
Semester: IV Branch: Computer Science & Engineering

Subject: Computer Systems Architecture Code: 322414 (22)

Total Theory Periods: 40 Total Tut Periods: 10

Total Marks in End Semester Exam: 80

Maximum number of Class Tests to be conducted: 2

Unit 1: Processor Basics

CPU Organization, Fundamental and features, Data Representation formats, Fixed and

Floating

point representation, Instruction Sets, Formats, Types and Programming Considerations.

Unit 2: Datapath Design

Fixed-Point Arithmetic, Combinational ALU and Sequential ALU, Floating point arithmetic

and

Advanced topics, Hardware Algorithm – Multiplication, Division.

Unit 3: Control Design
Basic Concepts, Hardwired control, Microprogrammed Control, CPU control unit and
Multiplier
control unit, Pipeline Control.

Unit 4: Memory Organization

Memory device characteristics, RAM technology and Serial access memories

technology,

Multilevel memory systems, Address translation and Memory allocation systems,

Caches

memory.

Unit 5: System Organization

Programmed I/O , DMA, Interrupts and IO Processors, Processor-level Parallelism,

Multiprocessor and Fault tolerance system.

Name of Text Books

1. Computer Architecture and organization – John P Hayes, McGraw Hill Publication

2 Computer Organizations and Design- P. Pal Chaudhari, Prentice-Hall of India

Name of reference Books:

1. Computer System Architecture - M. Morris Mano, PHI.

2. Computer Organization and Architecture- William Stallings, Prentice-Hall of India

3. Architecture of Computer Hardware and System Software: An Information Technology

Approach,

3rd Edition (Illustrated) – Iry Englander, John Wiley & Sons Inc

4 Structured Computer Organization Andrew S Tanenbaum, Prentice-Hall of India

5 Computer Systems Organization & Architecture – John D Carpinelli, Addison-Wesle

Unit - 02
Principles of Computer

design

Register Organization

Determining The Type of Instruction

Elements of an Instruction

• Operation code (Op code)

– Do this

• Source Operand reference

– To this

• Result Operand reference

– Put the answer here

• Next Instruction Reference

– When you have done that, do this...

Where have all the Operands gone?

• Main memory (or virtual memory or cache)

• CPU register

• I/O device

Instruction Representation

OPCODE OPERAND1 OPERAND2

Instruction Types

• Data processing

• Data storage (main memory)

• Data movement (I/O)

• Program flow control

Number of Addresses (a)

• 3 addresses

– Operand 1, Operand 2, Result

– a = b + c;

– May be a forth - next instruction (usually implicit)

– Not common

– Needs very long words to hold everything

Number of Addresses (b)

• 2 addresses

– One address doubles as operand and result

– a = a + b

– Reduces length of instruction

– Requires some extra work

• Temporary storage to hold some results

Number of Addresses (c)

• 1 address

– Implicit second address

– Usually a register (accumulator)

– Common on early machines

Number of Addresses (d)

• 0 (zero) addresses
– All addresses implicit

– Uses a stack

– e.g. push a

– push b

– add

– pop c

– c = a + b

How Many Addresses

• More addresses
– More complex (powerful?) instructions

– More registers
• Inter-register operations are quicker

– Fewer instructions per program

• Fewer addresses
– Less complex (powerful?) instructions

– More instructions per program

– Faster fetch/execution of instructions

Design Decisions (1)

• Operation repertoire

– How many ops?

– What can they do?

– How complex are they?

• Data types

• Instruction formats

– Length of op code field

– Number of addresses

Design Decisions (2)

• Registers

– Number of CPU registers available

– Which operations can be performed on which
registers?

• Addressing modes (later…)

• RISC v CISC

136

Instruction cycle with interrupt

137

Interrupts - In Summary

• An interruption of normal processing

• Improves processing efficiency

• Allows the processor to execute other
instructions while an I/O operation is in
progress

• A suspension of a process caused by an event
external to that process and performed in such
a way that the process can be resumed

138

Classes of Interrupts
• Program

– arithmetic overflow

– division by zero

– execute illegal instruction

– reference outside user’s memory space

• Timer

• I/O

• Hardware failure

139

Common Functions of Interrupts

• Interrupts transfer control to the interrupt service
routine generally, through the interrupt vector

• Interrupt architecture must save the address of the
interrupted instruction.

• interrupts are disabled while another interrupt is
being processed to prevent a lost interrupt.

• A trap is a software-generated interrupt caused
either by an error or a user request.

• An operating system is interrupt driven.

140

Interrupt Handling
• The operating system preserves the state of the

CPU by storing registers and the program
counter.

