
Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

UNIT 1

Introduction to Data Structures

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Lecture 1

What is a Data Structure?

• A primitive data type holds a single piece of data

– e.g. in Java: int, long, char, boolean etc.

– Legal operations on integers: + - * / ...

• A data structure structures data!

– Usually more than one piece of data

– Should provide legal operations on the data

– The data might be joined together (e.g. in an array): a

collection

• An Abstract Data Type (ADT) is a data type together with

the operations, whose properties are specified

independently of any particular implementation.

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Principles of Good Design:

Abstraction, Encapsulation, Modularity

ADTs use the following principles:

• Encapsulation: Providing data and operations on the data

• Abstraction: hiding the details.

– e.g. A class exhibits what it does through its methods;

however, the details of how the methods work is hidden

from the user

• Modularity: Splitting a program into pieces.

– An object-oriented program is a set of classes (data

structures) which work together.

– There is usually more than one way to split up a program

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Principles of Good Design:

High Cohesion, Low Coupling

• Modules (i.e. classes) should be as independent as possible

– Cohesion: The extent to which methods in a class are

related

– Coupling: The extent to which a class uses other classes

– Strive for high cohesion and low coupling

• The ADTs we will examine have high cohesion and low

coupling

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Basic Data Structures: Data Collections

• Linear structures

– Array: Fixed-size

– Linked-list: Variable-size

– Stack: Add to top and remove from top

– Queue: Add to back and remove from front

– Priority queue: Add anywhere, remove the highest priority

• Hash tables: Unordered lists which use a ‗hash function‘ to

insert and search

• Tree: A branching structure with no loops

• Graph: A more general branching structure, with less

stringent connection conditions than for a tree

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Kinds of Operations

• Builders

– Change the contents of the data structure

• Viewers

– Retrieve the contents of the data structure

• Queries

– Return information about the data structure

• Iterators

– Return each element of the data structure, in some order

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Lecture 2

 Elementary Data Structures

 Elementary Data Structure are fundamental approaches to

organizing data. These are the building blocks that will be

used to implement more complex Abstract Data Types.

1. Scalar (built-in) data types

2. Arrays

3. Linked Lists

4. Strings

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Scalar Built-in Data Types

• Basic building blocks for other structures:

1. Integers (int)

2. Floating-point numbers (float)

3. Characters (char)

• Implicit type conversion allow these data types to be mixed

in an expression.

• Sometimes casting is required to for an expression to

evaluate correctly

((float) x) / N

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Data Structures
 There is a famous saying that

 ―Algorithms + Data Structures = Programs‖ (Wirth)

 ―For many applications, the choice of the proper data

structure is the only major decision involving the

implementation: once the choice is made, the necessary

algorithms are simple.‖ (Sedgewick)

– Suppose we have a list of sorted data on which we have

to perform the following operations:

• Search for an item

• Delete a specified item

• Insert (add) a specified item

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Example: Suppose we begin with the following list:
 data: 345 358 490 501 513 555 561 701 724 797

 location: 0 1 2 3 4 5 6 7 8 9

• What is a list?

– A list is a data structure where data is represented linearly

– Finite sequence of items from the same data type

– If arrays are used, items are stored contiguously in the

memory

Data Structures

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

List Implementation using an Array
Example: suppose we begin with the following list:

 data: 345 358 490 501 513 555 561 701 724 797

 location: 0 1 2 3 4 5 6 7 8 9

Now, delete item 358 from the above list

Q: What is the algorithm to delete an item?

Q: What is the cost of deleting an item?

 data: 345 358 490 501 513 555 561 701 724 797

 location: 0 1 2 3 4 5 6 7 8 9

Q: When we delete 358, what happens to that location?

Now, add item 498 onto the above list

Q: Where would that item go?

 data: 345 358 490 501 513 555 561 701 724 797

 location: 0 1 2 3 4 5 6 7 8 9

Q: What is the cost of inserting an item?

Conclusion:

 Using a list representation of data, what is the overall efficiency of

searching, adding, and deleting items?

498

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Lecture 2

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Deletion of an Element from a

List
• Algorithm:

1. locate the element in the list (this involves
searching)

2. delete the element

3. reorganize the list and index
Example:

 data: 345 358 490 501 513 555 561 701

724 797

 location: 0 1 2 3 4 5 6

7 8 9

Delete 358 from the above list:

1. Locate 358: if we use ‗linear search‘, we‘ll compare
358 with each element of the list starting from the
location 0.

2. Delete 358: remove it from the list (space=10)
 data: 345 490 501 513 555 561 701

724 797

 location: 0 1 2 3 4 5 6

7 8 9

1. Reorganize the list: move the remaining elements.
(space=9)

 data: 345 490 501 513 555 561 701 724

797 ?(797)

 location: 0 1 2 3 4 5 6

7 8 9

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Insertion of an Element in List

• Algorithm:
1. locate the position where the element in to be inserted (position

may be user-specified in case of an unsorted list or may be
decided by search for a sorted list)

2. reorganize the list and create an ‗empty‘ slot

3. insert the element
Example: (sorted list)

 data: 345 358 490 501 513 555 561
701 724 797

 location: 0 1 2 3 4 5 6
7 8 9

Insert 505 onto the above list:

1. Locate the appropriate position by performing a binary search.
505 should be stored in location 4.

2. Create an ‗empty‘ slot
 data: 345 358 490 501 513 555

561 701 724 797

 location: 0 1 2 3 4 5 6
7 8 9 10

3. Insert 505
 data: 345 358 490 501 505 513 555

561 701 724 797

 location: 0 1 2 3 4 5 6
7 8 9 10

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Methods for defining a collection of

objects
• Array

– successive items locate a fixed distance

• disadvantage

– data movements during insertion and deletion

– waste space in storing n ordered lists of varying

size

• possible solution

– linked list

– linked lists are dynamically allocated and make

extensive use of pointers

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Lecture 3-4

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Sorted Arrays

• a[i] is 'less than or equal to' a[i+1] for i = left..right-1

• Meaning of 'less than or equal to' can vary

• need a method of testing whether or not 'less than or

equal to' is true

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Linear Search in Sorted Array

Search for target in a[left..right]

This is an O(n) algorithm.

1. Loop using p = left..right

1.1 If a[p] greater than or equal to target then exit loop

2. If a[p] equals target then return index p else return 'not

found'

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Binary Search (Recursive)

Search(target,a,left,right)
This is an O(log n) algorithm.

1. If left >= right then
1.1 If a[left] equals target then

1.1.1 return index left
1.2 Else

1.2.1 return -1 (i.e. 'not found‘)
2. Set mid = (left+right)/2
3. If target is greater than a[mid] then

3.1 return Search(target,a,mid+1,right)
4. Else

4.1 return Search(target,a,left,mid)

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Binary Search Example

Find position of integer 17 between indices 1 and 9

0 1 2 3 4 5 6 7 8 9 10 11

4 6 9 10 12 13 15 17 20 23 25 27

0 1 2 3 4 5 6 7 8 9 10 11

4 6 9 10 12 13 15 17 20 23 25 27

0 1 2 3 4 5 6 7 8 9 10 11

4 6 9 10 12 13 15 17 20 23 25 27

0 1 2 3 4 5 6 7 8 9 10 11

4 6 9 10 12 13 15 17 20 23 25 27

0 1 2 3 4 5 6 7 8 9 10 11

4 6 9 10 12 13 15 17 20 23 25 27

0 1 2 3 4 5 6 7 8 9 10 11

4 6 9 10 12 13 15 17 20 23 25 27

0 1 2 3 4 5 6 7 8 9 10 11

4 6 9 10 12 13 15 17 20 23 25 27

0 1 2 3 4 5 6 7 8 9 10 11

4 6 9 10 12 13 15 17 20 23 25 27

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Binary Searching

The values to be searched must be sorted in order

Go to the mid point of the list or array

Compare this with the value to be found

If the value to be found is less than the mid point search the first

half of the list or array

If the value to be found is greater than the mid point search the

second half of the list or array

Divide the next part of the list or array in exactly the same way and

perform the same comparisons until the item is found or no more

searches can be made.

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Find 14 Using Binary Search

12 14 25 39 41 56 78 88 90

lowest = 0, highest = 8

Mid point (lowest+highest) / 2 = 4 value is 41

14 is less than 41

lowest = 0, highest = (mid -1) = 3 value is 39

Therefore search: 12 14 25 39

Mid point (lowest+highest) / 2 = 1 value is 14

Search value 14 = 14.

0 1 2 3 4 5 6 7 8

positions

values

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Find 88 Using Binary Search

12 14 25 39 41 56 78 88 90

lowest = 0, highest = 8

Mid point (lowest+highest) / 2 = 4 value is 41 88 is greater than 41

lowest = (mid + 1) = 5, highest = 8

Therefore search: 56 78 88 90

Mid point (lowest+highest) / 2 = 6 value is 78 88 is greater than 78

lowest = (mid + 1)=7, highest = 8

Therefore search: 88 90

Mid point (lowest+ highest) / 2 = 7 value is 88

Search value 88 = 88.

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Introduction to Sorting [1/3]
To sort a collection of data is to place it in order.

We will deal primarily with algorithms that solve the General Sorting

In this problem, we are given:

 A sequence.

 Items are all of the same type.

 There are no other restrictions on the items in the sequence.

 A comparison function.

 Given two sequence items, determine which should come first.

 Using this function is the only way we can make such a

determination.

 We return:

 A sorted sequence with the same items as the original sequence.

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Review:

Introduction to Sorting [2/3]
We will analyze sorting algorithms according to five criteria:

– Efficiency

• What is the (worst-case) order of the algorithm?

• Is the algorithm much faster on average than its worst-case

performance?

– Requirements on Data

• Does the algorithm need random-access data? Does it work well

with Linked Lists?

