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Course Outline 
  

 This course is meant as an introduction to computer 

graphics , which covers a large body of work.  The 

intention is to give a solid grounding in basic 2D computer 

graphics and introduce the concepts and some techniques 

required to implement 3D graphics. CURVES & 

SURFACES,PROJECTIONS & HIDDEN SURFACE 

REMOVAL,SHADING & COLOR ISSUES,FRACTALS & 

ANIMATION. 
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 Computers graphics has become a powerful 
tool in most of the areas of science, 
engineering and education. 

 The term Computer Graphics refers to the 
interface which helps a user to understand 
and control all the operations on a computer 
system. 

 Computer Graphics has become a key 
technology for communicating information 
(data) and ideas etc. in modern world. 
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Introduction to Computer Graphics 



 How pictures or graphics objects are 
presented in computer graphics? 

 How pictures or graphics objects are 
prepared for presentation? 

 How previously prepared pictures or graphics 
objects are prepared? 

 How interaction with the picture or graphics 
objects is accomplished? 
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 â Entertainment - computer animation;  
 â User interfaces;  
 â Interactive visualization - business and 

science;  
 â Cartography;  
 â Medicine;  
 â Computer aided design;  
 â Multimedia systems;  
 â Computer games;  
 â Image processing.  
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Why Study Computer Graphics 
 



 A high quality graphics display. 

 To show moving pictures. 

 To produce animations. 

 To control the animation. 

 Motion dynamics. 

 Update dynamics. 

 More realistic 

 To simulated environment. 
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User Interface 

Buttons 
Menus 
Icons 
Scroll Bars 
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Office Automation and Desktop 
Publishing 

1 
•Creation  

2 
•Printing 

3 
•Tables 

4 
•Forms of drawn 

5 
•Scanned Images or Pictures 
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Simulation and Animation 



•  Artistic field  

-  Artistic and commercial objectives  

•  Logo design  

•  Fine Arts  

•  Animations for advertising  

-  Techniques and software and software  

•  Programs like “PhotoShop”,  

“CorelDraw”, “Freehand” 

... •  Animation programs  

•  Image processing techniques 

•“rendering” techniques  
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•  Entertainment  

-  Areas  

•  Movies: (Tron, Toy Story, etc.)  

•  Television (transitions, headers, 

etc.)  

•  Computer games Techniques  

•  Animation  

•  Realistic visualization  

•  Special effects (Ex. morphing) 

•  Interactivity  
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•  Scientific and medical visualization  

-  Graphics visualization of huge amount of  data  
 

-  Areas  

•  Medicine (Ex. resonnance)  

•  Engineering (Ex. strengths in a 

mechanism)  

•  Physics (Ex. Magnetic fields)  

•  Chemistry (Ex. Molecular interaction) 

•  Mathematics (Ex. equation solution)  

•  Topography and oceanography (Ex. 

Terrains and flows)  

-  Techniques  

•  Codification by color 

•  Level curves  

•  Volume visualization  
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Cartography 

Geographical Map 
Weather Map 
Oceanographic Charts 
Contour Maps 
Population Density 
Maps 



 
 

 Photography and printing  
 Satellite image processing  
 Machine Vision  
 Medical image processing  
 Face detection, feature detection, face identification  
 Microscope image processing  
 Car barrier detection 
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 The Architecture, Engineering, and Construction (AEC) 
Industry  
◦ Architecture  
◦ Architectural engineering  
◦ Interior Design  
◦ Interior Architecture  
◦ Building engineering  
◦ Civil Engineering and Infrastructure  
◦ Construction  
◦ Roads and Highways  
◦ Railroads and Tunnels  
◦ Water Supply and Hydraulic Engineering  
◦ Storm Drain, Wastewater and Sewer systems  
◦ Mapping and Surveying  
◦ (Chemical) Plant Design  
◦ Factory Layout  
◦ Heating, Ventilation and air-conditioning (HVAC)  

        contd….. 
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 Mechanical (MCAD) Engineering   Fully editable digital multi-CAD mockup 
• Automotive - vehicles  
• Aerospace  
• Consumer Goods  
• Machinery  
• Ship Building  
• Bio-mechanical systems  

• Electronic design automation (EDA)  
• Electronic and Electrical (ECAD)  
• Digital circuit design  

• Electrical Engineering  
• Power Engineering or Power Systems Engineering  
• Power Systems CAD  
• Power analytics  

• Manufacturing process planning  
• Industrial Design  
• Software applications  
• Apparel and Textile CAD  

• Fashion Design  
• Garden design  
• Lighting Design  
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HISTORY 

•  Prehistory  

- Whirlwind: Defensive radar system (1951). Computer graphics origin.  

- DAC-1: IBM & General Motors, 3D representation of a car.  

