UNIT – 3

DATABASE DESIGN

INFORMAL DESIGN GUIDELINES FOR RELATIONAL SCHEMA

- Semantics of attributes.
- Reducing the redundant values in tuples.
- Reducing the null values in tuples.
- Disallowing the possibility of generating spurious tuples.

Semantics of attributes

- Semantics specifies how to interpret the attribute values stored in a tuple of the relation.
- Name of the attribute must have some meaning.
- Relationship among the relations must be clear.

Employee	<u>Person_id</u>	Person_name	Street	City
Company	<u>Company_id</u>	Company_name	C_City	
Works	<u>Person_id</u>	Company_id	Salary	
Manages	<u>Manager_id</u>	Manager_name	Person_id	

GUIDELINES:

- Design a relation schema so that it is easy to explain its meaning.
- Do not combine attributes from multiple entity types into a single relation. Bhavana Vishwakarma 1/9/2012

Redundant Information in Tuples and Update Anomalies

- Mixing attributes of multiple entities may cause problems
- Information is stored redundantly wasting storage
- Problems with update anomalies
 - Insertion anomalies
 - Deletion anomalies
 - Modification anomalies

	Person_id	Person_name	Street	City	Company_id	Company_name	C_City
	Emp_com						
Combining the 2 relations 'Employee' and 'Company' into one relation namely:							
ΉE	'Emp_com'						
4	Bhavana Vi	shwakarma					1/9/2012

Insertion Anomalies

Insertion anomalies can be differentiated into two types:

- To insert a new tuple into emp_com, either include the attribute values for the company that the employee works for, or null if the employee does not work for a company yet.
- To insert a new company that has no employees as yet in the emp_com relation. Place the null values in the attributes for employee.

Deletion Anomalies

If we delete from emp_com, an employee tuple that represent the last employee working for a particular company, the information concerning that company, is lost from the database. 1/9/2012

Modification Anomalies

In Emp_com if the value of the attributes for a particular company is to be changed, the update is required for all tuples of 'emp_com' relation who work in that company, otherwise database will become inconsistent.

GUIDELINE : Design a schema that does not suffer from the insertion, deletion and update anomalies. If there are any present, then ensure that applications that update the database will operate correctly.

Null Values in Tuples

- If many of the attributes do not apply to all tuples in the relation, we end up with many nulls in those tuples. Nulls can have multiple interpretations such as,
- Attribute not applicable or invalid
- Attribute value unknown (may exist)
- Value known to exist, but unavailable

GUIDELINE : Relations should be designed such that their tuples will have as few NULL values as possible

Generation of SpuriousTuples

- Bad designs for a relational database may result in erroneous results for certain JOIN operations
- The "lossless join" property is used to guarantee meaningful results for join operations

GUIDELINE : The relations should be designed to satisfy the lossless join condition. No spurious tuples should be generated by doing a natural-join of any relations.

FUNCTIONAL DEPENDENCIES

- Functional dependencies (FDs) are used to specify *formal measures* of the "goodness" of relational designs
- FDs and keys are used to define **normal forms** for relations
- FDs are **constraints** that are derived from the *meaning* and *interrelationships* of the data attributes
- A functional dependency is a constraint between two sets of attributes from the database.
- A set of attributes X *functionally determines* a set of attributes Y if the value of X determines a unique value for Y

Functional Dependencies (contd...)

- X -> Y holds if whenever two tuples have the same value for X, they
 must have the same value for Y
- For any two tuples t1 and t2 in any relation instance r(R): If t1[X]=t2[X], then t1[Y]=t2[Y]
- X -> Y in R specifies a *constraint* on all relation instances r(R)
- Written as X -> Y; can be displayed graphically on a relation schema.
- FDs are derived from the real-world constraints on the attributes.

	Х	Y	Z
t1	Roll_No	N ame	Phone
	1	XYZ	22235
t2	1	XYZ	22236

Therefore, X -> Y, i.e., Roll_No -> Name But, X +> Y, Roll_No +> Phone

11

1/9/2012

Inference Rules for FDs

• Given a set of FDs F, we can *infer* additional FDs that hold whenever the FDs in F hold

Armstrong's inference rules:

- IR1. (Reflexive) If Y <u>Subset-Of</u> X, then X -> Y
 IR2. (Augmentation) If X -> Y, then XZ -> YZ
 (Notation: XZ stands for X U Z)
 IR3. (Transitive) If X -> Y and Y -> Z, then X -> Z
- IR1, IR2, IR3 form a *sound* and *complete* set of inference rules

Inference Rules for FDs (contd...)

