
UNIT - 1

INTRODUCTION TO DATA BASE

Basic Definitions

 Data – A collection of facts from which conclusion may be

drawn such as ―statistical data‖. Data is the plural form of

datum.

 Information – It is the result of processing, manipulating

and organizing data in a way that adds to the knowledge of

the person receiving it.

 Knowledge – Collection of information is known as

knowledge.

 Intelligence – It is the property of mind that encompasses

many related abilities such as to reason, to plan, to solve,

to think abstractly, to learn.

 Wisdom – The ability to discern or judge what is true, right

or lasting, insight.
9-Jan-12 Bhavana Vishwakarma 2

HIERARCHICAL STRUCTURE

9-Jan-12 Bhavana Vishwakarma 3

Intelligence

Knowledge

Information

Data

What is a Database?

 Database is a collection of related data, that

contains information relevant to an enterprise.

 For example:

1. University database

2. Employee database

3. Student database

4. Airlines database

etc…..

9-Jan-12 Bhavana Vishwakarma 4

PROPERTIES OF A DATABASE

 A database represents some aspect of the real

world, sometimes called the miniworld or the

universe of discourse (UoD).

 A database is a logically coherent collection of

data with some inherent meaning.

 A database is designed, built and populated with

data for a specific purpose.

9-Jan-12 Bhavana Vishwakarma 5

What is a Database System?

 A DBMS is a general-purpose software

system that facilitates the processes of

defining, constructing, manipulating and

sharing database among various users and

application.

9-Jan-12 Bhavana Vishwakarma 6

Typical DBMS Functionality

 Define a database : in terms of data types,
structures and constraints

 Construct or Load the Database on a secondary
storage medium

 Manipulating the database : querying,
generating reports, insertions, deletions and
modifications to its content

 Concurrent Processing and Sharing by a set of
users and programs – yet, keeping all data valid
and consistent

9-Jan-12 Bhavana Vishwakarma 7

Typical DBMS Functionality

Other features:

 Protection or Security measures to

prevent unauthorized access

 ―Active‖ processing to take internal

actions on data

 Presentation and Visualization of data

9-Jan-12 Bhavana Vishwakarma 8

FIGURE 1.1 A simplified database system environment.

9-Jan-12 Bhavana Vishwakarma 9

Database System Applications

 Banking

 Airlines

 Universities

 Credit card transactions

 Telecommunication

 Finance

 Sales

 Manufacturing

 Human resources

9-Jan-12 Bhavana Vishwakarma 10

Disadvantages of File System over DBMS

 Data redundancy and inconsistency

 Multiple file formats, duplication of information in

different files

 Difficulty in accessing data

 Need to write a new program to carry out each new

task

 Data isolation — multiple files and formats

 Integrity problems

 Must satisfy certain types of consistency constraints.

 Hard to add new constraints or change existing ones

9-Jan-12 Bhavana Vishwakarma 11

 Drawbacks of using file systems (cont.)

 Atomicity of updates

 Failures may leave database in an inconsistent
state with partial updates carried out

 Example: Transfer of funds from one account to
another should either complete or not happen at all

 Concurrent access by multiple users

 Concurrent accessed needed for performance

 Uncontrolled concurrent accesses can lead to
inconsistencies

 Example: Two people reading a balance and
updating it at the same time

 Security problems

 Hard to provide user access to some, but not all,
data

 Database systems offer solutions to all the above
problems

9-Jan-12 Bhavana Vishwakarma 12

Advantages of DBMS

 Controlling Redundancy

 Restricting Unauthorized Access

 Providing Storage Structures for Efficient Query

Processing

 Providing Backup and Recovery

 Providing Multiple User Interfaces

 Representing Complex Relationship among Data

 Enforcing Integrity Constraints

 Permitting Inferencing and Actions using Rules

9-Jan-12 Bhavana Vishwakarma 13

Database Users

Users may be divided into those who actually

use and control the content (called ―Actors on

the Scene‖) and those who enable the

database to be developed and the DBMS

software to be designed and implemented

(called ―Workers Behind the Scene‖).