•  Advances in the 60’s  

-  Skechpad: Ivan Sutherland, considered as the father of computer 
graphics. created an interactive drawing program.(1961)  

-  SpaceWar: Steve Russell (MIT) designed the first video-game on a DEC 
PDP-11. (1961)  

-  First animation shorts to simulate physical effects (gravity, movement, etc.) 
(1963)  
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HISTORY 

-  Sutherland (MIT) made up the first head-mounted display with 
stereoscopy vision (1966)  

-  First algorithm of hidden surfaces. by Catmull et al. at the Utah University. 
At the end of 60’s.  

-  The same team began to have interest in surface shading using color.  

•  Advances in the 70’s  

- Introduction of computer graphics in television. 

- Gouraud presented his famous polygonal surface smoothing method.(1971)  

-  Microprocessor on the market (1971)  

-  Atari was born in 1972. It is the computer game pioneer.  
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HISTORY 

- First uses of CG (Computer Graphics) in movies.  

- Newell at the University of Utah create the famous 

teapot, a classical benchmark for visualization 

algorithms.  

- Texturing and Z-Buffer: Catmull’s thesis in 1974.  

- Phong developed his polygonal surface smoothing 

method (1974).  

-      1975 Baum and Wozniak founded Apple in a garage.  

-  Gates founded Microsoft (1975).  
-  Lucasfilm created the computer graphics division with  

the best gurus of the moment (1979).  
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HISTORY 

•  Advances in the 80’s  

- SIGGRAPH is the most important event in this field.  

- Whitted published an article about ray tracing 

technique (1980)  

-  Carpenter, at Lucasfilm, developed the first rendering engine: 
REYES, the Renderman precursor.(1981)  

-  TRON film by Lisberger and Kushner at Disney (beginning of 
the 80’s)  

- Massive sales of graphics terminals: IBM, Tektronix.  

- The first ISO and ANSI standard for graphics libraries: GKS.  

- IBM created the Personal Computer PC.  
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HISTORY 

•Advances in the 90’s and nowadays:  

-  Operative system based on windows for PC (Windows 3.0 at 
1990).  

-3D-Studio from Autodesk (1990).  

-  Massive use of computers to produce special effects: 
Terminator 2 (1991), Disney-Pixar (Toy Story, Bugs, 
Monsters, inc.), Forrest Gump, Jurassic Park, Lord of 
the Rings, Starwars episodes I, II and III etc.  

-  Internet success and 2D and 3D applications for the web.  

-  3D graphics cards for PC (Voodoo, Nvidia Gforce etc.).  

Unstoppable 3D games evolution.  
-  Virtual Reality. A reality.  

-  Nowadays: a must for any application.  
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 Video Display Devices 
◦ Cathode Ray Tube 

◦ Vector Scan/Random Scan Display 

◦ Raster Scan Display 

◦ Colour CRT Monitors 

◦ Direct-View Storage Tubes 

◦ Flat Panel Display 

◦ Plasma Panel Display 

◦ Liquid Crystal Monitors 
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 Input Devices 
◦ Keyboard 

◦ Mouse 

◦ Trackball and Space ball 

◦ Joysticks 

◦ Data Glove 

◦ Digitizer/Graphical Tablet 

◦ Image scanners 

◦ Touch  Panels 

◦ Light Pan 

◦ Voice Systems 
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 Rasterization 

 Scan Conversion 
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 The process of determine the appropriate 
pixels for representing picture or graphics 
object is known as rasterization. 

 

 The process of representing continuous 
picture or graphics object as a collection of 
discrete pixels is called scan conversion. 
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 Random Scan Display (Vector Scan Display) 

 Raster Scan Display  (Refreshing Scan Display) 
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 Basically used for line drawing command, 
produce smooth line drawing. 

 Resolution of random display system is 
higher. 

 Electron beam falls only those parts of the 
screen where a picture is to be drawn. 
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 Main disadvantage of random display system 
is that they do not produce real and shadow 
images. 

 Different colors are not possible with this 
approach. 
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 You can also create shadow scenes. 

 Millions of different colors can be displayed 
with this approach. 

 Picture quality is good. 

 It is popular in use because they generate 
realistic pictures. 
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 It is expensive than random display. 

 Low resolution. 

 To draw the picture electron beam sweep 
across whole the screen. 

36 
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Random Scan Display Raster Scan  Display 

High Resolutions  Less Resolutions  

The smooth lines are produced as the 
electron beam directly follows the line 
path. 

The lines produced are ziz-zag as the 
plotted values are discrete. 

realism is difficult to achieve. high degree realism is achieved in picture 
with the aid of advanced shading and 
hidden surface technique. 

random-scan system's are generally 
costlier. 

decreasing memory costs. 

Here CRT has the electron beam directly 
only to the parts of the screen where a 
picture is to be drawn. 

In this case, the electron beam is swept 
across the screen, one row at a time from 
top to bottom. 

Picture definition is stored as a set of line 
drawing commands in an area of memory 
referred to as refresh display file. 

Picture definition is stored in a memory 
area called the refresh buffer/frame 
buffer. 

Random scan systems are designed to 
draw all the component lines of a picture 
30 to 60 times each second. 

