Lecture Notes \#9 - Curves

Reading:
Angel: Chapter 9
Foley et al., Sections 11 (intro) and 11.2
Overview
Introduction to mathematical splines
Bezier curves
Continuity conditions ($\left.C^{0}, C^{1}, C^{2}, G^{1}, G^{2}\right)$
Creating continuous splines
C^{2} interpolating splines
B-splines
Catmull-Rom splines

Introduction

Mathematical splines are motivated by the "loftsman's spline":

- Long, narrow strip of wood or plastic
- Used to fit curves through specified data points
- Shaped by lead weights called "ducks"
- Gives curves that are "smooth" or "fair"

Such splines have been used for designing:

- Automobiles
- Ship hulls
- Aircraft fuselages and wings

Requirements

Here are some requirements we might like to have in our mathematical splines:

- Predictable control
- Multiple values
- Local control
- Versatility
- Continuity

Mathematical splines

The mathematical splines we'll use are:

- Piecewise
- Parametric
- Polynomials

Let's look at each of these terms......

Parametric curves

In general, a "parametric" curve in the plane is expressed as:

$$
\begin{aligned}
& x=x(\mathrm{t}) \\
& y=y(t)
\end{aligned}
$$

Example: A circle with radius r centered at the origin is given by:

$$
\begin{aligned}
& x=r \cos t \\
& y=r \sin t
\end{aligned}
$$

By contrast, an "implicit" representation of the circle is:

Parametric polynomial curves

A parametric "polynomial" curve is a parametric curve where each function $\mathrm{x}(\mathrm{t}), \mathrm{y}(\mathrm{t})$ is described by a polynomial:

$$
\begin{aligned}
& x(t)=\sum_{i=0}^{n} a_{i} t^{i} \\
& y(t)=\sum_{i=0}^{n} b_{i} t^{i}
\end{aligned}
$$

Polynomial curves have certain advantages:

- Easy to compute
- Infinitely differentiable

Piecewise parametric polynomial curves

A "piecewise" parametric polynomial curve uses different polynomial functions for different parts of the curve.

- Advantage: Provides flexibility
- Problem: How do you guarantee smoothness at the joints? (Problem known as "continuity.")

In the rest of this lecture, we'll look at:

1. Bezier curves -- general class of polynomial curves
2. Splines -- ways of putting these curves together

Bezier curves

- Developed simultaneously by Bezier (at Renault) and deCasteljau (at Citroen), circa 1960.
- The Bezier curve $Q(u)$ is defined by nested interpolation:
- V_{i}^{\prime} s are "control points"
- $\left\{V_{0}, \ldots, V_{n}\right\}$ is the "control polygon"

Bezier curves: Basic properties

Bezier curves enjoy some nice properties:

- Endpoint interpolation:

$$
\begin{aligned}
& Q(0)=V_{0} \\
& Q(1)=V_{n}
\end{aligned}
$$

- Convex hull: The curve is contained in the convex hull of its control polygon
- Symmetry:

$$
\begin{aligned}
& Q(u) \text { defined by }\left\{V_{0}, \ldots, V_{n}\right\} \\
& \quad \equiv Q(1-u) \text { defined by }\left\{V_{n}, \ldots, V_{0}\right\}
\end{aligned}
$$

Bezier curves: Explicit formulation

Let's give V_{i} a superscript V_{i}^{j} to indicate the level of nesting.
An explicit formulation for $Q(u)$ is given by the recurrence:

$$
V_{i}^{j}=(1-u) V_{i}^{j-1}+u V_{i+1}^{j-1}
$$

Explicit formulation, cont.

For $n=2$, we have:

$$
\begin{aligned}
Q(u) & =V_{0}^{2} \\
& =(1-u) V_{0}^{1}+u V_{1}^{1} \\
& =(1-u)\left[(1-u) V_{0}^{0}+u V_{1}^{0}\right]+\left[(1-u) V_{1}^{0}+u V_{2}^{0}\right] \\
& =(1-u)^{2} V_{0}^{0}+2 u(1-u) V_{1}^{0}+u^{2} V_{2}^{0}
\end{aligned}
$$

In general:

$$
Q(u)=\sum_{i=0}^{n} V_{i} \frac{\binom{n}{i} u^{i}(1-u)^{n-i}}{B_{i}^{n}(u)}
$$

$B_{i}^{n}(u)$ is the i 'th Bernstein polynomial of degree n.

Bezier curves: More properties

Here are some more properties of Bezier curves

$$
Q(u)=\sum_{i=0}^{n} V_{i}\binom{n}{i} u^{i}(1-u)^{n-i}
$$

- Degree: $Q(u)$ is a polynomial of degree n
- Control points: How many conditions must we specify to uniquely determine a Bezier curve of degree n ?

More properties, cont.

- Tangents:

$$
\begin{aligned}
& Q^{\prime}(0)=n\left(V_{1}-V_{0}\right) \\
& Q^{\prime}(1)=n\left(V_{n}-V_{n-1}\right)
\end{aligned}
$$

- k 'th derivatives: In general,
- $Q^{(k)}(0)$ depends only on V_{0}, \ldots, V_{k}
- $Q^{(k)}(1)$ depends only on V_{n}, \ldots, V_{n-k}
- (At intermediate points $u \in(0,1)$, all control points are involved for every derivative.)

Cubic curves

For the rest of this discussion, we'll restrict ourselves to piecewise cubic curves.

- In CAGD, higher-order curves are often used
- Gives more freedom in design
- Can provide higher degree of continuity between pieces
- For Graphics, piecewise cubic let's you do just about anything
- Lowest degree for specifiying points to interpolate and tangents
- Lowest degree for specifying curve in space

All the ideas here generalize to higher-order curves

Matrix form of Bezier curves

Bezier curves can also be described in matrix form:

$$
\begin{aligned}
Q(u) & =\sum_{i=0}^{3} V_{i}\binom{3}{i} u^{i}(1-u)^{3-i} \\
& =\left(\begin{array}{l}
1-u)^{3} V_{0}+3 u(1-u)^{2} V_{1}+3 u^{2}(1-u) V_{2}+u^{3} V_{3} \\
\\
\end{array}=\left(\begin{array}{llll}
u^{3} & u^{2} & \mathrm{u} & 1
\end{array}\right)\left(\begin{array}{rrrr}
-1 & 3 & -3 & 1 \\
3 & -6 & 3 & 0 \\
-3 & 3 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
V_{0} \\
V_{1} \\
V_{2} \\
V_{3}
\end{array}\right)\right. \\
& =\left(\begin{array}{lll}
u^{3} & u^{2} & \mathrm{u} \\
1
\end{array}\right) \mathrm{M}_{\text {Bezier }}\left(\begin{array}{l}
V_{0} \\
V_{1} \\
V_{2} \\
V_{3}
\end{array}\right)
\end{aligned}
$$

Display: Recursive subdivision

Q: Suppose you wanted to draw one of these Bezier curves -- how would you do it?

A: Recursive subdivision:

Display, cont.

Here's pseudocode for the recursive subdivision display algorithm:

```
procedure Display({ V , ,., V V }):
    if {}\mp@subsup{V}{0}{},\ldots,\mp@subsup{V}{n}{}}\mathrm{ flat within }\varepsilon\mathrm{ then
            Output line segment }\mp@subsup{V}{0}{}\mp@subsup{V}{n}{
        else
            Subdivide to produce { L , ,., L, L
            Display({}\mp@subsup{L}{0}{},\ldots,\mp@subsup{L}{n}{}}
```



```
    end if
end procedure
```


Splines

To build up more complex curves, we can piece together different Bezier curves to make "splines."

For example, we can get:

- Positional (C^{0}) continuity:
- Derivative (C^{1}) continuity:

Q: How would you build an interactive system to satisfy these constraints?

Advantages of splines

Advantages of splines over higher-order Bezier curves:

- Numerically more stable
- Easier to compute
- Fewer bumps and wiggles

Tangent ($\mathbf{G}^{\mathbf{1}}$) continuity

Q: Suppose the tangents were in opposite directions but not of same magnitude -- how does the curve appear?

