepared by
Arun Kumar Dewangan
(Lecturer Computer Sc.)

Unit - 2

Syntax Analysis & Parsing Techniques

By: A. K. Dewangan Slide No. 2

Syntax Analysis & Parsing Techniques

Context Free Grammars

Assignment

Unit 2: Syntax Analysis & Parsing Techniques

Derivation

Assignment

Parse Tree

Assignment

Ambiguity

Assignment

By: A. K. Dewangan Slide No. 3

Parsers

� The parser obtains a string of tokens from lexical analyzer.

� Verifies that string of token names can be generated by the grammar for

the source language.

� Parser report any syntax error in intelligible fashion and recover the

commonly occurring errors to continue processing the remainder of the

program.

� Parser construct the parse tree.

Unit 2: Syntax Analysis & Parsing Techniques

� Parser construct the parse tree.

� It passes parse tree to the rest of the compiler for further processing.

� A parser for grammar G takes string as input w.

� And produces as output either a parse tree for w (if w is a sentence of G).

� Or an error message indicating that w is not a sentence of G.

� Two type of parser:

1. Top down parser

2. Bottom up parser

By: A. K. Dewangan Slide No. 4

� Bottom up parsers build parse tree from bottom (leave) to top (root).

� Top down parser starts with root and work down to the leaves.

� The bottom up parsing method we discuss is called “shift reduce” parsing

since it consist of shifting input symbols into a stack until right side of

production appears on top of stack.

� The right side may then be replaced by (reduced to) symbol on left side of

production and process repeated.

� In either case the input to parser is scanned from left to right, one symbol

at a time.

Unit 2: Syntax Analysis & Parsing Techniques

at a time.

By: A. K. Dewangan Slide No. 5

Lexical
Analyzer

Parser

Source
program

Intermediate
representationRest of

Front End

Parse tree

token

Get next
token

Symbol
Table

Representation of Parse Tree

Assignment

Unit 2: Syntax Analysis & Parsing Techniques

Shift Reduce Parsing

� This uses bottom up style of parsing.

� Since it attempts to construct a parse tree for an input string beginning at

the leaves (bottom) and working up towards the root (top).

� The process is reducing a string w to the start symbol of a grammar.

At each step, string matching the right side of production is replaced by

By: A. K. Dewangan Slide No. 6

� At each step, string matching the right side of production is replaced by

symbol on the left.

Example: Consider the grammar S � aAcBe, A � Ab | b, B � d
string is abbcde.

we want to reduce this string to S.

� Scan abbcde looking for substring that match the right side of some

production.

� The substrings b and d qualify (as A � b and B � d).

� Let us choose leftmost b of string, replace it by A (from A � b).

� The string obtained is aAbcde.

� We can find that Ab, b and d matches the right side of some production, (A

� Ab, A � b, B � d).

� Suppose we choose to replace the substring Ab by A (using A � Ab).

� The string obtained is aAcde.

Unit 2: Syntax Analysis & Parsing Techniques

� The string obtained is aAcde.

� Replace d by B (using B � d). The string is aAcBe.

� Now we replace the entire string by S (as S � aAcBe).

� Each replacement of right side of production by left side symbol is called

reduction.

� The process of bottom up parsing may be viewed as finding and reducing

handles.

By: A. K. Dewangan Slide No. 7

Handles

� A handle of a right sentential form γ is a production A � β and a position of

γ where string β may be found and replace by A to produce the previous

right sentential form in a rightmost derivation of γ.

� if

Unit 2: Syntax Analysis & Parsing Techniques

S
rm
* αAw

rm
αβw

By: A. K. Dewangan Slide No. 8

then A � β in the position following α is a handle of αβw.

the string w to the right of handle contains only terminal symbols.

� In previous example abbcde is a right sentential form whose handle is A �

b at position 2.

� Likewise aAbcde is a right sentential form whose handle is A � Ab at

position 2.

� We can say that “substring β is a handle of αβw”.

� If grammar is unambiguous then every right sentential form has only one

handle.

Example

� Consider following grammar

1) E � E + E

2) E � E * E

3) E � (E)

4) E � id

� And consider rightmost derivation

Unit 2: Syntax Analysis & Parsing Techniques

E
rm

E + E

By: A. K. Dewangan Slide No. 9

E
rm

E + E

rm
E + E * E

rm
E + E * id3

rm
E + id2 * id3

rm
id1 + id2 * id3

Description of Example

� Subscripted id’s for convenience.

� Underlined denotes handle of each right sentential form.

� id1 is a handle of right sentential form id1 + id2 * id3 since id is right side of

production E � id.

� Replacing id1 by E produces previous right sentential form E + id2 * id3.

� String appearing to the right of handle contains only terminal symbol.

Unit 2: Syntax Analysis & Parsing Techniques

Handle Pruning

By: A. K. Dewangan Slide No. 10

Handle Pruning

� Rightmost derivation in reverse, called a canonical reduction sequence, is

obtained by “handle pruning”.

� We start with string of terminals w which is to be parsed.

� If w is a sentence of grammar then w = γn, where γn is the nth right

sentential form of some rightmost derivation.

S = γ0 γ1
rm

γ2
rm

….
rm

γn-1
rm

γn
rm

= w

� To reconstruct this derivation in reverse order, locate handle βn in γn.

� Replace βn by left side of some production An � βn to obtain the (n-1)st

right sentential form Υn-1.

� Repeat this process, locate handle βn-1 in γn-1 and reduce this handle to

obtain right sentential form γn-2.

� In this way If we produce a right sentential form having only start symbol

S, then we halt and this is successful completion of parsing.

Unit 2: Syntax Analysis & Parsing Techniques

By: A. K. Dewangan Slide No. 11

Example: Consider input string id1 + id2 * id3 for previous grammar.
Right sentential form Handle Reduction production
id1 + id2 * id3 id1 E � id
E + id2 * id3 id2 E � id
E + E * id3 id3 E � id
E + E * E E * E E � E * E
E + E E + E E � E + E
E

Stack Implementation of Shift Reduce Parsing

� Two problem must be solved to automate parsing by handle pruning:

1. How to locate a handle in right sentential form.

2. What production to choose if there is more than one production with

same right side.

� A convenient way to implement shift reduce parser is to use a stack & input

buffer.

� Use $ to mark bottom of stack and right end of input.

Stack Input

Unit 2: Syntax Analysis & Parsing Techniques

Stack Input

$ w $

� The parser operates by shifting zero or more input symbols onto stack

until handle β is on top of stack.

� Parser then reduces β to left side of appropriate production.

� Parser repeats the cycle until it has detected an error or stack contains

start symbol and input is empty.

Stack Input

$ S $

By: A. K. Dewangan Slide No. 12

Unit 2: Syntax Analysis & Parsing Techniques

Example: Let input string is id1 + id2 * id3 for previous grammar.
Shift reduce parser might make parsing in following sequence

Stack Input Action

1 $ id1 + id2 * id3 $ Shift

2 $ id1 + id2 * id3 $ Reduce by E � id

3 $ E + id2 * id3 $ Shift

4 $ E + id2 * id3 $ Shift

By: A. K. Dewangan Slide No. 13

4 $ E + id2 * id3 $ Shift

5 $ E + id2 * id3 $ Reduce by E � id

6 $ E + E * id3 $ Shift

7 $ E + E * id3 $ Shift

8 $ E + E * id3 $ Reduce by E � id

9 $ E + E * E $ Reduce by E � E * E

10 $ E + E $ Reduce by E � E + E

11 $ E $ Accept

� Four possible actions a shift reduce parser can make:

1. Shift

2. Reduce

3. Accept

4. Error

� In shift action, next input symbol is shifted to top of stack.

� In reduce action, parser knows the right end of handle is at top of stack.

Locate left end of handle within stack and take decision of nonterminal to

Unit 2: Syntax Analysis & Parsing Techniques

Locate left end of handle within stack and take decision of nonterminal to

replace the handle.

� In accept action, parser announces successful completion of parsing.

� In error action, parser discovers that a syntax error is found and calls error

recovery routine.

By: A. K. Dewangan Slide No. 14

Constructing a Parse Tree

Assignment

Operator Grammar

� The grammar in which no production has two adjacent nonterminals at

right side is called operator grammar.

Unit 2: Syntax Analysis & Parsing Techniques

Example: Consider following grammar for expressions

E � E A E | (E) | - E | id

A � + | - | * | / | ����

By: A. K. Dewangan Slide No. 15

is not an operator grammar, since right side E A E has two consecutive

nonterminals.

If we substitute for A each its alternate, then we get following operator

grammar

E � E + E | E - E | E * E | E / E | E ���� E | (E) | - E | id

Operator Precedence Parsing

� The operator precedence technique was first described as a manipulation

on tokens without any reference to underlying grammar.

� In this parsing, we use 3 disjoint precedence relations :

between certain pair of terminals.

� These relations guide selection of handles.

� If a < • b, means a “yields precedence to“ b.

Unit 2: Syntax Analysis & Parsing Techniques

=
•

< • • >

� If a < • b, means a “yields precedence to“ b.

� If a b, means a “has same precedence as“ b.

� if a • > b, means a “takes precedence over” b.

By: A. K. Dewangan Slide No. 16

=
•

Using Operator Precedence Relation

� Method is based on traditional notions of associativity and precedence of

operators.

� Example: if * has higher precedence than +, we make + < • * and * • > +

� The intention of precedence relation is to delimit handle of right sentential

form.

� With < • Marking left end, appearing in interior of handle (if any), and • >

Unit 2: Syntax Analysis & Parsing Techniques

=
•� With < • Marking left end, appearing in interior of handle (if any), and • >

marking the right end.

� Let we have right sentential form of an operator grammar.

� No adjacent nonterminals appear on right side of productions i.e. no right

sentential form have two adjacent nonterminals.

