
UNIT – 2

RELATIONAL MODEL

RELATIONAL MODEL CONCEPTS

 The relational Model of Data is based on the
concept of a Relation.

 A Relation is a mathematical concept based on the
ideas of sets.

 The strength of the relational approach to data
management comes from the formal foundation
provided by the theory of relations.

2

B
h

a
v
a

n
a
 V

ish
w

a
k

a
rm

a

1
/9

/2
0

1
2

INFORMAL DEFINITIONS

 RELATION: A table of values

 A relation may be thought of as a set of rows.

 A relation may alternately be though of as a set of columns.

 Each row represents a fact that corresponds to a real-world
entity or relationship.

 Each row has a value of an item or set of items that uniquely
identifies that row in the table.

 Sometimes row-ids or sequential numbers are assigned to
identify the rows in the table.

 Each column typically is called by its column name or column
header or attribute name.

3

B
h

a
v
a

n
a
 V

ish
w

a
k

a
rm

a

1
/9

/2
0

1
2

FORMAL DEFINITIONS

 A Relation may be defined in multiple ways.

 The Schema of a Relation: R (A1, A2,An)

 Relation schema R is defined over attributes A1, A2,An

 For Example -

 CUSTOMER (Cust-id, Cust-name, Address, Phone#)

 Here, CUSTOMER is a relation defined over the four attributes
Cust-id, Cust-name, Address, Phone#, each of which has a
domain or a set of valid values. For example, the domain of
Cust-id is 6 digit numbers.

4

B
h

a
v
a

n
a
 V

ish
w

a
k

a
rm

a

1
/9

/2
0

1
2

FORMAL DEFINITIONS

 A tuple is an ordered set of values

 Each value is derived from an appropriate domain.

 Each row in the CUSTOMER table may be referred to as a tuple

in the table and would consist of four values.

 <632895, "John Smith", "101 Main St. Atlanta, GA 30332", "(404) 894-2000">

is a tuple belonging to the CUSTOMER relation.

 A relation may be regarded as a set of tuples (rows).

 Columns in a table are also called attributes of the relation.

5

B
h

a
v
a

n
a
 V

ish
w

a
k

a
rm

a

1
/9

/2
0

1
2

FORMAL DEFINITIONS

 A domain has a logical definition: e.g.,
“USA_phone_numbers” are the set of 10 digit phone numbers
valid in the U.S.

 A domain may have a data-type or a format defined for it. The
USA_phone_numbers may have a format: (ddd)-ddd-dddd where
each d is a decimal digit. E.g., Dates have various formats such
as monthname, date, year or yyyy-mm-dd, or dd mm,yyyy etc.

 An attribute designates the role played by the domain. E.g., the
domain Date may be used to define attributes “Invoice-date” and
“Payment-date”.

6

B
h

a
v
a

n
a
 V

ish
w

a
k

a
rm

a

1
/9

/2
0

1
2

FORMAL DEFINITIONS

 The relation is formed over the cartesian product of the sets;
each set has values from a domain; that domain is used in a
specific role which is conveyed by the attribute name.

 For example, attribute Cust-name is defined over the domain of
strings of 25 characters. The role these strings play in the
CUSTOMER relation is that of the name of customers.

 Formally,

 Given R(A1, A2,, An)

 r(R)  dom (A1) X dom (A2) XX dom(An)

 R: schema of the relation

 r of R: a specific "value" or population of R.

 R is also called the intension of a relation

 r is also called the extension of a relation

7

B
h

a
v
a

n
a
 V

ish
w

a
k

a
rm

a

1
/9

/2
0

1
2

FORMAL DEFINITIONS

 Let S1 = {0,1}

 Let S2 = {a,b,c}

 Let R  S1 X S2

 Then for example: r(R) = {<0,a> , <0,b> , <1,c> }

 is one possible “state” or “population” or “extension” r

of the relation R, defined over domains S1 and S2. It

has three tuples.