This construction gives "tangent (G^{1}) continuity."

Q: How is G^{1} continuity different from C^{1} ?

Curvature (C^{2}) continuity

Q: Suppose you want even higher degrees of continuity -- e.g., not just slopes but curvatures -- what additional geometric constraints are imposed?

We'll begin by developing some more mathematics.....

Operator calculus

Let's use a tool known as "operator calculus."
Define the operator D by:

$$
\mathrm{D} V_{i} \equiv V_{i+1}
$$

Rewriting our explicit formulation in this notation gives:

$$
\begin{aligned}
Q(u) & =\sum_{i=0}^{n}\binom{n}{i} u^{i}(1-u)^{n-i} V_{i} \\
& =\sum_{i=0}^{n}\binom{n}{i} u^{i}(1-u)^{n-i} \mathrm{D}_{i} V_{0} \\
& =\sum_{i=0}^{n}\binom{n}{i}(u \mathrm{D})^{i}(1-u)^{n-i} V_{0}
\end{aligned}
$$

Applying the binomial theorem gives: $\quad=(u \mathrm{D}+(1-u))^{n} V_{0}$

Taking the derivative

One advantage of this form is that now we can take the derivative:

$$
Q^{\prime}(u)=n(u \mathrm{D}+(1-u))^{n-1}(\mathrm{D}-1) V_{0}
$$

What's (D-1) V_{0} ?
Plugging in and expanding:

$$
Q^{\prime}(u)=n \sum_{i=0}^{n-1}\binom{n-1}{i} u^{i}(1-u)^{n-1-i} \mathrm{D}_{i}\left(V_{0}-V_{1}\right)
$$

This gives us a general expression for the derivative $Q^{\prime}(u)$.

Specializing to $\mathbf{n}=3$

What's the derivative $Q^{\prime}(u)$ for a cubic Bezier curve?

Note that:

- When $u=0: Q^{\prime}(u)=3\left(V_{1}-V_{0}\right)$
- When $u=1: Q^{\prime}(u)=3\left(V_{3}-V_{2}\right)$

Geometric interpretation:

So for $C 1$ continuity, we need to set:

$$
3\left(V_{3}-V_{2}\right)=3\left(W_{1}-W_{0}\right)
$$

Taking the second derivative

Taking the derivative once again yields:

$$
Q^{\prime \prime}(u)=n(n-1)(u \mathrm{D}+(1-u))^{n-2}(\mathrm{D}-1)^{2} V_{0}
$$

What does (D -1$)^{2}$ do?

Second-order continuity

So the conditions for second-order continuity are:

$$
\begin{aligned}
\left(V_{3}-V_{2}\right) & =\left(W_{1}-W_{0}\right) \\
\left(V_{3}-V_{2}\right)-\left(V_{2}-V_{1}\right) & =\left(W_{2}-W_{1}\right)-\left(W_{1}-W_{0}\right)
\end{aligned}
$$

Putting these together gives:

Geometric interpretation

C^{3} continuity

Summary of continuity conditions

- C^{0} straightforward, but generally not enough
- C^{3} is too constrained (with cubics)

Creating continuous splines

We'll look at three ways to specify splines with C^{1} and C^{2} continuity:

1. C^{2} interpolating splines
2. B-splines
3. Catmull-Rom splines

C^{2} Interpolating splines

The control points specified by the user, called "joints," are interpolated by the spline.

For each of x and y, we needed to specify \qquad conditions for each cubic Bezier segment.

So if there are m segments, we'll need \qquad constraints.

Q: How many of these constraints are determined by each joint?

In-depth analysis, cont.

At each interior joint j, we have:

1. Last curve ends at j
2. Next curve begins at j
3. Tangents of two curves at j are equal
4. Curvature of two curves at j are equal

The m segments give:

- \qquad interior joints
- \qquad conditions

The 2 end joints give 2 further contraints:

1. First curve begins at first joint
2. Last curve ends at last joint

Gives \qquad constraints altogether.

End conditions

The analysis shows that specifying $m+1$ joints for m segments leaves 2 extra degrees of freedom.

These 2 extra constraints can be specified in a variety of ways:

- An interactive system
- Constraints specified as \qquad
- "Natural" cubic splines
- Second derivatives at endpoints defined to be 0
- Maximal continuity
- Require C^{3} continuity between first and last pairs of curves

C^{2} Interpolating splines

Problem: Describe an interactive system for specifiying C2 interpolating splines.
Solution:

1. Let user specify first four Bezier control points.
2. This constrains next \qquad control points -- draw these in.
3. User then picks \qquad more
4. Repeat steps 2-3.

Global vs. local control

These C^{2} interpolating splines yield only "global control" -- moving any one joint (or control point) changes the entire curve!

Global control is problematic:

- Makes splines difficult to design
- Makes incremental display inefficient

There's a fix, but nothing comes for free. Two choices:

- B-splines
- Keep C^{2} continuity
- Give up interpolation
- Catmull-Rom splines
- Keep interpolation
- Give up C^{2} continuity -- provides C^{1} only

B-splines

Previous construction (C^{2} interpolating splines):

- Choose joints, constrained by the "A-frames."

New construction (B-splines):

- Choose points on A-frames
- Let these determine the rest of Bezier control points and joints

The B-splines I'll describe are known more precisely as "uniform B-splines."

B-spline construction

The points specified by the user in this construction are called "de Boor points."
COS $426 \quad 35 \quad$ Lecture Notes \#9

B-spline properties

Here are some properties of B-splines:

- \underline{C}^{2} continuity
- Approximating
- Does not interpolate deBoor points
- Locality
- Each segment determined by 4 deBoor points
- Each deBoor point determines 4 segments
- Convex hull
- Curve lies inside convex hull of deBoor points

Algebraic construction of B-splines

$$
\begin{aligned}
& V_{1}=\ldots B_{1}+\ldots B_{2} \\
& V_{2}=\ldots B_{1}+\ldots B_{2} \\
& V_{0}=\ldots \quad\left[_B_{0}+\ldots \quad B_{1}\right]+\ldots \quad\left[\ldots _B_{1}+\ldots \quad B_{2}\right] \\
& =\ldots B_{0}+\ldots B_{1}+\ldots B_{2} \\
& V_{3}=\ldots \quad B_{1}+\ldots \quad B_{2}+\ldots \quad B_{3}
\end{aligned}
$$

Algebraic construction of B-splines, cont.

Once again, this construction can be expressed in terms of a matrix:

$$
\left(\begin{array}{l}
V_{0} \\
V_{1} \\
V_{2} \\
V_{3}
\end{array}\right)=\frac{1}{6}\left(\begin{array}{llll}
1 & 4 & 1 & 0 \\
0 & 4 & 2 & 0 \\
0 & 2 & 4 & 0 \\
0 & 1 & 4 & 1
\end{array}\right)\left(\begin{array}{l}
B_{0} \\
B_{1} \\
B_{2} \\
B_{3}
\end{array}\right)
$$

Drawing B-splines

Drawing B-splines is therefore quite simple:

```
procedure Draw-B-Spline ({\mp@subsup{B}{0}{},\ldots,\mp@subsup{B}{\textrm{n}}{}})\mathrm{ )}
    for i=0 to n-3 do
        Convert }\mp@subsup{B}{i}{},\ldots,\mp@subsup{B}{i+3}{}\mathrm{ into a Bezier control polygon }\mp@subsup{V}{0}{},\ldots,\mp@subsup{V}{3}{
```



```
    end for
end procedure
```


Multiple vertices

Q: What happens if you put more than one control point in the same place?

Some possibilities:

- Triple vertex
- Double vertex
- Collinear vertices

End conditions

You can also use multiple vertices at the endpoints:

- Double endpoint
- Curve tangent to line between first distinct points
- Triple endpoint
- Curve interpolates endpoint
- Starts out with a line segment
- Phantom vertices
- Gives interpolation without line segment at ends

Catmull-Rom splines

The Catmull-Rom splines

- Give up C^{2} continuity
- Keep interpolation

For the derivation, let's go back to the interpolation algorithm. We had 4 conditions at each joint j :

1. Last curve ends at j
2. Next curve begins at j
3. Tangents of two curves at j are equal
4. Curvature of two curves at j are equal

If we ...