By: A. K. Dewangan Slide No. 17

=
•

� We write the right sentential form as

β0 a1 β1 ….. an βn where

Each βi is either ε or a single nonterminal

Each ai is a single terminal

� Let between ai and ai+1 exactly one relation holds.

� $ marks each end of string and $ < • b and b • > $ for all terminals b.

� If

Unit 2: Syntax Analysis & Parsing Techniques

� If

• we remove nonterminals from string and

• place correct relation between each pair of terminals and between

endmost terminals and $’s marking ends of string.

� Then string with precedence relation inserted is (for previous right

sentential form):

$ < • id • > + < • id • > * < • id • > $

By: A. K. Dewangan Slide No. 18

Unit 2: Syntax Analysis & Parsing Techniques

Example: Let input string is id1 + id2 * id3. Operator precedence
relation is given as

id + * $

id • > • > • >

+ < • • > < • • >

* < • • > • > • >

$ < • < • < •

By: A. K. Dewangan Slide No. 19

$ < • < • < •

Handle can be found in this way:

1. Scan string from left end until leftmost • > encountered.

2. Then scan backwards (to the left) over any until < • is countered (in this

example scan backwards to $).

3. The handle contains everything to the left of first • > and to the right of < •

encountered in step 2 including any surrounding nonterminals.

=
•

Operator Precedence Grammars

� It shows how to compute its precedence relation

� Explain the details of shift reduce parsing using precedence relations.

Unit 2: Syntax Analysis & Parsing Techniques

Operator Precedence Relations from Associativity and Precedence

Assignment

Handling Unary Operators

Assignment

� Let G be an ε free operator grammar (no right side is ε and no right side has

a pair of adjacent nonterminals).

� For each two terminal symbols a and b :

1) a b if there is a right side of a production of form α a β b γ, where β is

either ε or a single nonterminal.

that is a b if a appears immediately to the left of b in a right side or if

they appear separated by one nonterminal.

By: A. K. Dewangan Slide No. 20

=
•

=
•

2) a < • b if for some nonterminal A there is a right side of the form

α a A β , and where γ is either ε or a single

nonterminal.

that is a < • b if a nonterminal A appears immediately to the right

of a and derives a string in which b is the first terminal symbol.

3) a • > b if for some nonterminal A there is a right side of the form

α A b β and where δ is either ε or a single

nonterminal.

Unit 2: Syntax Analysis & Parsing Techniques

A
+

γbδ

A
+

γaδ

nonterminal.

that is a • > b if a nonterminal appearing immediately to the left of

b derives a string whose last terminal is a.

Definition:

� An operator precedence grammar is an ε free operator grammar in which

precedence relations construction are disjoint.

� That is, for any pair of terminals a and b, never more than one of relations

a < • b, a b, and a • > b is true.

By: A. K. Dewangan Slide No. 21

=
•

Unit 2: Syntax Analysis & Parsing Techniques

Example: Let operator grammar is

E � E + E | E * E | (E) | id

in which there are only operators + and *.

� This is not an operator precedence grammar as two precedence

relations hold between certain pair of terminals.

� By rule 3) (defining • > relation):

By: A. K. Dewangan Slide No. 22

� By rule 3) (defining • > relation):

• Let right side α A b β be E + E.

• i.e. α = ε, A = E, b = +, and β = E.

• Derivation could be E ⇒ E + E,

where γ = E, a = +, and δ = E.

• So relation is a • > b implies + • > +

A
+

γaδ

Unit 2: Syntax Analysis & Parsing Techniques

� By rule 2) (defining < • relation):

• Let right side α a A β be E + E.

• i.e. a = +, A = E.

• Derivation shows that E can derive strings

whose first terminal is +.

• So relation is a < • b implies + < • +

� Both + < • + and + • > +, is not an operator precedence grammar.

E
+

E + E

By: A. K. Dewangan Slide No. 23

� Both + < • + and + • > +, is not an operator precedence grammar.

Top Down Parsing

� We will discuss about:

1. General form of top down parsing that may involve backtracking

(making repeated scans of input).

2. Recursive descent parsing, which eliminates the need for backtracking

over input.

� It can be viewed as an attempt to find leftmost derivation for input string.

� It can be viewed as attempting to construct a parse tree for the input

starting from root and creating node of parse tree.

Unit 2: Syntax Analysis & Parsing Techniques

starting from root and creating node of parse tree.

Example: Consider grammar

S ���� c A d A ���� a b | a, and input string is w = c a d.

to construct parse tree for this sentence:

� Create a tree consisting of single node labeled S.

� Input pointer points to c (first symbol of w).

� Use first production for S to expand tree.

By: A. K. Dewangan Slide No. 24

S

dAc

� The leftmost leaf labeled c matches with first symbol of w.

� Advance input pointer to a (second symbol of w).

� Consider next leaf labeled A.

� Expand A using first alternate for A (i.e. A � a b).

� Now second symbol is being matched.

� Consider third input symbol d, and next leaf labeled b.

� Since b does not match d, report failure and go back to A.

� There is another alternate for A (i.e. A � a), try to produce a match.

Unit 2: Syntax Analysis & Parsing Techniques

S

dAc

ba

� There is another alternate for A (i.e. A � a), try to produce a match.

� During going back, reset input pointer to position 2.

� The leaf a matches the second symbol of w and leaf d matches

third symbol.

� Now we have parse tree for w, halt and announce successful

completion of parsing.

By: A. K. Dewangan Slide No. 25

S

dAc

a

Unit 2: Syntax Analysis & Parsing Techniques

� There are several difficulties with top down parsing as previously

presented.

� The concern is left recursion.

� A grammar is left recursive if it has a nonterminal A such that there

is a derivation for some α.

� A left recursive grammar can cause top down parser to go into

infinite loop.

A
+

A α

By: A. K. Dewangan Slide No. 26

� Hence to use top down parsing, eliminate all left recursion from

grammar.

� Another difficulty is backtracking.

� Due to sequence of erroneous expansions and discovering

mismatch, we may have to undo semantic effects of making

erroneous expansions.

Elimination of Left Recursion

� Consider the grammar production

A � A α | β where β does not begin with A

Unit 2: Syntax Analysis & Parsing Techniques

� Entries made in symbol table might have to be removed.

� These actions requires an overhead.

� The recursive descent and predictive parsers are types of top down

parsers that avoid backtracking.

A � A α | β where β does not begin with A

� Then we eliminate left recursion by replacing this production with

A ���� β A’

A’ ���� α A’ | ε

� This will eliminate all immediate left recursion (if no α is ε).

� To remove left recursion involving derivations of two or more steps,

use following algorithm:

By: A. K. Dewangan Slide No. 27

Unit 2: Syntax Analysis & Parsing Techniques

1. Arrange nonterminals of G in some order A1, A2, A3,….., An.

2. for i := 1 to n do

begin

for j := 1 to i-1 do

replace each production of the form Ai � Aj γ

by the production Ai � δ1 γ | δ2 γ | … | δk γ , where

By: A. K. Dewangan Slide No. 28

by the production Ai � δ1 γ | δ2 γ | … | δk γ , where

Aj � δ1 | δ2 | … | δk are current Aj productions;

eliminate the immediate left recursion among all Aj productions

end

Recursive Descent Parsing

Unit 2: Syntax Analysis & Parsing Techniques

Example: Consider grammar

S ���� A a | b A ���� A c | S d | e

� Substitute S productions in A � S d.

A � A c | A a d | b d | e

� Eliminate immediate left recursion among A productions yields following

grammar

S � A a | b A � b d A’ | e A’ A’ � c A’ | a d A’ | ε

Recursive Descent Parsing

� In many cases top down parser needs no backtrack.

� To implement this we must know, given current input symbol a and

nonterminal A to be expanded from a set of A productions.

� A recursive descent parsing program consists of set of procedures for each

nonterminal.

� Execution begins with procedure for start symbol which halts and

announces success if its procedure scans entire input string.

By: A. K. Dewangan Slide No. 29

void A () {

1) Choose an A production, A � X1 X2 ….. Xk ;

2) for (I = 1 to k) {

3) if (Xi is a nonterminal)

4) call procedure Xi () ;

5) else if (Xi equals current input symbol a)

6) advance the input to next symbol ;

7) else /* error has occurred */ ;

}

Unit 2: Syntax Analysis & Parsing Techniques

}

}

By: A. K. Dewangan Slide No. 30

Fig: A typical procedure for nonterminal in a top down parser

� General recursive descent may require backtracking (it may require

repeated scans over input).

� To allow backtracking, code needs to be modified.

� We cannot choose a unique A production at line 1, so try each of several

productions in some order.

� Failure at line 7 is not ultimate failure.

� In such case suggest only that we need to return to line 1.

� Try another A production

� If there are no more A productions to try, declare that input error has been

found.

� In order to try another A production, we need to reset input pointer to,

where it was, when reached line 1.

Unit 2: Syntax Analysis & Parsing Techniques

where it was, when reached line 1.

� A local variable is needed to store this input pointer for future use.

� A left recursive grammar can cause a recursive descent parser, even one

with backtracking, to go into infinite loop.

� That is when we try to expand a nonterminal A, we may find ourselves

again trying to expand A without having consumed any input.

By: A. K. Dewangan Slide No. 31

Left Factoring

� It is a grammar transformation that is useful for producing a grammar

suitable for predictive or top down parsing.

� When the choice between two alternatives A productions is not clear, we

may able to rewrite the productions to defer the decision until we have

right choice.

Unit 2: Syntax Analysis & Parsing Techniques

� Example: Consider two productions

stmt � if expr then stmt else stmt | if expr then stmt

� On seeing the input if, we may not sure which production to choose to

expand stmt.

� If A � α β1 | α β2 are two A productions, input begins with a nonempty

string derived from α, we do not know whether to expand A to α β1 or α β2.

By: A. K. Dewangan Slide No. 32

� We may differ the decision by expanding A to α A’.