• Determines which type of interrupt has
occurred:

– polling

– vectored interrupt system

• Separate segments of code determine what
action should be taken for each type of
interrupt

141

Instruction Cycle with Interrupts

Fetch Next

Instruction

Execute

Instruction
START

HALT

Fetch Cycle Execute Cycle

Check for &

Process Int

Interrupt Cycle

In
te

r
r
u

p
ts

 E
n

a
b

le
d

Interrupts Disabled

142

Interrupt Cycle

• Processor checks for interrupts

• If no interrupts fetch the next instruction for
the current program

• If an interrupt is pending, suspend execution
of the current program, and execute the
interrupt handler

143

Interrupt Service Routine (aka handler)

• A program that determines nature of the
interrupt and performs whatever actions
are needed

• Control is transferred to this program

• Generally part of the operating system

144

Simple Interrupt Processing

Device controller or

other system hardware

issues an interrupt

Processor finishes

execution of current

instruction

Processor signals

acknowledgment

of interrupt

Processor pushes PSW

and PC onto control

stack

Processor loads new

PC value based on

interrupt

Save remainder of

process state

information

Process interrupt

Restore process state

information

Restore old PSW

and PC

Hardware Software

145

What about Multiple Interrupts

• Simple Approach - disable interrupts

• Use Priorities to differentiate between
interrupt classes

146

Multiple Interrupts Sequential Order

• Disable interrupts so processor can
complete task

• Interrupts remain pending until the
processor enables interrupts

• After interrupt handler routine completes,
the processor checks for additional
interrupts

147

Multiple Interrupts Priorities

• Higher priority interrupts cause lower-
priority interrupts to wait

• Causes a lower-priority interrupt handler to
be interrupted

• Example when input arrives from
communication line, it needs to be
absorbed quickly to make room for more
input

 Unit – 03
 CPU

&

Control Unit

Instruction Formats
 The format of an instruction is usually depicted in a

rectangular box symbolizing the bits of the instruction as
they appear in memory words or in a control register.
The bits of the instructions are divided into groups called
fields. The most common fields found in instruction
format are:-

1. An Operation code field that specifies the operation to
be performed.

2. An address field that designates a memory address or a
processor register.

3. A mode field that specifies the way the operand or the
effective address is determined.

 Computer may have instructions of several different
length containing varying number of addresses. The no.
of address field in the instruction format of a computer
depends on the internal organization of its registers.

Addressing Modes

RISC vs CISC
RISC

 Emphasis on hardware

 Includes multi-clock

complex instructions

 Memory-to-memory:

"LOAD" and "STORE“

incorporated in instructions

 Small code sizes,

high cycles per second

 Transistors used for storing

complex instructions

CISC

 Emphasis on software

 Single-clock,

reduced instruction only

 Register to register:

"LOAD" and "STORE“

are independent instructions

 Low cycles per second,

large code sizes

 Spends more transistors

on memory registers

CISC Characteristics

• The instructions in a typical CISC processor provide direct
manipulation of operands residing in a memory. The major
characteristics of CISC architecture are:-

1. A large number of instructions – typically from 100 to 250
instructions

2. Some instruction that perform specialized tasks and are used
infrequently

3. A large variety of addressing modes – typically from 5 to 20
different modes

4. Variable – length instruction format
5. Instruction that manipulate operands in memory
6. Instructions are complex
7. Example - Pentium processors.

RISC Characteristics
• The concept of RISC architecture involves an attempt to

reduce execution time by simplifying the instruction
set of the computer. The major characteristics of a
RISC processor are:

1. Relatively few instructions
2. Relatively few addressing modes
3. Memory access limited to load and store instructions
4. All operation done within the register of the CPU
5. Fixed length, easily decoded instruction format.
6. Single cycle instruction execution
7. Hardwired rather than Micro programmed control
8. Instructions are simple
9. Example:- Power PC.

Address
logic

Control

memory

Microinstruction
register

Instruction

register

Decoder

Status
signals

Control
signals

General structure for Microprogrammed control unit

Sequential logic
circuit

Instruction
register

Status
signals

Control
signals

General structure for hardwired control unit

The hardwired approach views the controller as a sequential logic circuit or
finite state machine that generates specific sequences of control signals

Advantage: 1. reduces the number of components

 2. speed is fast

Disadvantage : Once the unit is constructed the only way to implement
changes in control unit behaviour is by redesigning the entire unit

What is pipelining?

 Pipelining is a technique of decomposing a
sequential process into sub-operations, with
each sub-process being executed in a special
dedicated segments that operates
concurrently with all other segments. A
pipeline can be visualized as a collection of
processing segments through which binary
information flows. The name pipeline implies
a flow of information analogous to an
industrial assembly line.

Pipelining Example

• Sub-operation performed in each segment of
the pipeline are as follows:-

 R1 Ai, R2 Bi Input Ai and Bi

 R3 R1 * R2, R4 Ci Multiply and input Ci

 R5 R3 + R4 Add Ci to product

Pipelining Processing
 Ai Bi Ci

R1 R2

Multiplier

R3 R4

Adder

R5

Different Types of Pipelining
• 1 Arithmetic pipeline

• 2 Instruction pipeline

• 3 RISC pipeline

• 4 Vector processing

Arithmetic Pipeline

• An arithmetic pipeline divides an arithmetic
operation into sub-operation for execution in
the pipeline segments.

 Pipeline arithmetic units are usually found
in very high speed computers. They are used
to implement floating-point operations,
multiplication of fixed point numbers, and
similar computations encountered in specific
problems.