• What operations does the algorithm require the data to have?

– Of course, we always need ―compare‖. What else?

– Space Usage

• Can the algorithm sort in-place?

– An in-place algorithm is one that does not require extra buffers to hold

a large number of data items.

• How much additional storage is used?

– Every algorithm uses at least a little.

– Stability

• Is the algorithm stable?

– A sorting algorithm is stable if it does not reverse the order of

equivalent items.

– Performance on Nearly Sorted Data

• Is the algorithm faster when given sorted (or nearly sorted) data?

– All items close to where they should be, or a limited number of items

out of order.

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Review:

Introduction to Sorting [3/3]
There is no known sorting algorithm that

has all the properties we would like one to

have.

We will examine a number of sorting

algorithms. Generally, these fall into two

categories: O(n2) and O(n log n).

– Quadratic [O(n2)] Algorithms

• Bubble Sort

• Selection Sort

• Insertion Sort

• Quicksort

• Treesort (later in semester)

– Log-Linear [O(n log n)] Algorithms

• Merge Sort

• Heap Sort (mostly later in semester)

• Introsort (not in text)

– Special-Purpose Algorithm

• Radix Sort







 ½

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Review:

Sorting Algorithms III — Other

Algorithms

Merge Sort does essentially everything we

would like a sorting algorithm to do:

– It runs in O(n log n) time.

– It is stable.

– It works well with various data structures

(especially linked lists).

Thus, Merge Sort is a good standard by which

to judge sorting algorithms.

When considering some other sorting

algorithm, ask:

– How is this algorithm better than Merge Sort?

• If it is not better in any way, then use Merge Sort?

– How is this algorithm worse than Merge Sort?

• If it is better than Merge Sort in some way, then it

must also be worse in some way.

– In the application being considered, are the

advantages worth the disadvantages?

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

The Importance Of Algorithm

Analysis
• Performance matters! Can observe

and/or analyze, then tune or revise

algorithm.

• Algorithm analysis is SOOOO important

that every Brown CS student is required

to take at least one course in it!

• CS16: Introduction to Algorithms and

Data Structures

–a tool kit of useful algorithms

–order of magnitude performance

characterizations

• CS157: Design and Analysis of

Algorithms

–considers exact upper and lower

bounds of performance

–employs sophisticated mathematical

analysis

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Analysis of Algorithms

• Computing resources consumed

–running time

–memory space

• Implementation of algorithm

–machine (Intel Core 2 Duo, AMD

Athlon 64 X2,...)

–language (Java, C++,...)

• For given input, time and space used

depend on implementation.

• Size of input data, denoted N, e.g.,

–number of elements to sort

–number of nodes in tree to be visited

• Worst-case time complexity T(N)

–maximum running time of algorithm

over all possible inputs of size N

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Big-O Notation - OrderOf()

• How to abstract from implementation?

• Big-O notation

• O(N) means each element is accessed once

– N elements * 1 access/element = N accesses

• O(N2) means each element is accessed n times

– N elements * N accesses/element = N2

accesses

• Only consider ―asymptotic behavior‖ i.e., when N>>1

(N is much greater than 1)

– N is unimportant compared to N2

• Disregard constant factors:

– newer machine might run all programs twice

as fast

– line of code in one language may be several

lines on another

• Remember, only largest N expression without

constants matters

– 3N2 is O(N2)

– N/2 is O(N)

– 4N2 + 2N + is O(N2)

 n

  i = N(N+1)/2 is O(N2)

i=1

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

 f(N) on linear graph paper

2N N2 NlogN N

logN
N



180

160

100

120

140

80

20

40

60

100 120 140 80 20 40 60 0

f(
N

)

N

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

 f(N) on log-log graph paper

2N N2 NlogN
N

logN

N


105 106 107 104 101 102 103 0

f(
N

)

N

105

106

107

104

101

102

103

109

108

• x-axis: log N; y-axis: log f(N)
• the diagram of cf(N) is obtained by “shifting” the

diagram of f(N) up by log c.

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Bubble Sort
• Iterate through sequence, compare each element to right

neighbor.

• Exchange adjacent elements if necessary.

• Keep passing through sequence until no exchanges are

required (up to N times).

• Each pass causes largest element to bubble into place:

1st pass, largest; 2nd pass, 2nd largest, ...

49 2 36 55 4 72 23

2 36 49 55 4 72 23

2 36 49 4 55 23 72

Before a pass

Middle of first pass

After one pass

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Insertion Sort

• Like inserting new card into a partially sorted hand by

bubbling to left into sorted subarray; little less brute-force than

bubble sort

– add one element a[i] at a time

– find proper position, j+1, to the left by shifting to the right

a[i-1], a[i-2], ..., a[j+1] left neighbors, til a[j] < a[i]

– move a[i] into vacated a[j+1]

• After iteration i<n, a[1] ... a[i] are in sorted order, but not

necessarily in final position
2 4 36 55

2 4 36 55 72

2 4 9 36 55 72

9 72 23

23

23

i

j j+1

j+1 j i

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Time Complexity of Insertion

Sort
Pseudocode implementation

 for (int i = 2; i <= n; i++) {

 int j;

 for (j = i - 1; (j > 0) &&

 (a[j] > a[i]); j--) {

 move a[j] forward;

 }

 move a[i] to a[j+1];

 }

Analysis

• Most executed instructions are ones for move
in inner for-loop.

• Such instructions are executed at most 1 + 2

+ ... + (N-2) + (N-1) times.

• Time complexity: O(N2) worst-case;

constants do not matter for Big-O.

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Lecture 4

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Selection Sort

• Find smallest element and put it in a[1].

• Find 2nd smallest element and put it in

a[2].

• etc. Less data movement (no bubbling)

Pseudocode:

for (int i = 1; i < n; i++) {

 find minimum element a[min] in

 subseqeunce a[1..n]

 exchange a[min] and a[i]

 }

• After iteration i, a[1] ... a[i] are in final

position.

55 2 4 36 5 72 23 a

i min

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Time Complexity of

Selection Sort
for (int i = 1; i < n; i++) {

 int min = i;

 for (int j = i + 1; j <= n; j++) {

 if (a[j] < a[min]) {

 min = j;

 }

 }

 temp = a[min];

 a[min] = a[i];

 a[i] = temp;

}

Worst Case Analysis

• Most executed instruction are those in
inner for loop (if)

• Each such instruction is executed (N-1)

+ (N-2) + ... + 2 + 1 times

• Time complexity: O(N2)

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Comparison of Elementary Sorting

Algorithms

 Note: smaller terms omitted

C
o
m

p
a
ri

s
o
n
s

M
o
v
e
m

e
n

ts

Selection Insertion Bubble

Best

Average

Worst

Best

Average

Worst

n2
2

n2
2

n2
2

n2
2

n2
2

n2
2

n2
2
n2
2

n2
2

n2
4

n2
4

n

n

n n

0 0 0

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Lecture 5-6

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Merge Sort

• Divide-and-Conquer algorithm

• Time complexity: O(N log N)

• Simple recursive formulation

• Stable -- preserves initial order of equal

keys

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Merging Two Sorted Lists

• Time: O(M + N)

1 5 9 25

2 3 17

1 2 3 5 9 17 25

A M

B N

C

M + N

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Outline of Recursive (Top Down)

Merge Sort
• Partition sequence into two sub-

sequences of N/2 elements.

• Recursively sort each sub-sequence.

• Merge the sorted sub-sequences.

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Recursive Merge Sort

• listSequence is sequence to sort.

• first and last are smallest and

largest indices of sequence.

 public class Sorts {

 // other code here

 public void mergeSort(

 ItemSequence listSequence;

 int first, int last) {

 if (first < last) {

 int middle =

 (int)((first + last) / 2);

 mergeSort(listSequence, first,

 middle);

 mergeSort(listSequence,

 middle + 1, last);

 merge(listSequence, first,

 middle, last);

 }

 }

 }

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Bottom - Up Merge Sort

This should remind you of ... a

tree!!!

7 2 3 5 8 4 1 6

2 7 3 5 4 8 1 6

2 3 5 7 1 4 6 8

1 2 3 4 5 6 7 8

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Bottom - Up Merge Sort

 for k = 1, 2, 4, 8, ... , N/2 {

 merge all pairs of

consecutive

 sub-sequences of size k into

sorted

 sub-sequences of size 2k.

 }

• Number of iterations is log2N

– if there are 1000 elements in the list, only 10

iterations are required!!!

• Each iteration (a single merge of two sub-

sequences) takes O(N) time.

• Total time T(N) = O(N log2 N).

• Sequential Data Access:

– merge sort accesses data sequentially

– particularly useful for sorting linked lists and

data sorted on disk

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Time Complexity of Recursive Merge

Sort

• Stops when N/2i = 1, i.e., i = log2N

 T(N) = 2log
2
N + Nlog2N = O(Nlog2N)

 T(N) = 2 • T

T(1) = 1

(N
2) + N

 T(N) = 2 • T (N
2) + N

 T(N) ?= 2 • (N
4) + N

 T(N) ?= 4 • T (N
4) + N

 T(N) ?= 8 • T (N
8) + N

N
2

+ [] 2T

N

2
+ 2 •

N
4

+ 4 •

(1)

(2)

(3)

(i)

• • •

(N
2i) + N + N + ... + N 2iT

i

merge
for N 2

2 recursive sorts

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Lecture 7

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Quicksort — Introduction
The divide-and-conquer idea used in Binary

Search and Merge Sort is a good way to

get fast algorithms.

What about this variation:

– Pick an item in the list.

• This first item will do — for now.

• This item is the pivot.

– Rearrange the list so that the items before the

pivot are all less than, or equivalent to, the

pivot, and the items after the pivot are all

greater than, or equivalent to, the pivot.

