
1

Course Outline

 This course is meant as an introduction to computer

graphics , which covers a large body of work. The

intention is to give a solid grounding in basic 2D computer

graphics and introduce the concepts and some techniques

required to implement 3D graphics. CURVES &

SURFACES,PROJECTIONS & HIDDEN SURFACE

REMOVAL,SHADING & COLOR ISSUES,FRACTALS &

ANIMATION.

2

 Computers graphics has become a powerful
tool in most of the areas of science,
engineering and education.

 The term Computer Graphics refers to the
interface which helps a user to understand
and control all the operations on a computer
system.

 Computer Graphics has become a key
technology for communicating information
(data) and ideas etc. in modern world.

3

Introduction to Computer Graphics

 How pictures or graphics objects are
presented in computer graphics?

 How pictures or graphics objects are
prepared for presentation?

 How previously prepared pictures or graphics
objects are prepared?

 How interaction with the picture or graphics
objects is accomplished?

4

 â Entertainment - computer animation;
 â User interfaces;
 â Interactive visualization - business and

science;
 â Cartography;
 â Medicine;
 â Computer aided design;
 â Multimedia systems;
 â Computer games;
 â Image processing.

5

Why Study Computer Graphics

 A high quality graphics display.

 To show moving pictures.

 To produce animations.

 To control the animation.

 Motion dynamics.

 Update dynamics.

 More realistic

 To simulated environment.

6

7

8

User Interface

Buttons
Menus
Icons
Scroll Bars

9

0 2 4 6

Category 1

Category 2

Category 3

Category 4

Series 3

Series 2

Series 1

10

Office Automation and Desktop
Publishing

1
•Creation

2
•Printing

3
•Tables

4
•Forms of drawn

5
•Scanned Images or Pictures

11

Simulation and Animation

• Artistic field

- Artistic and commercial objectives

• Logo design

• Fine Arts

• Animations for advertising

- Techniques and software and software

• Programs like “PhotoShop”,

“CorelDraw”, “Freehand”

... • Animation programs

• Image processing techniques

•“rendering” techniques

Chapter 1. Introduction 10

• Entertainment

- Areas

• Movies: (Tron, Toy Story, etc.)

• Television (transitions, headers,

etc.)

• Computer games Techniques

• Animation

• Realistic visualization

• Special effects (Ex. morphing)

• Interactivity

Chapter 1. Introduction 11

• Scientific and medical visualization

- Graphics visualization of huge amount of data

- Areas

• Medicine (Ex. resonnance)

• Engineering (Ex. strengths in a

mechanism)

• Physics (Ex. Magnetic fields)

• Chemistry (Ex. Molecular interaction)

• Mathematics (Ex. equation solution)

• Topography and oceanography (Ex.

Terrains and flows)

- Techniques

• Codification by color

• Level curves

• Volume visualization

Chapter 1. Introduction 13

15

Cartography

Geographical Map
Weather Map
Oceanographic Charts
Contour Maps
Population Density
Maps

 Photography and printing
 Satellite image processing
 Machine Vision
 Medical image processing
 Face detection, feature detection, face identification
 Microscope image processing
 Car barrier detection

16

 The Architecture, Engineering, and Construction (AEC)
Industry
◦ Architecture
◦ Architectural engineering
◦ Interior Design
◦ Interior Architecture
◦ Building engineering
◦ Civil Engineering and Infrastructure
◦ Construction
◦ Roads and Highways
◦ Railroads and Tunnels
◦ Water Supply and Hydraulic Engineering
◦ Storm Drain, Wastewater and Sewer systems
◦ Mapping and Surveying
◦ (Chemical) Plant Design
◦ Factory Layout
◦ Heating, Ventilation and air-conditioning (HVAC)

 contd…..

17

 Mechanical (MCAD) Engineering Fully editable digital multi-CAD mockup
• Automotive - vehicles
• Aerospace
• Consumer Goods
• Machinery
• Ship Building
• Bio-mechanical systems

• Electronic design automation (EDA)
• Electronic and Electrical (ECAD)
• Digital circuit design

• Electrical Engineering
• Power Engineering or Power Systems Engineering
• Power Systems CAD
• Power analytics

• Manufacturing process planning
• Industrial Design
• Software applications
• Apparel and Textile CAD

• Fashion Design
• Garden design
• Lighting Design

18

HISTORY

• Prehistory

- Whirlwind: Defensive radar system (1951). Computer graphics origin.

- DAC-1: IBM & General Motors, 3D representation of a car.

• Advances in the 60’s

- Skechpad: Ivan Sutherland, considered as the father of computer
graphics. created an interactive drawing program.(1961)

- SpaceWar: Steve Russell (MIT) designed the first video-game on a DEC
PDP-11. (1961)

- First animation shorts to simulate physical effects (gravity, movement, etc.)
(1963)

2

HISTORY

- Sutherland (MIT) made up the first head-mounted display with
stereoscopy vision (1966)

- First algorithm of hidden surfaces. by Catmull et al. at the Utah University.
At the end of 60’s.

