UNIT - 2

RELATIONAL MODEL

RELATIONAL MODEL CONCEPTS

The relational Model of Data 1s based on the
concept of a Relation.

A Relation 1s a mathematical concept based on the
1deas of sets.

The strength of the relational approach to data
management comes from the formal foundation
provided by the theory of relations.

BUWLIBYBMUSIA BUBABYY 610¢/6/1

INFORMAL DEFINITIONS

RELATION: A table of values

A relation may be thought of as a set of rows.
A relation may alternately be though of as a set of columns.

Each row represents a fact that corresponds to a real-world
entity or relationship.

Each row has a value of an item or set of items that uniquely
1dentifies that row in the table.

Sometimes row-1ds or sequential numbers are assigned to
1dentify the rows in the table.

Each column typically 1s called by its column name or column
header or attribute name.

¢10¢/6/1

BULTEYBMUSIA BURARYY

FORMAL DEFINITIONS

A Relation may be defined in multiple ways.
The Schema of a Relation: R (Al, A2,An)
Relation schema R 1s defined over attributes Al, A2,An

For Example -
CUSTOMER (Cust-1d, Cust-name, Address, Phone#)

Here, CUSTOMER 1s a relation defined over the four attributes
Cust-1d, Cust-name, Address, Phone#, each of which has a
domain or a set of valid values. For example, the domain of
Cust-1d 1s 6 digit numbers.

¢10¢/6/1

BULTEYBMUSIA BURARYY

FORMAL DEFINITIONS

A tuple 1s an ordered set of values

Each value 1s derived from an appropriate domain.

Each row in the CUSTOMER table may be referred to as a tupl
in the table and would consist of four values.

<632895, "John Smith", "101 Main St. Atlanta, GA 30332", "(404) 894-2000">
1s a tuple belonging to the CUSTOMER relation.

A relation may be regarded as a set of tuples (rows).

eurresemysip eueaeydP z10g/6/1

Columns 1n a table are also called attributes of the relation.

FORMAL DEFINITIONS

A domain has a logical definition: e.g.,

“USA_phone_numbers” are the set of 10 digit phone numbers
valid in the U.S.

A domain may have a data-type or a format defined for it. The
USA_phone_numbers may have a format: (ddd)-ddd-dddd where
each d 1s a decimal digit. E g., Dates have various formats such &
as monthname, date, year or yyyy-mm-dd, or dd mm,yyyy etc.

An attribute designates the role played by the domain. E.g., the
domain Date may be used to define attributes “Invoice-date” an@
“Payment-date”.

¢10¢/6/1

d

SIA BU

BULI

FORMAL DEFINITIONS

The relation is formed over the cartesian product of the sets;
each set has values from a domain; that domain 1s used 1n a
specific role which 1s conveyed by the attribute name.

For example, attribute Cust-name is defined over the domain of
strings of 25 characters. The role these strings play in the
CUSTOMER relation is that of the name of customers.

Formally,
Given R(A{, Ay, ,A)
r(R) c dom (A;) X dom (A,) X ...X dom(A,)
R: schema of the relation
r of R: a specific "value" or population of R.
R 1s also called the intension of a relation
r 1s also called the extension of a relation

¢10¢/6/1

ud

BULTEYBMUSIA BUBAR

FORMAL DEFINITIONS

Let S1=1{0,1}
Let S2 = {a,b,c}

Let R« S1 X S2

BUWIBBMUSIA BUBARBUY GT0G/6/1

Then for example: r(R) = {<0,a>, <0,b>, <1,c>}

1s one possible “state” or “population” or “extension” r
of the relation R, defined over domains S1 and S2. It
has three tuples.

DEFINITION SUMMA

RY

Informal Terms

Formal Terms

,10G/6/1

:
Table Relation :
Column Attribute/Domain 5_
Row Tuple :
Values in a column Domain

Table Definition

Schema of a Relation

Populated Table

Extension

RELATIONAL INTEGRITY CONSTRAINTS

Constraints are conditions that must hold on
all valid relation instances. There are three
main types of constraints:

Key constraints

Entity integrity constraints

Referential integrity constraints

BUWIBBMUSIA BUBARBUY GT0G/6/1

KEY CONSTRAINTS

Superkey of R: A set of attributes SK of R such that no
two tuples in any valid relation instance r(R) will have

the same value for SK. That is, for any distinct tuples
t1 and t2 in r(R), t1[SK] # t2[SK].

Key of R: A "minimal" superkey; that 1s, a superkey K
such that removal of any attribute from K results in a
set of attributes that is not a superkey.