9-Jan-12 Bhavana Vishwakarma 14

Database Users

Actors on the scene

 Database administrators: responsible for
authorizing access to the database, for co-
ordinating and monitoring its use, acquiring
software, and hardware resources, controlling its
use and monitoring efficiency of operations.

 Database Designers: responsible to define the
content, the structure, the constraints, and
functions or transactions against the database.
They must communicate with the end-users and
understand their needs.

 End-users: they use the data for queries, reports
and some of them actually update the database
content.

9-Jan-12 Bhavana Vishwakarma 15

Categories of End-users

 Casual : access database occasionally when

needed

 Naïve or Parametric : they make up a large

section of the end-user population. They use

previously well-defined functions in the form of

―canned transactions‖ against the database.

Examples are bank-tellers or reservation clerks

who do this activity for an entire shift of

operations.

9-Jan-12 Bhavana Vishwakarma 16

Categories of End-users

 Sophisticated : these include business analysts,

scientists, engineers, others thoroughly familiar with

the system capabilities. Many use tools in the form of

software packages that work closely with the stored

database.

 Stand-alone : mostly maintain personal databases

using ready-to-use packaged applications. An

example is a tax program user that creates his or her

own internal database.

9-Jan-12 Bhavana Vishwakarma 17

Data Models

 Data Model: A set of concepts to describe the

structure of a database, and certain constraints that

the database should obey.

 Data Model Operations: Operations for specifying

database retrievals and updates by referring to the

concepts of the data model. Operations on the data

model may include basic operations and user-defined

operations.

9-Jan-12 Bhavana Vishwakarma 18

Categories of data models

 Conceptual (high-level, semantic) data models:
Provide concepts that are close to the way many
users perceive data. (Also called entity-based or
object-based data models.)

 Physical (low-level, internal) data models: Provide
concepts that describe details of how data is stored in
the computer.

 Implementation (representational) data models:
Provide concepts that fall between the above two,
balancing user views with some computer storage
details.

9-Jan-12 Bhavana Vishwakarma 19

Definitions

• Database Schema: The description of a database.
Includes descriptions of the database structure and
the constraints that should hold on the database.

• Schema Diagram: A diagrammatic display of (some
aspects of) a database schema.

• Schema Construct: A component of the schema or
an object within the schema, e.g., STUDENT,
COURSE.

• Database Instance: The actual data stored in a
database at a particular moment in time. Also called
database state (or occurrence).

9-Jan-12 Bhavana Vishwakarma 20

Schema diagram for the database

9-Jan-12 Bhavana Vishwakarma 21

Database Schema Vs. Database State

• Database State: Refers to the content of a database at
a moment in time.

• Initial Database State: Refers to the database when it is
loaded

• Valid State: A state that satisfies the structure and
constraints of the database.

• Distinction

• The database schema changes very infrequently. The
database state changes every time the database is
updated.

• Schema is also called intension, whereas state is called
extension.

9-Jan-12 Bhavana Vishwakarma 22

LEVELS OF DATA ABSTRACTION

9-Jan-12 Bhavana Vishwakarma 23

view1 view2 view3

View Level

Logical

Level

Physical

Level

LEVELS OF DATA ABSTRACTION

 Physical Level –

 Lowest level of abstraction

 Describes how data are actually stored

 Describes complex low-level data structures

 Logical Level –

 Describes what data are stored in the database.

 Describes relationship among the data.

 Describes entire database in terms of a small no.of

relatively simple structures.

 View Level –

 Describes only part of the entire database.

 Exists to simplify data interaction with the system

9-Jan-12 Bhavana Vishwakarma 24

Three-Schema Architecture

• Proposed to support DBMS characteristics of:

• Program-data independence.

• Support of multiple views of the data.

9-Jan-12 Bhavana Vishwakarma 25

The three-schema architecture.

9-Jan-12

Bhavana Vishwakarma

26

Three-Schema Architecture

• Defines DBMS schemas at three levels:

• Internal schema at the internal level to describe
physical storage structures and access paths. Typically
uses a physical data model.

