RUNGTA COLLEGE OF ENGINEERING & TECHNOLOGY, BHILAI

UNIT 1

Introduction to Data Structures

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

| ecture 1

What is a Data Structure?

« A primitive data type holds a single piece of data
— e.g. in Java: int, long, char, boolean etc.
— Legal operations on integers: + - * /
« A data structure structures data!
— Usually more than one piece of data
— Should provide legal operations on the data

— The data might be joined together (e.g. in an array): a
collection

« An Abstract Data Type (ADT) is a data type together with
the operations, whose properties are specified
Independently of any particular implementation.

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

RUNGTA COLLEGE OF ENGINEERING & TECHNOLOGY, BHILAI

Principles of Good Design:
Abstraction, Encapsulation, Modularity

ADTs use the following principles:

« Encapsulation: Providing data and operations on the data
« Abstraction: hiding the detalils.

— e.g. A class exhibits what it does through its methods;

however, the details of how the methods work is hidden
from the user

« Modularity: Splitting a program into pieces.

— An object-oriented program is a set of classes (data
structures) which work together.

— There is usually more than one way to split up a program

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Principles of Good Design:

High Cohesion, Low Coupling

« Modules (i.e. classes) should be as independent as possible

— Cohesion: The extent to which methods Iin a class are
related

— Coupling: The extent to which a class uses other classes
— Strive for high cohesion and low coupling

« The ADTs we will examine have high cohesion and low
coupling

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Basic Data Structures: Data Collections

« Linear structures
— Array: Fixed-size
— Linked-list: Variable-size
— Stack: Add to top and remove from top
— Queue: Add to back and remove from front
— Priority queue: Add anywhere, remove the highest priority

« Hash tables: Unordered lists which use a ‘hash function’ to
Insert and search

« Tree: A branching structure with no loops

« Graph: A more general branching structure, with less
stringent connection conditions than for a tree

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Kinds of Operations

Builders

— Change the contents of the data structure

Viewers

— Retrieve the contents of the data structure

Queries

— Return information about the data structure

lterators

— Return each element of the data structure, in some order

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

| ecture 2

Elementary Data Structures

Elementary Data Structure are fundamental approaches to
organizing data. These are the building blocks that will be
used to implement more complex Abstract Data Types.

Scalar (built-in) data types
Arrays

Linked Lists

Strings

> w N

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

RUNGTA COLLEGE OF ENGINEERING & TECHNOLOGY, BHILAI

Scalar Built-in Data Types

« Basic building blocks for other structures:

1. Integers (int)
2. Floating-point numbers (float)

3. Characters (char)

« Implicit type conversion allow these data types to be mixed
IN an expression.
e Sometimes casting Is required to for an expression to

evaluate correctly
((float) x) / N

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

RUNGTA COLLEGE OF ENGINEERING & TECHNOLOGY, BHILAI

Data Structures

There is a famous saying that
“Algorithms + Data Structures = Programs” (Wirth)

“For many applications, the choice of the proper data
structure is the only major decision Involving the
Implementation: once the choice is made, the necessary
algorithms are simple.” (Sedgewick)

— Suppose we have a list of sorted data on which we have
to perform the following operations:

« Search for an item
* Delete a specified item
* Insert (add) a specified item

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Data Structures

Example: Suppose we begin with the following list:
data: 345 358 490 501 513 555 561 701 724 797
location: O 1 2 3 4 5 6 7 8 9

 Whatis a list?
— A list is a data structure where data is represented linearly
— Finite sequence of items from the same data type

— If arrays are used, items are stored contiguously in the
memory

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

RUNGTA COLLEGE OF ENGINEERING & TECHNOLOGY, BHILAI

List Implementation using an Array

Example: suppose we begin with the following list:

data: 345 358 490 501 513 555 561 701 724 797
location: O 1 2 3 4 5 6 7 8 9

Now, delete item 358 from the above list
Q: What is the algorithm to delete an item?
Q: What is the cost of deleting an item?
\

data: 345 358 490 501 513 555 561 701 724 797
location: O 1 2 3 4 5 6 7 8 9

Q: When we delete 358, what happens to that location?
Now, add item 498 onto the abovzelgléigst
Q: Where would that item go?

data: 345 358 490 501 513 555 561 701 724 797
location: O 1 2 3 4 5 6 7 8 9

Q: What is the cost of inserting an item?
Conclusion:

Using a list representation of data, what is the overall efficiency of
searching, adding, and deleting items?

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

RIINGTA COI 1 FGF OF FNGINFFRING & TECHNOI OGY. BHII Al

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Deletlon of an Element from a
List

Algorithm:

1. locate the element in the list (this involves
searching)

2. delete the element

3. reorganize the list and index

Example:
data: 345 358 490 501 513 555 501 701

124 71977

location: 0 1 2 3 4 5 0
7 8 9

Delete 358 from the above list:

1. Locate 358: if we use ‘linear search’, we’ll compare
358 with each element of the list starting from the

focation O.

AliLix2G SHAIMA, [CTURER (CLSE. DATA SvRUCTUREZS & E. 4™ 35V

Insertlon of an Element IN List

Algorithm:

1. locate the position where the element in to be inserted (position
may be user-specified in case of an unsorted list or may be
decided by search for a sorted list)

2. reorganize the list and create an ‘empty’ slot

3. Insert the element

Example: (sorted list)

data: 345 358 490 501 513 555 56l
701 124 71977

location: 0 1 2 3 4 5 o
7 8 9

Insert 505 onto the above list:

1. Locate the appropriate position by performing a binary search.
505 should be stored in location 4.

2. Create an ‘empty’ slot

data: 345 358 490 501 513 555
561 701 724 797

location: 0 1 2 3 4 5 0

Methods fordefmlng a collection of
nhiarcte

* Array
— successive items locate a fixed distance

 disadvantage
— data movements during insertion and deletion

— waste space In storing n ordered lists of varying
size

* possible solution
— linked list

— linked lists are dynamically allocated and make
extensive use of pointers

RIINGTA COI 1 FGF OF FNGINFFRING & TECHNOI OGY. BHII Al

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Sorted Arrays

a[i] is 'less than or equal to' afi+1] for i = left..right-1
Meaning of 'less than or equal to' can vary

need a method of testing whether or not 'less than or
equal to' is true

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Llnear Search N SortedArray

Search for target in afleft..right]
This i1s an O(n) algorithm.

1. Loop using p = left..right
1.1 If a[p] greater than or equal to target then exit loop

2. If a[p] equals target then return index p else return 'not
found'

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Bmary Search (Recurswe)

Search(target,a,left,right)
This is an O(log n) algorithm.

1. If left >=right then
1.1 If a[left] equals target then
1.1.1 return index left
1.2 Else
1.2.1 return -1 (i.e. 'not found’)
2. Set mid = (left+right)/2
3. If target is greater than a[mid] then
3.1 return Search(target,a,mid+1,right)
4. Else
4.1 return Search(target,a,left,mid)

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Blnary Search Example

Find position of integer 17 between indices 1 and 9

l: Bl []

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Blnary Searchlng

The values to be searched must be sorted in order
Go to the mid point of the list or array
Compare this with the value to be found

If the value to be found is less than the mid point search the first
half of the list or array

If the value to be found is greater than the mid point search the
second half of the list or array

Divide the next part of the list or array in exactly the same way and
perform the same comparisons until the item is found or no more

searches can be made.

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Find 14 Usmg Bmary Search

0 1 2 3 4 5 6 I 8
12 14 25 39 41 56 /8 88 90

lowest = 0, highest = 8

Mid point (lowest+highest) /2 =4 value is 41
14 is less than 41
lowest = 0, highest = (mid -1) =3 value is 39
Therefore search: 12 14 25 39
Mid point (lowest+highest) /2 =1 value is 14

Search value 14 = 14.

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

H Find 88 Using Binary Search F

12 14 25 39 41 56 /8 88 90

lowest = 0, highest =8
Mid point (lowest+highest) / 2 =4 value is 41 88 is greater than 41
lowest = (mid + 1) = 5, highest = 8

Therefore search: 56 78 88 90

Mid point (lowest+highest) / 2 = 6 value is 78 88 is greater than 78
lowest = (mid + 1)=7, highest = 8

Therefore search: 88 90

Mid point (lowest+ highest) / 2 = 7 value is 88

Search value 88 = 88.

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

RUNGTA COLLEGE OF ENGINEERING & TECHNOLOGY, BHILAI

Introduction to Sorting [1/3]

To sort a collection of data is to place it in order.
We will deal primarily with algorithms that solve the General Sorting
In this problem, we are given:
A sequence.
U Items are all of the same type.
O There are no other restrictions on the items in the sequence.
O A comparison function.

O Given two sequence items, determine which should come first.

4 Using this function is the only way we can make such a
determination.

O We return:
O A sorted sequence with the same items as the original sequence.

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

et na [2/3]

We will analyze sorting algorithms according to five criteria:
— Efficiency
* What is the (worst-case) order of the algorithm?
* Is the algorithm much faster on average than its worst-case
performance?
— Requirements on Data

» Does the algorithm need random-access data? Does it work well
with Linked Lists?

» What operations does the algorithm require the data to have?
— Of course, we always need “compare”. What else?
— Space Usage
« Can the algorithm sort in-place?

— An in-place algorithm is one that does not require extra buffers to hold
a large number of data items.

 How much additional storage is used?

ANURAG THARMA, LECTURER C.5.E5. DATA STRUCTURES B.E. 4™ SEM

I | . S . . [3 [gjl

There Is no known sorting algorithm that
has all the properties we would like one to
have.

We will examine a number of sorting
algorithms. Generally, these fall into two
categories: O(n?) and O(n log n).

— Quadratic [O(n?)] Algorithms
* Bubble Sort
« Selection Sort

* Insertion Sort

AN'IRAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

RUNGTA COLLEGE OF ENGINEERING & TECHNOLOGY, BHILAI
. | |
Review:

Merge Sort does essentially everything we
would like a sorting algorithm to do:
— It runs in O(n log n) time.
— It Is stable.
— It works well with various data structures
(especially linked lists).

Thus, Merge Sort Is a good standard by which
to judge sorting algorithms.

When considering some other sortinc

ANURAG SHAFMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

The Importance Of Algorlthm

Analysis

» Performance matters! Can observe
and/or analyze, then tune or revise
algorithm.

 Algorithm analysis is SOOOO important
that every Brown CS student Is required
to take at least one course In it!

AnaIyS|s of Algorlthms

» Computing resources consumed
—running time
—Mmemory space

* Implementation of algorithm

—machine (Intel Core 2 Duo, AMD
Athlon 64 X2,...)

—lanquage (Java, C++....

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Big- _O Notation - OrderOf()

How to abstract from implementation?

Big-O notation

O(N) means each element is accessed once
— N elements * 1 access/element = N accesses

O(N?) means each element is accessed n times

— N elements * N acc%?;e%ﬁﬁﬁ')‘/%”} Gy

aClessesS

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

————-logN
80 100 120 140
N

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

10° —

2'N 2 NIO/Q“N N
o T ﬁ e
f(ﬂbl)-en log-loge grapi paper
. 10° T = :
S 1o+ N
108 T~ F
102 T /-
10t + ,r =&t =ogN
0 10'1 102 10° 10% 105 105 107

104
N

* X-axis: log N; y-axis: log f(N)
* the diagram of cf(N) is obtained by “shifting” the

diagram of f(N) up by log c.