Pipeline for floating point Addition and Subtraction

R R

Compare
exponents by
subtraction

R

Choose
exponents

Align mantissa

R

 Exponent Mantissa

a1

a2

Segment 1

Segment 2

 a1 a2

R

Adjust exponent

R

Add or subtract
mantissa

R

Normalize
result

R

Segment 4

Segment 3

Unit - 04

Computer Arithmetic

&

I/O Techniques

Combinational ALU

Combinational ALU

Combinational ALU

Combinational ALU

Sequential ALU

Sequential ALU Basic Design

Sequential ALU

Sequential ALU

Register File

Register File

Floating Point Arithmatic

Basic Operation

Basic Operation

Basic Operation

Basic Operation

Algorithm for floating point Operation

Pipelined floating point operation

I/O Interface

 Input-Output interface provides a method for
transferring information between internal storage
and external I/O devices. The purpose of the
communication link is to resolve the differences
that exist between the central computer and
each peripheral. The major differences are :

1. Peripherals are electromechanical and
electromagnetic devices and their manner of
operation of the CPU and memory, which are
electronic devices. Therefore, a conversion of
signal values may be required.

2. The data transfer rate of peripherals is usually
slower than the transfer rate of the CPU, and
consequently, a synchronization mechanism
may be needed.

3. Data codes and formats in peripherals differ
from the word format in the CPU and
memory.

4. The operating modes of peripheral are
different from each other and each must be
controlled so as not to disturb the operation
of other peripherals connected to the CPU.

 To resolve these differences computer
systems include special hardware components
between the CPU and peripherals to supervise
and synchronize all input and output transfers.
These components are called “interface units”
because they interface between the processor
bus and peripheral device. In addition each
device may have its own controller that
supervises the operation of the particular
mechanism in the peripherals.

I/O Bus and Interface Modules

 Connection of I/O bus to input-output devices.

Processor

interface interface interface interface

Keyboard
and display

terminal
Printer

Magnetic
disks

Magnetic
tape

Data

Address

Control

I/O Bus

I/O Commands
 There are four types of commands that an

interface may receive. They are classified as control,
status, data output, and data input.

1. Control Command:- A control command is issued to
activate peripheral and inform it what to do.

 For example:- A magnetic tape unit may be
instructed to backspace the tape by one record, to
rewind the tape, or to start the tape moving in the
forward direction.

2. Status Command:- A status command is used to test
various status conditions in the interface and the
peripheral.

 For example:- the computer may wish to
check the status of the peripheral before a
transfer is initiated. During the transfer, one or
more errors may occur which are detected by
the interface. These errors are designated by
setting bits in a status register that the
processor can read at certain intervals.

3. Output data:- It causes the interface to
respond by transferring data from the bus into
one of its register. Consider an example with a
tape unit. The computer starts the tape
moving by issuing a control command.

 The processor then monitor the status of the
tape by means of a status command. When
the tape is in the correct position the
processor issues a data output command. The
interface responds to the address and
command and transfers the information from
the data lines in the bus to its buffer register.
The interface then communicates with the
tape controller and sends the data to be
stored on tape.

4. Input data:- The data input command is the
opposite of the data output. In this case the
interface receive an item of data from the
peripheral and places it in its buffer register.
The processor checks if data are available by
means of a status command and then issues a
data input command. The interface places the
data on the data lines, where they are
accepted by the processor.

Example of I/O Interface

Port A

register

Port B
register

Control
register

Status
register

Bus buffers

CS

RS1 Timing

 and
RS0 control

RD

WR

To CPU To I/P devices

I/O data

I/O data

Control

Status

Bidirectional

Data bus

Chip select

Regular select

I/O read

I/O write

I
n

t
e

r
n

a
l

b

u
s

Example of I/O Interface unit

 CS RS1 RS0

 Register selected

 0 * *

 1 0 0

 1 0 1

 1 1 0

 1 1 1

 None: data bus in high
impedance
Port A register

Port B register

Control register

Status register

Synchronization

• The process that communicate, do so through a
synchronization mechanism. A process executes
with unpredictable velocity and generates events
and actions that must be recognized by other co-
operating processes. The set of constraints on the
ordering of these events constitutes the set of
synchronization required for the operating
processes. The synchronization technique is used
to delay execution of a process in order to satisfy
such constraints.

 In a multiprocessor system, processes can
execute concurrently until they need to
interact. Planned and controlled interaction is
known as process communication or process
synchronization. Process communication must
take place through shared or global variables.
Co-operating process must communicate to
synchronize or limit their concurrency.

 Two types of synchronization are generally
needed while using shared variable.

1. Mutual Exclusion :- Mutual exclusion ensures
that a physical or virtual resource is held
indivisibly.

2. Condition Synchronization :- When a shared
data object is in a state that is not appropriate
for executing a given operation, any process
which attempts such an operation must be
delayed. Such operation must be delayed until
the state of data objects to the desired value as
a result of other process being executed. This
type of synchronization is called “ Condition
synchronization”.

