
Math Modeling Final Project

APPLICATIONS of FRACTALS

Advisor: Professor Alber

Fang Qi

Pu Wan

Xue Rui

• FRACTAL LANDSCAPES

• FRACTAL IMAGE COMPRESSION

Review:

 Two important properties of a fractal F

• F has detail at every level.

• F is exactly, approximately or statistically self-similar.

Fractals are now used in many forms to create textured landscapes and
other intricate models. It is possible to create all sorts of realistic fractal
forgeries, images of natural scenes, such as lunar landscapes, mountain
ranges and coastlines. This is seen in many special effects within
Hollywood movies and also in television advertisements.

Fractal Landscapes

A fractal landscape created by Professor

Ken Musgrave (Copyright: Ken Musgrave)
A fractal planet.

http://www.seas.gwu.edu/faculty/musgrave/index.html

Simulation process

First:

Already known

The average of the 2 neighbor
blue points plus r

The average of the 4 neighbor
red points plus r

This random value r is normally distributed
and scaled by a factor d1 related to the
original d by

d is the scale constant.
H is the smoothness constant.

/ 2

1 1

1
~ (0,) ()

2

Hr N d d d

We can now carry out exactly the same procedure on each of the four
smaller squares, continuing for as long as we like, but where we make
the scaling factor at each stage smaller and smaller; by doing this we
ensure that as we look closer into the landscape, the 'bumps' in the
surface will become smaller, just as for a real landscape. The scaling
factor at stage n is dn, given by

/ 21
()
2

nH

nd d

Simulation result by MATLAB

Using a 64x64 grid and

H=1.25

d=15

FRACTAL IMAGE COMPRESSION

What is Fractal Image Compression ?

The output images converge to the Sierpinski triangle. This final

image is called attractor for this photocopying machine. Any initial

image will be transformed to the attractor if we repeatedly run the

machine.

On the other words, the attractor for this machine is always the

same image without regardless of the initial image. This feature is

one of the keys to the fractal image compression.

How can we describe behavior of the machine ? Transformations of the

form as follows will help us.

Such transformations are called affine transformations. Affine

transformations are able to skew, stretch, rotate, scale and translate an

input image.

M.Barnsley suggested that perhaps storing images as collections of

transformations could lead to image compression.

i i i

i

i i i

a b ex x
w

c d fy y

Iterated Function Systems (IFS)

An iterated function system consists of a collection of contractive

affine transformations.

For an input set S, we can compute wi for each i, take the union of these

sets, and get a new set W(S).

Hutchinson proved that in IFS, if the wi are contractive, then W is

contractive, thus the map W will have a unique fixed point in the space of all

images. That means, whatever image we start with, we can repeatedly

apply W to it and our initial image will converge to a fixed image. Thus W

completely determine a unique image.

1

(*) (*)
n

i

i

W w

()| | lim ()n

o
x

W f W f

Self-Similarity in Images

We define the distance of two images by:

Original Lena image Self-similar portions of the image

JAVA

(,)

(,) sup | (,) (,) |
x y P

f g f x y g x y

where f and g are value of the level of grey of pixel, P is the space

of the image

http://www.eurecom.fr/~image/DEMOS/FRACTAL/english/

Affine transformation mentioned earlier is able to "geometrically"

transform part of the image but is not able to transform grey level of the

pixel. so we have to add a new dimension into affine transformation

Here si represents the contrast, oi the brightness of the

transformation

For encoding of the image, we divide it into:

• non-overlapped pieces (so called ranges, R)

• overlapped pieces (so called domains, D)

0

0

0 0

i i i

i i i i

i i

x a b x e

w y c d y f

z s z o

Encoding Images

Suppose we have an image f that we want to encode. On the other words,

we want to find a IFS W which f to be the fixed point of the map W

We seek a partition of f into N non-overlapped pieces of the image to which

we apply the transforms wi and get back f.

