L ecture Notes#9 - Curves

Reading:
Angel: Chapter 9
Foley et al., Sections 11(intro) and 11.2

Overview
Introduction to mathematical splines
Bezier curves
Continuity conditionsC?°, Ct, C?, G, G?)
Creating continuous splines
C? interpolating splines
B-splines

Catmull-Rom splines
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| ntroduction

Mathematical splines are motivated by the "loftsman's spline™:

» Long, narrow strip of wood or plastic

» Used to fit curves through specified data points
» Shaped by lead weights called "ducks"

» Gives curves that are "smooth" or "fair"

Such splines have been used for designing:
« Automobiles
« Ship hulls
 Aircraft fuselages and wings
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Requirements

Here are some requirements we might like to have in our
mathematical splines:

 Predictable control
» Multiple values
 Local control

» Versatility

o Continuity
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Mathematical splines

The mathematical splines we'll use are:
* Piecewise
e Parametric

* Polynomials

Let's look at each of these terms......
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Parametric curves

In general, a "parametric" curve in the plane is expressed as:
X = X(t)
y =y(t)

Example:A circle with radius r centered at the origin is given by:

X =1 cost

y =r sint

By contrast, an "implicit" representation of the circle is:
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Parametric polynomial curves

A parametric "polynomial” curve is a parametric curve where each
function x(t), y(t) is described by a polynomial:

X(0) = 3 at
i=0

y(t) =3 bt
1=0

Polynomial curves have certain advantages:

* Easy to compute

* Infinitely differentiable
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Piecewise parametric polynomial curves

A "piecewise" parametric polynomial curve uskfferent
polynomial functions fodifferentparts of the curve.

» Advantage: Provides flexibility

* Problem: How do you guarantee smoothness at the
joints? (Problem known as "continuity.")

In the rest of this lecture, we'll look at:
1. Bezier curves -- general class of polynomial curves

2. Splines -- ways of putting these curves together
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Bezier curves

» Developed simultaneously by Bezier (at Renault) and deCasteljau
(at Citroen), circa 1960.

* The Bezier curvé&)(u) is defined by nested interpolation:

* V's are "control points”

*{V, ...,V }is the "control polygon"
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Bezier curves: Basic properties

Bezier curves enjoy some nice properties:

« Endpoint interpolation:
Q(0) =V,
Q1) =V,

* Convex hull:The curve is contained in the convex hull of its
control polygon

e Symmetry:
Q(u) defined by ¥, ...,V }
= Q(1 -u) defined by v, ... \V}
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Bezier curves. Explicit formulation

Let's giveV. a superscrip¥! to indicate the level of nesting.
An explicit formulation forQ(u) is given by the recurrence:

Vi= (1-u) Vit + U\/i-i-ll
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Explicit formulation, cont.

Forn =2, we have:

Qu) = V2
=1 -uVS+uVy
=1-u[1-uyVLe+uVo+[(1-u)VL+uV)
=(1-uAVL+ 21 -u)VL + Uy

In general:

Qu= y Vi oEua-u™!
1=0

Br(u)

B"(u) is thei'th Bernstein polynomial of degree
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Bezier curves. More properties

Here are some more properties of Bezier curves
Q= 3 W HHia-ym
1=0 hn

» Degree Q(u) is a polynomial of degree

» Control points: How many conditions must we specify to uniquely
determine a Bezier curve of degree n?
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More properties, cont.

 Tangents:

Q(0) =n(V, - V,)
Q(1) =n(V,-V,,)

 kK'th derivativesin general,
* Q¥(0) depends only o9, ...,V,
* Q¥(1) depends only oW, ...,V

n-k

* (At intermediate pointa< (O, 1), all control points are
iInvolved for every derivative.)

COS 426 13 Lecture Notes #9



Cubic curves

For the rest of this discussion, we'll restrict ourselvgasdoewise
cubiccurves.

* In CAGD, higher-order curves are often used
» Gives more freedom in design

» Can provide higher degree of continuity between pieces

» For Graphics, piecewise cubic let's you do just about anything

» Lowest degree for specifiying points to interpolate and
tangents

» Lowest degree for specifying curve in space

All the ideas here generalize to higher-order curves
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M atrix form of Bezier curves

Bezier curves can also be described in matrix form:

Q) = z v B a-y®

=1 -upV,+3u(1-u?zV, +321-u)V,+urV,

13 -3 1\(V,
) 3 -6 3 0|V,
=(vvull 33 9 oflv
10 0 0/\V,
VO
V
=B wrul M _ !
( ) Bezier V2
V3
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Display: Recursive subdivision

Q: Suppose you wanted tivaw one of these Bezier curves -- how
would you do it?