- The same team began to have interest in surface shading using color.

• Advances in the 70’s

- Introduction of computer graphics in television.

- Gouraud presented his famous polygonal surface smoothing method.(1971)

- Microprocessor on the market (1971)

- Atari was born in 1972. It is the computer game pioneer.

Chapter 1. Introduction 3

HISTORY

- First uses of CG (Computer Graphics) in movies.

- Newell at the University of Utah create the famous

teapot, a classical benchmark for visualization

algorithms.

- Texturing and Z-Buffer: Catmull’s thesis in 1974.

- Phong developed his polygonal surface smoothing

method (1974).

- 1975 Baum and Wozniak founded Apple in a garage.

- Gates founded Microsoft (1975).
- Lucasfilm created the computer graphics division with

the best gurus of the moment (1979).

Chapter 1. Introduction 4

HISTORY

• Advances in the 80’s

- SIGGRAPH is the most important event in this field.

- Whitted published an article about ray tracing

technique (1980)

- Carpenter, at Lucasfilm, developed the first rendering engine:
REYES, the Renderman precursor.(1981)

- TRON film by Lisberger and Kushner at Disney (beginning of
the 80’s)

- Massive sales of graphics terminals: IBM, Tektronix.

- The first ISO and ANSI standard for graphics libraries: GKS.

- IBM created the Personal Computer PC.

5

HISTORY

•Advances in the 90’s and nowadays:

- Operative system based on windows for PC (Windows 3.0 at
1990).

-3D-Studio from Autodesk (1990).

- Massive use of computers to produce special effects:
Terminator 2 (1991), Disney-Pixar (Toy Story, Bugs,
Monsters, inc.), Forrest Gump, Jurassic Park, Lord of
the Rings, Starwars episodes I, II and III etc.

- Internet success and 2D and 3D applications for the web.

- 3D graphics cards for PC (Voodoo, Nvidia Gforce etc.).

Unstoppable 3D games evolution.
- Virtual Reality. A reality.

- Nowadays: a must for any application.

6

24

 Video Display Devices
◦ Cathode Ray Tube

◦ Vector Scan/Random Scan Display

◦ Raster Scan Display

◦ Colour CRT Monitors

◦ Direct-View Storage Tubes

◦ Flat Panel Display

◦ Plasma Panel Display

◦ Liquid Crystal Monitors

25

 Input Devices
◦ Keyboard

◦ Mouse

◦ Trackball and Space ball

◦ Joysticks

◦ Data Glove

◦ Digitizer/Graphical Tablet

◦ Image scanners

◦ Touch Panels

◦ Light Pan

◦ Voice Systems

26

 Rasterization

 Scan Conversion

27

X axis

Y axis

p1

p1 p3 p4 p2

p4 p2 p1 p3

p1

p2

p3

p4

p5

p5

p4

p3

p2

p1

28

p1

p2

p3

p4

p5

p6

p7
X axis

Y axis

 The process of determine the appropriate
pixels for representing picture or graphics
object is known as rasterization.

 The process of representing continuous
picture or graphics object as a collection of
discrete pixels is called scan conversion.

29

 Random Scan Display (Vector Scan Display)

 Raster Scan Display (Refreshing Scan Display)

30

31

 Basically used for line drawing command,
produce smooth line drawing.

 Resolution of random display system is
higher.

 Electron beam falls only those parts of the
screen where a picture is to be drawn.

32

 Main disadvantage of random display system
is that they do not produce real and shadow
images.

 Different colors are not possible with this
approach.

33

34

 You can also create shadow scenes.

 Millions of different colors can be displayed
with this approach.

 Picture quality is good.

 It is popular in use because they generate
realistic pictures.

35

 It is expensive than random display.

 Low resolution.

 To draw the picture electron beam sweep
across whole the screen.

36

37

Random Scan Display Raster Scan Display

High Resolutions Less Resolutions

The smooth lines are produced as the
electron beam directly follows the line
path.

The lines produced are ziz-zag as the
plotted values are discrete.

realism is difficult to achieve. high degree realism is achieved in picture
with the aid of advanced shading and
hidden surface technique.

random-scan system's are generally
costlier.

decreasing memory costs.

Here CRT has the electron beam directly
only to the parts of the screen where a
picture is to be drawn.

In this case, the electron beam is swept
across the screen, one row at a time from
top to bottom.

Picture definition is stored as a set of line
drawing commands in an area of memory
referred to as refresh display file.

Picture definition is stored in a memory
area called the refresh buffer/frame
buffer.