Input Output Techniques

• Programmed

• Interrupt driven

• Direct Memory Access (DMA)

Three Techniques for Input of a Block of Data

Programmed I/O

• CPU has direct control over I/O

– Sensing status

– Read/write commands

– Transferring data

• CPU waits for I/O module to complete
operation

• Wastes CPU time

Programmed I/O - detail

• CPU requests I/O operation

• I/O module performs operation

• I/O module sets status bits

• CPU checks status bits periodically

• I/O module does not inform CPU directly

• I/O module does not interrupt CPU

• CPU may wait or come back later

Programmed I/O
 Programmed I/O operations are the result of

I/O instructions written in the computer program.
Each data item transfer is initiated by an
instruction in the program. Usually the transfer is
to read and from a CPU register and peripheral.
Other instructions are needed to transfer the
data to and from CPU and memory. Transferring
data under program control requires constant
monitoring of the peripheral by the CPU. Once a
data transfer is initiated, the CPU is required to
monitor the interface to see when a transfer can
again be made.

Example of Programmed I/O

 In the programmed I/O method, the I/O devices
does not have direct access to memory. A
transfer from an I/O device to memory requires
the execution of several instruction by the CPU,
including an input instruction to transfer the data
from the device to the CPU and a store
instruction to transfer the data from the CPU to
memory. Other instruction may be needed to
verify that the data are available from the device
and to count the numbers of words transferred.

 An example of data transfer from an I/O
device through an interface into the CPU is
shown in figure:-

CPU

Interface

Data register

Status F
register

I/O
device

I/O bus

Data valid

 Data
accepted

Data bus

Address bus

I/O read

I/O write

Flowchart for CPU program to input data

Read data register

Check flag bit

Flag

Read status register

Transfer data to memory

Operation
complete

Continue with program

=0

=1

no

yes

I/O Commands

• CPU issues address
– Identifies module (& device if >1 per module)

• CPU issues command
– Control - telling module what to do

• e.g. spin up disk

– Test - check status
• e.g. power? Error?

– Read/Write
• Module transfers data via buffer from/to device

Addressing I/O Devices

• Under programmed I/O data transfer is very
like memory access (CPU viewpoint)

• Each device given unique identifier

• CPU commands contain identifier (address)

I/O Mapping

• Memory mapped I/O
– Devices and memory share an address space

– I/O looks just like memory read/write

– No special commands for I/O

• Large selection of memory access commands available

• Isolated I/O
– Separate address spaces

– Need I/O or memory select lines

– Special commands for I/O

• Limited set

Memory Mapped and Isolated I/O

Interrupt Mechanism

 Data transfer between the CPU and I/O
device is initiated by the CPU. However, the CPU
can not start the transfer unless the device is
ready to communicate with the CPU. The
readiness of the device can be determined from
an interrupt signal. The CPU respond to the
Interrupt request by storing the return address
from PC into a memory stack and then the
program branches to service routine that
processes the required transfer.

Priority Interrupt
 A priority interrupt is a system that establishes a

priority over the various sources to determine which
condition is to be services first when two or more
request arrive simultaneously. The system may also
determine which condition are permitted to interrupt
the computer while another interrupt is being serviced.
Higher – priority interrupt levels are assigned to
request which, if delayed or interrupted, could have
serious consequences. Device with high speed transfer
such as magnetic disk are given high priority. When
two devices interrupt the computer at the same time,
the computer services the device, with the higher
priority first.

Polling
 Establishing the priority of simultaneous

interrupts can be done by software or hardware. A
polling procedure is used to identify the highest
priority source by software means. In this method
there is a one common branch address for all
interrupts. The program that take care of interrupt
begin at the branch address and polls the interrupt
source in sequence. The order in which they are
tested determines the priority of each interrupt. The
highest priority interrupt is tested first, and if its
interrupt signal is on, control branches to service
routine for this source. Otherwise the next lower
priority source is tested, and so on.

Daisy-Chaining Priority
 The hardware priority interrupt can be

established by either a serial or parallel
connection of interrupt lines. The serial
connection is also known as the daisy chaining
method.

 The daisy chaining method of establishing
priority consist of a serial connection of all
devices that request an interrupt. The device with
the highest priority is places in the first position
followed by lower priority devices up to the
device with the lowest priority, which is places
last in the chain. The method of connection
between three devices and the CPU is shown in
figure:-

Daisy-Chaining Priority Interrupt

Device 1
PI PO

Device 2
PI PO

Device 3
PI PO

Interrupt request

Interrupt acknowledge

CPU

INTACK

INT

VAD 1 VAD 2 VAD 3

To next
device

One stage of the daisy chaining priority arrangement

Vector address

Delay

Enable PI
Priority in

Priority out
PO

Interrupt request to CPU

RF

 Open collector
 inverter

Interrupt request
from device

S

R

Q

PI PO RF Enable

0

1

0 0 0

0

0

0

0 0

0 1

1

1

1 1

Priority Interrupt Hardware

0

1

2

3

0

0

0

0

0

0

0

1

2

3

IST IEN

Interrupt to CPU

INTACK from CPU

Enable

Mask Register

Priority
encoder

VAD
to CPU

Interrupt register

Disk

Printer

Reader

Keyboard

I0

I1

I2

I3

y

x

Interrupt Driven I/O

• Overcomes CPU waiting

• No repeated CPU checking of device

• I/O module interrupts when ready

Interrupt Driven I/O
Basic Operation

• CPU issues read command

• I/O module gets data from peripheral whilst
CPU does other work

• I/O module interrupts CPU

• CPU requests data

• I/O module transfers data

Simple Interrupt Processing

Direct Memory Access (DMA)