8

B
h

a
v
a

n
a
 V

ish
w

a
k

a
rm

a

1
/9

/2
0

1
2

DEFINITION SUMMARY

Informal Terms Formal Terms

Table Relation

Column Attribute/Domain

Row Tuple

Values in a column Domain

Table Definition Schema of a Relation

Populated Table Extension

B
h

a
v
a

n
a
 V

ish
w

a
k

a
rm

a

9

1
/9

/2
0

1
2

RELATIONAL INTEGRITY CONSTRAINTS

 Constraints are conditions that must hold on

all valid relation instances. There are three

main types of constraints:

1. Key constraints

2. Entity integrity constraints

3. Referential integrity constraints

10

B
h

a
v
a

n
a
 V

ish
w

a
k

a
rm

a

1
/9

/2
0

1
2

KEY CONSTRAINTS

 Superkey of R: A set of attributes SK of R such that no
two tuples in any valid relation instance r(R) will have
the same value for SK. That is, for any distinct tuples
t1 and t2 in r(R), t1[SK]  t2[SK].

 Key of R: A "minimal" superkey; that is, a superkey K
such that removal of any attribute from K results in a
set of attributes that is not a superkey.

Example: The CAR relation schema:

CAR(State, Reg#, SerialNo, Make, Model, Year)

has two keys Key1 = {State, Reg#}, Key2 = {SerialNo},
which are also superkeys. {SerialNo, Make} is a
superkey but not a key.

 If a relation has several candidate keys, one is
chosen arbitrarily to be the primary key. The primary
key attributes are underlined.

11

B
h

a
v
a

n
a
 V

ish
w

a
k

a
rm

a

1
/9

/2
0

1
2

KEY CONSTRAINTS

12

B
h

a
v
a

n
a
 V

ish
w

a
k

a
rm

a

1
/9

/2
0

1
2

ENTITY INTEGRITY

 Relational Database Schema: A set S of relation
schemas that belong to the same database. S is the name
of the database.

S = {R1, R2, ..., Rn}

 Entity Integrity: The primary key attributes PK of each
relation schema R in S cannot have null values in any
tuple of r(R). This is because primary key values are used
to identify the individual tuples.

t[PK]  null for any tuple t in r(R)

 Note: Other attributes of R may be similarly constrained
to disallow null values, even though they are not members
of the primary key.

13

B
h

a
v
a

n
a
 V

ish
w

a
k

a
rm

a

1
/9

/2
0

1
2

REFERENTIAL INTEGRITY

 A constraint involving two relations (the previous
constraints involve a single relation).

 Used to specify a relationship among tuples in two
relations: the referencing relation and the referenced
relation.

 Tuples in the referencing relation R1 have attributes FK
(called foreign key attributes) that reference the primary
key attributes PK of the referenced relation R2. A tuple t1
in R1 is said to reference a tuple t2 in R2 if t1[FK] =
t2[PK].

 A referential integrity constraint can be displayed in a
relational database schema as a directed arc from R1.FK
to R2.

14

B
h

a
v
a

n
a
 V

ish
w

a
k

a
rm

a

1
/9

/2
0

1
2

REFERENTIAL INTEGRITY

CONSTRAINT

Statement of the constraint

The value in the foreign key column (or columns)
FK of the the referencing relation R1 can be
either:

 (1) a value of an existing primary key value of
the corresponding primary key PK in the
referenced relation R2,, or..

 (2) a null.

In case (2), the FK in R1 should not be a part of its
own primary key.

15

B
h

a
v
a

n
a
 V

ish
w

a
k

a
rm

a

1
/9

/2
0

1
2

B
h

a
v
a

n
a
 V

ish
w

a
k

a
rm

a

16

1
/9

/2
0

1
2

B
h

a
v
a

n
a
 V

ish
w

a
k

a
rm

a

17

1
/9

/2
0

1
2

RELATIONAL ALGEBRA

 The basic set of operations for the relational model is known
as the relational algebra. These operations enable a user to
specify basic retrieval requests.

 The result of a retrieval is a new relation, which may have
been formed from one or more relations. The algebra
operations thus produce new relations, which can be further
manipulated using operations of the same algebra.

 A sequence of relational algebra operations forms a
relational algebra expression, whose result will also be a
relation that represents the result of a database query (or
retrieval request).

18

B
h

a
v
a

n
a
 V

ish
w

a
k

a
rm

a

1
/9

/2
0

1
2

UNARY RELATIONAL OPERATIONS
 SELECT Operation

 SELECT operation is used to select a subset of the tuples from a relation
that satisfy a selection condition. It is a filter that keeps only those tuples
that satisfy a qualifying condition – those satisfying the condition are
selected while others are discarded.