Random scan systems are designed to
draw all the component lines of a picture
30 to 60 times each second.

Refreshing on raster scan displays is
carried out at the rate of 60 to 80
frames/second.

 The maximum number of pixels that can be
displayed per unit length in vertical as well as
horizontal direction of the screen is known as
resolution of the screen.

 Distance from one pixel to the next pixel.

 The total number of pixels along the entire
height and width of the image.

38

 Full screen image with resolution 800x600
means that there are 800 columns of pixels ,
each column comprising 600 pixels,
i.e. a total of 800 X 600 = 480000 pixel in
the image area.

39

 Aspect ratios gives the ratio of vertical points to horizontal point
which produce equal to length line in both direction of screen .

 Aspect ratio can be measured in unit length of number of pixels.

 Standard PC have a display are with aspect ratio 4/3 where vertical
line plotted with 4 pixels and horizontal line plotted with 3 pixel
with same length.

40

9 inch (H)

figure : Aspect ratio 4:3

1
2
 i
n
c
h
(V

)

9
 i
n
c
h
(v

)

12 inch (H)

figure : Aspect ratio 3:4

41

Resolution Number of
Pixels

Aspect Ratio

320x200 64,000 8:5

640x480 307,200 4:3

800x600 480,000 4:3

1024x768 786,432 4:3

1280x1024 1,310,720 5:4

1600x1200 1,920,000 4:3

 POINT

 PIXELS

 PLANES

 VECTOR

 CHARACTER GENERATION

 FRAME BUFFER

 POINT PLOTTING TECHNIQUES(PPT)

42

43

P(x, y)

(0, 0)

y

x

y

x

Fig: Position of a Point on Plane

44

Fig: Pixel

A pixel may be defined as the smallest size object or color spot

that can be displayed and addressed on a monitor. Any image

that is displayed on the monitor is made up of thousands of such

small pixels (Picture Elements).

45

1. Stroke Method

2. Starbust Method

3. Bitmap Method

46

Starbust Method

Example : 24 bit code for

Character A is 0011 0000 0011 1100 1110 0001

Character M is 0000 0011 0000 1100 1111 0011

 The 24-bits are required to represent a
character. Hence more memory is required.

 Requires code conversion s/w to display
character from its 24-bits code.

 Character quality poor. It is worst for curve
shaped character.

47

48

Bitmap Method

Note : Hardware device : Character Generation Chip

49

0 1 1 0 0 1 1 0 0 1

0 1 0 1 1 1 0 1 1 1

0 0 0 1 0 0 1 0 0 1

1 0 1 0 1 0 1 1 1 0

1 1 1 0 1 0 0 0 0 0

1 1 0 1 0 1 0 1 1 0

0 0 0 1 1 1 1 1 0 1

0 1 1 0 0 1 1 0 0 1

0 Represent – Black

1 Represent - White

50

1 .

Electron

Beam

1 DAC
Electron

Gun

Register

CRT Raster

One bit per pixel – Bitmap

/Bit planes

Single bit plane

Fig: For bit depth =1,

51

Color Code Stored Color Values in Frame Buffer Displayed
Color

Red Green Blue

0 0 0 0 Black

1 0 0 1 Blue

2 0 1 0 Green

3 0 1 1 Cyan

4 1 0 0 Red

5 1 0 1 Magenta

6 1 1 0 Yellow

7 1 1 1 White

1

52

.

Electron

Beam

DAC
Electron

Gun

Register

CRT Raster

Multiple bit per pixel –

Pixmap

Multiple bit plane

Fig: For bit depth =n,

1

0

1 0 1

53

Color Depth No.of
Displayed

Colors

Bits of storage
Per Pixel

Displayed
Color

4-Bit 16 4 Standard VGA

8-Bit 256 8 256-Color
Mode

16-Bit 65,536 16 High Color

24-Bit 16,777,216 24 True Color

54

BOY

55

P1

(0, 0)
x2 x1

y2

y1

Fig: Vector V in xy plane

P2

V = P2 - P1

 = (x2 - x1,y2 - y1)

 = (Vx,Vy)

56

It has two basic properties : Direction and Magnitude

Magnitude of any vector can be determine by using Pythagorean

Theorm as

|V| = Vx
2 +Vy

2

The Direction of any vector is given by

α = tan-1

x

y

V

V

|V| = Vx
2 + Vy

2 + Vz
2

57

Z

y

x

α

β
γ

Figure : Direction angle α, β, and γ.

 Null Vector

 Unit Vector

 Vector Addition

 Vector Subtraction

 Scalar Product/Dot Product/Inner Product of
Two Vector

 Vector product of Two Vectors

 Space Co-ordinate

 Resolution of Vectors

58

59

60

61

LINE DRAWING ALGORITHM
1

CRITERIA FOR GOOD LINE DRAWING

 Line should be drawn rapidly.