A: Recursive subdivision:
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Display, cont.

Here's pseudocode for the recursive subdivision display algorithm:

procedure Display({V,, ...,V }):
if {V,, ...,V } flat within € then
Output line segment V.
else
Subdivide to producely, ...,L } and {R,, ...,R }
Display({L,, ....L })
Display({R,, ...,R })
end if
end procedure
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Splines

To build up more complex curves, we can piece together different
Bezier curves to make "splines."

For example, we can get:

» Positional C° continuity:

 Derivative ') continuity:

Q: How would you build an interactive system to satisfy these constraints?
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Advantages of splines

Advantages of splines over higher-order Bezier curves:
* Numerically more stable
» Easier to compute

* Fewer bumps and wiggles

COS 426 19 Lecture Notes #9



Tangent (G') continuity

Q: Suppose the tangents were in opposite directionsdiaif same
magnitude -- how does the curve appear?

This construction gives "tanger@') continuity."

Q: How isG! continuity different fromC?
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Curvature (C?) continuity

Q: Suppose you want evéamgherdegrees of continuity -- e.g., not just
slopesbut curvatures- what additional geometric constraints are imposed?

We'll begin by developing some more mathematics.....
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Operator calculus

Let's use a tool known as "operator calculus."”

Define the operatdD by:
DV = V

i+1

Rewriting our explicit formulation in this notation gives:

Qqu= 3 BHia-u™iv

L (=N
= 1- D V
2500 0 U (1-u) i VO
s H'H -1
= uD)'(1-u)" 'V
3 B EUD) (1-1)""Vo
Applying the binomial theorem gives: ubE (1-u)V,

COS 426 22
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Taking the derivative

One advantage of this form is that now we can take the derivative:
Q(u)=nuD+ (1 -u)~*(D-1)V,
What's D- 1) V,?

Plugging in and expanding:

QW = n3 I i@-um o (v vy)

This gives us a general expression for the deriv@lue.
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Specializington =3

What's the derivativ®'(u) for a cubic Bezier curve?

Note that:
* Whenu = 0:Q'(u) = 3(V, - V,)
* Whenu = 1:Q'(u) = 3(V, - V))

Geometric interpretation:

So forC1 continuity, we need to set:

3(V; - V,) = 3W, - W)

COS 426 24
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Taking the second derivative

Taking the derivative once again yields:

Q'W=nn-1) D+ @A -u)=>({D-1rV,

What does[D - 1¥ do?
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Second-order continuity

So the conditions for second-order continuity are:

(V;-V,) = (W, - W)
(V3'V2)_ (\/Z_Vl) = (VVZ_WI) ) (\Nl_WO)

Putting these together gives:

Geometric interpretation

COS 426 26
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C3 continuity

Summary of continuity conditions

» C° straightforward, but generally not enough
» C?is too constrained (with cubics)
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Creating continuous splines

We'll look at three ways to specify splines withandC? continuity:
1. C? interpolating splines
2. B-splines

3. Catmull-Rom splines
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C? Interpolating splines

The control points specified by the user, called "joints, Ir#e¥polated
by the spline.

For each ok andy, we needed to specify conditions for each
cubic Bezier segment.

So if there are m segments, we'll need constraints.

Q: How many of these constraints are determined by each joint?
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| n-depth analysis, cont.

At eachinterior joint j, we have:
1. Last curve ends gt
2. Next curve begins at
3. Tangents of two curvesjatre equal
4. Curvature of two curves pare equal

Them segments give:
. Interior joints
. conditions

The 2 end joints give 2 further contraints:
1. First curve begins at first joint
2. Last curve ends at last joint

Gives constraints altogether.

COS 426 30
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End conditions

The analysis shows that specifyimg+ 1 joints for m segments leaves 2
extra degrees of freedom.

These 2 extra constraints can be specified in a variety of ways:

* An interactive system

» Constraints specified as

» "Natural" cubic splines
» Second derivatives at endpoints defined to be 0

» Maximal continuity

* RequireC: continuity between first and last pairs of curves
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C? Interpolating splines
Problem:Describe an interactive system for specifiying C2 interpolating splines.

Solution:

1. Let user specify first four Bezier control points.
2. This constrains next control points -- draw these In.

3. User then picks more
4. Repeat steps 2-3.
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Global vs. local control

TheseC? interpolating splines yield only "global control" -- moving any
one joint (or control point) changes the entire curve!