� Then, after seeing the input derived from α, we expand A’ to β1 or to β2.

� That is, left factored, the productions become

A � α A’

A’ � β1 | β2

Algorithm: Left factoring a grammar

Unit 2: Syntax Analysis & Parsing Techniques

� Input : Grammar G.

� Output : An equivalent left factored grammar.

� Method : For each nonterminal A, find the longest prefix α common to two

or more of its alternatives.

� If α ≠ ε, replace all A productions A � α β1 | α β2 | … | α βn | γ, where γ

represents all alternatives that do not start with α

By: A. K. Dewangan Slide No. 33

A � α A’ | γ

A’ � β1 | β2 | … | βn

� Here A’ is a new nonterminal.

� Repeat this transformation.

Unit 2: Syntax Analysis & Parsing Techniques

Predictive Parsers

� A predictive parser is an efficient way of implementing recursive descent

parsing by handling stack of activation records explicitly.

By: A. K. Dewangan Slide No. 34

parsing by handling stack of activation records explicitly.

a + b $

X
Y
Z
$

Program

Parsing
Table

Stack

Input

Output

Fig: Model of predictive parser

Unit 2: Syntax Analysis & Parsing Techniques

� The predictive parser has an input tape, a stack, a parsing table, and an

output.

� Input contains the string to be parsed, followed by $ (right endmarker).

� The stack contains sequence of grammar symbols, preceded by $ (bottom

of stack marker).

� Initially stack contains start symbol of the grammar preceded by $.

Parsing table is a two dimensional array M [A, a], where A is nonterminal,

By: A. K. Dewangan Slide No. 35

� Parsing table is a two dimensional array M [A, a], where A is nonterminal,

a is a terminal or the symbol $.

� Parser is controlled by a program. The program determines X (symbol on

top of stack), and a (the current input symbol). These two symbols

determine action of parser.

Unit 2: Syntax Analysis & Parsing Techniques

� There are three possibilities:

1. If X = a = $, parser halts and announces successful completion of

parsing.

2. If X = a ≠ $, parser pops X off the stack and advances input pointer to

next input symbol.

3. If X is a nonterminal, program consults entry M [X, a] of the parsing

table M. This entry will be either an X production of grammar or an

By: A. K. Dewangan Slide No. 36

table M. This entry will be either an X production of grammar or an

error entry.

a. If M [X, a] = { X � U V W }, parser replaces X on top of stack by

W V U (U on top).

b. The grammar does semantic action associated with this

production.

c. If M [X, a] = error, the parser calls an error recovery routine.

FIRST and FOLLOW

� The construction of top down and bottom up parsers is aided by two

functions FIRST and FOLLOW associated with a grammar G.

� During top down parsing FIRST and FOLLOW allow us to choose which

production to apply, based on next input symbol.

� FIRST and FOLLOW, indicate the proper entries in table for G, if such

parsing table for G exists.

Unit 2: Syntax Analysis & Parsing Techniques

parsing table for G exists.

� Define FIRST (α), where α is any string of grammar symbols, to be set of

terminals that begin strings derived from α.

� If , then ε is also in FIRST (α).

� Example: if , then c is in FIRST (A).

� Define FOLLOW (A), for nonterminal A, to be set of terminals a that can

appear immediately to the right of A in some sentential form.

By: A. K. Dewangan Slide No. 37

α * ε

A * c γ

Unit 2: Syntax Analysis & Parsing Techniques

� That is, for some α and β.

� Note: there may have been symbols between A and a, at some time during

the derivation, but if so, they derived ε and disappear.

� If A can be the rightmost symbol in some sentential form, then we add $ to

FOLLOW (A).

� $ is a special “endmarker” symbol that is assumed not to be symbol of any

grammar.

S * α A a β

By: A. K. Dewangan Slide No. 38

grammar.

� To compute FIRST (X) for all grammar symbols X, apply following rules

until no more terminal or ε can be added to any FIRST set.

1. If X is terminal, then FIRST (X) is { X }.

2. If X is nonterminal and X ���� Y1 Y2 … Yk is a production for some k >= 1,

then place a in FIRST (X) if for some i, a is in FIRST (Yi) and ε is in all of

FIRST (Y1), …, FIRST (Yi-1); that is, Y1 Y2…. Yi-1
* ε

Unit 2: Syntax Analysis & Parsing Techniques

• If ε is in FIRST (Yj) for all j = 1, 2, …., k, then add ε to FIRST (X).

• Example: everything in FIRST (Y1) is surely in FIRST (X).

• If Y1 does not derive ε, then we add nothing more to FIRST (X),

but if , then we add FIRST (Y2) and so on.

3. If X � ε is a production, then add ε to FIRST (X).

� Now we can computer FIRST for any string X1 X2 … Xn as follows.

Y1
* ε

By: A. K. Dewangan Slide No. 39

� Now we can computer FIRST for any string X1 X2 … Xn as follows.

� Add to FIRST (X1 X2 … Xn) all non ε symbols of FIRST (X1).

� Also add non ε symbols of FIRST (X2), if ε is in FIRST (X1), the non

ε symbols of FIRST (X3), if ε is in FIRST (X1) and FIRST (X2) and

so on.

� Finally add ε to FIRST (X1 X2 … Xn) if, for all i, ε is in FIRST (Xi).

Unit 2: Syntax Analysis & Parsing Techniques

� To compute FOLLOW (A) for all nonterminals A, apply following

rules until nothing can be added to any FOLLOW set.

1. Place $ in FOLLOW (S), where S is the start symbol, and $ is input

right endmarker.

2. If there is a production A � α B β, then everything in FIRST (β)

except ε is in FOLLOW (B).

By: A. K. Dewangan Slide No. 40

except ε is in FOLLOW (B).

3. If there is a production A � α B, or a production A � α B β, where

FIRST(β) contains ε, then everything in FOLLOW (A) is in FOLLOW

(B).

Example

� Consider a grammar

E � T E’

E’ � + T E’ | ε

T � F T’

T’ � * F T’ | ε

F � (E) | id

1. FIRST (E) = FIRST (T) = FIRST (F) = { (, id }

• T has only one production and body start with F.

Unit 2: Syntax Analysis & Parsing Techniques

• T has only one production and body start with F.

• Two productions for F have bodies that start with terminal symbol id

and).

• Since F does not derive ε, FIRST (T) must be the same as FIRST (F).

2. FIRST (E’) = { +, ε }

• one of two productions has body start with terminal +, and other’s

body is ε.

• whenever a nonterminal derives ε, we replace ε in FIRST for that

nonterminal.

By: A. K. Dewangan Slide No. 41

3. FIRST (T’) = { *, ε }

• Same as FIRST (E’).

4. FOLLOW (E) = FOLLOW (E’) = {), $ }

• Since E is the start symbol, FOLLOW (E) must contain $.

• For production body (E),) is in FOLLOW (E).

• For E’, this appears only at the end of bodies of E production. Thus

FOLLOW (E’) must be same as FOLLOW (E).

5. FOLLOW (T) = FOLLOW (T’) = { +,), $ }

• T appears in bodies only followed by E’. Thus everything except ε that

Unit 2: Syntax Analysis & Parsing Techniques

• T appears in bodies only followed by E’. Thus everything except ε that

is in FIRST (E’) must be in FOLLOW (T); so it contains symbol +.

• Since FIRST (E’) contains ε, and E’ is entire string following T in

bodies of E productions, everything in FOLLOW (E) must also be in

FOLLOW (T). So symbol $ and).

• For T’, since it appears only at the ends of T productions, it must be

that FOLLOW (T’) = FOLLOW (T).

6. FOLLOW (F) = { +, *,), $ }

• Same as for (T) in step 5.

By: A. K. Dewangan Slide No. 42

Construction of Predictive Parsing Table

� The algorithm considers two types of productions in the grammar.

� For non null production of for A → α, entry in parsing table will be

M[A, a] = {A → α}, where {a} ∈ FIRST (α)

� It means, parser will expand A by α when current input symbol

(lookahead) is a.

� For all null productions of form A → ε, entry in parsing table will be

M[A, a] = {A → ε}, where {a} ∈ FOLLOW (A).

Unit 2: Syntax Analysis & Parsing Techniques

M[A, a] = {A → ε}, where {a} ∈ FOLLOW (A).

� That means, parser will use production A → ε to expand A, when current

input symbol is a.

By: A. K. Dewangan Slide No. 43

Algorithm

1. For each production A → α, do step 2 and 3.

2. For each terminal a in FIRST (α), add A → α to M[A, a].

3. If ε is in FIRST(α), add A → α to M[A, b] for each terminal b in FOLLOW (A).

If ε is in FIRST (α) and {$} is in FOLLOW (A), add A → α to M[A, $].

4. Make each undefined entry of M be error.

Unit 2: Syntax Analysis & Parsing Techniques

By: A. K. Dewangan Slide No. 44

Example: Consider the following grammar and construct the predictive

parsing table for it.

S → AaAb | BbBa, A → ∈, B → ∈

Solution:

To construct parsing table, find FIRST and FOLLOW:

� FIRST (S) = {a, b}

� FIRST (A) = {∈}

� FIRST (B) = {∈}

Unit 2: Syntax Analysis & Parsing Techniques

� FIRST (B) = {∈}

� FOLLOW (S) = {$}

� FOLLOW (A) = {a, b}

� FOLLOW (B) = {b, a}

By: A. K. Dewangan Slide No. 45

a b $

S S → AaBb S → BbAa ---

A A → ∈ A → ∈ ---

B B → ∈ B → ∈ ---

LR Parser

� This concept is used in bottom up parser.

� “L” is for left to right scanning of input, “R” for constructing a rightmost

derivation in reverse.

� LR parser are table driven.

� For a grammar to be LR, it is sufficient that a left to right shift reduce

parser be able to recognize handles of right sentential forms when they

appear on top of the stack.