 Line should be appearing straight.

 Line should terminate accurately.

 Line should have constant density.

v

Fig: Uneven Line

density

Fig: Line not terminate

accurately

Fig: O/P

from a poor

line

generating

algorithm

2

DDA Algorithm

Bresenham’s Algorithm

3

DDA ALGORITHM

1. Calculate the horizontal difference between the two end points.

 dx = abs(x2-x1)

2. Calculate the Vertical difference between the two end points.

 dy = abs(y2-y1)

3. If dx>dy then the value of increment step is

 Step =dx

 Else

 Step =dy

4. Xinc = (X2-X1)/step and Yinc = (Y2-Y1)/step

5. X = X1 + 0.5

 Y = Y1 + 0.5

6. Set k=0

7. Plot(Round(X),Round(Y))

8. X=X+Xinc

 Y=Y+Yinc

9. k=k+1

10.If K<Step the goto step-7

4

DDA ALGORITHM
 Read the line end points (x1,y1) and (x2,y2) such that they are not

equal.

 ∆x = |x2 - x1|

 ∆y = |y2 - y1|

 If (∆x >= ∆y) then

 length = ∆x

 else

 length = ∆y

 ∆x = (x2 - x1)/length //For Increment of X & Y)

 ∆y = (y2 - y1)/length

 x = x1+ 0.5 * sign(∆x)

 y = y1+0.5 * sign(∆y)

 i=1

 while (i<=lengh)

 {

 plot(Integer(x),Integer(y))

 x= x+ ∆x

 y=y+ ∆y

 i=i+1;

 stop

5

Example 1 : Consider the line from (0,0) to (4,6).

Use the simple DDA algorithm to rasterizing this

line.

Solution : Evaluating steps 1 to 5 the DDA

Algorithm we have

 x1 = 0 y1 = 0

 x2 = 4 y2 = 6

:: Length = y2 -y1 = 6 - 0 = 6

∆x = (x2 - x1)/Length = (4-0)/6 = 4/6 and

∆y = (y2 - y1)/Length = (6 - 0)/6 = 1

Initial Value for x = 0+0.5*sign(4/6)=0.5

 y =0+0.5*sign(1) = 0.5

6

TABULATING THE RESULTS OF THE EACH

ITERATION IN STEP 6 WE GET:

7

i Plot x y

0.5 0.5

1 (0,0)

1.167 1.5

2 (1,1)

1.833 2.5

3 (1,2)

2.5 3.5

4 (2,3)

3.167 4.5

5 (3,4)

3.833 5.5

6 (3,5)

4.5 6.5

Example2:Consider the line from (0,0)to(

6,6) Use the simple DDA algorithm to rasterizing

this line.

Example 3 : Consider the line from (10,15) to

(20,21).Use the simple DDA algorithm to

rasterizing this line.

Example 4: Scan Convert a straight line whose

end points are (5,10) and (15,35) using DDA

Algorithm.

Example 5: Scan Convert a straight line whose

end points are (-1,- 2) and (+4,+8) using DDA

Algorithm.

8

ADVANTAGES OF DDA ALGORITHM

 It is the simplest algorithm that it does not

require special skills for implementation.

 It is a faster method for calculating pixel

positions than the direct use of equation y=mx+b.

9

 Floating point arithmetic in DDA algorithm is

still time consuming.

 The algorithm is orientation (Direction)

dependent. Hence end point accuracy point is

poor.

DISADVANTAGES OF DDA ALGORITHM

BRESENHAM’S LINE ALGORITHM

 It uses only integer addition and subtraction and

multiplication by 2, and we know that computer can

perform the operation of integer addition and

subtraction very rapidly.

 The computer is also time-efficient when performing

integer multiplication by powers of 2. Therefore, it is

an efficient method for scan converting

straight lines.

 The basic principle of Bresenham’s line algorithm is

to select the optimum raster locations to represent a

straight line.

 To accomplish this the algorithm always increments

either x or y one unit depending on the slope of line.

 The increment in the other variable is determined by

examining the distance between the actual line

location and the nearest pixel. This distance is called

decision variable or the error.

10

BRESENHAM’S LINE DRAWING ALGORITHM

1. Input the two line end-points, storing the left end-

point in (x0, y0)

2. Plot the point (x0, y0)

3. Calculate the constants Δx, Δy, 2Δy, and (2Δy - 2Δx)

and get the first value for the decision parameter as:

4. At each xk along the line, starting at k = 0, perform

the following test. If pk < 0, the next point to plot is

(xk+1, yk) and:

xyp  20

ypp kk  21

11

THE BRESENHAM LINE ALGORITHM

(CONT…)
 Otherwise, the next point to plot is (xk+1, yk+1) and:

5. Repeat step 4, (Δx) times.

xpp

or

xypp

kk

kk









2

22

1

1

12

 Read the line end point (x1,y1) and (x2,y2) such that they are not equal.

