Semester: IV Branch: Computer Science & Engineering
Subject: Computer Systems Architecture Code: 322414 (22)
Total Theory Periods: 40 Total Tut Periods: 10
Total Marks in End Semester Exam: 80
Maximum number of Class Tests to be conducted: 2

Unit 1: Processor Basics

CPU Organization, Fundamental and features, Data Representation formats, Fixed and
Floating

point representation, Instruction Sets, Formats, Types and Programming Considerations.
Unit 2: Datapath Design

Fixed-Point Arithmetic, Combinational ALU and Sequential ALU, Floating point arithmetic
and

Advanced topics, Hardware Algorithm — Multiplication, Division.

Unit 3: Control Design

Basic Concepts, Hardwired control, Microprogrammed Control, CPU control unit and
Multiplier

control unit, Pipeline Control.

Unit 4. Memory Organization

Memory device characteristics, RAM technology and Serial access memories
technology,

Multilevel memory systems, Address translation and Memory allocation systems,
Caches

memory.

Unit 5: System Organization

Programmed I/O , DMA, Interrupts and IO Processors, Processor-level Parallelism,
Multiprocessor and Fault tolerance system.

Name of Text Books

1. Computer Architecture and organization — John P Hayes, McGraw Hill Publication
2 Computer Organizations and Design- P. Pal Chaudhari, Prentice-Hall of India
Name of reference Books:

1. Computer System Architecture - M. Morris Mano, PHI.

2. Computer Organization and Architecture- William Stallings, Prentice-Hall of India
3. Architecture of Computer Hardware and System Software: An Information Technology
Approach,

3rd Edition (lllustrated) — Iry Englander, John Wiley & Sons Inc

4 Structured Computer Organization Andrew S Tanenbaum, Prentice-Hall of India

5 Computer Systems Organization & Architecture — John D Carpinelli, Addison-Wesle

Central
processing
unit

Input-
output

equipment

Central
processing
unit

Program Instructions
control

Main [“P“"t
, -3
Arithmetic- 4 e
5 > Data
logic unit

(b)

Figure 1.2
Main components of (@) human computation and (b) machine computation.

Central processing
unit (CPU)
Mam Instructions Input-output
memory ngr ‘:1 equipment
l Programs, data,
§Programs operator commands | Secondary memory,
and data for - Dati |e keyboard, printer,
sxecution) Data processing etc.

1.11
izauon of a first-generation computer.

_PLU ORGANIZATION

Te primary function of the CPU and other instruction-set processors is to execute
auences of instructions, that is, programs, which are stored in an external main
semory. Program execution is therefore carried out as follows:

The CPU transfers instructions and, when necessary, their input data (operands)
from main memory to registers in the CPU.

* The CPU executes the instructions in their stored sequence except when the exe-
cution sequence is explicitly altered by a branch instruction.

* When necessary, the CPU transfers output data (results) from the CPU registers
10 main memory.

Instructions Instructions

Cache [*— Main
CPU Data memory Data memory
" » M ™ " MM

External memory M

Processor-memorv communication with a cache.

External communication.

To remedy this situation, many computers have a cache memory CM
tioned between the CPU and main memory. The cache CM is smaller and f
than main memory and may reside, wholly or in part, on the same chip as the
It typically permits the CPU to perform a memory load or store operation in a &
gle clock cycle, whereas a memory access that bypasses the cache and is ha
by main memory takes many clock cycles. The cache is designed to be transp
to the CPU’s instructions, which “see” the cache and main memory as forming
single, seamless memory space consisting of 2" addressable storage locats
M(0), M(1), ..., M(2"-1). In this chapter we will take this viewpoint and use M
refer to the external memory, whether or not a cache 1s present. A specific me
location in M with address adr 1s referred to as M(adr) or simply as adr. W
necessary, we will use MM to distinguish the main memory from the cache
ory CM, as in Figure 3.1b. The structure of caches and their interactions with
memory are further studied in Chapter 6.

Are
there instructions
waiting?

No

I

Fetch the next
instruction

A J

Execute the
instruction

Are
there interrupts
waiting?

No Yes Transfer to interrupt-

handling program

Figure 3.2
Overview of CPU behavior.

Accumulator-based CPU. Despite the improvements in IC technology over
the years, CPU design continues to be based on the premise that the CPU should
be as fast as the available technology and overall design requirements allow.
Since cost generally increases with circuit complexity, the number of compo-
nents in the CPU must be kept relatively small. The CPU organization proposed
by von Neumann and his colleagues for the IAS computer (section 1.2.2) is the
basis for most subsequent designs. It comprises a small set of registers and the
circuits needed to execute a functionally complete set of instructions. In many
early designs, one of the CPU registers, the accumulator,! played a central role,
being used to store an input or output operand (result) in the execution of many
instructions.

Instruction
decoder

| Control
s+ signals
—

|_nzz_| Agt_]_[Pc]

Program)|
control [*
unit PCU
\ 4
foMand —*
30 devices = . System bus
)
DR AC
t +
Arithmetic-
logic unit
Data processing unit DPU
Figure 3.3

A small accumulator-based CPU.

Legend

Program control unit PCU
AR: Address register

IR: Instruction register
PC: Program counter

Data processing unit DPU
AC: Accumulator register
DR: Data register

Programming considerations. Data-processing operations normally require
to three operands. For example, the addition

Z:=X+Y (3

has three distinct operands X, Y, and Z. The accumulator-based CPU of Figure
supports only single-address instructions, that is, instructions with one ex
memory address. However, AC and DR can serve as implicit operand locations
that multioperand operations can be implemented by executing several instructs
in sequence. For example, a program (o implement (3.2), assuming that X, ¥,
all refer to data words in M, can take the following form:

e e e —

HDL Assembly- Narrative

format language format format (comment)

AC =M(X): LD X Load X from M into accumulator AC.
DR := AC: MOV DR, AC Move contents of AC to DR.

AC = M(Y); LD Y Load Y into accumulator AC.

AC :=AC+DR; ADD Add DR 1o AC.

M(7) := AC, ST Z Store contents of AC in M.,

- SO M INGOCOSIN NI ST AT U L SRR

Tope Instruction HDL Assembly- Nérrative

format language format format (comment)
s transfer Load AC = M(X) LD X Load X from M into AC.
Store M(X) := AC STX Store contents of AC in M
as X,
Move register DR := AC MOV DR, AC Copy contents of AC to DR.
Move register AC :=DR MOV AC.DR Copy contents of DR to AC.
Zany Add AC:=AC+DR ADD Add DR 0 AC.
seocessing Subtract AC:=AC-DR SUB Subtract DR from AC.
And AC:=ACand DR AND And bitwise DR 1o AC,
Not AC = not AC NOT Complement contents of AC
Fogram Branch PC = M(adr) BRA adr Jump to instruction with
control address adr,
Branch zero if AC = 0 then BZ adr Jump to instruction adr if
PC := M(adr) AC=0.
Fizure 34

wstruction set for the CPU of Figure 3.3.

2 Additional Features

I we examine some more advanced features of CPUs and look at representative
ercial microprocessors of the RISC and CISC types.

Architecture extensions. There are many ways in which the basic design of
ure 3.3 can be improved. Most recent CPUs contain the following extensions,
-h significantly improve their performance and ease of programming.

= Multipurpose register set for storing data and addresses: These replace the accumu-

=or AC and the auxiliary registers DR and AR of our basic CPU. The resulting CPU
= sometimes said to have the general register organization exemplified by the third-
generation IBM System/360-370 (Figure 1.17), which has 32 such registers. The set
of zeneral registers is now usually referred to as a register Jile.

Additional data, instruction, and address fypes: Most CPUs have instructions to han-
<ic data and addresses with several different word sizes and formats, Although some
microprocessors have only add and subtract instructions in the arithmetic category,
relatvely little extra circuitry is required for (fixed-point) multiply and divide
mstructions, which simplify many programming tasks. Call and return instructions
2550 simplify program design.

Register 1o indicate computation status: A status register (also called a condition
code or flag register) indicates infrequent or exceptional conditions resulting from
he Instruction execution, Examples are the appearance of an all-zero result or an
mvalid instruction like divide by zero. A status register can also indicate the user and
supervisor states. Conditional branch instructions can test the status register, which
simplifies the programming of conditional actions.

Data processing unit DPU

Register Arithmetic-
file logic unit
3
Data Status
register register
.
oMand —*
S “, 4 System bus
10 system «—— g
)
Program
cmim;)él_‘ Address Instruction
s register register
.
1 y 1
Program
counter Address- C.O"U_Ol
generation CIrciuts
Stack logic r
pointer l 1 l
A Rt
Internal control signals
Figure 3.7

A typical CPU with the general register organization.

Coprocessors. The built-in instruction repertoire of the 68020 includes fixed-
e multiplication and division and stack-based instructions for transferring con-
o setween programs. Hardware-implemented floating-point instructions are not
walzble directly; however, they are provided indirectly by means of an auxihary
W the 68881 floating-point coprocessor. (The ARM6 also has provisions for
wmernal coprocessors.) In general, a coprocessor P is a specialized instruction exe-
_seon unit that can be coupled to a microprocessor so that instructions to be exe-
e=d by P can be included in programs fetched by the microprocessor. Thus the
Lprocessor serves as an extension to the microprocessor and forms part of the
¥L as indicated in Figure 3.14.

CPU Main memory
68020 63831 Read-only Read-write
micro- floating- memory memory
processor p01.m‘ , (ROM) (RAM)
COPrOCessor
[I) [} h A
Y 32-bit address bus ‘
L
e) \ 32-bit data bus 3 v
P : 3 Control lines y
L
h
A y h J y
Input-output Input-output
interface circuit .o interface circuit
(10 port) (10 port)
10 device [O device
Figure 3.14

=5020-based microcomputer with floating-point coprocessor.

INSTRUCTION SETS

Next we turn to the representation, selection, and application of instruction
This topic embraces opcode and operand formats, the design of the inst
types to include in a processor’s instruction set, and the use of instructions in
cutable programs.

3.3.1 Instruction Formats

The purpose of an instruction is to specify both an operation to be carried out
CPU or other processor and the set of operands or data to be used in the ope
The operands include the input data or arguments of the operation and the
that are produced.

Introduction. Most instructions specify a register-transfer operation of the
X]:= Op(xl, Xz,. .oy X")

which applies the operation op to n operands X, X,,..., X,,, where n ranges from
to four or so. We can write the same instruction in the assembly-language n

15 0
Fl Opcode

[PR 408 TR T N 1 ol I TP M O WA

F2 ode| R1 Opcode

| e VX | Ll L 22 Jcg-.1.1

F3 ode| R1 | Opcode | R2

L1l Ll 2 3-8 4 1 Ll

31 15 0
F4 Opcode/registers Immediate operand MM (short)
[FC DY N0 T 00 IO 1 K T B B } el It 5 ol L2 D2 (FE S el I vy |

F5 Opcode/registers Memory address ADR] (short)

gogiiy gc-l o Ly 9l) o o] | 2 3) 1 L] L) 9% I [DA I I |

47 3l

F6 Opcode/registers Immediate operand IMM (long)

I IS0 Pl A o Y O B PG/ B H A K (D Il O P T e e o (G D OV O T A S I e ST NP B RGN T

F7 0pcode/rcglslcr€ Memory address ADR|
(Ll | [S [VIS "o N S o B B) [UER I U (S B) S) AN i NS I o) S5 [P & o (O3 B S S B -
79 63
F8 Opcode/registers Memory address ADRI
| RN A O A K IR o] 5 &7 0 LS B [TEs (N G Do B STR DN R oW e D0 N GO O Y oW P R e O DO I W) IS Y B L

31
L—— Memory address ADR2

O B OO <% P LA DA T T el L (o] i I vl D OO S D0 N I A 1

Figure 3.27
A selection of instruction formats of the Motorola 680X0.

= Lo 1o

. Data-transfer instructions, which copy information from one location to an
. Arithmetic instructions, which perform operations on numerical data.

. Logical instructions, which include Boolean and other nonnumerical oper
. Program-control instructions, such as branch instructions, which change

. Input-output (10) instructions, which cause information to be transf

Instructions are conveniently divided into the following five types:

either in the processor’s internal register set or in the external main memory.

sequence in which programs are executed.

between the processor or its main memory and external 1O devices.

—-— E i e S Y - N e il e S P E
Tepe Operation name(s) Description
Ja MOVE Copy word or block from source to destination.
wmmsier LOAD Copy word from memory 1o processor register.
STORE Copy word from processor register to memory.
SWAP (EXCHANGE) Swap contents of source and destination.
CLEAR Transfer word of 0s to destination,
SET Transfer word of 1s to destination,
PUSH, Transfer word from source to top of stack.
POP Transfer word from top of stack to destination.
Soshmetic ADD Compute sum of two operands.
ADD WITH CARRY Compute sum of two operands and a carry bit,
SUBTRACT Compute difference of two operands.
MULTIPLY Compute product of two operands.
DIVIDE Compute quotient (and remainder) of two operands.
MULITPLY AND ADD Compute product of two operands; add it to a third
operand,
ABSOLUTE Replace operand by its absolute value.
NEGATE Change sign of operand.
INCREMENT Add | to operand.
DECREMENT Subtract 1 from operand.
ARITHMETIC SHIFT Shift operand left (right) with sign extension.
Earxal AND
OR Perform the specified logical operation bitwise.
NOT
EXCLUSIVE-OR
LOGICAL SHIFT Shift operand left (right) introducing Os at end.
ROTATE Left- (right-) shift operand around closed path.
CONVERT (EDIT) Change data format, for example, from binary to decimal,

Fwmeram JUMP (BRANCH)
wmtrol JUMP CONDITIONAL

JUMP TO SUBROUTINE
(BRANCH-AND-LINK)

RETURN

EXECUTE

SKIP CONDITIONAL

TRAP (SOFTWARE
INTERRUPT)

TEST
COMPARE

Unconditional transfer; load PC with specified address.

Test specified conditions; if true, load PC with specified
address.

Place current program control information including PC in
known location, for example, top of stack; jump to
specified address.

Restore current program control information including PC
from known location, for example, from top of stack.

Fetch operand from specified location and execute as
instruction; note that PC is not modified.

Test specified condition; if true, increment PC to skip next
instruction,

Enter supervisor mode.

Test specified condition; set flag(s) based on outcome.
Make logical or arithmetic companson of two or more
operands; set flag(s) based on outcome.

Figure 3.34
_st of common instruction types,

T AT Y r O AR ARSI A A YT ST T T e s SR AAS £ 0 TREFT TN T RN R PL AR 1 AL TT T VA e s T

Type Operation name(s) Description
Program SET CONTROL Large class of instructions to set controls for protection
control VARIABLES poses, interrupt handling, timer control, and so forth (
privileged).

WAIT (HOLD) Stop program execution; test a specified condition conts
ously; when the condition is satisified, resume ins
execution.

NO OPERATION No operation is performed, bul program execution

Input-output INPUT (READ) Copy data from specified 10 port to destination, for e
output contents of a memory location or processor

OUTPUT (WRITE) Copy data from specified source to 10 port.

START IO Transfer instuctions to IOP to initiate an 10 operation.

TEST 10 Transfer status information from 10 system to specified
nation.