- Eliminate condition 4
- Make condition 3 depend only on local control points
... then we can have local control!

Derivation of Catmull-Rom splines

Idea: (Same as B-splines)

- Start with joints to interpolate
- Build a cubic Bezier curve between successive points

The endpoints of the cubic Bezier are obvious:

$$
\begin{aligned}
& V_{0}=B_{1} \\
& V_{3}=B_{2}
\end{aligned}
$$

Q: What should we do for the other two points?

Derivation of Catmull-Rom, cont.

A: Catmull \& Rom use half the magnitude of the vector between adjacent control points:

Many other choices work -- for example, using an arbitrary constant τ times this vector gives a "tension" control.

Matrix formulation

The Catmull-Rom splines also admit a matrix formulation:

$$
\left(\begin{array}{l}
V_{0} \\
V_{1} \\
V_{2} \\
V_{3}
\end{array}\right)=\frac{1}{6}\left(\begin{array}{cccc}
0 & 6 & 0 & 0 \\
-1 & 6 & 1 & 0 \\
0 & 1 & 6 & -1 \\
0 & 0 & 6 & 0
\end{array}\right)\left(\begin{array}{l}
B_{0} \\
B_{1} \\
B_{2} \\
B_{3}
\end{array}\right)
$$

Exercise: Derive this matrix.

Properties

Here are some properties of Catmull-Rom splines:

- \underline{C}^{1} Continuity
- Interpolating
- Locality
- No convex hull property
- (Proof left as an exercise.)

(Spline, Bezier, B-Spline) omprakash@teachers.org

Spline

- Drafting terminology
- Spline is a flexible strip that is easily flexed to pass through a series of design points (control points) to produce a smooth curve.
- Spline curve - a piecewise polynomial (cubic) curve whose first and second derivatives are continuous across the various curve sections.

Bezier curve

- Developed by Paul de Casteljau (1959) and independently by Pierre Bezier (1962).
- French automobil company - Citroen \& Renault.

omprakash@teachers.org

Parametric function

- $\mathrm{P}(\mathrm{u})=\sum_{\mathrm{i}=0}^{n} \mathrm{~B}_{\mathrm{n}, \mathrm{i}}(\mathrm{u}) \mathrm{p}_{\mathrm{i}}$

Where

$$
\mathrm{B}_{\mathrm{n}, \mathrm{i}}(\mathrm{u})=\underset{\mathrm{n}!(\mathrm{n}-\mathrm{i})!}{\mathrm{u}^{\mathrm{i}}}(1-\mathrm{u})^{\mathrm{n}-\mathrm{i}} \quad 0<=\mathrm{u}<=1
$$

For 3 control points, $n=2$
$\mathrm{P}(\mathrm{u})=(1-\mathrm{u})^{2} \mathrm{p}_{0}+2 \mathrm{u}(1-\mathrm{u}) \mathrm{p}_{1}+\mathrm{u}^{2} \mathrm{p}_{2}$
For four control points, $n=3$
$\mathrm{P}(\mathrm{u})=(1-\mathrm{u})^{3} \mathrm{p}_{0}+\underset{\text { omprakash@teachers.org }}{3 \mathrm{u}(1-\mathrm{u})^{2} \mathrm{p}_{1}+3 \mathrm{u}^{2}(1-\mathrm{u}) \mathrm{p}_{2}+\mathrm{u}^{3} \mathrm{p}_{3}, ~}$

algorithm

- De Casteljau
- Basic concept

- To choose a point C in line segment AB such that C divides the line segment $A B$ in a ratio of $u: 1-u$

$$
\begin{gathered}
\text { Let } \mathrm{u}=0.5 \\
\mathrm{u}=0.25 \\
\mathrm{u}=0.75
\end{gathered}
$$

properties

- The curve passes through the first, P_{0} and last vertex points, P_{n}.
- The tangent vector at the starting point P_{0} must be given by $P_{1}-P_{0}$ and the tangent P_{n} given by $P_{n}-$ P n-1
- This requirement is generalized for higher derivatives at the curve's end points. E.g 2nd derivative at P_{0} can be determined by $\mathrm{P}_{0}, \mathrm{P}_{1}, \mathrm{P}_{2}$ (to satisfy continuity)
- The same curve is generated when the order of the control points is remeerssed ${ }_{\text {achers.org }}$

Properties (continued)

- Convex hull
- Convex polygon formed by connecting the control points of the curve.
- Curve resides completely inside its convex hull

B-Spline

- Motivation (recall bezier curve)
- The degree of a Bezier Curve is determined by the number of control points
- E. g. (bezier curve degree 11) difficult to bend the "neck" toward the line segment $\mathbf{P}_{4} \mathbf{P}_{5}$.
- Of course, we can add more control points.
- BUT this will increase the degree of the curve \rightarrow increase computational burden

B-Spline

- Motivation (recall bezier curve)
- Joint many bezier curves of lower degree together (right figure)
- BUT maintaining continuity in the derivatives of the desired order at the connection point is not easy or may be tedious and undesirable.

B-Spline

- Motivation (recall bezier curve)
- moving a control point affects the shape of the entire curve- (global modification property) undesirable.
- Thus, the solution is B-Spline - the degree of the curve is independent of the number of control points
- E.g - right figure - a B-spline curve of degree 3 defined by 8 control points

B-Spline

- In fact, there are five Bézier curve segments of degree 3 joining together to form the B-spline curve defined by the control points
- little dots subdivide the B-spline curve into Bézier curve segments.
- Subdividing the curve directly is difficult to do \rightarrow so, subdivide the domain of the curve by points called knots

B-Spline

- In summary, to design a B-spline curve, we need a set of control points, a set of knots and a degree of curve.

B-Spline curve

- $\mathrm{P}(\mathrm{u})=\sum_{\mathrm{i}=0}^{\mathrm{n}} \mathrm{N}_{\mathrm{i}, \mathrm{k}}(\mathrm{u}) \mathrm{p}_{\mathrm{i}} \quad\left(\mathrm{u}_{\min } \leq \mathrm{u} \leq \mathrm{u}_{\max }\right)$.. (1.0)

Where basis function $=N_{i, k}(u)$
Degree of curve $\rightarrow \mathrm{k}-1$
Control points, $\mathrm{p}_{\mathrm{i}} \rightarrow 0 \leq \mathrm{i} \leq \mathrm{n}$
Knot, $\mathrm{u} \rightarrow \mathrm{u}_{\text {min }} \leq \mathrm{u} \leq \mathrm{u}_{\max }$ $\max =\mathrm{n}+\mathrm{k}$
$2 \leq \mathrm{k} \leq \mathrm{n}+1$

B-Spline : definition

- $\mathrm{P}(\mathrm{u})=\sum \mathrm{N}_{\mathrm{i}, \mathrm{k}}(\mathrm{u}) \mathrm{p}_{\mathrm{i}}$
- $\mathrm{u}_{\mathrm{i}} \rightarrow$ knot
- $\left[\mathrm{u}_{\mathrm{i}}, \mathrm{u}_{\mathrm{i}+1}\right) \rightarrow$ knot span
- $\left(\mathrm{u}_{0}, \mathrm{u}_{1}, \mathrm{u}_{2}, \ldots . \mathrm{u}_{\mathrm{m}}\right) \rightarrow$ knot vector
- The point on the curve that corresponds to a knot u_{i}, \rightarrow knot point , $\mathrm{P}\left(\mathrm{u}_{i}\right)$
- If knots are equally space \rightarrow uniform
- If knots are not equally space \rightarrow non uniform

B-Spline : definition

- Uniform knot vector
- Individual knot value is evenly spaced
- $(0,1,2,3,4)$
- ($0,0.2,0.4,0.6 \ldots)$
- Then, normalized to the range $[0,1]$
- (0, 0.25, 0.5, 0.75, 1.0)
- (0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0)

B-Spline : definition

- Non-Uniform knot vector
- Individual knot value is not evenly spaced
- (0, 1, 3, 7, 8)
$-(0,0.2,0.3,0.7 \ldots .$.
- $(0,0.1,0.3,0.4,0.8 \ldots)$
- Then, normalized to the range $[0,1]$
- ($0,0.15,0.20,0.35,0.40,0.75,0.85,1.0)$

Type of B-Spline uniform knot vector

Periodic knots
(non-open knots)
-First and last knots are duplicated k times.
-E.g ($0,0,0,1,2,2,2$)
-Curve pass through the first and last control points
-First and last knots are not duplicated - same contribution.
-E.g (0, 1, 2, 3)
-Curve doesn't pass through end points.