 ∆x = |x2 - x1| and ∆y = |y2 - y1|

 Initialize starting point

 x=x1

 y=y1 and then Plot the first pixel.

 p = 2 * ∆y -∆x (Initialize value of decision variable or error to compensate

for nonzero intercepts).

 i=1

 while(p>=0)

 {

 y=y+1

 p=p -2* ∆x

 }

 x=x+1

 p=p+2* ∆y

 Plot(x,y)

 i=i+1

 if(i<= ∆x) then go to step 6

 Stop
13

Example 1 : Consider the line from (5,5) to (13,9).

Use the Bresenham’s Algorithm to rasterizing the

line.

Solution : Evaluating steps 1 through 4 in the

Bresenham’s Algorithm we have,

∆x = |13 - 5| = 8

∆y = |9 -5| = 4

x= 5 and y = 5

p = 2 * ∆y -∆x = 2 *4- 8

 = 0

14

TABULATING THE RESULT OF EACH ITERATION IN THE STEP 5 THROUGH 10.

15

i Plot x y p

(5,5) 5 5 0

1 (6,6) 6 6 -8

2 (7,6) 7 6 0

3 (8,7) 8 7 -8

4 (9,7) 9 7 0

5 (10,8) 10 8 -8

6 (11,8) 11 8 0

7 (12,9) 12 9 -8

8 (13,9) 13 9 0

BASIC CONCEPT OF CIRCLE DRAWING

 Polynomial Method

 Trigonometric Method

16

A SIMPLE CIRCLE DRAWING ALGORITHM

The equation for a circle is:

where r is the radius of the circle

So, we can write a simple circle drawing

algorithm by solving the equation for y at unit x

intervals using:

222 ryx 

22 xry 
17

A SIMPLE CIRCLE DRAWING

ALGORITHM (CONT…)

However, unsurprisingly this is not a brilliant
solution!

Firstly, the resulting circle has large gaps where
the slope approaches the vertical

Secondly, the calculations are not very efficient

 The square (multiply) operations

 The square root operation – try really hard to avoid
these!

We need a more efficient, more accurate solution

18

EIGHT-WAY SYMMETRY
The first thing we can notice to make our circle drawing

algorithm more efficient is that circles centred at (0, 0) have

eight-way symmetry

(x, y)

(y, x)

(y, -x)

(x, -y) (-x, -y)

(-y, -x)

(-y, x)

(-x, y)

2

R

19

BRENSENHAM’S CIRCLE ALGORITHM

It is based on the following function for testing
the spatial relationship between an arbitrary ponit
(x,y) and a circle of radius r centred at the the
origin :

The equation evaluates as follows:

By evaluating this function at the point between
the candidate pixels we can make our decision

222),(ryxyxfcirc 















,0

,0

,0

),(yxfcirc

boundary circle theinside is),(if yx

boundary circle on the is),(if yx

boundary circle theoutside is),(if yx

20

BRENSENHAM’S CIRCLE ALGORITHM

1. Input radius r and circle centre (xc, yc), then set the

coordinates for the first point on the circumference

of a circle centred on the origin as:

2. Calculate the initial value of the decision parameter

as:

3. If T is the chosen pixel (Meaning that di<0) then

yi+1=yi and so

),0(),(00 ryx 

rd 231 

641  iii xdd 21

CIRCLE ALGORITHM (CONT…)
4. On the other hand, if S is the chosen pixel(di<0) then

yi+1 = yi-1 and so

5. Repeat steps 3 to 5 until (x<y)

10)(41  iiii yxdd

22

 The D provides a relative measurement of distance

from the center of a pixel to true line. Since D(T) will

always be positive (T is outside the true circle) and

D(S) will always be negative (S in inside the true

circle). A decision variable di may be defined as follows

:

 di = D(T) +D(S)

 As the coordinates of T = (Xi +1 ,Yi)

 As the coordinates of S = (Xi+1 ,Yi-1)

23

D(T)= (xi+1)2 + y2
i -r

2

D(S) = (xi+1) 2 + (yi-1)2 -r2

di = D(T) +D(S)

di = 2(xi +1)2 +yi
2+(yi -1)-2r2

When di<=0 , we have |D(T)<D(S)| and pixel T is chosen.

When di >=0 , we have |D(T)>D(S)| and pixel S is chosen.