Refreshing on raster scan displays is 
carried out at the rate of 60 to 80 
frames/second. 



 The maximum number of pixels that can be 
displayed per unit length in vertical as well as 
horizontal direction of the screen is known as 
resolution of the screen. 

 

 Distance from one pixel to the next pixel. 

 

 The total number of pixels along the entire 
height and width of the image. 
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 Full screen image with resolution 800x600 
means that there are 800 columns of pixels , 
each column comprising 600 pixels, 
i.e. a total of 800 X 600 = 480000 pixel in 
the image area. 
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 Aspect ratios gives the ratio of vertical points to horizontal point 
which produce equal to length line in both direction of screen . 

 Aspect ratio can be measured in unit length of number of pixels. 

 Standard PC have a display are with aspect ratio 4/3 where vertical 
line plotted with 4 pixels and horizontal line plotted with 3 pixel 
with same length. 
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Resolution Number of 
Pixels 

Aspect Ratio 

320x200 64,000 8:5 

640x480 307,200 4:3 

800x600 480,000 4:3 

1024x768 786,432 4:3 

1280x1024 1,310,720 5:4 

1600x1200 1,920,000 4:3 



 POINT 

 PIXELS 

 PLANES 

 VECTOR 

 CHARACTER GENERATION 

 FRAME BUFFER 

 POINT PLOTTING TECHNIQUES(PPT) 
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x 

Fig: Position of a Point on Plane 
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Fig: Pixel 

A pixel may be defined as the smallest size object or color spot 

that can be displayed and addressed on a monitor. Any image 

that is displayed on the monitor is made up of thousands of such 

small pixels (Picture Elements). 
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1. Stroke Method 

2. Starbust Method 

3. Bitmap Method 
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Starbust Method 

Example : 24 bit code for 
 
Character A is  0011 0000 0011 1100 1110 0001 
 
Character M is   0000 0011 0000 1100 1111 0011 



 The 24-bits are required to represent a 
character. Hence more memory is required. 

 Requires code conversion s/w to display 
character from its 24-bits code. 

 Character quality poor. It is worst for curve 
shaped character. 
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Bitmap Method 

Note :  Hardware device : Character Generation Chip  
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0 1 1 0 0 1 1 0 0 1 

0 1 0 1 1 1 0 1 1 1 

0 0 0 1 0 0 1 0 0 1 

1 0 1 0 1 0 1 1 1 0 

1 1 1 0 1 0 0 0 0 0 

1 1 0 1 0 1 0 1 1 0 

0 0 0 1 1 1 1 1 0 1 

0 1 1 0 0 1 1 0 0 1 

 

0 Represent – Black 

1 Represent -  White 
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1 . 

Electron 

Beam 

1 DAC 
Electron 

Gun 

Register 

CRT Raster 

One bit per pixel – Bitmap 

/Bit planes 

 

Single bit plane 

 

Fig: For bit depth =1,   
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Color Code Stored Color Values in Frame Buffer Displayed 
Color 

Red Green Blue 

0 0 0 0 Black 

1 0 0 1 Blue 

2 0 1 0 Green 

3 0 1 1 Cyan 

4 1 0 0 Red 

5 1 0 1 Magenta 

6 1 1 0 Yellow 

7 1 1 1 White 



1 
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. 

Electron 

Beam 

DAC 
Electron 

Gun 

Register 

CRT Raster 

Multiple bit per pixel – 

Pixmap  

 

Multiple bit plane 

 

Fig: For bit depth =n,   
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0 

1 0 1 
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Color Depth No.of 
Displayed 

Colors 

Bits of storage 
Per Pixel 

Displayed 
Color 

4-Bit 16 4 Standard  VGA 

8-Bit 256 8 256-Color 
Mode 

16-Bit 65,536 16 High Color 

24-Bit 16,777,216 24 True Color 



54 

BOY 
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P1 

(0, 0) 
x2 x1 

y2 

y1 

Fig: Vector V in xy plane 

P2 

V =  P2 - P1 

   =  (x2 - x1,y2 - y1) 

   =  (Vx,Vy) 
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It has two basic properties : Direction and Magnitude 

 

Magnitude of any vector can be determine by using Pythagorean 

Theorm as 

 

|V| =    Vx
2 +Vy

2 

 

The Direction of any vector is given by 

 

α = tan-1   

 

 
x

y

V

V



|V| =    Vx
2 + Vy

2 + Vz
2 
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Z 

y 

x 

α 

β 
γ 

Figure : Direction angle α, β, and γ. 



 Null Vector 

 Unit Vector 

 Vector Addition 

 Vector Subtraction 

 Scalar Product/Dot Product/Inner Product of 
Two Vector 

 Vector product of Two Vectors 

 Space Co-ordinate 

 Resolution of Vectors 

 

58 



59 



60 



61 



LINE  DRAWING ALGORITHM 
1 



CRITERIA FOR GOOD LINE DRAWING 

 Line should be drawn rapidly. 