 Example: To select the EMPLOYEE tuples whose department number is
four or those whose salary is greater than Rs 30,000 the following
notation is used:

 DNO = 4 (EMPLOYEE)

 SALARY > 30,000 (EMPLOYEE)

 In general, the select operation is denoted by

  <selection condition>(R)

 where the symbol  (sigma) is used to denote the select operator, and the
selection condition is a Boolean expression specified on the attributes of
relation R

19

B
h

a
v
a

n
a
 V

ish
w

a
k

a
rm

a

1
/9

/2
0

1
2

UNARY RELATIONAL OPERATIONS

SELECT Operation Properties

 The SELECT operation  <selection condition>(R) produces a
relation S that has the same schema as R

 The SELECT operation  is commutative; i.e.,

  <condition1>( < condition2> (R)) =  <condition2> ( < condition1> (R))

 A cascaded SELECT operation may be applied in any
order; i.e.,

  <condition1>( < condition2> ( <condition3> (R))

 =  <condition2> ( < condition3> ( < condition1> (R)))

 A cascaded SELECT operation may be replaced by a single
selection with a conjunction of all the conditions; i.e.,

  <condition1>( < condition2> ( <condition3> (R))

 =  <condition1> AND < condition2> AND < condition3> (R)))

20

B
h

a
v
a

n
a
 V

ish
w

a
k

a
rm

a

1
/9

/2
0

1
2

UNARY RELATIONAL OPERATIONS (CONT.)

 PROJECT Operation

 This operation selects certain columns from the table and discards the
other columns. The PROJECT creates a vertical partitioning – one with
the needed columns (attributes) containing results of the operation and
other containing the discarded Columns.

 Example: To list each employee‘s first and last name and salary, the
following is used:

 LNAME, FNAME,SALARY(EMPLOYEE)

 The general form of the project operation is

 <attribute list>(R)

 where  (pi) is the symbol used to represent the project operation and
<attribute list> is the desired list of attributes from the attributes of
relation R.

 The project operation removes any duplicate tuples, so the result of the
project operation is a set of tuples and hence a valid relation.

21

B
h

a
v
a

n
a
 V

ish
w

a
k

a
rm

a

1
/9

/2
0

1
2

UNARY RELATIONAL OPERATIONS (CONT.)

PROJECT Operation Properties

 The number of tuples in the result of projection

  <list> (R)is always less or equal to the number of
tuples in R.

 If the list of attributes includes a key of R, then the
number of tuples is equal to the number of tuples in R.

  <list1> ( <list2> (R)) =  <list1> (R)

 as long as <list2> contains the attributes in <list1> ;
 otherwise, the left hand side is an incorrect
 expression.

22

B
h

a
v
a

n
a
 V

ish
w

a
k

a
rm

a

1
/9

/2
0

1
2

UNARY RELATIONAL OPERATIONS (CONT.)

 Rename Operation

 We may want to apply several relational algebra operations one after the
other. Either we can write the operations as a single relational algebra
expression by nesting the operations, or we can apply one operation at a
time and create intermediate result relations. In the latter case, we must
give names to the relations that hold the intermediate results.

 Example: To retrieve the first name, last name, and salary of all
employees who work in department number 5, we must apply a select and
a project operation. We can write a single relational algebra expression as
follows:

 FNAME, LNAME, SALARY( DNO=5(EMPLOYEE))

 OR We can explicitly show the sequence of operations, giving a name to
each intermediate relation:

 DEP5_EMPS   DNO=5(EMPLOYEE)

 RESULT   FNAME, LNAME, SALARY (DEP5_EMPS)

23

B
h

a
v
a

n
a
 V

ish
w

a
k

a
rm

a

1
/9

/2
0

1
2

UNARY RELATIONAL OPERATIONS (CONT.)

 Rename Operation (cont.)

 The rename operator is 

 The general Rename operation can be expressed by any of the
following forms:

  S (B1, B2, …, Bn) (R) is a renamed relation S based on R with

column names B1, B2, ,…..Bn.

  S (R) is a renamed relation S based on R (which does not specify

column names).

  (B1, B2, …, Bn) (R) is a renamed relation with column names B1, B2,

…..Bn which does not specify a new relation name.