 The transfer of data between a fast storage
device such as magnetic disk and memory is
often limited by the speed of the CPU. Removing
the CPU from the path and letting the peripheral
device manage the memory buses directly would
improve the speed of transfer. This transfer
technique is called direct memory access (DMA).
During DMA transfer the CPU is idle and has no
control of the memory buses. A DMA controller
takes over the buses to manage the transfer
directly between the I/O devices and memory.

CPU bus signals for DMA transfer

Address bus

Data bus

Read

Write

Bus request

Bus grant

BR

BG

DBUS

ABUS

RD

WR

High Impedance
(disable)
When BG is
enabled

Block diagram of DMA controller

Data bus
buffer

Address bus
buffer

Address register

Word count register

Control register

DMA request

DMA Acknowledge To I/O device

Interrupt

Bus grant

Bus request

Write

Read

Register select

DMA select

Data bus

Address bus

I
n
t
e
r
n
a
l

b
u
s

DMA transfer in a computer system

CPU RAM

DMA
controller

I/O
Peripheral

device

Address
select

RD

WR

DS

RS

BR
BG

Address Data WR

RD RD WR Address Address Data Data

Interrupt

BG

BR

Interrupt

Address bus

Data bus

Write control

Read control

DMA acknowledge

DMA request

Direct Memory Access

• Interrupt driven and programmed I/O require
active CPU intervention

– Transfer rate is limited

– CPU is tied up

• DMA is the answer

DMA Function

• Additional Module (hardware) on bus

• DMA controller takes over from CPU for I/O

Typical DMA Module Diagram

DMA Operation

• CPU tells DMA controller:-

– Read/Write

– Device address

– Starting address of memory block for data

– Amount of data to be transferred

• CPU carries on with other work

• DMA controller deals with transfer

• DMA controller sends interrupt when finished

DMA Transfer
Cycle Stealing

• DMA controller takes over bus for a cycle

• Transfer of one word of data

• Not an interrupt
– CPU does not switch context

• CPU suspended just before it accesses bus
– i.e. before an operand or data fetch or a data

write

• Slows down CPU but not as much as CPU
doing transfer

DMA and Interrupt Breakpoints During
an Instruction Cycle

DMA Configurations (1)

• Single Bus, Detached DMA controller

• Each transfer uses bus twice
– I/O to DMA then DMA to memory

• CPU is suspended twice

DMA Configurations (2)

• Single Bus, Integrated DMA controller

• Controller may support >1 device

• Each transfer uses bus once

– DMA to memory

• CPU is suspended once

DMA Configurations (3)

• Separate I/O Bus

• Bus supports all DMA enabled devices

• Each transfer uses bus once
– DMA to memory

• CPU is suspended once

Intel 8237A DMA Controller

• Interfaces to 80x86 family and DRAM

• When DMA module needs buses it sends HOLD signal to processor

• CPU responds HLDA (hold acknowledge)
– DMA module can use buses

• E.g. transfer data from memory to disk
1. Device requests service of DMA by pulling DREQ (DMA request) high

2. DMA puts high on HRQ (hold request),

3. CPU finishes present bus cycle (not necessarily present instruction) and puts
high on HDLA (hold acknowledge). HOLD remains active for duration of DMA

4. DMA activates DACK (DMA acknowledge), telling device to start transfer

5. DMA starts transfer by putting address of first byte on address bus and
activating MEMR; it then activates IOW to write to peripheral. DMA
decrements counter and increments address pointer. Repeat until count
reaches zero

6. DMA deactivates HRQ, giving bus back to CPU

8237 DMA Usage of Systems Bus

Instruction pipeline

 An Instruction pipeline operates on a stream of
instructions by overlapping the fetch, decode, and
execute phases of instruction cycle.

 The instruction pipeline reads consecutive
instructions from memory while previous instruction
are being executed in other segments. This type of unit
that forms a queue rather than stack. The instructions
are inserted into FIFO buffer so that they can be
executed on a first in first out basis. Thus the
instruction stream can be placed in a queue, waiting
for decoding and processing by execution segment.

 In most general case, the computer needs
to process each instruction with the following
sequence of steps:

1. Fetch the instruction from memory.

2. Decode the instruction.

3. Calculate the effective address.

4. Fetch the operands from memory.

5. Execute the instruction.

6. Store the result in the proper place.

Example –Four segment CPU pipeline

 Segment 1

 Segment 2

Fetch Instruction
from memory

Decode
instructions and

calculate effective
address

Branch?

Fetch operand
from memory

Interrupt?