HALT IO Transfer instructions to IOP to terminate an 10 ope

Unit - 02
Principles of Computer
design

Register Organization
Digital System Overview

e Each module 1s built from digital components
m Registers
m Decoders
m Arithmetic elements
m Control logic

e Modules connected by commeon data and
control paths

e Collection of modules 1s a digital system

Internal Hardware Organization

¢ Can be defined by specifying
m Set of registers and their functions

m Sequence of microoperations performed on
register data

m Control that inifiates the sequence of
IIHCI'GGPE‘I’HTIGHS
¢ Can use words to express sequence of
microoperations, but 1t’s better to use a
notation and symbols

m Register Transter Language

Registers

o Capital letter sometimes followed by a number

¢ MAR — memory address register

¢ P(C — program counter

¢ /R — mstruction register

¢ R1, R2 —processor register 1, process register 2

e Each flip-flop i a »n-bit register 1s numbered
from »-1 to 0 from left to right

Register Block Diagram

R1

T 6 35

A

3 2

1

15

Register R1

0

15

Showing mdividual bits

87

PCH)

PC(L)

Bit numbering

Divided 1into two parts

Register Transfer

e Use replacement operator: +—
o R2 «— R1

m Transfer contents of R1 to R2 at next clock pulse

s Contents of R1 unchanged

e Circuits are available from outputs of source
register to inputs of destination register

e Destination register has parallel load capability

Control Function

¢ Control condition

» Boolean variable (equal to 0/false or 1/true)
» Terminated with colon

m Prefix to register transter statement
e P:R2 «— Rl

» Transfer happens at next clock pulse while P =1

P: R2 — R1 Block Diagram

Control circuit

F

load

=

R1

clock

2nd Register Transfer Example

e I R2+—RI1.Rl — R2
m Comma used to separate multiple register
transters that happen at the same tume
m This register swap 1s possible using edge-
triggered flip-tlops

Using Parentheses

e R1(8-15) or R1(H)
o if R1 15 16-bit register

m Indicates high-order byte, leftmost 8 bats

Bus Transfers

e Wiring each register to every other register
requires an excessive number of data lines
¢ Use common bus system nstead
m One data line for each register bit
m Control signal lines used for register selection

m Use multiplexers to select source register to put
data on common bus

m Activate load control of destmation register to
load data from common bus

Bus System For 4 Registers

w85 || L
ll T TrT T
R R b i

Bus Detalls

e Multiplex & registers with » bits each to buld
n-line common bus
m Need n multiplexers

m Each multiplexer has i input lines

¢ One for each remster
e BUS «— . Rl «— BUS can be rewritten as
Rl —C

Memory Transfer

¢ Read: from memory to outside world

e Write: from outside world into memory
e Memory word 1s called M

e Address Register 1s called AR

e Data Register 1s called DR

e Read: DR «— M[AR]

e Write: M[AR] «— DR

Instruction Code

e Computer instruction 1s binary code that specifies a
sequence of microoperations
e Operation code + Address
m Op code must have » bits for < 27 operations
m Op code sometimes called a macrooperation
m Address 1s register or memory location
Memory location i3 operand address
e Shorten “mstruction code™ to “mstruction”
e Instructions and data in memory

Stored Program Organization

e One processor register

m AC — accumulator
e Instruction format

m 4-bit op code

m 12-bit address (for 212 = 4096 memory words)
¢ Instruction execution cycle

m Read 16-bit instruction from memory
m Use 12-bit address to fetch operand from memory
m Execute 4-bit op code

Stored Program Organization

Memory
4096 x 16
/\/

13 12 11 0

Opcode Address Instructions
(program)

Instruction format

15 0
Binary operand (data)

Processor register
(accumulmor or AC)

Address Types

e 12-bit instruction address
® Immediate
¢ Actual data value
m Direct
¢ Memory address where data (operand) resides

m Indirect

¢ Memory address where memory address of data
(operand) resides

e Effective address 1s the address of the operand
e Lead bit of mstruction used as indirect flag

Direct / Indirect Address

15 U 12 1 1)
[] Opcode l Addnn I
o) Laarw s sy b —
Mo~ Mooy
2|o|am| o7 ¥ | 1jAnOD| 0

1
1150 Operand

AC] [s]
-] ===

(b) Dwect sdress 1) Indinct addensn

Basic Computer Registers

Register Number

symbol of bits Register name Function

DR 16 Data register Holds memory operand

AR 12 Adlics 1cgisics Holds address for memory
AC 16 Accumulator Processor register

IR 16 Instruction register Holds instruction code

PC 12 Program counter Holds address of instruction
TR 16 Temporary register Holds temporary data
INFR 8 [nput register Holds input character
OUTR 8 Output register Holds output character

Program Counter (PC)

¢ Holds memory address of next instruction

e Next instruction 1s fetched after current
instruction completes execution cycle

e PC 1s incremented right after instruction 1s
fetched from memory

e P(C value can be replaced by new address
when executing a branch instruction

Registers + Memory Layout

11

0

4096 words
16 bits per word

15

0

PC
1] 0
AR
15 0
IR
15 0
TR
7 0 0

15

OUTR

INPR

AC

Register Control Inputs

e Load (LD)
e Increment (INR)
¢ Clear (CLR)

Common Bus

e Connects registers and memory

e Specitic output selected by S,5,5,

m When register has < 16 bats, high-order bus bits
are set to 0

e Register with LD enabled reads data from bus
e Memory with Write enabled reads bus

¢ Memory with Read enabled puts data on bus
m When S,5,5,=111

Address Register (AR)

e Always used to specity address within
memory unit

e Dedicated register eliminates need for
separate address bus

e Content of any register output connected to
the bus can be written to memory

e Any register input connected to bus can be
target of memory read

m As long as 1ts LD 15 enabled

Accumulator (AC)

e Input comes from adder and logic circuit

e Adder and logic circuit
m Input
¢ 16-bit output of 4C
¢ 16-bit data register (DR)
¢ 5-bat input register (INPR)
m Output

¢ 16-bat input of 4C
¢ FE flip-flop (extended 4 C bit. aka overflow)

e DR and AC mput used for arithmetic and
logic microoperations

Timing Is Everything

e Content of any register output connected to
the bus can be applied to the bus and content
of any register input connected to the bus can
be loaded from the bus during the same clock
cycle

¢ These 2 microoperations can be executed at

the same time
DR +— AC and AC — DR

Bus Connections

Basic Instruction Formats

IS5 14 12 11 0
I ! I Opcode Address (Opcode = 000 through 110)
(a) Memory — reference instruction
15 12 11 0
g -4 1} Register operation (Opcode = 111, I=0)

{b) Kegister - reference instruction
IS 12 11 0
0 O 1/0 operation (Opcode =111, [=1)

(¢) Input - output instruction

Instruction Format

e Only 3 bits used for op code

e Looks like only 8 different op codes are
possible

e Wrong!

e For op code 111, one of the low-order 12 bits
1s turned on to extend the op code definition

Basic Instructions

Hexadecmal cede
Symbol (=0 =) Dexcripton
AND Sox Sxxa AND memory word 10 AC
ADD 1 o0 Add meeory wud o AC
LDA Doxx Axa Load menory word to AC
STA oxx Brxxx Stere comtent of AC i memoty
BUN foxx Coa Hoanch woondiscaally
BSA Sxxx Dxa Buanch md save retern addren
LV 4 fxxx Exxi Increment and siip of v
CLA 0 Clear AC
CLe T Chu £
CMA 00 Complement AC
oM 70 i E
<n 0 Crewdinte vight 48 wnd F
L 080 Circulate left AC and E
INC 20 Increment AC
BrA ™0 Ship cow mstrwtion ¥ AC posisive
SNA s Stip new instruction { AC aegative
SZA T4 Skip sex instnction ¥ AC xero
E TN el DEs st A 8 . O
HLT i Halt competer
INF F300 Irput churacter to AC
OuUT Fs00 Output daaracter from AC
SXI 00 St oo nput tag
SKO oo Suip ca output flag
1ON s Iserregt on
10F FO40 Imerrege off

Instruction Set Completeness

e Arthmetic, logical. and shift

¢ Move data from and to memory and registers

e Program control and status check

e Input and output
m (I'O, IO, 1t’s ot to the bus we go...)

Control Unit

e Instruction read from memory and put in /R

e Leftmost bit put in 7 flip-flop

e 3-bit op code decoded with 3 x 8 decoder info
D, to D,

e 4-bit sequence counter (SC) decoded with 4 x 16
decoder mfo T} to T, (timing signals)

¢ [.D,to D, T,to T, rightmost 12 bits of IR,

and other inputs are fed into control and logic
gates

Control Unit

Msnastom ngumr of)

Sequence Counter (SC)

e Inputs are mncrement (INR) and clear (CLR)

e Example
m SC meremented to provide T, Ty, T5. T3, and T
m At tume T,. SC 1s cleared to 0 1f D; 15 active
s Wrnitten as: D,T,: SC 0

Timing Diagram

To T; 5 B

Clock I |

s

Instruction Cycle

e Fetch instruction from memory
e Decode the instruction

¢ Read effective address from memory 1f
indirect address

e Execute the mstruction

Fetch And Decode

e 5C cleared to 0. generating timing signal 7
e After each clock pulse, SC 1s incremented

¢ Fetch and decode microoperations
a Ty AR «— PC
s T;: IR — M[A4R].
PC— PC~+1

mI5: Dy....D; +— decode IR(12-14).
AR «— IR(0-11).
I— IR(15)

Fetch Phase

Wownry

=

AN

>3

~n

~
|
1
o
|
1
—!D i
—
N

r;_

Determining The Type of Instruction

Instruction Cycle Flowchart

= |
1
|
o, l
whe ogwe - J
TS
(Regrmer -I/‘.:_ (Merwry reforowe)
L]
IJ/:\-LI Iegiater bt .l/;\‘o.‘ (SwcT)
NS | N/
. | £ !
‘ (e T T —
ey 7y
s |

Instruction Paths

o D'.IT,: AR« M[AR]
e D'.I'T;: Do nothing
e D.I'T,: Execute a register-reference instruction

e D.IT;: Execute an I/O nstruction

Register-Reference Instructions

Dyl' 13 = r (common 10 all register-reference instructions)
IR(i) = B, [bit in IR(0-11) that specifies the operation]

CLA
CLE
CMA
CME
CIR

CIL
INC

SPA

SNA
S7A

SZE
HLT

r.
fBuZ
fB;oI

rB;:

fB;:
rB;:
fBgI
rBs;
fBg:
I'B]:
rR,:
TB|:
rB;:

SC 0
AC <0

E «0
AC«AC
E«E

AC «—shr AC, AC(15) «E, E « AC(0)
AC «shl AC, AC(0)«E, E «AC(15)

AC~—AC T+ 1

If (AC(15) = 0) then iPC «PC+1
If (AC(15) = 1) then (PC«PC + 1
If (AC = 0)) then PC «P(C + 1)

If (E = 0) then (PC«PC + 1)

S «0 (§ is a start-stop flip-flop)

3

Clear SO

Clear AC
Clear E
Complement AC
Complement E
Circulate nght
Circulate left
Incicmecnt AC
Skip if positive
Skip if negative
Skip if AC zero
Skip if E zero
Halt computer

Memory-Reference Instructions

Operation
Symbol decoder Symbolic description
AND Do AC «AC N\ M[AR]
ADD D, AC «—AC + M[AR], E «(C,,
LDA D, AC «—M|[AR]
STA D, M[AR]<«AC
BUN Dy PC+ AR
BSA D, M[AR)«PC, P(C« AR +1
ISZ Ds M[AR]<«MI[AR] + 1,

If M[AR] + 1 =0 then PC«PC + 1

AND to AC

e D,T,: DR «— M[AR]
¢ D,T.: AC «— AC A DR, SC «— 0

ADD to AC

¢ D.T.. AC — AC+DR, E—C.. SC0

LDA: Load AC

e D.T,: DR «— M[AR]
e D, T, AC — DR, SC «— 0

STA: Store AC

¢ DT, M[AR] +— AC. SC+10

BUN: Branch Unconditionally

¢ D,T,: PC — AR. S5C « 0

BSA: Branch & Save Return Address

¢ D.T,; M{AR] < PC. AR+ AR+
¢ D.T;: PC — AR, SC 0

BSA Example

20 0 BSA 135 20 0 BSA 135
PC =2l Next iastruction 21 Next instruction
AR = 135 135 21
136 Subroutine PC =136 Subroutise
| BUN 135 | BUN I35

(2) Memory, PC, and AR at time Ty (b) Memory and PC after execution

ISZ: Increment & SKip If Zero

e Increment word specified by effective address

m If value = 0. mncrement PC
¢ D.T,: DR «— M|AR]
¢ D.I5: DR« DR+ 1
o DT, MAR]| < DR, S5C + 0,
if (DR =0) then (PC +— PC+1)

Memory-Reference Instructions

Mhusmawy WTNVAS ERETwwS

AND ADD 1 LA 3TA
} o, ! AT nr, | o,
D o MLA | O e MM (IV - M AR N IAK] o AL
- o oew
! DG, 1 n, FAN N
(N D AN " a» . "m oA " i
[L .
N »B N w® ed
"~ s r
| o, l (N7) 1 &ar,
N oM ‘ NN IO [DV o M AN l
Xen | A-AR |
1 T, ' O,
™ A S O »)
N0
(AN
N AR] - D
HAUOR = h

b NCe- N 0
N

Input Register INPR

e 1-bit input thip-tlop FGI

m Imitially cleared to 0
e When key hit on keyboard

m 8-bit alphanumeric code 1s shifted into INPR

m [nput tlag FGI set to 1

m No more mnput can be accepted from kevboard
e Computer checks FGI, when set to 1

m Parallel transter from INPR to AC
m FGI cleared to 0

m More input can now be accepted from keyboard

Output Register OUTR

e 1-bit output thip-tlop FGO
m Initially set to 1

¢ Computer checks FGO, when set to 1
m Parallel transter from AC to OUTR
m FGO cleared to ()

m No more output can be sent from computer

e Output device accepts 8-bit character
m FGO setto 1

m More 'Dl.ltpllt can now be sent from computer

Input-Output Configuration

Erpest - sutput

Serial

Computer
registen and
Mip-Mops

FGO

terminal COmMuUmICAIon
e face
Printer | -.—— M[-
anane Tuum: :

OUIR |y

AC

INFR

FGI

Input-Output Instructions

D;IT; = p (common to all input-output instructions)
IR(i) = B, [bit in IR(6~11) that specifics the instruction]

p: SC«0 Clear SC
INP pBun: AC(0-7)« INPR, FGI<«0 Luput charavic:
OUT pB,: OUTR «AC(0-7), FGO <D Output character
SKI pBs: If (FGI=1) then (PC«PC+ 1) Skip on input flag
SKO pBy: If (FGO =1) then (PC+«PC +1) Skip on output flag
ION pBy I[ENe«| Interrupt enable on
IOF pBs: [EN«0 Interrupt enable off

Interrupt Enable /EN

¢ Having computer constantly check FGI and FGO via
an executable mstruction 1s a waste of time

e Instead, JEN is programmatically set, etfectively saying
“let me know 1t you need me”
m Meanwhile, 1t keeps executing instructions

¢ During each execution cycle, if computer detects FGI
or FGO 1s set, then R 1s set to 1

¢ The mterrupt happens when the computer is ready to
fetch the next mstruction

m R =0 means go through mstruction cycle
m A =1 means go through mterrupt cvcle

Interrupt Flowchart

s Cycle

Sosrrregty yolbs

l

A
NI

Fewch ma! dovode

i

Sicee recury addeen
m focsnon O

M0} - IC

Brmach 10 Jocaton |
T S |

N0

Ke-0

Interrupt Cycle Example

Memory Memory
v 0 256
110 BUN 1120 PC=11]0 BUN 1120
255 . 255 :
PC =256 Main 256 Main
program program
1120 1120
/0 10
program program
1 BUN 0O 1 BUN O

(1) Before interrup! (b) After interrupt cycle

Interrupt Cycle

¢ Condition for setting R to 1
I',T\T,(IENFGI+FGO):R «]

¢ Fetch phase modified to service mterrupt
RT; AR« 0, TR« PC
RT;: M{[AR] < IR, PC +0
RT,;:PC—PC+1, [EN«<—0, R« 0, SC+0

Microoperation

e Elementary operation performed on data
within one or more registers

e Operation result could update same register or
another register

e Examples: shift, count, clear, and load
m Counter with parallel load can perform count and

load
 Bidirectional shift can shaft left or shift right

Microoperation Summary

¢ Transfer data from one register to another
(already covered)