� LR parser can be constructed to recognize all programming language

Unit 2: Syntax Analysis & Parsing Techniques

� LR parser can be constructed to recognize all programming language

constructs for which CFG can be written.

� LR parsing method is most general backtracking shift reduce parsing

method.

� LR parser can detect a syntactic error as soon as it is possible to do so on a

left to right scan of input.

� Drawback is that it is too much work to implement LR parser by hand for a

typical programming language grammar.

� A specialized tool, LR parser generator is needed.

By: A. K. Dewangan Slide No. 46

Generating LR Parser

� LR parser consists of two parts, a driver routine and a parsing table.

� Driver routine is same for all parser, only parsing table changes from one

parser to another.

Unit 2: Syntax Analysis & Parsing Techniques

Table
Generator

Grammar Parsing Table Fig: Generating the parser

Parsing

By: A. K. Dewangan Slide No. 47

Input Output
Driver
Routine

Parsing
Table

Fig: Operation of parser

� There are many different parsing tables that can be used in LR parser for a

given grammar.

� Some parsing tables may detect errors sooner than others, but they all

accept same sentences generated by grammar.

Techniques for Constructing LR Parsing Table

1. Simple LR (SLR in short)

• It is easiest to implement.

• It may fail to produce table for certain grammars on which other

method succeed.

2. Canonical LR

It is most powerful and work on a large class of grammars.

Unit 2: Syntax Analysis & Parsing Techniques

• It is most powerful and work on a large class of grammars.

• It can be very expensive to implement.

3. Lookahead LR (LALR)

• It is intermediate in power between SLR and Canonical LR.

• It work on most programming language grammars, and with some

effort, can be implemented efficiently.

By: A. K. Dewangan Slide No. 48

LR Parsers

� The parser has an input, a stack and a parsing table.

� The input is read from left to right, one symbol at a time.

� The stack contains a string of form s0 X1 s1 X2 ….. Xmsm, where sm in on top.

Unit 2: Syntax Analysis & Parsing Techniques

Stack

Inputa1 … ai … an $

sm

By: A. K. Dewangan Slide No. 49

Driver
Routine

Parsing
Table

Stack

Fig: LR parser

� Each Xi is a grammar symbol and each si is a symbol called a state.

� Each state symbol summarizes the information contained in stack below it.

� And is used to guide shift reduce decision.

� In actual implementation, grammar symbols need not appear on the stack.

� We include them to help explain the behavior of LR parser.

� Parsing table consists of two parts:

1. Parsing action function ACTION

2. Goto function GOTO

� The program driving LR parser behaves as follows:

• It determines sm, state currently on top of stack, and ai, current input

symbol.

Unit 2: Syntax Analysis & Parsing Techniques

symbol.

• Then consult ACTION [sm, ai], parsing action table entry for state sm and

input ai.

• The entry ACTION [sm, ai] can have four values:

1. Shift s

2. Reduce A � β

3. Accept

4. error

By: A. K. Dewangan Slide No. 50

� The function GOTO takes a state and grammar symbol as arguments and

produces a state.

� It is essentially the transition table of DFA whose input symbols are

terminals and nonterminals of grammar.

Working of LR Parser

� The configuration of LR parser is a pair whose first component is stack

contents and second one is unexpected input:

(s0 X1 s1 X2 s2 . . . Xm , ai+1 . . . an $)

Unit 2: Syntax Analysis & Parsing Techniques

(s0 X1 s1 X2 s2 . . . Xm , ai+1 . . . an $)

� The next move of parser is determined by reading ai (current input

symbol), and sm (state on top of stack).

� Then consult parsing action table entry ACTION [sm, ai].

� Resulting configuration after each of four types of moves are as follows:

1. If ACTION [sm, ai] = shift s, parser executes shift move, entering the

configuration

(s0 X1 s1 X2 s2 . . . Xm sm ai s, ai+1 . . . an $)

By: A. K. Dewangan Slide No. 51

� Here parser shifted current input symbol and next state s = GOTO [sm, ai]

onto the stack; ai+1 becomes new current input symbol.

2. If ACTION [sm, ai] = reduce A � β, parser executes a reduce move,

entering the configuration

(s0 X1 s1 X2 s2 . . . Xm-r sm-r A s, ai ai+1 . . . an $)

Where s = GOTO [sm-r, A] and r is length of β (right side of production).

� Here parser first popped 2r symbols off the stack (r stack and r grammar

symbol) exposing state sm-r.

Unit 2: Syntax Analysis & Parsing Techniques

symbol) exposing state sm-r.

� Parser then pushed both A (left side of production) and s, the entry for

ACTION [sm-r, A] onto the stack.

� The current input symbol is not changed in reduce move.

� For LR parser we shall construct, Xm-r+1 . . . Xm, the sequence of

grammar symbols popped off the stack, will always match β (right side of

the reducing production).

3. If ACTION [sm, ai] = accept, parsing is completed.

By: A. K. Dewangan Slide No. 52

4. If ACTION [sm, ai] = error, parser has discovered an error and calls

error recovery routine.

� Initially LR parser is in configuration (s0, a1 a2 . . . an $) where s0 is a

designated initial state and a1 a2 . . . an is string to be parsed.

� The parser execute moves until an accept or error action is

encountered.

Unit 2: Syntax Analysis & Parsing Techniques

� All parsers works in this concept.

� Difference between one LR parser and another is the information in

parsing action and goto fields of parsing table.

By: A. K. Dewangan Slide No. 53

Example

Consider the grammar

1) E � E + T

2) E � T

3) T � T * F

4) T � F

5) F � (E)

Unit 2: Syntax Analysis & Parsing Techniques

6) F � id

The codes for actions are:

1. s i means shift and stack state i,

2. r j means reduce by the production numbered j,

3. acc means accept,

4. blank means error.

Parsing table is as follows

By: A. K. Dewangan Slide No. 54

Unit 2: Syntax Analysis & Parsing Techniques

STATE ACTION GOTO

id + * () $ E T F

0 s5 s4 1 2 3

1 s6 acc

2 r2 s7 r2 r2

3 r4 r4 r4 r4

4 s5 s4 8 2 3

5 r6 r6 r6 r6

By: A. K. Dewangan Slide No. 55

5 r6 r6 r6 r6

6 s5 s4 9 3

7 s5 s4 10

8 s6 s11

9 r1 s7 r1 r1

10 r3 r3 r3 r3

11 r5 r5 r5 r5

Fig: Parsing table for expression grammar

� The value of GOTO [s, a] for terminal a found in ACTION field connected

with shift action on input a for state s.

� The GOTO field gives GOTO [s, A] for nonterminals A.

� On input id * id + id, the sequence of input contents is shown.

� Also, the sequence of grammar symbols corresponding to states held on

stack.

Unit 2: Syntax Analysis & Parsing Techniques

By: A. K. Dewangan Slide No. 56

Unit 2: Syntax Analysis & Parsing Techniques

STACK SYMBOLS INPUT ACTION

(1) 0 id * id + id $ shift

(2) 0 5 id * id + id $ reduce by F � id

(3) 0 3 F * id + id $ reduce by T � F

(4) 0 2 T * id + id $ shift

(5) 0 2 7 T * id + id $ shift

(6) 0 2 7 5 T * id + id $ reduce by F � id

(7) 0 2 7 10 T * F + id $ reduce by T � T * F

By: A. K. Dewangan Slide No. 57

(8) 0 2 T + id $ reduce by E � T

(9) 0 1 E + id $ shift

(10) 0 1 6 E + id $ shift

(11) 0 1 6 5 E + id $ reduce by F � id

(12) 0 1 6 3 E + F $ reduce by T � F

(13) 0 1 6 9 E + T $ reduce by E � E + T

(14) 0 1 E $ accept

Fig: Moves of an LR parser on id * id + id

� At line (1), the LR parser is in state 0, initial state with no grammar symbol.

� id is the first input symbol.

� Action in row 0 and column id is s5, means shift by pushing state 5.

� At line (2), the state symbol 5 has been pushed onto the stack, and id is

removed from the input.

� Hence * becomes current input symbol.

Now action in row 5 and column * is r6, means reduce by production 6 i.e.

Unit 2: Syntax Analysis & Parsing Techniques

� Now action in row 5 and column * is r6, means reduce by production 6 i.e.

F � id.

� One state symbol is popped of the stack.

� State 0 is then exposed.

� Since goto of state 0 on F is 3, state 3 is pushed onto the stack.

� In this way remaining moves are determined.

By: A. K. Dewangan Slide No. 58

LR Grammars

� A grammar for which we can construct a parsing table in which

every entry is uniquely defined is said to be an LR grammar.

� There are context free grammars which are not LR.

� In order for grammar to be LR, it is sufficient that a left to right

parser be able to recognize handles when they appear on top of the

stack.

� An LR parser does not have to scan entire stack to know when the

Unit 2: Syntax Analysis & Parsing Techniques

� An LR parser does not have to scan entire stack to know when the

handle appears on top.

� The state symbol on top of stack contains all the information it

needs.

� If it is possible to recognize a handle in the stack, then a finite

automaton can determine what handle is on top of stack if any (by

reading stack from bottom to top).

� The driver routine of LR parser is such a finite automaton.

By: A. K. Dewangan Slide No. 59

� It need not read the stack on every move.

� State symbol stored on top of stack is the state in which handle

recognizing finite automata would be if it had read stack from

bottom to top.

� So, LR parser can determine from state on top of the stack

everything that it needs to know about what is in the stack.

� --------------------

� An LR parser can use to help make its shift reduce decision is the

Unit 2: Syntax Analysis & Parsing Techniques

� An LR parser can use to help make its shift reduce decision is the

next k input symbols.

� K=0 or k=1 is sufficient.

� A grammar that can be parsed by an LR parser examining up to k

input symbols on each move is called LR (k) grammar.