Interrupt handling

Update PC

Empty pipe

Execute instruction

no

yes

no

yes

 Segment 3

 Segment 4

Pipeline Conflicts

 There are three major difficulties that cause
the instruction pipeline to deviate from its
normal operation

1. Resource conflicts caused by access to memory
by two segments at the same time. Most of
these conflicts can be resolved by using separate
instruction and data memories.

2. Data dependency conflicts arise when an
instruction depends on the result of a previous
instruction, but this result is not yet available.

3. Branch difficulties arise from branch and other
instructions that change the value of PC.

Vector Processing

 Vector processing used in vast number of
computations that will take a conventional
computer days or even weeks to complete. In
many science and engineering applications,
the problems can be formulated in terms of
vector and matrices that land themselves to
vector processing.

Use of vector processing

1 Long range weather forecasting.
2 Petroleum exploration.
3 Seismic data analysis.
4 Medical diagnosis.
5 Aerodynamics and space flight simulation.
6 Artificial Intelligence and expert systems.
7 Mapping the human genome.
8 Image processing.

What is Superscalar?

• Common instructions (arithmetic, load/store,
conditional branch) can be initiated and
executed independently

• Equally applicable to RISC & CISC

• In practice usually RISC

Why Superscalar?

• Most operations are on scalar quantities

• Improve these operations to get an overall
improvement

Superpipelined

• Many pipeline stages need less than half a
clock cycle

• Double internal clock speed gets two tasks per
external clock cycle

• Superscalar allows parallel fetch execute

General Superscalar Organization

Superscalar v
Superpipeline

Limitations

• Instruction level parallelism

• Compiler based optimisation

• Hardware techniques

• Limited by

– True data dependency

– Procedural dependency

– Resource conflicts

– Output dependency

– Antidependency

 Unit – 05
Memory Systems

&

Multiprocessor

Semiconductor Memory

• RAM

– Misnamed as all semiconductor memory is random
access

– Read/Write

– Volatile (contents are lost when power switched off)

– Temporary storage

– Static or dynamic

• Dynamic is based on capacitors – leaks thus needs refresh

• Static is based on flip-flops – no leaks, does not need refresh

Semiconductor Memory Types

Memory Cell Operation

 Unit – 05
Memory Systems

&

Multiprocessor

Semiconductor Memory

• RAM

– Misnamed as all semiconductor memory is random
access

– Read/Write

– Volatile (contents are lost when power switched off)

– Temporary storage

– Static or dynamic

• Dynamic is based on capacitors – leaks thus needs refresh

• Static is based on flip-flops – no leaks, does not need refresh

Semiconductor Memory Types

Memory Cell Operation

Dynamic RAM

• Bits stored as charge in capacitors
• Charges leak
• Need refreshing even when powered
• Simpler construction
• Smaller per bit
• Less expensive
• Need refresh circuits
• Slower
• Used in main memory
• Essentially analogue

– Level of charge determines value

Dynamic RAM Structure

DRAM Operation

• Address line active when bit read or written
– Transistor switch closed (current flows)

• Write
– Voltage to bit line

• High for 1 low for 0

– Then signal address line
• Transfers charge to capacitor

• Read
– Address line selected

• transistor turns on

– Charge from capacitor fed via bit line to sense amplifier
• Compares with reference value to determine 0 or 1

– Capacitor charge must be restored

Static RAM

• Bits stored as on/off switches
• No charges to leak
• No refreshing needed when powered
• More complex construction
• Larger per bit
• More expensive
• Does not need refresh circuits
• Faster
• Cache
• Digital

– Uses flip-flops

Static RAM Structure

Static RAM Operation

• Transistor arrangement gives stable logic state
• State 1

– C1 high, C2 low
– T1 T4 off, T2 T3 on

• State 0
– C2 high, C1 low
– T2 T3 off, T1 T4 on

• Address line transistors T5 T6 is switch
• Write – apply value to B & compliment to B
• Read – value is on line B

SRAM v DRAM

• Both volatile
– Power needed to preserve data

• Dynamic cell
– Simpler to build, smaller
– More dense
– Less expensive
– Needs refresh
– Larger memory units

• Static
– Faster
– Doesn’t need refresh
– Cache
– Consumes more power

372

 Memory Hierarchy

• Major design objective - to provide adequate storage capacity

– at an acceptable level of performance

– at a reasonable cost

• The use of a hierarchy of storage devices can meet this goal:

• Registers internal to the CPU for temporary data storage (small in
number but very fast)
– External storage for data and programs (relatively large and fast)

– External permanent storage (much larger and much slower)

 Memory

373

Typical memory hierarchy: (Technology, size, access
time)

Registers

in CPU

Cache

(RAM, 100sKB, ~10ns)

Main memory

(RAM, 100sMB~GB, ~50ns)

Magnetic disk

(Hard disk, 10sGB-100sGB, ~10ms)

Optical disk

(CD-ROM, GB, ~100ms)

Magnetic tape

(Tape, 100sMB, sec-min)

374

• Each decreasing level in the hierarchy consists of modules of larger capacity,
slower access time, and lower cost/bit.

• Goal of the memory hierarchy - try to match the processor speed with the rate of
information transfer from the highest element in the hierarchy.