Example: The CAR relation schema:
CAR(State, Reg#, SerialNo, Make, Model, Year)

has two keys Key1l = {State, Reg#}, Key2 = {SerialNo},
which are also superkeys. {SerialNo, Make} is a
superkey but not a key.

If a relation has several candidate keys, one is
chosen arbitrarily to be the primary key. The primary
key attributes are underlined.

¢10¢/6/1

BULTEYBMUSIA BURARYY

KEY CONSTRAINTS

The cAR relation with two candidate keys:
LicenseNumber and EngineSerialNumber,

CAR | LicenseNumber EngineSeriaiNumber Make Model | Year
Texas ABC-739 AB9352 Ford Musang | 96
Florida TVP-347 BA36% Oldsmobile Cutlass %
New York MPO-22 X83654 Oldsmobile Delta %
Callfornia 432-TFY CA3742 Mercedes 190 %
Calfornia RSK-629 Y82935 Toyota Camry %
Texas ROK629 1028365 Jaguar XJS 9

G103d/6/1

ey

BULTEYBMUSTA BUBA

ENTITY INTEGRITY

Relational Database Schema: A set S of relation
schemas that belong to the same database. S is the name
of the database.

S={R,R, ... R}

Entity Integrity: The primary key attributes PK of each
relation schema R in S cannot have null values in any
tuple of r(R). This i1s because primary key values are used
to identify the individual tuples.

t[PK] # null for any tuple t in r(R)

Note: Other attributes of R may be similarly constrained
to disallow null values, even though they are not members
of the primary key.

¢10¢/6/1

BULTEYBMUSIA BURARYY

REFERENTIAL INTEGRITY

A constraint involving two relations (the previous
constraints involve a single relation).

Used to specify a relationship among tuples in two
relations: the referencing relation and the referenced
relation.

Tuples in the referencing relation R, have attributes FK
(called foreign key attributes) that reference the primary
key attributes PK of the referenced relation R,. A tuple t,
in R, is said to reference a tuple t, in R, if t,[FK] =
to[PK].

A referential integrity constraint can be displayed in a
relational database schema as a directed arc from R,.FK
to R,.

¢10¢/6/1

BULTEYBMUSIA BURARYY

REFERENTIAL INTEGRITY
CONSTRAINT

Statement of the constraint

The value in the foreign key column (or columns)
FK of the the referencing relation R, can be
either:

(1) a value of an existing primary key value of
the corresponding primary key PK in the
referenced relation R, or..

(2) a null.

In case (2), the FK in R, should not be a part of its
own primary key.

BUWLIBYBMUSIA BUBABYY 610¢/6/1

Schema diagram for the COMPANY relational
database schema; the primary keys are underlined.

EMPLOYEE

FNAME | MINIT LNAME | SSN | BDATE | ADDRESS SEX | SALARY | SUPERSSN [DNO

DEPARTMENT
DNAME | DNUMBER MGRSSN MGRSTARTDATE

DEPT_LOCATIONS

DNUMBER DLOCATION

BWIBYBMUSIA BUBARYY GT0G/6/T

PROJECT
PNAME | PNUMBER | PLOCATION | DNUM

WORKS_ON

ESSN [PNO | HOURS

DEPENDENT
ESSN | DEPENDENT_NAME SEX | BDATE | RELATIONSHIP

Referential integrity constraints displayed
on the COMPANY relational database schema diagram.

— /’_\

FNAME | MINT | LNAME | SSN | BDATE | ADDRESS | SEX | SALARY | SUPZRSSN | DNO
i
- J/
DEPART:h(
A}
ONAME | DNUMBER | MGRSSN MGRSTARTDATE

DEPT_LOCATIONS
" DNUMBER DLOCATION

PROJECT
PNAME PNUMBER PLOCATION DNUM

WORKS __ON)

X 7
ESSN PNC HOURS

ESSN DEPENDENT_NAME SEX BDATE RELATIONSHIP

G103d/6/1

BULTBYBMUSIA BUBARYY

DEPENDENT D

RELATIONAL ALGEBRA

The basic set of operations for the relational model is known
as the relational algebra. These operations enable a user to
specify basic retrieval requests.

The result of a retrieval is a new relation, which may have
been formed from one or more relations. The algebra
operations thus produce new relations, which can be further
manipulated using operations of the same algebra.

A sequence of relational algebra operations forms a
relational algebra expression, whose result will also be a
relation that represents the result of a database query (or
retrieval request).

BUWLIBYBMUSIA BUBABYY 610¢/6/1

UNARY RELATIONAL OPERATIONS
SELECT Operation

SELECT operation is used to select a subset of the tuples from a relation
that satisfy a selection condition. It is a filter that keeps only those tuples
that satisfy a qualifying condition — those satisfying the condition are
selected while others are discarded.