• Conceptual schema at the conceptual level to
describe the structure and constraints for the whole
database for a community of users. Uses a conceptual
or an implementation data model.

• External schemas at the external level to describe the
various user views. Usually uses the same data model
as the conceptual level.

9-Jan-12 Bhavana Vishwakarma 27

Three-Schema Architecture

 Mappings among schema levels are needed

to transform requests and data. Programs

refer to an external schema, and are mapped

by the DBMS to the internal schema for

execution.

9-Jan-12 Bhavana Vishwakarma 28

Ex: University Database

 Conceptual Schema

 Student(sid: string, name: string, age: number, percent:

real)

 Courses(cid: string, cname: string, credits: number)

 Enrolled(sid:string, cid: string, grade: string)

 Physical Schema

 Relations stored as unordered files

 Index on first column of Students

 External Schema

 Course_info(cid: string, enrollment: integer)

9-Jan-12 Bhavana Vishwakarma 29

Data Independence

 When a schema at a lower level is changed,

only the mappings between this schema and

higher-level schemas need to be changed in

a DBMS that fully supports data

independence. The higher-level schemas

themselves are unchanged. Hence, the

application programs need not be changed

since they refer to the external schemas.

9-Jan-12 Bhavana Vishwakarma 30

Data Independence

• Logical Data Independence: The capacity to

change the conceptual schema without

having to change the external schemas and

their application programs.

• Physical Data Independence: The capacity

to change the internal schema without having

to change the conceptual schema.

9-Jan-12 Bhavana Vishwakarma 31

DBMS ARCHITECTURE

9-Jan-12
Bhavana Vishwakarma

32

Telecomm System

Compiled User

Interface

Compiled

Application Prog.

Batch User

Naive User Casual User DBA

Telecomm System Telecomm System

Query Processor

DBMS & its Data

Manager

OS or Own File

Manager

OS Disk Manager

Data Files &

Data Dictionary

DDL Compiler

E-R Model

 Stands for Entity-Relational Model.

 It is an abstract conceptual representation of

structured data.

 It is not implemented but have the design for

creating the database.

Terms used in E-R model:

 Field – Attribute

 Record – Entity

 File – Entity Type

9-Jan-12 Bhavana Vishwakarma 33

E-R Model

Entity – It is an object with a physical existence.

Ex: An object with a physical existence – a person,

a car, a house or it may be an object with

conceptual existence – a company, a job or a

university.

Attribute – Attributes are the particular properties

that describe an entity.

Ex: A STUDENT entity may be described by

student‘s name, age, address, class, grade.

9-Jan-12 Bhavana Vishwakarma 34

EXAMPLE

9-Jan-12 Bhavana Vishwakarma 35

Qu ic k Tim e ™ a n d a
 d e c o m p re s s o r

a re n e e d e d to s e e th i s p i c tu re .

QuickTime™ and a
 decompr essor

are needed t o see t his pict ure.

Qu ic k Tim e™ and a
 d ec o m pres s or

are ne ede d to s e e th is p ic tu re.
Qu ic k Tim e™ and a

 d ec o m pres s or
are ne ede d to s e e th is p ic tu re.

Qu ic k Tim e™ and a
 d ec o m pres s or

are ne ede d to s e e th is p ic tu re.

Qu ic k Tim e™ and a
 d ec o m pres s or

are ne ede d to s e e th is p ic tu re.

TYPES OF ATTRIBUTES

Simple and Composite Attributes –

• Simple attributes are not divisible into parts.

 Ex: Name, Age

• Composite attributes can be divided into smaller

subparts, which represent more basic attributes with

independent meanings.

9-Jan-12

Bhavana Vishwakarma

36

Address

Street Address city state Pin

number
street

apartment no.

TYPES OF ATTRIBUTES

Single Valued & Multivalued Attributes –

• Single-valued attributes have a single value for particular

entity.

 Ex: Roll_no, Age

• Multivalued attributes may have more than one value for

a single enitity .

 Ex: Phone_no

9-Jan-12

Bhavana Vishwakarma

37

TYPES OF ATTRIBUTES

Stored and Derived Attributes –

 Derived attribute is not stored in the database but it is

derived from some attributes.