For next step , decision variable di+1

di+1 = 2(xi+1 +1)2 +yi+1
2+(yi+1 -1) -2r2

Hence di+1 – di = 2(xi+1 +1)2 +yi+1
2+(yi+1 -1) -2r2 -

 2(xi +1)2 -yi
2-(yi -1)+2r2

24

= 2(xi+1 +1)2 +y2
i+1+(yi+1 -1) 2– 2(xi +1)2 - yi

2 - (yi -1) 2

Since xi+1 = xi+1

di+1 = di + 4xi +2 (y2
i+1– y2

i) – 2(yi+1 - yi)+6

If T is the chosen pixel (di <0) then yi+1= yi

 di+1 = di + 4xi +6

If S is the chosen pixel (di >0) then yi+1= yi - 1

 di+1 = di + 4(xi – yi) +10

Hence We have

 di + 4xi +6 (di <0)

 di + 4(xi – yi) +6 (di >0)

25

di+1 =

BRESENHAM’S CIRCLE DRAWING ALGORITHM

 Read the radius (r) of the circle.

 d=3-2r [Initialize the decision variable]

 x = 0, y = r [Initialize the starting point]

 do {

 plot(x,y)

 if(d<0) then

 { d=d +4x+6 }

 else

 { d = d+4(x-y) +10

 y=y-1 }

 x = x+1

 } while (x<y)

 Stop

26

MID-POINT CIRCLE ALGORITHM
Similarly to the case with lines, there

is an incremental algorithm for drawing

circles – the mid-point circle algorithm

In the mid-point circle algorithm we

use eight-way symmetry so only ever

calculate the points for the top right

eighth of a circle, and then use

symmetry to get the rest of the points
The mid-point circle

a l g o r i t h m w a s

developed by Jack

Bresenham, who we

heard about earlier.

Bresenham’s patent

for the algorithm can

b e v i e w e d h e r e .

27

http://patft.uspto.gov/netacgi/nph-Parser?u=%2Fnetahtml%2Fsrchnum.htm&Sect1=PTO1&Sect2=HITOFF&p=1&r=1&l=50&f=G&d=PALL&s1=4371933.PN.&OS=PN/4371933&RS=PN/4371933

MID-POINT CIRCLE ALGORITHM (CONT…)

Let’s re-jig the equation of the circle slightly to
give us:

The equation evaluates as follows:

By evaluating this function at the midpoint
between the candidate pixels we can make our
decision

222),(ryxyxfcirc 















,0

,0

,0

),(yxfcirc

boundary circle theinside is),(if yx

boundary circle on the is),(if yx

boundary circle theoutside is),(if yx

28

MID-POINT CIRCLE ALGORITHM (CONT…)

Assuming we have just plotted the pixel at (xk,yk) so we

need to choose between (xk+1,yk) and (xk+1,yk-1)

Our decision variable can be defined as:

If pk < 0 the midpoint is inside the circle and and the

pixel at yk is closer to the circle

Otherwise the midpoint is outside and yk-1 is closer

222)
2

1()1(

)
2

1,1(

ryx

yxfp

kk

kkcirck





29

MID-POINT CIRCLE ALGORITHM (CONT…)

To ensure things are as efficient as possible we
can do all of our calculations incrementally

First consider:

or:

where yk+1 is either yk or yk-1 depending on the

sign of pk

 

  2
2

1

2

111

2
1]1)1[(

2
1,1

ryx

yxfp

kk

kkcirck









1)()()1(2 1

22

11   kkkkkkk yyyyxpp

30

MID-POINT CIRCLE ALGORITHM (CONT…)

The first decision variable is given as:

Then if pk < 0 then the next decision variable is

given as:

If pk > 0 then the decision variable is:

r

rr

rfp circ







4
5

)
2

1(1

)
2

1,1(

22

0

12 11   kkk xpp

1212 11   kkkk yxpp
31

THE MID-POINT CIRCLE ALGORITHM

• Input radius r and circle centre (xc, yc), then set the

coordinates for the first point on the circumference

of a circle centred on the origin as:

• Calculate the initial value of the decision parameter

as:

• Starting with k = 0 at each position xk, perform the

following test. If pk < 0, the next point along the

circle centred on (0, 0) is (xk+1, yk) and:

),0(),(00 ryx 

rp 
4

5
0

12 11   kkk xpp

32

THE MID-POINT CIRCLE ALGORITHM

(CONT…)

 Otherwise the next point along the circle is (xk+1,

yk-1) and:

4. Determine symmetry points in the other seven

octants

5. Move each calculated pixel position (x, y) onto the

circular path centred at (xc, yc) to plot the coordinate

values:

6. Repeat steps 3 to 5 until x >= y

111 212   kkkk yxpp

cxxx  cyyy 

33

MID-POINT CIRCLE ALGORITHM EXAMPLE

To see the mid-point circle algorithm in action lets

use it to draw a circle centred at (0,0) with radius

10

34

MIDPOINT CIRCLE DRAWING ALGORITHM
 Read the radius (r) of the circle.