• This operation is called Partition. It can be done in

linear time.

– Recursively sort the sub-lists: items before

pivot, items after.

This algorithm is called Quicksort.

– Quicksort was introduced in 1961 by Charles

Antony Richard Hoare (now Sir C. A. R.

Hoare).

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Review:

Sorting Algorithms III —

Quicksort — Partition An In-Place Partition Algorithm

– Make sure the pivot lies in the first position

(swap if not).

– Create a list of items ≤ the pivot (the ―left list‖)

at the beginning of the list as a whole.

• Start: the left list holds only the pivot.

• Iterate through rest of the list.

• If an item is less than the pivot, swap it with the

item just past the end of the left list, and move the

left-list end mark one to the right.

– Lastly, swap the pivot with the last item in the

left list.

– Note the pivot‘s new position.

12 7 1 9 7 8

Pivot

12 7 1 9 7

7 12 1 9 7

7 1 12 9 7

7 1 7 9 12

7 1 7 9 12 8

8

8

8

8

Pivot

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Review:

Sorting Algorithms III —

Quicksort — Problem Quicksort has a big problem.

– Try applying the Master Theorem. It doesn‘t work,

because Quicksort may not split its input into nearly

equal-sized parts.

– The pivot might be chosen very poorly. In such cases,

Quicksort has linear recursion depth and does linear-

time work at each step.

– Result: Quicksort is O(n2). 

– And the worst case happens when the data are

already sorted!

However, Quicksort‘s average-case time is very

fast.

– This is O(n log n) and significantly faster than Merge

Sort.

Quicksort is usually very fast; thus, people want to

use it.

– So we try to figure out how to improve it.

– In the decades following Quicksort‘s introduction in

1961, many people published suggested

improvements. We will look at some of the best ones

…

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Review:

Sorting Algorithms III —

Quicksort — Improvements Choose the pivot using median-of-three.

– Look at three items in the list: first, middle, last.

– Let the pivot be the one that is between the other two

(by <).

– This gives acceptable performance on most nearly

sorted data.

– But it is still O(n2).

12 9 10 3 1 6 12 9 3 1 2

12 1 9 10 3 6 2

2 10 6

12 3 1 10 2 9 6

Median-of-3 Quicksort

Pivot Pivot

After Partition: After Partition:

Initial State: Initial State:

Recursively Sort Recursively Sort

Basic Quicksort

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Sorting Algorithms III, cont‘d:

Quicksort — Improvements:

Space How much additional space does Quicksort

use?

– Quicksort is in-place and uses few local

variables.

– But it is recursive.

– Quicksort‘s additional space usage is thus

proportional to its recursion depth.

– And that is linear. Additional space: O(n).

We can improve this:

– Do the larger of the two recursive calls last.

– Do tail-recursion elimination on this final

recursive call.

– Result: Recursion depth & additional space

usage: O(log n).

• And as with Merge Sort, this additional space need

not hold any data items.

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Sorting Algorithms III, cont‘d:

Quicksort — Do It #2
To Do

– Rewrite our Quicksort to do: (Done. See
quicksort2.cpp, on the web page.)

• Reduced recursion depth.

• Median-of-three pivot selection.

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Sorting Algorithms III, cont‘d:

Quicksort — Improvements:

Finishing A Minor Speed-Up: Finish with Insertion Sort

– Stop Quicksort from going to the bottom of its

recursion. We end up with a nearly sorted list.

– Finish sorting this list using one call to Insertion Sort.

– This is generally faster*, but still O(n2).

– Note: This is not the same as using Insertion Sort for

small lists.

*It can adversely affect the number of cache hits.

12 9 3 1 2 10 6

12 3 1 10 2 9 6

9 2 3 12 1 10 6

Initial State:

Nearly Sorted:

Sorted:

Modified
Quicksort

Stop the recursion
when the sublist to
be sorted is small.

Insertion Sort

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Sorting Algorithms III, cont‘d:

Quicksort — Improvements:

Needed? We want an algorithm that:

– Is as fast as Quicksort on the average.

– Has reasonable [O(n log n)] worst-case performance.

But for over three decades no one found one.

Some said (and some still say) ―Quicksort‘s bad behavior is

very rare; ignore it.‖

– I suggest to you that this is not a good way to think.

– Sometimes bad worst-case behavior is okay; sometimes it is not.

Know what is important in the situation you are addressing.

– From the Wikipedia article on Quicksort (retrieved 18 Oct 2006):

 The worst-case behavior of quicksort is not merely a theoretical

problem. When quicksort is used in web services, for example, it is

possible for an attacker to deliberately exploit the worst case

performance and choose data which will cause a slow running time

or maximize the chance of running out of stack space.

However, in 1997, a solution was finally published. We

discuss this shortly. But first, we analyze Quicksort.

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Sorting Algorithms III, cont‘d:

Quicksort — Analysis
Efficiency 

– Quicksort is O(n2).

– Quicksort has a very good O(n log n) average-case
time. 

Requirements on Data 
– Non-trivial pivot-selection algorithms (median-of-three

and others) are only efficient for random-access data.

Space Usage 
– Quicksort can be done efficiently in-place.

– Quicksort uses space for recursion.
• Additional space: O(log n), if you are clever about it.

• Even if all recursion is eliminated, O(log n) additional space
is used.

• This additional space need not hold any data items.

Stability 
– Efficient versions of Quicksort are not stable.

Performance on Nearly Sorted Data 
– A non-optimized Quicksort is slow on nearly sorted

data: O(n2).

– Median-of-three Quicksort is O(n log n) on most
nearly sorted data.

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Lecture 8

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Radix Sort:

Description
A practical algorithm can be based on this bucket

sorting method.

Suppose we want to sort a list of strings (in some
sense):
– Character strings.

– Numbers, considered as strings of digits.

– Short-ish sequences of some other kind.

– I will call the entries in a string ―characters‖.

We want to sort in lexicographic order.
– This means sort first by first character, then by

second, etc.

– For strings of letters, this is alphabetical order.

– For positive numbers padded with leading zeroes, this
is numerical order.

Procedure
– Sort the list by last (least significant) character.

– Then re-sort, in a stable manner, by the next-to-last
character.

– Continue in this manner …

– After re-sorting by first character, the list is sorted.

This is called Radix Sort.

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Radix Sort:

Example
Start with the following list:

– 583, 508, 134, 183, 90, 223, 236, 924, 4, 426,

106, 624.

We first organize them by the units digit:

– 90, 583, 183, 223, 134, 924, 4, 624, 236,

426, 106, 508.

Then we do it again, based on the tens digit,

not reversing the order of items with the

same tens digit:

– 4, 106, 508, 223, 924, 624, 426, 134, 236,

583, 183, 90.

Then we do the same with the hundreds

digit (the hundreds digit of 90 is 0):

– 4, 90, 106, 134, 183, 223, 236, 426, 508, 583,

624, 924.

And now the list is sorted.

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Radix Sort:

Do It #2
To Do

– Write Radix Sort for small-ish positive
integers. Done. See radix_sort.cpp, on

the web page.

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Radix Sort:

Efficiency [1/2]
How Fast is Radix Sort?

– Fix the number of characters and the character set.

– Then each sorting pass can be done in linear time.

• Use the bucket method.

• Create a bucket for each possible character.

– And there are a fixed number of passes.

– Thus, Radix Sort is O(n): linear time.

How is this possible?

– Radix Sort places a list of values in order.

– However, it does not solve the General Sorting

Problem.

• In the General Sorting Problem, the only way we can get

information about our data is by applying a given comparison

function to two items.

• Radix Sort does not fit within these restrictions.

– Thus, our argument showing that O(n log n) was best

possible for a sorting algorithm, does not apply.

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Radix Sort:

Efficiency [2/2]
Radix Sort is not as efficient as it might seem.

– There is a hidden logarithm. The number of passes

required is equal to the length of a string, which is

something like the logarithm of the number of

possible values.

– So if we want to apply Radix Sort to a list in which all

the values are different, then it is in the same class

as normal sorting algorithms.

However, in certain special cases (e.g., big lists of

small numbers) Radix Sort can be a very

effective tool.

Ten million ZIP
codes to sort?

Use Radix
Sort.

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Lecture 9

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Shell Sort

• Also called Diminishing Increment sort. Invented
by Donald Shell in 1959.

• Another refinement of the Straight Insertion sort.

• In each step, sort every kth item. Then sort the
sublists,

 a[0], a[k], a[2k], a[3k], etc.

 a[1], a[k+1], a[2k+1], a[3k+1], etc.

 … …

 a[k-1], a[2k-1], a[3k-1], a[4k-1], etc.

• After these sublists are sorted, chose a new,
smaller value for k, and sort the new sublists.

• Finally, sort with k = 1. This is the Insertion sort!

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Shell Sort, example

44 55 12 42 94 18 06 67

• 4-sort yields:

44 18 06 42 94 55 12 67

• 2-sort yields

06 18 12 42 44 55 94 67

• 1-sort yields

06 12 18 42 44 55 67 94

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Shell Sort, example 2

44 55 12 42 94 18 06 67

• 5-sort yields:

18 06 12 42 94 44 55 67

• 3-sort yields

18 06 12 42 67 44 55 94

• 1-sort yields

06 12 18 42 44 55 67 94

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Shell Sort

• Each pass benefits from the previous
passes.

• Each pass partially sorts a relatively small
portion of the full list. Since the sublists are
fairly small, insertion sort is efficient for
sorting the sublists.

• As successive passes use smaller
increments (and thus larger sublists), they
are almost sorted due to previous passes.

 Each partial sort DOES NOT DISTURB

 earlier ones

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Shell Sort - example

 Increment = 5:

25 57 48 37 12 92 86 33

Increment = 3:

25 57 33 37 12 92 86 48

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Example, cont.