Example: To select the EMPLOYEE tuples whose department number is
four or those whose salary is greater than Rs 30,000 the following
notation is used:

oDNO = 4 (EMPLOYEE)
GSALARY > 30,000 (EMPLOYEE)

In general, the select operation is denoted by

o <selection cond|t|0n>(R)

where the symbol o (sigma) is used to denote the select operator, and the
selection condition is a Boolean expression specified on the attributes of
relation R

¢10¢/6/1

BULTEYBMUSIA BURARYY

UNARY RELATIONAL OPERATIONS

SELECT Operation Properties

The SELECT operation 6 <slection condition>(R) produces a
relation S that has the same schema as R

The SELECT operation ¢ 1s commutative; i.e.,
c <condition1>(0- < condition2> (R)) — O <condition2> (0- < condition1> (R))

A cascaded SELECT operation may be applied in any
order; 1i.e.,

c <condition1>(G < condition2> (G <condition3> (R))
— O <condition2> (G < condition3> (0- < condition1> (R)))

A cascaded SELECT operation may be replaced by a single
selection with a conjunction of all the conditions; 1.e.,

o) <condi1:ionl>(G < condition2> (G <condition3> (R))
— O <condition1> AND < condition2> AND < condition3> (R)))

¢10¢/6/1

BULTEYBMUSIA BURARYY

UNARY RELATIONAL OPERATIONS (CONT.)

PROJECT Operation

This operation selects certain columns from the table and discards the
other columns. The PROJECT creates a vertical partitioning — one with
the needed columns (attributes) containing results of the operation and
other containing the discarded Columns.

Example: To list each employee’s first and last name and salary, the
following is used:

TLNAME, FNAME,SALARY(EMPLOYEE)
The general form of the project operation is
n<attribute list>(R)

where r (pi) Is the symbol used to represent the project operation and
<attribute list> is the desired list of attributes from the attributes of
relation R.

The project operation removes any duplicate tuples, so the result of the
project operation is a set of tuples and hence a valid relation.

¢10¢/6/1

BULTEYBMUSIA BURARYY

UNARY RELATIONAL OPERATIONS (CONT.)

PROJECT Operation Properties

The number of tuples in the result of projection

T qist> (R)1s always less or equal to the number of
tuples 1n R.

If the list of attributes includes a key of R, then the
number of tuples is equal to the number of tuples in R.

T Qist1> (TC <list2> (R)) =T qist1> (R)

as long as <list2> contains the attributes in <list1> ;
otherwise, the left hand side 1s an incorrect
expression.

BUWLIBYBMUSIA BUBABYY 610¢/6/1

UNARY RELATIONAL OPERATIONS (CONT.)

Rename Operation

We may want to apply several relational algebra operations one after the
other. Either we can write the operations as a single relational algebra
expression by nesting the operations, or we can apply one operation at a
time and create intermediate result relations. In the latter case, we must
give names to the relations that hold the intermediate results.

Example: To retrieve the first name, last name, and salary of all
employees who work in department number 5, we must apply a select and
a project operation. We can write a single relational algebra expression as
follows:

TlENAME, LNAME, SALARY(G DNOZS(EMPLOYEE))

OR We can explicitly show the sequence of operations, giving a name to
each intermediate relation:

DEP5_EMPS « 6 pyo-s(EMPLOYEE)
RESULT 7 FNAME, LNAME, SALARY (DEPS_EMPS)

¢10¢/6/1

BULTEYBMUSIA BURARYY

UNARY RELATIONAL OPERATIONS (CONT.)

Rename Operation (cont.)
The rename operator is p

The general Rename operation can be expressed by any of the
following forms:

Ps@y By,8y) (R) 1sarenamed relation S based on R with

column names B,, B, yeren B

ps(R)Is arenamed relation S based on R (which does not specify

column names).

P18, .8y (R) Isarenamed relation with column names B, B

.....B, which does not specify a new relation name.

BUWLIBYBMUSIA BUBABYY 610¢/6/1

RELATIONAL ALGEBRA OPERATIONS FROM
SET THEORY

UNION Operation

The result of this operation, denoted by R U S, Is a relation that includes all
tuples that are either in R or in S or in both R and S. Duplicate tuples are
eliminated.

R
A B C
1 5 X
> oAl A | B | C_
7 12 B 1 5 X
10 5 A
S 5 10 AA
D E F
10 5 A 0 4 b
5 4 B 7 12 B
5 3 C 2 3 C
1 5 X

¢10¢/6/1

BULTEYBMUSIA BURARYY

RELATIONAL ALGEBRA OPERATIONS FROM
SET THEORY (CONT.)

