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Lecture Notes #9 - Curves

Reading: 

Angel: Chapter 9

Foley et al., Sections 11(intro) and 11.2 

Overview

Introduction to mathematical splines

Bezier curves

Continuity conditions (C0, C1, C2, G1, G2)

Creating continuous splines

C2 interpolating splines

B-splines

Catmull-Rom splines
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Introduction
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Mathematical splines are motivated by the "loftsman's spline":

• Long, narrow strip of wood or plastic

• Used to fit curves through specified data points

• Shaped by lead weights called "ducks"

• Gives curves that are "smooth" or "fair"

Such splines have been used for designing:

• Automobiles

• Ship hulls

• Aircraft fuselages and wings
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Here are some requirements we might like to have in our 
mathematical splines:

• Predictable control

• Multiple values

• Local control

• Versatility

• Continuity
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Mathematical splines
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The mathematical splines we'll use are:

• Piecewise

• Parametric

• Polynomials

Let's look at each of these terms......
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Parametric curves
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In general, a "parametric" curve in the plane is expressed as:

x = x(t)

y = y(t)

Example: A circle with radius r centered at the origin is given by:

x = r cos t

y = r sin t

By contrast, an "implicit" representation of the circle is:
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Parametric polynomial curves
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A parametric "polynomial" curve is a parametric curve where each 
function x(t), y(t) is described by a polynomial:

Polynomial curves have certain advantages:

• Easy to compute

• Infinitely differentiable

Σ a
i
ti

i=0

n
x(t) = 

Σ b
i
ti

i=0

n
y(t) = 
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Piecewise parametric polynomial curves
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A "piecewise" parametric polynomial curve uses different 
polynomial functions for different parts of the curve.

• Advantage: Provides flexibility

• Problem: How do you guarantee smoothness at the 
joints? (Problem known as "continuity.")

In the rest of this lecture, we'll look at:

1. Bezier curves -- general class of polynomial curves

2. Splines -- ways of putting these curves together
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Bezier curves
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• Developed simultaneously by Bezier (at Renault) and deCasteljau 
(at Citroen), circa 1960.

• The Bezier curve Q(u) is defined by nested interpolation:

• V
i
's are "control points"

• { V0, ... , Vn
} is the "control polygon"
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Bezier curves: Basic properties
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Bezier curves enjoy some nice properties:

• Endpoint interpolation:

• Convex hull: The curve is contained in the convex hull of its 
control polygon

• Symmetry:

Q(0) = V0

Q(1) = V
n

Q(u) defined by {V0, ..., Vn
}

Q(1 - u) defined by {V
n
, ... , V0}
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Bezier curves: Explicit formulation
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Let's give V
i
  a superscript V

i
j  to indicate the level of nesting.

An explicit formulation for Q(u) is given by the recurrence:

V
i
j = (1 - u) V

i
j-1 + uV

i+1
j-1
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Explicit formulation, cont.
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For n = 2, we have:

Q(u) = V0
2

= (1 - u)V0
1 + uV1

1

= (1 - u) [(1 - u) V0
0 + uV1

0] + [(1 - u) V1
0 + uV2

0]

= (1 - u)2V0
0 + 2u(1 - u)V1

0 + u2V2
0

In general:

B
i
n(u) is the i'th Bernstein polynomial of degree n.

Q(u) = Vi
n

i
 
 
  

 
 

i= 0

n

∑ ui (1− u)n− i

B
i
n(u)
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Bezier curves: More properties
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Here are some more properties of Bezier curves

Q(u) = Vi
n

i
 
 
  

 
 

i= 0

n

∑ ui (1− u)n− i

• Degree: Q(u) is a polynomial of degree n

• Control points:  How many conditions must we specify to uniquely 
determine a Bezier curve of degree n? 
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More properties, cont.
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• Tangents:

Q'(0) = n(V1 - V0)

Q'(1) = n(V
n
 - V

n-1)

• k'th derivatives: In general,

• Q(k)(0) depends only on V0, ..., Vk

• Q(k)(1) depends only on V
n
, ..., V

n-k

• (At intermediate points u      (0, 1), all control points are 
involved for every derivative.)
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Cubic curves
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For the rest of this discussion, we'll restrict ourselves to piecewise 
cubic curves.

• In CAGD, higher-order curves are often used

• Gives more freedom in design

• Can provide higher degree of continuity between pieces

• For Graphics, piecewise cubic let's you do just about anything

• Lowest degree for specifiying points to interpolate and 
tangents

• Lowest degree for specifying curve in space

All the ideas here generalize to higher-order curves
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Matrix form of Bezier curves
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Bezier curves can also be described in matrix form:

3
Q(u) = Vi

3

i
 
 
  

 
 

i= 0
∑ ui (1− u)3− i

= (1 - u)3 V0 + 3u (1 - u)2 V1 + 3u2 (1 - u) V2 + u3 V3

-1	 3    -3	 1
 3   -6	 3	 0
-3	 3	 0	 0
 1	 0	 0	 0

=   u3  u2  u  1

V0

V1

V2

V3

=   u3  u2  u  1

V0

V1

V2

V3

MBezier
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Display: Recursive subdivision
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Q: Suppose you wanted to draw one of these Bezier curves -- how 
would you do it?