Global control is problematic:
» Makes splines difficult to design

» Makes incremental display inefficient

There's a fix, but nothing comes for free. Two choices:
» B-splines

» KeepC? continuity
» Give up interpolation

o Catmull-Rom splines

» Keep interpolation
» Give upC? continuity -- provide<* only
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B-splines

Previous constructiofC? interpolating splines):

» Choose joints, constrained by the "A-frames."

New construction{B-splines):

* Choose points on A-frames
 Let these determine the rest of Bezier control points and joints

The B-splines I'll describe are known more precisely as "uniform
B-splines."
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B-spline construction

The points specified by the user in this construction are called "de Boor points.
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B-spline properties
Here are some properties of B-splines:

o C?continuity

» Approximating

* Does not interpolate deBoor points

 Locality
e Each segment determined by 4 deBoor points

e Each deBoor point determines 4 segments

e Convex hull

» Curve lies inside convex hull of deBoor points
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Algebraic construction of B-splines

V, = B, + B,
V, = B, + B,
0= | B, + B+ | B, + B,
= B, + B, + B,
V, = B, + B, + B,

COS 426 37
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Algebraic construction of B-splines, cont.

Once again, this construction can be expressed in terms of a matrix:

L
6

<< <<
O O OoOPRF
R NBAD
BN
R O O O
W W W W
w N =, O
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Drawing B-splines

Drawing B-splines is therefore quite simple:

procedure Draw-B-Spling({B,, ...,B }):
fori=0ton-3do
ConvertB, ...,B., into a Bezier control polygoy, ...,V,
Display {V,, ... ,V,})
end for
end procedure
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Multiple vertices

Q: What happens if you put more than one control point in the same
place?

Some possibilities:

 Triple vertex

 Double vertex

e Collinear vertices
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End conditions
You can also use multiple vertices at the endpoints:

» Double endpoint

» Curve tangent to line between first distinct points

» Triple endpoint

« Curve interpolates endpoint
 Starts out with a line segment

 Phantom vertices

» Gives interpolation without line segment at ends
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Catmull-Rom splines
The Catmull-Rom splines

* Give upCz? continuity
» Keep interpolation

For the derivation, let's go back to the interpolation algorithm. We had 4
conditions at each joint

1. Last curve ends gt

2. Next curve begins at

3. Tangents of two curvesjatre equal
4. Curvature of two curves pare equal

If we ...
» Eliminate condition 4
» Make condition 3 depend only on local control points

... then we can hauecal contro!
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Derivation of Catmull-Rom splines

ldea (Same as B-splines)

 Start with joints to interpolate

 Build a cubic Bezier curve between successive points

The endpoints of the cubic Bezier are obvious:
VO = Bl
V3 = BZ

Q: What should we do for the other two points?
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Derivation of Catmull-Rom, cont.

A: Catmull & Rom usdalf the magnitude of the vector between
adjacent control points

Many other choices work -- for example, using an arbitrary constant
times this vector gives a "tension" control.
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Matrix formulation

The Catmull-Rom splines also admit a matrix formulation:

V, 0O 6 0 0}/B,
Vil _ 1|16 1 0]|B
V, 6|0 1 6 -1]|B,
V, 0O 0 6 0)\B,

Exercise:Derive this matrix.
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Properties

Here are some properties of Catmull-Rom splines:

o Ct Continuity

* Interpolating

 Locality

* No convex hull property

» (Proof left as an exercise.)

COS 426 46
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Spline

 Drafting terminology

— Spline is a flexible strip that is easily flexed to
pass through a series of design points (control
points) to produce a smooth curve.

 Spline curve — a piecewise polynomial

(cubic) curve whose first and second

derivatives are continuous across the

various curve sections.
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Bezier curve

» Developed by Paul de Casteljau (1959) and
Independently by Pierre Bezier (1962).

 French automobil company — Citroen &
Renault.
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Parametric function

+ P(u) =X B,(u)p,
Where
B,i(u)=._n!l. u(1l-u)™
11(n-1)! O<=u<=1

For 3 control points, n = 2
P(u) = (1-u)?pg + 2u(1-u) p1+ up,

For four control points, n =3
P(u) = (1-u)®pg + 3u(1-u) 2 p@]r + 3u 2 (1-u)p, + u3ps
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algorithm

» De Casteljau

— Basic concept A S &

 To choose a point C in line segment AB such that C
divides the line segment AB in a ratio of u: 1-u

Py Letu=0.5
20 u=0.25
00 o u=0.75
21 P2

10
I:)O
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properties

The curve passes through the first, P, and last
vertex points, P, .