 

 

 Line should be appearing straight. 

 Line should terminate accurately. 

 Line should have constant density. 

 

 

v 

Fig: Uneven Line 

density 

Fig: Line not terminate 

accurately 

Fig: O/P 

from a poor 

line 

generating 

algorithm 
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DDA Algorithm 

Bresenham’s Algorithm 

3 



DDA ALGORITHM  

1. Calculate the horizontal difference between the two end points. 

   dx = abs(x2-x1) 

2. Calculate the Vertical difference between the two end points. 

   dy = abs(y2-y1) 

3. If dx>dy then the value of increment step is  

  Step =dx 

 Else 

  Step =dy 

4. Xinc = (X2-X1)/step and Yinc = (Y2-Y1)/step 

5.   X = X1 + 0.5 

  Y =  Y1  + 0.5 

6. Set k=0 

7. Plot(Round(X),Round(Y)) 

8.   X=X+Xinc 

  Y=Y+Yinc 

9. k=k+1 

10.If K<Step the goto step-7 
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DDA ALGORITHM  
 Read the line end points (x1,y1) and (x2,y2) such that they are not 

equal. 

 ∆x = |x2 - x1|  

 ∆y = |y2  - y1| 

 If (∆x >= ∆y) then 

  length = ∆x 

 else 

  length = ∆y 

 ∆x = (x2 - x1)/length                               //For Increment  of X & Y) 

 ∆y = (y2  - y1)/length 

 x = x1+ 0.5 * sign(∆x) 

 y = y1+0.5 * sign(∆y) 

 i=1 

 while (i<=lengh) 

  { 

   plot(Integer(x),Integer(y)) 

   x= x+ ∆x 

   y=y+ ∆y 

   i=i+1; 

 stop 
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Example 1 : Consider the line from (0,0 ) to (4,6).  

Use the simple DDA algorithm to rasterizing this  

line. 

Solution : Evaluating steps 1 to 5 the DDA  

Algorithm we have 

  x1 = 0  y1 = 0 

  x2 = 4  y2 = 6 

:: Length = y2 -y1 = 6 -  0 =  6 

 

∆x = (x2  - x1)/Length = (4-0)/6 = 4/6    and 

∆y = (y2 - y1)/Length = (6 - 0)/6 = 1 

Initial Value  for  x = 0+0.5*sign(4/6)=0.5 

    y =0+0.5*sign(1) = 0.5 
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TABULATING THE RESULTS OF THE EACH 

ITERATION IN STEP 6 WE GET: 

7 

i Plot x y 

0.5 0.5 

1 (0,0) 

1.167 1.5 

2 (1,1) 

1.833 2.5 

3 (1,2) 

2.5 3.5 

4 (2,3) 

3.167 4.5 

5 (3,4) 

3.833 5.5 

6 (3,5) 

4.5 6.5 



Example2:Consider the line from (0,0)to(                  

6,6) Use the simple DDA algorithm to rasterizing 

this line. 

Example 3 : Consider the line from (10,15) to  

(20,21).Use the simple DDA algorithm to  

rasterizing this line. 

Example 4: Scan Convert a straight line whose  

end points are (5,10) and (15,35) using DDA  

Algorithm.  

Example 5: Scan Convert a straight line whose  

end points are ( -1,- 2) and (+4,+8) using DDA  

Algorithm. 
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ADVANTAGES OF DDA ALGORITHM 

 It is the simplest algorithm that it does not 

require special skills for implementation. 

 It is a faster method for calculating pixel 

positions than the direct use of equation y=mx+b. 

 

9 

 Floating point arithmetic in DDA algorithm is 

still time consuming. 

 The algorithm is orientation (Direction) 

dependent. Hence end point accuracy point is 

poor. 

 

DISADVANTAGES OF DDA ALGORITHM 



BRESENHAM’S LINE ALGORITHM 

 It uses only integer addition and subtraction and 

multiplication by 2, and we know that computer can 

perform the operation of integer addition and 

subtraction very rapidly. 

 The computer is also time-efficient when performing 

integer multiplication by powers of 2. Therefore, it is 

an efficient method for scan                  converting 

straight lines. 

 The basic principle of Bresenham’s  line algorithm is 

to select the optimum raster locations to represent a 

straight line. 

 To  accomplish this the algorithm always increments 

either x or y one unit depending on the slope of line. 

 The increment in the other variable is determined by 

examining the distance between the actual line 

location and the nearest pixel. This distance is called 

decision variable or the error. 
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BRESENHAM’S LINE DRAWING ALGORITHM 

 

1. Input the two line end-points, storing the left end-

point in (x0, y0) 

2. Plot the point (x0, y0) 

3. Calculate the constants Δx, Δy, 2Δy, and (2Δy - 2Δx) 

and get the first value for the decision parameter as: 

 

4. At each xk along the line, starting at k = 0, perform 

the following test. If pk < 0, the next point to plot is  

(xk+1, yk) and: 

xyp  20

ypp kk  21
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THE BRESENHAM LINE ALGORITHM 

(CONT…) 
 Otherwise, the next point to plot is (xk+1, yk+1) and: 

 
 

 

 

5. Repeat step 4, (Δx) times.  

xpp

or

xypp

kk

kk









2

22

1

1
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 Read the line end point (x1,y1) and (x2,y2) such that they are not equal. 