- used to generate closed curves (when first = last

Type of B-Spline Uniform knot

Non-periodic (open) uniform B-Spline

- The knot spacing is evenly spaced except at the ends where knot values are repeated k times.
- E.g $\mathrm{P}(\mathrm{u})=\sum_{\mathrm{i}=0}^{\mathrm{n}} \mathrm{N}_{\mathrm{i}, \mathrm{k}}(\mathrm{u}) \mathrm{p}_{\mathrm{i}}$

$$
\left(\mathrm{u}_{0} \leq \mathrm{u} \leq \mathrm{u}_{\mathrm{m}}\right)
$$

- Degree $=\mathrm{k}-1$, number of control points $=\mathrm{n}+1$
- Number of knots = m + 1 @ $\mathrm{n}+\mathrm{k}+1$
\rightarrow for degree $=1$ and number of control points $=4 \rightarrow(\mathrm{k}=2, \mathrm{n}=3)$
\rightarrow Number of knots $=\mathrm{n}+\mathrm{k}+1=6$
\rightarrow Range $=0$ to $\mathrm{n}+\mathrm{k}$
non periodic uniform knot vector ($0,0,1,2,3,3$)
* Knot value between 0 and 3 are equally spaced \rightarrow uniform

Questions

- For curve degree $=3$, number of control points $=5$
- For curve degree $=1$, number of control points $=5$
- $\mathrm{k}=$? , $\mathrm{n}=$? , Range $=$?

Knot vector $=$?

Non-periodic (open) uniform B-Spline

- Example
- For curve degree $=3$, number of control points $=5$
- $\rightarrow \mathrm{k}=4, \mathrm{n}=4$
- \rightarrow number of knots $=\mathrm{n}+\mathrm{k}+1=9$
- \rightarrow non periodic knots vector $=(0,0,0,0,1,2,2,2,2)$
- For curve degree $=1$, number of control points $=5$
- $\rightarrow \mathrm{k}=2, \mathrm{n}=4$
- \rightarrow number of knots $=\mathrm{n}+\mathrm{k}+1=7$
- \rightarrow non periodic uniform knots vector $=(0,0,1,2,3,4,4)$

Non-periodic (open) uniform B-Spline

- For any value of parameters k and n, non periodic knots are determined from

$$
u_{i}= \begin{cases}0 & 0 \leq i<k \tag{1.3}\\ i-k+1 & k \leq i \leq n \\ n-k+2 & n<i \leq n+k\end{cases}
$$

$$
\text { e.g } k=2, n=3
$$

$$
\begin{aligned}
& \mathrm{u}_{\mathrm{i}}= \begin{cases}0 & 0 \leq \mathrm{i}<2 \\
\mathrm{i}-2+1 & 2 \leq \mathrm{i} \leq 3 \\
3-2+2 & 3<\mathrm{i} \leq 5\end{cases} \\
& \mathrm{u}=(0,0,1,2,3,3) \text { ompakash@teachers.org }
\end{aligned}
$$

B-Spline basis function

$$
\begin{equation*}
N_{i, k}(u)=\left(u-u_{i}\right) \frac{N_{i,-t}(u)}{i_{i+k-1}-u_{i}}+\left(u_{i+k}-u\right) \frac{N_{i+k,-k}(u)}{u_{i+k}-u_{i+1}} \tag{1.1}
\end{equation*}
$$

$$
N_{i, 1}= \begin{cases}1 & u_{i} \leq u \leq u_{i+1} \tag{1.2}\\ 0 & \text { Otherwise }\end{cases}
$$

\rightarrow In equation (1.1), the denominators can have a value of zero, $0 / 0$ is presumed to be zero.
\rightarrow If the degree is zero basis function $N_{i, 1}(u)$ is 1 if u is in the i-th knot span $\left[u_{i}, u_{i+1}\right)$.

B-Spline basis function

- For example, if we have four knots $u_{0}=0, u_{1}=1$, $u_{2}=2$ and $u_{3}=3$, knot spans 0,1 and 2 are $[0,1)$, $[1,2),[2,3)$
- the basis functions of degree 0 are $N_{0,1}(u)=1$ on $[0,1)$ and 0 elsewhere, $N_{1,1}(u)=1$ on $[1,2)$ and 0 elsewhere, and $N_{2,1}(u)=1$ on $[2,3)$ and 0 elsewhere.
- This is shown below

B-Spline basis function

- To understand the way of computing $N_{i, k}(u)$ for k greater than 0 , we use the triangular computation scheme

Non-periodic (open) uniform B-Spline

Example

- Find the knot values of a non periodic uniform B-Spline which has degree $=2$ and 3 control points. Then, find the equation of B-Spline curve in polynomial form.

Non-periodic (open) uniform B-Spline

Answer

- Degree $=\mathrm{k}-1=2 \rightarrow \mathrm{k}=3$
- Control points $=\mathrm{n}+1=3 \rightarrow \mathrm{n}=2$
- Number of knot $=\mathrm{n}+\mathrm{k}+1=6$
- Knot values $\rightarrow 0,0,0,1,1,1$

Non-periodic (open) uniform B-Spline

Answer(cont)

- To obtain the polynomial equation,

$$
\mathrm{P}(\mathrm{u})=\sum_{\mathrm{j}=0}^{\mathrm{n}} \mathrm{~N}_{\mathrm{i}, \mathrm{k}}(\mathrm{u}) \mathrm{p}_{\mathrm{i}}
$$

$$
=\sum_{\mathrm{i}=0}^{\mathrm{i}=0} \mathrm{~N}_{\mathrm{i}, 3}(\mathrm{u}) \mathrm{p}_{\mathrm{i}}
$$

$$
=\mathrm{N}_{0,3}(\mathrm{u}) \mathrm{p}_{0}+\mathrm{N}_{1,3}(\mathrm{u}) \mathrm{p}_{1}+\mathrm{N}_{2,3}(\mathrm{u}) \mathrm{p}_{2}
$$

- firstly, find the $\mathrm{N}_{\mathrm{i}, \mathrm{k}}(\mathrm{u})$ using the knot value that shown above, start from $k=1$ to $k=3$

Non-periodic (open) uniform B-Spline

Answer (cont)

- For $\mathrm{k}=1$, find $\mathrm{N}_{\mathrm{i}, 1}(\mathrm{u})-$ use equation (1.2):
- $\mathrm{N}_{0,1}(\mathrm{u})=\left\{\begin{array}{l}1 \\ 0\end{array}\right.$
- $\mathrm{N}_{1,1}(\mathrm{u})=\left\{\begin{array}{l}1 \\ 0\end{array}\right.$
- $\mathrm{N}_{2,1}(\mathrm{u})=\left\{\begin{array}{l}1 \\ 0\end{array}\right.$
- $\mathrm{N}_{3,1}(\mathrm{u})=\left\{\begin{array}{l}1 \\ 0\end{array}\right.$
- $\mathrm{N}_{4,1}(\mathrm{u})=\left\{\begin{array}{l}1 \\ 0\end{array}\right.$
$\mathrm{u}_{0} \leq \mathrm{u} \quad \leq \mathrm{u}_{1} \quad ; \quad(\mathrm{u}=0)$
otherwise

$$
\mathrm{u}_{1} \leq \mathrm{u} \quad \leq \mathrm{u}_{2} \quad ; \quad(\mathrm{u}=0)
$$

otherwise

$$
\begin{aligned}
& \mathrm{u}_{2} \leq \mathrm{u} \quad \leq \mathrm{u}_{3} \quad ; \quad(0 \leq \mathrm{u} \leq 1) \\
& \text { otherwise }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{u}_{3} \leq \mathrm{u} \quad \leq \mathrm{u}_{4} \quad ; \quad(\mathrm{u}=1) \\
& \text { otherwise }
\end{aligned}
$$

$$
\mathrm{u}_{4} \leq \mathrm{u} \quad \leq \mathrm{u}_{5} \quad ; \quad(\mathrm{u}=1)
$$

oothathindiaeners.org

Non-periodic (open) uniform B-Spline

Answer (cont)