• The memory hierarchy works because of locality of reference

– Memory references made by the processor, for both instructions and data,
tend to cluster together

» Instruction loops, subroutines

» Data arrays, tables

– Keep these clusters in high speed memory (e.g. cache memory) to reduce the
average delay in accessing data;

– Over time, the clusters being referenced will change - memory management
must deal with this (i.e. cache replacement).

375

 Main Memory

• A main memory is a collection of words, used for storing programs or data; each
word may consist of one or more bytes; conventionally, one word = two bytes.

• Physically, a memory of N words can be constructed using an N-word SRAM or
DRAM, as described in the previous chapter.

• Logically, a memory of N words is like an array of N elements in Java or any other
high-level language; e.g. a 10-element array in Java: int MEM = new
int[10].

• A byte or word in a memory is often called a memory cell. Each cell in the
memory can be located individually by its address, and thus written to or read
from.

• The difference between an address and what is stored at that address cannot be
over-emphasized; e.g. address $1000 may contain any bit pattern.

376

 Addressing main memory

• We draw a memory as an array of 16-bit (2-byte) words, and consider the
addresses for storing bytes, words and long words in it.

• Bytes. Byte is the smallest unit that can be addressed. Bytes are addressed as
follows:

• Successive bytes in memory are stored at consecutive byte

addresses, e.g. 0, 1, 2, 3…, as above.

15 8 7 0

0 Byte 0 Byte 1 1

2 Byte 2 Byte 3 3

4 Byte 4 Byte 5 5

6 Byte 6 Byte 7 7

8 Byte 8 Byte 9 9

A B

Bit-number

Address

etc.

Address

377

• Words. Each consists of 2 bytes, addressed as
follows:

• Words are stored and accessed at even addresses (at even byte

numbers), e.g. 0, 2, 4, 6…, as above.

Byte 0 Byte 1

MSB Bit-number

Address

etc.

First

byte
Second

byte

15 0

0 Word 0 1

2 Word 2 3

4 Word 4 5

6 Word 6 7

8 Word 8 9

A B

378

• Long words. Each consists of 4 bytes, addressed as
follows:

• Long words are stored and accessed at even addresses that are

multiple of 4, e.g. 0, 4, 8, C…, as above.

Byte 0 Byte 1
Byte 2 Byte 3

MSB Bit-number

Address

etc.

First

byte Last

byte

15 0

0 1

2

Long

word 0 3

4 5

6

Long

word 4 7

8 9

A

Long

word 8 B

Cache

• Small amount of fast memory

• Sits between normal main memory and CPU

• May be located on CPU chip or module

Cache/Main Memory Structure

Associative Mapping

• A main memory block can load into any line of
cache

• Memory address is interpreted as tag and
word

• Tag uniquely identifies block of memory

• Every line’s tag is examined for a match

• Cache searching gets expensive

Fully Associative Cache
Organization

Associative
Mapping Example

Tag 22 bit
Word
2 bit

Associative Mapping
Address Structure

• 22 bit tag stored with each 32 bit block of data

• Compare tag field with tag entry in cache to check for hit

• Least significant 2 bits of address identify which 16 bit word is
required from 32 bit data block

• e.g.
– Address Tag Data Cache line

– FFFFFC FFFFFC 24682468 3FFF

Associative Mapping Summary

• Address length = (s + w) bits

• Number of addressable units = 2s+w words or
bytes

• Block size = line size = 2w words or bytes

• Number of blocks in main memory = 2s+
w/2w = 2s

• Number of lines in cache = undetermined

• Size of tag = s bits

Direct Mapping

• Each block of main memory maps to only one
cache line

– i.e. if a block is in cache, it must be in one specific
place

• Address is in two parts

• Least Significant w bits identify unique word

• Most Significant s bits specify one memory
block

• The MSBs are split into a cache line field r and
a tag of s-r (most significant)

Direct Mapping
Address Structure

Tag s-r Line or Slot r Word w

8 14 2

• 24 bit address

• 2 bit word identifier (4 byte block)

• 22 bit block identifier

– 8 bit tag (=22-14)

– 14 bit slot or line

• No two blocks in the same line have the same Tag field

• Check contents of cache by finding line and checking Tag

Direct Mapping
Cache Line Table

• Cache line Main Memory blocks held

• 0 0, m, 2m, 3m…2s-m

• 1 1,m+1, 2m+1…2s-m+1

• m-1 m-1, 2m-1,3m-1…2s-1

Direct Mapping Cache Organization

Direct Mapping
 Example

Direct Mapping Summary

• Address length = (s + w) bits

• Number of addressable units = 2s+w words or
bytes

• Block size = line size = 2w words or bytes

• Number of blocks in main memory = 2s+
w/2w = 2s

• Number of lines in cache = m = 2r

• Size of tag = (s – r) bits

Direct Mapping pros & cons

• Simple

• Inexpensive

• Fixed location for given block

– If a program accesses 2 blocks that map to the
same line repeatedly, cache misses are very high