A: Recursive subdivision:
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Display, cont.
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Here's pseudocode for the recursive subdivision display algorithm:

procedure Display({ V0, ..., Vn
}):

if {V0, ..., Vn
} flat within ε then

Output line segment V0Vn

else

Subdivide to produce {L0, ..., Ln
} and {R0, ..., Rn

}

Display({ L0, ..., Ln
})

Display({ R0, ..., Rn
})

end if

end procedure
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Splines

18

To build up more complex curves, we can piece together different 
Bezier curves to make "splines."

For example, we can get:

• Positional (C0) continuity:

• Derivative (C1) continuity:

Q: How would you build an interactive system to satisfy these constraints?
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Advantages of splines
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Advantages of splines over higher-order Bezier curves:

• Numerically more stable

• Easier to compute

• Fewer bumps and wiggles
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Tangent (G1) continuity
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Q: Suppose the tangents were in opposite directions but not of same 
magnitude -- how does the curve appear?

This construction gives "tangent (G1) continuity."

Q: How is G1 continuity different from C1?
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Curvature (C2) continuity
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Q: Suppose you want even higher degrees of continuity -- e.g., not just 
slopes but curvatures -- what additional geometric constraints are imposed?

We'll begin by developing some more mathematics.....
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Operator calculus

22

Let's use a tool known as "operator calculus."

Define the operator D by:

DV
i
      V

i+1

Rewriting our explicit formulation in this notation gives:

Q(u) = Vi
n

i
 
 
  

 
 

i = 0

n
∑ ui (1− u)n− i

= Di
n

i
 
 
  

 
 

i = 0

n
∑ ui (1− u)n− i

= V0
n

i
 
 
  

 
 

i = 0

n
∑ (uD)i (1− u)n− i

V0

Applying the binomial theorem gives:               = (uD + (1 - u))n V0
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Taking the derivative
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One advantage of this form is that now we can take the derivative:

Q'(u) = n(uD + (1 - u))n-1 (D - 1) V0

What's (D - 1) V0?

Plugging in and expanding:

This gives us a general expression for the derivative Q'(u).

= Di
n - 1

i
 
 
  

 
 

i= 0

n-1
∑ ui (1− u)n−1 - i (V0n V1)Q'(u)
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Specializing to n = 3
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What's the derivative Q'(u) for a cubic Bezier curve?

Note that:

• When u = 0: Q'(u) = 3(V1 - V0)

• When u = 1: Q'(u) = 3(V3 - V2)

Geometric interpretation:

So for C1 continuity, we need to set:

3(V3 - V2) = 3(W1 - W0)
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Taking the second derivative
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Taking the derivative once again yields:

Q''(u) = n (n - 1) (uD + (1 - u))n-2 (D - 1)2 V0

What does (D - 1)2 do?
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Second-order continuity
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So the conditions for second-order continuity are:

(V3 - V2) = (W1 - W0)

(V3 - V2) - (V2 - V1) = (W2 - W1) - (W1 - W0)

Putting these together gives:

Geometric interpretation
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C3 continuity
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Summary of continuity conditions

• C0 straightforward, but generally not enough
• C3 is too constrained (with cubics)
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Creating continuous splines
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We'll look at three ways to specify splines with C1 and C2 continuity:

1. C2 interpolating splines

2. B-splines

3. Catmull-Rom splines
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C2 Interpolating splines
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The control points specified by the user, called "joints," are interpolated 
by the spline.

For each of x  and y, we needed to specify ______ conditions for each 
cubic Bezier segment.

So if there are m segments, we'll need ______ constraints.

Q: How many of these constraints are determined by each joint?
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In-depth analysis, cont.
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At each interior joint j, we have:

1. Last curve ends at j

2. Next curve begins at j

3. Tangents of two curves at j are equal

4. Curvature of two curves at j are equal

The m  segments give:

• ______ interior joints

• ______ conditions

The 2 end joints give 2 further contraints:

1. First curve begins at first joint

2. Last curve ends at last joint

Gives _______ constraints altogether.



COS 426 Lecture Notes #9

End conditions

31

The analysis shows that specifying m + 1 joints for m segments leaves 2 
extra degrees of freedom.

These 2 extra constraints can be specified in a variety of ways:

• An interactive system

• Constraints specified as ________

• "Natural" cubic splines

• Second derivatives at endpoints defined to be 0

• Maximal continuity

• Require C3 continuity between first and last pairs of curves
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C2 Interpolating splines
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Problem: Describe an interactive system for specifiying C2 interpolating splines.