- For $\mathrm{k}=2$, find $\mathrm{N}_{\mathrm{i}, 2}(\mathrm{u})-$ use equation (1.1):

$$
N_{i, k}(u)=\left(u-u_{i}\right) \frac{N_{i, k-1}(u)}{u_{i+k-1}-u_{i}}+\left(u_{i+k}-u\right) \frac{N_{i+1, k-1}(u)}{u_{i+k}-u_{i+1}}
$$

- $\mathrm{N}_{0,2}(\mathrm{u})=\underline{\mathrm{u}-\mathrm{u}_{0}} \mathrm{~N}_{0,1}+\underline{\mathrm{u}}_{2}-\underline{\mathrm{u}} \mathrm{N}_{1,1} \quad\left(\mathrm{u}_{0}=\mathrm{u}_{1}=\mathrm{u}_{2}=0\right)$
-
- $\quad=\frac{u-0}{0-0} N_{0,1}+\frac{0-u}{0-0} N_{1,1}=0$
- $\mathrm{N}_{1,2}(\mathrm{u})=\underline{\mathrm{u}-\mathrm{u}_{\underline{1}}} \mathrm{~N}_{1,1}+\underline{\mathrm{u}}_{\underline{3}}-\mathrm{u} \mathrm{N}_{2,1} \quad\left(\mathrm{u}_{1}=\mathrm{u}_{2}=0, \mathrm{u}_{3}=1\right)$
-

$$
=\begin{aligned}
& \mathrm{u}_{2}-\mathrm{u}_{1} \quad \mathrm{u}_{3}-\mathrm{u}_{2} \\
& \frac{\mathrm{u}-0}{0-0} \mathrm{~N}_{1,1}+\frac{1-\mathrm{u}}{} \mathrm{~N}_{2,1}=1-\mathrm{u} \\
& \text { omprakas }
\end{aligned}
$$

Non-periodic (open) uniform B-Spline

Answer (cont)

- $\mathrm{N}_{2,2}(\mathrm{u})=\underline{\mathrm{u}}-\underline{\mathrm{u}}_{\underline{2}} \mathrm{~N}_{2,1}+\underline{\mathrm{u}}_{4}-\mathrm{u} \mathrm{N}_{3,1} \quad\left(\mathrm{u}_{2}=0, \mathrm{u}_{3}=\mathrm{u}_{4}=1\right)$
-
- $\quad=\frac{u-0}{1-0} N_{2,1}+\frac{1-u}{1-1} N_{3,1}=u$
- $\mathrm{N}_{3,2}(\mathrm{u})=\underline{\mathrm{u}-\mathrm{u}_{\underline{3}}} \mathrm{~N}_{3,1}+\underline{\mathrm{u}}_{\underline{5}}-\mathrm{u} \mathrm{N}_{4,1} \quad\left(\mathrm{u}_{3}=\mathrm{u}_{4}=\mathrm{u}_{5}=1\right)$

$$
=\begin{aligned}
& \mathrm{u}_{4}-\mathrm{u}_{3} \\
& \frac{\mathrm{u}-1}{1-1} \mathrm{~N}_{3,1}+\frac{\mathrm{u}_{5}-\mathrm{u}_{4}}{1-\frac{1-\mathrm{u}}{1-1}} \mathrm{~N}_{4,1}=0
\end{aligned}
$$

Non-periodic (open) uniform B-Spline

Answer (cont)

For $\mathrm{k}=2$
$\mathrm{N}_{0,2}(\mathrm{u})=0$
$\mathrm{N}_{1,2}(\mathrm{u})=1-\mathrm{u}$
$\mathrm{N}_{2,2}(\mathrm{u})=\mathrm{u}$
$\mathrm{N}_{3,2}(\mathrm{u})=0$

Non-periodic (open) uniform B-Spline

Answer (cont)

- For $\mathrm{k}=3$, find $\mathrm{N}_{\mathrm{i}, 3}(\mathrm{u})-$ use equation (1.1):

$$
N_{i, k}(u)=\left(u-u_{i}\right) \frac{N_{i, k-1}(u)}{u_{i+k-1}-u_{i}}+\left(u_{i+k}-u\right) \frac{N_{i+1, k-1}(u)}{u_{i+k}-u_{i+1}}
$$

- $\mathrm{N}_{0,3}(\mathrm{u})=\underline{\mathrm{u}}-\mathrm{u}_{\underline{0}} \mathrm{~N}_{0,2}+\underline{\mathrm{u}}_{3} \underline{-\mathrm{u}} \mathrm{N}_{1,2} \quad\left(\mathrm{u}_{0}=\mathrm{u}_{1}=\mathrm{u}_{2}=0, \mathrm{u}_{3}=1\right)$
-

$$
=\begin{array}{ll}
\mathrm{u}_{2}-\mathrm{u}_{0} & \mathrm{u}_{3}-\mathrm{u}_{1} \\
\frac{\mathrm{u}-0}{0-0} N_{0,2} \\
0-0 & \frac{1-\mathrm{u}}{1-0} N_{1,2} \\
1-0
\end{array}=(1-\mathrm{u})(1-\mathrm{u})=(1-\mathrm{u})^{2}
$$

- $\mathrm{N}_{1,3}(\mathrm{u})=\underline{\mathrm{u}-\mathrm{u}_{1}} \mathrm{~N}_{1,2}+\underline{\mathrm{u}}_{4}-\mathrm{u} \mathrm{N}_{2,2} \quad\left(\mathrm{u}_{1}=\mathrm{u}_{2}=0, \mathrm{u}_{3}=\mathrm{u}_{4}=1\right)$
-

$$
=\begin{aligned}
& \mathrm{u}_{3}-\mathrm{u}_{1} \\
& =\frac{\mathrm{u}_{4}-\mathrm{u}_{2}}{1-0} \mathrm{~N}_{1,2}+\frac{1-\mathrm{u}}{1-0} \mathrm{~N}_{2,2}=\mathrm{u}(1-\mathrm{u})+(1-\mathrm{u}) \mathrm{u}=2 \mathrm{u}(1-\mathrm{u}) \\
& \text { omprakas@@teachers.org }
\end{aligned}
$$

Non-periodic (open) uniform B-Spline

Answer (cont)

- $\mathrm{N}_{2,3}(\mathrm{u})=\underline{\mathrm{u}-\underline{u}_{2}} \mathrm{~N}_{2,2}+\underline{\mathrm{u}}_{5} \underline{-\mathrm{u}} \mathrm{N}_{3,2} \quad\left(\mathrm{u}_{2}=0, \mathrm{u}_{3}=\mathrm{u}_{4}=\mathrm{u}_{5}=1\right)$
- $\quad \mathrm{u}_{4}-\mathrm{u}_{2} \quad \mathrm{u}_{5}-\mathrm{u}_{3}$
- $\quad=\frac{u-0}{1-0} N_{2,2}+\frac{1-u}{1-1} N_{3,2}=u^{2}$
$\mathrm{N}_{0,3}(\mathrm{u})=(1-\mathrm{u})^{2}, \quad \mathrm{~N}_{1,3}(\mathrm{u})=2 \mathrm{u}(1-\mathrm{u}), \quad \mathrm{N}_{2,3}(\mathrm{u})=\mathrm{u}^{2}$