24

B
h

a
v
a

n
a
 V

ish
w

a
k

a
rm

a

1
/9

/2
0

1
2

RELATIONAL ALGEBRA OPERATIONS FROM

SET THEORY

 UNION Operation

 The result of this operation, denoted by R  S, is a relation that includes all
tuples that are either in R or in S or in both R and S. Duplicate tuples are
eliminated.

25

B
h

a
v
a

n
a
 V

ish
w

a
k

a
rm

a

1
/9

/2
0

1
2

A B C

1 5 X

5 10 AA

7 12 B

D E F

10 5 A

6 4 B

2 3 C

1 5 X

R

S

A B C

1 5 X

10 5 A

5 10 AA

6 4 B

7 12 B

2 3 C

RELATIONAL ALGEBRA OPERATIONS FROM

SET THEORY (CONT.)

 INTERSECTION OPERATION

 The result of this operation, denoted by R  S, is a relation that includes all

tuples that are in both R and S. The two operands must be "type compatible"

26

B
h

a
v
a

n
a
 V

ish
w

a
k

a
rm

a

1
/9

/2
0

1
2

A B C

1 5 X

RELATIONAL ALGEBRA OPERATIONS FROM

SET THEORY (CONT.)

 Set Difference (or MINUS) Operation

 The result of this operation, denoted by R - S, is a relation that includes all tuples that

are in R but not in S. The two operands must be "type compatible‖.

 Example: The figure shows the names of students who are not instructors, and the

names of instructors who are not students.

27

B
h

a
v
a

n
a
 V

ish
w

a
k

a
rm

a

STUDENT-INSTRUCTOR

INSTRUCTOR-STUDENT

1
/9

/2
0

1
2

28

B
h

a
v
a

n
a
 V

ish
w

a
k

a
rm

a

1
/9

/2
0

1
2

CROSS PRODUCT
1

/9
/2

0
1
2

29

B
h

a
v
a

n
a
 V

ish
w

a
k

a
rm

a

A B C D E F

1 5 X 10 5 A

1 5 X 6 4 B

1 5 X 2 3 C

1 5 X 1 5 X

5 10 AA 10 5 A

5 10 AA 6 4 B

5 10 AA 2 3 C

5 10 AA 1 5 X

7 12 B 10 5 A

7 12 B 6 4 B

7 12 B 2 3 C

7 12 B 1 5 X

R * S

BINARY RELATIONAL OPERATIONS
 JOIN Operation

 The sequence of cartesian product followed by select is used

quite commonly to identify and select related tuples from

two relations, a special operation, called JOIN. It is denoted

by a

 This operation is very important for any relational database

with more than a single relation, because it allows us to

process relationships among relations.

 The general form of a join operation on two relations R(A1,

A2, . . ., An) and S(B1, B2, . . ., Bm) is:

 R <join condition>S

 where R and S can be any relations that result from general relational

algebra expressions.

 30

B
h

a
v
a

n
a
 V

ish
w

a
k

a
rm

a

1
/9

/2
0

1
2

BINARY RELATIONAL OPERATIONS

(CONT.)

 Example: Suppose that we want to retrieve the name of the

manager of each department. To get the manager‘s name, we need

to combine each DEPARTMENT tuple with the EMPLOYEE tuple

whose SSN value matches the MGRSSN value in the department

tuple. We do this by using the join operation.

 DEPT_MGR  DEPARTMENT
MGRSSN=SSN EMPLOYEE

31

B
h

a
v
a

n
a
 V

ish
w

a
k

a
rm

a

1
/9

/2
0

1
2

BINARY RELATIONAL OPERATIONS (CONT.)

 EQUIJOIN Operation

 The most common use of join involves join conditions with equality comparisons only. Such a
join, where the only comparison operator used is =, is called an EQUIJOIN. In the result of an
EQUIJOIN we always have one or more pairs of attributes (whose names need not be identical)
that have identical values in every tuple.

 The JOIN seen in the previous example was EQUIJOIN.

 NATURAL JOIN Operation

 Because one of each pair of attributes with identical values is superfluous, a new operation called
natural join—denoted by *—was created to get rid of the second (superfluous) attribute in an
EQUIJOIN condition.