The tangent vector at the starting point P, must be
given by P, — P, and the tangent P, given by P, —
I:)n-l

This requirement is generalized for higher
derivatives at the curve’s end points. E.g 2nd

derivative at P, can be determined by P, ,P, ,P, (to
satisfy continuity)

The same curve Is generated when the order of the
control points IS reVarSefacners.org 5




Properties (continued)

e Convex hull

— Convex polygon formed by connecting the
control points of the curve.

— Curve resides completely inside its convex hull

/W
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B-Spline

« Motivation (recall bezier curve)

— The degree of a Bezier Curve is
determined by the number of
control points

— E. g. (bezier curve degree 11) —
difficult to bend the "neck" toward
the line segment P,P..

— Of course, we can add more control
points.

— BUT this will increase the degree
of the curve - increase
computational burden
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B-Spline

« Motivation (recall bezier curve)

— Joint many bezier curves of lower
degree together (right figure)

— BUT maintaining continuity in
the derivatives of the desired
order at the connection point is

not easy or may be tedious and
undesirable.
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B-Spline

« Motivation (recall bezier curve)

— moving a control point affects the
shape of the entire curve- (global
modification property) —
undesirable.

- Thus, the solution is B-Spline — the
degree of the curve is independent
of the number of control points

- E.g - right figure — a B-spline curve
of degree 3 defined by 8 control
points
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B-Spline

« |In fact, there are five Bezier curve
segments of degree 3 joining
together to form the B-spline curve
defined by the control points

« little dots subdivide the B-spline
curve into Bezier curve segments.

 Subdividing the curve directly Is
difficult to do - so, subdivide the
domain of the curve by points
called knots
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B-Spline

 In summary, to design a B-spline curve, we
need a set of control points, a set of knots
and a degree of curve.

omprakash@teachers.org
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B-Spline curve

* P(u) = Z Ni(Wpi  (Upip SU<U
Where basis function = N; . (U)
Degree of curve - k-1

Control points, p;, 2 0<1<n
Knot,u 2 U;, U< U

max =n+K

2 <k<n+l

omprakash@teachers.org
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B-Spline : definition

P(U) - Z Ni,k(u)pi (umin suUs um)
U, = knot

[U;, Ui,;) = knot span

(Ug, Uy, Uy, .... u, )2 knot vector

The point on the curve that corresponds to a knot u,, =
knot point ,P(u.)

If knots are equally space = uniform
If knots are not equally space = non uniform
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B-Spline : definition

« Uniform knot vector
— Individual knot value is evenly spaced
-(0,1,2,3,4)
-(0,0.2,04,0.6...)
— Then, normalized to the range [0, 1]
— (0, 0.25, 0.5, 0.75, 1.0)
—(0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0)

omprakash@teachers.org
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B-Spline : definition

* Non-Uniform knot vector
— Individual knot value is not evenly spaced
-(0,1,3,7,8)
-(0,0.2,0.3,0.7...... )
-(0,0.1,0.3,04,0.8 ...)
— Then, normalized to the range [0, 1]
— (0, 0.15, 0.20, 0.35, 0.40,0.75,0.85,1.0)

omprakash@teachers.org
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Type of B-Spline uniform knot vector

Non-periodic knots
open knots)
-First and last knots are
duplicated k times.
-E.g (0,0,0,1,2,2,2)
-Curve pass through the

first and last control
points

omprakash@teachers.org

Periodic knots
non-open knots

-First and last knots are
not duplicated — same
contribution.

-E.g (0,1, 2,3)

-Curve doesn’t pass
through end points.

- used to generate closed
curves (when first = last
control points) H



Type of B-Spline Uniform knot

\
.l
e Y 1 [T — ———‘

(Closed knlc%ts)
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Non-periodic (open) uniform B-Spline

» The knot spacing is evenly spaced except at the ends
where knot values are repeated k times.