Solution:

1. Let user specify first four Bezier control points.

2. This constrains next _____ control points -- draw these in.

3. User then picks _____ more

4. Repeat steps 2-3.
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Global vs. local control
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These C2 interpolating splines yield only "global control" -- moving any 
one joint (or control point) changes the entire curve!

Global control is problematic:

• Makes splines difficult to design

• Makes incremental display inefficient

There's a fix, but nothing comes for free. Two choices:

• B-splines

• Keep C2 continuity

• Give up interpolation

• Catmull-Rom splines

• Keep interpolation

• Give up C2 continuity -- provides C1 only
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B-splines
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Previous construction (C2 interpolating splines):

• Choose joints, constrained by the "A-frames."

New construction (B-splines):

• Choose points on A-frames

• Let these determine the rest of Bezier control points and joints

The B-splines I'll describe are known more precisely as "uniform 
B-splines."
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B-spline construction
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The points specified by the user in this construction are called "de Boor points."
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B-spline properties
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Here are some properties of B-splines:

• C2 continuity

• Approximating

• Does not interpolate deBoor points

• Locality

• Each segment determined by 4 deBoor points

• Each deBoor point determines 4 segments

• Convex hull

• Curve lies inside convex hull of deBoor points
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Algebraic construction of B-splines
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V1 = ______ B1 + ______ B2

V2 = ______ B1 + ______ B2

V0 = ______ [______ B0 + ______ B1] + ______ [______ B1 + ______ B2]

     = ______ B0 + ______ B1 + ______ B2

V3 = ______ B1 + ______ B2 + ______ B3
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Algebraic construction of B-splines, cont.
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Once again, this construction can be expressed in terms of a matrix:

1	 4	 1	 0
0	 4	 2	 0
0	 2	 4	 0
0	 1	 4	 1

=

B0

B1

B2

B3

1

6

V0

V1

V2

V3
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Drawing B-splines
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Drawing B-splines is therefore quite simple:

procedure Draw-B-Spline ({B0, ..., Bn}):

for i = 0 to n - 3 do

Convert B
i
, ..., B

i+3 into a Bezier control polygon V0, ..., V3

Display ({V0, ... , V3})

end for

end procedure
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Multiple vertices
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Q: What happens if you put more than one control point in the same 
place?

Some possibilities:

• Triple vertex

• Double vertex

• Collinear vertices
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End conditions
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You can also use multiple vertices at the endpoints:

• Double endpoint

• Curve tangent to line between first distinct points

• Triple endpoint

• Curve interpolates endpoint

• Starts out with a line segment

• Phantom vertices

• Gives interpolation without line segment at ends
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Catmull-Rom splines
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The Catmull-Rom splines

• Give up C2 continuity

• Keep interpolation

For the derivation, let's go back to the interpolation algorithm. We had 4 
conditions at each joint j:

1. Last curve ends at j

2. Next curve begins at j

3. Tangents of two curves at j are equal

4. Curvature of two curves at j are equal

If we ...

• Eliminate condition 4

• Make condition 3 depend only on local control points

... then we can have local control!
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Derivation of Catmull-Rom splines
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Idea: (Same as B-splines)

• Start with joints to interpolate

• Build a cubic Bezier curve between successive points

The endpoints of the cubic Bezier are obvious:

V0 = B1

V3 = B2

Q: What should we do for the other two points?
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Derivation of Catmull-Rom, cont.
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A: Catmull & Rom use half the magnitude of the vector between 
adjacent control points:

Many other choices work -- for example, using an arbitrary constant τ 
times this vector gives a "tension" control.
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Matrix formulation
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The Catmull-Rom splines also admit a matrix formulation:

0	 6	 0	 0
-1	 6	 1	 0
0	 1	 6	 -1
0	 0	 6	 0

=

B0

B1

B2

B3

1

6

V0

V1

V2

V3

Exercise: Derive this matrix.
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Properties
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Here are some properties of Catmull-Rom splines:

• C1 Continuity

• Interpolating

• Locality

• No convex hull property

• (Proof left as an exercise.)



 (Spline, Bezier, B-Spline) 
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Spline  

• Drafting terminology 

– Spline is a flexible strip that is easily flexed to 

pass through a series of design points (control 

points) to produce a smooth curve. 

• Spline curve – a piecewise polynomial 

(cubic) curve whose first and second 

derivatives are continuous across the 

various curve sections. 
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Bezier curve 

• Developed by Paul de Casteljau (1959) and 

independently by Pierre Bezier (1962). 

• French automobil company – Citroen & 

Renault.  