 Ex: If DOB is stored in the database then we can

calculate age of a student by subtracting DOB from

current date.

 Hence, in this case DOB is the stored attribute

and age is considered as derived.

9-Jan-12

Bhavana Vishwakarma

38

TYPES OF ATTRIBUTES

Null Valued Attributes –

 Null value is a value which is not inserted but it does not

hold zero value. The attributes which can have a null

value called null valued attributes.

 Ex: Mobile_no attributes of a person may not be having

mobile phones.

9-Jan-12

Bhavana Vishwakarma

39

TYPES OF ATTRIBUTES

Complex Attributes –

 Complex attribute is a combination of composite and

multivalued attributes. Complex attributes are

represented by { } and composite attributes are

represented by ().

Ex: Address_phone attribute will hold both the address and

phone_no of any person.

 {(2-A,St-5,Sec-4,Bhilai), 2398124}

9-Jan-12

Bhavana Vishwakarma

40

Entity Type & Entity Sets

 Entity Type –

 An entity type defines a collection of entities that have the

same attributes. Each entity type in the database is described

by its name and attributes.

 Ex: STUDENT, UNIVERSITY

 Entity Set –

 The collection of all entities of a particular entity type in the

database at any point in time is called entity set.

 Ex: Set of all rows

10 rows of STUDENT

9-Jan-12

Bhavana Vishwakarma

41

Name Age Rollno

STUDENT

TYPES OF ENTITY TYPES
Strong entity type –

 Entity types that have at least one key attribute.

Weak entity type –

 Entity type that does not have any key attribute.

* An entity in a weak entity type is identified by a

relationship with a strong entity type and that relationship

is called Identifying Relationship and that strong entity type

is called the owner of the weak entity type.

TYPES OF ENTITY TYPES

Roll No. Name Age

1 Rakesh 20

2 Nikhil 21

3 Nikhil 21

Name M1 M2 M3

Nikhil 50 45 40

Nikhil 80 75 82

Student

Marks
Secured

Identifying

Relationship

NOTATIONS USED IN E-R DIAGRAM

Entity Type

Attribute

Key Attribute

Weak Entity Type

NOTATIONS USED IN E-R DIAGRAM

Composite Attribute

Derived Attribute

Multivalued Attribute

NOTATIONS USED IN E-R DIAGRAM

Identifying Relationship

Relationship Type

E-R Diagrams

9-Jan-12 Bhavana Vishwakarma 47

 Rectangles represent entity types.

 Diamonds represent relationship types.

 Lines link attributes to entity types and entity types to relationship types.

 Ellipses represent attributes

 Double ellipses represent multivalued attributes.

 Dashed ellipses denote derived attributes.

 Underline indicates primary key attributes (will study later)

E-R Diagram With Composite, Multivalued, and Derived

Attributes

9-Jan-12 Bhavana Vishwakarma 48

Relationship Types with Attributes

9-Jan-12 Bhavana Vishwakarma 49

One-To-Many Relationship

 In the one-to-many relationship a loan is associated with at

most one customer via borrower, a customer is associated

with several (including 0) loans via borrower

9-Jan-12 Bhavana Vishwakarma 50

Many-To-One Relationships

 In a many-to-one relationship a loan is associated with

several (including 0) customers via borrower, a customer is

associated with at most one loan via borrower

9-Jan-12 Bhavana Vishwakarma 51

Many-To-Many Relationship

 A customer is associated with several (possibly 0) loans via

borrower

 A loan is associated with several (possibly 0) customers via

borrower

9-Jan-12 Bhavana Vishwakarma 52

Participation of an Entity type in a

Relationship type

9-Jan-12 Bhavana Vishwakarma 53

 Total participation (indicated by double line): every entity in the entity

type participates in at least one relationship in the relationship type

 E.g. participation of loan in borrower is total

 every loan must have a customer associated to it via borrower

 Partial participation: some entities may not participate in any

relationship in the relationship type

 Example: participation of customer in borrower is partial

Weak Entity Types

 An entity type that does not have a primary key is referred to as a

weak entity type.