We should find pieces Di and maps wi, so that when we apply a wi to the

part of the image over Di , we should get something that is very close to the

any other part of the image over Ri .

Finding the pieces Ri and corresponding Di by minimizing distances

between them is the goal of the problem.

Decoding Images

The decoding step is very simple. We start with any image and

apply the stored affine transformations repeatedly till the image

no longer changes or changes very little. This is the decoded

image.

First three iterations of the decompression of the image of an

eye from an initial solid grey image

An Example

Suppose we have to encode 256x256 pixel grayscale image.

let R1~R1024 be the 8x8 pixel non-overlapping sub-squares of the

image, and let D be the collection of all overlapping 16x16 pixel sub-

squares of the image (general, domain is 4 times greater than range).

The collection D contains (256-16+1) * (256-16+1) = 58,081 squares.

For each Ri search through all of D to find Di with minimal distances

To find most-likely sub-squares we have to minimize distance

equation. That means we must find a good choice for Di that most

looks like the image above Ri (in any of 8 ways of orientations) and

find a good contrast si and brightness oi. For each Ri , Di pair we

can compute contrast and brightness using least squares regression.

Fractal Image Compression versus JPEG Compression

Original Lena image

(184,320 bytes)

JPEG-max. quality

(32,072)

comp. ratio: 5.75:1

FIF-max. quality

(30,368)

comp. ratio: 6.07:1

One very important feature of the Fractal Image Compression is

Resolution Independence.

When we want to decode image, the only thing we have to do is

apply these transformations on any initial image. After each iteration,

details on the decoded image are sharper and sharper. That means,

the decoded image can be decoded at any size.

So we can zone in the image on the larger sizes without having the

"pixelization" effect..

Resolution Independence

Lena's eye

original image enlarged to 4 times

Lena's eye

decoded at 4 times its encoding size

Thank You!

SOLID MODELLING

Why solid modeling?

 Recall weakness of wireframe and
surface modeling

 Ambiguous geometric description

 incomplete geometric description

 lack topological information

 Tedious modeling process

 Awkward user interface

Solid model

 Solid modeling is based on
complete, valid and unambiguous
geometric representation of physical
object.
 Complete points in space can be

classified.(inside/ outside)

 Valid vertices, edges, faces are
connected properly.

 Unambiguous there can only be one
interpretation of object

Solid model

 Analysis automation and integration is
possible only with solid models has

properties such as weight, moment of
inertia, mass.

 Solid model consist of geometric and
topological data

 Geometry shape, size, location of

geometric elements

 Topology connectivity and associativity of
geometric elements non graphical,

relational information

Solid model representation
schemes

1. Constructive solid geometry (CSG)

2. Boundary representation (B-rep)

3. Spatial enumeration

4. Instantiation.

Constructive solid geometry
(CSG)

 Objects are represented as a combination
of simpler solid objects (primitives).

 The primitives are such as cube, cylinder,
cone, torus, sphere etc.

 Copies or “instances” of these primitive
shapes are created and positioned.

 A complete solid model is constructed by
combining these “instances” using set
specific, logic operations (Boolean)

 Boolean operation
 each primitive solid is assumed to be a set

of points, a boolean operation is performed
on point sets and the result is a solid
model.

 Boolean operation union, intersection and
difference

 The relative location and orientation of the
two primitives have to be defined before the
boolean operation can be performed.

 Boolean operation can be applied to two
solids other than the primitives.

Constructive solid geometry
(CSG)

 Union

 The sum of all points in each of two
defined sets. (logical “OR”)

 Also referred to as Add, Combine,
Join, Merge

Constructive solid geometry
(CSG)- boolean operation

A B
A B

• Difference

– The points in a source set minus the points
common to a second set. (logical “NOT”)

– Set must share common volume

– Also referred to as subtraction, remove, cut

Constructive solid geometry
(CSG)- boolean operation

A - B
A B

• intersection

–Those points common to each of two
defined sets (logical “AND”)

–Set must share common volume

–Also referred to as common, conjoin

Constructive solid geometry
(CSG)- boolean operation

A B
A B

• When using boolean operation, be
careful to avoid situation that do
not result in a valid solid

Constructive solid geometry
(CSG)- boolean operation

A B
A B

 Boolean operation

 Are intuitive to user

 Are easy to use and understand

 Provide for the rapid manipulation of
large amounts of data.