P0 

P1 P2 

P3 
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Parametric function 

• P(u) =  Bn,i(u)pi  

Where 

  Bn,i(u) = .    n!.   ui(1-u)n-i 

                     i!(n-i)!              0<= u<= 1  

i=0 

n 

For 3 control points, n = 2 

P(u) = (1-u)2p0 + 2u(1-u) p1+ u2p2  

 

For four control points, n = 3 

P(u) = (1-u)3p0 + 3u(1-u) 2 p1 + 3u 2 (1-u)p2 + u3p3  
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algorithm 

• De Casteljau 

– Basic concept  

• To choose a point C in line segment AB such that C 

divides the line segment AB in a ratio of u: 1-u 

A B C 

P0 

P1 

P2 

Let u = 0.5 

00 01 
u=0.25 

10 

11 

u=0.75 

20 

      21 
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properties 

• The curve passes through the first, P0 and last 
vertex points, Pn . 

• The tangent vector at the starting point P0 must be 
given by P1 – P0 and the tangent Pn given by Pn – 
Pn-1  

• This requirement is generalized for higher 
derivatives at the curve’s end points. E.g 2nd 
derivative at P0 can be determined by P0 ,P1 ,P2 (to 
satisfy continuity) 

• The same curve is generated when the order of the 
control points is reversed 6 omprakash@teachers.org 



Properties (continued) 

• Convex hull 

– Convex polygon formed by connecting the 

control points of the curve. 

– Curve resides completely inside its convex hull 

 

7 omprakash@teachers.org 



B-Spline 

• Motivation (recall bezier curve) 

– The degree of a Bezier Curve is 
determined by the number of 
control points 

– E. g. (bezier curve degree 11) – 
difficult to bend the "neck" toward 
the line segment P4P5.  

– Of course, we can add more control 
points. 

– BUT this will increase the degree 
of the curve  increase 
computational burden 
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• Motivation (recall bezier curve) 

– Joint many bezier curves of lower 

degree together (right figure) 

– BUT maintaining continuity in 

the derivatives of the desired 

order at the connection point is 

not easy or may be tedious and 

undesirable. 

 

 

B-Spline 
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B-Spline 

• Motivation (recall bezier curve) 

– moving a control point affects the 

shape of the entire curve- (global 

modification property) – 

undesirable. 

- Thus, the solution is B-Spline – the 

degree of the curve is independent 

of the number of control points 

- E.g - right figure – a B-spline curve 

of degree 3 defined by 8 control 

points 
10 omprakash@teachers.org 



• In fact, there are five Bézier curve 
segments of degree 3 joining 
together to form the B-spline curve 
defined by the control points 

• little dots subdivide the B-spline 
curve into Bézier curve segments.  

• Subdividing the curve directly is 
difficult to do  so, subdivide the 
domain of the curve by points 
called knots 

 

 

B-Spline 

0         u      1 
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• In summary, to design a B-spline curve, we 

need a set of control points, a set of knots 

and a degree of curve. 

 

B-Spline 
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• P(u) =  Ni,k(u)pi  (umin  u  umax)..  (1.0) 

Where basis function = Ni,k(u) 

Degree of curve  k-1 

Control points, pi  0  i  n 

Knot, u  umin  u  umax 

max = n + k 

2  k n+1 

B-Spline curve 

i=0 

n 
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B-Spline : definition  

• P(u) =  Ni,k(u)pi   (umin  u  um) 

• ui  knot 

• [ui, ui+1)  knot span 

• (u0, u1, u2, …. um  ) knot vector 

• The point on the curve that corresponds to a knot ui,  
knot point ,P(ui) 

• If knots are equally space  uniform 

• If knots are not equally space  non uniform 

14 omprakash@teachers.org 



• Uniform knot vector 

– Individual knot value is evenly spaced  

– (0, 1, 2, 3, 4) 

– ( 0, 0.2, 0.4, 0.6…) 

– Then, normalized to the range [0, 1] 

– (0, 0.25, 0.5, 0.75, 1.0) 

– (0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0) 

B-Spline : definition  

15 omprakash@teachers.org 



• Non-Uniform knot vector 

– Individual knot value is not evenly spaced  

– (0, 1, 3, 7, 8) 

– ( 0, 0.2, 0.3, 0.7……) 

– (0, 0.1, 0.3, 0.4, 0.8 …) 

– Then, normalized to the range [0, 1] 

– (0, 0.15, 0.20, 0.35, 0.40,0.75,0.85,1.0) 

 

B-Spline : definition  
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Type of B-Spline uniform knot vector 

Non-periodic knots 

(open knots) 
Periodic knots 

(non-open knots) 

-First and last knots are 

duplicated k times. 

-E.g (0,0,0,1,2,2,2) 

-Curve pass through the 

first and last control 

points 

-First and last knots are 

not duplicated – same 

contribution. 

-E.g (0, 1, 2, 3) 

-Curve doesn’t pass 

through end points. 