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Bubble Sort

 |terate through sequence, compare each element to right
neighbor.

« Exchange adjacent elements if necessary.

« Keep passing through sequence until no exchanges are
required (up to N times).

« Each pass causes largest element to bubble into place:
1st pass, largest; 2nd pass, 2nd largest, ...

49 2 36 55 4 72 23
Before a pass

2 36
Middle of first pass
2 36

After one pass

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

RUNGTA COLLEGE OF ENGINEERING & TECHNOLOGY, BHILAI

« Like Inserting new card into a partially sorted hand by
bubbling to left into sorted subarray; little less brute-force than

bubble sort

— add one element a]i] at a time

— find proper position, j+1, to the left by shifting to the right
a[i-1], a[i-2], ..., a[j+1] left neighbors, til a[j] < a[i]

— move aJi] into vacated a[j+1]

« After iteration i<n, a[l] ... a]i] are Iin sorted order, but not
necessarily in final position

214 13615519 7223

Insertion Sort 2 | 4 36 | 55| 72 | 23
j J+vv

2| 4| 936|555 72| 23
T .

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Time CompIeX|ty of Insertion

Sort

Pseudocode implementation

for (int i = 2; i <= n; i++) {

int j;
for (J =1 -1; (3 > 0) &&

(alj]l > al[i]); J--) |
move a[j] forward;

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

RIINGTA COI 1 FGF OF FNGINFFRING & TECHNOI OGY. BHII Al

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Selectlon Sort

* Find smallest element and put it in a[1].

* Find 2nd smallest element and put It In
al2].
m

. etcaLésﬁstéLéjﬁxbﬁérﬁéﬁL@bﬂédbblmg)

Pseudocode:

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Tlme Complex1ty of

Ce Qh#'mn Sort

N N e N oy o

for (int 1 =1; 1 < n; i++) {
int min = 1;
for (int § =1 + 1; jJ <= n; j++) {
if (a[j] < a[min]) {

min 3

temp = a[min];

a[min] al[i];

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

RIINGTA COI 1 FGF OF FNGINFFRING & TECHNOI OGY. BHII Al

Comparlson of Elementary Sortmg

OR TISE OF SHDO0
2 Best .
S Nate: smaller t mitt
- Notgs splle %@SO S
@) 2 2 2
e L
Worst 2 r s
1)
s Best 0 0 0
qE) nz_ nz_
> Average n 2 >
= 2 2
Worst N TN CE

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

RIINGTA COI 1 FGF OF FNGINFFRING & TECHNOI OGY. BHII Al

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Merge Sort

» Divide-and-Conquer algorithm

e Timao ~rnmnlavithvis NNl Ina NI

-‘vjv

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

17

17

25

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Outline of Recursive (Top Down)
Merge Sort

« Partition sequence into two sub-
sequences of N/2 elements.

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Recursive I\/Ierge Sort

« listSequence IS sequence to sort.

« first and last are smallest and
largest indices of sequence.
public class Sorts {

// other code here

public void mergeSort (

ItemSequence listSequence;

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Bottom - Up I\/IergeSort

for k=1, 2, 4, 8, ... , N/2 {
merge all pairs of
consecutive

sub-sequences of size k 1into
sorted

sub-sequences of size 2k.

RUNGTA COLLEGE OF ENGINEERING & TECHNOLOGY, BHILAI

T =1 2-recursive sorts
(1) T(N)= 2T J;'— +N
TN 2= 2+ [or) + J;I—]+N
_ N N
(20 T(N)?= 4T (4)+2. =+ N
.. NN, N
3) T(N)?= 8T (8 +4e TN

(1)

- |
|
J2'7)+N+N+...+N

:2iT (

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

RIINGTA COI 1 FGF OF FNGINFFRING & TECHNOI OGY. BHII Al

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

The divide-and-conguer idea used Iin Binary
Search and Merge Sort is a good way to
get fast algorithms.

What about this variation:

— Pick an item in the list.
e This first item will do — for now.
* This item is the pivot.

— Rearrange the list so that the items before the
nivot are all less than, or equivalent to, the
pivot, and the items after the pivot are all

ANURAC BF AW/, LECTURER C. S FZ. D ATA 3TRUCTIJRES F.T.4™ GEM

An In-Place Partition Algorithm [gli2[7]1]s

Pivot

— Make sure the pivot lies in the first position

(swap if not).] E1iERARNE

— Create a list of items = the pivot: (["gT;ﬁz iTo

at the beginning of the list as a whole.”:

» Start: the left list holds only the p|v§3|.§3|7 tf12]9]

1 18]7]1

* Iterate through rest of the list. 7[-l :

- If an item is less than the pivot, swap it g

item just past the end of the left list,= i mimin '

left-list end mark one to the right. AN

ANURAG SHARMA LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

. aoril B

Quicksort has a big préblem.

— Try applying the Master Theorem. It doesn’t work,
because Quicksort may not split its input into nearly
equal-sized parts.

— The pivot might be chosen very poorly. In such cases,
Quicksort has linear recursion depth and does linear-
time work at each step.

— Result: Quicksort is O(n?). ®

— And the worst case happens when the data are
already sorted!

However, Quicksort’'s average-case time is very

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Choose the pivot using median-of-three.
— Look at three items in the list: first, middle, last.

Basic Quicksort Median-of-3 Quicksort
— Let the pivot be the one that is between the other two
(bR?‘ @I State: Initial State:

[2]12[9|10[3 |16 2112/ 9]10/3|1]6]

Pivot Pivot

After Partition: After Partition:
1]2]12/ 91036 213 (1]6]12|9 10
Recursively Sort Recursively Sort

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

SortlngAIgorlthmsIII ‘cont’ d

How much additional space does Quicksort
use?

— Quicksort is in-place and uses few local
variables.

— But it IS recursive.

— Quicksort’s additional space usage is thus
proportional to its recursion depth.

— And that is linear. Additional space: O(n).
We can improve this:

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM
a LI | L} | L L} s " " | L ol ']

SortlngAIgorlthmsIII Cont d:
Quicksort — Dot #2

To Do

— Rewrite our Quicksort to do: (Done. See
quicksort2. cpp, on the web page.)

« Reduced recursion depth.
* Median-of-three pivot selection.

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

SortlngAIgorlthmsIII ‘cont’ d

A Minor Speed-Up: Finish with Insertion Sort

— Stop Quicksort from going to the bottom of its
recursion. We end up with a nearly sorted list.

— Finish sorting this list using one call to Insertion Sort.

— This isngermsadly| 2 [12] 9 |1 610(n?).
— Note: This is not the sanlm%aﬁg)%.{nq Insertion Sort for
small lists.

Nearly Sorted: |2 |3 |1

l Insertion Sort

Sorted: |112|3(6/[9]10]12

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

SortlngAIgorlthmsIII cont'd:

Quicksort — Improvements:

We want an algorithm that:
— Is as fast as Quicksort on the average.
— Has reasonable [O(n log n)] worst-case performance.

But for over three decades no one found one.

Some said (and some still say) “Quicksort’s bad behavior is
very rare; ignore it.”
— | suggest to you that this is not a good way to think.

— Sometimes bad worst-case behavior is okay; sometimes it is not.
Know what is important in the situation you are addressing.

— From the Wikipedia article on Quicksort (retrieved 18 Oct 2006):

The worst-case behavior of quicksort is not merely a theoretical

probiem When quicksort IS used mweb services for exampie, itis

ANURAG SHARMA. [_LECTURER C.S FE. DATA STRUCTURES B.E.4™ SEM

SortlngAIgorlthmsIII ‘cont'd:
Quicksort — Analysis

Efficiency ®
— Quicksort is O(n?).

— Quicksort has a very good O(n log n) average-case
time. ©©

Reqguirements on Data ®

— Non-trivial pivot-selection algorithms (median-of-three
and others) are only efficient for random-access data.

Space Usage ©
— Quicksort can be done efficiently in-place.

— Quicksort uses space for recursion.
« Additional space: O(log n), if you are clever about it.

~ Everrif alf recursion s efiminated, O(iog Ty -additionat space

RIINGTA COI 1 FGF OF FNGINFFRING & TECHNOI OGY. BHII Al

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Radlx Sort
Description

A practical algorithm can be based on this bucket
sorting method.

Suppose we want to sort a list of strings (in some
sense):.
— Character strings.
— Numbers, considered as strings of digits.
— Short-ish sequences of some other kind.
— | will call the entries in a string “characters”.

We want to sort in lexicographic order.

— This means sort first by first character, then by
second, etc.

— For strings of letters, this is alphabetical order.

I\MUR AC ~|-'N=>MA l ECTURER (‘ S.E. D’\"‘!\ qTPI {og Hch B F 4™ gEM

Radix Sort:
Example
Start with the following list:
— 583, 508, 134, 183, 90, 223, 2306, 924, 4, 426,
1006, 624.
We first organize them by the units digit:
— 90, 583, 183, 223, 134,924, 4, 624, 230,
426, 106, 508.

Then we do it again, based on the tens digit,
not reversing the order of items with the
same tens digit:

TIr R~y Oy 7 2 Tk TNy A= Y T M ax Or ey T T E D = ATH ~r=xx
@ B0 Bt £\ LMY ull\uvluR s Bl 0 B 0 ™1 1V

LY S = L
MINWINAND &I ln“lvlﬂ’ hmNt I W IN B IY o

Radlx Sort
Do It #2

To Do

— Write Radix Sort for small-ish positive
Integers. Done. See radix sort.cpp, On

the web page.

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Radlx Sort

Efficiency [1/2]

How Fast Is Radix Sort?

— Fix the number of characters and the character set.

— Then each sorting pass can be done in linear time.
» Use the bucket method.
« Create a bucket for each possible character.

— And there are a fixed number of passes.
— Thus, Radix Sort is O(n): linear time.

How is this possible?

— Radix Sort places a list of values in order.
— However, it does not solve the General Sorting

nl‘ﬂlﬂ 251NN

F1TUUICITII.

ANURAG SHARMA, LECTUREN C.S.E. DATA STRUCTURES &.E.47H SEM
INTAAYIrMmATININ N rfaY N | r'aY R id NAT 160 N7 NYIMINI\7IMMN N NI\N’TOOON MArarmmNnvryvricennanm

Radlx Sort

Efficiency [2/2]

Radix Sort is not as efficient as it might seem.

— There is a hidden logarithm. The number of passes
required is equal to the length of a string, which is
something like the logarithm of the number of
possible values.

— So If we want to apply Radix-S 5-a list in which all
n.illion, Z

the values are differe nE] ;g,lg)in the same class
as normal sorting ale rlthﬁg%ridlx
However, in certain spegat tases (e.g., big lists of
small numbers) R‘lx Sort can be a very
effective tool.