INTERSECTION OPERATION

G10%/6/T

The result of this operation, denoted by R N S, is a relation that includes all
tuples that are in both R and S. The two operands must be "type compatible"

A | B | C_

1 5 X

BULTEYBMUSIA BUBABYY

RELATIONAL ALGEBRA OPERATIONS FROM
SET THEORY (CONT.)

Set Difference (or MINUS) Operation

G¢103/6/T

The result of this operation, denoted by R - S, is a relation that includes all tuples that
are in R but not in S. The two operands must be "type compatible”.

Example: The figure shows the names of students who are not instructors, and the

names of instructors who are not students.

STUDENT FN LN
Susan Yao
Ramesh Shah
Johnny Kohler
Barbara Jones
Amy Ford
Jimmy Wang
Emest Gilbert

FN LN
Johnny Kohler
Barbara Jones
Amy Ford
Jimmy Wang
Emest Gilbert

FNAME LNAME
John Smith
Ricardo Browne
Francis Johnson

STUDENT-INSTRUCTOR

INSTRUCTOR-STUDENT

BULTEYBMUSIA BURARYY

Illustrating the set operations union, intersection,
and difference. (a) Two union compatible relations.
(b) STUDENT W INSTRUCTOR. (C) STUDENT U INSTRUCTOR.

(d) STUDENT — INSTRUCTOR. (€) INSTRUCTOR — STUDENT.
@ | sTUDENT FN LN | INSTRUCTOR FNAME LNAME
Susan Yao John Smmith —
Johrny Kohler Susan Yao ot
Barbara Jones Francs Johnson o
Amy Ford Ramesh Stah
Jmnmy Wang g
Emest Gibert I
5
5
(©) N LN) N LN <
Susan Yao Susan Yao =
Ramesh Shah Rarnesh Srah §
Johnny Kohier g
Barbara Jones 5
Amy Ford ®
Jimmy Wang
Emest Gabexnt
Johin Soth
Ricardo Browne
Franas Johrson
@ N LN te) FNAME LNAME
Johnny Kohler John Srreth
Baba@a Jones Ricardo Browne
Ay Ford Francs Johrson @
Jmnmy Wang
Emest Gibert

CROSS PRODUCT

R*S

1/9/2012

Bhavana Vishwakarma

= | <€ OIX| RO |XK|<C[R]|DO]|X
€I BT N O[O F|O| 0|0 | M| 0o
A= N | =|o|la|]| 2o a]|—~
o[||| <[2| 2|2 F ||| @
=a) B w222 S88 2|2
< | ~ — =l w|>~|~|0~]|~

BINARY RELATIONAL OPERATIONS
JOIN Operation

The sequence of cartesian product followed by select is useé
quite commonly to 1dentify and select related tuples from =
two relations, a special operation, called JOIN. It is denoted
by a :
This operation is very important for any relational databa
with more than a single relation, because it allows us to
process relationships among relations.

BIH.IB}{BAAI{%A BUBA

The general form of a join operation on two relations R(A;,
>q Ay, ..., A and S(By, By, .. ., B,) 1s:

R <join condition>S
where R and S can be any relations that result from general relational
algebra expressions.

BINARY RELATIONAL OPERATIONS
(CONT.)

Example: Suppose that we want to retrieve the name of the

manager of each department. To get the manager’s name, we nee
to combine each DEPARTMENT tuple with the EMPLOYEE tuple

whose SSN value matches the MGRSSN value in the department

6/T

tuple. We do this by using the join operation. Z
DEPT_MGR « DEPARTMENT ... EMPLOYEE s
=

DEPT MGR | ONAME | DNUMBER | MGRSSN |+« « | FNAME | MINT | NAME | SOV

'
Jnenamh [nn rEpy o
Hesearch) 333445555 ¢ ¢ 0 Frankiin NG | 33344905 "
. - ’ — — - " - ’ ’ o ' — — - —
087854321 | o o o | Jennile C Wallace | 087654301 | o+ o 8
w0/ DO JETITIE) YVl -j‘.,"r(!.:"\);‘.
{ — /. — - ‘ | F—_" g < -
Headquarters BABBHSS5S ¢ 00 James L Borg RRBHR5A5! ¢

FIGURE 6,6 Result of the JOIN Operation DEPT_MCR ¢= DEPARTMENT ™ yeaccuecy EMPLOYEE,

BINARY RELATIONAL OPERATIONS (CONT.)