¢ Perform arithmetic operations on numeric data
stored 1n registers

¢ Manipulate bits on non-numeric data in registers

e Shift bits on data stored in registers

Arithmetic Microoperations

e Addition
e Subtraction
e Increment

e Decrement
o Shift

Add and Subtract

e Add: R3«— R1 +R2

¢ Subtract: R3 — R1 —E
R3I—R1+R2+1

m Add 2’s complement of R2

Arithmetic Microoperations

Symbols Description

R3—R1+R2 Contents R1 plus R2 put in R3
R3—R1-R2 Contents R1 munus R2 put i R3
R2—R2 1's complement what's i R2
R2—R2+1 2’s complement what's 1 R2
R3«—RI+R2+1 |RI plus2’s complement of R2
Rl+—R1+1 Increment R1 by 1
Rl«—RI-1 Decrement R1 by 1

Binary Adder

e Full-adder 1s a digital circuit that generates the
arithmetic sum of two bits and a previous carry
¢ Binary-adder 1s a digital circuit that generates
the arithmetic sum of two binary numbers of
any length
» Constructed with full-adder circuits
+ Output carry of one FA connected to input carry of next

m n-bit binary adder requires n full-adders

4-Bit Binary Adder

Binary Adder-Subtractor

¢ Addition and subtraction combined mto one
common circuit by including an XOR gate
with each FA

¢ Mode mput M controls the operation
m Adder: M=
m Subtractor: M=1

4-Bit Adder-Subtractor

B,

By

Ay

Cy

B,

Ay

A

C

By

Co

Binary Incrementer

¢ Implemented by a binary counter

¢ Can use halt-adders

e n-bit binary incrementer uses # half-adders

4-Bit Binary Incrementer

5

HA

beag

f y

H l.\

C

- Ja—

[

HA

| &

S
S3

Arithmetic Circuit

e Arithmetic microoperations on slide #19
implemented in one circuit
m Base component 1s parallel adder

m Based on mputs to adder, can do different
arithmetic operations

4-Bit Arithmetic Circuit

e Two 4-bit inputs 4 and B
e One 4-bit output D
e Four inputs 4 go directly to X inputs of FA

e Input to 4x1 Multiplexers
s B. B
m (),]
m S, S;
e Multiplexer output goes to ¥ input of FA

Arithmetic Circuit Function Table

Select In Output
S Sy G, ¥ D=A4A+¥Y+C, Microoperation
0 0 0 B D=A4A+8B8B Add
0 0 1 B D=4A+B+1 Add w/carry
0 1 0 B D=A+B Subtract w/borrow
0 1 1 B D=A+B+1 Subtract
1 0 0 0 D=4 Transfer A
1 0 1 0 D=4+1 Increment A
1 1 0O 1 D=4-1 Decrement A
1 1 1 1 D=4 Transfer A

4-Bit Arithmetic Circuit

.....

AAAAAAA

Logic Microoperations

¢ Binary operations on strings of bits stored in
registers
e Each bit 1s dealt with separately
¢ Exclusive-OR example
m P: Rl — Rl & R2
m Contents of R1 0011
m Contents of R2 0101
m Contents of R1 after P =1 0110

Special Symbols

e Logic microoperations

m OF v
m AND A
s Complement bar on top of register symbol

e Distinguish logic microoperation from
Boolean function

P+0: Rl —R2+R3, R4 R5VRG6

[T— OF. microop
add microop

OF op between two control function binary vanables

2 Variable/16 Function Truth Table

Fiy Fis

=

F'.E-

F]E

FE' F'II: FH
1

oy

1

1

1

]
]

]

1

1 1 1 00 0 O
1 1 00

1

1

1 0 0
1 0

1

0

1 00

1

1 01 0

1 01 0

0000000000
01(0 0 0 0
1070 0 1

1 1(0

16 Logic Microoperations — Part 1

Boolean function Microoperation Name

Fy=0 F«—10 Clear

Fy=xy F—ANBE AND
Fy=xy' F—AAB

Fy=x F—A4 Transfer 4
F,=xy F—ANAB

Fs=vy F—B Transter B
Fo=x&y F—A&B Exclusive-OR

16 Logic Microoperations — Part 2

Boolean function Microoperation Name
Fo=(x+y) F—AvBE NOR
Fo=(x&)y) F—A&B Exclusive-NOR
Fio=y' F—B Complement B
Fy=x+y' F—AvB

Fi=x' Fe—4 Complement 4
F,=x+y F—AvB

F,,=(x) F—AANB NAND

Fis=1 F+—alll's Settoall 1's

Hardware Implementation

e Logic gates mserted for each bit or pair of bits
in the registers to perform needed logic
function

e Most computers use only four
microoperations and derive the rest

s AND, OR, XOR, complement

One Stage Of Logic Circuit

S

So =
Sl

[—
e’

B
So—

0

(a) Logic diagram

Ouput

EusAAR
E=AvS
E=AG8H

E=A

Operation
AND

OR

XOR

Complement

(h) Function table

Examples

e Following slides are examples of logic
microoperations that are used to manipulate
individual bits of register A by the bits
contained 1n another register, B

Selective Set

e Register A bits set to 1 where register B has a
1. otherwise A bits left unchanged

e 0011 A before X
e 0101 B (logic operand) ¥
e 0111 A after F;

¢ OR microoperation

Selective Complement

e Register A bits complemented where register
B has a 1, otherwise A bits left unchanged

e 0011 A betore X
e 0101 B (logic operand) ¥
e 0110 A after F

e Exclusive-OR microoperation

Selective Clear

e Register A bits cleared to 0 where register B
has a 1. otherwise A bits left unchanged

e D011 A before X
e 0101 B (logic operand) v
e 0010 A after F,

“

¢ 4 +— 4 A B logic microoperation

Mask

e Register A bits cleared to 0 where register B
has a 0, otherwise A bits left unchanged

e 0011 A before X
e 0101 B (logic operand) ¥
e 0001 A after F

1
¢ AND microoperation

Insert

e Inserts a new value into a group of bits
m First mask the bits (AND)
m Next selective-set them with target bt string (OR)

e Insert 1110 into leftmost 4 bits of A

e 1001 0101 A before

e 0000 1111 B (mask)

e 00000101 A after masking

e 11100000 B (selective-set)

e 11100101 A after insert completes

Clear

e Compares bits in A and B and produces all
zeros 1f the two registers have equal values

e Accomplished with exclusive-OR, then all
bits are checked for being 0

Shift Microoperations

e First tlip-tlop gets binary data from serial input
m For shift left. “first” 1s rightmost thp-tlop
m For shuft right, “tirst” 1s leftmost tlip-flop

e Serial input source determined by type of shift
m 0 for logical
m Other end for circular

m 0 fill on right and sign bit on left for arithmetic
¢ Overflow when sign bit changes

Logical Shift Example

e Original value: 11010011
e Value after shuft right: 01101001
e Or, value after shuft left: 10100110

Circular Shift Example

e Orniginal value: 11010011
e Value after shaft right: 11101001
e Or, value after shaft left: 10100111

Arithmetic Shift Example

e Original value: 11010011
e Value after shaft rnght: 11101001

o Or, value after shift left: 10100110

e Second original value: 10011010
e Value after shift right: 11001101
e Or, value after shift left: 00110100 (overflow)

Overflow Flip-Flop

e Bifs inregister: R, R, ... R, R,
o V_detects arithmetic shift left overflow

m =] indicates overtlow condition

¢ VE - Rf'i-l D RH-E

Shift Microoperations

Symbolic designation Description

R+ shlR Shift-left R

R+ shrR Shift-right R
R+—calR Circular shift-left R
R+—crR Circular shift-right R
R+« ashlR Arithmetic shift-left R

R+« ashr R Arithmetic shift-right R

Shift Hardware Implementation

e Register content 1s placed on bus
¢ Bus connected to combination circuit shifter
e Shifted value loaded back into same register

¢ All done 1n one clock pulse

4-Bit Combinational Circuit Shifter

—_— 4
l b L
b—— - —
- - P W LD T
¥ "

Arithmetic Logic Unit (ALU)

¢ One or more source registers provide input
e ALU performs operation

¢ Result transferred into destination register
e All done 1n one clock pulse

e Arithmetic, logic, and shift circuits can be
combined into simngle ALU with common
selection variables

One Stage Of ALU

n
]
—
LN

ALU Function Table

TABLE 4-8 Function Table for Arnithmetic Logic Shift Unit

Operation select

Function

So Ca Operation

2 &

S,

: i
| €8
< mm 3 Mmm
<g mm.sA E=S
tm“m.nmmwc R.m.mm
mmmmaw MWmm@mm
Y 3

Trre47 <> IS
ccwegwctcc<lk s

U I I BB OO AN BN BN
O T

OO et OO OO m XX

OO i OO XX

COOOCOOmmmmOw

OO ooIeeoLoemm™

Elements of an Instruction

Operation code (Op code)

— Do this

Source Operand reference

— To this

Result Operand reference

— Put the answer here

Next Instruction Reference

— When you have done that, do this...

Where have all the Operands gone?

* Main memory (or virtual memory or cache)
* CPU register

* |/0O device

Instruction Representation

Instruction Types

Data processing
Data storage (main memory)
Data movement (1/0)

Program flow control

Number of Addresses (a)

* 3 addresses
— Operand 1, Operand 2, Result
—a=b+c
— May be a forth - next instruction (usually implicit)
— Not common

— Needs very long words to hold everything

Number of Addresses (b)

* 2 addresses
— One address doubles as operand and result
—a=a+b
— Reduces length of instruction

— Requires some extra work

* Temporary storage to hold some results

Number of Addresses (c)

* 1 address
— Implicit second address
— Usually a register (accumulator)

— Common on early machines

Number of Addresses (d)

* 0 (zero) addresses
— All addresses impilicit
— Uses a stack
— e.g. push a
— pushb
— add

— Popc

—Cc=a+b

How Many Addresses

* More addresses
— More complex (powerful?) instructions

— More registers
* Inter-register operations are quicker

— Fewer instructions per program
* Fewer addresses
— Less complex (powerful?) instructions

— More instructions per program
— Faster fetch/execution of instructions

Design Decisions (1)

* Operation repertoire
— How many ops?
— What can they do?
— How complex are they?

* Data types

* |nstruction formats
— Length of op code field
— Number of addresses

Design Decisions (2)

* Registers
— Number of CPU registers available

— Which operations can be performed on which
registers?

* Addressing modes (later...)

* RISCv CISC

Request
Instruction Muitipie
Results
[nstruction Inskruction Data Operand
Address Operation Operation Address
Caleulation Calculanen
String or Neo
Vector Interrupt

Instruction cycle with interrupt

136

Interrupts - In Summary

An interruption of normal processing
Improves processing efficiency

Allows the processor to execute other
instructions while an I/O operation is in
progress

A suspension of a process caused by an event
external to that process and performed in such
a way that the process can be resumed

Classes of Interrupts

Program

— arithmetic overflow

— division by zero

— execute illegal instruction

— reference outside user’s memory space
Timer

/0

Hardware failure

138

Common Functions of Interrupts

Interrupts transfer control to the interrupt service
routine generally, through the interrupt vector

Interrupt architecture must save the address of the
interrupted instruction.

interrupts are disabled while another interrupt is
being processed to prevent a lost interrupt.

A trap is a software-generated interrupt caused
either by an error or a user request.

An operating system is interrupt driven.

139

Interrupt Handling
e The operating system preserves the state of the

CPU by storing registers and the program
counter.

e Determines which type of interrupt has
occurred:

— polling
— vectored interrupt system

e Separate segments of code determine what
action should be taken for each type of
Interrupt

Instruction Cycle with Interrupts

Interrupt Cycle
Fetch Cycle Execute Cycle
’
Interrupts|Disabled %
(qv)
__) Fetch Next Execute 5 Check for &
Instruction Instruction *‘__é‘_); Process Int

HALT

141

Interrupt Cycle

* Processor checks for interrupts

* |f no interrupts fetch the next instruction for
the current program

* |f an interrupt is pending, suspend execution
of the current program, and execute the
interrupt handler

Interrupt Service Routine (aka handler)

* A program that determines nature of the
interrupt and performs whatever actions
are needed

* Control is transferred to this program
* Generally part of the operating system

Simple Interrupt Processing

Hardware

Device controller or
other system hardware
Issues an interrupt

|

Processor finishes
execution of current
instruction

!

Processor signals
acknowledgment
of interrupt

|

Processor pushes PSW
and PC onto control
stack

|

Processor loads new
PC value based on
interrupt

Software

|

Save remainder of
process state
information

l

Process interrupt

!

Restore process state
information

!

Restore old PSW
and PC

144

What about Multiple Interrupts

* Simple Approach - disable interrupts

e Use Priorities to differentiate between
interrupt classes

Multiple Interrupts Sequential Order

* Disable interrupts so processor can
complete task

* Interrupts remain pending until the
processor enables interrupts

e After interrupt handler routine completes,
the processor checks for additional

Interrupts

Multiple Interrupts Priorities

* Higher priority interrupts cause lower-
priority interrupts to wait

e Causes a lower-priority interrupt handler to
be interrupted

 Example when input arrives from
communication line, it needs to be
absorbed quickly to make room for more
iInput

Unit—03
CPU

&
Control Unit

Stack

e Last-in first-out (LIFO) list
e Stack pointer (SP)

m Always points to top item in stack

m Register that holds stack address
¢ Operations
m Push — put new item 1n top of stack

m Pop — remove item from top of stack

64-Word Stack Block Diagram

FULL

DR

Address

'

63

Q = N W &

Registers:

FULL — one bit
EMTY — one bit
SP — six bit

DR —stack I'O

Stack Initialization

e 5P cleared to 0
e FAMTYsettol
e FULL cleared to 0

Push

e SFP—SP+1

e M|SP]+— DR

o I[f (SP=0)then (FULL «— 1)
o FMITY «— 0

Pop

e DR +— M[SP]

o SP—SFP-1

e If (SP=0) then (EMTY «— 1)
o FULL « ()

Memory Layout Example

Auddwr
Menery st ‘

18 In this example,
PUSH decrements SP

POP increments SP

REE R

Arithmetic Expression Notations

e A+ B Infix
e “AB Prefix or Polish

e AB+ Postfix or reverse Polish

RPN Processing Algorithm

e Scan expression from left to right

¢ When vou find an operator
m Apply 1t to the two previous operands

m Replace operator and two operands just used with
result

e Resume left to right scan, repeat above steps
until no more operators

e Works well with a stack

RPN Example

e A¥*B+-C*Dbecomes AB*CD *+

¢ Stepwise evaluation
s AB*CD*+
m (A*B)CD *+where (A *B) 1s a single value
(A *B)(C*D)+where (C*D)is asingle value
m ((A*B)+(C*D))which is a single value

Another RPN Example

e 3F2+ 5% 3Ibecomes 8 2% 5 3%+

e Stepwise evaluation
m8 2%5 3%+
ml6 5 3F+
m 16 15+
m 31

Another Infix to RP

e Infix (A+B)*(C*(D+E)+F)
e RP AB+DE+C*F+#

¢ RPN doesn’t need or use parentheses

Stack Operations
o Infix: 3%4+5%6
e RP: 3 4%5 6%+

Figure 8-5 Stack operations to evaluate 3 « 4 + 5 + 6.

- 6
p———y
> 4 - § § > 30
> |2 12 12 12
. S 6 g

42

1.
2.

3.

Instruction Formats

The format of an instruction is usually depicted in a
rectangular box symbolizing the bits of the instruction as
they appear in memory words or in a control register.
The bits of the instructions are divided into groups called
fields. The most common fields found in instruction
format are:-

An Operation code field that specifies the operation to
be performed.

An address field that designates a memory address or a
processor register.

A mode field that specifies the way the operand or the
effective address is determined.

Computer may have instructions of several different
length containing varying number of addresses. The no.
of address field in the instruction format of a computer
depends on the internal organization of its registers.