- used to generate closed 

curves (when first = last 

control points) 
17 omprakash@teachers.org 



Type of B-Spline Uniform knot 

vector 

Non-periodic knots 

(open knots) 
Periodic knots 

(non-open knots) 

(Closed knots) 
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Non-periodic (open) uniform B-Spline 

• The knot spacing is evenly spaced except at the ends 

where knot values are repeated k times. 

• E.g  P(u) =  Ni,k(u)pi   (u0  u  um) 

• Degree = k-1,  number of control points = n + 1 

• Number of knots = m + 1 @   n+ k + 1 

for degree = 1 and number of control points = 4 (k = 2, n = 3) 

Number of knots = n + k + 1 = 6    

 Range = 0 to n+k 

non periodic uniform knot vector (0,0,1,2,3, 3) 

* Knot value between 0 and 3 are equally spaced  

uniform 

i=0 

n 
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Questions 

• For curve degree = 3, number of 

control points = 5  

• For curve degree = 1, number of 

control points = 5 

• k = ? , n = ? , Range = ? 

   Knot vector = ? 
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• Example 

• For curve degree = 3, number of control points = 5 

•  k = 4, n = 4 

•  number of knots = n+k+1 = 9 

•  non periodic knots vector = (0,0,0,0,1,2,2,2,2) 

• For curve degree = 1, number of control points = 5 

•  k = 2, n = 4 

•  number of knots = n + k + 1 = 7 

•  non periodic uniform knots vector = (0, 0, 1, 2, 3, 4, 4) 

Non-periodic (open) uniform B-Spline 
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• For any value of parameters k and n, non 

periodic knots are determined from 

 

Non-periodic (open) uniform B-Spline 

ui =  

0  0 i < k 

i – k + 1 k  i  n 

n – k + 2 n < i n+k 

e.g  k=2, n = 3 

ui =  

0  0 i < 2 

i – 2 + 1 2  i  3 

3 – 2 + 2 3 < i 5 

u = (0, 0, 1, 2, 3, 3) 

(1.3) 
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B-Spline basis function 

   
 

 
 
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uu
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 3      
selainnya.       0

               1
  

1

1,



 


ii

i

uuu
N

In equation (1.1), the denominators can have a value of 

zero, 0/0 is presumed to be zero. 

 

If the degree is zero basis function Ni,1(u) is 1 if u is in the 

i-th knot span [ui, ui+1). 

Otherwise     

(1.1)  

(1.2) 
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• For example, if we have four knots u0 = 0, u1 = 1, 
u2 = 2 and u3 = 3, knot spans 0, 1 and 2 are [0,1), 
[1,2), [2,3) 

•  the basis functions of degree 0 are N0,1(u) = 1 on 
[0,1) and 0 elsewhere, N1,1(u) = 1 on [1,2) and 0 
elsewhere, and N2,1(u) = 1 on [2,3) and 0 
elsewhere.  

• This is shown below 

B-Spline basis function 
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• To understand the way of computing Ni,k(u) for k greater 

than 0, we use the triangular computation scheme 

 

B-Spline basis function 
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Example 

• Find the knot values of  a non periodic 

uniform B-Spline which has degree = 2 and 

3 control points. Then, find the equation of 

B-Spline curve in polynomial form. 

Non-periodic (open) uniform B-Spline 
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Answer 

• Degree = k-1 = 2  k=3 

• Control points = n + 1 = 3  n=2 

• Number of knot = n + k + 1 = 6 

• Knot values  0,0,0,1,1,1 

 

Non-periodic (open) uniform B-Spline 
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Answer(cont) 

• To obtain the polynomial equation,                         

P(u) =  Ni,k(u)pi   

•        =  Ni,3(u)pi   

•        = N0,3(u)p0 + N1,3(u)p1 + N2,3(u)p2  

 

• firstly, find the Ni,k(u) using the knot value that 

shown above, start from k =1 to k=3 

Non-periodic (open) uniform B-Spline 

i=0 

  n 

i=0 

  2 
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Answer (cont) 
• For k = 1, find Ni,1(u) – use equation (1.2):  

• N0,1(u) =    1    u0 u   u1    ;  (u=0) 

•                   0              otherwise 

• N1,1(u) =    1    u1 u   u2    ;  (u=0) 

•                   0              otherwise 

• N2,1(u) =    1    u2 u   u3    ;  (0 u  1) 

•                   0              otherwise 

• N3,1(u) =    1    u3 u   u4    ;  (u=1) 

•                   0              otherwise 

• N4,1(u) =    1    u4 u   u5    ;  (u=1) 

•                   0              otherwise 

Non-periodic (open) uniform B-Spline 
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Answer (cont) 
• For k = 2, find Ni,2(u) – use equation (1.1):  

 

 

• N0,2(u) =    u - u0 N0,1  + u2 – u N1,1 (u0 =u1 =u2 = 0)   