Some **additional inference rules** that are useful:

(Decomposition) If X -> YZ, then X -> Y and X -> Z
(Union) If X -> Y and X -> Z, then X -> YZ
(Psuedotransitivity) If X -> Y and WY -> Z, then WX -> Z

• The last three inference rules, as well as any other inference rules, can be deduced from IR1, IR2, and IR3 (completeness property)

Proof for Inference Rules:

Rule 1:

 ${rollno, name} \rightarrow rollno$

{rollno, name} -> name

t1	Rollno	Name	Age
	1	XYZ	21
t2	1	XYZ	21

t1[rollno, name] = t2[rollno, name] {1,XYZ} = {1,XYZ} 1 = 1

XYZ = XYZ

Bhavana Vishwakarma

1/9/2012

Proof for Inference Rules:

Rule 2:

```
{rollno,} -> name
{rollno, age} -> {name, age}
1 -> XYZ
{1,21} -> {XYZ, 21}
```

```
t1[rollno] = t2[rollno]
t1[name] = t2[name]
t1[rollno,age] = t2[rollno, age]
```

Proof for Inference Rules:

Rule 3: If X ->Y then, t1[X] = t2[X] $\Rightarrow t1[Y] = t2[Y]$ If Y -> Z then, t1[Y] = t2[Y] $\Rightarrow t1[Z] = t2[Z]$ Hence,

 $X \rightarrow Z$

TRIVIAL AND NON-TRIVIAL FD

If $X \rightarrow Y$ and X is a superset of Y, then this is called a Trivial Functional Dependency.

All FDs which are not trivial is called Non-trivial FD.

PRIME & NON-PRIME ATTRINUTES

If an attribute is a candidate key or a subset of candidate key then it is called a <u>prime attribute</u>.

'A' is a candidate key.

Combination of C & D is a candidate key.

Hence; A, C, D are prime attributes and B is a non-prime attribute.

ATTRIBUTE CLOSURE

Def:

- If a set of attributes 'X' appears on the left hand side of some FD in 'F', then the set X⁺ of the attributes are those that are functionally dependent on X or any attribute of X. X⁺ is called the closure of X under F where, F is the set of all FDs.
- ii. For a given set of attributes 'X', the attribute closure ' X^+ ' with respect to FDs in 'F' is the set of attributes 'A' such that the FD X-> A can be inferred from F.

Ex:

- a. If $A \to B$, then $A^+ = \{A, B\}$
- b. If $A \rightarrow BC$, then $A^+ = \{A, B, C\}$
- c. If A -> BC and C-> F, then $A^+ = \{A, B, C, F\}$

 $AB^+ = \{A, B, BC, BF\}$

Bhavana Vishwakarma

1/9/2012

ALGORITHM FOR FINDING THE ATTRIBUTE CLOSURE

- 1. $X^+ := X;$
- 2. Repeat
 - a. Old $X^+ := X^+;$
 - b. For each $FDY \rightarrow Z$ in F do
 - c. If Y is the subset of X, then $X^+ := X^+ U Z$;
- 3. Until $(X^+ := \text{old } X^+);$

UN-NORMALIZED RELATION

A table is said to be un-normalized if each row contains multiple set of values for some of the columns, these multiple values in a single row are also called non-atomic values.

NORMALIZATION

It is a series of test performed on different relation schema so that the relation schema has all the properties of a good relation.

The normal forms are used to ensure that various types of anomalies and inconsistencies are not introduced into the database.

First, Second and Third normal forms are based on functional dependencies whereas Fourth and Fifth normal forms are based on the concepts of multi-valued dependencies and join dependencies.

FIRST NORMAL FORM

Def:

A relation schema is said to be in first normal form (1NF) if the values in the domain of each attribute of the relation are atomic.

In other words, only one value is associated with each attribute and the value is not a set of values or a list of values.

Ex: Course Preference Table						
EX. COUISE FIE	stelelice Table	Course Preferences				
Fac_Dept	Professor	Course	Course_Dept			
Comp Sci	Smith	353	Comp Sci			
		379	Comp Sci			
		221	Decision Sci			
	Clark	353	Comp Sci			
		351	Comp Sci			
		379	Comp Sci			
		456	Mathematics			
Chemistry	Turner	353	Comp Sci			
		456	Mathematics			
		272	Chemistry			
Mathematics	Jamieson	353	Comp Sci			
		379	Comp Sci			
		221	Decision Sci			
1/9/20	12 Bhavana Vishwakarma	456	Mathematics			
1/9/20		469	Mathematics			