By: A. K. Dewangan Slide No. 60

The Canonical Collection of LR (0) Items

� It shows how to construct a simple LR parser for a grammar.

� The idea is construction of DFA from the grammar.

� The DFA recognizes viable prefixes of the grammar, i.e. prefixes of

right sentential forms that do not contain any symbols to the right

of the handle.

� It is so called since it is always possible to add terminal symbols to

Unit 2: Syntax Analysis & Parsing Techniques

the end of viable prefixes to obtain a right sentential form.

� We shall study about how does a shift reduce parser know when to

shift and when to reduce?

� An LR parser makes shift reduce decisions by maintaining state to

keep track of where we are in parse tree (our position in parse

tree).

� States represent sets of “items”.

By: A. K. Dewangan Slide No. 61

� An LR (0) item (item in short) of a grammar G is a production of G

with a dot at some position of the right side (body).

� Production A � X Y Z yields four items (LR (0) item)

• A � . X Y Z

• A � X . Y Z

• A � X Y . Z

• A � X Y Z .

Unit 2: Syntax Analysis & Parsing Techniques

• A � X Y Z .

� The production A � є generates only one item, A � .

� Items are easily represented by pairs of integers, the first shows no.

of productions and second the position of dot.

� An item indicates how much a production we have seen at a given

point in parsing process.

By: A. K. Dewangan Slide No. 62

Example

� Item A � . X Y Z indicates that we hope to see a string derivable

from XYZ next on the input.

� Item A � X . Y Z indicates that we have just seen on the input a

string derivable from X and that we hope next to see a string

derivable from YZ.

Unit 2: Syntax Analysis & Parsing Techniques

derivable from YZ.

� Item A � X Y Z . indicates that we have seen the body XYZ and that

it may be time to reduce XYZ to A.

By: A. K. Dewangan Slide No. 63

� A parser generator that produces a bottom up parser may need to

represent items and sets of items.

� An item can be represented by a pair of integers, the first of which is

the number of one of the production of the underlying grammar.

� And second of which is position of the dot.

� We group items together into sets, which give rise to states of an LR

parser.

Unit 2: Syntax Analysis & Parsing Techniques

parser.

� One collection of sets of items, which is called canonical LR (0)

collection, provides the basis for constructing a class of LR parsers

called simple LR (SLR).

� To construct canonical LR (0) collection for a grammar we need to

define an augmented grammar and two functions, CLOSURE and

GOTO.

By: A. K. Dewangan Slide No. 64

� If G is a grammar with start symbol S, then G’ (the augmented

grammar for G) is a grammar G with a new start symbol S’ and

production S’ ���� S.

� Purpose of new starting production is to indicate to the parser

when it should stop parsing and announce acceptance of input.

� Acceptance occurs when parser is about to reduce by S’ ���� S.

Unit 2: Syntax Analysis & Parsing Techniques

CLOSURE

By: A. K. Dewangan Slide No. 65

CLOSURE

� If I is a set of items for grammar G then CLOSURE (I) is set of items

constructed from I by two rules:

1. Initially, add every item in I to CLOSURE (I).

2. If A ���� α . B β is in CLOSURE (I) and B ���� γ is a production, then

add item B ���� . γ to CLOSURE (I), if it is not already there.

� Apply this rule until no more items can be added to CLOSURE (I).

Unit 2: Syntax Analysis & Parsing Techniques

� A ���� α . B β in CLOSURE (I) indicates that, at some point in

parsing process, we next expect to see a string derivable from Bβ as

input.

� The substring derivable from Bβ will have a prefix derivable from B

by applying one of the B productions.

� So we add items for all B productions, i.e. if B ���� γ is a production,

we also include B ���� . γ in CLOSURE (I).

By: A. K. Dewangan Slide No. 66

we also include B ���� . γ in CLOSURE (I).

Example

� Consider augmented expression grammar:

E’ ���� E T ���� T * F | F

E ���� E + T | T F ���� (E) | id

� If I is the set of one item { [E’ � . E] }, then CLOSURE (I) contains

items

Unit 2: Syntax Analysis & Parsing Techniques

E’ ���� . E

E ���� . E + T

E ���� . T

T ���� . T * F

T ���� . F

F ���� . (E)

F ���� . id

By: A. K. Dewangan Slide No. 67

Unit 2: Syntax Analysis & Parsing Techniques

� E’ ���� . E is put in CLOSURE (I) by rule 1.

� Since there is an E immediately to the right of dot (.) we add the E

productions with dots at the left ends: E ���� . E + T and E ���� . T

� Now there is a T immediately to the right of dot, so we add T

productions with dots at left end: T ���� . T * F and T ���� . F

� F is immediately to the right of dot, so add F ���� . (E) and F ���� . id

� Now no other items need to be added.

By: A. K. Dewangan Slide No. 68

� Now no other items need to be added.

� A convenient way to implement CLOSURE is to keep a boolean array

added, indexed by the nonterminals of G.

� added [B] is set to true if and when we add items B ���� . γ for each

B productions B � γ

Unit 2: Syntax Analysis & Parsing Techniques

SetOfItems CLOSURE (I)

{

repeat

for (each item A � α . B β in I)

for (each production B � γ of G)

if (B � . γ is not in I)

add B � . γ to I ;

By: A. K. Dewangan Slide No. 69

add B � . γ to I ;

until no more items are added to I ;

return I ;

}

� If one B production is added to the closure of I with dot at left end,

then all B productions will be similarly added to the CLOSURE.

Unit 2: Syntax Analysis & Parsing Techniques

GOTO

� The second function is GOTO (I, X) where I is a set of items and X is

a grammar symbol.

� GOTO (I, X) is defined to be the closure of set of all items {A ���� αX.β}

such that [A � α.Xβ] is in I.

� The GOTO function is used to define the transition in LR (0)

automaton for a grammar.

By: A. K. Dewangan Slide No. 70

automaton for a grammar.

� State of automaton correspond to sets of items.

� GOTO (I, X) specifies the transition from the state for I under X.

Unit 2: Syntax Analysis & Parsing Techniques

Example

� If I is the set of two items { [E’ � E.], [E � E . + T] }, then GOTO (I, +)

contains the items

E � E + . T

T � . T * F

T � . F

F � . (E)

By: A. K. Dewangan Slide No. 71

F � . (E)

F � . id

� We compute GOTO (I, +) by examining I for items with +

immediately to right of dot.

� E’ � E. is not such an item, but E � E. + T is.

� We move dot over + to get E � E + . T and then take closure of this

set.

Unit 2: Syntax Analysis & Parsing Techniques

Sets of Items Construction

� Algorithm for constructing C (canonical collection of sets of LR (0)

items for augmented grammar G’)

void items (G’)

{

C = CLOSURE ({ [S’ � . S] });

repeat

By: A. K. Dewangan Slide No. 72

repeat

for (each set of items I in C)

for (each grammar symbol X)

if (GOTO (I, X) is not empty and not in C)

add GOTO (I, X) to C;

until no new sets of items are added to C on a round;

}

I0: E’ � . E

E � . E + T

Unit 2: Syntax Analysis & Parsing Techniques

Example

� The canonical collection of sets of items for grammar given below:

E’ � E E � E + T | T

T � T * F | F F � (E) | id

is:

I1: E’ � E .

E � E . + T

I4: F � (. E)

E � . E + T

I5: F � id .

E � . E + T

E � . T

T � . T * F

T � . F

F � . (E)

F � . id

By: A. K. Dewangan Slide No. 73

E � E . + T

I2: E � T .

T � T . * F

I3: T � F .

E � . E + T

E � . T

T � . T * F

T � . F

F � . (E)

F � . id

I6: E � E + . T

T � . T * F

T � . F

F � . (E)

F � . id

I7: T � T * . F

F � . (E)

F � . id

Unit 2: Syntax Analysis & Parsing Techniques

I8: F � (E .)

E � E . + T

I9: E � E + T .

T � T . * F

I10: T � T * F .

By: A. K. Dewangan Slide No. 74

I10: T � T * F .

I11: F � (E) .

Unit 2: Syntax Analysis & Parsing Techniques

I5

I1 I6

E

id

F

+
I9

T

id

F

id *

(

Fig: Deterministic finite automaton D

By: A. K. Dewangan Slide No. 75

I0

I3

I4

I2

I8 I11

I7 I10

F

(

T

T

F

* F

E)

(

+

id

(

Unit 2: Syntax Analysis & Parsing Techniques

� If each state of D is a final state and I0 is the initial state then D

recognizes exactly viable prefixes of grammar.

� For every grammar G, the GOTO function of canonical collection of

sets of items define a DFA that recognizes the viable prefixes of G.

� There is a transition from A � α.Xβ to A � αX.β labeled X.

� There is a transition from A � α.Bβ to B � .γ labeled є.

� CLOSURE (I) for set of items (states of N) I is exactly є CLOSURE of

By: A. K. Dewangan Slide No. 76

� CLOSURE (I) for set of items (states of N) I is exactly є CLOSURE of

a set of NFA states.

� GOTO (I,X) gives transition from I on symbol X in the DFA

constructed from N by subset construction.

Unit 2: Syntax Analysis & Parsing Techniques

Constructing SLR Parsing Table

� The SLR method begins with LR(0) items and LR(0) automata.

� That is, given a grammar G, we augment G to produce G’ with a new

start symbol S’.

� From G’, we construct C, the canonical collection of sets of items for

G’ together with GOTO function.

� The ACTION and GOTO entries in the parsing table are then

By: A. K. Dewangan Slide No. 77

� The ACTION and GOTO entries in the parsing table are then

constructed using algorithm.

� Algorithm (construction of SLR parsing table):

� Input: C, canonical collection of sets of items for augmented

grammar G’.

� Output: SLR parsing table functions ACTION and GOTO for G’.

Unit 2: Syntax Analysis & Parsing Techniques

Method

1. Construct C = { I0, I1, …. , In }, the collection of sets of LR (0) items for

grammar G’.

