
Computer Graphics

Viewing

What Are Projections?

 Our 3-D scenes are all specified in 3-D world

coordinates

 To display these we need to generate a 2-D

image - project objects onto a picture plane

 So how do we figure out these projections?

Picture Plane

Objects in

World Space

Converting From 3-D To 2-D

 Projection is just one part of the process of

converting from 3-D world coordinates to a 2-

D image

Clip against

view volume

Project onto

projection

plane

Transform to

2-D device

coordinates

3-D world

coordinate

output

primitives

2-D device

coordinates

Types Of Projections

 There are two broad classes of projection:

 Parallel: Typically used for architectural and

engineering drawings

 Perspective: Realistic looking and used in

computer graphics

Perspective Projection Parallel Projection

Types Of Projections (cont…)

 For anyone who did engineering or technical

drawing

Parallel Projections

 Some examples of parallel projections

Orthographic Projection

Isometric Projection

Isometric Projections

 Isometric projections have been used in

computer games from the very early days of

the industry up to today

Q*Bert Sim City Virtual Magic Kingdom

Perspective Projections

 Perspective projections are much more

realistic than parallel projections

Perspective Projections

 There are a number of different kinds of

perspective views

 The most common are one-point and two

point perspectives

One Point Perspective

Projection

Two-Point

Perspective

Projection

Elements Of A Perspective Projection

Virtual

Camera

The Up And Look Vectors

 The look vector indicates the direction in which the

camera is pointing

 The up vector determines how the camera is rotated

 For example, is the camera held vertically or

horizontally

Up vector
Look vector

Position

Projection of

up vector

Contents

 In today’s lecture we are going to have a look

at:

 Transformations in 3-D

 How do transformations in 3-D work?

 3-D homogeneous coordinates and matrix based

transformations

 Projections

 History

 Geometrical Constructions

 Types of Projection

 Projection in Computer Graphics

3-D Coordinate Spaces

 Remember what we mean by a 3-D

coordinate space

x axis

y axis

z axis

P

y

z

x

Right-Hand

Reference System

Translations In 3-D

 To translate a point in three dimensions by

dx, dy and dz simply calculate the new points

as follows:

 x’ = x + dx y’ = y + dy z’ = z + dz

(x’, y’, z’)

(x, y, z)

Translated Position

Scaling In 3-D

 To sale a point in three dimensions by sx, sy

and sz simply calculate the new points as

follows:

x’ = sx*x y’ = sy*y z’ = sz*z

(x, y, z)

Scaled Position

(x’, y’, z’)

Rotations In 3-D

 When we performed rotations in two

dimensions we only had the choice of rotating

about the z axis

 In the case of three dimensions we have more

options

 Rotate about x – pitch

 Rotate about y – yaw

 Rotate about z - roll

Rotations In 3-D (cont…)

 x’ = x·cosθ - y·sinθ

 y’ = x·sinθ + y·cosθ

 z’ = z

 x’ = x

 y’ = y·cosθ - z·sinθ

 z’ = y·sinθ + z·cosθ

 x’ = z·sinθ + x·cosθ

 y’ = y

 z’ = z·cosθ - x·sinθ

 The equations for the three kinds of rotations

in 3-D are as follows:

Homogeneous Coordinates In 3-D

 Similar to the 2-D situation we can use homogeneous

coordinates for 3-D transformations - 4 coordinate

column vector

 All transformations can

then be represented

as matrices



















1

z

y

x

x axis

y axis

z axis

P

y

z

x

P(x, y, z) =

3D Transformation Matrices



















1000

100

010

001

dz

dy

dx



















1000

000

000

000

z

y

x

s

s

s





















1000

0cos0sin

0010

0sin0cos





Translation by

dx, dy, dz
Scaling by

sx, sy, sz





















1000

0cossin0

0sincos0

0001





Rotate About X-Axis

















 

1000

0100

00cossin

00sincos





Rotate About Y-Axis Rotate About Z-Axis

Remember The Big Idea

Summary

 In today’s lecture we looked at:

 Transformations in 3-D

 Very similar to those in 2-D

 Projections

 3-D scenes must be projected onto a 2-D image

plane

 Lots of ways to do this

 Parallel projections

 Perspective projections

 The virtual camera

Who’s Choosing Graphics?

 A couple of quick questions for you:

 Who is choosing graphics as an option?

 Are there any problems with option time-

tabling?

 What do you think of the course so far?

 Is it too fast/slow?

 Is it too easy/hard?

 Is there anything in particular you want to cover?