- E.g P(u)= iZ::ONi,k(u)pi (Up<u<up)
* Degree = k-1, number of control points=n + 1
 Numberofknots=m+1@ n+k+1

—>for degree = 1 and number of control points =4 >(k =2, n =3)
—->Number of knots=n+k+1 =26

- Range = 0 to n+k

non periodic uniform knot vector (0,0,1,2,3, 3)

* Knot value between 0 and 3 are equally spaced -
un |f0 'Mm omprakash@teachers.org 19



Questions

 For curve degree = 3, number of
control points =5

 For curve degree = 1, number of
control points =5

ek=?,n=7?,Range =?
Knot vector = ?

omprakash@teachers.org
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Non-periodic (open) uniform B-Spline

« Example

For curve degree = 3, number of control points =5

> k=4,n=4

= number of knots = n+k+1 =9

-> non periodic knots vector = (0,0,0,0,1,2,2,2,2)

For curve degree = 1, number of control points =5

> k=2,n=4

- number of knots=n+k+1=7

-> non periodic uniform knots vector = (0, 0, 1, 2, 3, 4, 4)
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Non-periodic (open) uniform B-Spline

 For any value of parameters k and n, non
periodic knots are determined from

0 0<i<k
u=3 I-k+1 K<i<n (1.3)
n—k+2 n <1<n+k

e.g k=2,n=3
0 0<i<?2
u=191-2+1 2<1<3
3—-2+2 3<i<h

u=(0,0,1,2 3, 3
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Ni,k(u):(u

B-Spline basis function

N. N.
_ ui ) Ik-1 (U) n (ui+k _ U) i+1,k—1 (U)
Ui, — U, Ui, — Ui
1 u <uc<u,
= | (1.2)
O  Otherwise

.

—>1n equation (1.1), the denominators can have a value of
zero, 0/0 is presumed to be zero.

(1.1)

—|f the degree Is zero basis function N ;(u) i1s 1 if u is in the
I-th knot span [u, u.,,).

omprakash@teachers.org
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B-Spline basis function

* For example, if we have four knots u, =0, u, = 1,
u, =2 and u, = 3, knot spans 0, 1 and 2 are [0,1),
[1,2), [2,3)

» the basis functions of degree 0 are N, ,(u) =1 on
[0,1) and O elsewhere, N, ,(u) =1 on [1,2) and O
elsewhere, and N, ,(u) =1 on [2,3) and 0
elsewhere.

e This 1s shown below

i

0 1 — T Y
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B-Spline basis function

» To understand the way of computing N; (u) for k greater
than 0, we use the triangular computation scheme

[u0, ul)
[ul, u2)
[u2, u3)
[u3, ud)

[ud, usS)

NO,1 =
N2
Ni,1 NO,3
S~ s N
N2 A
N2,1 \N1,~3 NO,5
N et SN :
m’z N1’4 1
e \ / »
N3,1 N2,3 i
B = - :
o :,2 i
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Non-periodic (open) uniform B-Spline

Example

 Find the knot values of a non periodic
uniform B-Spline which has degree = 2 and
3 control points. Then, find the equation of
B-Spline curve in polynomial form.
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Non-periodic (open) uniform B-Spline

Answer

* Degree =k-1=2 -2 k=3

« Control points=n+1=3-> n=2
« Numberofknot=n+k+1=6

« Knot values - 0,0,0,1,1,1
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Non-periodic (open) uniform B-Spline

Answer(cont)

» To obtain the polynomial equation,
P(u) = 2. Nj (u)p;

. — Z‘ Ni’3(U)pi
. = Ngs(U)py + Ny 5(u)p; + N, 5(u)p,

» firstly, find the N; ,(u) using the knot value that
shown above, start from k =1 to k=3
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Non-periodic (open) uniform B-Spline

Answer (cont)

« Fork =1, find N; ,(u) — use equation (1.2):
; (u=0)

No(u)=[1
lo
Ny (u)y= (1

u<u <u,
otherwise
u<u <u,
otherwise
u,<u <u,
otherwise
U<u <u,
otherwise
u,<u <ug
oRASRRENISEhers.org

, (u=0)

, (0<u<])

, (U=1)

; (U=1)
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Non-periodic (open) uniform B-Spline

Answer (cont)
« For k=2, find N; ,(u) — use equation (1.1):

N, (u)=(u-u,) N"“_(uu)' +(u.,, —u)LIJ\I‘”'k_lu(u)

i+k-1 i i+k

Ngo(U)= U-UyNg; +U,—=UN;;  (Uy=u;=u,=0)

i+1

. Uy - U, u,— U,
‘ = U=0Ng;+ 0-uN;; =0

. 0-0 0-0

* Npp(u)= u-u Nj; +Us;—uNy;  (Up=u,=0,u3=1)
. u,- U, Us— U,

u-ON;;+ 1-uN,;, =1-u
° O — O omgramsg@teachers.org 30



Non-periodic (open) uniform B-Spline

Answer (cont)
* No(u)= u—uy Ny, +U,—UuN;;  (U;=0,us=u,=1)