 Because of this, many non-CSG
systems also use Boolean operations

Constructive solid geometry
(CSG)- boolean operation

 Data structure does not define model
shape explicitly but rather implies the
geometric shape through a procedural
description

 E.g: object is not defined as a set of edges &
faces but by the instruction : union primitive1
with primitive 2

 This procedural data is stored in a data
structure referred to as a CSG tree

 The data structure is simple and stores
compact data easy to manage

Constructive solid geometry
(CSG)- data structure

 CSG tree stores the history of

applying boolean operations on the
primitives.

 Stores in a binary tree format

 The outer leaf nodes of tree represent
the primitives

 The interior nodes represent the
boolean operations performed.

Constructive solid geometry
(CSG)- CSG tree

Constructive solid geometry
(CSG)- CSG tree

+

-

 More than one procedure (and hence
database) can be used to arrive at the
same geometry.

Constructive solid geometry
(CSG)- not unique

-

 CSG representation is unevaluated

 Faces, edges, vertices not defined in
explicit

 CSG model are always valid

 Since built from solid elements.

 CSG models are complete and
unambiguous

Constructive solid geometry
(CSG) representation

 CSG is powerful with high level
command.

 Easy to construct a solid model –
minimum step.

 CSG modeling techniques lead to a
concise database less storage.
 Complete history of model is retained and

can be altered at any point.

 Can be converted to the corresponding
boundary representation.

Constructive solid geometry
(CSG) - advantage

 Only boolean operations are allowed in
the modeling process with boolean

operation alone, the range of shapes to
be modeled is severely restricted not

possible to construct unusual shape.

 Requires a great deal of computation to
derive the information on the boundary,
faces and edges which is important for
the interactive display/ manipulation of
solid.

Constructive solid geometry
(CSG) - disadvantage

solution

 CSG representation tends to
accompany the corresponding
boundary representation hybrid

representation

 Maintaining consistency between the
two representations is very
important.

Boundary representation (B-Rep)

 Solid model is defined by their
enclosing surfaces or boundaries.
This technique consists of the
geometric information about the
faces, edges and vertices of an
object with the topological data on
how these are connected.

Boundary representation (B-Rep)

• Why B-Rep includes such topological
information?

- A solid is represented as a closed
space in 3D space (surface
connect without gaps)

- The boundary of a solid separates
points inside from points outside
solid.

B-Rep vs surface modeling

 Surface model

 A collection of surface entities which
simply enclose a volume lacks the
connective data to define a solid (i.e
topology).

 B- Rep model

 Technique guarantees that surfaces
definitively divide model space into
solid and void, even after model
modification commands.

B-Rep data structure

 B-Rep graph store face, edge and
vertices as nodes, with pointers, or
branches between the nodes to
indicate connectivity.

B-Rep data structure

solid

face1 face2 face3 face4 face5

edge1 edge2 edge3 edge4 edge5 edge6 edge7 edge8

vertex1 vertex2 vertex3 vertex4 vertex5

f1

f2 f3

f4 f5

E1
E2

E3
E4

E5

E6

E7

E8

v1
v2

v3
v4

v5

(x, y, z)

Combinatorial

structure /
topology

Metric information/
geometry

Boundary representation- validity

 System must validate topology of
created solid.

 B-Rep has to fulfill certain
conditions to disallow self-
intersecting and open objects

 This condition include
 Each edge should adjoin exactly two

faces and have a vertex at each end.

 Vertices are geometrically described
by point coordinates

Boundary representation- validity

• This condition include (cont)
–At least three edges must meet at each

vertex.