 Increment = 1:

25 12 33 37 48 92 86 57

Final Result:

12 25 33 37 48 57 86 92

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Shell Sort

• How are the increments chosen? Any

sequence will work, as long as the last

pass has k = 1.

• Analysis is complicated. It has been

demonstrated that:

– Increments should be relatively prime (i.e.,

share no common factors). This guarantees

that successive passes intermingle sublists so

that the entire list is almost sorted before the

final pass.

– With well-chosen increments, efficiency can

approach O(N(logN)(logN)) or N logN-

squared.

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Shell Sort - cont.

• Many text books (e.g., Knuth) describe a

good algorithm for determining

increments.

– Set K = to the number of items in the list

– Set K = K / 3 + 1

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Shell Sort, cont.

 increment = count;

 do {

 increment = increment / 3 + 1;

 for (start = 0; start < increment; start++)

 “sort sub list (start, increment, count);”

 while (increment > 1);

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Shell Sort, review
• ALGORITHM: Another refinement of the Insertion sort.

In each step, sort every kth item. Then sort the sublists,

 a[0], a[k], a[2k], a[3k], etc.

 a[1], a[k+1], a[2k+1], a[3k+1], etc.

 a[2], a[k+2], a[2k+2], a[3k+2], etc.

 … …

 a[k-1], a[2k-1], a[3k-1], a[4k-1], etc.

 After these sublists are sorted, chose a new, smaller
value for k

 and sort the new sublists. Finally, sort with k = 1.

• PERFORMANCE: O(n*log(n)2)

• SPACE REQUIREMENTS and COMMENTS: Need
space for original list plus one additional temporary
location.

 Good method for moderately sized N.

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Shell Sort Review, cont.

• Analysis is complicated. Still do NOT know

the best increments(!). But

– Increments should be relatively prime (i.e.,

share no common factors; that is, they should

not be multiples of each other). This

guarantees that successive passes

intermingle sublists so that the entire list is

almost sorted before the final pass.

– A good algorithm (taken from Knuth) for

determining increments:

• Set K = to the number of items in the list

• Set K = K / 3 + 1

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Lecture 10

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Introduction to Hashing

• Hashing refers to deriving sequence

index from arbitrarily large key using a

hash function.

• Index leads to value or object.

Therefore, two-step process.

hash

function

index key value

hash table

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Introduction to Hashing (cont.)

• Hash table typically holds several

hundred to several thousand entries.

sequence of links to instances of the class TA

Tatyana

Laura

Stephen

null

null

1
2
3
4
5

N

Hash(„Tatyana‟)=1

Hash(„Laura‟)=3

Hash(„Stephen‟)=5

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Collisions

• Problem: Normally have more keys

than entries in our table. Therefore

inevitable that two keys hash to same

position…

– e.g., Hash(‗Sam‘) = 4

– and, Hash(‗Andrew‘) = 4

• Called collision – multiple values

hashed to the same key

• But sequences won‘t let us store

multiple elements at one location!

• This did look too good to be true...

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Handling Collisions

• Since by design, we can‘t avoid

collisions, we use buckets to catch extra

entries.

• Consider stupid hash that returns

integer value of first letter of each

name.

• Each entry in table could be reference

to bucket

– implement bucket with unsorted linked list

– then we only need to search within (small)

linked lists

– called ―chaining‖

– for longer lists, we could sort bucket, or

use binary trees; hybrid tree!

Linked List
head tail

55

65

90

...

...
head tail

 “Jeff” “Nong” “Tatyana” Linked List

Linked List

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Building a Good Hash Function

• Good hash functions

– take into account all information in key

– fill out hash table as uniformly as possible

• Thus, function that uses only first

character (or any character) is terrible

hashing function.

– Not many Q‘s or Z‘s, lots of A‘s, M‘s, etc

• % (mod) provides simple method of

insuring that any integer can be brought

within desired range (pick prime as table

size for best results).

• Thus, we could take a string, chop it into

4-letter sections, then take value of 32 bits

that make up each 4-letter section and
XOR them together, then % that result by

table size.

• Almost any reasonable function that uses

all bits will do, so choose a fast one!

– example:

 hashValue = (key.GetValue()) %

101;

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

UNIT 3

Linked List

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Lecture 1

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Linked Lists

• Definition: a list of items, called nodes, in
which the order of the nodes is determined by
the address, called the link, stored in each
node.

• Every node in a linked list has two
components: one to store the relevant
information (the data); and one to store the
address, called the link, of the next node in
the list.

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Linked Lists

• The address of the first node in the list is
stored in a separate location, called the head
or first.

• The data type of each node depends on the
specific application—that is, what kind of data
is being processed; however, the link
component of each node is a pointer. The
data type of this pointer variable is the node
type itself.

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Linked Lists

Structure of a node

Structure of a linked list

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Linked Lists: Some

Properties

• The address of the first node in a

linked list is stored in the pointer head

• Each node has two components: one

to store the info; and one to store the

address of the next node

• head should always point to the first

node

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Linked Lists: Some

Properties

• Linked list basic operations:

– Search the list to determine whether a

particular item is in the list

– Insert an item in the list

– Delete an item from the list

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Linked Lists: Some

Properties

• These operations require traversal of

the list. Given a pointer to the first

node of the list, step through each of

the nodes of the list

• Traverse a list using a pointer of the

same type as head

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

List Implementation using Linked

Lists

• Linked list

– Linear collection of self-referential class

objects, called nodes

– Connected by pointer links

– Accessed via a pointer to the first node of the

list

– Link pointer in the last node is set to null to

mark the list‘s end

• Use a linked list instead of an array when

– You have an unpredictable number of data

elements

– You want to insert and delete quickly.

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Self-Referential Structures

• Self-referential structures
– Structure that contains a pointer to a structure of the same type

– Can be linked together to form useful data structures such as
lists, queues, stacks and trees

– Terminated with a NULL pointer (0)

• Diagram of two self-referential structure objects linked
together

struct node {

 int data;

 struct node *nextPtr;

}

• nextPtr

– Points to an object of type node

– Referred to as a link

100

NULL pointer (points to nothing) Data member and pointer

500 …

3

2

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Lecture 2

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Linked Lists

• Types of linked lists:

– Singly linked list
• Begins with a pointer to the first node

• Terminates with a null pointer

• Only traversed in one direction

– Circular, singly linked
• Pointer in the last node points

 back to the first node

– Doubly linked list
• Two ―start pointers‖ – first element and last

element

• Each node has a forward pointer and a backward
pointer

• Allows traversals both forwards and backwards

– Circular, doubly linked list
• Forward pointer of the last node points to the first

node and backward pointer of the first node points
to the last node

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Linked Representation of Data

• In a linked
representation, data is
not stored in a
contiguous manner.
Instead, data is stored at
random locations and the
current data location
provides the information
regarding the location of
the next data.

Adding item 498 on to the linked
list

Q: What is the cost of adding an
item?

Q: how about adding 300 and
800

 onto the linked list

Deleting item 358 from the linked
list

Q: What is the cost of deleting an
item?

Q: What is the cost of searching
for an item?

345

358

490

501

513

724

797

701

561

555

345

358

490

501

513

724

797

701

561

555

498

345

358

490

501

513

724

797

701

561

555

498

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Linked List

• How do we represent a linked list in the

memory

– Each location has two fields: Data Field and

Pointer (Link) Field.

• Linked List Implementation

• struct node {

 int data;

 struct node *link;

};

struct node my_node;

Example:

START Node

Element
Pointer (Link)

Field

Data

Field
Null Pointer

300 5

500 0

100 4

200 1

400 2

1

2

3

4

5

3

NULL

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Conventions of Linked List

There are several conventions for the link

to indicate the end of the list.

1. a null link that points to no node (0 or

NULL)

2. a dummy node that contains no item

3. a reference back to the first node,

making it a circular list.

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Lecture 3

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

 bat  cat  sat  vat NULL

*Figure 4.1: Usual way to draw a linked list (p.139)

Singly Linked List

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Example: create a two-node

list

 10  20 NULL

ptr

typedef struct list_node *list_pointer;

typedef struct list_node {

 int data;

 list_pointer link;

 };

list_pointer ptr =NULL

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Two Node Linked List

 10  20 NULL

ptr

list_pointer create2()

{

/* create a linked list with two nodes */

 list_pointer first, second;

 first = (list_pointer) malloc(sizeof(list_node));

 second = (list_pointer) malloc(sizeof(list_node));

 second -> link = NULL;

 second -> data = 20;

 first -> data = 10;

 first ->link = second;

 return first;

}

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Linked List Manipulation

Algorithms
• List Traversal

– Let START be a pointer to a linked list in memory.

Write an algorithm to print the contents of each

node of the list

– Algorithm

1. set PTR = START

2. repeat step 3 and 4 while PTR  NULL

3. print PTR->DATA

4. set PTR = PTR -> LINK

5. stop
1000

START

2000 3000 4000

PTR
PTR = LINK[PTR]

10 20 30 40

10 20 30 40 50

Data Link

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Search for an Item

• Search for an ITEM
– Let START be a pointer to a linked list in

memory. Write an algorithm that finds the
location LOC of the node where ITEM first
appears in the list, or sets LOC=NULL if search is
unsuccessful.

– Algorithm
1. set PTR = START

2. repeat step 3 while PTR  NULL

3. if ITEM == PTR -> DATA, then

4. set LOC = PTR, and Exit

5. else

6. set PTR = PTR -> LINK

7. set LOC = NULL /*search unsuccessful */

8. Stop

1000

START

2000 3000 4000

PTR
PTR = LINK[PTR]

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Lecture 4

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Insertion

•A linked list with pointers p and q

• newNode needs to be inserted

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Insertion

• Code Sequence I

– newNodelink = q

– plink = newNode

• Code Sequence II

– plink = newNode

– newNodelink = q

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Insertion

• Both code sequences produce the result

shown below

*** The sequence of events does NOT matter for

 proper insertion

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Insert an Item

• Insertion into a Listed List

– Let START be a pointer to a linked list in memory

with successive nodes A and B. Write an algorithm

to insert node N between nodes A and B.