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

RIINGTA COI 1 FGF OF FNGINFFRING & TECHNOI OGY. BHII Al

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Shell Sort

Also called Diminishing Increment sort. Invented

by Donald Shell in 1959.

Another refinement of the Straight Insertion sort.
In each step, sort every kth item. Then sort the

sublists,

a[0], a[k], a[2k], a[3kK], etc.
a[l], alk+1], a[2k+1], a[3k+1], etc.

a[k-1], a[2k-1], a[3k-1], a

4Kk-1], etc.

After these sublists are sorted, chose a new,

smaller value for k, and sort t

ne new sublists.

Finally, sort with K ="1. This is the Insertion sort!

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Shell Sort example

44 55 12 94 18 06

« 4-sort yields:
44 18 06 42 94 55 12 67

e 2-sort yields
06 18 12 42 44 55 94 67

ANTRAG SHE.AMA, LEC1C2ER C.S.E. LATA STRJZTURES R.E.4™ SEM

Shell Sort example 2

44 55 42 18 06

« 5-sort yields:
18 06 42 94 55 67

« 3-sort yields
18 06 12 42 67 44 55 94

ANTRAG SHE.AMA, LEC1CRER C.S.1Z. DATA STRUCTURES B.E.4™ SEVM

Shell Sort

* Each pass benefits from the previous
passes.

« Each pass partially sorts a relatively small
portion of the full list. Since the sublists are
fairly small, insertion sort is efficient for
sorting the sublists.

* As successive passes use smaller
Increments (and thus larger sublists), they
are almost sorted due to previous passes.

ol) NOES NOTDISTURE

AMURAZ SIHHARIVA, L ECTURER C.S.E. DATA STRUCTURES B.E.4™ SseM

Shell Sort - example

Increment = 5:
25 b7 48 37 12 92 ST 33

Increment = 3:
25 57 33 37 12 92 86 4T

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Example, cont.

Increment = 1.:
%5 12 33 C:T? 48 92 86 5?
| | |

Final Result:
12 25 33 37 48 57 86 92

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

RUNGTA COLLEGE OF ENGINEERING & TECHNOLOGY, BHILAI

 How are the increments chosen? Any
sequence will work, as long as the last

pass has k = 1.

* Analysis is complicated. It has been
demonstrated that:

— Increments should be relatively prime (i.e.,
share no common factors). This guarantees
that successive passes intermingle sublists so
that the entire list is almost sorted before the

final pass.

ANURAG SHARME, |_=cTURER C.S.E. DATA STRUCTUF LS B E.AT™HCEM
, . - -)

RUNGTA COLLEGE OF ENGINEERING & TECHNOLOGY, BHILAI

Shell Sort - cont.

* Many text books (e.qg., Knuth) describe a
good algorithm for determining
Increments.

— Set K = to the number of items In the list
—SetK=K/3+1

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Shell Sort, cont.

Increment = count;
do {
Increment = increment /3 + 1;
for (start = O; start <increment; start++)
“sort sub list (start, increment, count);”
while (increment > 1);

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

RUNGTA COLLEGE OF ENGINEERING & TECHNOLOGY, BHILAI

Shell Sort, review

 ALGORITHM: Another refinement of the Insertion sort.
In each step, sort every kth item. Then sort the sublists,

a[0], a[k], a[2k], a[3k], etc.

a[l], a[k+1], a[2k+1], a[3k+1], etc.

a[2], a[k+2], a[2k+2], a[3k+2], etc.

a[k-1], a[2.l.<.—1],. .6.1[3k—1], a[4k-1], etc.

After these sublists are sorted, chose a new, smaller
value for k

and sort the new sublists. Finally, sort with k = 1.
« PERFORMANCE: O(n*log(n)?)

« SPACE REQUIREMENTS and COMMENTS: Need

RUNGTA COLLEGE OF ENGINEERING & TECHNOLOGY, BHILAI

Shell Sort Review, cont.

* Analysis Is complicated. Still do NOT know
the best increments(!). But

— Increments should be relatively prime (i.e.,
share no common factors; that is, they should
not be multiples of each other). This
guarantees that successive passes
Intermingle sublists so that the entire list Is
almost sorted before the final pass.

— A good algorithm (taken from Knuth) for
determining increments:

RIINGTA COI 1 FGF OF FNGINFFRING & TECHNOI OGY. BHII Al

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Introduction to Hashlng

* Hashing refers to deriving sequence
iIndex from arbitrarily larggskeydising a
hash fgreton.

key = | hash —*index —— — 1" value

unction o _
. Indexiead%—':o value orjobject.

Therefore, two-step process.——

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Introduction to Hashing (cont.)

seqguence of links tq instances of the class TA
q Q_In: N

1 —
| | 5 - Tatyana
Hash('Tatyana’)=1 3L —_ laura
Hash(‘Laura’)=3 4 null
Hash(‘Stephen’)=5 S Stephen
/\/\/\ i

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Colhsmns

* Problem: Normally have more keys
than entries in our table. Therefore
iInevitable that two keys hash to same
position...

—e.g., Hash('Sam’) =4
—and, Hash('Andrew’) = 4

» Called collision — multiple values

hashed to the same ke

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Handllng Collisions

» Since by design, we can’t avoid
collisions, we use buckets to catch extra

entries.

* Consider stupid hash that returns

55 r\nmn

Y Fach

tail

integer value of first letter of each

P |linked List
IATTICT d tail

rgould be refere ge

I

(]

90 tﬁ_b_u_eket_/%hpad

ted IllﬂJKm,

:—with

I ‘Tatvana”

it

Bundlng a Good Hash Function

* Good hash functions
— take into account all information in key
— fill out hash table as uniformly as possible

* Thus, function that uses only first
character (or any character) is terrible
hashing function.

— Not many Q's or Z’s, lots of A's, M's, etc

«\UF cs-.a;? \ [.Z>TIRER .50 DATA S LG T REZ35 £L.EL1T 5 SEM

RUNGTA COLLEGE OF ENGINEERING & TECHNOLOGY, BHILAI

UNIT 3

Linked List

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

RIINGTA COI 1 FGF OF FNGINFFRING & TECHNOI OGY. BHII Al

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Linked Lists

e Definition: a list of items, called nodes, In
which the order of the nodes is determined by
the address, called the link, stored in each
node.

« Every node Iin a linked list has two
components: one to store the relevant
Information (the data); and one to store the
a}]ddlr_ess, called the link, of the next node In
the list.

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Linked Lists

* The address of the first node in the list is
stored in a separate location, called the head
or first.

* The data type of each node depends on the
specific application—that is, what kind of data
IS being processed,; however the link
component of each node is a pointer. The
data type of this pointer variable is the node
type itself.

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

data link

Structure of a node :>

Structure of a linked list

!

head:j:v—b{ 45 ——b{ 65 ll—r—b 14 | ——P 76 —_;

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Linked Lists: Some

Properties

 The address of the first node In a
linked list is stored In the pointer head

* Each node has two components: one
to store the info; and one to store the
address of the next node

* head should always point to the first
node

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Linked Lists: Some

Properties

 Linked list basic operations:

— Search the list to determine whether a
particular item is in the list

— Insert an item in the list
— Delete an item from the list

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Linked Lists: Some

Properties

* These operations require traversal of
the list. Given a pointer to the first
node of the list, step through each of
the nodes of the list

* Traverse a list using a pointer of the
same type as head

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

List Implementatlon usmg Linked

Lists

* Linked list

— Linear collection of self-referential class
objects, called nodes

— Connected by pointer links

— Accessed via a pointer to the first node of the
list

— Link pointer in the last node is set to null to
mark the list's end

* Use a linked list instead of an array when

Self- Referentlal Structures

« Self-referential structures
— Structure that contains a pointer to a structure of the same type

— Can be linked together to form useful data structures such as
lists, queues, stacks and trees

— Terminated with a NULL pointer (0)

« Diagram of two self-referential structure objects linked
together

3 2
¢ >100 e ST 500 e
--Y « s — 1
Data member and pointer NULL pointer (points to nothing)

struct node {

—int data:
struct node *nextPtr;

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

RIINGTA COI 1 FGF OF FNGINFFRING & TECHNOI OGY. BHII Al

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

RIINGTA COI 1 FGF OF FNGINFFRING & TECHNOI OGY. BHII Al

Linked Lists

* Types of linked lists:
— Singly linked list %
« Begins with a pointer to thetﬂrs: node
* Terminates with a null pointer
* Only traversed in one diregtion_ _ i SEE.
— Circular, singly linked s T
 Pointer in the last node points
back to the first node

— Doubly linked list

« Two “start pointers” — first element and last
element

v 4
|

v 4
v 4

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Linked Representatlon of Data

In a linked
representation, data is
not stored in a
contiguous manner.
Instead, data Is stored at
random locations and the
current data location
provides the information
regarding the location of
the next data.

Adding item 498 on to the linked
list
Q: What is the cost of adding an

item?

Q: how about adding 300 and

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

797
358
345 M X 724
555
490 701 513

797

358
\

e 561
501
345 M 724

555 /’

> 490 701 £13
498 “

-

\im_/ls

498

Llnked Llst

 How do we represent a linked list in the
memory

— Each location has two fields: Data Field and
J-Pol__[H(H__[Fiele

START Node — 1

* LinkedListhmplementation i eome

Field

1 300 |5

2 (500 | O | NULL

3 1100 | 4
e struct node {

int data; 27— 200 | 1

ANURAG SHARMA, LECTURER C.S.E. DATA STHEYNRWAS B.E.4™ SEM

Conventlons of Llnked List

There are several conventions for the link
to iIndicate the end of the list.

1. a null link that points to no node (O or
NULL)

2. adummy node that contains no item

3. areference back to the first node,
making it a circular list.

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

RIINGTA COI 1 FGF OF FNGINFFRING & TECHNOI OGY. BHII Al

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Slngly Linked List

.

*Figure 4.1: Usual way to draw a linked list (p.139)

[
v

[]
v

[]
v

bat cat sat vat |NULL

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Example: create a two-node
otr ISt

.

typedef struct list_node *list_pointer;
typedef struct list_node {

Int data;

list_pointer link;

}
list_pointer ptr =NULL

10 | e[20] NULL

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Two Node Llnked Llst

list_pointer create2()

{

[* create a linked list with two nodes */
list_pointer first, second;
first = (list_pointer) malloc(sizeof(list_node));
second = (list_pointer) malloc(sizeof(list_node));
second -> link = NULL;

second -> data = 20; ptr

first -> data = 10;

first ->link = second;: L

return first: 10 |« 20] NULL

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Linked List I\/Ianlpulatlon
Algorithms

List Traversal

— Let START be a pointer to a linked list in memory.

Write an algorithm to print the contents of each
node of the list

— Algorithm

1. set PTR = START

2. repeat step 3 and 4 while PTR = NULL

2 nrln DTD \nATA
J . PIII

10 ot

TR DT

v

»
>

1000

2000

->

BONIK

sTaRrT SIO0Fam Link

il

PTR

3000

40

A 4

4000

PTR = LINK[PTR]

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Search for an Item

Search for an ITEM

Let START be a pointer to a linked list in
memory. Write an algorithm that finds the
location LOC of the node where ITEM first
appears in the list, or sets LOC=NULL if search is
unsuccessful.