 The standard definition of natural join requires that the two join attributes, or each pair of
corresponding join attributes, have the same name in both relations. If this is not the case, a
renaming operation is applied first.

 32

B
h

a
v
a

n
a
 V

ish
w

a
k

a
rm

a

1
/9

/2
0

1
2

BINARY RELATIONAL OPERATIONS

(CONT.)

33

B
h

a
v
a

n
a
 V

ish
w

a
k

a
rm

a

1
/9

/2
0

1
2

COMPLETE SET OF RELATIONAL OPERATIONS

 The set of operations including select , project  , union ,
set difference - , and cartesian product X is called a complete
set because any other relational algebra expression can be
expressed by a combination of these five operations.

 For example:

 R  S = (R  S) – ((R  S)  (S  R))

 R <join condition>S =  <join condition> (R X S)

34

B
h

a
v
a

n
a
 V

ish
w

a
k

a
rm

a

1
/9

/2
0

1
2

BINARY RELATIONAL OPERATIONS (CONT.)

 DIVISION Operation

 The division operation is applied to two relations

 R(Z)  S(X), where X subset Z. Let Y = Z - X (and hence Z

= X  Y); that is, let Y be the set of attributes of R that

are not attributes of S.

 The result of DIVISION is a relation T(Y) that includes a

tuple t if tuples tR appear in R with tR [Y] = t, and with

 tR [X] = ts for every tuple ts in S.

 For a tuple t to appear in the result T of the DIVISION,

the values in t must appear in R in combination with

every tuple in S.
35

B
h

a
v
a

n
a
 V

ish
w

a
k

a
rm

a

1
/9

/2
0

1
2

THE DIVISION OPERATION. (A) DIVIDING

SSN_PNOS BY SMITH_PNOS. (B) T  R ÷ S.

36

B
h

a
v
a

n
a
 V

ish
w

a
k

a
rm

a

1
/9

/2
0

1
2

ADDITIONAL RELATIONAL OPERATIONS

 Aggregate Functions and Grouping

 A type of request that cannot be expressed in the basic

relational algebra is to specify mathematical aggregate

functions on collections of values from the database.

 Examples of such functions include retrieving the average or

total salary of all employees or the total number of employee

tuples. These functions are used in simple statistical queries

that summarize information from the database tuples.

 Common functions applied to collections of numeric values

include SUM, AVERAGE, MAXIMUM, and MINIMUM. The

COUNT function is used for counting tuples or values.

37

B
h

a
v
a

n
a
 V

ish
w

a
k

a
rm

a

1
/9

/2
0

1
2

ADDITIONAL RELATIONAL OPERATIONS

(CONT.)

Use of the Functional operator ℱ

ℱMAX Salary (Employee) retrieves the maximum salary
value from the Employee relation

ℱMIN Salary (Employee) retrieves the minimum Salary
value from the Employee relation

ℱSUM Salary (Employee) retrieves the sum of the Salary
from the Employee relation

DNO ℱCOUNT SSN, AVERAGE Salary (Employee) groups
employees by DNO (department number) and
computes the count of employees and average salary
per department.[Note: count just counts the number
of rows, without removing duplicates]

38

B
h

a
v
a

n
a
 V

ish
w

a
k

a
rm

a

1
/9

/2
0

1
2

ADDITIONAL RELATIONAL OPERATIONS (CONT.)

 The OUTER JOIN Operation

 In NATURAL JOIN tuples without a matching (or related) tuple are
eliminated from the join result. Tuples with null in the join attributes are
also eliminated. This amounts to loss of information.

 A set of operations, called outer joins, can be used when we want to keep
all the tuples in R, or all those in S, or all those in both relations in the
result of the join, regardless of whether or not they have matching tuples
in the other relation.

 The left outer join operation keeps every tuple in the first or left relation
R in R S; if no matching tuple is found in S, then the attributes of
S in the join result are filled or “padded” with null values.

 A similar operation, right outer join, keeps every tuple in the second or
right relation S in the result of R S.

 A third operation, full outer join, denoted by keeps all tuples in
both the left and the right relations when no matching tuples are found,

padding them with null values as needed.
39

B
h

a
v
a

n
a

 V
ish

w
a

k
a

rm
a

1
/9

/2
0

1
2

ADDITIONAL RELATIONAL OPERATIONS

(CONT.)