RELATION CRS_PREF IN 1NF

Professor	Course	Fac_Dept	Course_Dept
Smith	353	Comp Sci	Comp Sci
Smith	379	Comp Sci	Comp Sci
Smith	221	Comp Sci	Decision Sci
Clark	353	Comp Sci	Comp Sci
Clark	351	Comp Sci	Comp Sci
Clark	379	Comp Sci	Comp Sci
Clark	456	Comp Sci	Mathematics
Turner	353	Chemistry	Comp Sci
Turner	456	Chemistry	Mathematics
Turner	272	Chemistry	Chemistry
Jamieson	353	Mathematics	Comp Sci
Jamieson	379	Mathematics	Comp Sci
Jamieson	221	Mathematics	Decision Sci
Jamieson	456	Mathematics	Mathematics
Jamieson	469	Mathematics	Mathematics

RELATION CRS_PREF IN 1NF

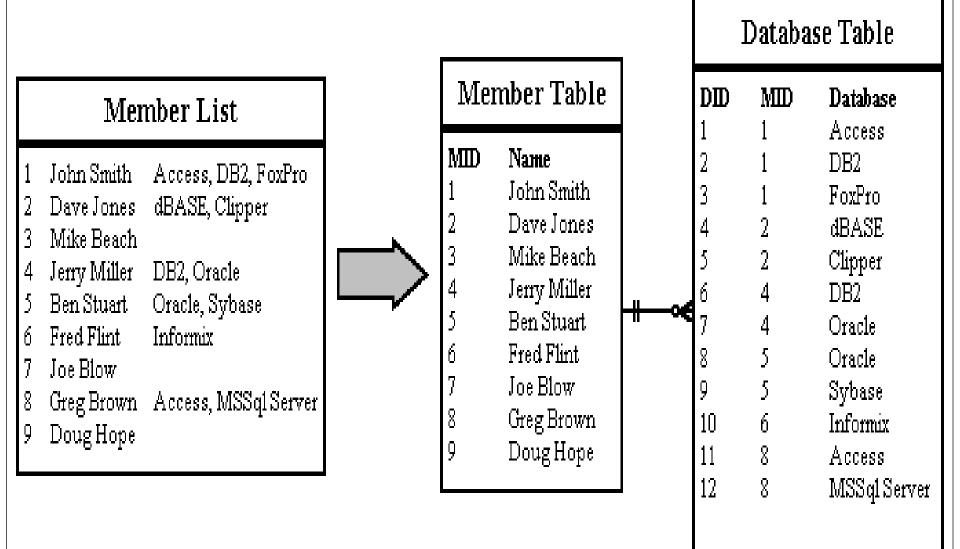
ProfCourse1Course2Course3Course4Course5Fac_DeptCrs_Dept	Prof C	Course1	Course2	Course3	Course4	Course5	Fac_Dept	Crs_Dept
---	--------	---------	---------	---------	---------	---------	----------	----------

Bhavana Vishwakarma

RELATION CRS_PRF and COURSE IN 1NF

Dreef	Course	Ess Dart		
Prof	Course	Fac_Dept	Course	Crs_Dept
Smith	353	Comp Sci	353	Comp Sci
Smith	379	Comp Sci	379	Comp Sci
Smith	221	Comp Sci	221	Decision Sci
Clark	353	Comp Sci	351	Comp Sci
Clark	351	Comp Sci	456	Mathematics
Clark	379	Comp Sci	272	Chemistry
Clark	456	Comp Sci	469	Mathematics
Turner	353	Chemistry	+07	Wathematics
Turner	456	Chemistry		
Turner	272	Chemistry		
Jamieson	353	Mathematics		
Jamieson	379	Mathematics		
Jamieson	221	Mathematics		
Jamieson	456	Mathematics		26
Jamieson	469	Mathematics	Bhavana Vishwakarm	a 1/9/2012

Ex of 1NF



SECOND NORMAL FORM

Def:

A relation schema R is in second normal form (2NF) if it is in the 1NF and if all non-prime attributes are fully functionally dependent on the relation keys.

Full Functional Dependency

A given relation schema R and an FD $X \longrightarrow Y$, Y is fully functionally dependent on X if there is no Z, where Z is a proper subset of X such that $Z \longrightarrow Y$.