Algorithm

1. set PTR =START

2. repeat step 3 while PTR = NULL

3. if ITEM == PTR -> DATA, then

A sat| 1000| +PTH 2000 | txjt— 3000 > 4000
5. elseS™ART —=

6. set PTR F PTR -> LINK

7. set LOC = NULL /*seameh unsuccessful */ PTR = LINK[PTR]

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

RIINGTA COI 1 FGF OF FNGINFFRING & TECHNOI OGY. BHII Al

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Insertlon

P

head | ——® 45 —’_T:‘g 65 | = 34 |—+—P 76 ——;

newNode E}—-’r 50

Figure 5-8 Create newNode and store 50 in it

A linked list with pointers p and g

* newNode needs to be inserted

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Insertlon

* Code Sequence |
— newNode-2>link = ¢
— p~2link = newNode

« Code Sequence |l
— p~2link = newNode
— newNode-2>link = ¢

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Insertlon

« Both code sequences produce the result
shown below

head [—» 45 ——E 65 B 34 | ——> 76 g

newNode B—PI 50 |
|

Figure 5-9 Linked list after the statement newNode->11ink = p->1ink; executes

*** The sequence of events does NOT matter for
proper insertion

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Insert an Item

Insertion into a Listed List
Let START be a pointer to a linked list in memory

with successive nodes A and B. Write an algorithm

to insert node N between nodes A and B.

.ii_l

Algorithm

1' Set PTR - START START Node A Node B

2. Repeat step 3 while PTR ;1:"\[1000 | ™ 2000 | ™| 3000 ™| 4000 | 7| 5000
3. IfPTR ==A, then

4. Set N->LINK = PTR -> LINK (or = B)

5. Set PTR->LINK = N smart Node A Node B

6. exit 1000 ™| 2000 3000 ~ 7| 4000 ”| 5000
7. else % (%

8. Set PTR=PTR->LINK 0 1

9. If PTR == NULL insertion unsuccessful _ Pr= ™"

.ii_l

S Cases; Brsglode, last node, In-between node. (ex: if ITEM = 5007? if ITEM = 60007?)
10.”Stop

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

(@)

head | =r—# 45 —§ 85 | =P 34 | =W 7

P

Node to be deleted 1s 34

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

RIINGTA COI 1 FGF OF FNGINFFRING & TECHNOI OGY. BHII Al
D I t.

q = p->1link;
p->link = gq->link;
delete qg;

(o)}
(81}
Y

16 —j

he adB—b{ 45 | A5
p

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

« Deletion from a Linked List

— Algorithm

Repeat step 3 while PTR = NULL
If PTR->DATA == ITEM, then

Set PTR=START and TEMP = START

Node A

Node N

Node B

— Let START be a pointer to a linked list in memory that contains
Integer data. Write an algorithm to delete note which contains ITEM.

INK _exi

~| 2000

3000

™ 3500 >

4000

™ 5000

1000
else
TEMP = PTR
START

Node A

Node B

PTR=PTR -> LINEI—» 1000

™ 2000

3000

™ 3500 >

4000

™ 5000

1

2

3

4. Set TEMP->LINK ZPTR -> |
c .

6

!

8

Stop

3500

ITEM TEMP PTR

I E——————————

RIINGTA COI 1 FGF OF FNGINFFRING & TECHNOI OGY. BHII Al

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Bmldmg a Llnked List

* There are two ways to build a linked list

1) forwards

2) backwards

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

RUNGTA COLLEGE OF ENGINEERING & TECHNOLOGY, BHILAI

Building a Linked List

What is needed to build a linked list forward:
-a pointer for the first node
-a pointer for the last node

-a pointer for the new node being added

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Bmldmg a Linked List

» Steps to build a linked list forward:
— Create a new node called newNode

— If first is NULL, the list is empty so you can
make first and last point to newNode

— If first is not NULL make last point to
newNode and make last = newNode

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Bmldmg a Linked List

« What is needed to build a linked list backwards
— a pointer for the first node
— a pointer to the new node being added

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Bmldmg a Linked List

« Steps to build a linked list backwards:
— Create a new node newNode
— Insert newNode before first
— Update the value of the pointer first

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

" Linked List ADT

» Basic operations on a linked list are:
—Initialize the list
— Check whether the list is empty
— Qutput the list
—Find length of list
— Destroy the list

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

" Linked List ADT

» Basic operations on a linked list are:
— Get info from last node
—Search for a given item
—Insert an item
—Delete an item
—Make a copy of the linked list

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Ordered Llnk Llst

In an ordered linked list the elements are sorted

Because the list is ordered, we need to modify
the algorithms (from how they were
Implemented for the regular linked list) for the
search, insert, and delete operations

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

RIINGTA COI 1 FGF OF FNGINFFRING & TECHNOI OGY. BHII Al

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Doubly Linked List

A doubly linked list is a linked list in which every node
has a next pointer and a back pointer

 Every node (except the last node) contains the address
of the next node, and every node (except the first node)
contains the address of the previous node.

A doubly linked list can be traversed in either direction

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

first [+— 1
s

—
Al
m
t

Figure 5-42 Doubly linked list

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

STL Sequence Contalner List

 List containers are implemented as doubly
linked lists

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

LlnkedLlsts Wlth Header and
Trailler Nodes

* One way to simplify insertion and deletion
IS never to insert an item before the first or
after the last item and never to delete the
first node

* You can set a header node at the
beginning of the list containing a value
smaller than the smallest value in the data
set

* You can set a trailer node at the end of the

. > - i

ANLRAC SHASMA, LECTJRLER C.8.E. DATA £TRUCTURES B.E.4™ SEM

LlnkedLlsts Wlth Header and
Trailler Nodes

 These two nodes, header and trailer,
serve merely to simplify the insertion and

deletion algorithms and are not part of the
actual list.

« The actual list Is between these two
nodes.

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

RIINGTA COI 1 FGF OF FNGINFFRING & TECHNOI OGY. BHII Al

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

* A linked list in which the last node points to

the first node iIs called a circular linked list

In a circular linked list with more than one
node, it is convenient to make the pointer first
point to the last node of the list

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

RIINGTA COI 1 FGF OF FNGINFFRING & TECHNOI OGY. BHII Al

— — -

first

Figure 5-52 Circular linked list with more than one node

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

RUNGTA COLLEGE OF ENGINEERING & TECHNOLOGY, BHILAI

Fro{t'tolist
—1 D

The first node In the linked list is accessible through by a
reference,we can print or search in the linked list by starting at the
first item and following the chain of the references. Insertion and
deletion can be performed arbitrary.

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

IRUNCTA TOLLEGE OF [FINEIMEEFIG (¢ TECIHMILOGY, BHILAL

linked list

A

A 4
o
v

current

X

/

tmp
We must perform the following steps:

Tmp=new ListNode();// create a new node
Tmp.element=Xx; //place x in the element field.
Tmp.next=current.next; // x’s next node 1s B

Current.next=temp; //a’s next node 1s x

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Deletion from a linked list

A > X B

current

The remove command can be executed in one reference change.
To remove element x from the linked list;we set current to be the
node prior to X and then have current’s next reference by pass x.

current.next=current.next.next

The list A, X,B now appear as A,B

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

HeaderNodeé

If you want to delete item X, then we set current
to be node prior to x and then have current’s
next reference by pass X.

If you are trying to delete 15t element it becomes
a special case

Special cases are always problematic in
algorithm design and frequently leads to bugs in
the code.

It is generally preferable to write code that
avoids special cases.

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

RUNGTA COLLEGE OF ENGINEERING & TECHNOLOGY, BHILAI

* One way to do that here is to introduce the
header node

* A header node Is an extra node in the linked
list that holds no data serves to satisfies the
requirement that every node that contains
an item have a previous node In the list

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

RUNGTA COLLEGE OF ENGINEERING & TECHNOLOGY, BHILAI

>
vy

Header

Moving to the front now means setting the current position to
header node,and so-on, with a header node, a list is empty then
header.next is null.

EX: Implementation of primitive operations with a
header node.

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

RIINGTA COI 1 FGF OF FNGINFFRING & TECHNOI OGY. BHII Al

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Doubly linked list and circular
linked lists.

 There are two references one for the
forward and other one for the backward
direction.We should have not only a
header but also a tall.

/

header

If list Is empty, then list consists of head and tail

connected together.

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

RUNGTA COLLEGE OF ENGINEERING & TECHNOLOGY, BHILAI

> \
- Tail
Header

A

Empty doubly linked list

If doubly linked list is empty then
Header.next==tail,

Or

Tail.prev==Header

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

The doubly linked list class is
shown below

Class DoublyLinkedListNode

{

Object data //[some element
DoublyLinkedListNode next
DoublyLinkedListNode prev

}

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

SN

current

newnode

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Algorlthm

=

ok W

Newnode=new
DoublyLinkedListNode(x);

Newnod
Newnod
Newnod

Newnod

e.prev=current;
e.next=current.next;
e.prev.next=newnode,
e.next.prev=newnode;

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Delete operatlon

Before deletion

A ' X | B

current

After deletion

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Delete operatlon

1. Current.prev.next=current.next
2. Current.next.prev=current.prev
3. Current=head

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Clrculardoubly Ilnked list.

* A popular convention Is to create a circular
doubly linked list , in which the last cell
keeps a reference back to the first and first
cell keeps a back reference to the last cell.

 This can be done with or without a
header.

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Ex: implementation of circular doubly liked list
operations

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Llnked Ilst representatlon of
gueues.

* The queue can be implemented by a
linked list, provided references are kept to
both the front and rear of the list.

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

RUNGTA COLLEGE DF SRGINE ERING & TECHNOLOGY, BHILAI

A
A
A

E

A 4

N

rear
The queue Is almost identical to the stack routines.