 The existence of a weak entity type depends on the existence of a

identifying entity type

 it must relate to the identifying entity type via a total, one-to-

many relationship type from the identifying to the weak entity

type

 Identifying relationship depicted using a double diamond

 The discriminator (or partial key) of a weak entity type is the type

of attributes that distinguishes among all the entities of a weak entity

type.

 The primary key of a weak entity type is formed by the primary key

of the strong entity type on which the weak entity type is existence

dependent, plus the weak entity type‘s discriminator.

9-Jan-12
Bhavana Vishwakarma 54

Weak Entity types (Cont.)

 We depict a weak entity type by double rectangles.

 We underline the discriminator of a weak entity type with a
dashed line.

 payment_number – discriminator of the payment entity type

 Primary key for payment – (loan_number, payment_number)

9-Jan-12 Bhavana Vishwakarma 55

Weak Entity types (Cont.)

 Note: the primary key of the strong entity type
is not explicitly stored with the weak entity
type, since it is implicit in the identifying
relationship.

 If loan_number were explicitly stored, payment
could be made a strong entity, but then the
relationship between payment and loan would
be duplicated by an implicit relationship
defined by the attribute loan_number common
to payment and loan

9-Jan-12 Bhavana Vishwakarma 56

Qu.

 An employee works in one some department.

The department contains phone, the

employee also has phone. Assume that an

employee works in maximum 2 departments

or minimum one department. Each

department must have maximum 3 phones or

minimum zero phone. Design an E-R diagram

for the above.

9-Jan-12 Bhavana Vishwakarma 57

(1,2)

9-Jan-12 Bhavana Vishwakarma 58

eno

Employee Works

In
Department

Phone

eno

office resi

Extended E-R Features: Specialization

 Top-down design process; we designate sub-groupings

within an entity set that are distinctive from other entities

in the set.

 These subgroupings become lower-level entity sets that

have attributes or participate in relationships that do not

apply to the higher-level entity set.

 Depicted by a triangle component labeled ISA (E.g.

customer ―is a‖ person).

 Attribute inheritance – a lower-level entity set inherits

all the attributes and relationship participation of the

higher-level entity set to which it is linked.

 9-Jan-12 Bhavana Vishwakarma 59

Specialization Example

9-Jan-12 Bhavana Vishwakarma 60

Extended ER Features: Generalization

 A bottom-up design process – combine a

number of entity sets that share the same

features into a higher-level entity set.

 Specialization and generalization are

simple inversions of each other; they are

represented in an E-R diagram in the same

way.

 The terms specialization and generalization

are used interchangeably.

9-Jan-12 Bhavana Vishwakarma 61

Specialization and Generalization (Cont.)

 Can have multiple specializations of an entity set based on

different features.

 E.g. permanent_employee vs. temporary_employee, in

addition to officer vs. secretary vs. teller

 Each particular employee would be

 a member of one of permanent_employee or

temporary_employee,

 and also a member of one of officer, secretary, or teller

 The ISA relationship also referred to as superclass -

subclass relationship

9-Jan-12 Bhavana Vishwakarma 62

Design Constraints on a

Specialization/Generalization

9-Jan-12 Bhavana Vishwakarma 63

 Constraint on which entities can be members of a given lower-

level entity set.

 Condition-defined

 Example: all customers over 65 years are members of

senior-citizen entity set; senior-citizen ISA person.

 User-defined

 Constraint on whether or not entities may belong to more than one

lower-level entity set within a single generalization.

 Disjoint

 an entity can belong to only one lower-level entity set

 Noted in E-R diagram by writing disjoint next to the ISA

triangle

 Overlapping

 an entity can belong to more than one lower-level entity set

Design Constraints on a

Specialization/Generalization (Cont.)