40

B
h

a
v
a

n
a
 V

ish
w

a
k

a
rm

a

1
/9

/2
0

1
2

ADDITIONAL RELATIONAL OPERATIONS

(CONT.)
 OUTER UNION Operations

 The outer union operation was developed to take the union of tuples from
two relations if the relations are not union compatible.

 This operation will take the union of tuples in two relations R(X, Y) and
S(X, Z) that are partially compatible, meaning that only some of their
attributes, say X, are union compatible.

 The attributes that are union compatible are represented only once in the
result, and those attributes that are not union compatible from either
relation are also kept in the result relation T(X, Y, Z).

 Example: An outer union can be applied to two relations whose schemas
are STUDENT(Name, SSN, Department, Advisor) and
INSTRUCTOR(Name, SSN, Department, Rank). Tuples from the two
relations are matched based on having the same combination of values of
the shared attributes—Name, SSN, Department. If a student is also an
instructor, both Advisor and Rank will have a value; otherwise, one of
these two attributes will be null.

 The result relation STUDENT_OR_INSTRUCTOR will have the following
attributes:

 STUDENT_OR_INSTRUCTOR (Name, SSN, Department, Advisor,
Rank) 41

B
h

a
v
a

n
a
 V

ish
w

a
k

a
rm

a

1
/9

/2
0

1
2

RELATIONAL CALCULUS
 A relational calculus expression creates a new relation, which is

specified in terms of variables that range over rows of the stored
database relations (in tuple calculus) or over columns of the stored
relations (in domain calculus).

 In a calculus expression, there is no order of operations to specify how
to retrieve the query result—a calculus expression specifies only what
information the result should contain. This is the main distinguishing
feature between relational algebra and relational calculus.

 Relational calculus is considered to be a nonprocedural language. This
differs from relational algebra, where we must write a sequence of
operations to specify a retrieval request; hence relational algebra can be
considered as a procedural way of stating a query.

42

B
h

a
v
a

n
a
 V

ish
w

a
k

a
rm

a

1
/9

/2
0

1
2

TUPLE RELATIONAL CALCULUS

 A nonprocedural query language, where each query is

of the form

 {t | P (t) }

 It is the set of all tuples t such that predicate P is true

for t

 t is a tuple variable, t [A] denotes the value of tuple t

on attribute A

 t  r denotes that tuple t is in relation r

 P is a formula similar to that of the predicate calculus

1
/9

/2
0

1
2

43

B
h

a
v
a

n
a
 V

ish
w

a
k

a
rm

a

PREDICATE CALCULUS FORMULA

1. Set of attributes and constants

2. Set of comparison operators: (e.g., , , =, , , )

3. Set of connectives: and (), or (v)‚ not ()

4. Implication (): x  y, if x if true, then y is true

 x  y  x v y

5. Set of quantifiers:

  t  r (Q (t))  ”there exists” a tuple in t in relation r

 such that predicate Q (t) is true

 t  r (Q (t))  Q is true “for all” tuples t in relation r

1
/9

/2
0

1
2

44

B
h

a
v
a

n
a
 V

ish
w

a
k

a
rm

a

BANKING EXAMPLE

 branch (branch_name, branch_city, assets)

 customer (customer_name, customer_street, customer_city)

 account (account_number, branch_name, balance)

 loan (loan_number, branch_name, amount)

 depositor (customer_name, account_number)

 borrower (customer_name, loan_number)

1
/9

/2
0

1
2

45

B
h

a
v
a

n
a
 V

ish
w

a
k

a
rm

a

EXAMPLE QUERIES

 Find the loan_number, branch_name, and amount for

loans of over $1200

o Find the loan number for each loan of an amount greater than $1200

 {t[loan_number] | t  loan  t [amount]  1200}

{t | t  loan  t [amount]  1200}

1
/9

/2
0

1
2

46

B
h

a
v
a

n
a
 V

ish
w

a
k

a
rm

a

EXAMPLE QUERIES

 Find the names of all customers having a loan at the

Perryridge branch

{t | s  borrower (t [customer_name] = s [customer_name]

  u  loan (u [branch_name] = “Perryridge”