EQUIJOIN Operation

0¢/6/1

The most common use of join involves join conditions with equality comparisons only. Such a =
join, where the only comparison operator used is =, is called an EQUIJOIN. In the result of an
EQUIJOIN we always have one or more pairs of attributes (whose names need not be |dent|calgj
that have identical values in every tuple.

The JOIN seen in the previous example was EQUIJOIN.

<
=
Z
NATURAL JOIN Operation -
éd

Because one of each pair of attributes with identical values is superfluous, a new operation call
natural join—denoted by *—was created to get rid of the second (superfluous) attribute in an
EQUIJOIN condition.

P<T'he standard definition of natural join requires that the two join attributes, or each pair of
corresponding join attributes, have the same name in both relations. If this is not the case, a
renaming operation is applied first.

BINARY RELATIONAL OPERATIONS
(CONT.)

@ |PROJ.DEPT | PNAME | PNUMBER | PLOCATION | DNUM | DNAME | MGRSSN =
ProductX 1 Bellaire 5 | Research | 333445555 L
ProductY 2 Sugarland 5 | Research 333445555 to
ProductZ 3 Houston 5 | Research 333445555 »
Computerization 10 Stafford 4 | Administration | 987654321 19950101 g
Reorganization 20 Houston 1 | Headquarters | 888665555 19810619 S
Newbenefits % Stafford 4 | Administration | 987654321 19950101 5
g
3
5
© | DEPT.LOCS | DNAME | DNUMBER | MGRSSN | MGRSTARTDATE | LOCATION i
Headquarters 1 888665555 1981-06-19 Houston "
Administration 4 987654301 1995-01-01 Stafford
Research 5 333445555 1988-05-22 Belaire
Research 5 333445555 1988-05-22 Sugarland
Research 5 333445555 1968-05-22 Houston

FIGURE 6.7 Results of two NATURAL JOIN operations. (a) pRos_epT ¢ pROJECT * DEPT. (b) DEPT_LOCS &
DEPARTMENT * DEPT_LOCATIONS.

COMPLETE SET OF RELATIONAL OPERATIONS

The set of operations including select o, project =, union L,
set difference -, and cartesian product X is called a complete:
set because any other relational algebra expression can be
expressed by a combination of these five operations.

G/6/1

BULTEYBMUSIA BUBARUY

For example:
RNS=(RUS)-((R-5) U (S-R))
R <join COﬂditi0n>S = G <join condition> (R X S)

BINARY RELATIONAL OPERATIONS (CONT.)

DIVISION Operation
The division operation is applied to two relations

R(Z) + S(X), where X subset Z. Let Y = Z - X (and hence#
=X U Y); that 1s, let Y be the set of attributes of R that:
are not attributes of S.

¢10¢/6/1

BMUSIA BU

The result of DIVISION 1is a relation T(Y) that includesga
tuple t if tuples tg appear in R with t; [Y] = t, and with”

tp [X] = t, for every tuple t,in S.

For a tuple t to appear in the result T of the DIVISION,
the values 1n t must appear in R in combination with
every tuple in S.

THE DIVISION OPERATION. (A) DIVIDING
SSN_PNOS BY SMITH_PNOS. B) T« R+ S.

G103d/6/1

@ | ssnpPnos | EssN [Pno | [SMTHPNOS [PNO | ® [R A [B s[Aal]
123456789 1 1 al | bl al
123456789 2 2 a2 | bi a2
666884444 3 a3 | b1 a3
453453453 1 a4 | bl
45345463 | 2 SSNS | ssN al | b2
333445555 2 123456789 a3 | b2 T B
333445555 3 453453453 a2 | b3 =
333445555 10 a3 | b3 b4
333445555 20 a4 | b3
999887777 30 al | b4
999887777 10 a2 | b4
987987987 10 a3 | b4
987987987 30
987654321 30
987654321 20
888665555 20

ADDITIONAL RELATIONAL OPERATIONS

Aggregate Functions and Grouping

A type of request that cannot be expressed in the basic
relational algebra is to specify mathematical aggregate
functions on collections of values from the database.

Examples of such functions include retrieving the average or
total salary of all employees or the total number of employee
tuples. These functions are used in simple statistical queries
that summarize information from the database tuples.

Common functions applied to collections of numeric values
include SUM, AVERAGE, MAXIMUM, and MINIMUM. The
COUNT function is used for counting tuples or values.

¢10¢/6/1

BULTEYBMUSIA BURARYY

ADDITIONAL RELATIONAL OPERATIONS
(CONT.)