–Faces are described by surface equations

–The set of faces forms a complete skin of
the solid with no missing parts.

–Each face is bordered by an ordered set
of edges forming a closed loop.

–Faces must only intersect at common
edges or vertices.

–The boundaries of faces do not intersect
themselves

 Validity also checked through
mathematical evaluation

 Evaluation is based upon Euler’s Law
(valid for simple polyhedra – no hole)

 V – E + F = 2 V-vertices E- edges

F- face loops

Boundary representation- validity

f1

f2 f3

f4 f
5

E1
E2

E3
E4

E5

E6

E7

E8

v2

v3 v4

v5
V = 5, E = 8, F = 5

5 – 8 + 5 = 2

v1

 Expanded Euler’s law for complex
polyhedrons (with holes)

 Euler-Poincare Law:

 V-E+F-H=2(B-P)

 H – number of holes in face, P- number of
passages or through holes, B- number of separate
bodies.

Boundary representation- validity

V = 24, E=36, F=15,
H=3, P=1,B=1

 Valid B-Reps are unambiguos

 Not fully unique, but much more so
than CSG

 Potential difference exists in division
of

 Surfaces into faces.

 Curves into edges

Boundary representation-
ambiguity and uniqueness

 Capability to construct unusual
shapes that would not be possible
with the available CSG aircraft

fuselages, swing shapes

 Less computational time to
reconstruct the image

Boundary representation-
advantages

• Requires more storage

• More prone to validity failure than
CSG

• Model display limited to planar
faces and linear edges

- complex curve and surfaces only

approximated

Boundary representation- disadvantages

BSP Trees,
Quadtrees & Octrees

BSP Trees

1

2 3 4

2a 2b

2b1 2b2 2b3

4a 4b

Quadtrees & Octrees

 Quadtrees are used to partition 2-D
space, while octrees are for 3-D.

36

Quadtrees & Octrees: Definition
 In general:

 A quadtree is a tree in which each node has at most
4 children.

 An octree is a tree in which each node has at most 8
children.

 Similarly, a binary tree is a tree in which each node
has at most 2 children.

 In practice, however, we use “quadtree” and
“octree” to mean something more specific:

 Each node of the tree corresponds to a square
(quadtree) or cubical (octree) region.

 If a node has children, think of its region being
chopped into 4 (quadtree) or 8 (octree) equal
subregions. Child nodes correspond to these smaller
subregions of their parent’s region.

 Subdivide as little or as much as is necessary.

 Each internal node has exactly 4 (quadtree) or 8
(octree) children.

37

Quadtrees & Octrees:
Example

 The root node of a quadtree
corresponds to a square region
in space.
 Generally, this encompasses the

entire “region of interest”.

 If desired, subdivide along lines
parallel to the coordinate axes,
forming four smaller identically
sized square regions. The child
nodes correspond to these.

 Some or all of these children
may be subdivided further.

 Octrees work in a similar fashion,
but in 3-D, with cubical regions
subdivided into 8 parts.

A

A

C B D E

A

C B E

G F H I

D A

B C

D E
F G

H I

A

A

B C

D E

AIAMA 1513 Evan Lin

What is Quadtree

 Quadtree is a structure to represent
a multi-dimension data into tree

 It contain rapid search and
manipulation

 Can present a Image via use Tree
structure save less storage

Quadtree

Manipulation (Rotate)

Octree

Octree

 Splits into 8 subsections (octants)

http://en.wikipedia.org/wiki/Image:Octreend.png

45

Quadtrees & Octrees:
What Are They Good For?

 Handling Observer-Object Interactions
 Subdivide the quadtree/octree until each leaf’s region intersects only

a small number of objects.

 Each leaf holds a list of pointers to objects that intersect its region.

 Find out which leaf the observer is in. We only need to test for
interactions with the objects pointed to by that leaf.

 Inside/Outside Tests for Odd Shapes
 The root node represent a square containing the shape.