– Algorithm
1. Set PTR = START

2. Repeat step 3 while PTR  NULL

3. If PTR == A, then

4. Set N->LINK = PTR -> LINK (or = B)

5. Set PTR->LINK = N

6. exit

7. else

8. Set PTR=PTR->LINK

9. If PTR == NULL insertion unsuccessful

10. Stop

START

1000 2000 3000 4000 5000

Node A Node B

PTR

START

1000 2000 3000 4000 5000

Node A Node B

3500

Node N

3 cases: first node, last node, in-between node. (ex: if ITEM = 500? if ITEM = 6000?)

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Deletion

 Node to be deleted is 34

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Deletion

q = p->link;

p->link = q->link;

delete q;

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Delete an Item

• Deletion from a Linked List

– Let START be a pointer to a linked list in memory that contains

integer data. Write an algorithm to delete note which contains ITEM.

– Algorithm

1. Set PTR=START and TEMP = START

2. Repeat step 3 while PTR  NULL

3. If PTR->DATA == ITEM, then

4. Set TEMP->LINK = PTR -> LINK, exit

5. else

6. TEMP = PTR

7. PTR = PTR -> LINK

8. Stop

3 cases: first node, last node, in-between node. (ex: if ITEM = 1000? if ITEM =

5000?)

PTR

START

1000 2000 3000 4000 5000

Node A Node B

3500

Node N

START

1000 2000 3000 4000 5000

Node A Node B

3500

Node N

3500

ITEM

…..

TEMP

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Lecture 5

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Building a Linked List

• There are two ways to build a linked list

 1) forwards

 2) backwards

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Building a Linked List

What is needed to build a linked list forward:

 -a pointer for the first node

 -a pointer for the last node

 -a pointer for the new node being added

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Building a Linked List

• Steps to build a linked list forward:

– Create a new node called newNode

– If first is NULL, the list is empty so you can

make first and last point to newNode

– If first is not NULL make last point to

newNode and make last = newNode

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Building a Linked List

• What is needed to build a linked list backwards

– a pointer for the first node

– a pointer to the new node being added

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Building a Linked List

• Steps to build a linked list backwards:

– Create a new node newNode

– Insert newNode before first

– Update the value of the pointer first

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Linked List ADT

• Basic operations on a linked list are:

– Initialize the list

– Check whether the list is empty

– Output the list

– Find length of list

– Destroy the list

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Linked List ADT

• Basic operations on a linked list are:

– Get info from last node

– Search for a given item

– Insert an item

– Delete an item

– Make a copy of the linked list

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Ordered Link List

• In an ordered linked list the elements are sorted

• Because the list is ordered, we need to modify

the algorithms (from how they were

implemented for the regular linked list) for the

search, insert, and delete operations

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Lecture 6

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Doubly Linked List

•A doubly linked list is a linked list in which every node

 has a next pointer and a back pointer

• Every node (except the last node) contains the address

 of the next node, and every node (except the first node)

 contains the address of the previous node.

•A doubly linked list can be traversed in either direction

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Doubly Linked List

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

STL Sequence Container: List

• List containers are implemented as doubly

linked lists

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Linked Lists With Header and

Trailer Nodes

• One way to simplify insertion and deletion

is never to insert an item before the first or

after the last item and never to delete the

first node

• You can set a header node at the

beginning of the list containing a value

smaller than the smallest value in the data

set

• You can set a trailer node at the end of the

list containing a value larger than the

largest value in the data set

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Linked Lists With Header and

Trailer Nodes

• These two nodes, header and trailer,

serve merely to simplify the insertion and

deletion algorithms and are not part of the

actual list.

• The actual list is between these two

nodes.

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Lecture 7

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Circular Linked List

• A linked list in which the last node points to

the first node is called a circular linked list

• In a circular linked list with more than one

node, it is convenient to make the pointer first

point to the last node of the list

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Circular Linked List

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

A B

C D

E

Fronttolist

The first node in the linked list is accessible through by a

reference,we can print or search in the linked list by starting at the

first item and following the chain of the references. Insertion and

deletion can be performed arbitrary.

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

A B

For example, how to insert element x after item A in the

linked list

current

x

tmp

We must perform the following steps:

Tmp=new ListNode();// create a new node

Tmp.element=x; //place x in the element field.

Tmp.next=current.next; // x’s next node is B

Current.next=temp; //a’s next node is x

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Deletion from a linked list

A x

current

B

The remove command can be executed in one reference change.

To remove element x from the linked list;we set current to be the

node prior to x and then have current’s next reference by pass x.

current.next=current.next.next

The list A,X,B now appear as A,B

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Header Nodes

• If you want to delete item x, then we set current
to be node prior to x and then have current‘s
next reference by pass x.

• If you are trying to delete 1st element it becomes
a special case

• Special cases are always problematic in
algorithm design and frequently leads to bugs in
the code.

• It is generally preferable to write code that
avoids special cases.

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

• One way to do that here is to introduce the

header node

• A header node is an extra node in the linked

list that holds no data serves to satisfies the

requirement that every node that contains

an item have a previous node in the list

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Example

A B

Header

Moving to the front now means setting the current position to

header node,and so-on, with a header node, a list is empty then

header.next is null.

Ex: implementation of primitive operations with a

header node.

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Lecture 8

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Doubly linked list and circular

linked lists.
• There are two references one for the

forward and other one for the backward

direction.We should have not only a

header but also a tail.

header

If list is empty, then list consists of head and tail

connected together.

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Empty doubly linked list

If doubly linked list is empty then

Header.next==tail;

Or

Tail.prev==Header

Header
Tail

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

The doubly linked list class is

shown below

 Class DoublyLinkedListNode

{

Object data //some element

DoublyLinkedListNode next

DoublyLinkedListNode prev

}

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Insert operation

A

x

B

current

newnode

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Algorithm

1. Newnode=new

DoublyLinkedListNode(x);

2. Newnode.prev=current;

3. Newnode.next=current.next;

4. Newnode.prev.next=newnode;

5. Newnode.next.prev=newnode;

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Delete operation

A B X

Before deletion

After deletion

B A

current

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Delete operation

1. Current.prev.next=current.next

2. Current.next.prev=current.prev

3. Current=head

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Circular doubly linked list.

• A popular convention is to create a circular

doubly linked list , in which the last cell

keeps a reference back to the first and first

cell keeps a back reference to the last cell.

• This can be done with or without a

header.

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Circular doubly linked list

A B X

Ex: implementation of circular doubly liked list

operations

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Linked list representation of

queues.
• The queue can be implemented by a

linked list, provided references are kept to

both the front and rear of the list.

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai Example

A B

C D

E

front

rear
The queue is almost identical to the stack routines.

The queueLi maintains two references such as front and rear.

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Public Queue Operations

• Public operations

• //void enqueue(x)- Insert x

• //Object getfront()-Return least recently
inserted

item

• //object Dequeue()-> Return and remove least

 recent item

• //Boolean idEmpty() -> Return true if empty,
false otherwise

• //void MakeEmpty()-> Remove all items

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

isEmpty()

public Boolean isEmpty()

{

return front==null;

}

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

makempty()

Public void makeEmpty()

{

front=back=null;

}

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Dequeue for the linked list

based queue class

front

rear

front=front.next

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Dequeue for the linked list

based queue class
Public Object dequeue() throws Underflow

{

//return and remove the least recently inserted
item from the queue

//exception Underflow if the queue is empty

If(isempty()) throw new underflow (―queue
dequeue‖);

Object returnvalue=front.element;

front=front.next;

return returnvalue;

}

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

getfront for the linked list based

queue class
Public Object getfront() throws underflow

//get the least recently inserted item in the queue.

Does not alter the queue

//exception underflow if queue is empty

If(isempty())

Throw new underflow (―queue getfront‖);

Return front.element;

}

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

enqueue for the linked list

based queue class
Public void enqueue(Object x)

//insert a new item into the queue

{

If(isempty())

front=rear=new ListNode(x)

else

rear=rear.next=new ListNode(x);

}
Ex:Comparison of array based queue and linked list based

queues

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

A B

For example, how to insert element x after item A in the

linked list

current

x

tmp

We must perform the following steps:

Tmp=new ListNode();// create a new node

Tmp.element=x; //place x in the element field.

Tmp.next=current.next; // x’s next node is B

Current.next=temp; //a’s next node is x

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

UNIT 5

Trees and Graph

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Lecture 1

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Trees

Gill Tansey

Brunhilde

Tweed Zoe

Terry

Honey Bear

Crocus Primrose

Coyote

Nous Belle

Nugget

Brandy

Dusty

Root

leaf

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Definition of Tree

• A tree is a finite set of one or more nodes
such that:

• There is a specially designated node
called
the root.

• The remaining nodes are partitioned into
n>=0 disjoint sets T1, ..., Tn, where each of
these sets is a tree.

• We call T1, ..., Tn the subtrees of the root.

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Level and Depth

K L

E F

B

G

C

M

H I J

D

A

Level

1

2

3

4

node (13)

degree of a node

leaf (terminal)

nonterminal

parent

children

sibling

degree of a tree (3)

ancestor

level of a node

height of a tree (4)

3

2 1 3

2 0 0 1 0 0

0 0 0

1

2 2 2

3 3 3 3 3 3

4 4 4

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Terminology
• The degree of a node is the number of

subtrees
of the node

– The degree of A is 3; the degree of C is 1.