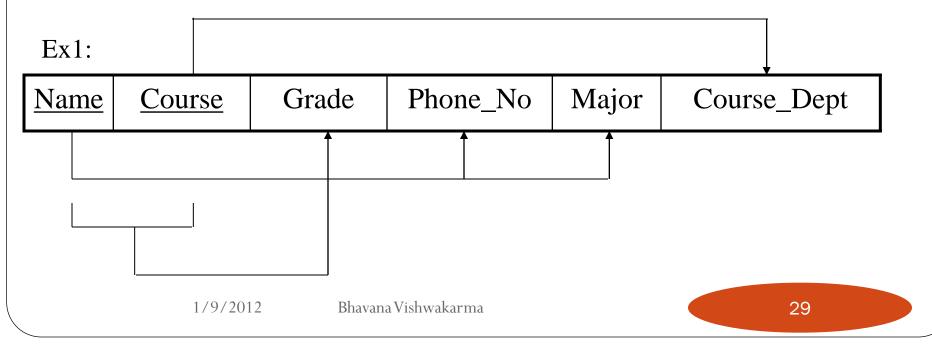
Ex:

if {Roll,Name} -> age then For full FD Roll \rightarrow age Name \rightarrow age Ex:

In the relation schema R(ABCDEH) with FD's F = {A -> BC, CD -> E, E -> C, CD -> AH, ABH - > BD, DH -> BC }

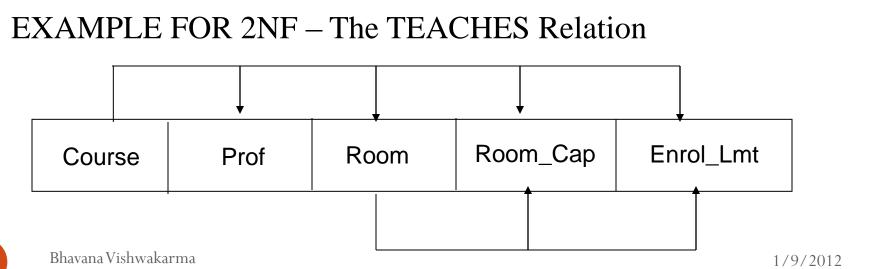
Partial Dependency

Given a relation schema R with the functional dependencies F defined on the attributes of R and K is a candidate key, if X is a proper subset of K and if $X \rightarrow A$, then A is said to be partially dependent on K.



- In the relation schema STUDENT_COURSE_INFO(Name, Course, Grade, Phone_No, Major, Course_Dept) with the FDs F = {Name->Phone_NoMajor, Course->Course_Dept, NameCourse->Grade};
 NameCourse is a candidate key, Name and Course are prime attributes. Grade is fully functionally dependent on the candidate key. Phone_No, Course_dept and Major are partially dependent on the candidate key.
- Ex2:

Given relation R(ABCD) and $F = \{AB \rightarrow C, B \rightarrow D\}$



TEACHES Relation

Course	Prof	Room	Room_Cap	Enrol_Lmt
353	Smith	A532	45	40
351	Smith	C320	100	60
355	Clark	H940	400	300
456	Turner	B278	50	45
459	Jamieson	D110	50	45

FDs in this relation are:

Course->(Prof,Room,Room_Cap,Enrol_Lmt)