AMUIRAS SHeRMA LECTURER C.S I DATA STRUZTURSES 1302 4T ' SE/

Public Queue Operatlons

Public operations
//void engqueue(X)- Insert x

//Object getfront()-Return least recently
Inserted

item
//object Dequeue()-> Return and remove least
recent item

//Boolean iIdEmpty() -> Return true if empty,
false otherwise

[ivoid MakeEmpty()-> Remove all items

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

public Boolean iIsEmpty()
{

return front==null;

}

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

| makempty()

Public void makeEmpty()
{

front=back=null;

}

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Dequeue for the Ilnked list

based gueue class

front

rear

front=front.next

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Bl oqienie far the linkad lietr
Dequeue for the linked list

based gueue class

Public Object dequeue() throws Underflow

{

/[return and remove the least recently inserted
item from the queue

[/lexception Underflow if the queue Is empty

If(isempty()) throw new underflow (“queue
dequeue’);

Object returnvalue=front.element;

front=front.next;

return returnvalue:

;

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

getfront for the Imked Ilst based

gueue class

Public Object getfront() throws underflow

//get the least recently inserted item in the queue.
Does not alter the queue

//exception underflow If queue Is empty
If(isempty())

Throw new underflow (“queue getfront”);
Return front.element;

}

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

enqueue for the Ilnked list

based—queue class

Public void engueue(Obiject x)
//insert a new item into the queue

{
If(iIsempty())
front=rear=new ListNode(x)
else

rear=rear.next=new ListNode(X);

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

IRUNCTA TOLLEGE OF [FINEIMEEFIG (¢ TECIHMILOGY, BHILAL

linked list

A

A 4
o
v

current

X

/

tmp
We must perform the following steps:

Tmp=new ListNode();// create a new node
Tmp.element=Xx; //place x in the element field.
Tmp.next=current.next; // x’s next node 1s B

Current.next=temp; //a’s next node 1s x

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

RUNGTA COLLEGE OF ENGINEERING & TECHNOLOGY, BHILAI

UNIT 5

Trees and Graph

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

RIINGTA COI 1 FGF OF FNGINFFRING & TECHNOI OGY. BHII Al

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

RUNGTA COLLEGE OF ENGINEERING & TECHNOLOGY, BHILAI

‘ Root \

Honey Bear Brandy

Brunh1 Terry Coyote Nugget

leaf

Trees

Dusty

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ sSeM

RUNGTA COLLEGE OF ENGINEERING & TECHNOLOGY, BHILAI

Definition of Tree

 Atree Is a finite set of one or more nodes
such that:

* There Is a specially designhated node
called
the root.

* The remaining nodes are partitioned Iinto
n>=0 disjoint sets Tz, ..., Tn, where each of
these sets is a tree.

« We call T1, ..., Tn the subtrees of the root.

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

RUNGTA COLLEGE OF ENGINEERING & TECHNOLOGY, BHILAI

Level and Depth

Level
node (13)

degree of a node
leaf (terminal) 1

nonterminal 3 - 1

parent -
children 2 2 1 2 3 2 2
sibling

degree of a tree (3)
ancestor 2
level of a node

height of a tree (4) 0 0 A

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SeM

Terminology

* The degree of a node Is the number of
subtrees
of the node

— The degree of Ais 3; the degree of C is 1.
* The node with degree O is a leaf or

terminal
node.

* A node that has subtrees is the parent of
the
roots of the subtrees.

 The roots of these subtrees are the

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

RUNGTA COLLEGE OF ENGINEERING & TECHNOLOGY, BHILAI

Representation of Trees

 List Representation
-(A(B(E(K,L),F),C(G),D(H(M),I,J)
— The root comes first, followed by a list of sub-tr

data link 1| link 2| ... link n

How many link fields are
needed In such a representation?

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

RUNGTA COLLEGE OF ENGINEERING & TECHNOLOGY, BHILAI

Left Child - Right Sibling

data

right sibling

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

RUNGTA COLLEGE OF ENGINEERING & TECHNOLOGY, BHILAI

Lecture 2

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

RUNGTA COLLEGE OF ENGINEERING & TECHNOLOGY, BHILAI

Binary Trees

* Abinary tree Is a finite set of nodes that Is
either empty or consists of a root and two
disjoint binary trees called the left subtree
and the right subtree.

* Any tree can be transformed into binary
tree.

— by left child-right sibling representation
* The left subtree and the right subtree are

RUNGTA COLLEGE OF ENGINEERING & TECHNOLOGY, BHILAI

*Figure 5.6: Left child-right child tree representation of a tree (p.191)

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

ADSstract Data Type Binary [ree
structure Binary Tree(abbreviated BinTree) Is

objects: a finite set of nodes either empty or
consisting of a root node, left Binary Tree,
and right Binary _Tree.

functions:
for all bt, btl, bt2 € BinTree, item e element

Bintree Create()::= creates an empty binary
tree

Boolean IsEmpty(bt)::= if (bt==empty
binary

ANUPRAG SHARPM A, LEZTUREZF C.O.E.. DATA STRUZTURFS B E.4THSEW

RUNGTA COLLEGE OF ENGINEERING & TECHNOLOGY, BHILAI

BinTree MakeBT (bt1, item, bt2)::= return a binary tree
whose left subtree is btl, whose right subtree is bt2,
and whose root node contains the data item

Bintree Lchild(bt)::= if (IsEmpty(bt)) return error

else return the left subtree of bt
element Data(bt)::= if (IsEmpty(bt)) return error

else return the data in the root node of bt
Bintree Rchild(bt)::= if (IsEmpty(bt)) return error

else return the right subtree of bt

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Samples of Trees

Complete Binary Tree

® @ &
> (s @
Skewed Binary Tree 3/ G @ @

o
© e

S

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

RUNGTA COLLEGE OF ENGINEERING & TECHNOLOGY, BHILAI

Full BT VS Complete BT

» A full binary tree of depth k is a binary tree c
depth k having 2.1 nodes, k>=0.

* A binary tree with n nodes and depth k is
complete iff its nodes correspond to the nod
numbered from 1 to n in the full binary tree ¢

deptqk o

R R }D
S %
Kol @_@é@ ®

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

RUNGTA COLLEGE OF ENGINEERING & TECHNOLOGY, BHILAI

Binary Tree Representations

* |f a complete binary tree with n nodes
(depth =
logn + 1) Is represented sequentially, then
for
any node with index I, 1<=i<=n, we have:
— parent() is at i/2 if I'=1. If I=1, I Is at the root
and
has no parent.

— left_child(i) ia at 2i if 2i<=n. If 2i>n, then i has

ANURAZ= SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

RUNGTN C.Cl '€= 0" EMNGIHLI'ERING & TECHNOLOGY, BHILAI

Representation

o

©
®
©

QO X N0 wN

A
B

(1) waste space

(2) insertion/deletion ©

problem

QO X N3OS W N

RUNGTA COLLEGE OF ENGINEERING & TECHNOLOGY, BHILAI

Linked Representation

typedef struct node *tree pointer;
typedef struct node {
int data;

tree pointer left child, right child;

};
left_child | data | right_child / \

left_child right_child

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

RUNGTA COLLEGE OF ENGINEERING & TECHNOLOGY, BHILAI

Arithmetic Expression Using BT

@ Inorder traversal
\ A/B*C*D+E

< S Infix expression
@ preorder traversal

/ L It 1 +**/ABCDE
@ prefix expression
N o postorder traversal
AB/C*D*E+

@ postfix expression

i level order traversal
+*E*D/CAB

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Level 1

Level 2

Level 3

Level 4

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Examples of Blnary Trees

SEAN JQ

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

RIINGTA COI 1 FGF OF FNGINFFRING & TECHNOI OGY. BHII Al

Not Binary Trees

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

RIINGTA COI 1 FGF OF FNGINFFRING & TECHNOI OGY. BHII Al

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Blnary Search Trees

A particular form of binary tree suitable for
searching.
* Definition
— A binary search tree is a binary tree that is
either empty or in which each node contains a

key that satisfies the following conditions:

 All keys (if any) in the left subtree of the root
precede the key in the root.

* The key in the root precedes all keys (if any) in its
right subtree.

RIINGTA COI 1 FGF OF FNGINFFRING & TECHNOI OGY. BHII Al

Examples

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

How to Implement a Blnary
Tree?

* Two pointers Iin every node (left and right).

struct nd {
Int element;
struct nd *lptr;
struct nd *rptr;
%
typedef nd no

node *root;
tree */

Will point to the root of the

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Create the tree o @ @ .

a = (node *) malloc (sizeof (node));

b = (node *) malloc (sizeof (node));

c = (node *) malloc (sizeof (node));

d = (node *) malloc (sizeof (node));

a->element = 10; a->Iptr = b; a->rptr =c
b->element =5; b->Iptr = NULL; b->rptr = NULL,;
c->element = 20; c->Iptr =d; c->rptr = NULL;
d->element =15; d->Iptr = NULL; d->rptr = NULL,;

root = a

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Traversal of Blnary Trees

* In many applications, it is required to move
through all the nodes of a binary tree,
visiting each node In turn.

— For n nodes, there exists n! different orders.

— Three traversal orders are most common:
 Inorder traversal
* Preorder traversal
* Postorder traversal

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Inorder Traversal

* Recursively, perform the following three
steps:
— Visit the left subtree.
— Visit the root.
— Visit the right subtree.

LEFT-ROOT-RIGHT

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Example morder traversal

77\

10

20 10 30 40 20 25 10 50 30 60

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

RUNGTA COLLEGE OF ENGINEERING & TECHNOLOGY, BHILAI

.dgb.aheji kctf

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Preorder Traversal

* Recursively, perform the following three
steps:
— Visit the root.
— Visit the left subtree.
— Visit the right subtree.

ROOT-LEFT-RIGHT

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Example preorder traversal

77\

10

10 20 30 10 20 40 25 30 50 60

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

RUNGTA COLLEGE OF ENGINEERING & TECHNOLOGY, BHILAI

abd.g.cehi]jkTf

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Postorder Traversal

* Recursively, perform the following three
steps:
— Visit the left subtree.
— Visit the right subtree.
— Visit the root.

LEFT-RIGHT-ROOT

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Example postorder traversal

10

20 30 10 40 25 20 50 60 30 10

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

RUNGTA COLLEGE OF ENGINEERING & TECHNOLOGY, BHILAI

.gd.bhjkiefca

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Imolementatlons

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

RIINGTA COI 1 FGF OF FNGINFFRING & TECHNOI OGY. BHII Al

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

THrea’ e’ Binary Trees
* Two many null pointers in current
representation
of binary trees
n. number of nodes
number of non-null links: n-1
total links: 2n
null links: 2n-(n-1)=n+1
* Replace these null pointers with some usefu
“threads”.

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Threaded Blnary Trees (Continued)

If otr->1left childisnull,

replace it with a pointer to the node that would be
visited before ptr in an inorder traversal

If otr->right childisnull,
replace it with a pointer to the node that would be
visited after ptr In an inorder traversal

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

RUNGTA COLLEGE OF ENGINEERING & TECHNOLOGY, BHILAI

A Threaded Binary Tree

root >

dangling

dangling

Inorder traversal:
H D I,B EAFC, G

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

FCNGTr COLLIICE Ot TZMCaldEE rING % T=<CHINO LOGY, 31172 a1

left thread left child dB&I right child right thread

TRUE b - ¢ FALSE
TRUE; threac FALSE: child

typedef struct threaded tree
*threaded pointer;

typedef struct threaded tree {
short int left thread;
threaded pointer left child;
char data;

threaded pointer right child;

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™71 SEM

Memory Representation of A Threaded BT

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

RUNGTA COLLEGE OF ENGINEERING & TECHNOLOGY, BHILAI

Next Node in Threaded BT

threaded pointer insucc(threaded pointer

tree)
\
{ /Q

threaded pointer temp; z/\l
temp = tree->right child; /ZZEX
if ('tree->right thread) ‘{
while (!temp->left thread)
temp = temp->left child;

return temp;

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

RUNGTA COLLEGE OF ENGINEERING & TECHNOLOGY, BHILAI

Inorder Traversal of Threaded BT

void tinorder (threaded pointer tree)

{

/* traverse the threaded binary tree
inorder */

threaded pointer temp = tree;
for (;;) {
temp = insucc(temp) ;
O(n) if (temp==tree) break;
printf (“33c”, temp->data);

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

RUNGTA COLLEGE OF ENGINEERING & TECHNOLOGY, BHILAI

Inserting Nodes into Threaded BTs

* Insert child as the right child of node paren:

— change parent->right thread to FALSE

—Set child->left thread and child->right threa
to TRUE

—Set child->left child to pointto parent
—Sel child->right child 1O parent->right child
— change parent->right child to pointto child

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

RUNGTA COLLEGE OF ENGINEERING & TECHNOLOGY, BHILAI

Examples

Insert a node D as a right child of B.