 If a node’s region lies entirely inside or entirely outside the shape, do
not subdivide it.

 Otherwise, do subdivide (unless a predefined depth limit has been
exceeded).

 Then the quadtree or octree contains information allowing us to
check quickly whether a given point is inside the shape.

 Sparse Arrays of Spatially-Organized Data
 Store array data in the quadtree or octree.

 Only subdivide if that region of space contains interesting data.

 This is how an octree is used in the BLUIsculpt program.

Ray Tracing

46

RAY TRACING.ppt

Animation

 The very first animated characters
were 2D sprites.

 Just like traditional cel animation or
flip books.

Animation (2)

Animation: Translation

49

Animation: Rotation

50

Image Transformation

 Translation

 Rotation

Morphing

 Morphing is a special effect in motion pictures
and animations that changes (or morphs) one
image into another through a seamless
transition.

 Most often it is used to depict one person
turning into another through technological
means or as part of a fantasy or surreal
sequence.

Animation in Video Games

presented by

Jason Gregory

jgregory@ea.com

Agenda

 The Goal of Game Animation

 Old School Animation

 Skeletons and Skins

 How Skinning Works (Graphically)

 The Math of Skinning

 Animation: Bringing a Character to Life

 Blending and other Advanced Topics

The Goal of Game Animation

 Our goal is simple: To produce realistic

looking animated characters in our games!

Old School Animation

 The very first animated characters were 2D

sprites.

 Just like traditional cel animation or flip

books.

Old School Animation (2)

Old School Animation (3)

 When we moved to 3D, our first animated

characters were “jointed.”

 Each limb or part of a limb is a separate

rigid object.

 Problem: Interpenetration at joints!

Old School Animation (4)

Skeletons and Skins

 Modern approach is called “skinning.”

 Basic idea:

– Create a jointed skeleton.

– Attach the skin to the skeleton.

– Move skeleton around – skin follows it.

 Skin is a 3D model made out of triangles.

 Skeleton is invisible – only the skin is seen
by the player.

Skeletons and Skins (2)

Skeletons and Skins (3)

 Each vertex of each triangle is attached to

one or more bones.

– We use weights to define bones’ influences.

– Weights at a joint must always add up to 1.

Skeletons and Skins (4)

Skeletons and Skins (5)

 Skeletons have two kinds of poses:

– Bind Pose: The skeleton’s pose when the skin was

first attached.

– Current Pose: Any other pose of the skeleton; usually

a frame of an animation.

 The bind pose is like a “home base” for the

character’s skeleton.

 If you drew the mesh without its skeleton, it would

appear in its bind pose.

Skeletons and Skins (6)

Bind Pose Current Pose

How Skinning Works

 Consider a single vertex (v) skinned to the

joint J1. The skeleton is in bind pose:

J1

J0

y

x

v

How Skinning Works (2)

 We want to find the vertex’s new location

(v') in the current pose.

y

x

v'

v

How Skinning Works (3)

 The basic idea is to transform the vertex:

– from model space

– into joint space

 The coordinates of the vertex are invariant
in joint space!

– So, we can move the joint around all we want.

 When we’re done, we go back to model
space to find the final position (v').

How Skinning Works (4)

 Here’s the original vertex (v), but now in

the joint space of J1:

J1

J0

y

x

v

How Skinning Works (5)

 No matter what pose the skeleton is in, v

and v' are the same when in joint space.

y

x

v'

v

How Skinning Works (6)

 Finally, we go back to model space to find

the final location of the vertex (v').

y

x

v'

v

The Math of Skinning

 Let Xi be the translation of joint i.

X0

y

x

X1

v

The Math of Skinning (2)

 Let Qi be the rotation of joint i.