2. State i is constructed from Ii. The parsing actions for state i are

determined as follows:

a) If [A � α.aβ] is in Ii, and GOTO (Ii, a) = Ij, then set ACTION [i, a]

to “shift j”; here a must be terminal.

By: A. K. Dewangan Slide No. 78

to “shift j”; here a must be terminal.

b) If [A � α.] is in Ii, then ACTION [i,a] to “reduce A � a” for all a in

FOLLOW (A); here A may not be S’.

c) If [S’ � S.] is in Ii, then set ACTION [i, $] to “accept”.

� If any conflicting actions result from above rules, we say grammar is

not SLR (1). The algorithm fails to produce a parser in this case.

Unit 2: Syntax Analysis & Parsing Techniques

3. The goto transition for state i are constructed for all nonterminals A

using the rule: if GOTO(Ii, A) = Ij, then GOTO [i, A] = j.

4. All entries not defined by rules (2) and (3) are made “error”.

5. The initial state of the parser is the one constructed from set of

items containing [S’ � .S].

� The parsing table consisting of parsing action and goto functions

obtained by this algorithm is called SLR table for G.

By: A. K. Dewangan Slide No. 79

obtained by this algorithm is called SLR table for G.

� An LR parser using SLR table for G is called SLR parser for G.

� A grammar having SLR parsing table is said to be SLR(1).

I0: E’ � . E

E � . E + T

Unit 2: Syntax Analysis & Parsing Techniques

Example

� Construct SLR table for grammar given below:

E � E + T | T

T � T * F | F F � (E) | id

The canonical collection of sets of items for grammar is shown as:

I1: E’ � E .

E � E . + T

I4: F � (. E)

E � . E + T

I5: F � id .

E � . E + T

E � . T

T � . T * F

T � . F

F � . (E)

F � . id

By: A. K. Dewangan Slide No. 80

E � E . + T

I2: E � T .

T � T . * F

I3: T � F .

E � . E + T

E � . T

T � . T * F

T � . F

F � . (E)

F � . id

I6: E � E + . T

T � . T * F

T � . F

F � . (E)

F � . id

I7: T � T * . F

F � . (E)

F � . id

Unit 2: Syntax Analysis & Parsing Techniques

I8: F � (E .)

E � E . + T

I9: E � E + T .

T � T . * F

I10: T � T * F .

I11: F � (E) .

� Consider I0:

� The item F � . (E) gives rise to entry

I0: E’ � . E

E � . E + T

By: A. K. Dewangan Slide No. 81

� The item F � . (E) gives rise to entry

ACTION [0,(] = shift 4

� Item F � . id do the entry

ACTION [0, id] = shift 5

E � . E + T

E � . T

T � . T * F

T � . F

F � . (E)

F � . id

Unit 2: Syntax Analysis & Parsing Techniques

� Consider I1:

� The first item yields ACTION [1, $] = accept

� Second item yields ACTION [1, +] = shift 6

I1: E’ � E .

E � E . + T

� Consider I2:

� Since FOLLOW (E) = { $, +,) } the first item

makes ACTION [2, $] = ACTION [2, +] = ACTION [2,)] =

I2: E � T .

T � T . * F

By: A. K. Dewangan Slide No. 82

makes ACTION [2, $] = ACTION [2, +] = ACTION [2,)] =

reduce E ���� T

� The second item makes ACTION [2, *] = shift 7.

� And so on….

� Parsing table is shown in next slide.

Unit 2: Syntax Analysis & Parsing Techniques

STATE ACTION GOTO

id + * () $ E T F

0 s5 s4 1 2 3

1 s6 acc

2 r2 s7 r2 r2

3 r4 r4 r4 r4

4 s5 s4 8 2 3

5 r6 r6 r6 r6

By: A. K. Dewangan Slide No. 83

5 r6 r6 r6 r6

6 s5 s4 9 3

7 s5 s4 10

8 s6 s11

9 r1 s7 r1 r1

10 r3 r3 r3 r3

11 r5 r5 r5 r5

Fig: Parsing table for expression grammar

Unit 2: Syntax Analysis & Parsing Techniques

Constructing Canonical LR Parsing Tables

� In SLR method, state i calls for reduction by A � α on input symbol

a if set of items Ii contains [A � α.] and a is in FOLLOW(A).

� In some cases, when state i appears on top of stack, a viable prefix

βα may be on stack such that βA cannot be followed by a in right

sentential form.

� So reduction A � α would be invalid for a.

By: A. K. Dewangan Slide No. 84

� So reduction A � α would be invalid for a.

� The extra information is incorporated into state by redefining items

to include a terminal symbol as second component.

� General form of an item becomes [A � α.β, a], where A � αβ is a

production and a is a terminal of right endmarker $.

� We say this an LR(1) item.

� 1 refers to the length of second component (lookahead of item).

Unit 2: Syntax Analysis & Parsing Techniques

� The lookahead has no effect in an item of form [A � α . β , a],

where β is not ε, but item of the form [A � α . , a] calls for a

reduction by A � α only if next input symbol is a.

� So, we are bounded to reduce by A � α only on those input symbols

a for which [A � α., a] is an LR(1) item in state on top of stack.

� We say LR(1) item [A � α.β, a] is valid for a viable prefix γ if there is

a derivation

By: A. K. Dewangan Slide No. 85

a derivation

where

� γ = δα, and

� Either a is first symbol of w, or w is ε and a is $.

S
rm
* δAw

rm
δαβw

Unit 2: Syntax Analysis & Parsing Techniques

Example

� Consider the grammar

S � B B

B � a B | b

� There is a rightmost derivation

� We see that item [B � a.B, a] is valid for a viable prefix γ = aaa, by

S
rm
* aaBab

rm
aaaBab

By: A. K. Dewangan Slide No. 86

� We see that item [B � a.B, a] is valid for a viable prefix γ = aaa, by

letting δ = aa, A = B, w = ab, α = a, and β = B

� There is also a rightmost derivation

� From this derivation we see that item [B � a.B, $] is valid for viable

prefix Baa.

S
rm
* Bab

rm
BaaB

Unit 2: Syntax Analysis & Parsing Techniques

Constructing LR (1) Sets of Items

� Input: a grammar G.

� Output: sets of LR (1) items which are sets of items valid for one or

more viable prefixes of G.

� Method:

� The method is same as for building the canonical collection of sets

of LR (0) items.

By: A. K. Dewangan Slide No. 87

of LR (0) items.

� Needed modification in only two procedures CLOSURE and GOTO.

Unit 2: Syntax Analysis & Parsing Techniques

SetOfItems CLOSURE (I)

{

repeat

for (each item [A � α . B β, a] in I)

for (each production B � γ of G’)

for (each terminal b in FIRST (βa))

add [B � . γ, b] to set I ;

By: A. K. Dewangan Slide No. 88

add [B � . γ, b] to set I ;

until no more items are added to I ;

return I ;

}

Unit 2: Syntax Analysis & Parsing Techniques

SetOfItems GOTO (I)

{

initialize J to be the empty set ;

for (each item [A � α . X β, a] in I)

add item [A � α X . β, a] to set J ;

return CLOSURE (J) ;

}

By: A. K. Dewangan Slide No. 89

}

Unit 2: Syntax Analysis & Parsing Techniques

void items (G’)

{

initialize C to CLOSURE ({ [S’ � . S, $] })

repeat

for (each set of items I in C)

for (each grammar symbol X)

if (GOTO (I, X) is not empty and not in C)

By: A. K. Dewangan Slide No. 90

if (GOTO (I, X) is not empty and not in C)

add GOTO (I, X) to C ;

until no new sets of items are added to C ;

}

Unit 2: Syntax Analysis & Parsing Techniques

Example

� Consider following augmented grammar

S’ � S

S � C C

C � c C | d

� We begin by computing closure of { [S’ � . S, $] }.

� We match the item [S’ � . S, $] with item [A � α.Bβ, a] in

By: A. K. Dewangan Slide No. 91

� We match the item [S’ � . S, $] with item [A � α.Bβ, a] in

procedure CLOSURE.

� So A = S’, α = ε, B = S, β = ε, and a = $.

� CLOSURE tells to add [B � . γ, b] for each production B � γ and

terminal b in FIRST (βa).

� So add [S � . CC, $]

Unit 2: Syntax Analysis & Parsing Techniques

� We continue to compute closure by adding all items [C � . γ, b] for

b in FIRST (C$).

� So matching [S � . C C, $] with [A � α . B β, a], we have A = S, α = ε,

B = C, β = C, and a = $.

� Since C does not derive empty string , FIRST (C$) = FIRST (C).

� Since FIRST (C) contains terminals c and d, add items [C � . c C, c],

[C � . c C, d], [C � . d, c] and [C � . d, d].

By: A. K. Dewangan Slide No. 92

[C � . c C, d], [C � . d, c] and [C � . d, d].

� None of new items has a nonterminal immediately to the right of

dot, so we completed first set of LR (1) items.

� I0: S’ � . S, $

S � . C C, $

C � . c C, c | d

C � . d, c | d

Unit 2: Syntax Analysis & Parsing Techniques

� Now we compute GOTO (I0, X) for various values of X.

� For X = S we must close the item [S’ � S ., $].

� Since dot is at right end, no additional closure is possible. So

� I1: S’ � S . , $

� For X = C we close item [S � C . C, $].

� Add C productions with second component $ and hence

� I2: S � C . C , $

By: A. K. Dewangan Slide No. 93

� I2: S � C . C , $

C � . c C , $

C � . d , $

� Now X = c, we close { [C � c . C, c | d] }.

� Add C productions with second component c | d, hence

Unit 2: Syntax Analysis & Parsing Techniques

� I3: C � c . C , c | d

C � . c C , c | d

C � . d , c | d

� Let X = d, then

� I4: C � d . , c | d

� Finished considering GOTO on I0 and no new sets from I1.