 Completeness constraint -- specifies whether or not

an entity in the higher-level entity set must belong to at

least one of the lower-level entity sets within a

generalization.

 total : an entity must belong to one of the lower-

level entity sets

 partial: an entity need not belong to one of the

lower-level entity sets

9-Jan-12 Bhavana Vishwakarma 64

Example of Disjoint & Overlapping

Constraint

9-Jan-12 Bhavana Vishwakarma 65

Person

Student Staff Alumni

o

Overlapping

union

Example of Disjoint & Overlapping

Constraint

9-Jan-12 Bhavana Vishwakarma 66

Person

Child Student Old

d

disjoint

Aggregation

9-Jan-12 Bhavana Vishwakarma 67

 Consider the ternary relationship works_on.

 Suppose we want to record managers for tasks performed by an

 employee at a branch

Aggregation (Cont.)
 Relationship sets works_on and manages represent overlapping

information

 Every manages relationship corresponds to a works_on

relationship

 However, some works_on relationships may not correspond to

any manages relationships

 So we can‘t discard the works_on relationship

 Eliminate this redundancy via aggregation

 Treat relationship as an abstract entity

 Allows relationships between relationships

 Abstraction of relationship into new entity

 Without introducing redundancy, the following diagram represents:

 An employee works on a particular job at a particular branch

 An employee, branch, job combination may have an associated

manager
9-Jan-12 Bhavana Vishwakarma 68

E-R Diagram With Aggregation

9-Jan-12 Bhavana Vishwakarma 69

1
teaches

9-Jan-12 Bhavana Vishwakarma 70

Prof. Code Prof. Name

Address

Professor contains Semester Course

city
phone

Course Code

Course Name

N 1 N

1. The Professor can teach the same course in several semesters and each offering

must be recorded

9-Jan-12 Bhavana Vishwakarma 71

2. Adding one more attribute in the ‗Professor‘ entity named year/session

Professor Course
m n

teaches

3. Every professor must teach some course

Professor Course
n 1

teaches

4. Every professor teaches exactly one course only.

9-Jan-12 Bhavana Vishwakarma 72

5. Every professor teaches exactly one course and each course must be taught

by a professor.

Professor Course
1 1

teaches

Professor Course
m n

teaches

6. A team of professors can teach certain courses jointly but it is possible that no

one professor can teach the whole course

Buffer Manager

 Programs call on the buffer manager when they need a block from

disk.

 If the block is already in the buffer, buffer manager returns the

address of the block in main memory

 If the block is not in the buffer, the buffer manager

 Allocates space in the buffer for the block

 Replacing (throwing out) some other block, if required, to

make space for the new block.

 Replaced block written back to disk only if it was modified

since the most recent time that it was written to/fetched

from the disk.

 Reads the block from the disk to the buffer, and returns the

address of the block in main memory to requester.

9-Jan-12 73 Bhavana Vishwakarma

Buffer-Replacement Policies
 Most operating systems replace the block least recently used (LRU

strategy)

 Idea behind LRU – use past pattern of block references as a

predictor of future references

 Queries have well-defined access patterns (such as sequential

scans), and a database system can use the information in a user‘s

query to predict future references

 LRU can be a bad strategy for certain access patterns involving

repeated scans of data

 For example: when computing the join of 2 relations r and s by

a nested loops

 for each tuple tr of r do

 for each tuple ts of s do

 if the tuples tr and ts match …

 Mixed strategy with hints on replacement strategy provided

by the query optimizer is preferable
9-Jan-12 74 Bhavana Vishwakarma

Buffer-Replacement Policies (Cont.)

 Pinned block – memory block that is not allowed to be written

back to disk.

 Toss-immediate strategy – frees the space occupied by a block

as soon as the final tuple of that block has been processed

 Most recently used (MRU) strategy – system must pin the block

currently being processed. After the final tuple of that block has

been processed, the block is unpinned, and it becomes the most

recently used block.

 Buffer manager can use statistical information regarding the

probability that a request will reference a particular relation

 E.g., the data dictionary is frequently accessed. Heuristic:

keep data-dictionary blocks in main memory buffer

 Buffer managers also support forced output of blocks for the

purpose of recovery.
9-Jan-12 75 Bhavana Vishwakarma

File Organization

 The database is stored as a collection of

files. Each file is a sequence of records. A

record is a sequence of fields.