Q0

y

x

Q1

v

The Math of Skinning (3)

 We describe the bind pose matrix of joint

J1 as the matrix product of all the

translations and rotations from the root joint

to the joint in question:

j

i

iij

0

QXB

The Math of Skinning (4)

 Now consider what happens when we move

the skeleton into the current pose:

J1

J0

y

x

v'

The Math of Skinning (5)

 This time, let Ti be the translation of joint i,

and let Ri be the rotation of joint i:

T0

y

x

T1

R0

R1

v'

The Math of Skinning (6)

 The matrix describing the current pose is:

 which is similar to the bind pose matrix:

j

i

iij

0

RTP

j

i

iij

0

QXB

The Math of Skinning (7)

 We multiply v by B–1 to get it into joint

space from the bind pose.

 Then we multiply that by P to get it back

into model space, in the current pose.

The Math of Skinning (8)

 Mathematically, this is:

vBBPPv

vBPv

vBPv

1

0

1

110

0
1

0

1

00

ji

i

j

i

i

j

i

i

j

i

i

The Math of Skinning (9)

 Voila! We can find v' for any pose

imaginable!

y

x

v'

v

The Math of Skinning (10)

 We do these calculations on each and every

vertex in the model.

 Then we draw the final vertices.

 For vertices that are affected by more than

one joint, we take a weighted average of

the positions due to each joint.

The Math of Skinning (11)

 The weighted average for a vertex affected

by joints j and k would be:

1 where

1

00

1

00

kj

kkjj

k

i

i

k

i

ik

j

i

i

j

i

ij

ww

ww vvv

vBPv

vBPv

Animation: Bringing

Characters to Life
 An animation is really just a sequence of poses at

various points in time. The poses are called keys.

 An animation can be described mathematically as:
 { Pj (t) } j
i.e. a set of pose matrices (keys) for all joints j,
each of which is a function of time t.

 To play back the animation, we extract a pose at
the current time index, skin the model to that
pose, and then draw the model.

Bringing Characters to Life (2)

 Run Weasel, run!

Bringing Characters to Life (3)

 In a simple animation system, the keys are

equally spaced in time.

 If we further restrict ourselves to integer

time indices, then extracting a pose amounts

to selecting the appropriate key.

Joint 1:

Joint 2:

Joint 3:
time 0 1 2 3 4 … time = t … N–1

Bringing Characters to Life (3)

 To reduce memory overhead, the keys can be
compressed, and might not be uniformly spaced.

 We will want to allow the time index to be a real
number (i.e. floating-point).

 So, extracting a pose now requires interpolation
between adjacent key frames.

Joint 1:

Joint 2:

Joint 3:
time 0 1 2 3 4 … time = t … N–1

Interpolation and Blending

 To interpolate positions, we use simple

vector linear interpolation (LERP).

 zzz

yyy

xxx

rrr

rrr

rrr

ei

21

21

21

21

1

1

1

..

1

 rrr

Interpolation and Blending (2)

 To interpolate rotations, we must use

quaternions. (It is next to impossible to

interpolate matrices.)

 We have two choices when interpolating

quats:

– Linear interpolation (LERP)

– Spherical linear interpolation (SLERP)

Interpolation and Blending (3)

 A quaternion LERP is identical to a vector LERP,
but with 4 components.

 SLERP is like a LERP, but the weights are no
longer (1-) and . Instead they are:

2211

21

1

21

sin

1sin

sin

cos cos

rrr

rr

ww

s
w

s
w

s

cc

Interpolation and Blending (4)

 LERP and SLERP can be used to interpolate
between adjacent key frames for a specific time t.

 Interpolation can also be used to blend two
entirely different animations together!

 For example, instead of a character being able to
walk or run, he can do anything in between!

 The blend factor controls how much walk and
how much run we see.

 =0: full walk =1: full run
=0.5: half walk, half run

The Animation Pipeline

 Typical animation pipeline:

– Pose extraction at current time t

– Pose blending

– Matrix palette generation

– Palette-driven rendering

 The matrix palette maps directly to modern

vertex shader architectures (a.k.a. indexed

skinning).