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

RUNGTA COLLEGE OF ENGINEERING & TECHNOLOGY, BHILAI

*Figure 5.24: Insertion of child as a right child of parent in a threaded binary tree (p.217

I
root root**~*'%§ﬂﬁé4
.......... >, ‘}J}.ﬁ’
parent ; el parent

: : 0 (3) Ch ild
IONRG (2)‘9 (1)

L {F) ¢ =
@i AL

child

before

nonempty (b)

after

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Right Insertion in Threaded BTs

void insert right(threaded pointer parent,
threaded pointer child)
{
threaded pointer temp;
(1)child—>right_child = parent->right child;
child->right thread = parent->right thread,
child->left child = parent; case (a)
(2)child—>lefﬁ:thread = TRUE;
(3)parent—>right_child = child;
parent->right thread = FALSE;

if ('child->right thread) { case (b)
(4)temp = insucc(child) ;

temp->left child = child;
}

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

RIINGTA COI 1 FGF OF FNGINFFRING & TECHNOI OGY. BHII Al

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

RUNGTA COLLEGE OF ENCGINEERING & TECHNOLOGY, BHILAI
ol

« A max tree iIs a tree in which the key value |
each node is no smaller than the key values
its children. A max heap is a complete bina
free that Is also a max tree.

« Amin tree Is a tree in which the key value ir
each node is no larger than the key values |
its children. A min heap Is a complete binar
(ree that Is also a min tree.

« Operations on heaps
— creation of an empty heap
— Insertion of a new element into the heap;

ANGF AT SFARVA I.ECTURIF C.Z.07. TArA STeUCTORES Ei.ELT7 SEM

RUNGTA COLLEGE OF ENGINEERING & TECHNOLOGY, BHILAI

IQUIE 5.25. Sample max neaps (p.21e

[1] [1] [1]

[2] [3]\@ [2] [3]\@ [2]@/
wh

Property:
The root of max heap (min heap) contains
the largest (smallest).

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

RUNGTA COLLEGE OF ENGINEERING & TECHNOLOGY, BHILAI

*Figure 5.26:Sample min heaps (p.220)

[1] [1]

[3]\‘ [2]@/
[4

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

RUNGTA COLLEGE NOF FN=INE=RING & T=CHNOLOCY BHILAI

structure MaxHeap MU JI IVIdA Tcap
objects: a complete binary tree of n > 0 elements organized :
that
the value in each node is at least as large as those In its
children
functions:

for all heap belong to MaxHeap, item belong to Element, n,
max_size belong to integer

MaxHeap Create(max_size)::= create an empty heap that c
hold a maximum of max_size elements

Boolean HeapFull(heap, n)::= if (h==max_size) return TRUI
else return FALSE

MaxHeap Insert(heap, item, n)::= if ({HeapFull(heap,n)) inse
item into heap and return the resulting I
else return error

Boolean HeapEmpty(heap, n)::=if (n>0) return FALSE
else return TRUE
Element Delete(heap n)..=If ('HeapEmpty(heap n)) return C

ANURAG SHARMA, LECTUPFR C.S.E.DATA ST‘R[iCcTURES B E.A™H oM

RUNGTA COLLEGE OF ENGINEERING & TECHNOLOGY, BHILAI

Example of Insertion to Max Heap

@@
48 48 4

initial location of new node insert 5 into heap Insert 21 into heap

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Insertion into a Max Heap

void insert max heap(element item, int *n)

{

int 1;

if (HEAP_FULL(*n)) {
fprintf (stderr, “the heap is full.\n”);
exit(1l);

}

i = ++(*n);

while ((i'=l)&&(item.key>heap[i/2] .key)) {
heap[i] = heap[i/2];

| i /= 2; 2k-1=n ==> k=] log,(n+1) |

heap[i]= item; O(|092ﬂ)

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

RUNGTA COLLEGE OF ENGINEERING & TECHNOLOGY, BHILAI

Example of Deletion from Max Heap

re movg

e & &%
g e & &

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Deletion from a Max Heap

element delete max heap(int *n)
{
int parent, child;
element item, temp;
if (HEAB_EMPTY(*n)) {
fprintf (stderr, “The heap is empty\n”);
exit(1l);
}

/* save value of the element with the
highest key */

item = heap[l];

/* use last element in heap to adjust heap

temp = heap[(*n)--];

parent = 1;

child = 2;

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

RUNGTA COLLEGE OF ENGINEERING & TECHNOLOGY, BHILAI

while (child <= *n) {
/* f£find the larger child of the current
parent */
if ((child < *n) &é&
(heap[child] .key<heap[child+1l] .key))
child++;
if (temp.key >= heap[child] .key) break;
/* move to the next lower level */
heap[parent] = heap[child];
child *= 2;
}
heap[parent] = temp;
return item;

}

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

RIINGTA COI 1 FGF OF FNGINFFRING & TECHNOI OGY. BHII Al

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

RUNGTA COLLEGE OF ENGINEERING & TECHNOLOGY, BHILAI

Forest

» Aforestis a set of n >= 0 disjoint trees

‘4

Forest

B
N
© ©

2%

® © ©

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Transform a forest into a blnary
tree

« T1,

T2, ..., Tn: a forest of trees

B(T1, T2, ..., Tn): a binary tree
corresponding to this forest

« algorithm
(1) empty, ifn=20

(2)

nas root equal to root(T1)

nas left subtree equal to B(T11,T12,...
nas right subtree equal to B(T2,T3,...

,T1m)

,Tn)

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Forest Traversa‘s

* Preorder
— If F I1s empty, then return
— Visit the root of the first tree of F
— Taverse the subtrees of the first tree in tree pre:
— Traverse the remaining trees of F in preorder

* |norder
— If F is empty, then return
— Traverse the subtrees of the first tree In tree Inc
— Visit the root of the first tree
— Traverse the remaining trees of F Is indorer

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

RUNGTA COLLEGE OF ENGINEERING & TECHNOLOGY, BHILAI

Inorder: EFBGCHIJDA

(A
/ preorder: ABEFCGDHIJ

lapJoald
N m W

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

RUNGTA COLLEGE OF ENGINEERING & TECHNOLOGY, BHILAI

preorder. ABCDEFGHI
Inorder: BCAEDGHFI

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

RIINGTA COI 1 FGF OF FNGINFFRING & TECHNOI OGY. BHII Al

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

AVL(Helght balanced Trees)

* A perfectly balanced binary tree is a
binary tree such that:

— The height of the left and right subtrees of the
root are equal

— The left and right subtrees of the root are
perfectly balanced binary trees

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

\

Figure 11-18 Perfectly balanced binary tree

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

AVL(Helght balanced Trees)

 An AVL tree (or height-balanced tree) is
a binary search tree such that:

— The height of the left and right subtrees of the
root differ by at most 1

— The left and right subtrees of the root are AVL
trees

— Node balance factor of -1 if node left high, O If
node Is equal high and +1 is node is right high

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

RIINGTA COI 1 FGF OF FNGINFFRING & TECHNOI OGY. BHII Al

AVL Trees

—— - N N N 7\
Y € €0 () () "
7\ /'A\\ 7520 77X / \ 7N\ N 7 N
L. 2)) () () () L))
- - - = 7-/: /_/ A /\/\ \ \
!/’- ‘\I Vol l‘/" \'\\ /" ™ |/ ™ 'd "\\ 7 N
() () | () |
.\. 7 A% = N / ‘\\ z J , 5 A l,\‘ —/VJ
0N " 77N £
() () () ()
)/\ __/ I AN S
Y TN
/’i '\. f
/,,A\‘ /, ~ / \ Iv/ \
\ /‘ "\ J k\ _‘/I \’~ / \
) (iy N N 77N P
/N () () (- ()
\ / ./ N A
,// /A ‘ \ N
() CY(C) X)) ()
N4 N AN e _/ e \./\
777N 7\
() ()
__/ __/

Figure 11-19 AVL trees

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

) C_) _/
4 \(\' 4 §>\
N Vool Neoof

5 4

Figure 11-20 Non-AVL trees

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Figure 11-21 AVL tree before inserting 90

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Balance
criteria
violated

here

Insert 90

\
©

Figure 11-22 Binary tree of Figure 11-21 after inserting 90; nodes other than 90 show
their balance factors before insertion

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Insertlon Into AVL Trees

Figure 11-23 AVL tree of Figure 11-21 after inserting 90 and adjusting the balance factors

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Insertlon Into AVL Trees

|
VvV

| 80
g

Figure 11-24 AVL tree before inserting 75

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Insertlon Into AVL Trees

Balance
criteria
violated

here

Insert 75

@

Figure 11-25 Binary tree of Figure 11-24 after inserting 75, nodes other than 75 show
their balance factors before insertion

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Insertion Into AVL Trees

Figure 11-26 AVL tree of Figure 11-24 after inserting 75 and adjusting the balance factors

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Insertion Into AVL Trees

Figure 11-27 AVL tree before inserting 95

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Insertion Into AVL Trees

<4—— yiolated at

Insert 95 Balance criteria
(50
this node

Figure 11-28 Binary tree of Figure 11-27 after inserting 95; nodes other than 95 show
their balance factors before insertion

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

RIINGTA COI 1 FGF OF FNGINFFRING & TECHNOI OGY. BHII Al

Insertion Into AVL Trees

Figure 11-29 AVL tree of Figure 11-27 after inserting 95 and adjusting the balance factors

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

RIINGTA COI 1 FGF OF FNGINFFRING & TECHNOI OGY. BHII Al

Insertion Into AVL Trees

< >
@5/ @‘D
5 &6

Figure 11-30 AVL tree before inserting 88

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Insertion Into AVL Trees

Insert 88

Balance
criteria
violated

here

Figure 11-31 Binary tree of Figure 11-30 after inserting 88; nodes other than 88 show
their balance factors before insertion

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Insertion Into AVL Trees

Figure 11-32 AVL tree of Figure 11-30 after inserting 88 and adjusting the balance factors

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

AVL Tree Rotatlons

Reconstruction procedure: rotating tree
left rotation and right rotation
Suppose that the rotation occurs at node X

Left rotation: certain nodes from the right subtree of x
move to its left subtree; the root of the right subtree of x
becomes the new root of the reconstructed subtree

Right rotation at x: certain nodes from the left subtree of
X move to its right subtree; the root of the left subtree of
X becomes the new root of the reconstructed subtree