Use of the Functional operator F

FMaX Salary (Employee) retrieves the maximum salary
Va ue from the Employee relation

FuIy saiqry (Employee) retrieves the mimimum Salary
value from the Employee relation

Fsum Salgr , (Employee) retrieves the sum of the Salary
rom the Employee relation

F (Employee) groups
DNO ¥ COUNT SSN, AVERAGE, Sal
employees f; 6 (Ifiecf)gxy'tment number) and

computes the count of employees and average salary
per department.[Note: count just counts the number
of rows, without removing duplicates]

¢10¢/6/1

BULTEYBMUSIA BURARYY

ADDITIONAL RELATIONAL OPERATIONS (CONT.)

¢10¢/6/1

The OUTER JOIN Operation

In NATURAL JOIN tuples without a matching (or related) tuple are
eliminated from the join result. Tuples with null in the join attributes are
also eliminated. This amounts to loss of information.

A set of operations, called outer joins, can be used when we want to keep
all the tuples in R, or all those in S, or all those in both relations in the
result of the join, regardless of whether or not they have matching tuples
in the other relation.

The left cuter join operation keeps every tuple in the first or left relation
Rin R S; 1f no matching tuple is found in S, then the attributes of
S in the join result are filled or “padded” with null values.

A similar operation, right outer join, keeps every tuple in the second or
right relation S in the result of R S.

A third operation, full outer join, denoted by keeps all tuples in
both the left and the right relations when no matching tuples are found,

padding them with null values as needed.

BULIBYBMUSIA BUBARYY

ADDITIONAL RELATIONAL OPERATIONS

(CONT.)
RESULT | FNAME | MINIT | LNAME DNAME

John B Smith null

Franklin T Wong Research
Alicia J Zelaya null

Jennifer S Wallace Administration
Ramesh K Narayan null

Joyce A English null

Ahmad V Jabbar null

James E Borg Headquarters

BUWIBBMUSIA BUBARBUY GT0G/6/1

ADDITIONAL RELATIONAL OPERATIONS
(CONT.)

OUTER UNION Operations

The outer union operation was developed to take the union of tuples from
two relations if the relations are not union compatible. 2
This operation will take the union of tuples in two relations R(X, Y) and
S(X, Z) that are partially compatible, meaning that only some of thei
attributes, say X, are union compatible.

A%‘UBAEI{E

The attributes that are union compatible are represented only once in t
result, and those attributes that are not union compatible from either
relation are also kept in the result relation T(X, Y, Z).

BUHE B MYST

Example: An outer union can be applied to two relations whose schema
are STUDENT(Name, SSN, Department, Advisor) and
INSTRUCTOR(Name, SSN, Department, Rank). Tuples from the two
relations are matched based on having the same combination of values of
the shared attributes—Name, SSN, Department. If a student 1s also an
mstructor, both Advisor and Rank will have a value; otherwise, one of
these two attributes will be null.

The result relation STUDENT_OR_INSTRUCTOR will have the following
attributes:

%TUII{))EN T_OR_INSTRUCTOR (Name, SSN, Department, Advisor;
an

RELATIONAL CALCULUS

A relational calculus expression creates a new relation, which is
specified in terms of variables that range over rows of the stored
database relations (in tuple calculus) or over columns of the stored
relations (in domain calculus).

G610¢/6/1

ueARyqg

In a calculus expression, there is no order of operations to specify how =
to retrieve the query result—a calculus expression specifies only what 2 w
information the result should contain. This is the main distinguishing &
feature between relational algebra and relational calculus.

BuwIJIe

Relational calculus is considered to be a nonprocedural language. This
differs from relational algebra, where we must write a sequence of
operations to specify a retrieval request; hence relational algebra can be
considered as a procedural way of stating a query.

TUPLE RELATIONAL CALCULUS

A nonprocedural query language, where each query i1s
of the form

{t | P()}
It 1s the set of all tuples ¢ such that predicate P 1is true
for ¢

t 1s a tuple variable, t [A] denotes the value of tuple ¢
on attribute A

t € r denotes that tuple ¢ 1s 1n relation r
P 1s a formula similar to that of the predicate calculus

BUWLIBYBMUSIA BUBABYY 610¢/6/1

PREDICATE CALCULUS FORMULA

1.Set of attributes and constants

2.Set of comparison operators: (e.g., <, <, =, #, >, >)

3.5et of connectives: and (A), or (v), not (—)

4. Implication (=): x = vy, if x if true, then y 1s true
X=>Yy=—XVY

5.5et of quantifiers:

At er(Q (t) ="there exists” a tuple in ¢ in relation r
such that predicate @ (¢) 1s true

Vit er (@ (t)) = Q is true “for all” tuples ¢ in relation r

BUWLIBYBMUSIA BUBABYY 610¢/6/1

BANKING EXAMPLE

¢10¢/6/1

branch (branch_name, branch_city, assets)
customer (customer_name, customer_street, customer_city)
account (account_number, branch_name, balance)
loan (loan_number, branch_name, amount)
depositor (customer_name, account_number)
borrower (customer_name, loan_number)