  u [loan_number] = s [loan_number]))}

1
/9

/2
0

1
2

47

B
h

a
v
a

n
a
 V

ish
w

a
k

a
rm

a
 {t[customer_name] | t  borrower  t [branch_name] =

“Perryridge”  s  loan (s [loan_number] = t [loan_number])}

OR

EXAMPLE QUERIES

 Find the names of all customers having a loan, an

account, or both at the bank

{t | s  borrower (t [customer_name] = s [customer_name])

  u  depositor (t [customer_name] = u [customer_name])

oFind the names of all customers who have a loan and

an account at the bank

{t | s  borrower (t [customer_name] = s [customer_name])

  u  depositor (t [customer_name] = u [customer_name])

1
/9

/2
0

1
2

48

B
h

a
v
a

n
a
 V

ish
w

a
k

a
rm

a

THE EXISTENTIAL AND UNIVERSAL

QUANTIFIERS

 Two special symbols called quantifiers can appear in formulas; these are the

universal quantifier () and the existential quantifier ().

 Informally, a tuple variable t is bound if it is quantified, meaning that it appears in an

( t) or ( t) clause; otherwise, it is free.

 If F is a formula, then so is ( t)(F), where t is a tuple variable. The formula ( t)(F)
is true if the formula F evaluates to true for some (at least one) tuple assigned to free

occurrences of t in F; otherwise ( t)(F) is false.

 If F is a formula, then so is ( t)(F), where t is a tuple variable. The formula ( t)(F)
is true if the formula F evaluates to true for every tuple (in the universe) assigned to

free occurrences of t in F; otherwise ( t)(F) is false.

 It is called the universal or ―for all‖ quantifier because every tuple in ―the universe of‖
tuples must make F true to make the quantified formula true.

49

B
h

a
v
a

n
a
 V

ish
w

a
k

a
rm

a

1
/9

/2
0

1
2

1
/9

/2
0

1
2

B

h
a
v
a

n
a
 V

ish
w

a
k

a
rm

a

50

EXAMPLE QUERY USING EXISTENTIAL

QUANTIFIER
 Retrieve the name and address of all employees who work for the ‗Research‘

department.

 Query :

 {t.FNAME, t.LNAME, t.ADDRESS | EMPLOYEE(t) and ( d)
(DEPARTMENT(d) and d.DNAME=‘Research’ and d.DNUMBER=t.DNO) }

 The only free tuple variables in a relational calculus expression should be those that

appear to the left of the bar (|). In above query, t is the only free variable; it is then
bound successively to each tuple. If a tuple satisfies the conditions specified in the
query, the attributes FNAME, LNAME, and ADDRESS are retrieved for each such
tuple.

 The conditions EMPLOYEE (t) and DEPARTMENT(d) specify the range relations for t
and d. The condition d.DNAME = ‗Research‘ is a selection condition and corresponds
to a SELECT operation in the relational algebra, whereas the condition d.DNUMBER =
t.DNO is a JOIN condition.

51

B
h

a
v
a

n
a
 V

ish
w

a
k

a
rm

a

1
/9

/2
0

1
2

EXAMPLE QUERY USING UNIVERSAL QUANTIFIER

 Find the names of employees who work on all the projects controlled by department
number 5.

 Query :

 {e.LNAME, e.FNAME | EMPLOYEE(e) and (( x)((PROJECT(x))
and x.DNUM=5 OR (( w)(WORKS_ON(w) and w.ESSN=e.SSN and
x.PNUMBER=w.PNO))))}

 Exclude from the universal quantification all tuples that we are not interested in by
making the condition true for all such tuples. The first tuples to exclude (by making
them evaluate automatically to true) are those that are not in the relation R of interest.

 In query above, using the expression not(PROJECT(x)) inside the universally
quantified formula evaluates to true all tuples x that are not in the PROJECT relation.
Then we exclude the tuples we are not interested in from R itself. The expression
not(x.DNUM=5) evaluates to true all tuples x that are in the project relation but are not
controlled by department 5.

 Finally, we specify a condition that must hold on all the remaining tuples in R.

 ((w)(WORKS_ON(w) and w.ESSN = e.SSN and x.PNUMBER =
w.PNO) 52

B
h

a
v
a

n
a
 V

ish
w

a
k

a
rm

a

1
/9

/2
0

1
2

SAFETY OF EXPRESSIONS

 It is possible to write tuple calculus expressions that generate

infinite relations.