Advanced Topics

 Key frame compression techniques

 Representing animations as spline curves

instead of interpolated key frames

 Action state machines

 Skeletal partitioning

 Rag-doll physics

 …

Q&A

 Thanks for your attention!

 Questions can also be sent to:
 Jason Gregory

Electronic Arts Los Angeles
jgregory@ea.com

Animation

Making things alive/Making them move

Traditional Animation

Interpolating between key frames

Kinematics

Dynamics

Motion Capture

Behaviors

(Pollard http://graphics.cs.cmu.edu/nsp/course/15-462/Fall04/slides/25-animII.pdf)

(Pollard http://graphics.cs.cmu.edu/nsp/course/15-462/Fall04/slides/25-animII.pdf)

(Pollard http://graphics.cs.cmu.edu/nsp/course/15-462/Fall04/slides/25-animII.pdf)

(Hodkins, http://www.cc.gatech.edu/classes/cs8113a_98_spring/principles.pdf)

(Hodkins, http://www.cc.gatech.edu/classes/cs8113a_98_spring/principles.pdf)

(Hodkins, http://www.cc.gatech.edu/classes/cs8113a_98_spring/principles.pdf)

(Hodkins, http://www.cc.gatech.edu/classes/cs8113a_98_spring/principles.pdf)

Cartoon Laws of Physics

Authorship Unknown

Cartoon Law I

Any body suspended in space will remain in space until made aware of its situation. Daffy

Duck steps off a cliff, expecting further pastureland. He loiters in midair, soliloquizing

flippantly, until he chances to look down. At this point, the familiar principle of 32 feet per

second per second takes over.

Cartoon Law II

Any body in motion will tend to remain in motion until solid matter intervenes suddenly.

Whether shot from a cannon or in hot pursuit on foot, cartoon characters are so absolute in

their momentum that only a telephone pole or an outsize boulder retards their forward

motion absolutely. Sir Isaac Newton called this sudden termination of motion the stooge's

surcease.

Cartoon Law III

Any body passing through solid matter will leave a perforation conforming to its perimeter. Also called the silhouette of passage, this phenomenon is the specialty of victims of directed-

pressure explosions and of reckless cowards who are so eager to escape that they exit directly through the wall of a house, leaving a cookie-cutout-perfect hole. The threat of skunks

or matrimony often catalyzes this reaction.

Cartoon Law IV

The time required for an object to fall twenty stories is greater than or equal to the time it takes for whoever knocked it off the ledge to spiral down twenty flights to attempt to capture it

unbroken. Such an object is inevitably priceless, the attempt to capture it inevitably unsuccessful.

Cartoon Law V

All principles of gravity are negated by fear. Psychic forces are sufficient in most bodies for a shock to propel them directly away from the earth's surface. A spooky noise or an

adversary's signature sound will induce motion upward, usually to the cradle of a chandelier, a treetop, or the crest of a flagpole. The feet of a character who is running or the wheels

of a speeding auto need never touch the ground, especially when in flight.

Cartoon Law VI

As speed increases, objects can be in several places at once. This is particularly true of tooth-and-claw fights, in which a character's head may be glimpsed emerging from the cloud of

altercation at several places simultaneously. This effect is common as well among bodies that are spinning or being throttled. A `wacky' character has the option of self-replication only

at manic high speeds and may ricochet off walls to achieve the velocity required.

Cartoon Law VII

Certain bodies can pass through solid walls painted to resemble tunnel entrances; others cannot. This trompe l'oeil inconsistency has baffled generations, but at least it is known that

whoever paints an entrance on a wall's surface to trick an opponent will be unable to pursue him into this theoretical space. The painter is flattened against the wall when he attempts

to follow into the painting. This is ultimately a problem of art, not of science.

Cartoon Law VIII

Any violent rearrangement of feline matter is impermanent. Cartoon cats possess even more deaths than the traditional nine lives might comfortably afford. They can be decimated,

spliced, splayed, accordion-pleated, spindled, or disassembled, but they cannot be destroyed. After a few moments of blinking self pity, they reinflate, elongate, snap back, or solidify.