•                   u1 - u0                  u2 – u1 

•                  =    u – 0 N0,1 +    0 – u N1,1  =  0 

•                   0 – 0              0 – 0  

• N1,2(u) =     u - u1 N1,1  + u3 – u N2,1 (u1 =u2 = 0, u3 = 1)   

•                   u2 - u1                  u3 – u2 

•                  =    u – 0 N1,1 +    1 – u N2,1  =  1 - u 

•                   0 – 0              1 – 0  

 

Non-periodic (open) uniform B-Spline 
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Answer (cont) 
• N2,2(u) =    u – u2 N2,1  + u4 – u N3,1 (u2 =0, u3 =u4 = 1)   

•                   u3 – u2                  u4 – u3 

•                  =    u – 0 N2,1 +    1 – u N3,1  =  u 

•                   1 – 0              1 – 1  

• N3,2(u) =     u – u3 N3,1  + u5 – u N4,1 (u3 =u4 = u5 = 1)   

•                   u4 – u3                  u5– u4 

•                  =    u – 1 N3,1 +    1 – u N4,1  = 0   

•                   1 – 1              1 – 1  

 

Non-periodic (open) uniform B-Spline 
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Non-periodic (open) uniform B-Spline 

Answer (cont) 
For k = 2 

N0,2(u) = 0 

N1,2(u) = 1 - u 

N2,2(u) = u 

N3,2(u) = 0 
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Answer (cont) 
• For k = 3, find Ni,3(u) – use equation (1.1):  

 

 

• N0,3(u) =    u - u0 N0,2  + u3 – u N1,2 (u0 =u1 =u2 = 0, u3 =1 )  

•                   u2 - u0                  u3 – u1 

•                  =    u – 0 N0,2 +    1 – u N1,2  =  (1-u)(1-u) = (1- u)2 

•                   0 – 0              1 – 0  

• N1,3(u) =     u - u1 N1,2  + u4 – u N2,2 (u1 =u2 = 0, u3 = u4 = 1) 

•                   u3 - u1                  u4 – u2 

•                  =    u – 0 N1,2 +    1 – u N2,2  =  u(1 – u) +(1-u)u = 2u(1-u) 

•                   1 – 0              1 – 0  

 

Non-periodic (open) uniform B-Spline 
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Answer (cont) 
• N2,3(u) =    u – u2 N2,2  + u5 – u N3,2 (u2 =0, u3 =u4 = u5 =1)   

•                   u4 – u2                  u5 – u3 

•                  =    u – 0 N2,2 +    1 – u N3,2  =  u2 

•                   1 – 0              1 – 1  

N0,3(u) =(1- u)2,            N1,3(u) = 2u(1-u),          N2,3(u) = u2 

 

The polynomial equation, P(u) =  Ni,k(u)pi 
• P(u) = N0,3(u)p0 + N1,3(u)p1 + N2,3(u)p2 

•       = (1- u)2 p0 + 2u(1-u) p1 + u2p2      (0 <= u <= 1) 

 

Non-periodic (open) uniform B-Spline 

i=0 

  n 
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• Exercise 

• Find the polynomial equation for curve with 

degree = 1 and number of control points = 4 

Non-periodic (open) uniform B-

Spline 
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• Answer  

• k = 2 , n = 3  number of knots = 6 

• Knot vector = (0, 0, 1, 2, 3, 3) 
• For k = 1, find Ni,1(u) – use equation (1.2):  

• N0,1(u) =    1    u0 u   u1    ;  (u=0) 

• N1,1(u) =    1    u1 u   u2    ; (0 u  1) 

N2,1(u) =    1    u2 u   u3    ;  (1 u  2) 

• N3,1(u) =    1    u3 u   u4    ; (2 u  3) 

N4,1(u) =    1    u4 u   u5    ;  (u=3) 

•                    

Non-periodic (open) uniform B-Spline 
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Answer (cont) 
• For k = 2, find Ni,2(u) – use equation (1.1):  

 

 

• N0,2(u) =    u - u0 N0,1  + u2 – u N1,1 (u0 =u1 =0, u2 = 1)   

•                   u1 - u0                  u2 – u1 

•                  =    u – 0 N0,1 +    1 – u N1,1   

•                   0 – 0              1 – 0  

•             =   1 – u   (0 u  1)  

 

Non-periodic (open) uniform B-Spline 
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Answer (cont) 
• For k = 2, find Ni,2(u) – use equation (1.1):  

 

 

• N1,2(u) =     u - u1 N1,1  + u3 – u N2,1 (u1 =0, u2 =1, u3 = 2)   

•                   u2 - u1                  u3 – u2 

•                  =    u – 0 N1,1 +    2 – u N2,1   

•                   1 – 0              2 – 1 

• N1,2(u) =  u          (0 u  1)  

• N1,2(u) = 2 – u     (1 u  2) 

 

 

Non-periodic (open) uniform B-Spline 
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Answer (cont) 
• N2,2(u) =    u – u2 N2,1  + u4 – u N3,1 (u2 =1, u3 =2,u4 = 3)   