� I has goto’s on C, c and d. For GOTO (I , C) we get

By: A. K. Dewangan Slide No. 94

� I2 has goto’s on C, c and d. For GOTO (I2, C) we get

� I5: S � C C . , $

� To compute GOTO (I2, c) we take closure of { [C � c . C, $] }.

� I6: C � c . C , $

C � . c C , $

C � . d , $

� I6 differs from I3 only in second component.

Unit 2: Syntax Analysis & Parsing Techniques

� GOTO function for I2, GOTO (I2, d) is:

� I7: C � d . , $

� GOTO’s of I3 on c and d are I3 and I4 resp. GOTO (I3, C) is:

� I8: C � c C . , c | d

� I4 and I5 have no GOTO’s, since all items have their dots at right

end.

� GOTO’s of I6 on c and d are I6 and I7, resp. GOTO (I6, C) is:

By: A. K. Dewangan Slide No. 95

� GOTO’s of I6 on c and d are I6 and I7, resp. GOTO (I6, C) is:

� I9: C � c C . , $

� Remaining sets of items yield no GOTO’s.

� GOTO graph for ten sets of items is shown in next slide.

Unit 2: Syntax Analysis & Parsing Techniques

I0

S’ � .S,$
S � .CC,$
C � .cC,c|d
C � .d,c|d

I1

S’ � S.,$

S

I2

S � C.C,$
C � .cC,$
C � .d,$

C

I5

S � CC.,$
C

I6

C � c.C,$
C � .cC,$
C � .d,$

c

I9

C � cC.,$

C

c

I
d d

By: A. K. Dewangan Slide No. 96

I7

C � d.,$I3

C � c.C,c|d
C � .cC,c|d
C � .d,c|d

c

c

I4

C � d.,c|d

d

d

I8

C � cC.,c|d

C

d

Unit 2: Syntax Analysis & Parsing Techniques

Canonical LR (1) Parsing Tables

Algorithm: Construction of canonical LR parsing tables.

� Input: An augmented grammar G’.

� Output: The canonical LR parsing table functions ACTION and

GOTO for G’.

� Method:

1. Construct C’ = { I , I , …, I }, collection of sets of LR (1) items for G’.

By: A. K. Dewangan Slide No. 97

1. Construct C’ = { I0, I1, …, In }, collection of sets of LR (1) items for G’.

2. State i of the parser is constructed from Ii. Parsing action for state i

is determined as follows:

a) If [A � α . a β , b] is in Ii and GOTO (Ii, a) = Ij,

then set ACTION [i, a] to “shift j”. a must be terminal.

b) If [A � α . , a] is in Ii, A ≠ S’,

then set ACTION [i , a] to “reducereducereducereduce AAAA���� αααα“.

Unit 2: Syntax Analysis & Parsing Techniques

c) If [S’ � S . , $] is in Ii then set ACTION [i, $] to “accept”.

In case of conflicting actions resulting from above rules, we say that

grammar is not LR (1). And algorithm fails to produce parser.

3. The goto transitions for state i are constructed for all nonterminals

A using rule : if GOTO (Ii , A) = Ij, then GOTO [i , A] = j.

4. All entries not defined by rules 2 and 3 are made “error”.

5. The initial state of the parser is the one constructed from the set of

By: A. K. Dewangan Slide No. 98

5. The initial state of the parser is the one constructed from the set of

items containing [S’ � . S , $].

� The table formed by using this parsing action and goto fnction is

called canonical LR (1) parsing table.

� LR parser using this table is called canonical LR (1) parser.

Unit 2: Syntax Analysis & Parsing Techniques

Example
� The canonical parsing table for grammar

S � C C C � c C | d is shown in table.

STATE ACTION GOTO

c d $ S C

0 s3 s4 1 2

1 acc

2 s6 s7 5

By: A. K. Dewangan Slide No. 99

2 s6 s7 5

3 s3 s4 8

4 r3 r3

5 r1

6 s6 s7 9

7 r3

8 r2 r2

9 r2

Unit 2: Syntax Analysis & Parsing Techniques

� Every SLR (1) grammar is an LR (1) grammar.

� But for an SLR (1) grammar the canonical LR parser may have more

states than SLR parser for same grammar.

Constructing LALR Parsing Tables

� This method is often used, since tables obtained by it are smaller

than canonical LR tables.

By: A. K. Dewangan Slide No. 100

� Most common syntactic constructs of programming languages can

be expressed conveniently by LALR grammar.

� Same is true for SLR grammar but a few constructs cannot be

handled by SLR technique.

� SLR and LALR tables have same number of states (several hundred

states for language like C).

Unit 2: Syntax Analysis & Parsing Techniques

� Canonical LR table would have several thousand states for same

language.

� So it is easier to construct SLR and LALR tables than canonical LR

tables.

� Consider the grammar whose sets of LR (1) items are
I0

S’ � .S,$
S � .CC,$

I1

S’ � S.,$

S

I

I5

S � CC.,$
C

By: A. K. Dewangan Slide No. 101

C

I8

C � cC.,c|d

S � .CC,$
C � .cC,c|d
C � .d,c|d

I2

S � C.C,$
C � .cC,$
C � .d,$

C

S � CC.,$

I6

C � c.C,$
C � .cC,$
C � .d,$

c

I9

C � cC.,$

C

c

I7

C ���� d.,$

d

I3

C � c.C,c|d
C � .cC,c|d
C � .d,c|d

c

c

I4

C ���� d.,c|d
d

d

d

Unit 2: Syntax Analysis & Parsing Techniques

� Take a pair of similar looking states like I7 and I4.

� Both states has only items with first component C � d .

� In I4 lookaheads are c or d whereas only $ for I7.

� Let us replace I4 and I7 by I47 (union of I4 and I7), consisting of set of

three items represented by [C � d . , c | d | $].

� The goto’s on d to I4 or I7 from I0, I2, I3 and I6 now enter I47.

� The action of state 47 is to reduce on any input.

By: A. K. Dewangan Slide No. 102

� The action of state 47 is to reduce on any input.

� Similarly we can look for sets of LR (1) items having the same core,

that is, set of first components.

� We may merge these sets with common cores into one set of items.

� A core is a set of LR (0) items for the grammar at hand and an LR (1)

grammar may produce more than two sets of items with same core.

Unit 2: Syntax Analysis & Parsing Techniques

Example

Consider the grammar

S’ � S

S � a A d | b B d | a B e | b A e

A � c B � c

� Generating four strings acd, bcd, ace, bce.

By: A. K. Dewangan Slide No. 103

� The grammar is LR (1).

� By constructing set of items, we get

� { [A � c . , d] }, { [B � c . , e] } valid for viable prefix ac

� { [A � c . , e] }, { [B � c . , d] } valid for bc.

� Their cores are same. So their union is

A � c . , d | e B � c . , d | e

Unit 2: Syntax Analysis & Parsing Techniques

� There is a conflict, since reductions by both A � c and B � c

are called for inputs d and e.

� So we prepared two LALR table.

� Construct set of LR (1) items, and if no conflict arise, merge

sets with common cores.

� Construct parsing table from collection of merged sets of

By: A. K. Dewangan Slide No. 104

� Construct parsing table from collection of merged sets of

items.

� No. of sets of items will be same as no. of sets of LR (0) items.

� Constructing collection of LR (1) sets of items requires too

much space and time to be used in practice.

Unit 2: Syntax Analysis & Parsing Techniques

Algorithm : LALR table construction.

Input: A grammar G augmented by production S’ � S.

Output: The LALR parsing tables ACTION and GOTO.

Method

1. Construct C = { I0, I1, …., In }, collection of sets of LR (1) items.

2. For each core present among the sets of LR (1) items, find all

sets having that core, and replace these sets by their union.

By: A. K. Dewangan Slide No. 105

sets having that core, and replace these sets by their union.

3. Let C’ = { J0, J1, …., Jn } be the resulting sets of LR (1) items. The

parsing action of state i are constructed from Ji, same as

canonical LR parsing table.

if parsing action conflict, algorithm fails to produce

a parser and grammar is said not to be LALR (1).

Unit 2: Syntax Analysis & Parsing Techniques

4. The GOTO table is constructed as: if J is union of one or more

sets of LR (1) items, J = I1 U I2 U …. U Im, then cores of

GOTO (I1, X), GOTO (I2, X), …., GOTO (Ik, X) are same,

since I1, I2, …., Ik are having same core.

let K be the union of all sets of items having same core as

GOTO (I1, X), then GOTO (J, X) = K.

By: A. K. Dewangan Slide No. 106

GOTO (I1, X), then GOTO (J, X) = K.

� In this way LALR parsing table produced for G.

� If there are no parsing action conflicts, then the given

grammar is said to be an LALR (1) grammar.

Unit 2: Syntax Analysis & Parsing Techniques

Example

Consider the grammar

S’ � S S � C C C � c C | d

Whose GOTO graph is shown below

I0

S’ � .S,$
S � .CC,$
C � .cC,c|d

I1

S’ � S.,$

S

I2

I5

S � CC.,$
C

C

By: A. K. Dewangan Slide No. 107

I8

C � cC.,c|d

C

C � .cC,c|d
C � .d,c|d

I2

S � C.C,$
C � .cC,$
C � .d,$

C

I6

C � c.C,$
C � .cC,$
C � .d,$

c

I9

C � cC.,$

C

c

I7

C � d.,$

d

I3

C � c.C,c|d
C � .cC,c|d
C � .d,c|d

c

c

I4

C � d.,c|d
d

d

d

Unit 2: Syntax Analysis & Parsing Techniques

� There are 3 pairs of sets of items that can be merged.