The polynomial equation, $\mathrm{P}(\mathrm{u})=\sum_{\mathrm{i}=0}^{n} \mathrm{~N}_{\mathrm{i}, \mathrm{k}}(\mathrm{u}) \mathrm{p}_{\mathrm{i}}$

- $\mathrm{P}(\mathrm{u})=\mathrm{N}_{0,3}(\mathrm{u}) \mathrm{p}_{0}+\mathrm{N}_{1,3}(\mathrm{u}) \mathrm{p}_{1}+\mathrm{N}_{2,3}(\mathrm{u}) \mathrm{p}_{2}$

$$
=(1-u)^{2} p_{0}+2 u(1-u) p_{1}+u^{2} p_{2} \quad(0<=u<=1)
$$

Non-periodic (open) uniform BSpline

- Exercise
- Find the polynomial equation for curve with degree $=1$ and number of control points $=4$

Non-periodic (open) uniform B-Spline

- Answer
- $\mathrm{k}=2, \mathrm{n}=3 \rightarrow$ number of knots $=6$
- Knot vector $=(0,0,1,2,3,3)$
- For $\mathrm{k}=1$, find $\mathrm{N}_{\mathrm{i}, 1}(\mathrm{u})$ - use equation (1.2):
- $\mathrm{N}_{0,1}(\mathrm{u})=1$
$\mathrm{u}_{0} \leq \mathrm{u} \quad \leq \mathrm{u}_{1} \quad ; \quad(\mathrm{u}=0)$
- $\mathrm{N}_{1,1}(\mathrm{u})=1$
$\mathrm{u}_{1} \leq \mathrm{u} \quad \leq \mathrm{u}_{2} \quad ;(0 \leq \mathrm{u} \leq 1)$
$\mathrm{N}_{2,1}(\mathrm{u})=1$
$\mathrm{u}_{2} \leq \mathrm{u} \quad \leq \mathrm{u}_{3} \quad ; \quad(1 \leq \mathrm{u} \leq 2)$
- $\mathrm{N}_{3,1}(\mathrm{u})=1$
$\mathrm{u}_{3} \leq \mathrm{u} \quad \leq \mathrm{u}_{4} \quad ;(2 \leq \mathrm{u} \leq 3)$
$N_{4,1}(u)=1 \quad u_{4} \leq u \quad \leq u_{5} \quad ;(u=3)$

Non-periodic (open) uniform B-Spline

Answer (cont)

- For $\mathrm{k}=2$, find $\mathrm{N}_{\mathrm{i}, 2}(\mathrm{u})-$ use equation (1.1):

$$
N_{i, k}(u)=\left(u-u_{i}\right) \frac{N_{i, k-1}(u)}{u_{i+k-1}-u_{i}}+\left(u_{i+k}-u\right) \frac{N_{i+1, k-1}(u)}{u_{i+k}-u_{i+1}}
$$

- $\mathrm{N}_{0,2}(\mathrm{u})=\underline{\mathrm{u}-\mathrm{u}_{\underline{0}}} \mathrm{~N}_{0,1}+\underline{\mathrm{u}}_{2}-\underline{\mathrm{u}} \mathrm{N}_{1,1} \quad\left(\mathrm{u}_{0}=\mathrm{u}_{1}=0, \mathrm{u}_{2}=1\right)$
-

$$
\begin{aligned}
& \mathrm{u}_{1}-\mathrm{u}_{0} \quad \mathrm{u}_{2}-\mathrm{u}_{1} \\
= & \frac{\mathrm{u}-0}{0-0} \mathrm{~N}_{0,1}+\frac{1-\mathrm{u}}{1-0} \mathrm{~N}_{1,1} \\
= & 1-\mathrm{u}
\end{aligned} \quad(0 \leq \mathrm{u} \leq 1)
$$

Non-periodic (open) uniform B-Spline

Answer (cont)

- For $\mathrm{k}=2$, find $\mathrm{N}_{\mathrm{i}, 2}(\mathrm{u})-$ use equation (1.1):

$$
N_{i, k}(u)=\left(u-u_{i}\right) \frac{N_{i, k-1}(u)}{u_{i+k-1}-u_{i}}+\left(u_{i+k}-u\right) \frac{N_{i+1, k-1}(u)}{u_{i+k}-u_{i+1}}
$$

- $\mathrm{N}_{1,2}(\mathrm{u})=\underline{\mathrm{u}-\mathrm{u}_{1}} \mathrm{~N}_{1,1}+\underline{\mathrm{u}}_{\underline{3}}-\mathrm{u} \mathrm{N}_{2,1} \quad\left(\mathrm{u}_{1}=0, \mathrm{u}_{2}=1, \mathrm{u}_{3}=2\right)$
-

$$
=\begin{aligned}
& \mathrm{u}_{2}-\mathrm{u}_{1} \\
& =\frac{\mathrm{u}-0}{1-0} \mathrm{~N}_{1,1}+\frac{\mathrm{u}_{3}-\mathrm{u}_{2}}{2-\mathbf{u}} \mathrm{N}_{2,1} \\
& 2-1
\end{aligned}
$$

- $\mathrm{N}_{1,2}(\mathrm{u})=\mathrm{u} \quad(0 \leq \mathrm{u} \leq 1)$
- $\mathrm{N}_{1,2}(\mathrm{u})=2-\mathrm{u} \quad(1 \leq \mathrm{u} \leq 2)$

Non-periodic (open) uniform B-Spline

Answer (cont)

- $\mathrm{N}_{2,2}(\mathrm{u})=\underline{\mathrm{u}-\underline{u}_{2}} \mathrm{~N}_{2,1}+\underline{\mathrm{u}}_{4}-\mathrm{u} \mathrm{N}_{3,1} \quad\left(\mathrm{u}_{2}=1, \mathrm{u}_{3}=2, \mathrm{u}_{4}=3\right)$
-

$$
=\begin{aligned}
& \mathrm{u}_{3}-\mathrm{u}_{2} \\
& =\frac{\mathrm{u}-1}{2-1} \mathrm{~N}_{2,1}+\frac{u_{4}-u_{3}}{3-\mathrm{u}} \mathrm{~N}_{3,1} \\
& \frac{3-2}{2-1}
\end{aligned}=
$$

- $N_{2,2}(u)=u-1 \quad(1 \leq u \leq 2)$
- $\mathrm{N}_{2,2}(\mathrm{u})=3-\mathrm{u} \quad(2 \leq \mathrm{u} \leq 3)$

Non-periodic (open) uniform B-Spline

Answer (cont)

- $\mathrm{N}_{3,2}(\mathrm{u})=\underline{\mathrm{u}-\mathrm{u}_{\underline{3}}} \mathrm{~N}_{3,1}+\underline{\mathrm{u}}_{\underline{5}}-\mathrm{u} \mathrm{N}_{4,1} \quad\left(\mathrm{u}_{3}=2, \mathrm{u}_{4}=3, \mathrm{u}_{5}=3\right)$

$$
\begin{aligned}
& u_{4}-u_{3} \\
= & \frac{u-2}{3-2} N_{3,1}+\frac{u_{5}-u_{4}}{3-u} N_{4,1}= \\
= & u-2(2 \leq u \leq 3)
\end{aligned}
$$

Non-periodic (open) uniform B-Spline

Answer (cont)