• The node with degree 0 is a leaf or
terminal
node.

• A node that has subtrees is the parent of
the
roots of the subtrees.

• The roots of these subtrees are the
children of
the node.

• Children of the same parent are siblings.

• The ancestors of a node are all the nodes
along the path from the root to the node.

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Representation of Trees

• List Representation

– (A (B (E (K, L), F), C (G), D (H (M), I, J)))

– The root comes first, followed by a list of sub-trees

data link 1 link 2 ... link n

How many link fields are

 needed in such a representation?

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Left Child - Right Sibling

A

B C D

E F G H I J

K L M

data

left child right sibling

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Lecture 2

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Binary Trees

• A binary tree is a finite set of nodes that is

either empty or consists of a root and two

disjoint binary trees called the left subtree

and the right subtree.

• Any tree can be transformed into binary

tree.

– by left child-right sibling representation

• The left subtree and the right subtree are

distinguished.

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

J

I M

H
L

 A

B

 C

 D

 E

 F G K

*Figure 5.6: Left child-right child tree representation of a tree (p.191)

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Abstract Data Type Binary_Tree
structure Binary_Tree(abbreviated BinTree) is

objects: a finite set of nodes either empty or

consisting of a root node, left Binary_Tree,

and right Binary_Tree.

functions:

 for all bt, bt1, bt2  BinTree, item  element

 Bintree Create()::= creates an empty binary

tree

 Boolean IsEmpty(bt)::= if (bt==empty

binary

tree) return TRUE else return FALSE

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

BinTree MakeBT(bt1, item, bt2)::= return a binary tree

 whose left subtree is bt1, whose right subtree is bt2,

 and whose root node contains the data item

Bintree Lchild(bt)::= if (IsEmpty(bt)) return error

 else return the left subtree of bt

element Data(bt)::= if (IsEmpty(bt)) return error

 else return the data in the root node of bt

Bintree Rchild(bt)::= if (IsEmpty(bt)) return error

 else return the right subtree of bt

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Samples of Trees

A

B

A

B

A

B C

G E

I

D

H

F

Complete Binary Tree

Skewed Binary Tree

E

C

D

1

2

3

4
5

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Full BT VS Complete BT

• A full binary tree of depth k is a binary tree of

depth k having 2 -1 nodes, k>=0.

• A binary tree with n nodes and depth k is

complete iff its nodes correspond to the nodes

numbered from 1 to n in the full binary tree of

depth k.

k

A

B C

G E

I

D

H

F

A

B C

G E

K

D

J

F

I H O N M L

Full binary tree of depth 4 Complete binary tree

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Binary Tree Representations

• If a complete binary tree with n nodes

(depth =

log n + 1) is represented sequentially, then

for

any node with index i, 1<=i<=n, we have:

– parent(i) is at i/2 if i!=1. If i=1, i is at the root

and

has no parent.

– left_child(i) ia at 2i if 2i<=n. If 2i>n, then i has

no

left child.

– right_child(i) ia at 2i+1 if 2i +1 <=n. If 2i +1 >n,

then i has no right child.

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai Sequential

Representation

A

B

--

C

--

--

--

D

--

.

E

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

.

[16]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

A

B

C

D

E

F

G

H

I

A

B

E

C

D

A

B C

G E

I

D

H

F

(1) waste space

(2) insertion/deletion

 problem

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Linked Representation
typedef struct node *tree_pointer;

typedef struct node {

 int data;

 tree_pointer left_child, right_child;

};

data left_child right_child

data

left_child right_child

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Arithmetic Expression Using BT

+

*

A

*

/

E

D

C

B

inorder traversal

A / B * C * D + E

infix expression

preorder traversal

+ * * / A B C D E

prefix expression

postorder traversal

A B / C * D * E +

postfix expression

level order traversal

+ * E * D / C A B

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Illustration

50

20

53 45 12

75 30

35

80

48 85 78

Level 1

Level 2

Level 3

Level 4

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Examples of Binary Trees

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Not Binary Trees

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Lecture 3

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Binary Search Trees

• A particular form of binary tree suitable for

searching.

• Definition

– A binary search tree is a binary tree that is

either empty or in which each node contains a

key that satisfies the following conditions:

• All keys (if any) in the left subtree of the root

precede the key in the root.

• The key in the root precedes all keys (if any) in its

right subtree.

• The left and right subtrees of the root are again

binary search trees.

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Examples

20 35 48 85 78

50

53 45 12

75 30

80
20 12

15 5

10

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

How to Implement a Binary

Tree?
• Two pointers in every node (left and right).

struct nd {

 int element;

 struct nd *lptr;

 struct nd *rptr;

 };

typedef nd node;

node *root; /* Will point to the root of the

tree */

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

An Example

• Create the tree

 a = (node *) malloc (sizeof (node));

 b = (node *) malloc (sizeof (node));

 c = (node *) malloc (sizeof (node));

 d = (node *) malloc (sizeof (node));

 a->element = 10; a->lptr = b; a->rptr = c;

 b->element = 5; b->lptr = NULL; b->rptr = NULL;

 c->element = 20; c->lptr = d; c->rptr = NULL;

 d->element = 15; d->lptr = NULL; d->rptr = NULL;

 root = a;

10

5 20

15 d

c b

a

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Traversal of Binary Trees

• In many applications, it is required to move

through all the nodes of a binary tree,

visiting each node in turn.

– For n nodes, there exists n! different orders.

– Three traversal orders are most common:

• Inorder traversal

• Preorder traversal

• Postorder traversal

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Inorder Traversal

• Recursively, perform the following three

steps:

– Visit the left subtree.

– Visit the root.

– Visit the right subtree.

LEFT-ROOT-RIGHT

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Example:: inorder traversal

30 20

10

10

50 25 40

30 20

60

20 10 30 40 20 25 10 50 30 60

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

a

e

i

d

c b

f

h g

k j

. d g b . a h e j i k c f

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Preorder Traversal

• Recursively, perform the following three

steps:

– Visit the root.

– Visit the left subtree.

– Visit the right subtree.

ROOT-LEFT-RIGHT

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Example:: preorder traversal

30 20

10

10

50 25 40

30 20

60

10 20 30 10 20 40 25 30 50 60

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

a

e

i

d

c b

f

h g

k j

a b d . g . c e h i j k f

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Postorder Traversal

• Recursively, perform the following three

steps:

– Visit the left subtree.

– Visit the right subtree.

– Visit the root.

LEFT-RIGHT-ROOT

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

30 20

10

10

50 25 40

30 20

60

Example:: postorder traversal

20 30 10 40 25 20 50 60 30 10

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

a

e

i

d

c b

f

h g

k j

. g d . b h j k i e f c a

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Implementations
 void inorder (node *root)

{

 if (root != NULL)

 {

 inorder (root->left);

 printf (“%d “, root->element);

 inorder (root->right);

 }

}

 void preorder (node *root)

{

 if (root != NULL)

 {

 printf (“%d “, root->element);

 inorder (root->left);

 inorder (root->right);

 }

}

 void postorder (node *root)

{

 if (root != NULL)

 {

 inorder (root->left);

 inorder (root->right);

 printf (“%d “, root->element);

 }

}

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Lecture 4

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Threaded Binary Trees

• Two many null pointers in current

representation

of binary trees

 n: number of nodes

 number of non-null links: n-1

 total links: 2n

 null links: 2n-(n-1)=n+1

• Replace these null pointers with some useful

―threads‖.

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Threaded Binary Trees (Continued)

If ptr->left_child is null,

 replace it with a pointer to the node that would be

 visited before ptr in an inorder traversal

If ptr->right_child is null,

 replace it with a pointer to the node that would be

 visited after ptr in an inorder traversal

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

A Threaded Binary Tree

A

B C

G E

I

D

H

F

root

dangling

dangling

inorder traversal:

H, D, I, B, E, A, F, C, G

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

 TRUE  

 FALSE

Data Structures for Threaded

BT

typedef struct threaded_tree

*threaded_pointer;

typedef struct threaded_tree {

 short int left_thread;

 threaded_pointer left_child;

 char data;

 threaded_pointer right_child;

 short int right_thread; };

left_thread left_child data right_child right_thread

FALSE: child TRUE: thread

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Memory Representation of A Threaded BT

f f --

f f A

f f C f f B

t t E t t F t t G f f D

t t I t t H

root

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Next Node in Threaded BT

threaded_pointer insucc(threaded_pointer

tree)

{

 threaded_pointer temp;

 temp = tree->right_child;

 if (!tree->right_thread)

 while (!temp->left_thread)

 temp = temp->left_child;

 return temp;

}

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Inorder Traversal of Threaded BT

void tinorder(threaded_pointer tree)

{

/* traverse the threaded binary tree

inorder */

 threaded_pointer temp = tree;

 for (;;) {

 temp = insucc(temp);

 if (temp==tree) break;

 printf(“%3c”, temp->data);

 }

}

O(n)

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Inserting Nodes into Threaded BTs

• Insert child as the right child of node parent

– change parent->right_thread to FALSE

– set child->left_thread and child->right_thread

to TRUE

– set child->left_child to point to parent

– set child->right_child to parent->right_child

– change parent->right_child to point to child

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Examples

root

parent

A

B

C D
child

root

parent

A

B

C D
child

empty

Insert a node D as a right child of B.

(1)

(2)

(3)

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

*Figure 5.24: Insertion of child as a right child of parent in a threaded binary tree (p.217)

nonempty

(1)

(3)

(4)

(2)

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Right Insertion in Threaded BTs

void insert_right(threaded_pointer parent,

 threaded_pointer child)

{

 threaded_pointer temp;

 child->right_child = parent->right_child;

 child->right_thread = parent->right_thread;

 child->left_child = parent; case (a)

 child->left_thread = TRUE;

 parent->right_child = child;

 parent->right_thread = FALSE;

 if (!child->right_thread) { case (b)
 temp = insucc(child);

 temp->left_child = child;

 }

}

(1)

(2)

(3)

(4)

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Lecture 5

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Heap
• A max tree is a tree in which the key value in

each node is no smaller than the key values in

its children. A max heap is a complete binary

tree that is also a max tree.