� I3 and I6 are replaced by I36

� I36: C � c . C , c | d | $

C � . c C , c | d | $

C � . d , c | d | $

� I4 and I7 are replaced by I47

By: A. K. Dewangan Slide No. 108

� I4 and I7 are replaced by I47

� I47: C � d . , c | d | $

� I8 and I9 are replaced by I89

� I89 : C � c C . , c | d | $

Unit 2: Syntax Analysis & Parsing Techniques

� LALR action and goto functions for condensed sets of items

are shown below

STATE ACTION GOTO

c d $ S C

0 s36 s47 1 2

1 acc

2 s36 s47 5

By: A. K. Dewangan Slide No. 109

2 s36 s47 5

36 s36 s47 89

47 r3 r3 r3

5 r1

89 r2 r2 r2

� Consider GOTO (I36, C). In original set of LR (1) items,

GOTO(I3, C) = I8 and I8 is now part of I89, so we make

GOTO(I36, C) be I89.

Unit 2: Syntax Analysis & Parsing Techniques

Using Ambiguous Grammars

� if parsing action conflict, algorithm fails to produce a parser

and grammar is said not to be LALR (1).

� Ambiguous grammar can’t be handled by all parsers.

� These are quite useful in specification of languages.

By: A. K. Dewangan Slide No. 110

� Consider:

<Exp> ���� <Exp> + <Exp> / <Exp> * <Exp>

<Exp> ���� x

� The above grammar is ambiguous since precedence and

association of operation has not been specified.

Unit 2: Syntax Analysis & Parsing Techniques

� But this grammar can be made unambiguous as follows:

<Exp> ���� <Exp> + <Term> / <Term>

<Term> ���� <Term> * <Fact> / <Fact>

<Fact> ���� x

� Now grammar is suitable for LR parsing technique but here

By: A. K. Dewangan Slide No. 111

we introduce two unit production

<Exp> ���� <Term>

<Term> ���� <Fact>

� These unit productions make parsing time excessive. So we

cannot always adopt this technique.

Unit 2: Syntax Analysis & Parsing Techniques

� If we go for ambiguous grammar then parsing time is not

excessive.

� But there will be conflicts in LR parsing.

� These conflicts can be resolved by using precedence and

association of + and * as per specification of language.

� Example:

By: A. K. Dewangan Slide No. 112

� Example:

� Consider following ambiguous grammar

E � E + E E � E * E E � x

� Its augmented grammar is

S � E E � E + E E � E * E E � x

� Let C is canonical collection of LR (0) items.

Unit 2: Syntax Analysis & Parsing Techniques

� I0: S � . E

E � . E + E

E � . E * E

E � . x

� I2: E � x .

� I3: E � E + . E

� I4: E � E * . E

E � . E + E

E � . E * E

E � . x

� I5: E � E + E .

By: A. K. Dewangan Slide No. 113

� I1: S � E .

E � E . + E

E � E . * E

� I3: E � E + . E

E � . E + E

E � . E * E

E � . x

� I5: E � E + E .

E � E . + E

E � E . * E

� I6: E � E * E .

E � E . + E

E � E . * E

Unit 2: Syntax Analysis & Parsing Techniques

Fig: Transition Diagram

I I I

I4 I6

I
EE

*

*
*

+

+

E

By: A. K. Dewangan Slide No. 114

I0 I1 I3

I2

I5

EE

id

+

id
id

+

Unit 2: Syntax Analysis & Parsing Techniques

� SLR parsing table is as follows:

STATE ACTION TABLE GOTO TABLE

+ * id $ E

I0 S2 1

I1 S3 S4 acc

I2 R3 R3 R3

By: A. K. Dewangan Slide No. 115

I3 S2 5

I4 S2 6

I5 S3 / R1 S4 / R1 R1

I6 S3 / R2 S4 / R2 R2

Unit 2: Syntax Analysis & Parsing Techniques

� It is clear from table that

action [I5, +] = S3 / R1 (shift reduce conflict)

action [I5, *] = S4 / R1 (shift reduce conflict)

action [I6, +] = S3 / R2 (shift reduce conflict)

action [I6, *] = S4 / R2 (shift reduce conflict)

� These conflicts can be resolved by defining associativity and

precedence relations.

By: A. K. Dewangan Slide No. 116

precedence relations.

Unit 2: Syntax Analysis & Parsing Techniques

Precedence of Terminals and Productions

� Idea behind conflict resolution in YACC is that each production

and each terminal symbol may be given a “precedence”.

� If on input a we have conflict between reducing by production

A � α and shifting, we compare precedence of A � α with

By: A. K. Dewangan Slide No. 117

precedence of a.

� If A � α has higher precedence that a, we reduce; if not we

shift.

� YACC has facility that allows user to assign a precedence to

every production and to every terminal.

Unit 2: Syntax Analysis & Parsing Techniques

� A more useful way to give precedence to productions is to

follow the rule that, in absence of specific precedence for the

production, the precedence of A � α is same as precedence of

rightmost terminal of α.

� Not every terminal and production need be given a

By: A. K. Dewangan Slide No. 118

precedence; those not involved in conflicts need not have

precedence.

Unit 2: Syntax Analysis & Parsing Techniques

Example

Consider the grammar

S � i S e S | i S | a, whose set of LR (0) items are

I0

S’ � . S
S � . i S e S
S � . i S
S . a

I1

S’ � S .

I2

S’ � i . S e S

I4

S � i S . e S
S � i S .

I5

S � i S e . S

S

i

e
S

By: A. K. Dewangan Slide No. 119

S � . a
2

S’ � i . S e S
S � i . S
S � . i S e S
S � . i S
S � . a

I3

S � a .

S � i S e . S
S � . i S e S
S � . i S
S � . a

I6

S � i S e S .

a a

i

i

i

a

S

Unit 2: Syntax Analysis & Parsing Techniques

� If we simply state that e is of higher precedence than i, then the

production S � i S has lower precedence than e

� Since i is the rightmost terminal of right side i S.

� So, in I4, the conflict between shifting e and reducing by S � i S on

input e is resolved.

� We could also specify to YACC directly that precedence of

production S � i S is lower than precedence of e by creating dummy

terminal of lower precedence than e, by following YACC like

By: A. K. Dewangan Slide No. 120

terminal of lower precedence than e, by following YACC like

notation:

TERMINALTERMINAL ee

TERMINALTERMINAL dummydummy

SS �� ii SS ee SS

SS �� ii SS PRECEDENCEPRECEDENCE dummydummy

SS �� aa

/* terminals with precedence are listed highest
precedence first */

/* then come the productions */

/* the keyword PRECEDENCE gives the
production the precedence of “terminal”
dummy */

Unit 2: Syntax Analysis & Parsing Techniques

Associativity

� Consider ambiguous grammar

E → E + E | E * E | (E) | id

� We would reduce by E → E * E on input +, since given

production E → E * E, with rightmost terminal *, is having

By: A. K. Dewangan Slide No. 121

higher precedence than terminal +.

Unit 2: Syntax Analysis & Parsing Techniques

Parser Generator

� It can be used to facilitate the construction of front end of a

compiler.

� One of the parser generator YACC (Yet Another Compiler-

Compiler) reflecting the popularity of parser generators.

� YACC is available as a command on the UNIX system, & has

By: A. K. Dewangan Slide No. 122

been used to implement hundreds of compilers.

� Parser Generator YACC

� A translator can be constructed using YACC in the following

steps:

Unit 2: Syntax Analysis & Parsing Techniques

Automatic Parser Generators

YACC (Yet Another Compiler - Compiler)

� YACC allows user to specify a possibly ambiguous grammar

along with precedence and associativity information about

operators.

� YACC resolves any parsing action conflicts arise.

� User provides YACC with a grammar, and YACC builds LALR(1)

By: A. K. Dewangan Slide No. 123

� User provides YACC with a grammar, and YACC builds LALR(1)

states.

� YACC then attempts to select parsing actions for each state.

� If there are no conflicts (grammar is LALR (1)) then user need

not supply anything more than grammar.

� If source grammar is ambiguous, user may provide more

information to help YACC resolve parsing action conflicts.

Unit 2: Syntax Analysis & Parsing Techniques

YACC Compiler y.tab.c
YACC
Specification
translate.y

C Compiler a.outy.tab.c

By: A. K. Dewangan Slide No. 124

C Compilerinput output

Fig: Input – output Translator with YACC

Unit 2: Syntax Analysis & Parsing Techniques

� First, a file name, say translate.y, containing a Yacc

specification of the translator us prepared.

� Then we have to compile the file by using the UNIX system

command.

� Yacc translate.y ↵

� It transforms the file translate.y into equivalent C program

By: A. K. Dewangan Slide No. 125

� It transforms the file translate.y into equivalent C program

called y.tab.c

� The program y.tab.c is a representation if some parser e.g.

LALR parser written in C.

� By compiling y.tab.c along with by library that contains the LR

parsing program using the command un UNIX system.

Unit 2: Syntax Analysis & Parsing Techniques

� cc y.tab.c - ly

� By doing this desired object program a.out that performs the

translation specified by the original YACC program.

� YACC source program has three parts:

Declaration

%%

By: A. K. Dewangan Slide No. 126

%%

Translation rules

%%

Supporting c-routines

Unit 2: Syntax Analysis & Parsing Techniques

Error Recovery in YACC:

� YACC has some provision for error recovery, by using error

token.

� Essentially, the error token is used to find a synchronization

point in the grammar from which it is likely that processing

can continue.

By: A. K. Dewangan Slide No. 127

can continue.

� Sometimes our attempts at recovery will not remove enough

of the erroneous state to continue, and the error message will

cascade.

� Either the parser will reach a point from which processing can

continue or the entire parser will abort.

Unit 2: Syntax Analysis & Parsing Techniques

� After reporting a syntax error, a YACC parser discards any

partially parsed rules until it finds one in which it can shift an

error token.

� It then reads and discards input tokens until it finds one which

can follow the error token in the grammar.

� This later process is called resynchronizing.

By: A. K. Dewangan Slide No. 128

� This later process is called resynchronizing.