3D Transformations

• Same idea as 2D transformations

– Homogeneous coordinates: (x,y,z,w)

– 4x4 transformation matrices

























































w

z

y

x

ponm

lkji

hgfe

dcba

w

z

y

x

'

'

'

'



















































w
z

y
x

w
z

y
x

1000
0100
0010
0001

'

'
'

























































w

z

y

x

t

t

t

w

z

y

x

z

y

x

1000

100

010

001

'

'

'

Identity

Translation

Translation

W=1

























































w

z

y

x

s

s

s

w

z

y

x

z

y

x

1000

000

000

000

'

'

'

Scale

Scaling



















































w
z

y
x

w
z

y
x

1000
0100
0010
0001

'

'
'

Identity

Column Vector Representation

Row Vector Representation

x’ y’ z’ 1 = x , y, z ,1

Rotation





















































w
z

y
x

w
z

y
x

1000
0100
00cossin
00sincos

'

'
'

Rotate around Z axis:

Column Vector Representation

Row Vector Representation

Rotation

Rotate around Y axis:





























































w

z

y

x

w

z

y

x

1000

0cos0sin

0010

0sin0cos

'

'

'

Column Vector Representation

Row Vector Representation

Rotation

Rotate around X axis:






















































w
z

y
x

w
z

y
x

1000
0cossin0
0sincos0
0001

'

'
'

Column Vector Representation

Row Vector Representation

Projection

Representing a three-dimensional object or scene in 2-

dimensional objects onto the 2-dimensional view plane.

There are 2 types of projections.

Parallel Projection

Perspective Projection

Categories

of

Projection

Parallel
Projection

Orthographi
c Projection

Axonometric
Projection

Isometric
Projection

Dimetric
Projection

Trimetric
Projection

Oblique
Projection

Cavalier
Projection

Cabinet
Projection

Perspective
projection

Single-Point
Projection

Two-Point
Projection

Three-Point
Projection

Parallel Projection

Parallel Projection preserves relative proportions of objects but does not

produce the realistic views

Perspective Projection

Perspective Projection produce the realistic views but does not

preserves relative proportions of objects

View Plane

Front View

Orthographic Parallel Projection

Axonometric Ortho…

Top,

Side,

rear

(far) :

Elevati

ons

&

Top

is

called

Plan

View

Isometric Projection of an object

onto a viewing plane

Oblique Parallel Projection

Cavalier Projections of the unit cube

Cabinet Projections of the Unit Cube

Types of Perspective Projections

Logical Relationship among the various

types of projections

Transformation Matrix for general Parallel

Projection (on XY plane)

(x1,y1,

Matrix Representation

Transformation Matrix for general Oblique

Projection (on XY plane)

Transformation Matrix for Perspective

Projection (on XY plane)

3D Clipping

HiDdEn SuRfAcE rEmOvAl

Example

Original Pyramid
After Hidden Surface

Removal

cAtEgOrIeS oF hIDdEn SuRfAcE
rEmOvAl

• oBJECT sPACE mETHOD

• iMAGE sPACE mETHOD

Hidden Surface
Removal/ Visible
Surface Detection

Object Space
Method

Robert’s
Algorith

m

Back
Face

Removal
/Detecti

on
Method

Painter’s
Algorith

m
(Depth
Sort)

Image Space
Method

Area
Subdivisi

on
Method
(Warnoc

k’s)

Octree
method

Depth
Buffer

Method
(Z-Buffer

Scan
Line

Algortih
m

Ray
Tracing
Method

oThErS

• fLOATING hORIZON aLGORITHM

• bINARY sPACE pARTITIONING

bAcK fAcE rEmOvAl mEtHoD
• Back face means the surface of the polygon which in

not visible in projection. So we have to remove this
surface from projection.

• It is used for identifying back faces of a polyhedron is
base on the inside-outside test.

• Back face removal algorithm will be applied on plane
polygons.

 A point (x,y,z) is inside a polygon surface with plane
parameters A, B, C and D if

 Ax + By + Cz + D < 0

• Figure : Vector V in the viewing direction and a
back-face normal vector N of a polyhedron

N= (A,B,C)

Camera

V

• The normal vector N to a polygon surface, which has Cartesian
Components (A,B,C).

• If V is a vector in the viewing direction from the eye or camera position,
then this position is a back face if

 V.N > 0

• If the dot product is positive, we can say that
the polygon faces towards the viewer,
otherwise it faces away and should be
removed.

• In case, if object description has been
converted to projection coordinates and our
viewing direction is parallel to the viewing Zv

axis, then V = (0,0,Zv) and V.N = Zv C

• To consider the sign of C , the z component of
the normal vector N. Now if the Z component
is positive, then the polygon faces towards the
viewer, if negative it faces away .

Yv

Xv

Zv

N= (A,B,C)

V

Example I

EYE

EYE

FRONT

BACK

Example II
Y

X

Z

C
D

B A

A B

D C

A B

D C

A B

D C

A B

D
C

Back-face Detection

Method Direction for

Faces

ABC BDC

ACD ADB

DePtH cOmPaRiSiOn

Z

Y

X

B(x2,y2,z2)

A(x1,y1,z1)

P
Parallel Projection

If A and B are
not on the same
projection line
then no point
hide the other
point.

If A and B are
on the same
projection line
then in case of
parallel
projection on xy
plane if x1=x2
and y1 = y2 then
A and B are on
same plane. If
Z1<Z2 then A
point hide B.

Frame Buffer

Z

Y

X

B(x2,y2,z2)

A(x1,y1,z1)

P
Perspective Projection

Z-Buffer (Depth Buffer) Algorithm

Z-Buffer (Depth Buffer) Algorithm

Y

X

Z

(X , Y)
Result

At view plane
position (x,y),surface
S1 has the smallest
depth from the view
plane and so is visible
at that position

Z-Buffer Algorithm

• Initialize frame buffer to background colour.