. Us— U, U, — Ug
‘ = U=0Np;+ 1-UNz; =u

. 1-0 1-1

* Ngp(U)= U=UsNz; +Us;—UN,;  (Ug=Uy=Us=1)
. U, — U, Us— U,

‘ = U=INg;+ 1-UN, =

. 1-1 1-1
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Non-periodic (open) uniform B-Spline

Answer (cont)
Fork=2

Ngo(u) =0
Ny,(u)=1-u

N, ,(u) =u

N3 o) =0
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Non-periodic (open) uniform B-Spline

Answer (cont)
« For k=3, find N; 5(u) — use equation (1.1):

0= ) ey g N

— U, u.. —u
* Nga(u) = U-UyNgp +Us=UN;,  (Up=U;=U, =0, u3=1)

i+k-1 i i+k i+1

0-0 1-0
* Nyg(u)= u-u Ny, +Uu,—uNy,  (Up=u,=0,u3=u,=1)
U3 = Ul U4_ U2

= U=O0N;,+ 1-uN,, = u(d—-u)+(-u)u=2u(l-u)
1 — O omgramsg@teachers.org 33




Non-periodic (open) uniform B-Spline

Answer (cont)
* Nog(u)= Uu—U;Nyp +Us—UN3,  (U;=0, Ug=u, = us =1)
U, — U, Us— U,
= U-O0N,,+ 1-uN;, = u?
1-0 1-1
No3(U) =(1- u)> Ny 5(u) = 2u(1-u), N, 3(u) = u?

The polynomial equation, P(u) = Z Ni  (U)p;
* P(u) = Ng3(u)po+ Ny z(u)p; + Ny 5(u)p, )
*  =(-uypet2u(l-u)ptup, (0<=u<=1)
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Non-periodic (open) uniform B-
Spline
« EXercise

 Find the polynomial equation for curve with
degree = 1 and number of control points = 4
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Non-periodic (open) uniform B-Spline

e Answer
e k=2 ,n=3=- number of knots = 6

« Knot vector =(0, 0, 1, 2, 3, 3)
« Fork =1, find N; ;(u) — use equation (1.2):

* No,(u)= 1 U<u <u;, ; (u=0)

* N, (u)= 1 u,<u <u, ;(O0<uc<l
N,,(uy= 1 Uu,<u <u; ; (Ifu<?)

* Nj,(u)= 1 U;<u <u, ;(2€u<3)
Ny, (u)= 1 u<u <uz ; (u=3)
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Non-periodic (open) uniform B-Spline

Answer (cont)
« For k=2, find N; ,(u) — use equation (1.1):

N...(u) N, (u)
N- _ 1 i,k-1 | _ i+1,k-1
|,k(u) (U UI)ui+k1 —Ui +(u|+k U)Ui+k _ui+1

* Noo(u)= U-uygNgy +U;—UN;;  (Up=u;=0,u,=1)

Uy - Ug U, — U,
= U—O0Ng;+ 1-uNy,
0-0 1-0
= 1—-u (OSUS].)
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Non-periodic (open) uniform B-Spline

Answer (cont)
« For k=2, find N; ,(u) — use equation (1.1):

N...(u) N, (u)
N- _ 1 i,k-1 | _ i+1,k-1
|,k(u) (U UI)ui+k1 —Ui +(u|+k U)Ui+k _ui+1

* Npop(u)= u-u Nj; +Us;—uNy;  (up=0,u;=1,u;=2)

U, - U Us— U,
= U-ONy;+ 2-uN,,
1-0 2—-1

* Nj(u)y=u (0€u<1l)
* N,(uy=2-u (Isu<2)
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Non-periodic (open) uniform B-Spline

Answer (cont)
* Noo(u)= u—u;Ny; +U,—uN;;  (U;=1,u3=2,u,=3)

Uz — U, U,— Uy
= U—1N,;+ 3-UNj,; =
2-1 3-2

« NoHhu)= u-1 (Isu<?2)
* N,y,(u) =3-u (2<u<3)
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Non-periodic (open) uniform B-Spline

Answer (cont)
* N3p(u)= U—U3N3; +Us—UN,; (U3=2,Us=3, Us=3)
U, — Us Us— U,
= U=2Nz;+ 3-UNy,; =
3-2 3-3
u—2 (2<u<3l)
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Non-periodic (open) uniform B-Spline

Answer (cont)

+ The polynomial equation P(U) = 2. N; , (U)p;
* P(u) = Ng(u)pg+ Ny o(u)py+ Ny o(U)p, + Nj,(U)ps

« PU)=(1-u)py+ up, (0€u<l)
* PW=@2-u)p, + (U-1)p, (Isu<2)
+ P(W)=(3-u)p, + (U-2)p, (2<u<3)
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Periodic uniform knot

e Periodic knots are determined from
~ U, - (0 <i < n+k)

« Example

— For curve with degree = 3 and number of
control points = 4 (cubic B-spline)

— (k =4, n=3) - number of knots = n+k+1 =8
-(0,1,2,3,4,5,6,7)

omprakash@teachers.org
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Periodic uniform knot

* Normalize u (O<=u<=1)
* Npa(u) =1/6 (1-u)?