Types of CPU Organizations

¢ Single accumulator
¢ General register
¢ Stack

¢ Some CPUs combine features from more than
one organization type

Single Accumulator

e ADD X
2 AC — AC+ M[X]

General Register

e ADD R1,R2, R3
m Rl — R2+R3

e ADD R1,R2
m Rl — R1 +R2

e« MOV R1, R2
m Rl — RZ

e« ADD R1,X
m R1 «— R1 + M[X]

Stack

e PUSH X
e ADD

m 7ero address

m Pop two numbers off stack
m Add them

m Push result back on stack

Three Address Instructions

e X=(A+B)*(C+D)

e ADD R1,A, B Rl < M[4]+ M[B]
ADD R2,C,D R2— M[C]+ M[D]
MUL X, R1, R2 M[X] < Rl * R2

Two Address Instructions

e X=(A+B)*(C+D)
e MOV R1,A
ADD R1,B
MOV RZ,C
ADD R2,D
MUL R1,R2
MOV X, R1

One Address Instructions

e X=(A+B)*(C+D)
e LOAD A

ADD B

STORET

LOAD C

ADD D

MUL T

STORE X

Zero Address Instructions

e X=(A+B)*(C+D)
e PUSH A
PUSH B
ADD
PUSH C
PUSH D
ADD
MUL
POP X

Addressing Modes
Addressing Mode Techniques

e Useful for

m Reducing the number of bits in the address field
of the mstruction

s Writing programming loops, indexing data. using
memory pointers, relocating programs in memory

Figure 8-6 Instruction format with mode field.

Opcode L Mode J Address

Addressing Modes

o Implied — operands specified implicitly

m E g “complement accumulator”
e Immediate — operand value in address field
e Register — operand n register specified in register field
e Register Indirect — register contams indirect address

e Autoincrement or Autodecrement — like register

indirect, except register value 1s mcremented or
decremented after it 1s used

More Addressing Modes

o Direct Address — effective address 1s in address part of
the instruction

o Indirect Address — effective address 1s stored 1n

memory location specified in address part of the
instruction

o Relative Address — program counter added to address
part of the instruction

o Indexed Addressing — value of index register added to
address part of the mstruction to yield effective address

o Base Register Addressing — similar to Indexed

Addressing Modes Example

PC =200

R\ =400

AE = 10

AC

Address
200
201

Memory

Load 1o AC

Mode

Address = 500

Neat insrection

4%

o

315

Direct
Immediate
Indirect
Relative
Indexed
Register
Register Indirect
Autoincrement
Autodecrement

35

Numerical Example

Addressing Effective = Content
Mode Address of AC
Direct address 500 800
Immediate operand 201 500
Indirect address 800 300
Relative address 702 325
Indexed address 600 900
Register —_ 400
Register indirect 400 700
Autoincrement 400 700

Autodecrement 399 450

RISC vs CISC

RISC

Emphasis on hardware

Includes multi-clock
complex instructions
Memory-to-memory:
"LOAD" and "STORE"
incorporated in instructions

Small code sizes,

high cycles per second

Transistors used for storing

complex instructions

CISC

Emphasis on software
Single-clock,
reduced instruction only

Register to register:
"LOAD" and "STORE"“

are independent instructions

Low cycles per second,

large code sizes

Spends more transistors

on memory registers

w

N o vk

CISC Characteristics

The instructions in a typical CISC processor provide direct
manipulation of operands residing in a memory. The major
characteristics of CISC architecture are:-

A large number of instructions — typically from 100 to 250
instructions

Some instruction that perform specialized tasks and are used
infrequently

A large variety of addressing modes — typically from 5 to 20
different modes

Variable — length instruction format

Instruction that manipulate operands in memory
Instructions are complex

Example - Pentium processors.

O o0 dJOOULT B WN -

RISC Characteristics

The concept of RISC architecture involves an attempt to
reduce execution time by simplifying the instruction
set of the computer. The major characteristics of a
RISC processor are:

. Relatively few instructions

. Relatively few addressing modes

. Memory access limited to load and store instructions
. All operation done within the register of the CPU

. Fixed length, easily decoded instruction format.

. Single cycle instruction execution

. Hardwired rather than Micro programmed control

. Instructions are simple

. Example:- Power PC.

RISC Instructions

e Only load and store mnstructions can reference
Memory

e All other mstructions can only reference
registers

RISC Instructions

e X=(A+B)*(C+D)

LOAD
LOAD
LOAD
LOAD
ADD
ADD
MUL

R1, A
R2, B
R3, C
R4,D
R1, R1, R2
R3, R3, R4
R1, R1, R3

STORE X, R1

General structure for Microprogrammed control unit

Status
signals

Control
signals

General structure for hardwired control unit

Status
signals

Control
signals

»The hardwired approach views the controller as a sequential logic circuit or
finite state machine that generates specific sequences of control signals

»Advantage: 1. reduces the number of components
2. speed is fast

» Disadvantage : Once the unit is constructed the only way to implement
changes in control unit behaviour is by redesigning the entire unit

What is pipelining?

Pipelining is a technique of decomposing a
sequential process into sub-operations, with
each sub-process being executed in a special
dedicated segments that operates
concurrently with all other segments. A
pipeline can be visualized as a collection of
processing segments through which binary
information flows. The name pipeline implies
a flow of information analogous to an
industrial assembly line.

Pipelining Example

e Sub-operation performed in each segment of
the pipeline are as follows:-

R1— Ai, R2< Bi Input Ai and Bi
R3<— R1 * R2, R4<— Ci Multiply and input Ci
R5— R3+R4 Add Ci to product

Pipelining Processing
Ai Bi Ci

Multiplier

Different Types of Pipelining
1 Arithmetic pipeline
2 Instruction pipeline
3 RISC pipeline
4 \ector processing

Arithmetic Pipeline

* An arithmetic pipeline divides an arithmetic
operation into sub-operation for execution in
the pipeline segments.

Pipeline arithmetic units are usually found
in very high speed computers. They are used
to implement floating-point operations,
multiplication of fixed point numbers, and
similar computations encountered in specific
problems.

Pipeline for floating point Addition and Subtraction

Exponent Mantissa

Segment 1 Compare
exponents by
subtraction
Segment 2 Choose Align mantissa

exponents

Segment 3

Segment 4

al

Adjust exponent

a2

Add or subtract
mantissa

Normalize
result

Unit - 04
Computer Arithmetic

&
/O Techniques

Digital Hardware Algorithms

e Anthmetic operations

m Addition, subtraction, multiplication, division

e Data types
m Fixed-point binary
¢ S1gned-magmitude representation
¢ S1gned-2 s complement representation

m Floating-point binary
m Binary-coded decimal (BCD)

Add / Subtract Signed-Magnitude

Subtract Magnitudes

Add
Operation Magnitudes When A>B WhenA<B WhenA =8B
(+A) +(+B) +(A + B)
(+A) + (-B) +(A - B) -(B—-A) +(A - B)
(=A) +(+B) -(A - B) +(B—-A) +(A - B)
(-A) +(-B) —(A +B)
(+A) - (+B) +(A - B) ~(B - A) +(A - B)
(+A) - (—B) +(A + B)
(-A)=(+B) —(A +B)
(=A) = (=B) -(A - B) +(B - A) +(A — B)

Forces zero to be positive

1

Hardware

?

M (Mode control

Input carry

Load sum

Description

® A Sign of 4

® B, Sign of B

e 4. & A Accumulator

e AVF Overflow bitfor 4 + B

o F Output carmry for parallel adder

Flowchart

Sabrract operaticn Add et
Mirwernd in 4 Augend ie 4
Subtuphend in A Addend n B

0 }—\ | =1 — 0
4,08, 4,08,
A48, A8,
"o 2 ‘o 4: \g .4
| &

ACH A>N
|A'A| 0 .0
AvAr] ‘..o
A~ A,

3

G)

Add / Sub Signed-2's Complement

l BR register J

|

Complementer and
parallel adder

Algorithm

Subtract Add
Minuend in AC Augend in AC
Subtrahend in BR Addend in BR
AC+AC +BR + 1 AC«AC +BR
Ve overflow Ve—overflow

| |

(o) (o)

Multiply Signed-Magnitude

e Series of successive shift and add operations

e 23 10111 Multiplicand
19 X 10011 Multiplier
10111
10111
00000
00000
10111 +
437 110110101 Product

Hardware

B,
B register Sequence counter (5C)
Complementer and
paralkel adder
} (rightmost bit]

A‘ Q’ Qﬁ

1 }

() =i F = A register - Q register

Description

e O multiplier

e B multiplicand

o A 0

e SC number of bits in multiplier
o F overflow bit for 4

e Do SC times

m If low-order bit of Q 15 1
¢+ d—A4+8
m Shaft right EAQ

e Producti1s in A0

Flowchart

Example: 23 x 19 =437

Multiplicand B = 10111 E A Q SC
Multiplicer in Q 0 00000 10011 101
Q,=1;add B 10111
First partial product 0 10111
Shift right EAQ 0 01011 11001 100
Q.= 1;add B 10111
Second partial product 1 00010
Shift right EAQ 0 10001 01100 011
Q. = (; shift right EAQ 0 01000 10110 010
Q. = (0; shift right EAQ 0 00100 01011 001
Q,=1;add B 10111
Fifth partial product 0 11011
Shift right EAQ 0 01101 10101 000

Final product in AQ = 0110110101

Multiply Signed-2's Complement

e Booth algorithm

e UR multiplier

e O, least significant bit of OR

* | previous least significant bit of OR
e BR multiplicand

e AC 0

e SC number of bits in multiplier

Algorithm

e Do SC + 1 times
u Q'riQi’i'—l =10 .
¢ AC—AC+EBR+1
u Q'riQi"i'—]_ =01
¢ AC — AC+ BR
s Arithmetic shift right AC & QR
m SC«— SC-1

Hardware

BR register

|

Sequence counter (SC)

Complementer and

parallel adder

A

AC register

Qn

Qnol

OR register

Flowchart

-] ‘

Example: -9 x -13 =117

BR = 10111

o) o B BR + 1 = 01001 AC OR Qe SC

Initial 00000 10011 0 101
1 0 Subtract BR 01001
01001

ashr 00100 11001 1 100

1 1 ashr 00010 01100 1 011
0 1 Add BR 10111
11001

ashr 11100 10110 0 010

00 ashr 11110 01011 0 001
1 0 Subtract BR 01001
00111

ashr 00011 10101 1 000

Array Multiplier

¢ Combination circuit
e Product generated in one microoperation
¢ Requires large number of gates

¢ Became feasible after integrated circuits
developed

¢ Needed for j multiplier and & multiplicand bits
mj X &k AND gates
m j — 1 k-bit adders to produce product of j + & bits

2-bit by 2-bit Array Multiplier

4-bit by 3-bit Array Multiplier
awos "

L1l

LRV

~
-.—"
T anl et Wy

NN

Divide Fixed-Point Signed-Mag

e Series of successive compare, shift. and

subtract operations

Divisor: 11010

B = 10001)0111000000
01110
011100
-10001

-010110
-=10001

--001010
---010100
-—==1000]

~===000110

Quotient = Q

Dividend = A

S bits of A < B, quotient has S bits
6bitsofl A > B

Shift right B and subtract; enter | in Q

7 bits of remainder » B
Shift right B and subtract; enter | in Q

Remainder < B; enter 0 in Q; shift right B
Remainder » B
Shift right B and subtract; enter | in Q

Remainder < B.enterOin Q
Final remainder

Example: 448/17 =26 r 6

Dvbecy # = 10001, Ael=0nin
L4 ¢ = TImtally,
Devidend 01110 o000 8 s
1l * am ™ AQ dividend
E=) | CHUR . .
g o e e ' B divisor
£et | 0161
St @, *1 | 00101 00011)
1, ' - At
S S - - L At end of operation.
Add D 10004

i . oWR e " O qoohefit

AsdE) g

1 | B w3 A remainder

oy o ¢ :::? 11010 < ﬂ
o o BB o DVF divide overflow
As4 B 19001

Reicer rrmminder | o110 11010 0

Naghet £

Famander o 4)10

Ouotent » Q 11010

Algorithm

- o
) .
oo | o
z =]
W * .-- (= | e
LA :
< -~ N
iV
v [=
* Aw
0y
ﬁ. S8
< &
o.c
& :
b
.

Floating-Point Registers

B, B

E Parallel-adder
A | A, A
Q; Q

Sign

AT Mantissa —T

Parallel-adder
and comparator

q

|

Exponent

BR

AC

@R

Signed-magnitude mantissa & biased exponent 23

Biased Exponent

e Example
m Real exponent range 1s -50 to +49
m Add baas of 50 for new range ot 0 to 99

m Biased exponent is always a positive number
¢ Easier to deal wath

Floating-Point Add / Subtract

e Check for zeros

e Align the mantissas

e Add or subtract the mantissas
e Normalize the result

F-P Add / Subtract Flowchart

i

=5 | 9N AC «— AC+ BR
Sl 2h) | L] = or
' :..]. n /:;\ .“ > f

AC «— AC—-BR

Floating-Point Multiply

e Check for zeros

e Add the exponents

e Multiply the mantissas
e Normalize the product

F-P Multiply Flowchart

-

Floating-Point Division

e Check for zeros

e Initialize registers and evaluate the sign
e Align the dividend

e Subtract the exponents

e Divide the mantissas

F-P Division Flowchart

Booth Multiplication Algorithm

e Zeros 1n multiplier require no addition
m But shifting still required
e String of 1s in the multiplier from weight 2%
to 2™ can be rewritten as 254 — 2™
w Example: 001110 [+14]
¢Strmg of Is from 2P t0 2 24 -21=16-2=14
+« Multiplicand M Mx 14=Mx 2* - M=x 2!

+ Product obtamed by M 4 times to the left and
subtracting M shafted left once

BCD Adder

e QOutputcan’texceed9+9+1=19

e If binary sum in BCD digit > 1001, add 0110
e Given
m Qutput of binary adder 1s Z,Z, 7,7,

m Output carry K
m BCD output carry C=K + Z;0, + 274,

Block Diagram BCD Adder

Augrnd

TRy

out K

404t binary adder

& L L =&

J (A
— W

)]

4-bit bunary adder

bbb

!‘ S‘ Sl Sl

Examples

e 9 1001 9 1001 6 0110
T 0111 9 1001 4 0100
16 1 0000 18 10010 10 1010

0110 0110 0110

0110 1000 1 0000

BCD Subtraction

e Subtract by adding 9s complement of
subtrahend to minuend

e First 9s complement algorithm

» Complement bits
m Add 1010 (deciumal 10) and discard carry

e Second 9s complement algorithm

m Add 0110 (decunal 6)
» Complement bits

Examples

e 0111 decimal 7 0111
1000 complement + 0110 add decimal 6
+1010 decimal 10 1101
1 0010 decimal 2 0010 complement

Stage of Decimal Arithmetic Unit

By B, By B,

BCDYs
M — complementer
s L XN 1J A; .‘\4 A: A|
Cie) ~t—t BCD adder (Fig. 10-18) b

Decimal Arithmetic Microops

TABLE 10-5 Decimal Arithmetic Microoperation Symbols

Symbolic Designation Description
A<A+B Add decimal numbers and transfer sum into A
B ¢s complement of B
A«A+B +1 Content of A plus 10’s complement of B into A
QueQ +1 Increment BCD number in Q;
dshr A Decimal shift-right register A
dshl A Decimal shift-left register A

Parallel Decimal Addition

0110 0010

ai L s 0]

01
|— BCD adder e BCD adder —— BCD adder
0101 D011}
(a) Panillel decimal addition: 624 + 8§79 = 1503

Fast

Digit-Serial, Bit-Parallel Dec Add

Augend
0/01] 0 >
1 | o | > Sum
| 1 0 —1 0

adder —=y | 3
1o - | |
0|11]0 >
o110 >
) |] > ——-‘l
Addend

i Carry
|

(b) Digit-serial, bit-parallel decimal addition

Slow

All Serial Decimal Addition

Very slow

Sum

||

Correction

Augend
01 10/001 0]01 0 Op=>i S pr—
FA
1000|011 1|10 0 | C
Addend ‘]{
Carry

T

|

(c) All serial decimal addition

Dec Arith Registers for Mult & Div

B

A)
B, B, 10 | 107 | 10! | 10° SC

Lk.4
E |- BCD arithmetic unit
. t

A, A, 10° | 10° | 10 | 10° 10° | 10* | 10! Q@

A Increment

Decrement

Decimal Multiplication Flowchart

Mutsply

] 0456 0456
(=) x 0123 0456
56088 + 0456
T80 S
i 0136 8 shift
s B 0456
0 28 | + 0456
s 1048
i 010488 <hift
- L. + 0456
’“;‘ 2k 0560
ve AL - 0056 088 shift
N 0005 6088 shift

Decimal Division Flowchart

xxxxx

Combinational ALU

The simplest ALUs combine the functions of a twos-complement adder-su
with those of a circuit that generates word-based logic functions of the form #
for example, AND, XOR, and NOT. They can thus implement most of a C
fixed-point data-processing instructions. Figure 4.28 outlines an ALU that has
arate subunits for logical and arithmetic operations. The particular class of @
tion (logical and arithmetic) to be performed is determined by a “mode” ¢
line M attached to a two-way multiplexer that channels the required result

wwout bus Z. The specific operation performed by the desired subunit 1s deter-
mmed by a “select” control line S as shown. The ALU’s logical operations are per-
wrmed bitwise; that is, the same operation f is applied to every pair of data lines
.+ The maximum number of distinct logical operations of the form f(x;,y;) is 16,
wmch is the number of distinct truth tables of two Boolean variables. Hence the
weect bus S needs to be of size 4 at most, as in Figure 4.28. S can also be used to
weect up to 16 different arithmetic operations such as X + ¥, X - Y, Y - X| X+ 1

Combinational ALU

n
X >
n-bit
logic
unit n
n) 4
e 2 >
Qata A Two-way o
n n-bit ——» Z Data out
multiplexer
> n
: 1 'Y
n-bit
adder-
ubtracter
L Y k 7 Flags (Cout* P 8
7 overflow, etc.)
4
//
Select S Carry in ¢y, Mode M
Figure 4.28

A basic n-bit arithmetic-logic unit (ALU).