• A min tree is a tree in which the key value in

each node is no larger than the key values in

its children. A min heap is a complete binary

tree that is also a min tree.

• Operations on heaps

– creation of an empty heap

– insertion of a new element into the heap;

– deletion of the largest element from the heap

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

*Figure 5.25: Sample max heaps (p.219)

 [4]

14

12 7

8 10 6

9

6 3

5

30

25

[1]

[2] [3]

[5] [6]

[1]

 [2] [3]

[4]

 [1]

[2]

Property:
 The root of max heap (min heap) contains

 the largest (smallest).

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

2

7 4

8 10 6

10

20 83

50

11

21

[1]

[2] [3]

[5] [6]

[1]

 [2] [3]

[4]

 [1]

[2]

 [4]

*Figure 5.26:Sample min heaps (p.220)

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

ADT for Max Heap structure MaxHeap

 objects: a complete binary tree of n > 0 elements organized so
that
the value in each node is at least as large as those in its
children

 functions:

 for all heap belong to MaxHeap, item belong to Element, n,
max_size belong to integer

 MaxHeap Create(max_size)::= create an empty heap that can
 hold a maximum of max_size elements

 Boolean HeapFull(heap, n)::= if (n==max_size) return TRUE
 else return FALSE

 MaxHeap Insert(heap, item, n)::= if (!HeapFull(heap,n)) insert
 item into heap and return the resulting heap
 else return error

 Boolean HeapEmpty(heap, n)::= if (n>0) return FALSE

 else return TRUE

 Element Delete(heap,n)::= if (!HeapEmpty(heap,n)) return one
 instance of the largest element in the heap
 and remove it from the heap

 else return error

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Example of Insertion to Max Heap

20

15 2

14 10

initial location of new node

21

15 20

14 10 2

insert 21 into heap

20

15 5

14 10 2

insert 5 into heap

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Insertion into a Max Heap

void insert_max_heap(element item, int *n)

{

 int i;

 if (HEAP_FULL(*n)) {

 fprintf(stderr, “the heap is full.\n”);

 exit(1);

 }

 i = ++(*n);

 while ((i!=1)&&(item.key>heap[i/2].key)) {

 heap[i] = heap[i/2];

 i /= 2;

 }

 heap[i]= item;

}

2k-1=n ==> k=log2(n+1)

O(log2n)

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Example of Deletion from Max Heap

20

remove

15 2

14 10

10

15 2

14

15

14 2

10

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Deletion from a Max Heap
element delete_max_heap(int *n)

{

 int parent, child;

 element item, temp;

 if (HEAP_EMPTY(*n)) {

 fprintf(stderr, “The heap is empty\n”);

 exit(1);

 }

 /* save value of the element with the
 highest key */

 item = heap[1];

 /* use last element in heap to adjust heap */

 temp = heap[(*n)--];

 parent = 1;

 child = 2;

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

while (child <= *n) {
 /* find the larger child of the current
 parent */
 if ((child < *n)&&
 (heap[child].key<heap[child+1].key))
 child++;
 if (temp.key >= heap[child].key) break;
 /* move to the next lower level */
 heap[parent] = heap[child];
 child *= 2;
 }
 heap[parent] = temp;
 return item;
}

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Lecture 6

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Forest

• A forest is a set of n >= 0 disjoint trees

A E G

B C D F H I G

H

I

A

B

C

D

F

E

Forest

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Transform a forest into a binary

tree

• T1, T2, …, Tn: a forest of trees

B(T1, T2, …, Tn): a binary tree

corresponding to this forest

• algorithm
(1) empty, if n = 0

(2) has root equal to root(T1)

 has left subtree equal to B(T11,T12,…,T1m)

 has right subtree equal to B(T2,T3,…,Tn)

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Forest Traversals

• Preorder
– If F is empty, then return

– Visit the root of the first tree of F

– Taverse the subtrees of the first tree in tree preorder

– Traverse the remaining trees of F in preorder

• Inorder
– If F is empty, then return

– Traverse the subtrees of the first tree in tree inorder

– Visit the root of the first tree

– Traverse the remaining trees of F is indorer

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

D

H

A

B

F G

C E

I

J

inorder: EFBGCHIJDA

preorder: ABEFCGDHIJ

A

B C D

E F
G H I J

B

E

F

C

G
D

H

I

J

p
reo

rd
er

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

preorder: A B C D E F G H I

inorder: B C A E D G H F I

A

B, C D, E, F, G, H, I

A

D, E, F, G, H, I B

C

A

B

C

D

E F

G I

H

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Lecture 7-8

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

AVL (Height-balanced Trees)

• A perfectly balanced binary tree is a

binary tree such that:

– The height of the left and right subtrees of the

root are equal

– The left and right subtrees of the root are

perfectly balanced binary trees

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Perfectly Balanced Binary Tree

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

AVL (Height-balanced Trees)

• An AVL tree (or height-balanced tree) is

a binary search tree such that:

– The height of the left and right subtrees of the

root differ by at most 1

– The left and right subtrees of the root are AVL

trees

– Node balance factor of -1 if node left high, 0 if

node is equal high and +1 is node is right high

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

AVL Trees

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Non-AVL Trees

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Insertion Into AVL Tree

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Insertion Into AVL Trees

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Insertion Into AVL Trees

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Insertion Into AVL Trees

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Insertion Into AVL Trees

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Insertion Into AVL Trees

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Insertion Into AVL Trees

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Insertion Into AVL Trees

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Insertion Into AVL Trees

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Insertion Into AVL Trees

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Insertion Into AVL Trees

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Insertion Into AVL Trees

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

AVL Tree Rotations

• Reconstruction procedure: rotating tree

• left rotation and right rotation

• Suppose that the rotation occurs at node x

• Left rotation: certain nodes from the right subtree of x

move to its left subtree; the root of the right subtree of x

becomes the new root of the reconstructed subtree

• Right rotation at x: certain nodes from the left subtree of

x move to its right subtree; the root of the left subtree of

x becomes the new root of the reconstructed subtree

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

AVL Tree Rotations

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

AVL Tree Rotations

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

AVL Tree Rotations

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

AVL Tree Rotations

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

AVL Tree Rotations

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

AVL Tree Rotations

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

AVL Tree Rotations

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

AVL Tree Rotations

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

AVL Tree Rotations

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

AVL Tree Rotations

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

AVL Tree Rotations

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

AVL Tree Rotations

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

AVL Tree Rotations

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

AVL Tree Rotations

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Deletion From AVL Trees

• Case 1: the node to be deleted is a leaf

• Case 2: the node to be deleted has no

right child, that is, its right subtree is empty

• Case 3: the node to be deleted has no left

child, that is, its left subtree is empty

• Case 4: the node to be deleted has a left

child and a right child

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Analysis: AVL Trees

Consider all the possible AVL trees of height h. Let Th be an

AVL tree of height h such that Th has the fewest number of

nodes. Let Thl denote the left subtree of Th and Thr denote the

right subtree of Th. Then:

where | Th | denotes the number of nodes in Th.

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Analysis: AVL Trees

Suppose that Thl is of height h – 1 and Thr is of height h – 2.

Thl is an AVL tree of height h – 1 such that Thl has the fewest

number of nodes among all AVL trees of height h – 1. Thr is

an AVL tree of height h – 2 that has the fewest number of

nodes among all AVL trees of height h – 2. Thl is of the form

Th -1 and Thr is of the form Th -2. Hence:

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Analysis: AVL Trees

Let Fh+2 = |Th | + 1. Then:

Called a Fibonacci sequence; solution to Fh is given by:

Hence

From this it can be concluded that

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Lecture 9

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

• (a,b)-tree uses linear space and has height

 

 Choosing a,b = each node/leaf stored in one disk block

 

 space and query

(a,b)-tree (or B-tree)

• T is an (a,b)-tree (a≥2

and b≥2a-1)

– All leaves on the same

level (contain between a

and b elements)

– Except for the root, all

nodes have degree

between a and b

– Root has degree

between 2 and b

)(log NO a

)(B
N

)(log NB

)(B

(2,4)-tree

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

(a,b)-Tree Insert

• Insert:

Search and insert

element in leaf v

DO v has b+1 elements

 Split v:

 make nodes v’ and v’’

with

 and

elements

 insert element (ref) in

parent(v)

 (make new root if

necessary)

 v=parent(v)

• Insert touches

nodes

  bb 
2

1   ab 
2

1

)(log Na

v

v’ v’’

 2
1b  2

1b

1b

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

(a,b)-Tree Delete

• Delete:

Search and delete element

from leaf v

DO v has a-1 children

 Fuse v with sibling v’:

 move children of v’ to v

 delete element (ref) from

parent(v)

 (delete root if necessary)

 If v has >b (and ≤ a+b-1)

children split v

v=parent(v)

• Delete touches

nodes

)(log Na

v

v

1-a

12 - a

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Range Searching in 2D

• Recall the definition:

given a set of n points,

build a data structure

that for any query

rectangle R, reports all

points in R

• Updates are also

possible, but:

– Fairly complex in theory

– Straightforward approach

works well in practice

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Lecture 10-11

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Graph

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Königsberg Bridge Problem

In 1736, the following problem was posed:

• River Pregel (Pregolya) flows around the

island Kneiphof

• Divides into two

• River has four land areas (A, B,C, D)

• Bridges are labeled a, b, c, d, e, f, g

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Graphs

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Königsberg Bridge Problem

• The Königsberg bridge problem

– Starting at one land area, is it possible to walk across

all the bridges exactly once and return to the starting

land area?