* Nj,(u)=1/6 (3u>—6u?+4)

* Ny,(u)=1/6 (-3u3+3u?+3u+l)
* Nj,(u)=1/6 u?

* P(u) = Ng4(u)pg+ Ny 4(u)p; + Ny ,(U)p, + Ny 4(U)ps
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Periodic uniform knot

* In matrix form P
e P(u) =[us,uz, u, 1].M.,. El
P,
. Mn:1/6/-1 3 3 1)
3 63 0
30 3 0
1 4 1 0
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Periodic uniform knot

O/_\O
P,
OO b
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Example
k=4,n=5

Closed periodic

P
2Q.

L .\.
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Closed periodic

Equation 1.0 change to
* Njx(u) = Ng((u-)mod(n+1))
> P(u) = 2 No((u-i)mod(n+1))p

O<=u<=n+l

omprakash@teachers.org
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Question 1

Construct the B-Spline curve of degree/order 3 with 4 polygon
vertices A(1,1), B(2,3), C(4,3) and D(6,2). Using Non-
Periodic Knot and Periodic Knot.
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Properties of B-Spline

1. The m degree B-Spline function are
piecewise polynomials of degree m -
have C™1 continuity. 2e.g B-Spline
degree 3 have C? continuity.
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Properties of B-Spline

In general, the lower the degree, the closer a B-spline
curve follows its control polyline.
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Properties of B-Spline

Equality m = n + k must be satisfied
Number of knots=m + 1
k cannot exceed the number of control points, n+ 1
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Properties of B-Spline

2. Each curve segment is affected by k control
points as shown by past examples.—=> e.g k=3,

P(U) = Nk Pis + N Pit Nisq g Piss

omprakash@teachers.org 52



Properties of B-Spline

LLocal Modification Scheme: changing the position of control
point P; only affects the curve C(u) on interval [u,, u.,,).

Modify control point P,
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Properties of B-Spline

3. Strong Convex Hull Property: A B-spline curve is
contained In the convex hull of its control polyline.
More specifically, if u is in knot span [u,,u.,,), then C(u)
IS In the convex hull of control points P._, P. P..

I-p? * 1-p+1r

A
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Properties of B-Spline

4. Non-periodic B-spline curve C(u) passes through
the two end control points P, and P_..

5. Each B-spline function Nk,m(t) is nonnegative
for every t, and the family of such functions
sums to unity, that is 2. N;  (u) =1

6. Affine Invariance

to transform a B-Spline curve, we simply
transform each control points.

7. Bézier Curves Are Special Cases of B-spline
Curves
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Properties of B-Spline

8. Variation Diminishing : A B-Spline curve does
not pass through any line more times than does
Its control polyline
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Knot Insertion : B-Spline

knot insertion is adding a new knot into the
existing knot vector without changing the shape of
the curve.

new knot may be equal to an existing knot = the
multiplicity of that knot is increased by one

Since, number of knots=k+n+1

If the number of knots Is increased by 1-> either
degree or number of control points must also be
Increased by 1.

Maintain the curve shape ->maintain degree
—>change the number of control points.
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Knot Insertion : B-Spline

» S0, Inserting a new knot causes a new control
point to be added. In fact, some existing control

points are removed and replaced with new ones by
corner cutting

InsefrKAGER <" 8¢ °



Single knot insertion : B-Spline
Given n+1 control points — P,, P,, .. P,
Knot vector, U= (U,, Uy,...u.,)

Degree =p, order, k =p+1

Insert a new knot t into knot vector without
changing the shape.