 ∆x = |x2  - x1| and ∆y = |y2 -  y1| 

 Initialize starting point 

  x=x1 

  y=y1  and then Plot the first pixel. 

 p = 2 * ∆y -∆x (Initialize value of decision variable or error to compensate 

for nonzero intercepts). 

 i=1 

 while(p>=0) 

 { 

  y=y+1 

  p=p -2* ∆x 

 } 

  x=x+1 

  p=p+2* ∆y 

 Plot(x,y) 

 i=i+1 

 if(i<= ∆x) then go to step 6 

 Stop 
13 



Example 1 : Consider the line from (5,5) to (13,9).  

Use the Bresenham’s Algorithm to rasterizing the  

line. 

Solution : Evaluating steps 1 through 4 in the  

Bresenham’s Algorithm we have, 

∆x = |13 - 5| = 8 

∆y = |9 -5| = 4 

 

x= 5 and y = 5 

 

p = 2 * ∆y -∆x = 2 *4- 8 

   = 0 
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TABULATING THE RESULT OF EACH ITERATION IN THE STEP 5 THROUGH 10. 
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i Plot x y p 

(5,5) 5 5 0 

1 (6,6) 6 6 -8 

2 (7,6) 7 6 0 

3 (8,7) 8 7 -8 

4 (9,7) 9 7 0 

5 (10,8) 10 8 -8 

6 (11,8) 11 8 0 

7 (12,9) 12 9 -8 

8 (13,9) 13 9 0 



BASIC CONCEPT OF CIRCLE DRAWING 

 Polynomial Method 

 Trigonometric Method 
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A SIMPLE CIRCLE DRAWING ALGORITHM 

The equation for a circle is: 

 

where r is the radius of the circle 

So, we can write a simple circle drawing 

algorithm by solving the equation for y at unit x 

intervals using: 

 

222 ryx 

22 xry 
17 



A SIMPLE CIRCLE DRAWING 

ALGORITHM (CONT…) 

However, unsurprisingly this is not a brilliant 
solution! 

Firstly, the resulting circle has large gaps where 
the slope approaches the vertical 

Secondly, the calculations are not very efficient 

 The square (multiply) operations 

 The square root operation – try really hard to avoid 
these! 

We need a more efficient, more accurate solution 
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EIGHT-WAY SYMMETRY 
The first thing we can notice to make our circle drawing 

algorithm more efficient is that circles centred at (0, 0) have 

eight-way symmetry 

(x, y) 

(y, x) 

(y, -x) 

(x, -y) (-x, -y) 

(-y, -x) 

(-y, x) 

(-x, y) 

2

R
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BRENSENHAM’S CIRCLE ALGORITHM 

It is based on the following function for testing 
the spatial relationship between an arbitrary ponit 
(x,y) and a circle of radius r centred at the the 
origin : 

 
The equation evaluates as follows: 

 

 

 
 

By evaluating this function at the point between 
the candidate pixels we can make our decision 

222),( ryxyxfcirc 















 

,0

,0

,0

 ),( yxfcirc

boundary circle  theinside is ),( if yx

boundary circle on the is ),( if yx

boundary circle  theoutside is ),( if yx
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BRENSENHAM’S CIRCLE ALGORITHM 

1.    Input radius r and circle centre (xc, yc), then set the 

coordinates for the first point on the circumference 

of a circle centred on the origin as: 

 

2.    Calculate the initial value of the decision parameter 

as: 

 
3.    If T is the chosen pixel (Meaning  that di<0) then 

yi+1=yi and so 

),0(),( 00 ryx 

rd 231 

641  iii xdd 21 



CIRCLE ALGORITHM (CONT…) 
4.   On the other hand, if S is the chosen pixel( di<0) then 

yi+1 = yi-1 and so 

 

 
5.    Repeat steps 3 to 5 until (x<y) 

10)(41  iiii yxdd
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 The D provides a relative measurement of distance 

from the center of a pixel to true line. Since D(T) will 

always be positive (T is outside the true circle) and 

D(S) will always be negative (S in inside the true 

circle). A decision variable di may be defined as follows 

: 

   di = D(T) +D(S)  

 

 As the coordinates  of  T = (Xi +1 ,Yi) 

 

 As the coordinates  of   S = (Xi+1 ,Yi-1) 
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D(T)= (xi+1)2 + y2
i -r

2 

D(S) = (xi+1) 2 + (yi-1)2 -r2 

di = D(T) +D(S) 

di  = 2(xi +1)2 +yi
2+(yi -1)-2r2 

When di<=0 , we have |D(T)<D(S)| and pixel T is chosen. 