 For example, { t |  t  r } results i an infinite relation if the

domain of any attribute of relation r is infinite

 To guard against the problem, we restrict the set of allowable

expressions to safe expressions.

 An expression {t | P (t)} in the tuple relational calculus is safe if

every component of t appears in one of the relations, tuples, or

constants that appear in P.

 Ex: {t|  t[name] = „X‟} will display the tuples from the whole database

having name not equal to „X‟.

 Safe Expression:

{t|  t[name] = „X‟  t  emp}

1
/9

/2
0

1
2

53

B
h

a
v
a

n
a
 V

ish
w

a
k

a
rm

a

THE DOMAIN RELATIONAL CALCULUS
 Another variation of relational calculus called the domain relational

calculus, or simply, domain calculus is equivalent to tuple calculus and to
relational algebra.

 The language called QBE (Query-By-Example) that is related to domain
calculus was developed almost concurrently to SQL at IBM Research,
Yorktown Heights, New York. Domain calculus was thought of as a way
to explain what QBE does.

 Domain calculus differs from tuple calculus in the type of variables used
in formulas: rather than having variables range over tuples, the variables
range over single values from domains of attributes. To form a relation of
degree n for a query result, we must have n of these domain variables—
one for each attribute.

 An expression of the domain calculus is of the form

 {x1, x2, . . ., xn | COND(x1, x2, . . ., xn, xn+1, xn+2, . . ., xn+m)}

 where x1, x2, . . ., xn, xn+1, xn+2, . . ., xn+m are domain variables that
range over domains (of attributes) and COND is a condition or formula
of the domain relational calculus.

54

B
h

a
v
a

n
a
 V

ish
w

a
k

a
rm

a

1
/9

/2
0

1
2

EXAMPLE QUERY USING DOMAIN

CALCULUS
 Retrieve the birthdate and address of the employee whose name is ‗John B. Smith‘.

 Query :

 {uv | ( q) ( r) ( s) ( t) ( w) ( x) ( y) ( z)

 (EMPLOYEE(qrstuvwxyz) and q=’John’ and r=’B’ and s=’Smith’)}

 Ten variables for the employee relation are needed, one to range over the domain of
each attribute in order. Of the ten variables q, r, s, . . ., z, only u and v are free.

 Specify the requested attributes, BDATE and ADDRESS, by the free domain variables
u for BDATE and v for ADDRESS.

 Specify the condition for selecting a tuple following the bar (|)—namely, that the
sequence of values assigned to the variables qrstuvwxyz be a tuple of the employee
relation and that the values for q (FNAME), r (MINIT), and s (LNAME) be ‗John‘, ‗B‘,
and ‗Smith‘, respectively.

55

B
h

a
v
a

n
a
 V

ish
w

a
k

a
rm

a

1
/9

/2
0

1
2

EXAMPLE QUERIES

 Find the loan_number, branch_name, and amount for loans of over $1200

o Find the names of all customers who have a loan from the Perryridge

branch and the loan amount:

 { c, a  |  l ( c, l   borrower  b ( l, b, a   loan 

 b = “Perryridge”))}

 { c  |  l, b, a ( c, l   borrower   l, b, a   loan  a > 1200)}

o Find the names of all customers who have a loan of over $1200

 { l, b, a  |  l, b, a   loan  a > 1200}

1
/9

/2
0

1
2

56

B
h

a
v
a

n
a
 V

ish
w

a
k

a
rm

a

SAFETY OF EXPRESSIONS

The expression:

 {  x1, x2, …, xn  | P (x1, x2, …, xn)}

is safe if all of the following hold:

1. All values that appear in tuples of the expression are values

 from dom (P) (that is, the values appear either in P or in a tuple

of a relation mentioned in P).

2. For every “there exists” subformula of the form  x (P1(x)), the

subformula is true if and only if there is a value of x in dom (P1)

such that P1(x) is true.

3. For every “for all” subformula of the form x (P1 (x)), the

subformula is true if and only if P1(x) is true for all values x from

dom (P1).

1
/9

/2
0

1
2

57

B
h

a
v
a

n
a
 V

ish
w

a
k

a
rm

a