• Initialize z-buffer to minimum z value.

• Scan convert each polygon in arbitrary order.

• For each(x,y) pixel, calculate depth ‘z’ at that
pixel(z(x,y)).

• Compare calculated new depth z(x,y) with value
previously stored in z-buffer at that location z(x,y).

• If z(x,y)>z(x,y), then write the new depth value to z-
buffer and update frame buffer.

• Otherwise, no action is taken.

• The plane polygon define a surface or plane
whose equation can be written as

 Ax + By + Cz + D = 0
 Depth value for a surface position (x.y) are
 calculated from the plane equation for each
 surface

 z = -Ax –By-D
 C

Z’ = -A (x+1) – By –D

 C

From position (x,y)
on a scan line, the
next position across
the line has
coordinates (x+1,y)
and the position
immediately below
on the next line has
coordinates (x,y-1)

Top Scan Line

Y Scan Line

Bottom Scan Line

Fig: Scan Lines intersecting a polygon surface

Top Scan Line

Y Scan Line

Bottom Scan Line

Fig: Intersecting positions on successive scan line along a Left Polygon

edge

Y-1 Scan Line

X X’

Scan Line Method

Scan Line 1

Scan Line 2

S1 S2

a

b

c

d g

h

f

e

Scan Lines crossing the projection of two surface, S1 and S2 in the view plane. Dashed
lines indicates the boundaries of hidden surfaces.

Scan Line1 S1: edge ab & bc , s2: eh &ef

Scan Line2 S1: ad & eh , s2 :bc &fg
S1 & s2 : eh & bc
Depth value S1<S2 then s1 is visible

Intersecting and cyclically overlapping surfaces

that alternately obscure(Unclear) one anther

Intersecting and cyclically overlapping surfaces

that alternately obscure(Unclear) one anther

Painter Algorithm (Depth Method)

• Using both image space and object space
operations, the depth-sorting method
performs the following basic functions:

– Surfaces are sorted in order of decreasing depth.

– Surfaces are scan converted in order, starting with
the surface of greatest depth.

Used : Oil Painting ,an artist first paints the

background color

tEST -I

A

B

Surface A and B with no overlapping in Z direction

ZAmax

ZAmin

ZBmax

ZBmin Xv

Zv
Yv

First of all find the
overlapping in z axis
from the sorted list
of polygons
according to z value

tEST -II

A

B

Surface A and B with no overlapping in Y direction

YAmax

YAmin

YBmax

YBmin

Xv

Zv
Yv

First of all find the
overlapping in y axis from
the sorted list of polygons
according to y value

tEST -III

B

Surface A and B that do not overlap in x direction

XBmax XBmin XAmax XAmin

A

Xv

Zv
Yv

First of all find the
overlapping in x
axis from the sorted
list of polygons
according to x value

tEST -IV

Surface A completely overlaps the background plane B

Zv

Yv

Xv

A

B

If some plane
overlapping with
background plane
then we have test
whether the plane
completely hide the
background plane
or not.

tEST -V

Surface A does not hide B

Zv

Yv

Xv

A

B

If some plane
overlapping with
background plane
then we have test
whether the plane
completely in front
of background
plane but not
hiding the
background plane.

Others

Three surfaces entered into the
sorted surface list in the order
A,B,C should be reordered A, C,
B.

Zv

Yv

Xv

A C
B

Binary Space Portitioning Tree
(BSP) Method

D

C

A

B Back

Front Back

Front

P1

P2

View P1

FRONT P2 A , B

BACK P2 C, D

A region of space is

partitioned with two planes

P1 and P2.

P1

Back

Front

Front Front Back

Back

P2
P2

A C
B D

BSP Tree Representation

aReA-sUbDiViSiOn MeThOd
(WoRnOcK’s AlGoRiThM)

S

Initial Viewing Area
Subdivision of Viewing Area

• The relationship between projection each
polygon and the area of interest is checked for
four possible relationships :

Surrounding Surface

Overlapping OR Intersecting Surface

Inside OR Contained Surface

Outside OR Disjoint Surface

Case I – Surrounding Surface
P

S

Polygon that completely
surrounds the screen area
is called surrounding
surface .

If polygon is surrounding
the screen area , color the
all pixels of screen area as
color of screen.

S

Case II – Outside or Disjoint
Surface

P S

Polygon that is completely
outside the screen area.

If all polygon comes under
the category of outside
polygon, color all pixel of
viewing screen as
background color.

S

Case III – Contained or Inside
Surface

P

S

Polygon that is completely
inside the screen area.

If polygon in inside the
screen area, we scan
convert that area and the
remaining area of screen
will colored with
background color.

S

Case IV – Intersecting or
Overlapping Surface

P

S

Polygon that intersect the

screen area S.

Others

AREA

Inside Polygon

Intersecting

Polygon

Surrounding

Polygon

X

Y

Others

AREA

Intersecting

Polygon

Surrounding

Polygon

X

Y