When di >=0 , we have |D(T)>D(S)| and pixel S is chosen. 

For next step , decision variable di+1 

di+1  = 2(xi+1 +1)2 +yi+1
2+(yi+1 -1) -2r2 

Hence di+1 – di  = 2(xi+1 +1)2 +yi+1
2+(yi+1 -1) -2r2 - 

     2(xi +1)2 -yi
2-(yi -1)+2r2     
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= 2(xi+1 +1)2 +y2
i+1+(yi+1  -1) 2– 2(xi +1)2 - yi

2  - (yi -1) 2 

Since  xi+1 = xi+1 

di+1 = di + 4xi +2 (y2
i+1– y2

i ) – 2(yi+1 - yi)+6 

 

If T is the chosen pixel (di <0 ) then yi+1= yi   

  di+1 = di + 4xi +6 

If S is the chosen pixel (di >0 ) then yi+1= yi - 1  

  di+1 = di + 4(xi – yi  ) +10 

Hence We have 

     di + 4xi +6       (di <0 )  

     di + 4(xi – yi  ) +6   (di >0 )  
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di+1 = 



BRESENHAM’S CIRCLE DRAWING ALGORITHM 

 Read the radius (r) of the circle. 

 d=3-2r [ Initialize the decision variable] 

 x = 0, y = r [Initialize the starting point] 

 do { 

  plot(x,y) 

  if( d<0) then 

   {  d=d +4x+6 } 

  else 

   { d = d+4(x-y) +10 

      y=y-1 } 

  x = x+1 

  } while (x<y) 

 Stop 
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MID-POINT CIRCLE ALGORITHM 
Similarly to the case with lines, there 

is an incremental algorithm for drawing 

circles – the mid-point circle algorithm 

In the mid-point circle algorithm we 

use eight-way symmetry so only ever 

calculate the points for the top right 

eighth of a circle, and then use 

symmetry to get the rest of the points 
The mid-point circle 

a l g o r i t h m  w a s 

developed by Jack 

Bresenham, who we 

heard about earlier. 

Bresenham’s patent 

for the algorithm can 

b e  v i e w e d  h e r e . 

27 
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MID-POINT CIRCLE ALGORITHM (CONT…) 

Let’s re-jig the equation of the circle slightly to 
give us: 

 
The equation evaluates as follows: 

 

 

 
By evaluating this function at the midpoint 
between the candidate pixels we can make our 
decision 

222),( ryxyxfcirc 
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MID-POINT CIRCLE ALGORITHM (CONT…) 

Assuming we have just plotted the pixel at (xk,yk) so we 

need to choose between (xk+1,yk) and (xk+1,yk-1) 

Our decision variable can be defined as: 

 

 
If pk < 0 the midpoint is inside the circle and and the 

pixel at yk is closer to the circle 

Otherwise the midpoint is outside and yk-1 is closer 

222 )
2

1()1(

)
2
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yxfp
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29 



MID-POINT CIRCLE ALGORITHM (CONT…) 

To ensure things are as efficient as possible we 
can do all of our calculations incrementally 

First consider: 

 

 
or: 

 
where yk+1 is either yk or yk-1 depending on the 

sign of pk 
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MID-POINT CIRCLE ALGORITHM (CONT…) 

The first decision variable is given as: 

 

 

 

 

Then if pk < 0 then the next decision variable is 

given as: 

 

If pk > 0 then the decision variable is: 

r
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THE MID-POINT CIRCLE ALGORITHM 

• Input radius r and circle centre (xc, yc), then set the 

coordinates for the first point on the circumference 

of a circle centred on the origin as: 

 

• Calculate the initial value of the decision parameter 

as: 

 
• Starting with k = 0 at each position xk, perform the 

following test. If pk < 0, the next point along the 

circle centred on (0, 0) is (xk+1, yk) and: 

),0(),( 00 ryx 

rp 
4

5
0

12 11   kkk xpp
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THE MID-POINT CIRCLE ALGORITHM 

(CONT…) 

  Otherwise the next point along the circle is (xk+1, 

yk-1) and: 

 
4. Determine symmetry points in the other seven 

octants 

5. Move each calculated pixel position (x, y) onto the 

circular path centred at (xc, yc) to plot the coordinate 

values: 

 
6. Repeat steps 3 to 5 until x >= y 

111 212   kkkk yxpp

cxxx  cyyy 

33 



MID-POINT CIRCLE ALGORITHM EXAMPLE 

To see the mid-point circle algorithm in action lets 

use it to draw a circle centred at (0,0) with radius 

10 
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MIDPOINT CIRCLE DRAWING ALGORITHM 
 Read the radius ( r) of the circle. 