—> find the knot span that contains the new
knot. Let say [u,, U.,4)
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Single knot insertion : B-Spline

 This insertion will affected to k (degree + 1) control points
(refer to B-Spline properties) 2 Py, Py 4, Py,... Py

» Find p new control points Q, on leg P, ,P,, Q, ,onleg P,
Pyt v and Qy .,y on leg PPy, such that the old
polyline between P, and P, (in black below) is replaced by
Py o Qip+1--QiPy (in orange below)

teachers.org 60
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Single knot insertion : B-Spline
« All other control points are not change

* The formula for computing the new control
point Q. on leg P, P Is the following

* Q= (1-a)Pi,+ &P,

* g, =Ly K-p+1l<=1<=KkK
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Single knot insertion : B-Spline

« Example

 Suppose we have a B-spline curve of degree
3 with a knot vector as follows:

0 02 |04 |0.6 (08 |1

Insert a new knot t = 0.5, find new control points
and new knot vector?
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Single knot insertion : B-Spline

Solution:
-t =0.5 lies in knot span [uc, U)

- the affected control points are P, P,, P, and P,

- find the 3 new control points Q., Q,, Q,
- we need to compute a., a, and a, as follows
-a,=t-u.= 05-04 =1/6

Ug-Uz  1-0.4

4, =t-u,= 0.5-0.2 = 1/2
u,—u, 0.8-0.2
=t-u —0.5— 0 =5/6

u6 u3 06 — @nprakash@teachers.org
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Single knot insertion : B-Spline

e Solution (cont)
 The three new control points are

° Q5 — (1'3-5)
° Q4 — (1-8.4)
° Qg — (1-8.3)

D

4T g
D

3T Q4

D
T a3

>_ = (1-1/6)P,+ 1/6P,
>, = (1-1/6)P,+ 1/6P,

> = (1-5/6)P,+ 5/6P,
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Single knot insertion : B-Spline

« Solution (cont)
» The new control points are P,, P,, P,, Q,

Q41 Q51 P51 P6’ P7

e the new knot vector Is
u,tou, (U, |Ug |Ug (U, |Ug Uy to U,
0 0.2 (04 |05 (0.6 |0.8 1
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RATIONAL SPLINES

4 rational function is simply the ratio of two polynomials. Thus, a rational
spline is the ratio of two spline functions. For example, a rational B-spline curve

can be described with the position vector:

m-‘-»vi_}"‘-'.l'. —

!P(u) oSk
L\"E’“ b |

—_—

where the p; are a set of 11+ 1 control-point positions, Parameters o are weight
&ctors for the control points. The greater the value of a particular w, the closer
%5 curve is pulled toward the control point p, weighted by that parameter.
When all weight factors are set to the value 1, we have the standard B-spline
carve since the denominator in Eq. 10-69 is 1 (the sum of the blending functions).
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To plot conic sections with NURBs, we use a quadratic spline function (d =
3) and three control points. We can do this with a B-spline function defined with
the open knot vector:

{0,0,0,1,1,1)

which is the same as a quadratic Bézier spline. We then set the weighting func-
tions to the following values: ’

e cp=3
}f"“ o Degree = 2
Wy = 1—:;, )0 =r< lﬁ‘:‘ E 223 4

and the rational B-spline representation is

Pu)= P.O..B.Q.i(u) + [r/ (1.~ r)]PIBLl(u) + PZBZ,Q(u) (10-77)
Bo,a(u) + [r/(1 - 7)131,3(1‘) + Bz,a(u)
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We then obtan the various conics (Fig, 1050 with the ollowing values fo para
meter .

112, 0> 1 byperbolasecton)
r=1/1, o= 1 parabola ection
<112, w<l (élljpse_s,ection)
r={, =0 (s@aight-lhe segment]
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Example: A full circle can be obtained
by using seven control points:

{PosPJ-P_’~P~»’*P4’ P\PO}

Solution :

Degree =6

Degree = k-1; k=7

Control Points =n+1;7=n+1; n=6
Range = n+k = 13 ;

Knot Value = n+k+1 = 6+7+1 = 14
Weight = 7 ( Control Point = Weight)
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po.(o, ” y

. —--QQ---‘TP‘ " ‘1,1)

p,= (1,0} X

p=0,1, p=00,

Figure 10-51
A circular arc in the first quadrant
of the xy plane.

P: " (1,0
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Question :

Calculate the k, n, total number of knots, Knot VValues/\ectors,
range and Weight on followings :

1. Control Point=5
Degree = 4

2. Control Point =6

3. Degree =3
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Beta-Splines:
Subdivision Methods

Drawing curves using forward differences
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DO YOU KNOW
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100, Only D
1-999 L No A,B,C
1000, Only A
1-999,999,999 .................. No B,C
Billion................. Only B

There i1s no entry of C in Table (CRORE)
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