Combinational ALU

The logical operations in Figure 4.28 can be obtained by generating all four
smmmerms of f(x;,y;), namely,

My =Xy, My=Xy, my=XY; My=Y)
W ewery pair x;y; of data bits and by using the control lines § = §35,5,5, to select

Jsar=d subsets of the minterms to be ORed together. In particular, if we construct
e sum-of-products expression

= X85 + XY So + XS + % ¥:So (4.32)

i we see that every combination of 555,55, produces a different function. For
wsmmoi=. S = 0110 makes f(x,,y,) = x;y; + x.y;, which is EXCLUSIVE-OR. Because
A Sirwise nature of the logic operations, we can replace x; and y; in (4.32) with
Wiie-et words X and Y.

X D) =XV5+ XFP 8+ X¥S; + XTS5y (4.33)

W zam now implement the logic unit directly from Equation (4.33), using several
i word gates as in Figure 4.29. The adder-subtracter can be designed by any of
e mchniques presented earlier, with appropriate additional connections to X, Y,

Combinational ALU

Despite its conceptual simplicity, the ALU of Figure 4.28 is more expensive

@l oweer than necessary. For n = 4, the logic subunit employs about 25 gates and
o s If the arithmetic subunit is designed with carry lookahead in the style of
e £ 6. around 60 gates are needed, depending on the variants of add and sub-

war are implemented. The multiplexer in Figure 4.28 also requires additional

gates. The complete 4-bit ALU can therefore be expected to contain more tham
gates of various kinds and have depth 9 or so. By judicious sharing of
between the two main subunits, both of these figures can be reduced by a
the next example shows.

Sequential ALU

Although, as we have seen, both multiplication and division can be imple
by combinational logic, it is generally impractical to merge these operations
addition and subtraction into a single, combinational ALU. The reason is
Combinational multipliers and dividers are costly in terms of hardware. Thew
also much slower than addition and subtraction circuits, a consequence of

many logic levels. An n-bit combinational multiplier or divider is typically
posed of n or more levels of add-subtract logic, making multiplication and d:
at least n times slower than addition or subtraction. The number of gates 1
multiply-divide logic is also greater by a factor of about n. Hence except w
very small, complete ALUs are usually constructed from low-cost sequential
cuits where add and subtract each take one clock cycle, while multiplication
division are multicycle operations.

Sequential ALU Basic Design

L

L]

L

Accumulator AC || Multiplier-quotient (Memory) data
register MQ register DR
A
Y T T T
Parallel adder >
and < Control unit
logic circuits
—»1 Flags
Wigmre 4.32

Smcture of a basic sequential ALU.

Sequential ALU

Basic design. Figure 4.32 shows a widely used sequential ALU desi::‘

aims at minimizing hardware costs. This ALU organization is found in the
computer (Figure 1.11) and in many computers built after IAS. It is inte
ampiement multiplication and division using one of the sequential digit-by-digit
Mi-and-add/subtract algorithms discussed earlier. Three one-word registers are
At for operand storage: the accumulator AC, the multiplier-quotient register MQ,
M e data register DR. AC and MQ are organized as a single register AC.MQ
“penie of left- and right-shifting. Additional data processing is provided by a
Ammienational ALU capable of addition, subtraction, and logical operations; we
W m=fer to this unit as the add-subtract unit. This unit derives its inputs from AC
e DR and places its results in AC. The MQ register is so-called because it stores
e multiplier during multiplication and the quotient during division. DR stores the
Wtipiicand or divisor, while the result (product or quotient and remainder) is
et o the register-pair AC.MQ. The role of these registers is defined concisely

oW S

Sequential ALU

Addition AC := AC + DR
Subtraction AC .= AC-DR
Multiplication AC.MQ :=DR xMQ
Division AC.MQ := MQ/DR
AND AC := AC and DR
OR AC := AC or DR
EXCLUSIVE-OR AC := AC xor DR
NOT AC = not(AC)

serve as a memory data register to store data addressed by an instruction
©icld ADR. Then DR can be replaced by M(ADR) in the above list of ALU
s. resulting in a one-address memory-referencing format.

Register File

T files. Modern CPUs retain special registers like the multiplier-quo-
r MQ for multiplication and division, but the accumulator AC and the

sizr DR are usually replaced by a set of general-purpose registers Ry:R,,

two- and three-address forms
R, =f(R,,R,)
R3 :=f(R13R2)

respectively. Hence the processor can retain intermediate results in fast,
accessed registers, rather than having to pack them off to external memory
Clearly RF functions as a small random-access memory (RAM) and, in f
often implemented using a fast RAM technology. RF differs from M in one i
tant respect: RF requires two or three operands to be accessible simultan
For example, to implement (4.40) as a single-cycle instruction, we must be ab
read R; and R,, and write to R, in the same clock cycle. RF then needs sex
access ports for simultaneously reading from or writing to several different
ters. Hence a register file is often realized as a multiport RAM. A standard
has just one access port with an associated address bus ADR and data bus D.

port can be used to read or write the data word in the single word locatiom
denote by M(ADR).

Register File

(Micro) program control unit

Adr B Data B

P, -~
| 1
e P '
Port C) —»
—»| Adr A Data A = = o Mux1
—
Regi]
egister Combinational
file RF ALU
1 —»
> =
- L o] Mux2
RS

To M and 10 system

Figure 4.34
A generic datapath unit with an ALU and a register file.

Floating Point Arithmatic

Let (X, Xg) be the floating- pomt representation of a number X, which therefos
has the numerical value Xy;x B*. Recall from section 3.2.3 that the mantissa | St
nificand) X\, and the exponent X, are fixed-point numbers and that the base B is &

same as the base (radix) of Xy;. To simplify the discussion, we make the follows
realistic assumptions:

1. X\ 18 an ny,-bit binary (twos- compleme’:lnt or sign-magnitude) fraction.

2. Xg is an ng-bit integer in excess-2""" code, implying an exponent b
of 28",

3. B=2.

We also assume that the floating-point numbers are stored in normal form o

hence the final result of each floating-point arithmetic operation should be norm
1zed.

Basic Operation

Basic operations. General formulas for floating-point addition, subtract:
multiplication, and division are given in Figure 4.40. Multiplication and diviss
are relatively simple because the mantissas and exponents can be processed i
pendently. Floating-point multiplication requires a fixed-point multiplication of
mantissas and a fixed-point addition of the exponents. For example, if &
1.32400111 x 10" and ¥ = 1.04799245 x 10*" the product X X Y is given
(1.32400111 x 1.04799245) x 1072V = 1.38758607 x 10%*. Floating-point
sion requires a fixed-point division involving the mantissas and a fixed-point
traction involving the exponents. Thus multiplication and division are not
harder to implement than the corresponding fixed-point operations.

Basic Operation

Floating-point addition and subtraction are complicated by the fact tha
exponents of the two input operands must be made equal before the corres
mantissas can be added or subtracted. As suggested by Figure 4.40, this ex
equalization can be done by right-shifting the mantissa X,; associated with
smaller exponent X a total of ¥z — Xg digit positions to form a new m

IR0 o S MO R O Lyt e e A B st o
B R e R H SR e T R R o st

T R R e S
o Xp - Yg Y
Addition +Y=(X2B™ "B+ Yy x 2°F

S

where X; <Y,
Subtraction X-Y= (XMZXE —¥g _ Ypp) X 2YE
Multiplication X x ¥ = (X, X ¥},) X 2XE + YE

Division XIY = (Xyy / Yyg) X 27~ TE

Figure 4.4(
The four basic arithmetic operations for floating-point numbers.

Basic Operation

==&, which can then be combined directly with Yy,. Thus floating-point addi-
subtraction have three main steps:

pute Yy, - X, a fixed-point subtraction.
=1 Xy, by Yg — Xp places to the right to form X, 2%~ Y.
ute Xy 2%~"e + ¥,,. a fixed-point addition or subtraction,

ple, to add the decimal floating-point numbers X = 1.32400111 x 10"
= 104799245 x 10*!, we first compute ¥ - X, = 21 - 17 =4, identifying X,
-smaller exponent. We then right-shift Xy by four places to obtain Edhe
3240, Finally, we perform the mantissa addition) Yy =0.00013240 +
245 = 1.04812485, so the final result has mantissa 104812485 and expo-

Basic Operation

floating-point arithmetic operation needs an extra step in order to nor-
the result. A number X = (X,,, Xg) is normalized by left-shifting (right-
' X\ and decrementing (incrementing) Xg by 1 to compensate for each
¢ shift of Xy As noted earlier, a twos-complement fraction is normalized
sign bit x,, _; differs from the bit x,_, on its right, a fact used to terminate
alization process. A sign-magnitude fraction is normalized by left-shifting
nitude part until there are no leading Os, that is, until x, , = 1. (The nor-
won rules are different if the base B is not two.) The left-most bit of the
may be hidden, since normalization fixes its value; see the discussion of

v

Algorithm for floating point Operation

Pipelined floating point operation

1/0 Interface

Input-Output interface provides a method for
transferring information between internal storage
and external I/O devices. The purpose of the
communication link is to resolve the differences
that exist between the central computer and
each peripheral. The major differences are :

. Peripherals are electromechanical and
electromagnetic devices and their manner of
operation of the CPU and memory, which are
electronic devices. Therefore, a conversion of
signal values may be required.

2. The data transfer rate of peripherals is usually
slower than the transfer rate of the CPU, and
consequently, a synchronization mechanism

may be needed.

3. Data codes and formats in peripherals differ
from the word format in the CPU and

memory.

4. The operating modes of peripheral are
different from each other and each must be
controlled so as not to disturb the operation
of other peripherals connected to the CPU.

To resolve these differences computer
systems include special hardware components
between the CPU and peripherals to supervise
and synchronize all input and output transfers.
These components are called “interface units”
because they interface between the processor
bus and peripheral device. In addition each
device may have its own controller that
supervises the operation of the particular
mechanism in the peripherals.

/O Bus and Interface Modules

Processor Address

Control

interface interface interface interface

Keyboard
and display
terminal

Magnetic Magnetic
INS tape

Connection of 1/0O bus to input-output devices.

/O Commands

There are four types of commands that an
interface may receive. They are classified as control,
status, data output, and data input.

. Control Command:- A control command is issued to
activate peripheral and inform it what to do.

For example:- A magnetic tape unit may be
instructed to backspace the tape by one record, to
rewind the tape, or to start the tape moving in the
forward direction.

. Status Command:- A status command is used to test
various status conditions in the interface and the
peripheral.

For example:- the computer may wish to
check the status of the peripheral before a
transfer is initiated. During the transfer, one or
more errors may occur which are detected by
the interface. These errors are designated by
setting bits in a status register that the
processor can read at certain intervals.

3. Output data:- It causes the interface to
respond by transferring data from the bus into
one of its register. Consider an example with a
tape unit. The computer starts the tape
moving by issuing a control command.

The processor then monitor the status of the
tape by means of a status command. When
the tape is in the correct position the
processor issues a data output command. The
interface responds to the address and
command and transfers the information from
the data lines in the bus to its buffer register.
The interface then communicates with the
tape controller and sends the data to be
stored on tape.

4. Input data:- The data input command is the
opposite of the data output. In this case the
interface receive an item of data from the
peripheral and places it in its buffer register.
The processor checks if data are available by
means of a status command and then issues a
data input command. The interface places the
data on the data lines, where they are
accepted by the processor.

Bidirectional Bus buffers
Data bus

Chip select

Regular select

1/0O read

1/O write

N

Example of I/O Interface

()

RS1 Timing
and

RSO control

RD

WR

To CPU

Port A

|/O data

Vv

N

register

Port B

|/O data

N

register

Control

Control

register

Status

N

\

Status

register |

To I/P devices

Vv

Example of I/O Interface unit

Register selected

0 * * None: data bus in high
impedance

1 0 0 Port A register

1 0 1 Port B register

1 1 0 Control register

1 1 1 Status register

Synchronization

 The process that communicate, do so through a
synchronization mechanism. A process executes
with unpredictable velocity and generates events
and actions that must be recognized by other co-
operating processes. The set of constraints on the
ordering of these events constitutes the set of
synchronization required for the operating
processes. The synchronization technique is used
to delay execution of a process in order to satisfy
such constraints.

In @ multiprocessor system, processes can
execute concurrently until they need to
interact. Planned and controlled interaction is
known as process communication or process
synchronization. Process communication must
take place through shared or global variables.
Co-operating process must communicate to
synchronize or limit their concurrency.

Two types of synchronization are generally
needed while using shared variable.

1. Mutual Exclusion :- Mutual exclusion ensures
that a physical or virtual resource is held
indivisibly.

2. Condition Synchronization :- When a shared
data object is in a state that is not appropriate
for executing a given operation, any process
which attempts such an operation must be
delayed. Such operation must be delayed until
the state of data objects to the desired value as
a result of other process being executed. This
type of synchronization is called “ Condition
synchronization”.

Input Output Techniques

Programmed
nterrupt driven
Direct Memory Access (DMA)

Three Techniques for Input of a B

Issue Read
command to} CPU — /O
I/O module

Read status
of /10
module

I/0 — CPU

Error
condition

Read word
from /O
Module

I/0 — CPU

Write word

. CPU — memory
into memory

Next instruction
(a) Programmed /O

PU — 1/O
Do something
~Pelse

Issue Read

command to
/O module

—

Read status

- == Interrupt
of 11O
module /O — CPU
Error
condition
Read word
from 11O /0 — CPU
Module
‘_erte TEI CPU — memory
into memory

Next instruction
(b) Interrupt-driven 1/O

ock of Data

PU — DMA
Do something
= Pelse

Issue Read
block comman
to 1/O module

Read status
of DMA
module

- == Interrupt

DMA — CPU

Next instruction

(c) Direct memory access

Programmed I/O

 CPU has direct control over 1/O

— Sensing status
— Read/write commands
— Transferring data

* CPU waits for I/0 module to complete
operation

* Wastes CPU time

Programmed 1/0 - detail

CPU requests I/O operation

/0 module performs operation

/O module sets status bits

CPU checks status bits periodically

/0 module does not inform CPU directly
/0 module does not interrupt CPU

CPU may wait or come back later

Programmed |I/O

Programmed 1/O operations are the result of
/0 instructions written in the computer program.
Each data item transfer is initiated by an
instruction in the program. Usually the transfer is
to read and from a CPU register and peripheral.
Other instructions are needed to transfer the
data to and from CPU and memory. Transferring
data under program control requires constant
monitoring of the peripheral by the CPU. Once a
data transfer is initiated, the CPU is required to
monitor the interface to see when a transfer can
again be made.