 Initialize starting position as 

  x= 0 and  y = r 

 Calculate initial value of decision parameter as 

   d = 1.25 – r   or  (5/4-r) 

 do {  

  plot (x,y) 

  if (d<0) 

  {  x = x+1 

   y = y 

   d = d+2x +1 } 

  else 

  {  x = x+1 

   y = y-1 

   d = d+2x-2y+1 

}while (x<y) 

 Determine symmetry points 

 Stop. 
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ELLIPSE DRAWING ALGORITHM 

 The midpoint ellipse drawing algorithm uses the 

four way symmetry of the ellipse to generate it. 
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MIDPOINT ELLIPSE ALGORITHM 

 The ellipse equation and define function f that can 

be used to decide if the midpoint between two 

candidate pixels in inside or outside the ellipse: 

     

     <0 (x,y) inside the ellipse 

f(x,y) = b2x2+a2y2 -a2b2  =0 (x,y) on the ellipse 

     >0 (x,y,) outside the ellipse 
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Region 1 : Vertical 

Region2 : Horizontal  
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FILLED AREA PRIMITIVES 
1 



P0LYGONS 

2 

P0 

(Starting 

Point) 

 

P3 

P2 

P1 

P4 

(Terminal/Fin

al Point) 

 

P0 

P1 

P2 

P3 

P4 

POLYLINE 

POLYGON 



TYPES OF POLYGONS 

 Convex Polygons 

 Concave Polygons 
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CONVEX POLYGONS 

4 

A 

B 

E 
D 

C F 



CONCAVE POLYGONS 

5 

A 

B C 

D 



REPRESENTATION OF POLYGONS 

 Polygon drawing primitive Approach. 

 Trapezoid primitive Approach. 

 Line and Point Approach 
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EXAMPLES 
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Fig : Polygon 

Fig : Representations a 

series of trapezoids 



LINES AND POINTS APPROACH 

8 

(0,2) 

(0,4) 

(4,6) 

(6,4) 

(6,2) 

(4,0) 
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DF_OP DF_x DF_y 

6 0 2 

2 0 4 

2 4 6 

2 6 4 

2 6 2 

2 4 0 

2 0 2 

Algorithm : Entering the polygon into the 

display file 

 

1. Read AX and AY of Length N 

2. i=0 

 DF_OP[i]   N 

 DF_x[i]  AX[i] 

 DF_y[i]            AY[i] 

 i=i+1 

 [Load Polygon Command] 

3.  do { 

 DF_OP[i]                  2 

 DF_x[i]                  AX[i] 

 DF_y[i]                  AY[i] 

 i                  i+1 

 } while(i<N) [Enter line commands] 

4.   DF_OP[i]                  2 

 DF_x[i]                  AX[0] 

 DF_y[i]                  AY[0] 

  [Enter last line command] 

5.   Stop 

 

 

Fig: Polygon and its 

representation using 

display file 



AN INSIDE-OUTSIDE TEST 

EVEN 

ODD 

EVEN 

Odd-Even Rule 

ODD 
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WINDING NUMBER RULE 
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POLYGON FILLING  

 Boundary Fill Algorithm 

 Flood Fill Algorithm 
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BOUNDARY FILL ALGORITHM 

13 

4 Connected Region 8 Connected Region 



EXAMPLE 
Starting 

Pixel 
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EXAMPLE 
Starting 

Pixel 
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EXAMPLE 
Starting 

Pixel 
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Procedure : boundary_fill(x,y,f_colour,b_colour) 

{ 

 if (getpixel(x,y)!=b_colour && getpixel(x,y)!=f_colour) 

  { 

   putpixel(x,y,f_colour); 

   boundary_fill(x+1,y,f_colour,b_colour); 

   boundary_fill(x,y+1,f_colour,b_colour); 

   boundary_fill(x-1,y,f_colour,b_colour); 

   boundary_fill(x,y-1,f_colour,b_colour); 

  } 

} 
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EXAMPLE 

Starting 

Pixel 
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FLOOD FILL ALGORITHM 

Procedure : flood_fill(x,y, fill_color,old_color) 

{ 

 if (getpixel(x,y)==old_color) 

  { 

   putpixel(x,y,fill_color); 

   flood_fill (x+1,y,fill_color,old_color); 

   flood_fill (x,y+1,fill_color,old_color); 

   flood_fill (x-1,y,fill_color,old_color); 

   flood_fill (x,y-1,fill_color,old_color); 

  } 

} 
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FILLING PATTERN 

Name Value Result 

EMPTY_FILL 0 Background coloe 

SOLID_FILL 1 Solid fill 

LINE_FILL 2 Line fill ----- 

LTSLASH_FILL 3 //// 

SLASH_FILL 4 ///// thick line 

BKSLASH_FILL 5 ////// thick line 

LTSLASH_FILL 6 \\\\\ 
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Name Value Meaning 

HATCH_FILL 7 Light Hatch 

XHATCH_LINE 8 Heavy Hatch 

INTERLEAVE_FILL 9 Interleaving lines 

WIDE_DOT_FILL 10 Widely Spaced dots 

CLOSE_DOT_FILL 11 Closely Spaced dots 

USE_FILL 12 User-defined fill pattern 

21 



#include<stdio.h> 

#include<stdlib.h> 

#include<graphics.h> 

void main() 

{ 

  int gd=DETECT,gm; 

  initgraph(&gd,&gm,"c:\\tc\\bgi"); 

  setcolor(1); 

  rectangle(100,100,200,150); 

  setfillstyle(SOLID_FILL,4); or setfillstyle(SOLID_FILL,4);  

  floodfill(103,103,1); 

 } 
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SCAN LINE ALGORITHM FOR FILLING 

POLYGON 

23 
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It is four pixel intersection 

positions with the polygon  

boundaries define two 

stretches of interior pixels 

from x =10 to x= 14 and from 

x = 18 to x = 24. 