•                   u3 – u2                  u4 – u3 

•                  =    u – 1 N2,1 +    3 – u N3,1  = 

•                   2 – 1              3 – 2  

•  N2,2(u) =    u – 1   (1 u  2) 

• N2,2(u)  = 3 – u        (2 u  3)  

 

Non-periodic (open) uniform B-Spline 
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Answer (cont) 
• N3,2(u) =     u – u3 N3,1  + u5 – u N4,1 (u3 = 2, u4 = 3, u5 = 3)   

•                   u4 – u3                  u5– u4 

•                  =    u – 2 N3,1 +     3 – u N4,1  =   

•                   3 – 2               3 – 3  

•            =  u – 2  (2 u  3)   

 

Non-periodic (open) uniform B-Spline 
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Answer (cont) 

• The polynomial equation P(u) =  Ni,k(u)pi 
• P(u) = N0,2(u)p0 + N1,2(u)p1 + N2,2(u)p2  + N3,2(u)p3 

 

• P(u) = (1 – u) p0 +  u p1    (0 u  1)  

• P(u) = (2 – u) p1 +  (u – 1) p2    (1 u  2)  

• P(u) = (3 – u) p2  +  (u - 2) p3    (2 u  3)  

 

 

 

Non-periodic (open) uniform B-Spline 
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Periodic uniform knot 

• Periodic knots are determined from 

– Ui          ; (0  i  n+k) 

 

• Example 

– For curve with degree = 3 and number of 
control points = 4 (cubic B-spline) 

– (k = 4, n = 3)  number of knots = n+k+1 =8 

– (0, 1, 2, 3, 4, 5, 6, 7) 
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• Normalize u (0<= u <= 1) 
• N0,4(u) = 1/6 (1-u)3 

• N1,4(u) = 1/6 (3u 3 – 6u 2 +4) 

• N2,4(u) = 1/6 (-3u 3 + 3u 2 + 3u +1) 

• N3,4(u) = 1/6 u3 

 

• P(u) = N0,4(u)p0 + N1,4(u)p1 + N2,4(u)p2  + N3,4(u)p3 

 

Periodic uniform knot 
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• In matrix form 

• P(u) = [u3,u2, u, 1].Mn. 

 

• Mn = 1/6  

Periodic uniform knot 

P0 

P1 

P2 

P3 

-1 3 -3    1 

3 -6 3     0 

-3 0 3     0 

1 4 1     0 
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Periodic uniform knot 

P0 
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Closed periodic 

P0 

P1 

P2 

P3 

P4 

P5 

Example 

k = 4, n = 5 
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Equation 1.0 change to  

• Ni,k(u) = N0,k((u-i)mod(n+1)) 

 P(u) =  N0,k((u-i)mod(n+1))pi 

Closed periodic 

i=0 

n 

0<= u <= n+1 
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48 

 

Question 1 

 
Construct the B-Spline curve of degree/order 3 with 4 polygon 

vertices A(1,1), B(2,3), C(4,3) and D(6,2). Using Non-

Periodic Knot and Periodic Knot. 
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Properties of B-Spline 

1. The m degree B-Spline function are 

piecewise polynomials of degree m   

have Cm-1 continuity. e.g  B-Spline 

degree 3 have C2 continuity. 

u=1 

u=2 
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Properties of B-Spline 
In general, the lower the degree, the closer a B-spline 

curve follows its control polyline.  

 

Degree = 7 Degree = 5 Degree = 3 
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Properties of B-Spline 

Equality m = n + k must be satisfied 

Number of knots = m + 1 

k cannot exceed the number of control points, n+ 1 
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Properties of B-Spline 

2. Each curve segment is affected by k control 

points as shown by past examples. e.g  k = 3, 

P(u) = Ni-1,k pi-1 + Ni,k pi+ Ni+1,k pi+1  
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Properties of B-Spline 

Local Modification Scheme: changing the position of control 

point Pi only affects the curve C(u) on interval [ui, ui+k).  

 
 

Modify control point P2 
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Properties of B-Spline 
3.   Strong Convex Hull Property: A B-spline curve is 

contained in the convex hull of its control polyline. 

More specifically, if u is in knot span [ui,ui+1), then C(u) 

is in the convex hull of control points Pi-p, Pi-p+1, ..., Pi.  

 

 Degree = 3, k = 4 

Convex hull based on 4 

control points 
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Properties of B-Spline 

4. Non-periodic B-spline curve C(u) passes through 

the two end control points P0 and Pn. 

5. Each B-spline function Nk,m(t) is nonnegative 

for every t, and the family of such functions 

sums to unity, that is  Ni,k (u) = 1 

6. Affine Invariance  

 to transform a B-Spline curve, we simply 

transform each control points. 