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

E::::>

._‘

w
j— T —|

e S M—
‘}4—3'

Rotate right at

root (node b)
>

j—— T |

Figure 11-33 Right rotation at b

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Rotate right at
root (node a)

.......

j— = —P|

j— T —|

,,,,,,,,

Figure 11-34 Left rotation at a

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

|

-
-

Weo

N

C}<—root

=
|

Double rotation
at root (node c)

| p— " |

Figure 11-35 Double rotation: first rotate left at a, then rotate right at ¢

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

RIINGTA COI 1 FGF OF FNGINFFRING & TECHNOI OGY. BHII Al

AVL Tree Rotations

c><—root Rotate @
right <)
at root
e—

Rotate
left

Figure 11-36 Left rotation at a followed by a right rotation at ¢

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

a J Q—rOOt

p Double rotation

/ at root

>
\EA

4
)

|

|-

Figure 11-37 Double rotation: first rotate right at c, then rotate left at a

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

AVL Tree Rotations

o
Y

Insert 40 |

Figure 11-38 AVL tree after inserting 40

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

AVL Tree Rotations

<

7N\

Insert 30 (40)

v d

(30)
2

Figure 11-39 AVL tree after inserting 30

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

AVL Tree Rotatlons

=

J i

™

Insert 20 /4& 30)
N 2 Ve
S —1 0

&

S
£

Figure 11-40 AVL tree after inserting 20

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Insert 60 (3

Figure 11-41 AVL tree after inserting 60

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

AVL Tree Rotatlons

Insert 50

3

(6

\OA

Figure 11-42 AVL tree after inserting 50

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Figure 11-43 AVL tree after inserting 80

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

AVL Tree Rotatlons

<

Insert 15 (\
7o

Figure 11-44 AVL tree after inserting 15

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

AVL Tree Rotations

<

Insert 28 m
50

Figure 11-45 AVL tree after inserting 28

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

< < <
Insert 25
(5 Rotate @ Rotate 60
left at 20 right at 30

Figure 11-46 AVL tree after inserting 25

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Deletlon From AVL Trees

Case 1:t
Case 2: t

right child,

Case 3:t

ne node to be deleted Is a leaf

ne node to be deleted has no
that Is, its right subtree is empty

ne node to be deleted has no left

child, that Is, its left subtree is empty
Case 4: the node to be deleted has a left

child and

a right child

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

AnaIyS|s AVL Trees

Consider all the possible AVL trees of height h. Let T, be an
AVL tree of height h such that T, has the fewest number of
nodes. Let T,, denote the left subtree of T, and T,, denote the
right subtree of T,. Then:

T, | =Ty |+ |1, | +1

where | T, | denotes the number of nodes in T,

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

AnaIyS|s AVL Trees

Suppose that T, is of height h — 1 and T,, is of height h — 2.
Ty, 1s an AVL tree of height h — 1 such that T, has the fewest
number of nodes among all AVL trees of height h— 1. T, is
an AVL tree of height h — 2 that has the fewest number of
nodes among all AVL trees of height h — 2. T, is of the form
T,-1and T,, is of the form T, -2. Hence:

T =T |+ | Tp | +1

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Analysis: AVL Trees

Let Fh+2 =[Th|+ 1. Then: Fu, = Eu+E
EE, = 2
F, = 3.

Called a Fibonacci sequence; solution to Fh is given by:

b
F =~ LA where ¢ = 1+2£

75
o 1 [1 + \/g]"“

Hence |T;|= 7 =4§ 5

From this it can be concluded that k=(1.44)log, | T, |

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

RIINGTA COI 1 FGF OF FNGINFFRING & TECHNOI OGY. BHII Al

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

(a b) tree (or B- tree)

* Tis an (a,b)-tree (a=2 (2,4)tree
and b=2a-1) E{ ;E 2?;
— All leaves on the same

level (contain between a
and b elements)

— Except for the root, all
nodes h%\/g)degree
between a a

B0, N)
—G@%ﬁ@ﬁcﬁa@ﬂe@fe@ query

between 2 and b

1tO(log, N)

ed in one disk block

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

(a b) Tree Insert

Insert:

Search and insert
element in leaf v

DO\ %Has b+122lements
Split v:
make nodes v’ and v”

with

(a b) Tree Delete

 Delete:

Search and delete element
from leaf v l

DO v has a-1 children
Fuse v with sibling v’
move children of v'to v

delete element (ref) from
parent(v))(loga N)

ANURAG SHARMA, LECTURER C.S.E. DA ‘A STRUCTURES B.E.4™ SEM

RangeSearchmg in 2D

Recall the definition:
given a set of n points,
build a data structure
that for any query
rectangle R, reports all
points In R

Updates are also
nossible, but:

— Fairly complex in theory

ANCRAZ SHARYZA, LECTURER C &£ C.. DA A STRUCTURES B.E. 4™ SEeM

RIINGTA COI 1 FGF OF FNGINFFRING & TECHNOI OGY. BHII Al

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

RUNGTA COLLEGE OF ENGINEERING & TECHNOLOGY, BHILAI

Graph

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Konlgsberg Brldge Problem

In 1736, the following problem was posed:

* River Pregel (Pregolya) flows around the
Island Kneliphof

* Divides Into two
* River has four land areas (A, B,C, D)
* Bridges are labeled a, b, c, d, e, f, g

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

C c d
g
L
A D
Kneiphof €
P \
—
f
a B b

Figure 12-1 Konigsberg bridge problem

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Konlgsberg Brldge Problem

* The Konigsberg bridge problem

— Starting at one land area, is it possible to walk across
all the bridges exactly once and return to the starting

land area?

* In 1736, Euler represented Konigsberg bridge
problem as graph; Answered the question in the

negative.
* This marked (as recorded) the birth of graph
theory.

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

RIINGTA COI 1 FGF OF FNGINFFRING & TECHNOI OGY. BHII Al

Graphs

Figure 12-2 Graph representation of the Kénigsberg bridge problem

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

GraphDeflnltlons and Notatlon

« Agraph Gis apair,g = (V, E), where V is
a finite nonempty set, called the set of
vertices of G,andE <cVxV

* Elements of E are the pair of elements of
V. E Is called the set of edges

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

GraphDeflnltlons and Notatlon

* Let V(G) denote the set of vertices, and
E(G) denote the set of edges of a graph G.
If the elements of E(G) are ordered pairs,
g Is called a directed graph or digraph;
Otherwise, g Is called an undirected
graph

 In an undirected graph, the pairs (u, v) and
(v, U) represent the same edge

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Figure 12-3 Various undirected graphs

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

0l 1 FGF O

Various Directed Graphs

@A@/{@

Figure 12-4 Various directed graphs

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Graph Representatlon Adjacency
Maltrix

* Let G be a graph with n vertices, where n >0

e LetV(G) ={v, Vy, ...,V }
« The adjacency matrix AG is a two-dimensional n

X N matrix such that the (i, j)th entry of AG is 1 if
there Is an edge from vi to vj; otherwise, the (i,

th entry Is zero

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

—
-
—

00 O 0000 - O
R I S B B = Sl e B e B - R v I
O OO o DO - H 0O QO
. =R N I N = R = e -
(- o B e T e S e S e SRR o B o B e e Bl
O —_ -0 OO0 00 C
._u = === == ==
a O = OO - OO - O OO
._m e B T e T e S o T e S S o S
e -0 C 00000 oo C
N O 0000000000
QO © — N+ O~ S
- |
3] ,,
<
Y
h. Pl = T = = T =
Q. - O OO OO O —
m COC 00 O 00O
G - OO0 O OO
SO -H OO OO0 0o

3
L
)
L

-

M
=
m
0
L
14
o)
=
9]
2
12
=
)
K
<
a|
L
0
0
14
L
14
o)
=
()
[H]
-

b

ANURAG SHARMA

Graph Representation:

Adjacency Lists

 In adjacency list representation, corresponding
to each vertex, v, I1s a linked list such that each
node of the linked list contains the vertex u, such
that (v, u) € E(G)

* Array, A, of size n, such that AJi] is a pointer to

the linked list containing the vertices to which vi
IS adjacent

« Each node has two components, (vertex and
link)

« Component vertex contains index of vertex

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

of —[7 33 [-

— | Y
e R
R ——» 1 [+ 4 !
(3] —j

Figure 12-5 Adjacency list of graph G, of Figure 12-4

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Graph Representation:

Adjacency Matrix

o —F[7T 3[=

m| ——{ 2 [3>{ 3 [+ 5 [4
(2] —_— 4 -'j

(3] T3

[4] » 3 ﬁ

(5] —_— 6 ﬁ

o] —™8 l94}

m| ——{ 3[4+ & [4

8| —r—» 10 "j

[9] .—--—->[4 > 7 1——»{ 10 l1—+
[10] K

Figure 12-6 Adjacency list of graph G5 of Figure 12-4

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Operatlons on Graphs

Create the graph: store in memory using a
particular graph representation

Clear the graph: make the graph empty
Determine whether the graph is empty
Traverse the graph

Print the graph

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

class ImkedLlstGrph

template<class vType>

class linkedListGraph: public linkedListType<vType>

{
public:
void getAdjacentVertices (vType adjacencylist][],
int& length) ;
//Function to retrieve the vertices adjacent to a given
//vertex.
//Postcondition: The vertices adjacent to a given vertex

// are retrieved in the array
adjacencylist. The parameter length
specifies the number

// of vertices adjacent to a given vertex.

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

class ImkedLlstGrph

template<class vType>
void linkedListGraph<vType>: :getAdjacentVertices
(vType adjacencylist[], inté& length)

nodeType<vType> *current;
length = 0;
current = first;

while (current !'= NULL)

{
adjacencylist[length++] = current->info;
current = current->link;

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Templates

template<class elemType, int size>
class listType

{
public:

private:
int maxSize;
int length;
elemType listElem[size];

};

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

class Template

This class template contains an array data
member

Array element type and size of array
passed as parameters to class template

To create a list of 100 components of int
elements:

listType<int, 100> intList;

Element type and size of array both
passed to class template listType

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

RIINGTA COI 1 FGF OF FNGINFFRING & TECHNOI OGY. BHII Al

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Graph Traversals

* Depth first traversal
— Mark node v as visited
— Visit the node

— For each vertex u adjacent to v
* If u Is not visited
— Start the depth first traversal at u

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Figure 12-7 Directed graph G,

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Breadth Flrst Traversal

The general algorithm is:

a.

b.
C.

for each vertex v in the graph
if v is not visited

add v to the queue //start the breadth

// first search at v
Mark v as visited

while the queue is not empty
c.l. Remove vertex u from the queue
c.2. Retrieve the vertices adjacent to u
c.3. for each vertex w that is adjacent to u
if w is not visited
c.3.1. Add w to the queue
c.3.2. Mark w as visited

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Graph Traversals

Graph Traversals

012435681079
015236481079

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

http://www.cosc.canterbury.ac.nz/people/mukundan/JavaP.html

RIINGTA COI 1 FGF OF FNGINFFRING & TECHNOI OGY. BHII Al

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Shortest Path Algorithm

« Weight of the edge: edges connecting
two vertices can be assigned a
nonnegative real number

* Weight of the path P: sum of the
weights of all the edges on the path P;
Weight of v fromu via P

« Shortest path: path with smallest
weight

« Shortest path algorithm: greedy
algorithim developed by Dijkstra

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Shortest PathAIgorlthm

Let G be a graph with n vertices, where n >
0.