Example of Programmed I/0O

In the programmed I/O method, the 1/O devices
does not have direct access to memory. A
transfer from an 1I/O device to memory requires
the execution of several instruction by the CPU,
including an input instruction to transfer the data
from the device to the CPU and a store
instruction to transfer the data from the CPU to
memory. Other instruction may be needed to
verify that the data are available from the device
and to count the numbers of words transferred.

An example of data transfer from an I/O
device through an interface into the CPU is
shown in figure:-

Data bus Interface /0 bus

Data register

Address bus

Data valid
/O

/O read

device

Data

1/0 write Status accepted
register

Read data register

Check flag bit

Operation
Read status register complete

Transfer data to memory Continue with program

Flowchart for CPU program to input data

/O Commands

 CPU issues address
— |dentifies module (& device if >1 per module)

* CPU issues command
— Control - telling module what to do
* e.g. spin up disk
— Test - check status
* e.g. power? Error?

— Read/Write
* Module transfers data via buffer from/to device

Addressing 1/O Devices

* Under programmed |/O data transfer is very
like memory access (CPU viewpoint)

* Each device given unique identifier
* CPU commands contain identifier (address)

/0 Mapping

« Memory mapped |I/O
— Devices and memory share an address space
— 1/0 looks just like memory read/write
— No special commands for I/0O

e Large selection of memory access commands available

* J|solated I/O

— Separate address spaces
— Need I/O or memory select lines
— Special commands for I/0O

e Limited set

Memory Mapped and Isolated |/O

ADDRESS
200

202

INSTRUCTION
Load AC

Store AC

Load AC

Branch if Sign =0
Load AC

(a) Memory-mapped 1/O

7 6 5 4 3 2 1 0
516 Keyboard input data register
7 6 5 4 3 2 10
517 Keyboard input status
and control register
T_‘l = ready T_Set to1to
0 = busy start read
OPERAND COMMENT ADDRESS INSTRUCTION OPERAND
"1" Load accumulator 200 Load I/0 5
517 Initiate keyboard read 201 Test I/0 5
517 Get status byte Branch Not Ready 201
202 Loop until ready In 5
516 Load data byte

(b) Isolated /O

COMMENT

Initiate keyboard read
Check for completion
Loop until complete
Load data byte

Interrupt Mechanism

Data transfer between the CPU and /O
device is initiated by the CPU. However, the CPU
can not start the transfer unless the device is
ready to communicate with the CPU. The
readiness of the device can be determined from
an interrupt signal. The CPU respond to the
Interrupt request by storing the return address
from PC into a memory stack and then the
program branches to service routine that
processes the required transfer.

Priority Interrupt

A priority interrupt is a system that establishes a
priority over the various sources to determine which
condition is to be services first when two or more
request arrive simultaneously. The system may also
determine which condition are permitted to interrupt
the computer while another interrupt is being serviced.
Higher — priority interrupt levels are assigned to
request which, if delayed or interrupted, could have
serious consequences. Device with high speed transfer
such as magnetic disk are given high priority. When
two devices interrupt the computer at the same time,
the computer services the device, with the higher
priority first.

Polling

Establishing the priority of simultaneous
interrupts can be done by software or hardware. A
polling procedure is used to identify the highest
priority source by software means. In this method
there is a one common branch address for all
interrupts. The program that take care of interrupt
begin at the branch address and polls the interrupt
source in sequence. The order in which they are
tested determines the priority of each interrupt. The
highest priority interrupt is tested first, and if its
interrupt signal is on, control branches to service
routine for this source. Otherwise the next lower
priority source is tested, and so on.

Daisy-Chaining Priority

The hardware priority interrupt can be
established by either a serial or parallel
connection of interrupt lines. The serial
connection is also known as the daisy chaining
method.

The daisy chaining method of establishing
priority consist of a serial connection of all
devices that request an interrupt. The device with
the highest priority is places in the first position
followed by lower priority devices up to the
device with the lowest priority, which is places
last in the chain. The method of connection
between three devices and the CPU is shown in
figure:-

VAD 1 VAD 2 VAD 3

| T next

device

Interrupt request

Interrupt acknowledge

Daisy-Chaining Priority Interrupt

Priority in

P

Interrupt request
from device

Vector address

Priority out _

PO
Pl RF PO Enable
0 0 0 0
0 1 0 0
1 1
Open collector m 0 0
inverter 1 1 0 1

> Interrupt request to CPU

One stage of the daisy chaining priority arrangement

Interrupt register

Disk VAD
to CPU
Printer
Reader
Keyboard

Enable

'Interrupt to CPU

INTACK from CPU

Mask Register

Priority Interrupt Hardware

Interrupt Driven |/O

* Overcomes CPU waiting
* No repeated CPU checking of device

* |/O module interrupts when ready

Interrupt Driven 1/0
Basic Operation

CPU issues read command

/0 module gets data from peripheral whilst
CPU does other work

/0 module interrupts CPU
CPU requests data
/O module transfers data

Simple Interrupt Processing

Hardware
- Al ~

Device controller or
other system hardwar
issues an interrupt

Processor finishes
execution of current
instruction

Processor signals
acknowledgment
of interrupt

Processor pushes PS
and PC onto control
stack

Processor loads ne
PC wvalue based on
interrupt

Software
AL

:

Save remainder of
process state
information

Process interrupt

Restore process stat
information

Restore old PSW
and PC

Direct Memory Access (DMA)

The transfer of data between a fast storage
device such as magnetic disk and memory is
often limited by the speed of the CPU. Removing
the CPU from the path and letting the peripheral
device manage the memory buses directly would
improve the speed of transfer. This transfer
technique is called direct memory access (DMA).
During DMA transfer the CPU is idle and has no
control of the memory buses. A DMA controller
takes over the buses to manage the transfer
directly between the I/O devices and memory.

Bus request

Bus grant <

CPU bus signals for DMA transfer

Address bus

Data bus

Read

Write

—_

-

High Impedance
(disable)

When BG is
enabled

Address bus

Data bus Data bus >
buffer |
. Address bus
buffer
t
DMA select S
.
Register select
& n Address register
Read a
. | !
Bus request b
.
Bus grant s

Interrupt DMA request

DMA Acknowledge To 1/0 device

Block diagram of DMA controller

Address bus

Write control

Read contro

DMA

controller

Data bus \

DMA acknowledge

1/O

Peripheral
device

DMA request

DMA transfer in a computer system

Direct Memory Access

* Interrupt driven and programmed I/O require
active CPU intervention

— Transfer rate is limited
— CPU is tied up

e DMA is the answer

DMA Function

e Additional Module (hardware) on bus
* DMA controller takes over from CPU for I/0O

Typical DMA Module Diagram

Data Lines

Address Lines 4

DMA Request
DMA Acknowledge
Interrupt

Read
Write

DMA Operation

CPU tells DMA controller:-

— Read/Write

— Device address

— Starting address of memory block for data
— Amount of data to be transferred

CPU carries on with other work
DMA controller deals with transfer
DMA controller sends interrupt when finished

DMA Transfer
Cycle Stealing

DMA controller takes over bus for a cycle
Transfer of one word of data

Not an interrupt
— CPU does not switch context

CPU suspended just before it accesses bus

— i.e. before an operand or data fetch or a data
write

Slows down CPU but not as much as CPU
doing transfer

DMA and Interrupt Breakpoints During
an Instruction Cycle

Time
EE—
Instruction Cycle
» y N
Processor | Processor | Processor | Processor | Processor | Processor
Cycle Cycle Cycle Cycle Cycle Cycle
| b_-i b_-ll > b_-ll b_-i »
Fetch Decode Fetch Execute Store Process
Instruction | Instruction Operand | Instruction Result Interrupt
A A
DMA Interrupt

Breakpoints Breakpoint

DMA Configurations (1)

‘F‘umme‘ DNA H‘ /0 H - 5 ‘ /0 H ‘I'lrlumn'_'rH

* Single Bus, Detached DMA controller

e Each transfer uses bus twice
—|/O to DMA then DMA to memory

 CPU is suspended twice

DMA Configurations (2)

‘Fuu:mn‘ ‘ \ DMNA
LN

(b Single-bos, Integrated DMA-L/0

=
"

Single Bus, Integrated DMA controller
Controller may support >1 device

Each transfer uses bus once
— DMA to memory

CPU is suspended once

DMA Configurations (3)

Syvslem bos

== =
™ "

/0y bos

-1 el el
(e} L/O bos
Separate I/O Bus
Bus supports all DMA enabled devices

Each transfer uses bus once
— DMA to memory

CPU is suspended once

Intel 8237A DMA Controller

Interfaces to 80x86 family and DRAM
When DMA module needs buses it sends HOLD signal to processor
CPU responds HLDA (hold acknowledge)

DMA module can use buses

E.g. transfer data from memory to disk

1.
2.
3.

Device requests service of DMA by pulling DREQ (DMA request) high
DMA puts high on HRQ (hold request),

CPU finishes present bus cycle (not necessarily present instruction) and puts
high on HDLA (hold acknowledge). HOLD remains active for duration of DMA

DMA activates DACK (DMA acknowledge), telling device to start transfer

DMA starts transfer by putting address of first byte on address bus and
activating MEMR; it then activates IOW to write to peripheral. DMA
decrements counter and increments address pointer. Repeat until count
reaches zero

DMA deactivates HRQ, giving bus back to CPU

8237 DMA Usage of Systems Bus

HRQ |«

Data bus

DREQ

HLDA

8237 DMA
chip

DACK

A

Main
memory

Disk
controller

A

DACK = DMA acknowledge
DREQ = DMA request

Address bus

Control bus (IOR, IOW, MEMR, MEMW)

HLDA = HOLD acknowledge

HRQ = HOLD request

Instruction pipeline

An Instruction pipeline operates on a stream of
instructions by overlapping the fetch, decode, and
execute phases of instruction cycle.

The instruction pipeline reads consecutive
instructions from memory while previous instruction
are being executed in other segments. This type of unit
that forms a queue rather than stack. The instructions
are inserted into FIFO buffer so that they can be
executed on a first in first out basis. Thus the
instruction stream can be placed in a queue, waiting
for decoding and processing by execution segment.

o s W iheE

In most general case, the computer needs
to process each instruction with the following
sequence of steps:

Fetch the instruction from memory.
Decode the instruction.

Calculate the effective address.
Fetch the operands from memory.
Execute the instruction.

Store the result in the proper place.

Example —Four segment CPU pipeline

Fetch Instruction
from memory

Segment 1

Decode
Segment 2 instructions and

calculate effective
_ yes
Interrupt handling §
yes

address
Segment 3

Update PC

Fetch operand
from memory

‘no

Execute instruction
Segment 4

Empty pipe

Pipeline Conflicts

There are three major difficulties that cause
the instruction pipeline to deviate from its

normal operation

1. Resource conflicts caused by access to memory

by two segments at the same time.

Most of

these conflicts can be resolved by using separate

instruction and data memories.

2. Data dependency conflicts arise w
instruction depends on the result of a
instruction, but this result is not yet avai

instructions that change the value of PC.

nen an
orevious

able.

Branch difficulties arise from branch and other

Vector Processing

Vector processing used in vast number of
computations that will take a conventional
computer days or even weeks to complete. In
many science and engineering applications,
the problems can be formulated in terms of
vector and matrices that land themselves to
vector processing.

Use of vector processing

1 Long range weather forecasting.

2 Petroleum exploration.

3 Seismic data analysis.

4 Medical diagnosis.

5 Aerodynamics and space flight simulation.
6 Artificial Intelligence and expert systems.
7 Mapping the human genome.

8 Image processing.

What is Superscalar?

Common instructions (arithmetic, load/store,
conditional branch) can be initiated and
executed independently

Equally applicable to RISC & CISC
In practice usually RISC

Why Superscalar?

 Most operations are on scalar quantities

* Improve these operations to get an overall
Improvement

Superpipelined

 Many pipeline stages need less than half a
clock cycle

* Double internal clock speed gets two tasks per
external clock cycle

e Superscalar allows parallel fetch execute

Superscalar and Superpipelined
Processors

¢ I . ogical evolution of pipeline designs
resulted in 2 high-performance execution
techniques

* Superpipeline designs

Observation: a large number of operations do
not require the full clock cyele to complete

High performance can be obtained by
subdividing the clock cycle into a number of
sub intervals

» Higher clock frequency!
Subdivide the “macro™ pipeline H/ W stages
into smaller (thus faster) substages and clock
data through at the higher clock rate

Time to complete individual instrmctions does
not change

» Degree of parallelisimm goes up
» Perceived speedup goes up

¢ Superscalar

— Implement the CPU such that more than one
instruction can be performed (completed) at a
time

— Involves replication of some or all parts of the
CPU/ALU
— Examples:
» Fetch multiple instructions at the same time

» Decode multiple instructions at the same
time

» Perform add and multiply at the same time

» Perform load/stores while performing ALU
operation

— Degree of parallelism and hence the speedup of
the machine goes up as more instructions are
executed in parallel

Superscalar design limitations

¢ Data dependencies: must insure computed
results are the same as would be computed
on a strictly sequential machine

— Two instructions can not be executed in parallel

if the (data) output of one is the input of the
other or if they both write to the same output
location

Consider:

S1: A=B+C
S2: D=A+1
S3: B=E-+F
S A=FE—+3

¢ Resource dependencies

In the above sequence of instructions, the adder
unit gets a real workout!

Parallelism is limited by the number of adders
in the ATTT

¢ Instruction issue policy: in what order are
instructions 1ssued to the execution unit
and in what order do they finish?
— In-order issue, in-order completion

» Simplest method. but severely limits
performance

» Strict ordering of instructions: data and
procedural dependencies or resource
conflicts delay all subsequent instructions

» “Slow™ execution of some instructions
delay all subsequent instructions

— In-order issue. out-of-order completion

» Any number of instructions can be executed
at a time

» Instruction issue i1s still limited by resource
conflicts or data and procedural
dependencies

» Output dependencies resulting from out-of-
order completion must be resolved

» “Instruction™ interrupts can be tricky

— Out-of-order issue, out-of-order completion

» Decode and execute stages are decoupled
via an instruction buffer “window™

» Decoded instiuctions are “stored™ in the
window awaiting execution

» Functional units will take instructions from
the window in an attempt to stay busy

+ This can result in out-of-order

execution

. A=B+C
S2: D=E-+1
S3: G=E-+F
S4: H=E * 3

» “Antidependence™ class of data
dependencies must be dealt with

¢ Register renaming

— OQutput dependencies and antidependencies are
eliminated by the use of a register ““pool™ as
follows

» For each instruction that writes to a register
X. a “*new’” register X is instantiated

» Multiple “register Xs” can co-exist

— Consider
S1: R3i=R3+RS5
S2: B4=E3—+1
S3: R3i=R5+1
S4: BE7T=E3+-E4
becomes
S1: R3b=R3a+ER5a
S2: Rdb=R3b+ 1
S3: BE3ic=ERE5a—+1

S4: R7b=R3c - R4b

¢ Impact on machine parallelism

— Adding (ALU) functional units without register
renaming support may not be cost-etfective

» Performance 1s limited by data
dependencies

— Qut-of-order 1ssue benefits from large
instruction buffer windows

» Easier for a functional unit to find a
pending mstruction

General Superscalar Organization

Integer Register File Floating Point Register File

A \

Pipelined] | S ARRRNN Loy
functional | J56442 | RN RN
unctiona]) A Eeoied RN RN
units] A i RRRNSS IR

Memory

Fxeocute

Kaey:

WY rite

1

1

1
Base M

Itetch | IDecode

ime

1

1

1
wh

-
L =

ined

I
'
'
'
'
'
'
'
I-
1
1
'

uperpipe

&~

et
i e
e
Ry
++++._‘_ 7 7]
et
e
[F
]

L

scalar

uperp

o

TN

SUOIINIISUI JAISSAIIN

=
hase cveles

7

Tirme in

i

L]