 

 

Exterior Pixels : from 14 to 18 

0 10 14    18         24 
24 
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Polygon filling algorithms 

1. Plot one octant of a circle of 
radius 7 pixels with the origin at 
the origin. 

2. Plot all octant of a circle having 
radius of 14 pixels with its origin at 
the centre. 

 

 



2 

Polygon filling algorithms 

Objectives 

• Categorize the two basic 
approaches for area filling on 
raster systems. 

• List out the applications of the two 
approaches. 

• Boundary fill algorithm. 

• Flood fill algorithm 

• Scan line fill algorithm. 
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Region Filling 

Seed Fill Approaches . 

• Start from a given interior position and 
paint outward from this point until the 
specified boundary condition is 
encountered. 

–2 algorithms: 

–  Boundary Fill and Flood Fill 

–works at the pixel level 

• suitable for interactive painting applications 
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Boundary Fill Algorithm 

• Start at a point inside a region. 

• Paint the interior outward to the boundary. 

• The edge must be specified in a single color. 

• Fill algorithm proceeds outward pixel by pixel 
until the boundary color is encountered.  
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• The procedure accepts as input the coordinates 

of an interior point ( x, y), fill color and a 

boundary color . 

• Starting from (x, y) the procedure tests 

neighbouring positions to determine whether 

they are of the boundary color. 

• If not paint them with fill color and test their 

neighbours and process continues until all 

pixels up to the boundary color for the area 

have been tested. 
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There are 2 methods for proceeding to neighbouring pixels from the 
current test positions. 
 
• 4 connected method. 
 
• 8 connected method.  
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• 4-connected region: From a given pixel, the 
region that you can get to by a series of 4 
way moves (N, S, E and W). 

• The neighbouring 4 pixel positions are 
tested. 

• If the selected pixel is (x, y) the 
neighbouring pixels are (x+1, y) , (x-1, y)  

   (x, y+1) , (x, y-1) 

• 4-connected fill is faster, 

   but can have problems 

 

 
4-connected 
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• 8-connected region: From a given pixel, 
the region that you can get to by a 
series of 8 way moves (N, S, E, W, NE, 
NW, SE, and SW), the 4 diagonal pixels 
are also included. 

• If the selected pixel is (x, y) the 8 
neighbouring pixels are 

(x+1, y) ,(x-1, y), (x, y-1), (x, y+1) 

(x+1, y+1) ,(x-1, y+1) 

 (x-1, y-1), (x+1, y-1) 

8-connected 
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Boundary Fill Algorithm (cont.) 

void BoundaryFill4(int x, int y,  
   color newcolor, color edgecolor) 
{ 
   int current; 
   current = ReadPixel(x, y); 
   if(current != edgecolor && current != newcolor) 
   { 
       BoundaryFill4(x+1, y, newcolor, edgecolor); 
       BoundaryFill4(x-1, y, newcolor, edgecolor); 
       BoundaryFill4(x, y+1, newcolor, edgecolor); 
       BoundaryFill4(x, y-1, newcolor, edgecolor); 
   } 
} 
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Flood Fill Algorithm 

• Used when an area defined with multiple color 
boundaries. 

• Start at a point inside a region 

• Replace a specified interior color (old color) with fill 
color instead of  searching for  a boundary color value 
and  the method is called flood fill. 
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• Start from a specified interior point 
(x, y) and reassign all pixel values 
that are set to a given interior 
color with the desired fill color. 

• Fill the 4-connected or 8-connected 

region until all interior points being 
replaced. 
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Flood Fill Algorithm (cont.) 

void FloodFill4(int x, int y, color newcolor, 
color oldColor) 
{ 
   if(ReadPixel(x, y) == oldColor) 
   { 
       FloodFill4(x+1, y, newcolor, oldColor); 
       FloodFill4(x-1, y, newcolor, oldColor); 
       FloodFill4(x, y+1, newcolor, oldColor); 
       FloodFill4(x, y-1, newcolor, oldColor); 
   } 
} 
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Scan line Scan Line Polygon Fill 
Algorithms 
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Scan line Fill Approaches. 
 
 Fill an area by determining the overlap intervals  for scan lines that cross 
that area. 
 

  - works at the polygon level 
  - used in general graphics packages to 
    fill    polygons, circles etc. 
  - better performance. 

 