7. Bézier Curves Are Special Cases of B-spline 

Curves 

 

i=0 

n 
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Properties of B-Spline 
8. Variation Diminishing : A B-Spline curve does 

not pass through any line more times than does 

its control polyline  
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Knot Insertion : B-Spline 

• knot insertion is adding a new knot into the 
existing knot vector without changing the shape of 
the curve. 

• new knot may be equal to an existing knot  the 
multiplicity of that knot is increased by one 

• Since, number of knots = k + n + 1  

• If the number of knots is increased by 1 either 
degree or number of control points must also be 
increased by 1. 

• Maintain the curve shape maintain degree 
change the number of control points. 
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• So, inserting a new knot causes a new control 
point to be added. In fact, some existing control 
points are removed and replaced with new ones by 
corner cutting 

Knot Insertion : B-Spline 

Insert knot u = 0.5 
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Single knot insertion : B-Spline 

• Given n+1 control points – P0, P1, .. Pn  

• Knot vector,  U= (u0, u1,…um) 

• Degree = p,  order, k = p+1 

• Insert a new knot t into knot vector without 

changing the shape. 

•  find the knot span that contains the new 

knot. Let say [uk, uk+1) 
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Single knot insertion : B-Spline 
• This insertion will affected to k (degree + 1) control points 

(refer to B-Spline properties)  Pk, Pk-1, Pk-1,…Pk-p 

• Find p new control points Qk on leg Pk-1Pk, Qk-1 on leg Pk-

2Pk-1, ..., and Qk-p+1 on leg Pk-pPk-p+1 such that the old 

polyline between Pk-p and Pk (in black below) is replaced by 

Pk-pQk-p+1...QkPk (in orange below) 

Pk 

Pk-1 Pk-2 

Pk-p 

Pk-p+1 

Qk Qk-1 

Qk-p+1 
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Single knot insertion : B-Spline 

• All other control points are not change 

• The formula for computing the new control 

point Qi on leg Pi-1Pi is the following 

• Qi = (1-ai)Pi-1+ aiPi 

• ai = t- ui            k-p+1<= i <= k 

•      ui+p-ui 
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Single knot insertion : B-Spline 

• Example 

• Suppose we have a B-spline curve of degree 

3 with a knot vector as follows:  

 u0 to u3 u4 u5 u6 u7 u8 to u11 

0 0.2 0.4 0.6 0.8 1 

Insert a new knot t = 0.5 , find new control points 

and new knot vector? 
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Single knot insertion : B-Spline 
Solution: 

- t = 0.5 lies in knot span [u5, u6) 

- the affected control points are P5, P4, P3 and P2 

- find the 3 new control points Q5, Q4, Q3 

- we need to compute a5, a4 and a3 as follows 

- a5 = t - u5 =  0.5 – 0.4  = 1/6 

              u8 -u5          1 – 0.4 

    - a4 = t - u4 =  0.5 – 0.2  = 1/2 

              u7 –u4       0.8 – 0.2 

    - a3 = t - u3 =  0.5 –   0 = 5/6 

              u6 -u3        0.6 – 0 
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• Solution (cont) 

• The three new control points are  

• Q5 = (1-a5)P4+ a5P5  = (1-1/6)P4+ 1/6P5  

• Q4 = (1-a4)P3+ a4P4  = (1-1/6)P3+ 1/6P4  

• Q3 = (1-a3)P2+ a3P3 = (1-5/6)P2+ 5/6P3  

 

Single knot insertion : B-Spline 
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• Solution (cont) 

• The new control points are P0, P1, P2, Q3, 

Q4, Q5, P5, P6, P7 

• the new knot vector is  

 

 

 

Single knot insertion : B-Spline 

u0 to u3 u4 u5 u6 

 

u7 u8 u9 to u12 

0 0.2 0.4 0.5 0.6 0.8 1 
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cp = 3 

Degree = 2 

k = 3 

n =2 
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Solution  :  

 

Degree = 6 

Degree = k-1 ; k = 7 

Control Points   = n+1 ; 7= n +1 ; n=6 

Range = n+k = 13 ;  

Knot Value = n+k+1 = 6+7+1 = 14  

Weight = 7 ( Control Point = Weight) 
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Question :  

 

Calculate the k, n, total number of knots, Knot Values/Vectors, 

range and Weight on followings : 

 

1. Control Point = 5 

     Degree = 4 

 

2. Control Point = 6 

      

3. Degree = 3 
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Beta-Splines:  

 

Subdivision Methods 

 

Drawing curves using forward differences 

omprakash@teachers.org 



74 

DO YOU KNOW 
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1-99 ………………………..  No A,B,C 

100………………………….  Only D 
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1-999 ………………………..  No A,B,C 

1000………………………….  Only A 

1-999,999,999 ………………  No B,C 

Billion……………………….. Only B 

There is no entry of C in Table (CRORE) 