Let V(G) ={v1, v2, ..., vn}. Let W be a
two-dimensional n X n matrix such that:

wy if (v,,v;) is an edge in G and wy; is the weight of the edge (v;,v)
oo if there is no edge from v; to v,

W, j)= {

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Shortest Path

The general algorithm is:

N

Initialize the array smallestWeight so that
smallestWeight[u] = weights|[vertex, u]
Set smallestWeight[vertex] = 0

Find the vertex, v, that is closest to vertex for
which the shortest path has not been determined

Mark v as the (next) vertex for which the smallest
weight is found

For each vertex w in G, such that the shortest path
from vertex to w has not been determined and an
edge (v, w) exists, if the weight of the path to w
via v is smaller than its current weight, update
the weight of w to the weight of v + the weight of
the edge (v, w)

Because there are n vertices, repeat steps 3 through 5

n—1 times

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Figure 12-8 Weighted graph G

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

01 [(21 B8] [4]
smallestweight| 0 [16 | © [2 | 3]

0] 01 (21 81 [4]
weightFound T | F T F T F [F |

Figure 12-9 Graph after Steps 1 and 2 execute

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

0] M1 [21 [381 [4]
smallestWeight]| 0 | 14 | @ | 2 | 3 |

o1 M1 (21 131 1[4
weighttound [T [F [F [T [F |

]

Figure 12-10 Graph after the first iteration of Steps 3, 4, and 5

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

RIINGTA COI 1 FGF OF FNGINFFRING & TECHNOI OGY. BHII Al

Shortest Path

0 0l (21 [31 [4]
smallestWeight 0 [13 T 7 [2 [3 |

o1 n (2] 31 4]
weighttound T [F [F [T [T |

Figure 12-11 Graph after the second iteration of Steps 3, 4, and 5

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

RIINGTA COI 1 FGF OF FNGINFFRING & TECHNOI OGY. BHII Al

Shortest Path

w=10
3
5
10 W=7
7 o’
4
w=3

[0] [1] [2] (3] [4]
smallestWeight[0 [10 [7 T 2 T 3 |

01 (11 _[21 3] [4]
weighttound T T F T T [T [T]

Figure 12-12 Graph after the third iteration of Steps 3, 4, and 5

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

.. . - e
Shortest Path

0] M1 (2] (3] [4]
smallestWeight 0 [10 | 7 | 2 [3]

[0] [1] [2] (3] [4]
weighttound T _[T [T [T [T

Figure 12-13 Graph after the fourth iteration of Steps 3, 4, and 5

Applet

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

http://www-b2.is.tokushima-u.ac.jp/~ikeda/suuri/dijkstra/Dijkstra.shtml

RIINGTA COI 1 FGF OF FNGINFFRING & TECHNOI OGY. BHII Al

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Minimal Spannmg Tree

This graph represents the airline connections of a
company between seven cities (cost factor shown)

Figure 12-14 Airline connections between cities and the cost factor of maintaining the
connections

wyA A

Minimal Spanning Tree

Company needs to shut down the maximum number of connections and still be
able to fly from ongecity toanother(may notbedirectly):

Figure 12-15 Possible solutions to the graph of Figure 12-14

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Minimal Spannmg Tree

(Free) tree T : simple graph such that if u and
v are two vertices in T, then there Is a unigque
path fromutov

Rooted tree: tree in which a particular vertex
IS designated as a root

Weighted tree: tree in which weight is
assigned to the edgesin T

If T Is a weighted tree, the weight of T,
denoted by W(T), is the sum of the weights
of all the edges In T

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

I\/||n|mal Spannmg Tree

 Atree T Is called a spanning tree of
graph G if T Is a subgraph of G such
that V(T) = V(G),

 All the verticesof G areinT.

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

I\/||n|mal Spannmg Tree

 Theorem: A graph G has a spanning
tree If and only if G Is connected.

 In order to determine a spanning tree of
a graph, the graph must be connected.

* Let G be a weighted graph. A minimal
spanning tree of G Is a spanning tree
with the minimum weight.

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Prim’ sAIgorlthm

* Builds tree iteratively by adding edges
until minimal spanning tree obtained

o Start with a source vertex

« At each iteration, new edge that does
not complete a cycle is added to tree

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Prim’s Algorth

General form of Prim’s algorithm (let n = number of vertices in G):

1. Set V(T) = {source}
. Set E(T) = empty
3. for i =1 ton
3.1 minWeight = infinity;
3.2 for j =1 ton
if vj is in V(T)
for k =1 ton

N

if vk is not in T and weight[v]j][vk] < minWeight
{
endVertex = vk;
edge = (vj, vk);
minWeight = weight[vj] [vk];
}
3.3 V(T) = V(T) U {endVertex};
3.4 E(T) = E(T) U {edge};

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Figure 12-16 Weighted graph G

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

V(T) = {0}
E(T) =0
N={1,2 3,4,b5,6)}

Figure 12-17 Graph G, V(T), E(T), and N after Steps 1 and 2 execute

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Figure 12-18 Graph G, V(T), E(T), and N after the first iteration of Step 3

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

V(T) =10, 2, 3}
E(T) = {(0, 3), (0, 2)}
N={1,4,5, 6}

Figure 12-19 Graph G, V(T), E(T), and N after the second iteration of Step 3

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

RIINGTA COI 1 FGF OF FNGINFFRING & TECHNOI OGY. BHII Al

Prim’s Algorithm

V(T) ={0, 2, 3, 6}
E(T) ={(0, 3), (0, 2), (2,6)}
N={1,4,5)}

Figure 12-20 Graph G, V(T), E(T), and N after the third iteration of Step 3

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

RIINGTA COI 1 FGF OF FNGINFFRING & TECHNOI OGY. BHII Al
Prim’s Algorithm

V(T) ={0, 1, 2, 3, 6}
E(T) = {(0, 3), (0, 2), (2,6), (6,1)}
N = {4, 5}

Figure 12-21 Graph G, V(T), E(T), and N after the fourth iteration of Step 3

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

V(T)=1{0,1, 2, 3, 4, 6}
E(T) ={(0, 3), (0, 2), (2,6), (6,1), (1,4)}
= {5)

Figure 12-22 Graph G, V(T), E(T), and N after the fifth iteration of Step 3

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Prim’s Algorithm

V(T)={0,1, 2, 3,4,5, 6}
E(T) = {(0, 3), (0, 2), (2,6), (6,1), (1,4), (2,5)}
N=¢

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

http://www-b2.is.tokushima-u.ac.jp/~ikeda/suuri/dijkstra/Prim.shtml

Spanning Tree As an ADT

template<class vType, int size>
class msTreeType: public graphType<vType, size>

{

public:

void createSpanningGraph() ;
//Function to create the graph and the weight matrix.
void minimalSpanning (vType sVertex) ;
//Function to create the edges of the minimal
//spanning tree. The weight of the edges is also
//saved in the array edgeWeights.
void printTreeAndWeight() ;

//Function to output the edges and the weight of the
//minimal spanning tree.

protected:

vType source;

double weights|[size] [size];
int edges|[size];

double edgeWeights|[size];

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

RIINGTA COI 1 FGF OF FNGINFFRING & TECHNOI OGY. BHII Al

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

” opologlcal Order

» Let G be a directed graph and V(G) = {v,,
Vy, ..., Vo), Where n > 0.

 Atopological ordering of V(G) Is a linear
ordering Vy;, Vi,, ..., Vi, Of the vertices such
that If v; Is a predecessor of vy, | # Kk, 1 <=
<=n, and 1 <=k <=n, then v; precedes
Vi, that is, | <k n this linear orderlng

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

opologlcal Order

* Because the graph has no cycles:

— There exists a vertex u in G such that u has
no predecessor.

— There exists a vertex v in G such that v has
NO SUCCEeSSOor.

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Topologlcal Order

template<class vType, int size>
class topologicalOrderT: public graphType<vType, size>
{
public:
void bfTopOrder () ;
//Function to output the vertices in breadth first

//topological order

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Breadth Flrst Topologlcal Order

1. Create the array predCount and initialize
It so that predCount[i] is the number of
predecessors of the vertex vi

2. Initialize the queue, say queue, to all
those vertices vk so that predCount[k] is
zero. (Clearly, gueue Is not empty
because the graph has no cycles.)

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Breadth First Topologlcal Order

3. while the queue is not empty
1. Remove the front element, u, of the queue
2. Put u in the next available position, say
topologicalOrder[toplndex], and increment
topindex
3. For all the immediate successors w of u
1. Decrement the predecessor count of w by 1

2. If the predecessor count of w is zero, add w to
queue

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

o1 [l 21 [B1 [[B61 [l [71 [8] [8]1 [10]
predCount| O 1 1 3 2 2 1 1 2 0 2

01] (2] [B]1 [4] [561 [6] [7]1 [8] [9] [10]

topologicalOrder

queue | 0, 9

Figure 12-24 Arrays predCount, topologicalOrder, and queue after Steps 1 and
2 execute

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

01 {13 12 (31 14): I51: .6l -7 i[8): {81 [10]
predCount| O 0 1 3 2 1 1 1 2 0 2

(0] (11 (2] (31 (4] (5] [6] (7] (8] [[10]
topologicalOrder| 0

queue | 9 1

Figure 12-25 Arrays predCount, topologicalOrder, and queue after the first
iteration of Step 3

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

RUNGTA COLLEGE OF ENGINEERING & TECHNOLOGY, BHILAI

Breadth First Topological

0 13 2% (31 44): [51: 6]) i8l: {91 I[10]
predCount| O 0 1 3 1 1 1 0 2 0 1

0] [2 BB [[5] (6] [71 (8] [9] [10]
topologicalOrder| 0 9

queue | 1, 7

Figure 12-26 Arrays predCount, topologicalOrder, and queue after the second
iteration of Step 3

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

Breadth First Topological

0 1 @21 [B1 [B 6 [71 (8] B [10]
predCount| O 0 0 2 1 0 1 0 2 0 1

0] [1] (2] [B1 (4] (5 [é6] [7] (8 [9] [10]
topologicalOrder| 0 9 1

queue| 7,2,5

Figure 12-27 Arrays predCount, topologicalOrder, and queue after the third
iteration of Step 3

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

01 M1 [(381 1[4 [51 [6] (71 (8 [9] [10]
predCount| O 0 0 0 0 0 0 0 0 0 0

0] M (21 (131 [4 (581 [6] (71 (8 [9] [10]
topologicalOrder | 0 9 1 7 2 5 4 6 3 8 10

queue

Figure 12-28 Arrays predCount, topologicalOrder, and queue after Step 3 executes
eight more times

ANURAG SHARMA, LECTURER C.S.E. DATA STRUCTURES B.E.4™ SEM