- The polynomial equation $\mathrm{P}(\mathrm{u})=\sum \mathrm{N}_{\mathrm{i}, \mathrm{k}}(\mathrm{u}) \mathrm{p}_{\mathrm{i}}$
- $\mathrm{P}(\mathrm{u})=\mathrm{N}_{0,2}(\mathrm{u}) \mathrm{p}_{0}+\mathrm{N}_{1,2}(\mathrm{u}) \mathrm{p}_{1}+\mathrm{N}_{2,2}(\mathrm{u}) \mathrm{p}_{2}+\mathrm{N}_{3,2}(\mathrm{u}) \mathrm{p}_{3}$
- $\mathrm{P}(\mathrm{u})=(1-\mathrm{u}) \mathrm{p}_{0}+\mathrm{u} \mathrm{p}_{1}$
($0 \leq \mathrm{u} \leq 1$)
- $P(u)=(2-u) p_{1}+(u-1) p_{2}$
$(1 \leq u \leq 2)$
- $\mathrm{P}(\mathrm{u})=(3-\mathrm{u}) \mathrm{p}_{2}+(\mathrm{u}-2) \mathrm{p}_{3}$
$(2 \leq u \leq 3)$

Periodic uniform knot

- Periodic knots are determined from
$-\mathrm{U}_{\mathrm{i}} \quad ;(0 \leq \mathrm{i} \leq \mathrm{n}+\mathrm{k})$
- Example
- For curve with degree $=3$ and number of control points $=4$ (cubic B-spline)
$-(\mathrm{k}=4, \mathrm{n}=3) \rightarrow$ number of knots $=\mathrm{n}+\mathrm{k}+1=8$
$-(0,1,2,3,4,5,6,7)$

Periodic uniform knot

- Normalize $u(0<=u<=1)$
- $\mathrm{N}_{0,4}(\mathrm{u})=1 / 6(1-\mathrm{u})^{3}$
- $\mathrm{N}_{1,4}(\mathrm{u})=1 / 6\left(3 \mathrm{u}^{3}-6 \mathrm{u}^{2}+4\right)$
- $N_{2,4}(u)=1 / 6\left(-3 u^{3}+3 u^{2}+3 u+1\right)$
- $\mathrm{N}_{3,4}(\mathrm{u})=1 / 6 \mathrm{u}^{3}$
- $\mathrm{P}(\mathrm{u})=\mathrm{N}_{0,4}(\mathrm{u}) \mathrm{p}_{0}+\mathrm{N}_{1,4}(\mathrm{u}) \mathrm{p}_{1}+\mathrm{N}_{2,4}(\mathrm{u}) \mathrm{p}_{2}+\mathrm{N}_{3,4}(\mathrm{u}) \mathrm{p}_{3}$

Periodic uniform knot

- In matrix form
- $P(u)=\left[u^{3}, u^{2}, u, 1\right] \cdot M_{n},\left(\begin{array}{l}P_{0} \\ P_{1} \\ P_{2} \\ P_{3}\end{array}\right)$
- $M_{n}=1 / 6\left(\begin{array}{cccc}-1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 0 & 3 & 0 \\ 1 & 4 & 1 & 0\end{array}\right)$

Periodic uniform knot

Closed periodic

Example
$\mathrm{k}=4, \mathrm{n}=5$

Closed periodic

Equation 1.0 change to

- $\mathrm{N}_{\mathrm{i}, \mathrm{k}}(\mathrm{u})=\mathrm{N}_{0, \mathrm{k}}((\mathrm{u}-\mathrm{i}) \bmod (\mathrm{n}+1))$
$\rightarrow \mathrm{P}(\mathrm{u})=\sum_{\mathrm{i}=0}^{\mathrm{n}} \mathrm{N}_{0, \mathrm{k}}((\mathrm{u}-\mathrm{i}) \bmod (\mathrm{n}+1)) \mathrm{p}_{\mathrm{i}}$

$$
0<=u<=n+1
$$

Question 1

Construct the B -Spline curve of degree/order 3 with 4 polygon vertices $\mathrm{A}(1,1), \mathrm{B}(2,3), \mathrm{C}(4,3)$ and $\mathrm{D}(6,2)$. Using NonPeriodic Knot and Periodic Knot.

Properties of B-Spline

1. The m degree B -Spline function are piecewise polynomials of degree $\mathrm{m} \rightarrow$ have $\mathrm{C}^{\mathrm{m}-1}$ continuity. \rightarrow e.g B-Spline degree 3 have C^{2} continuity.

Properties of B-Spline

In general, the lower the degree, the closer a B -spline curve follows its control polyline.

Degree $=7$

Degree $=5$

Degree $=3$

Properties of B-Spline

Equality $m=n+k$ must be satisfied

Number of knots $=\mathrm{m}+1$
k cannot exceed the number of control points, $\mathrm{n}+1$

Properties of B-Spline

2. Each curve segment is affected by k control points as shown by past examples. \rightarrow e.g $\mathrm{k}=3$, $\mathrm{P}(\mathrm{u})=\mathrm{N}_{\mathrm{i}-1, \mathrm{k}} \mathrm{p}_{\mathrm{i}-1}+\mathrm{N}_{\mathrm{i}, \mathrm{k}} \mathrm{p}_{\mathrm{i}}+\mathrm{N}_{\mathrm{i}+1, \mathrm{k}} \mathrm{p}_{\mathrm{i}+1}$

Properties of B-Spline

Local Modification Scheme: changing the position of control point P_{i} only affects the curve $\mathrm{C}(u)$ on interval $\left[u_{i}, u_{i+k}\right)$.

Modify control point P_{2}

Properties of B-Spline

3. Strong Convex Hull Property: A B-spline curve is contained in the convex hull of its control polyline. More specifically, if u is in knot span $\left[u_{i}, u_{i+1}\right)$, then $\mathrm{C}(u)$ is in the convex hull of control points $\mathrm{P}_{i-p}, \mathrm{P}_{i-p+1}, \ldots, \mathrm{P}_{i}$.

Degree $=3, \mathrm{k}=4$
Convex hull based on 4 control points

Properties of B-Spline

4. Non-periodic B-spline curve $\mathrm{C}(u)$ passes through the two end control points P_{0} and P_{n}.
5. Each B-spline function $\mathrm{Nk}, \mathrm{m}(\mathrm{t})$ is nonnegative for every t, and the family of such functions sums to unity, that is $\sum_{i=0}^{n} N_{i, k}(u)=1$
6. Affine Invariance
to transform a B-Spline curve, we simply transform each control points.
7. Bézier Curves Are Special Cases of B-spline Curves

Properties of B-Spline

8. Variation Diminishing : A B-Spline curve does not pass through any line more times than does its control polyline

Knot Insertion : B-Spline

- knot insertion is adding a new knot into the existing knot vector without changing the shape of the curve.
- new knot may be equal to an existing knot \rightarrow the multiplicity of that knot is increased by one
- Since, number of knots $=k+n+1$
- If the number of knots is increased by $1 \rightarrow$ either degree or number of control points must also be increased by 1.
- Maintain the curve shape \rightarrow maintain degree \rightarrow change the number of control points.

Knot Insertion : B-Spline

- So, inserting a new knot causes a new control point to be added. In fact, some existing control points are removed and replaced with new ones by corner cutting

Single knot insertion : B-Spline

- Given $\mathrm{n}+1$ control points $-\mathrm{P}_{0}, \mathrm{P}_{1}, . . \mathrm{P}_{\mathrm{n}}$
- Knot vector, $\mathrm{U}=\left(\mathrm{u}_{0}, \mathrm{u}_{1}, \ldots \mathrm{u}_{\mathrm{m}}\right)$
- Degree $=p, \quad$ order, $\mathrm{k}=p+1$
- Insert a new knot t into knot vector without changing the shape.
- \rightarrow find the knot span that contains the new knot. Let say $\left[\mathrm{u}_{k}, \mathrm{u}_{k+1}\right.$)

Single knot insertion : B-Spline

- This insertion will affected to $\mathrm{k}($ degree +1$)$ control points (refer to B-Spline properties) $\rightarrow \mathrm{P}_{k}, \mathrm{P}_{k-1}, \mathrm{P}_{k-1}, \ldots \mathrm{P}_{k-p}$
- Find p new control points \mathbf{Q}_{k} on $\operatorname{leg} \mathbf{P}_{k-1} \mathbf{P}_{k}, \mathbf{Q}_{k-1}$ on $\operatorname{leg} \mathbf{P}_{k-}$ ${ }_{2} \mathbf{P}_{k-1}, \ldots$, and \mathbf{Q}_{k-p+1} on leg $\mathbf{P}_{k-p} \mathbf{P}_{k-p+1}$ such that the old polyline between \mathbf{P}_{k-p} and \mathbf{P}_{k} (in black below) is replaced by $\mathbf{P}_{k-p} \mathbf{Q}_{k-p+1} \ldots \mathbf{Q}_{k} \mathbf{P}_{k}$ (in orange below)