 One approach:

assume record size is fixed

each file has records of one particular type

only

different files are used for different relations

This case is easiest to implement; will consider

variable length records later.

9-Jan-12 76 Bhavana Vishwakarma

Fixed-Length Records

 Simple approach:

 Store record i starting from byte n (i – 1), where n is the size of

each record.

 Record access is simple but records may cross blocks

 Modification: do not allow records to cross block boundaries

 Deletion of record i:

alternatives:

 move records i + 1, . . ., n

to i, . . . , n – 1

 move record n to i

 do not move records, but

link all free records on a

free list
9-Jan-12 77 Bhavana Vishwakarma

Free Lists

 Store the address of the first deleted record in the file header.

 Use this first record to store the address of the second deleted

record, and so on

 Can think of these stored addresses as pointers since they ―point‖ to

the location of a record.

 More space efficient representation: reuse space for normal

attributes of free records to store pointers. (No pointers stored in in-

use records.)

9-Jan-12 78 Bhavana Vishwakarma

Variable-Length Records

 Variable-length records arise in

database systems in several ways:

 Storage of multiple record types in a file.

 Record types that allow variable lengths

for one or more fields.

 Record types that allow repeating fields

(used in some older data models).

9-Jan-12 79 Bhavana Vishwakarma

Variable-Length Records: Slotted Page Structure

 Slotted page header contains:

 number of record entries

 end of free space in the block

 location and size of each record

 Records can be moved around within a page to keep them

contiguous with no empty space between them; entry in the

header must be updated.

 Pointers should not point directly to record — instead they

should point to the entry for the record in header.
9-Jan-12 80 Bhavana Vishwakarma

Organization of Records in Files

 Heap – a record can be placed anywhere in the file

where there is space

 Sequential – store records in sequential order,

based on the value of the search key of each record

 Hashing – a hash function computed on some

attribute of each record; the result specifies in which

block of the file the record should be placed

 Records of each relation may be stored in a separate

file. In a multitable clustering file organization

records of several different relations can be stored in

the same file

 Motivation: store related records on the same

block to minimize I/O
9-Jan-12 81 Bhavana Vishwakarma

Sequential File Organization

 Suitable for applications that require sequential

processing of the entire file

 The records in the file are ordered by a search-key

9-Jan-12 82 Bhavana Vishwakarma

Sequential File Organization (Cont.)
 Deletion – use pointer chains

 Insertion –locate the position where the record is to be

inserted

 if there is free space insert there

 if no free space, insert the record in an overflow block

 In either case, pointer chain must be updated

 Need to reorganize the file

 from time to time to restore

 sequential order

9-Jan-12 83 Bhavana Vishwakarma

Multitable Clustering File Organization

Store several relations in one file using a multitable clustering

file organization

9-Jan-12 84 Bhavana Vishwakarma

Multitable Clustering File Organization (cont.)

Multitable clustering organization of customer and

depositor:

 good for queries involving depositor customer, and for queries
involving one single customer and his accounts

 bad for queries involving only customer

 results in variable size records

 Can add pointer chains to link records of a particular relation

9-Jan-12 85 Bhavana Vishwakarma

Data Dictionary Storage

 Information about relations

 names of relations

 names and types of attributes of each relation

 names and definitions of views

 integrity constraints

 User and accounting information, including passwords

 Statistical and descriptive data

 number of tuples in each relation

 Physical file organization information

 How relation is stored (sequential/hash/…)

 Physical location of relation

 Information about indices.

Data dictionary (also called system catalog) stores metadata; that is,

data about data, such as

9-Jan-12 86 Bhavana Vishwakarma

Data Dictionary Storage (Cont.)

 Catalog structure

 Relational representation on disk

 specialized data structures designed for efficient

access, in memory

 A possible catalog representation:

 Relation_metadata = (relation_name, number_of_attributes,

 storage_organization, location)

Attribute_metadata = (attribute_name, relation_name, domain_type,

 position, length)

User_metadata = (user_name, encrypted_password, group)

Index_metadata = (index_name, relation_name, index_type,

 index_attributes)

View_metadata = (view_name, definition)

9-Jan-12 87 Bhavana Vishwakarma

Bhavana Vishwakarma 88

B+ - Tree Structure

 A B+ - Tree is in the form of a balanced tree in which

every path from the root of the tree to a leaf of the

tree is the same length.