Corollary: A cat will assume the shape of its container.

Cartoon Law IX

Everything falls faster than an anvil.

Cartoon Law X

For every vengeance there is an equal and opposite revengeance. This is the one law of animated cartoon motion that also applies to the physical world at large. For that reason, we

need the relief of watching it happen to a duck instead.

Cartoon Law Amendment A

A sharp object will always propel a character upward. When poked (usually in the buttocks) with a sharp object (usually a pin), a character will defy gravity by shooting straight up, with

great velocity.

(Pollard http://graphics.cs.cmu.edu/nsp/course/15-462/Fall04/slides/25-animII.pdf)

Interpolating Key Frames

• Can use B-spline/Bezier interpolation curves to
interpolate position

• Goals: local control, smooth motion, robustness

• Challenging to maintain the right balance between
interpolated position and timing (controlling
velocity and acceleration)– almost an art

(Varshney)

(Hodkins, http://www.cc.gatech.edu/classes/cs8113a_98_spring/)

(Pollard http://graphics.cs.cmu.edu/nsp/course/15-462/Fall04/slides/25-animII.pdf)

(Hodkins, http://www.cc.gatech.edu/classes/cs8113a_98_spring/)

(Hodkins, http://www.cc.gatech.edu/classes/cs8113a_98_spring/)

(Hodkins, http://www.cc.gatech.edu/classes/cs8113a_98_spring/)

(Terzopoulos)

Physics-based Animation

• Advantages:

• Mimics real life more closely

• Simple to program

• Disadvantages

• Exact parameters difficult to discern

• Sometimes cartoonish look and feel is preferable to
realism

(Varshney)

Physics-based Animation

• Ideally suited for:

• Large volumes of objects – wind effects, liquids, …

• Cloth animation/draping

• Underlying mechanisms are usually:

• Particle systems

• Mass-spring systems

• Typically solve ordinary or partial differential equations
using iterative methods with some initial/ending
boundary values and constraints on conservation of
mass/energy/angular momentum

Physics-based Animation

• Ideally suited for:

• Large volumes of objects – wind effects, liquids, …

• Cloth animation/draping

• Underlying mechanisms are usually:

• Particle systems

• Mass-spring systems

• Typically solve ordinary or partial differential equations
using iterative methods with some initial/ending
boundary values and constraints on conservation of
mass/energy/angular momentum

(Terzopoulos, Platt, Barr and Fleischer, SIGGRAGH ’87)

(Terzopoulos, Platt, Barr and Fleischer, SIGGRAGH ’87)

(Terzopoulos, Platt, Barr and Fleischer, SIGGRAGH ’87)

(Terzopoulos, Platt, Barr and Fleischer, SIGGRAGH ’87)

(Terzopoulos, Platt, Barr and Fleischer, SIGGRAGH ’87)

Examples

Images from Fedkiw, Stam, Jensen, SIGGRAPH 2001

Examples

Images from Foster & Fedkiw

SIGGRAPH 2001

Examples

Image courtesy Simon

Premoze, Univ. of Utah

Physically real motion

(http://mrl.nyu.edu/~dt/)

(Hodkins, http://www.cc.gatech.edu/classes/cs8113a_98_spring/)

(Hodkins, http://www.cc.gatech.edu/classes/cs8113a_98_spring/)

(Hodkins, http://www.cc.gatech.edu/classes/cs8113a_98_spring/)

(Hodkins, http://www.cc.gatech.edu/classes/cs8113a_98_spring/)

(Hodkins, http://www.cc.gatech.edu/classes/cs8113a_98_spring/)

Motion Capture

http://mocap.cs.cmu.edu/search.php?subjectnumber=%&motion=%

Behaviors

(Terzopoulos)

(Terzopoulos)

(Terzopoulos)