BULTBYBMUSIA BUBARBYY

EXAMPLE QUERIES

Find the loan_number, branch_name, and amount for
loans of over $1200

{t | t € loan At [amount] > 1200}

o Find the loan number for each loan of an amount greater than $1200

{t[loan_number] | t € loan A t [amount | > 1200}

¢10¢/6/1

BULTEYBMUSIA BURARYY

EXAMPLE QUERIES

Find the names of all customers having a loan at the
Perryridge branch

{t | Is € borrower (t [customer_name | = s [customer_name |
A Ju € loan (u [branch_name | = “Perryridge”
A U [loan_number | = s [loan_number]))}

OR

{t[customer_name] | t € borrower At [branch_name | =
“Perryridge” A s e loan (s [loan_number | =t [loan_number])}

BUWLIBYBMUSIA BUBABYY 610¢/6/1

EXAMPLE QUERIES

Find the names of all customers having a loan, an
account, or both at the bank

¢10¢/6/1

s [customer_name])

{t | 3s € borrower ('t [customer_name]
me u [customer_name |)

v Ju € depositor (t [customer_nam

]

oFind the names of all customers who have a loan and
an account at the bank

BULTEYBMUSIA BURARYY

{t | 3s € borrower ('t [customer_name] = s [customer_name])
A du € depositor (t [customer_name | = u [customer_name])

THE EXISTENTIAL AND UNIVERSAL
QUANTIFIERS

Two special symbols called quantifiers can appear in formulas; these are the
universal quantifier (V) and the existential quantifier (3).

¢10¢/6/1

Informally, a tuple variable t is bound if it is quantified, meaning that it appears in@n
(V t) or (3 1) clause; otherwise, it is free.

Z
=
If F is a formula, then so is (3 t)(F), where t is a tuple variable. The formula (3 t)(F)
Is true if the formula F evaluates to true for some (at least one) tuple assigned to fré
occurrences of t in F; otherwise (3 t)(F) is false. §

If Fis a formula, then so is (V t)(F), where t is a tuple variable. The formula (V t)(F)
Is true if the formula F evaluates to true for every tuple (in the universe) assigned to

free occurrences of t in F; otherwise (V t)(F) is false.

It is called the universal or “for all” quantifier because every tuple in “the universe of”
tuples must make F true to make the quantified formula true.

database schema; the primary keys are underlined.

EMPLOYEE

Schema diagram for the COMPANY relational

FNAME

MINIT

LNAME

BDATE

ADDRESS

SEX

SUPERSSN

DNO

DEPARTMENT

DNUMBER

MGRSSN

MGRSTARTDATE

DEPT_LOCATIONS

DNUMBER

DLOCATION

PROJECT

PNAME

PNUMBER

PLOCATION

DNUM

DEPENDENT

WORKS_ON

ESSN

PNO

HOURS

ESSN

DEPENDENT_NAME

BDATE

RELATIONSHIP

G103d/6/1

BULTBYBMUSIA BUBARYY

EXAMPLE QUERY USING EXISTENTIAL
QUANTIFIER

Retrieve the name and address of all employees who work for the ‘Research’
department.

¢10¢/6/1

Query :
{t. FNAME, t.LNAME, t. ADDRESS | EMPLOYEE(t) and (3 d)
(DEPARTMENT(d) and d.DNAME=Research’ and d.DNUMBER=t.DNO) }

The only free tuple variables in a relational calculus expression should be those that
appear to the left of the bar (|). In above query, t is the only free variable; it is then
bound successively to each tuple. If a tuple satisfies the conditions specified in the
query, the attributes FNAME, LNAME, and ADDRESS are retrieved for each such
tuple.

BULTEYBMUSIA BURARYY

The conditions EMPLOYEE (t) and DEPARTMENT(d) specify the range relations for t
and d. The condition . DNAME = ‘Research’ is a selection condition and corresponds
to a SELECT operation in the relational algebra, whereas the condition . DNUMBER =
t.DNO is a JOIN condition.

EXAMPLE QUERY USING UNIVERSAL QUANTIFIER

Find the names of employees who work on all the projects controlled by department
number 5.

Query .

{e. LNAME, e.FNAME | EMPLOYEE(e) and ((V x)((PROJECT(
and x. DNUM=5 OR (3 w)(WORKS_ON(w) and w.ESSN=e.SSN a
x. PNUMBER=w.PNO))))}

o P

eueseyd 5 #80/6/1

Exclude from the universal quantification all tuples that we are not interested m:b
making the condition true for all such tuples. The first tuples to exclude (by makgwg
them evaluate automatically to true) are those that are not in the relation R of interest.