 Each non-leaf node in the tree has between [n/2] and

n children, where n is fixed.

 B+ - Trees are good for searches, but cause some

overhead issues in wasted space.

Bhavana Vishwakarma 89

 A typical node contains up to n – 1 search key values

K1, K2,…, Kn-1, and n pointers P1, P2,…, Pn. The

search key values are kept in sorted order.

P1 K1 P2 … Pn-1 Kn-1 Pn

Bhavana Vishwakarma 90

 The pointer Pi can point to either a file record or a bucket

of pointers which each point to a file record.

 leaf node, n = 3

 Brighton Downtown

A – 212 Brighton 750

A – 101 Brighton 750

A – 212 Brighton 750

.

.

.

Bhavana Vishwakarma 91

 Each leaf can hold up to n – 1 values and must contain

at least [(n – 1) / 2] values.

 Nonleaf node pointers point to tree nodes (leaf nodes).

Nonleaf nodes can hold up to n pointers and must hold

at least [n/2] pointers.

 i.e. n = 3

 Perryridge

 Mianus Redwood

 Brighton Downtown Mianus Redwood Round Hill

 Perryridge

Bhavana Vishwakarma 92

B+ - Tree Updates

 Insertion – If the new node has a search key that

already exists in another leaf node, then it adds the

new record to the file and a pointer to the bucket of

pointers. If the search key is different from all others,

it is inserted in order.

 Deletion – It removes the search key value from the

node.

Bhavana Vishwakarma 93

 i.e. we are going to insert a node with a search key value

―Clearview‖. We find that ―Clearview‖ should be in the

node with Brighton and Downtown, so we must split the

node.

 i.e. n = 3

 Perryridge

 Downtown Mianus Redwood

 Brighton Clearview Mianus Redwood Round Hill

 Perryridge

 Downtown

Bhavana Vishwakarma 94

 i.e. Deletion of ―Downtown‖ from slide #8.

 Perryridge

 Mianus Redwood

 Brighton Clearview Mianus Redwood Round Hill

 Perryridge

Bhavana Vishwakarma 95

 i.e. Deletion of ―Perryridge‖ from slide #8

 Mianus

 Downtown Redwood

 Brighton Clearview Mianus Redwood Round Hill

 Downtown

Bhavana Vishwakarma 96

B+ - Tree File Organization

 In a B+ - Tree file organization, the leaf nodes of the tree stores
the actual record rather than storing pointers to records.

 During insertion, the system locates the block that should
contain the record. If there is enough free space in the node
then the system stores it. Otherwise the system splits the
record in two and distributes the records.

 During deletion, the system first removes the record from the
block containing it. If the block becomes less than half full as a
result, the records in the block are redistributed.

Bhavana Vishwakarma 97

B+ - Tree File Organization

Bhavana Vishwakarma 98

B - Tree Index Files

 Similar to B+-tree, but B-tree allows search-key values to appear only once;

eliminates redundant storage of search keys.

 Search keys in nonleaf nodes appear nowhere else in the B-tree; an additional

pointer field for each search key in a nonleaf node must be included.

 Nonleaf node – pointers Bi are the bucket or file record pointers.

Bhavana Vishwakarma 99

B – Tree Index Files

 Advantages of B-Tree indices:

 May use less tree nodes than a corresponding B+-Tree.

 Sometimes possible to find search-key value before
reaching leaf node.

 Disadvantages of B-Tree indices:

 Only small fraction of all search-key values are found early

 Non-leaf nodes are larger, so fan-out is reduced. Thus B-
Trees typically have greater depth than corresponding
B+-Tree

 Insertion and deletion more complicated than in B+-Trees

 Implementation is harder than B+-Trees.

Bhavana Vishwakarma 100

 Example of B – Tree