Limitations

Instruction level parallelism
Compiler based optimisation
Hardware techniques
Limited by

— True data dependency

— Procedural dependency
— Resource conflicts

— Output dependency

— Antidependency

Unit — 05
Memory Systems
&

Multiprocessor

Semiconductor Memory

* RAM

— Misnamed as all semiconductor memory is random
access

— Read/Write

— Volatile (contents are lost when power switched off)
— Temporary storage

— Static or dynamic

* Dynamic is based on capacitors — leaks thus needs refresh

 Static is based on flip-flops — no leaks, does not need refresh

Semiconductor Memory Types

Memory Type

Random-access
mermary [EAD)

Read-only
memary (RO)

Programmable
RO PR O

Category

Read-write memory

Read-only memary

Erssure

El=ctrically, byte-lavel

Lot possible

Erazahl= PRON
[EFRION)

El=ctrically Erasabl=
PR OM [EEPR O)

Flash m=mory

Read-mostly memory

LW light, chip-level

El=ctrically, byta-lavel

El=ctrically, block-l=vel

Write Mechanism

El=ctrically

Ilasks

El=ctrically

V olatility

Valatile

Manvalatile

Memory Cell Operation

Control Control

Datain Select

(a) Write (b) Read

The bulk of a processor’'s main memaory is
comprised of dynamic RAN

Manufacturers have focused on memory sizes
rather than speed

In contrast to SEAM, DRAM uses a single
transistor and capacitor to store a bit

DREAM requires that the address applied to the

device be asserted in a row address (RAS) and a
column address (CAS)

The requirement of RAS and CAS of course kills
the access time, but since it reduces package
pinout, it allows for higher memory densities

¢ RAS and CAS use the same pins, with each being

asserted during either the RAS or the CAS phase
of the address

® There are two metrics used to describe DRAM's
performance:
» Access time is defined as the time between
assertion of RAS to the availability of data
* LCycle time is defined as the minimum time before a
next access can be granted
* Manufacturers like to quote access times, but
cycle times are more relevant because they
establish throughput of the system

Unit — 05
Memory Systems
&

Multiprocessor

Semiconductor Memory

* RAM

— Misnamed as all semiconductor memory is random
access

— Read/Write

— Volatile (contents are lost when power switched off)
— Temporary storage

— Static or dynamic

* Dynamic is based on capacitors — leaks thus needs refresh

 Static is based on flip-flops — no leaks, does not need refresh

Semiconductor Memory Types

Memory Type

Random-access
mermary [EAD)

Read-only
memary (RO)

Programmable
RO PR O

Category

Read-write memory

Read-only memary

Erssure

El=ctrically, byte-lavel

Lot possible

Erazahl= PRON
[EFRION)

El=ctrically Erasabl=
PR OM [EEPR O)

Flash m=mory

Read-mostly memory

LW light, chip-level

El=ctrically, byta-lavel

El=ctrically, block-l=vel

Write Mechanism

El=ctrically

Ilasks

El=ctrically

V olatility

Valatile

Manvalatile

Memory Cell Operation

Control Control

Datain Select

(a) Write (b) Read

The bulk of a processor’'s main memaory is
comprised of dynamic RAN

Manufacturers have focused on memory sizes
rather than speed

In contrast to SEAM, DRAM uses a single
transistor and capacitor to store a bit

DREAM requires that the address applied to the

device be asserted in a row address (RAS) and a
column address (CAS)

The requirement of RAS and CAS of course kills
the access time, but since it reduces package
pinout, it allows for higher memory densities

¢ RAS and CAS use the same pins, with each being

asserted during either the RAS or the CAS phase
of the address

® There are two metrics used to describe DRAM's
performance:
» Access time is defined as the time between
assertion of RAS to the availability of data
* LCycle time is defined as the minimum time before a
next access can be granted
* Manufacturers like to quote access times, but
cycle times are more relevant because they
establish throughput of the system

Of course the charge leaks slowly from the
storage capacitor in DRAM and it needs to be

refreshed continually

During the refresh phase, all accesses are held-
off, which happens once every 1 — 100 ms and
slightly impacts the throughput

DREAM bandwidth can be increased by operating it
in paged mode, when several CASs are applied for
each RAS

A notation such as 256x16 means 256 thousand
columns of cells standing 16 rows deep

Dynamic RAM

Bits stored as charge in capacitors
Charges leak

Need refreshing even when powered
Simpler construction

Smaller per bit

Less expensive

Need refresh circuits

Slower

Used in main memory

Essentially analogue
— Level of charge determines value

Dvnamic RAM Structure

Addrss e

S

TranskElor

SloTage

n:ﬂpnﬂml-T

Bit line Grothd

DRAM Operation

 Address line active when bit read or written
— Transistor switch closed (current flows)
* Write
— Voltage to bit line
* High for 1 low for 0

— Then signal address line
* Transfers charge to capacitor

e Read

— Address line selected
* transistor turns on

— Charge from capacitor fed via bit line to sense amplifier
 Compares with reference value to determine O or 1

— Capacitor charge must be restored

Uses 4-6 transistors to store a single bit of data

Provides a fast access time at the expense of
lower bit densities

For this reason registers and cache subsystems
are fabricated using SRAM technology

Static RAM is considerably more expensive than
Dynamic RAM

However, since it doesn't need to be refreshed, its
power consumption is much lower than DRAM

Also, the absence of the refresh circuitry makes it
easier to interface to

The simplicity of the memory circuitry
compensates for the more costly technology

Static RAM

Bits stored as on/off switches
No charges to leak

No refreshing needed when powered
More complex construction
Larger per bit

More expensive

Does not need refresh circuits
Faster

Cache

Digital

— Uses flip-flops

Static RAM Structure

o voliage
l
r;“g_ —c| T,
L -rj L“'—..__--‘ "..."'..._’.{_:_1 ..rtl s |
T |
[T
|
(o
|
Bit lihe Address Bit_line
B e E

Static RAM Operation

Transistor arrangement gives stable logic state
State 1
— C, high, C, low
—T,T,off, T, T;0n
State O
— G, high, C, low
— T, T, off, T, T,0on
Address line transistors T T, is switch
Write — apply value to B & compllment toB

Read —value is on line B

SRAM v DRAM

* Both volatile
— Power needed to preserve data

* Dynamic cell
— Simpler to build, smaller
— More dense
— Less expensive
— Needs refresh
— Larger memory units

* Static
— Faster
— Doesn’t need refresh
— Cache
— Consumes more power

Memory

Memory Hierarchy

* Major design objective - to provide adequate storage capacity
— at an acceptable level of performance
— at areasonable cost

* The use of a hierarchy of storage devices can meet this goal:

e Registers internal to the CPU for temporary data storage (small in
number but very fast)

— External storage for data and programs (relatively large and fast)
— External permanent storage (much larger and much slower)

372

Typical memory hierarchy: (Technology, size, access
time)

egister
iIn CPU

Cache
(RAM, 100sKB, ~10ns)
Main memory
(RAM, 100sMB~GB, ~50ns)

Magnetic disk
(Hard disk, 10sGB-100sGB, ~10ms)

Optical disk Magnetic tape
(CD-ROM, GB, ~100ms)| (Tape, 100sMB, sec-min)

373

Each decreasing level in the hierarchy consists of modules of larger capacity,
slower access time, and lower cost/bit.

Goal of the memory hierarchy - try to match the processor speed with the rate of
information transfer from the highest element in the hierarchy.

The memory hierarchy works because of locality of reference
— Memory references made by the processor, for both instructions and data,
tend to cluster together
» Instruction loops, subroutines

» Data arrays, tables
— Keep these clusters in high speed memory (e.g. cache memory) to reduce the
average delay in accessing data;
— Over time, the clusters being referenced will change - memory management
must deal with this (i.e. cache replacement).

Main Memory

A main memory is a collection of words, used for storing programs or data; each
word may consist of one or more bytes; conventionally, one word = two bytes.

* Physically, a memory of N words can be constructed using an N-word SRAM or
DRAM, as described in the previous chapter.

* Logically, a memory of N words is like an array of N elements in Java or any other
high-level language; e.g. a 10-element array in Java: int MEM = new
int[10].

A byte or word in a memory is often called a memory cell. Each cell in the
memory can be located individually by its address, and thus written to or read
from.

* The difference between an address and what is stored at that address cannot be
over-emphasized; e.g. address $1000 may contain any bit pattern.

Addressing main memory

* We draw a memory as an array of 16-bit (2-byte) words, and consider the
addresses for storing bytes, words and long words in it.

* Bytes. Byte is the smallest unit that can be addressed. Bytes are addressed as
follows:

Bit-number
15 8 7 0
Address g Byte 0 Byte 1 1 Address
2 Byte 2 Byte 3 3
4 Byte 4 Byte 5 5
6 Byte 6 Byte 7 /
8 Byte 8 Byte 9 9
A B

etc.
« Successive bytes in memory are stored at consecutive byte
addresses, e.g. 0, 1, 2, 3..., as above.

* Words. Each consists of 2 bytes, addressed as

follows:
MSB Bit-number

15 0
Address o\ Word 0

—" Word2] 3
Word 4
Word 6
Word 8

etc.

—

First
byte

Second
byte

]>OOCDXI\J

B

« Words are stored and accessed at even addresses (at even byte
numbers), e.g. 0, 2,4,6..., as above.

* Long words. Each consists of 4 bytes, addressed as

follows:ysg Bit-number

15 0
Address o\ Long

IE word 0
L.ong

word 4
L.ong

word 8

etc.

w -

First

byte Last

byte

j>oocn.¥

0 ©

« Long words are stored and accessed at even addresses that are
multiple of 4,e.9.0, 4, 8, C..., as above.

Memory Hierarchy

Auxiliary memory

RAM Chip

Chip select | —J CS)
Chip select) sw— Cs_—-z
Read jRD 128X 8 et 8-bit data b
RAM i us
Write WR
7-bit address AD7
(a) Block diagram
CS1 CS2 RD WR |Memory function State of data bus
0 0 x x Inhibit High-impedance
0 1 x X Inhibit High-impedance
I 0 0 0O Inhibit High-impedance
1 09O 3} Write laput data to RAM
1 B 1= Read Output data from RAM
1 | x X Irhibit High-impedance

(b) Function table

ROM Chip

Chip select | —— CS]
Chip select 2 st CS2

JIZXA 8
ROM

prepe- 8-Dit data bus

Memory Address Map

Address bus
Hexadecimal

Component address 109 8 7 6 5 4
RAM 1 0000-007F 00 0 x xx x x x x
RAM 2 0080-0FF 00 1 x x x X X X X
RAM 3 0100-017F 01 0xx X x X XX
RAM 4 0180-01FF 01 I X XX XX X X
ROM 0200-03FF 13X X X3 XX 2%

CPU / Memory Connection

-1
- - oo
.....
-
-
-1 -
-

-1 A

¢

P

-y

-la f -
.....

-1l

|

|

!
-in - -——

| |
-lw
-0“

|

1)
- -
~

Magnetic Disk

P
{8
\ %/

Other Types of Magnetic Storage

¢ Head-Per-Track disk

e Drum

e Tape

Associative Memory

Argument register (A)

l

Rey wghize (K)

Match
regster
INPUL et
Associative memory
array and logic v
Read ce- m words
Write e n bits per word

1

Output

Assoclative Memory Example

e A
e K
e Word 1
e Word 2

101 111100
111 000000
100 111100

101 000001

Argument
Key (mask)
no match

match

m Words, n Cells Per Word

Word |

Woed /

Word m

K, K Ky
L] | l
Ci Cy Cia M,
Cy G Cin M,
Cat Cuy Can M,
Bit | Bit / Bit n

One Cell Of Associative Memory

Input Yy N
Write
, B
R S
F‘/ Mal.cn —"'TOM'
Read logic

Output

One Word Match Logic

A

K, A, K A, K,
Fa Ia
Y r
[
\ \

Tag Register

e One bit for each associative memory word
e Set to 1 for active word
e Reset to 0 for deleted word

e Masked along with argument word so only
active words are compared

Cache

* Small amount of fast memory
e Sits between normal main memory and CPU
* May be located on CPU chip or module

Block Transter

Word Transfer {_\/L"_‘

~Amy

CPU > Cache Main Memory

Cache/Main Memory Structure

Line Memory
Number Tag Block address
0 0
1 1
2 2 Block
3 (K words)
C -1
Block Length
(K Words)
(a) Cache
Block
2" -1
Word
Length *

(b) Main memory

Cache Memory Terms

e Locality of reference

s Memory references at any given interval of time
tend to be contined within a few localized areas in
IMEMOory

e Cache memory

m Fast, small memory with fastest access speed
compared to other memory types

e Hit ratio

m Cache hits / (cache hits + cache misses)

Cache Memory

Main memory
32K X 12

Cache memory
512 X 12

CPU

Associative Mapping Cache

CPU address (15 bits)

1

Argument register

e A ddreSS -

Data ——

01000 3450
02777 6710
22345 1234

Numbers 1n octal

Associative Mapping

A main memory block can load into any line of
cache

Memory address is interpreted as tag and
word

Tag uniquely identifies block of memory
Every line’s tag is examined for a match
Cache searching gets expensive

Fully Associative Cache
Organization

b

.
Memory Address Taz [Daia Wl

[Tae | Waord | | Wl
W2 By
sl fo LK
&
W
/] 1 * | I I
L]
| * | |
* | . |
w L]
7 | | I I
L
éf%p W]
1 — I " I | Widj+l1}
Compare . %L.n- Widj+2) HJ
| | Widj+3}
(hit in cache) . I
| 1 *
% | [. |
o ‘im-1 I
« |
I - s ml
L (mmiss in cache)

Address
oooooo

Associat
Mapping Ex

1

163398
16339C
163340

—

FFFFF4
FFFFF&

e

FFFFFC

| 24682468 |

Data
13579246

_—

FEDCBA9S

33333333
11223344

1

'F"h.-‘

+—>

32 bits

16 MByte Main Memory

Main Memory Address =

ve!
am

ple

Line
Ta Data Number
r== 3FFFFE] 11223544 oooo
= =4 058CE7 | FEDCEASE ool
1
1
~ . 1 _-
1
1
= 4 = o 3FFFFD| 33333333 3FFD
= =l = =] O000000) 13579245 3JFFE
- % = = SFFFFF] 246524685 3FFF
1
+ . >4 . >
22 bits 32 bits

16 Kline Cache

e o o o o o o o e .