• In 1736, Euler represented Königsberg bridge

problem as graph; Answered the question in the

negative.

• This marked (as recorded) the birth of graph

theory.

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Graphs

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Graph Definitions and Notation

• A graph G is a pair,g = (V, E), where V is

a finite nonempty set, called the set of

vertices of G, and E  V x V

• Elements of E are the pair of elements of

V. E is called the set of edges

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Graph Definitions and Notation

• Let V(G) denote the set of vertices, and

E(G) denote the set of edges of a graph G.

If the elements of E(G) are ordered pairs,

g is called a directed graph or digraph;

Otherwise, g is called an undirected

graph

• In an undirected graph, the pairs (u, v) and

(v, u) represent the same edge

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Various Undirected Graphs

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Various Directed Graphs

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Graph Representation: Adjacency

Matrix
• Let G be a graph with n vertices, where n > 0

• Let V(G) = {v1, v2, ..., vn}

• The adjacency matrix AG is a two-dimensional n

× n matrix such that the (i, j)th entry of AG is 1 if

there is an edge from vi to vj; otherwise, the (i,

j)th entry is zero

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Graph Representation:

Adjacency Matrix

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Graph Representation:

Adjacency Lists

• In adjacency list representation, corresponding
to each vertex, v, is a linked list such that each
node of the linked list contains the vertex u, such
that (v, u)  E(G)

• Array, A, of size n, such that A[i] is a pointer to
the linked list containing the vertices to which vi
is adjacent

• Each node has two components, (vertex and
link)

• Component vertex contains index of vertex
adjacent to vertex i

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Graph Representation:

Adjacency Matrix

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Graph Representation:

Adjacency Matrix

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Operations on Graphs

• Create the graph: store in memory using a

particular graph representation

• Clear the graph: make the graph empty

• Determine whether the graph is empty

• Traverse the graph

• Print the graph

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

class linkedListGraph

template<class vType>

class linkedListGraph: public linkedListType<vType>

{

public:

 void getAdjacentVertices(vType adjacencyList[],

 int& length);

 //Function to retrieve the vertices adjacent to a given

 //vertex.

 //Postcondition: The vertices adjacent to a given vertex

 // are retrieved in the array

 adjacencyList. The parameter length

 specifies the number

 // of vertices adjacent to a given vertex.

};

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

class linkedListGraph

template<class vType>

void linkedListGraph<vType>::getAdjacentVertices

 (vType adjacencyList[], int& length)

{

 nodeType<vType> *current;

 length = 0;

 current = first;

 while(current != NULL)

 {

 adjacencyList[length++] = current->info;

 current = current->link;

 }

}

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Templates

template<class elemType, int size>

class listType

{

public:

 .

 .

 .

private:

 int maxSize;

 int length;

 elemType listElem[size];

};

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

class Template

• This class template contains an array data
member

• Array element type and size of array
passed as parameters to class template

• To create a list of 100 components of int
elements:

 listType<int, 100> intList;

• Element type and size of array both
passed to class template listType

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Lecture 12

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Graph Traversals

• Depth first traversal

– Mark node v as visited

– Visit the node

– For each vertex u adjacent to v

• If u is not visited

– Start the depth first traversal at u

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Depth First Traversal

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Breadth First Traversal

The general algorithm is:

 a. for each vertex v in the graph

 if v is not visited

 add v to the queue //start the breadth

 // first search at v

 b. Mark v as visited

 c. while the queue is not empty

 c.1. Remove vertex u from the queue

 c.2. Retrieve the vertices adjacent to u

 c.3. for each vertex w that is adjacent to u

 if w is not visited

 c.3.1. Add w to the queue

 c.3.2. Mark w as visited

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Graph Traversals

Graph Traversals

0 1 2 4 3 5 6 8 10 7 9

0 1 5 2 3 6 4 8 10 7 9

http://www.cosc.canterbury.ac.nz/people/mukundan/JavaP.html

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Lecture 13

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Shortest Path Algorithm

• Weight of the edge: edges connecting
two vertices can be assigned a
nonnegative real number

• Weight of the path P: sum of the
weights of all the edges on the path P;
Weight of v from u via P

• Shortest path: path with smallest
weight

• Shortest path algorithm: greedy
algorithm developed by Dijkstra

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Shortest Path Algorithm

Let G be a graph with n vertices, where n >

0.

Let V(G) = {v1, v2, ..., vn}. Let W be a

two-dimensional n X n matrix such that:

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Shortest Path
The general algorithm is:

1. Initialize the array smallestWeight so that

 smallestWeight[u] = weights[vertex, u]

2. Set smallestWeight[vertex] = 0

3. Find the vertex, v, that is closest to vertex for
which the shortest path has not been determined

4. Mark v as the (next) vertex for which the smallest
weight is found

5. For each vertex w in G, such that the shortest path
from vertex to w has not been determined and an
edge (v, w) exists, if the weight of the path to w
via v is smaller than its current weight, update
the weight of w to the weight of v + the weight of
the edge (v, w)

Because there are n vertices, repeat steps 3 through 5
n – 1 times

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Shortest Path

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Shortest Path

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Shortest Path

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Shortest Path

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Shortest Path

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Shortest Path

Applet

http://www-b2.is.tokushima-u.ac.jp/~ikeda/suuri/dijkstra/Dijkstra.shtml

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Lecture 14

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Minimal Spanning Tree

This graph represents the airline connections of a

company between seven cities (cost factor shown)

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Minimal Spanning Tree

Company needs to shut down the maximum number of connections and still be

able to fly from one city to another (may not be directly).

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Minimal Spanning Tree

• (Free) tree T : simple graph such that if u and
v are two vertices in T, then there is a unique
path from u to v

• Rooted tree: tree in which a particular vertex
is designated as a root

• Weighted tree: tree in which weight is
assigned to the edges in T

• If T is a weighted tree, the weight of T,
denoted by W(T), is the sum of the weights
of all the edges in T

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Minimal Spanning Tree

• A tree T is called a spanning tree of

graph G if T is a subgraph of G such

that V(T) = V(G),

• All the vertices of G are in T.

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Minimal Spanning Tree

• Theorem: A graph G has a spanning

tree if and only if G is connected.

• In order to determine a spanning tree of

a graph, the graph must be connected.

• Let G be a weighted graph. A minimal

spanning tree of G is a spanning tree

with the minimum weight.

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Prim’s Algorithm

• Builds tree iteratively by adding edges

until minimal spanning tree obtained

• Start with a source vertex

• At each iteration, new edge that does

not complete a cycle is added to tree

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Prim’s Algorithm

General form of Prim‘s algorithm (let n = number of vertices in G):

1. Set V(T) = {source}

2. Set E(T) = empty

3. for i = 1 to n

 3.1 minWeight = infinity;

 3.2 for j = 1 to n

 if vj is in V(T)

 for k = 1 to n

 if vk is not in T and weight[vj][vk] < minWeight

 {

 endVertex = vk;

 edge = (vj, vk);

 minWeight = weight[vj][vk];

 }

 3.3 V(T) = V(T)  {endVertex};

 3.4 E(T) = E(T)  {edge};

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Prim’s Algorithm

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Prim’s Algorithm

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Prim’s Algorithm

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Prim’s Algorithm

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Prim’s Algorithm

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Prim’s Algorithm

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Prim’s Algorithm

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Prim’s Algorithm

Applet

http://www-b2.is.tokushima-u.ac.jp/~ikeda/suuri/dijkstra/Prim.shtml

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Spanning Tree As an ADT
template<class vType, int size>

class msTreeType: public graphType<vType, size>

{

public:

 void createSpanningGraph();

 //Function to create the graph and the weight matrix.

 void minimalSpanning(vType sVertex);

 //Function to create the edges of the minimal

 //spanning tree. The weight of the edges is also

 //saved in the array edgeWeights.

 void printTreeAndWeight();

 //Function to output the edges and the weight of the

 //minimal spanning tree.

protected:

 vType source;

 double weights[size][size];

 int edges[size];

 double edgeWeights[size];

};

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Lecture 15

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Topological Order

• Let G be a directed graph and V(G) = {v1,

v2, ..., vn}, where n > 0.

• A topological ordering of V(G) is a linear

ordering vi1, vi2, ..., vin of the vertices such

that if vij is a predecessor of vik, j ≠ k, 1 <= j

<= n, and 1 <= k <= n, then vij precedes

vik, that is, j < k in this linear ordering.

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Topological Order

• Because the graph has no cycles:

– There exists a vertex u in G such that u has

no predecessor.

– There exists a vertex v in G such that v has

no successor.

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Topological Order

template<class vType, int size>

class topologicalOrderT: public graphType<vType, size>

{

public:

 void bfTopOrder();

 //Function to output the vertices in breadth first

 //topological order

};

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Breadth First Topological Order

1. Create the array predCount and initialize

it so that predCount[i] is the number of

predecessors of the vertex vi

2. Initialize the queue, say queue, to all

those vertices vk so that predCount[k] is

zero. (Clearly, queue is not empty

because the graph has no cycles.)

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Breadth First Topological Order

3. while the queue is not empty

1. Remove the front element, u, of the queue

2. Put u in the next available position, say
topologicalOrder[topIndex], and increment
topIndex

3. For all the immediate successors w of u
1. Decrement the predecessor count of w by 1

2. if the predecessor count of w is zero, add w to
queue

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Breadth First Topological

Order

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Breadth First Topological

Order

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Breadth First Topological

Order

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Breadth First Topological

Order

Anurag Sharma, Lecturer C.S.E. Data Structures B.E.4
th

 sem

Rungta College of Engineering & Technology, Bhilai

Breadth First Topological

Order