 Initialize starting position as

 x= 0 and y = r

 Calculate initial value of decision parameter as

 d = 1.25 – r or (5/4-r)

 do {

 plot (x,y)

 if (d<0)

 { x = x+1

 y = y

 d = d+2x +1 }

 else

 { x = x+1

 y = y-1

 d = d+2x-2y+1

}while (x<y)

 Determine symmetry points

 Stop.

35

ELLIPSE DRAWING ALGORITHM

 The midpoint ellipse drawing algorithm uses the

four way symmetry of the ellipse to generate it.

36

x

y

(x,y)

(x,-y) (-x,-y)

(-x,y)

MIDPOINT ELLIPSE ALGORITHM

 The ellipse equation and define function f that can

be used to decide if the midpoint between two

candidate pixels in inside or outside the ellipse:

 <0 (x,y) inside the ellipse

f(x,y) = b2x2+a2y2 -a2b2 =0 (x,y) on the ellipse

 >0 (x,y,) outside the ellipse

37

Region 1 : Vertical

Region2 : Horizontal

38

b

a

y

x

Concentric Circle

x2/a2 + y2/b2 = 1

FILLED AREA PRIMITIVES
1

P0LYGONS

2

P0

(Starting

Point)

P3

P2

P1

P4

(Terminal/Fin

al Point)

P0

P1

P2

P3

P4

POLYLINE

POLYGON

TYPES OF POLYGONS

 Convex Polygons

 Concave Polygons

3

CONVEX POLYGONS

4

A

B

E
D

C F

CONCAVE POLYGONS

5

A

B C

D

REPRESENTATION OF POLYGONS

 Polygon drawing primitive Approach.

 Trapezoid primitive Approach.

 Line and Point Approach

6

EXAMPLES

7

Fig : Polygon

Fig : Representations a

series of trapezoids

LINES AND POINTS APPROACH

8

(0,2)

(0,4)

(4,6)

(6,4)

(6,2)

(4,0)

9

DF_OP DF_x DF_y

6 0 2

2 0 4

2 4 6

2 6 4

2 6 2

2 4 0

2 0 2

Algorithm : Entering the polygon into the

display file

1. Read AX and AY of Length N

2. i=0

 DF_OP[i] N

 DF_x[i] AX[i]

 DF_y[i] AY[i]

 i=i+1

 [Load Polygon Command]

3. do {

 DF_OP[i] 2

 DF_x[i] AX[i]

 DF_y[i] AY[i]

 i i+1

 } while(i<N) [Enter line commands]

4. DF_OP[i] 2

 DF_x[i] AX[0]

 DF_y[i] AY[0]

 [Enter last line command]

5. Stop

Fig: Polygon and its

representation using

display file

AN INSIDE-OUTSIDE TEST

EVEN

ODD

EVEN

Odd-Even Rule

ODD

10

WINDING NUMBER RULE

11

POLYGON FILLING

 Boundary Fill Algorithm

 Flood Fill Algorithm

12

BOUNDARY FILL ALGORITHM

13

4 Connected Region 8 Connected Region

EXAMPLE
Starting

Pixel

14

EXAMPLE
Starting

Pixel

15

EXAMPLE
Starting

Pixel

16

Procedure : boundary_fill(x,y,f_colour,b_colour)

{

 if (getpixel(x,y)!=b_colour && getpixel(x,y)!=f_colour)

 {

 putpixel(x,y,f_colour);

 boundary_fill(x+1,y,f_colour,b_colour);

 boundary_fill(x,y+1,f_colour,b_colour);

 boundary_fill(x-1,y,f_colour,b_colour);

 boundary_fill(x,y-1,f_colour,b_colour);

 }

}

17

EXAMPLE

Starting

Pixel

18

FLOOD FILL ALGORITHM

Procedure : flood_fill(x,y, fill_color,old_color)

{

 if (getpixel(x,y)==old_color)

 {

 putpixel(x,y,fill_color);

 flood_fill (x+1,y,fill_color,old_color);

 flood_fill (x,y+1,fill_color,old_color);

 flood_fill (x-1,y,fill_color,old_color);

 flood_fill (x,y-1,fill_color,old_color);

 }

}

19

FILLING PATTERN

Name Value Result

EMPTY_FILL 0 Background coloe

SOLID_FILL 1 Solid fill

LINE_FILL 2 Line fill -----

LTSLASH_FILL 3 ////

SLASH_FILL 4 ///// thick line

BKSLASH_FILL 5 ////// thick line

LTSLASH_FILL 6 \\\\\

20

Name Value Meaning

HATCH_FILL 7 Light Hatch

XHATCH_LINE 8 Heavy Hatch

INTERLEAVE_FILL 9 Interleaving lines

WIDE_DOT_FILL 10 Widely Spaced dots

CLOSE_DOT_FILL 11 Closely Spaced dots

USE_FILL 12 User-defined fill pattern

21

#include<stdio.h>

#include<stdlib.h>

#include<graphics.h>

void main()