Tag

Word

22

Associative Mapping
Address Structure

Word
Tag 22 bit 2 bit

22 bit tag stored with each 32 bit block of data
Compare tag field with tag entry in cache to check for hit

Least significant 2 bits of address identify which 16 bit word is
required from 32 bit data block

e.g.
— Address Tag Data Cache line
— FFFFFC FFFFFC 24682468 3FFF

Associative Mapping Summary

Address length = (s + w) bits

Number of addressable units = 2s+w words or
bytes

Block size = line size = 2w words or bytes

Number of blocks in main memory = 2s+
w/2w = 2s

Number of lines in cache = undetermined
Size of tag = s bits

Main & Cache Relationships

6 bits 9 bits
Tag i Index
|t ,
0 990 32K X 12 000
Octal
Octal Main memory sddress
address : 1
Address = 15 hits 777
' Data = 12 bits

7 7177

SIZX 12
Cache memory

Address = 9 bits
Data=12 bits

Direct Mapping Cache

Memory Index

address Memory data address Tag Data
00000 1220 000 00 1220
00777 2340
01000 3450
01777 4560 777 02 6710
NN SATN

(b) Cache memory
02777 6710
4 L

{a) Main memory

Direct With 8 Words / Block

Block 0

Block |

Block 63

Index Tag Data

000 01 3450

007 01 6578

010

U1/
| | |
| | |
' | |
l | I
I | |
| | |

770 02

777 | 02 6710

Tag

Block

Word

Index

Direct Mapping

Each block of main memory maps to only one
cache line

— i.e. if a block is in cache, it must be in one specific
place

Address is in two parts
Least Significant w bits identify unique word

Most Significant s bits specify one memory
block

The MSBs are split into a cache line field r and
a tag of s-r (most significant)

Direct Mapping
Address Structure

Tag s-r Line or Slot r Word w

3 14 2

24 bit address
2 bit word identifier (4 byte block)

22 bit block identifier
— 8 bit tag (=22-14)
— 14 bit slot or line
No two blocks in the same line have the same Tag field

Check contents of cache by finding line and checking Tag

e Cacheline
e 0
e 1

* m-1

Direct Mapping
Cache Line Table

Main Memory blocks held
O, m,2m, 3m...2s-m
1,m+1, 2m+1...2s-m+1

m-1, 2m-1,3m-1...2s-1

Direct Mapping Cache Organization

BT,
&
Cache Main Memory
Memory Adddress Taz Daia Wi
| Tag] Line | Waord | | W1
: W2 By
11 T
T r W W3
T /]]
L I L] I
| I I I
L L]
S5-T. I I I I
o I b I L]
| |
™ ;
" : —— el W4
. — i L N Widi+1]
Comparg +ﬁ" Widj+2) By
I Widj+3)
(hit i cache) I . |
I .
L]
| : b
* |
« |
I I - e ol
[‘-1
(miss in cache)

Line +
Word

0000
0004

Dire

FFF8
FFFC

0000
0004

16 < 339C

FFFC

0000
0004

FF

FFF8
FFFC

Data

135709246

FITT7777

s’

11235813

FEDCEASS

12345678

—

P

11223344
24682468

32 bits

16-MByte main memory

Main memory address =

Tag

Line
Tag Data Number
oo 13579246 noon
16 11235813 noo1
- L
1r | FEDCBAY9S QACE?
FF 11223344 3FFE
16 12345678 | 2FFF
< ."]
8 bits 32 bits

16-Kline cache

Line

Word

14

Direct Mapping Summary

Address length = (s + w) bits

Number of addressable units = 2s+w words or
bytes

Block size = line size = 2w words or bytes

Number of blocks in main memory = 2s+
w/2w = 2s

Number of lines in cache =m = 2r
Size of tag = (s —r) bits

Direct Mapping pros & cons

* Simple
* Inexpensive
* Fixed location for given block

— If a program accesses 2 blocks that map to the
same line repeatedly, cache misses are very high

Set-Associative Mapping Cache

Index Tag Data Tag Data
000 O1 3450 02 5670

7177 02 6710 00 2340

Set Associative Mapping

Cache is divided into a number of sets
Each set contains a number of lines
A given block maps to any line in a given set

— e.g. Block B can be in any line of set i

e.g. 2 lines per set
— 2 way associative mapping

— A given block can be in one of 2 lines in only one
set

Set Associative Mapping
Example

e 13 bit set number
* Block number in main memory is modulo 213

* 000000, OOAOO00, 00B0OOO, 00COOO ... map to
same set

Two Way Set Associative Cache
Organization

S,
7
Cache Main Memory
Mlemory Adidness Tag [WETH B
'
Fag Sl Word . -
[Tl [] | e
| B,
s-il | il w | ;
1 Iy Fy
[]
Set 0 I . I
| - | I I
L]
I * 1 I I
L & ’
4 iy | |
I]
r I_ | k fem k)
I = B;
- F\ - I
Compre : sy %al 1 | . |
i : b
| | . o
{hit in cache) I— P | I

(miss in cache)

Set Associative Mapping
Address Structure

Tag 9 bit

Set 13 bit

Word
2 bit

e Use set field to determine cache set to look in

 Compare tag field to see if we have a hit

° e.g
— Address
number

— 1FF 7FFC
— 001 7FFC

Tag Data

1FF 12345678 1FFF
001 11223344 1FFF

Set

Tag Set+Word

aooao
aoo4

aon

JFF8
JFFC

aooao
aoo4

120 @ 339C

JFFC

aooao
aoo4

1FF

JFF8
JFFC

Data
1357924 f = = = 1
]
I
]
b ﬁ-—-"
]
]
]
]
]
-~ == T --------------------------
[Set
. 1 I Ta Data Number Tag Data
77777777 =1 = = = =000 13579246 | 0000 [Q2C| 77777777
117235813 === === = oz 11235813 | o001
FEDCERAYE = = = = = = = 02| FEDCEZ98 | OCE7
- L - L L
r== IFF| 11223344 | 1FFE
12345678 === == + =402C) 12345678 | 1IFFF | IFF] 24682468
1 . .
: 9 bits 32 bits 9 bits 32 bits
: 16 Kline Cache
1
1
b ﬁ-—-"
1
1
1
117223344 | = = = ==]
74872468 b = = m m m m m mcmcccccct cr ettt et e e e - - -
44—
32 bits
16 MByte Main Memory
Tag Set Word
Main Memory Address = 9 13 2

Set Associative Mapping Summary

Address length = (s + w) bits

Number of addressable units = 2s+w words or
bytes

Block size = line size = 2w words or bytes
Number of blocks in main memory = 2d
Number of lines in set = k

Number of sets =v = 2d

Number of lines in cache = kv =k * 2d
Size of tag = (s — d) bits

Writing Into Cache

e Write-through

m Update cache and main memory in parallel
m Needed when using DMA for I/O device
communication

e Write-back

m Update cache only

m Update main memory only when updated word 1s
tlushed from cache

Address / Memory Space Reln

Auxiliary memory

Main memory

Promm | \ Pl’mm 1
Data 1,1 \

Data 1,2 \
Data 1,1

Program 2
Data 2,1
Memory space
M=32k= 2!5
Address space

N = 1024K = 220

Mapping A Virtual Address

Virtual address

|

Virtual
address
repister
(20 bits)

1
Main memory
. Mcmor address Main
mapping register memory
table (15 bits)

l Main memory
Memory table bufTer register
buffer register

Address & Memory Spaces

Page O

Page |

Page 2

Page 3

Page 4

Block O

Page S

Block |

Page 6

Block 2

Page 7

Block 3

Address space
N=8K=2"

Memory space
M=4K =2"?

Block can also
be called a

“page frame”

12
LN

Paging System Memory Table

Page no. Line sumber
1 01]01 01010011 Virtual address

Tablke ‘——] lece

address
000 0 Main memory
001 THRE Block 0
oro| oo |1 Block |
o011 0 01 0101010011 —r‘ Block 2
100 0 Biock 3
w | o1 |1 }
1mo| 10 |1
1" 0 —

Lo |1

Associative Memory Page Table

Virtual address

A
r
Page no.
Hq
). Q"% Line number Argument register

111 00] Key register

001 1 |

01 0 0 0 oz
—t 41 Assodative memory
1 U 1] l v i

1 4:0:] 4 ©

—_— e ——
Page no. Block no.

j

Page Frame Usage

¢ When a program’s execution 1s initiated by the
operating system, one or more pages are loaded
into main memory

e Every time a page 1s referenced and 1t 1s not
currently in main memory, a page fault 1s
generated

m Page 15 loaded from disk into an unused page frame

m If all pages frames are 1 use. need method for
freeing one up

Page Replacement Algorithms

e First-In, First-Out (FIFO)
m Replace page that has been in memory the longest
e Least Recently Used (LRU)

m Every time page is referenced, 1ts aging counter 1s
reset to Zero

m All aging counters are incremented by 1 every
fixed time interval

m Page with highest aging counter value 1s replaced

One Additional Detall

¢ Replacing (also called “stealing™) a page that
has not been updated 1s a simple process: the
page frame 1s simply overwritten with the
new page being read in from disk

¢ Stealing an updated page requires that it be
written out to disk first before the page frame
can be overwritten

Memory Management Unit

e Supports dynamic storage relocation that
maps logical-to-physical memory references

¢ Allows sharing of common programs loaded
into memory

e Prevents unauthorized access or modification

Segment

e Collection of one or more pages

¢ Defined by a programmer or the operating
system

e A program is a collection of one or more
segments

e Each segment has an associated segment
descriptor

Segment Descriptor

Base address J Length I Protection |

|]
Page table address for Read/Write
first page 1n segment Read Only
Execute Only
System Only

Number of pages in segment

Logical-to-Physical Address

Logical address

l_

Segment table Page able

Translation Look-Aside Buffer

Segment Page Block

associative
memory

35

Logical & Physical Address Ex.

4 8 8

Segment Page Word
(a) Logical address format: 16 segmenta of 256 pages cach,
cach page has 256 words

12 8

Block Word
220 ¥ 32
Physical memory

(b) Physical address format: 4096 blocks of 256 words each,

cach word has 32 bits

Memory Address Assignment EX.

Hexadecimal

address Page number

60000 Page 0 Segment Page Block

60100 Page | 6 00 012
6 0l 000

60200 Page 2 6 02 019

60300 Page 3 6 03 053

60400 = 6 04 A6l

604FF .

(2) Logical address assignment (b) Segment-page versus

memory block assignment

Segment & Page Table Mapping

Logical adéress (i havadecsmal)
L] m TE
Segmery table Page tabls Physical memory
0 o 00000
Block O
DOCFF
6 34
15 012
W, Ly
37 019 01200
: Blocke 12
o L OL2FF
¥ Al LY AGI
O .
A2- it word
DISTE | i
Al an DIOFF |

Associative Memory TLB

Segment Page Block
6 02 019
6 04 A61

Multiprocessors

Overview

e Multiple mstruction, multiple data (MIMD)

e One operating system controls the CPUs
e Multiple jobs can execute in parallel

¢ Single job can be partitioned into multiple
parallel tasks

¢ Computer can continue to run when one CPU
fails

Classification

e Tightly coupled
s Common. shared main memory
m Each CPU can still have its own cache memory

m CPUs share data by writing it into main memory

¢ Loosely coupled
m Each CPU has its own main memory

m CPUs share data by passing messages

Interconnection Structures

¢ Time-shared common bus

¢ Multiport memory

¢ Crossbar switch

e Multistage switching network

¢ Hypercube system

Time-Shared Common Bus

Memory unit

CPU | CPU2 CPU3 0P 1 0P 2

Common Bus With Local Busses

Local bus

axs
JLITTLL

Multiport Memory

e Each processor bus 1s connected to each
memory module

¢ Memory module has as many ports as there
are processor busses connected to 1t

e Memory module access contlicts resolved by
assigning a fixed priority to each of its ports

Multiport Memory Diagram

Memary modules

MM | MM2 MM MM 4

i

au2

(& LB

Crossbar Switch

Mrrury mrstoles
MM} MM 2 MM3 MM 4
| I"Ll ™ ™ I
b A Lt L] 1) {]
——
!
‘ r o | | [
-y L) L L] {]
WS
| 1 M ™M r
| Lt L] 1] L,J
e ———

Crossbar Switch Block Diagram

module

Multipiexers
and
arbitration
logic

M
|
)<
M
-
s
’
|
|t
—
i
| -
-

Data, address, and

" control from CPU 1

Data, sddress, asd
control from CPU 2

Data, address, and
[control from CPU 3

Data, address, and

" control from CPU 4

2x2 Interchange Switch Operation

0

A

| U2
A connected to U

p—— 0

|, — 2 e

B connected to |

Binary Tree With 2x2 Switches

L9 000

— -Lf[)l
/ 0
]

N e 010

_O/Niff

|
— | _\
\4

—

le

|-

Hypercube Structures

Oly 01
1| 00
One-cube

Two-cube

10

010

011

/

/

/

001

Va

/

Three-cube

-+ | 101

Each node has a CPU, local memory, and I'O mterface

Nodes communicate by passing messages

13

Cache Coherence

¢ Value returned on a load instruction 1s always
the value given by the latest store imnstruction
with the same address

Load X

X=32 Main memory
B
pul J
X=352 X=352 X=352 Caches
P; P2 P; Processors

Write-Through Cache Policy

(a) With write-through cache policy

X=120 Main memory
Bus
X=120 X=52 X=52 Caches
Py Ps P Processors

Write-Back Cache Policy

X=352 Main memory
Bus
X=120 X=52 X=52 Caches
Fy ra ry PTOCESSOrS

(b) With write-back cache policy

Cache Coherence Solutions

¢ Disallow private caches (!)
¢ Restrict cache to non-shared and read-only data

¢ Memory block status stored in global table

m Each block tagged as RO or RW
m All caches can have RO data

m Only one cache can have RW data

¢ Each cache has a snoopy controller

m Watches bus for write operations
m Invalidates cache entry if address appears

Interprocessor Arbitration

Computer system contains a number of buses at various levels to
facilitate the transfer of information between components. The CPU
Contains a number of Internal buses for transferring information
between processor register and ALU. A memory bus consists of
lines for transferring data, address, and read/write information. An
I/O bus is used to transfer information to and from 1/O devices.

System Bus:-

A bus that connects major components in a multi-processor system
such as CPUs, IOPs, memory, is called s system bus.

System Bus

A typical system bus consists of approximately 100 signal lines.
These lines are divided into three functional groups: data, address,
and control.

In addition, there are power distribution lines that supply power to
the components.

For example, the IEEE standard 796 multibus system has 16 data
lines, 24 address lines, 26 control lines, and 20 power lines, for total
of 86 lines.

Data lines provide a path for the transfer of data between
processors and common memory.

Address lines are used to identify a memory address or any other
source or destination , such as input or output ports.

Synchronous Bus & Asynchronous Bus

« Synchronous Bus
In a synchronous bus each data item is transferred during a time
slice known in advance to both source and destination units.

Synchronization is achieved by driving both units from a common
clock source.

« Asynchronous Bus

In an Asynchronous bus each data item being transferred is
accompanied by handshaking control signal to indicate when the
data are transferred from the source and achieved by the
destination.

» Control lines provide signals for controlling
the Information transfer between units . The
signals Indicate the validity of data and
address

Information. Command signals specify
operation to be performed. Typical control
lines include transfer signals such as memory
read and write , acknowledge of a transfer ,
Interrupt requests, bus control signal such as
bus request and bus grant , and signals for
arbitration procedures.

Serial Arbitration Procedure

Highest Lowest
Priority Priority
To next
Bus Bus Bus Bus arbiter
Pl PO Pl PO Pl PO Pl PO
Arbiter 1 Arbiter 2 Arbiter 3 Arbiter 4
Bus busy
line

Serial (Daisy Chain) arbitration

Parallel arbitration

Bus

arbiter 1

Ack Req

Parallel Arbitration

arbiter 2

Ack

Bus

Re Ack

Bus
arbiter 3
Req

Bus

arbiter 4

Ack Req

4%*2
Priority encoder

Bus busy line

Interprocessor Communication

« The various processors in a multiprocessor system must
be provided with a facility for communicating with each
other. A communication path can be established through
common input output channels. In a shared memory
multiprocessor system, the most common procedure is
to set aside a portion of a memory that is accessible to
all processors.

In addition to shared memory, a multiprocessor system
may have other shared resources. For example, a
magnetic disk storage unit connected to an IOP may be
avallable to all CPUs. This provides a facility for sharing
of system programs stored in the disk.

 There are three organizations that have been

used in the design of operating system for
multiprocessors:

 Master-slave configuration
e Separate operating system
 Distribute operating system

Master slave mode

* |n a master slave mode, one processor,
designated the master, always executes the
operating system functions. If a slave
processor needs an operating system service,
it must request it by interrupting the master
and waiting until the current program can be
interrupted.

Separate operating system
organization

* |n the separate operating system organization,
each processor can execute the operating
system routines it needs. This organization is
more suitable for loosely coupled systems
where every processor may have its own copy
of the entire operating system.

Distributed operating system
organization

* |n the distributed operating system organization,
the operating system routines are distributed
among the available processors. However
particular operating system function is assigned
to only one processor at a time. This type of
operating system is also referred to as a floating
operating system since the routines float from
one processor to another and the execution of
the routines may be assighed to defferent
processors at different times.

Interprocessor synchronization

* The instruction set of a multiprocessor contains basic
instruction that are used to implement communication
and synchronization between cooperating processes.
Communication refers to the exchange of data
between different processes.

* Synchronization refers to the special case where the
data used to communicate between processors is
control information. Synchronization is needed to
enforce the correct sequence of processes and to
ensure mutually exclusive access to shared writable
data.

Unit - 02
Principles of Computer
design