Set Associative Mapping

• Cache is divided into a number of sets

• Each set contains a number of lines

• A given block maps to any line in a given set

– e.g. Block B can be in any line of set i

• e.g. 2 lines per set

– 2 way associative mapping

– A given block can be in one of 2 lines in only one
set

Set Associative Mapping
Example

• 13 bit set number

• Block number in main memory is modulo 213

• 000000, 00A000, 00B000, 00C000 … map to
same set

Two Way Set Associative Cache
Organization

Set Associative Mapping
Address Structure

• Use set field to determine cache set to look in

• Compare tag field to see if we have a hit

• e.g

– Address Tag Data Set
number

– 1FF 7FFC 1FF 12345678 1FFF

– 001 7FFC 001 11223344 1FFF

Tag 9 bit Set 13 bit
Word
2 bit

Two Way
Set

Associative
Mapping
Example

Set Associative Mapping Summary

• Address length = (s + w) bits

• Number of addressable units = 2s+w words or
bytes

• Block size = line size = 2w words or bytes

• Number of blocks in main memory = 2d

• Number of lines in set = k

• Number of sets = v = 2d

• Number of lines in cache = kv = k * 2d

• Size of tag = (s – d) bits

Multiprocessors

Interprocessor Arbitration

 Computer system contains a number of buses at various levels to

facilitate the transfer of information between components. The CPU

Contains a number of Internal buses for transferring information

between processor register and ALU. A memory bus consists of

lines for transferring data, address, and read/write information. An

I/O bus is used to transfer information to and from I/O devices.

System Bus:-

 A bus that connects major components in a multi-processor system

such as CPUs, IOPs, memory, is called s system bus.

 A typical system bus consists of approximately 100 signal lines.

These lines are divided into three functional groups: data, address,

and control.

 In addition, there are power distribution lines that supply power to

the components.

 For example, the IEEE standard 796 multibus system has 16 data

lines, 24 address lines, 26 control lines, and 20 power lines, for total

of 86 lines.

 Data lines provide a path for the transfer of data between

processors and common memory.

 Address lines are used to identify a memory address or any other

source or destination , such as input or output ports.

System Bus

Synchronous Bus & Asynchronous Bus

• Synchronous Bus

 In a synchronous bus each data item is transferred during a time

 slice known in advance to both source and destination units.

 Synchronization is achieved by driving both units from a common

 clock source.

• Asynchronous Bus

 In an Asynchronous bus each data item being transferred is

accompanied by handshaking control signal to indicate when the

data are transferred from the source and achieved by the

destination.

• Control lines provide signals for controlling
the information transfer between units . The
signals indicate the validity of data and
address

 Information. Command signals specify
operation to be performed. Typical control
lines include transfer signals such as memory
read and write , acknowledge of a transfer ,
Interrupt requests, bus control signal such as
bus request and bus grant , and signals for
arbitration procedures.

Serial Arbitration Procedure

 Highest Lowest

 Priority Priority

Bus
PI PO

Arbiter 1

Bus

 PI PO
 Arbiter 2

Bus
 PI PO

Arbiter 3

Bus
PI PO

Arbiter 4

I

Bus busy
line

To next
arbiter

Serial (Daisy Chain) arbitration

Parallel Arbitration
 Parallel arbitration

Bus
arbiter 1

Ack Req

Bus
arbiter 2

Ack Req

Bus
arbiter 3

 Ack Req

Bus
arbiter 4

Ack Req

4*2
Priority encoder

2*4
Decoder

Bus busy line

Interprocessor Communication

• The various processors in a multiprocessor system must

be provided with a facility for communicating with each

other. A communication path can be established through

common input output channels. In a shared memory

multiprocessor system, the most common procedure is

to set aside a portion of a memory that is accessible to

all processors.

 In addition to shared memory, a multiprocessor system

may have other shared resources. For example, a

magnetic disk storage unit connected to an IOP may be

available to all CPUs. This provides a facility for sharing

of system programs stored in the disk.

• There are three organizations that have been
used in the design of operating system for
multiprocessors:

• Master-slave configuration

• Separate operating system

• Distribute operating system

Master slave mode

• In a master slave mode, one processor,
designated the master, always executes the
operating system functions. If a slave
processor needs an operating system service,
it must request it by interrupting the master
and waiting until the current program can be
interrupted.

Separate operating system
organization

• In the separate operating system organization,
each processor can execute the operating
system routines it needs. This organization is
more suitable for loosely coupled systems
where every processor may have its own copy
of the entire operating system.

Distributed operating system
organization

• In the distributed operating system organization,
the operating system routines are distributed
among the available processors. However
particular operating system function is assigned
to only one processor at a time. This type of
operating system is also referred to as a floating
operating system since the routines float from
one processor to another and the execution of
the routines may be assigned to defferent
processors at different times.

Interprocessor synchronization

• The instruction set of a multiprocessor contains basic
instruction that are used to implement communication
and synchronization between cooperating processes.
Communication refers to the exchange of data
between different processes.

• Synchronization refers to the special case where the
data used to communicate between processors is
control information. Synchronization is needed to
enforce the correct sequence of processes and to
ensure mutually exclusive access to shared writable
data.

Unit - 02
Principles of Computer

design