In query above, using the expression not(PROJECT(x)) inside the unlversély
quantified formula evaluates to true all tuples x that are not in the PROJECT relation.
Then we exclude the tuples we are not interested in from R itself. The expression
not(x.DNUM=5) evaluates to true all tuples x that are in the project relation but are not
controlled by department 5.

Finally, we specify a condition that must hold on all the remaining tuples in R.

((EIW)(V)VORKS _ON(w) and w.ESSN = e.SSN and x.PNUMBER =
w.PNO

SAFETY OF EXPRESSIONS

It 1s possible to write tuple calculus expressions that generate
infinite relations.

For example, { t | — t € r } results 1 an infinite relation if the
domain of any attribute of relation r is infinite

To guard against the problem, we restrict the set of allowable
expressions to safe expressions.

An expression {¢ | P (¢)} in the tuple relational calculus is safe if
every component of ¢ appears in one of the relations, tuples, or
constants that appear in P.

Ex: {t| — t[name] = X’} will display the tuples from the whole database
having name not equal to ‘X’.

Safe Expression:

{t| — t[hame] =X’ At € emp}

¢10¢/6/1

BULTEYBMUSIA BURARYY

THE DOMAIN RELATIONAL CALCULUS

Another variation of relational calculus called the domain relational
calculus, or simply, domain calculus is equivalent to tuple calculus and to
relational algebra.

The language called QBE (Query-By-Example) that is related to domain
calculus was developed almost concurrently to SQL at IBM Research,
Yorktown Heights, New York. Domain calculus was thought of as a way
to explain what QBE does.

Domain calculus differs from tuple calculus in the type of variables used
In formulas: rather than having variables range over tuples, the variables
range over single values from domains of attributes. To form a relation of
degree n for a query result, we must have n of these domain variables—
one for each attribute.

An expression of the domain calculus is of the form
{x1, x2,...,xn| COND(x1, X2, ..., Xn, Xxn+1, xn+2, . . ., xn+m)}
where X1, X2, . .., Xn, Xn+1, xn+2, . . ., Xn+m are domain variables that

range over domains (of attributes) and COND is a condition or formula
of the domain relational calculus.

¢10¢/6/1

BULTEYBMUSIA BURARYY

EXAMPLE QUERY USING DOMAIN
CALCULUS

Retrieve the birthdate and address of the employee whose name 1s ‘John B. Smith’.

Query :
tuv | @9 Er)3@s)Ft)Ew)(Ex)Qy) (3 2)
(EMPLOYEE(qrstuvwxyz) and q=’John’ and r="B’ and s="Smith’)}

¢10¢/6/1

Ten variables for the employee relation are needed, one to range over the domain of
each attribute in order. Of the ten variables g, 1, s, . . ., z, only u and v are free.

Specify the requested attributes, BDATE and ADDRESS, by the free domain variabl
u for BDATE and v for ADDRESS.

Specify the condition for selecting a tuple following the bar (|)—namely, that the
sequence of values assigned to the variables grstuvwxyz be a tuple of the employee
relation and that the values for ¢ (FNAME), r (MINIT), and s (LNAME) be ‘John’, ‘B’

and ‘Smith’, respectively.

S

BULIED]BMUSTA BURARYY

EXAMPLE QUERIES

Find the loan_number, branch_name, and amount for loans of over $1200

¢10¢/6/1

{(<l,b,a>| <, b,a> e loan A a> 1200}

o Find the names of all customers who have a loan of over $1200

{<e> |31 b, a<e [> e borrower A<, b, a> e loan A a > 1200)}

BULTEYBMUSIA BURARYY

o Find the names of all customers who have a loan from the Perryridge
branch and the loan amount:

» {<c,a>| 3l (<c [> € borrower A3b (<1, b, a > € loan A
b = “Perryridge”))}

SAFETY OF EXPRESSIONS

The expression:

{<x1, xz, ceey .’XZn> | P(x17 xQ’ o) xn)}

¢10¢/6/1

1s safe if all of the following hold:

All values that appear in tuples of the expression are values
from dom (P) (that 1s, the values appear either in P or in a tupl
of a relation mentioned in P).

ewaeyemysR vueaeyg

For every “there exists” subformula of the form 3 x (P,(x)), the
subformula is true if and only if there is a value of x in dom (P,)
such that P,(x) is true.

For every “for all” subformula of the form V_(P; (x)), the
subformula is true if and only if P,;(x) is true for all values x from

dom (P,).