{

 int gd=DETECT,gm;

 initgraph(&gd,&gm,"c:\\tc\\bgi");

 setcolor(1);

 rectangle(100,100,200,150);

 setfillstyle(SOLID_FILL,4); or setfillstyle(SOLID_FILL,4);

 floodfill(103,103,1);

 }

22

SCAN LINE ALGORITHM FOR FILLING

POLYGON

23

C

B D

A

J

E
G

F

H

I

It is four pixel intersection

positions with the polygon

boundaries define two

stretches of interior pixels

from x =10 to x= 14 and from

x = 18 to x = 24.

Exterior Pixels : from 14 to 18

0 10 14 18 24
24

1

Polygon filling algorithms

1. Plot one octant of a circle of
radius 7 pixels with the origin at
the origin.

2. Plot all octant of a circle having
radius of 14 pixels with its origin at
the centre.

2

Polygon filling algorithms

Objectives

• Categorize the two basic
approaches for area filling on
raster systems.

• List out the applications of the two
approaches.

• Boundary fill algorithm.

• Flood fill algorithm

• Scan line fill algorithm.

3

Region Filling

Seed Fill Approaches .

• Start from a given interior position and
paint outward from this point until the
specified boundary condition is
encountered.

–2 algorithms:

– Boundary Fill and Flood Fill

–works at the pixel level

• suitable for interactive painting applications

4

Boundary Fill Algorithm

• Start at a point inside a region.

• Paint the interior outward to the boundary.

• The edge must be specified in a single color.

• Fill algorithm proceeds outward pixel by pixel
until the boundary color is encountered.

5

• The procedure accepts as input the coordinates

of an interior point (x, y), fill color and a

boundary color .

• Starting from (x, y) the procedure tests

neighbouring positions to determine whether

they are of the boundary color.

• If not paint them with fill color and test their

neighbours and process continues until all

pixels up to the boundary color for the area

have been tested.

6

There are 2 methods for proceeding to neighbouring pixels from the
current test positions.

• 4 connected method.

• 8 connected method.

7

8

• 4-connected region: From a given pixel, the
region that you can get to by a series of 4
way moves (N, S, E and W).

• The neighbouring 4 pixel positions are
tested.

• If the selected pixel is (x, y) the
neighbouring pixels are (x+1, y) , (x-1, y)

 (x, y+1) , (x, y-1)

• 4-connected fill is faster,

 but can have problems

4-connected

9

• 8-connected region: From a given pixel,
the region that you can get to by a
series of 8 way moves (N, S, E, W, NE,
NW, SE, and SW), the 4 diagonal pixels
are also included.

• If the selected pixel is (x, y) the 8
neighbouring pixels are

(x+1, y) ,(x-1, y), (x, y-1), (x, y+1)

(x+1, y+1) ,(x-1, y+1)

 (x-1, y-1), (x+1, y-1)

8-connected

10

Boundary Fill Algorithm (cont.)

void BoundaryFill4(int x, int y,
 color newcolor, color edgecolor)
{
 int current;
 current = ReadPixel(x, y);
 if(current != edgecolor && current != newcolor)
 {
 BoundaryFill4(x+1, y, newcolor, edgecolor);
 BoundaryFill4(x-1, y, newcolor, edgecolor);
 BoundaryFill4(x, y+1, newcolor, edgecolor);
 BoundaryFill4(x, y-1, newcolor, edgecolor);
 }
}

11

Flood Fill Algorithm

• Used when an area defined with multiple color
boundaries.

• Start at a point inside a region

• Replace a specified interior color (old color) with fill
color instead of searching for a boundary color value
and the method is called flood fill.

12

• Start from a specified interior point
(x, y) and reassign all pixel values
that are set to a given interior
color with the desired fill color.

• Fill the 4-connected or 8-connected

region until all interior points being
replaced.

13

Flood Fill Algorithm (cont.)

void FloodFill4(int x, int y, color newcolor,
color oldColor)
{
 if(ReadPixel(x, y) == oldColor)
 {
 FloodFill4(x+1, y, newcolor, oldColor);
 FloodFill4(x-1, y, newcolor, oldColor);
 FloodFill4(x, y+1, newcolor, oldColor);
 FloodFill4(x, y-1, newcolor, oldColor);
 }
}

14

Scan line Scan Line Polygon Fill
Algorithms

15

Scan line Fill Approaches.

 Fill an area by determining the overlap intervals for scan lines that cross
that area.

 - works at the polygon level
 - used in general graphics packages to
 fill polygons, circles etc.
 - better performance.