Single knot insertion : B-Spline

- All other control points are not change
- The formula for computing the new control point \mathbf{Q}_{i} on leg $\mathbf{P}_{i-1} \mathbf{P}_{i}$ is the following
- $\mathbf{Q}_{i}=\left(1-\mathrm{a}_{i}\right) \mathbf{P}_{i-1}+\mathrm{a}_{i} \mathbf{P}_{i}$
- $\mathrm{a}_{i}=\underline{\mathrm{t}-\mathrm{u}_{i}}$

$$
k-p+1<=i<=k
$$

- $\mathrm{u}_{i+p}-\mathrm{u}_{i}$

Single knot insertion : B-Spline

- Example
- Suppose we have a B-spline curve of degree 3 with a knot vector as follows:

u_{0} to u_{3}	u_{4}	u_{5}	u_{6}	u_{7}	u_{8} to u_{11}
0	0.2	0.4	0.6	0.8	1

Insert a new knot $t=0.5$, find new control points and new knot vector?

Single knot insertion : B-Spline

Solution:

$-\mathrm{t}=0.5$ lies in knot span $\left[\mathrm{u}_{5}, \mathrm{u}_{6}\right.$)

- the affected control points are $\mathbf{P}_{5}, \mathbf{P}_{4}, \mathbf{P}_{3}$ and \mathbf{P}_{2}
- find the 3 new control points $\mathrm{Q}_{5}, \mathrm{Q}_{4}, \mathrm{Q}_{3}$
- we need to compute a_{5}, a_{4} and a_{3} as follows

$$
\begin{aligned}
& -a_{5}=\frac{\mathrm{t}-u_{5}}{u_{8}-u_{5}}=\frac{0.5-0.4}{1-0.4}=1 / 6 \\
& -a_{4}=\frac{\mathrm{t}-u_{4}}{u_{7}-u_{4}}=\frac{0.5-0.2}{0.8-0.2}=1 / 2 \\
& -a_{3}=\frac{\mathrm{t}-u_{3}}{u_{6}-u_{3}}=\frac{0.5-0}{0.6-0^{\text {nprakashe eteachers.org }}}
\end{aligned}
$$

Single knot insertion : B-Spline

- Solution (cont)
- The three new control points are
- $\mathbf{Q}_{5}=\left(1-\mathrm{a}_{5}\right) \mathbf{P}_{4}+\mathrm{a}_{5} \mathbf{P}_{5}=(1-1 / 6) \mathbf{P}_{4}+1 / 6 \mathbf{P}_{5}$
- $\mathbf{Q}_{4}=\left(1-\mathrm{a}_{4}\right) \mathbf{P}_{3}+\mathrm{a}_{4} \mathbf{P}_{4}=(1-1 / 6) \mathbf{P}_{3}+1 / 6 \mathbf{P}_{4}$
- $\mathbf{Q}_{3}=\left(1-\mathrm{a}_{3}\right) \mathbf{P}_{2}+\mathrm{a}_{3} \mathbf{P}_{3}=(1-5 / 6) \mathbf{P}_{2}+5 / 6 \mathbf{P}_{3}$

Single knot insertion : B-Spline

- Solution (cont)
- The new control points are $\mathbf{P}_{0}, \mathbf{P}_{1}, \mathbf{P}_{2}, \mathbf{Q}_{3}$, $\mathbf{Q}_{4}, \mathbf{Q}_{5}, \mathbf{P}_{5}, \mathbf{P}_{6}, \mathbf{P}_{7}$
- the new knot vector is

u_{0} to u_{3}	u_{4}	u_{5}	u_{6}	u_{7}	u_{8}	u_{9} to u_{12}
0	0.2	0.4	0.5	0.6	0.8	1
ompraksh@ @tachers.org						65

RATIONAL SPLINES

A rational function is simply the ratio of two polynomials. Thus, a rational spline is the ratio of two spline functions. For example, a rational B-spline curve can be described with the position vector:

$$
\mathrm{P}(u)=\frac{\sum_{k=0}^{n} \omega_{k} p_{k} B_{k}(u)}{\sum_{k=0}^{n} \omega_{k} B_{k, d}(u)}
$$

where the p_{k} are a set of $n+1$ control-point positions. Parameters ω_{k} are weight factors for the control points. The greater the value of a particular ω_{k}, the closer The curve is pulled toward the control point p_{k} weighted by that parameter. Ahen all weight factors are set to the value 1 , we have the standard B-spline arve since the denominator in $\mathrm{Eq} .10-69$ is 1 (the sum of the blending functions).

To plot conic sections with NURBs, we use a quadratic spline function ($d=$ 3) and three control points. We can do this with a B-spline function defined with the open knot vector:

$$
\{0,0,0,1,1,1\}
$$

which is the same as a quadratic Bézier spline. We then set the weighting functions to the following values:

$$
\begin{aligned}
& \omega_{0}=\omega_{2}=1 \\
& \omega_{1}=\frac{r}{1-r^{\prime}}, 0 \leq r<1
\end{aligned}
$$

$$
\begin{aligned}
& c p=3 \\
& \text { Degree }=2 \\
& k=3 \\
& n=2
\end{aligned}
$$

and the rational B -spline representation is

$$
\begin{equation*}
\mathbf{P}(u)=\frac{\mathbf{p}_{0} B_{0,3}(u)+[r /(1-r)] \mathbf{p}_{1} B_{1,3}(u)+\mathbf{p}_{2} B_{2,3}(u)}{B_{0,3}(u)+[r /(1-r)] B_{1,3}(u)+B_{2,3}(u)} \tag{10-71}
\end{equation*}
$$

We then obtain the various conics (Fig, 10-50) with the following values for parameter r :

$$
\begin{aligned}
& r>1 / 2, \quad \omega_{1}>1 \text { (hyyperbola section) } \\
& r=1 / 2, \omega_{1}=1 \text { (parabola section) } \\
& 1<1 / 2, \omega_{1}<1 \text { (dlipsesection) } \\
& r=0, \omega_{1}=0 \quad \text { (straightl-line segment) }
\end{aligned}
$$

Example:

A full circle can be obtained

by using seven control points:

$$
\left\{P_{0}, P_{1}, P_{2}, P_{3}, P_{4}, P_{5}, P_{6}\right\}
$$

Solution :

Degree $=6$
Degree $=k-1 ; k=7$
Control Points $=\mathrm{n}+1 ; 7=\mathrm{n}+1 ; \mathrm{n}=6$
Range $=\mathrm{n}+\mathrm{k}=13$;
Knot Value $=\mathrm{n}+\mathrm{k}+1=6+7+1=14$
Weight $=7($ Control Point $=$ Weight $)$

Figure 10-50
Conic sections generated with various values of the rational-spline weighting factor ω_{1}.

Figure 10-51
A circular arc in the first quadrant of the xy plane.

$$
p_{0}=(0,1), \quad p_{1}=(1,1), \quad p_{2}=(1,0)
$$

Question :

Calculate the k, n, total number of knots, Knot Values/Vectors, range and Weight on followings :

1. Control Point $=5$

Degree $=4$
2. Control Point $=6$
3. Degree $=3$

Beta-Splines:

Subdivision Methods

Drawing curves using forward differences

DO YOU KNOW

1-999 No A,B,C

1000................................ Only A
1-999,999,999 No B,C
Billion................................. Only B

There is no entry of C in Table (CRORE)

$$
\begin{aligned}
& \text { 1-99 ... } \mathrm{A}, \mathrm{C} \\
& \text { 100................................. Only D }
\end{aligned}
$$