Room->Room_Cap

Room->Enrol_Lmt

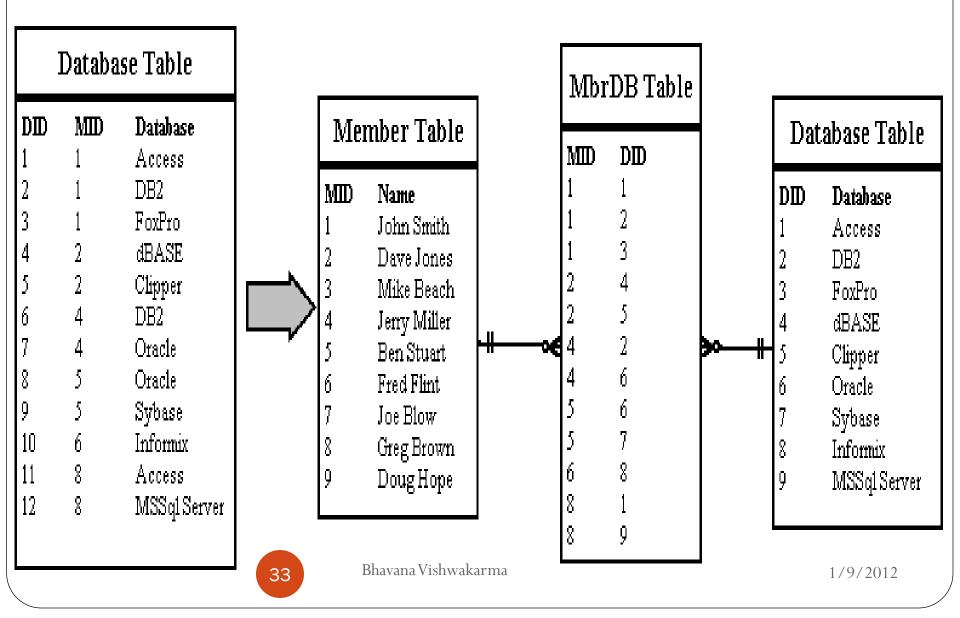
1/9/2012

(a) COURSE_DETAILS (b) ROOM_DETAILS

Cours e	Prof	Room	Enrol_ Lmt	Room	Room_Cap
353	Smith	A532	40	A532	45
351	Smith	C320	60	C320	100
355	Clark	H940	300	H940	400
456	Turner	B278	45	B278	50
459	Jamieson	D110	45	D110	50

(a)

(b)



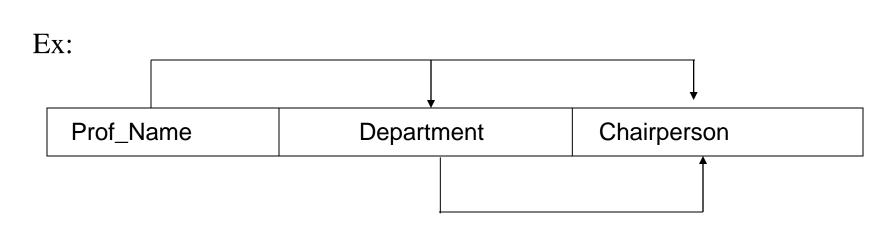
THIRD NORMAL FORM

Def:

A relation schema R is in 3NF if no non-prime attribute of R is transitively dependent on the primary key of R.

Transitive Dependency

Given a relation R with the functional dependencies F defined on the attributes of R, let X and Y be the subsets of functional dependencies $\{X->Y, Y->A\}$ is implied by F, then A is transitively dependent on X.



In the relation schema PROF_INFO the FDs are;

Prof_Name -> Department,

Department -> Chairperson

Prof_Name is a key and Chairperson is transitively dependent on the key.

2.Given R(ABCDE) and the function dependencies $F = \{AB \rightarrow C, B \rightarrow D, C \rightarrow E\}$

Decomposition of COURSE_DETAILS to eliminate transitive dependency

Course	Prof	Enrol_Lmt	Course	Room
353	Smith	40	353	A532
351	Smith	60	351	C320
355	Clark	300	355	H940
456	Turner	45	456	B278
459	Jamieson	45	459	D110

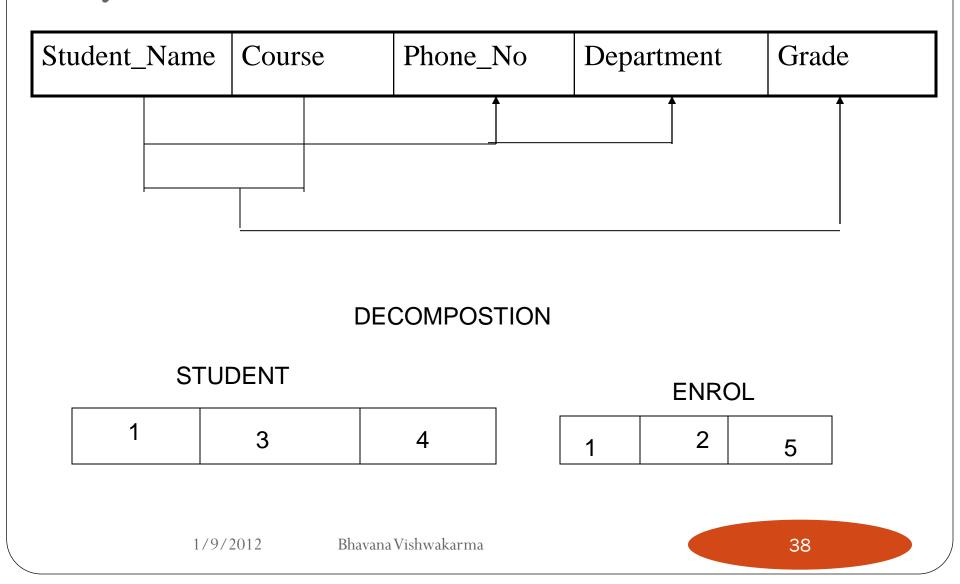
Member Table				
MD	Name	Company	CompLoc	
1	John Smith	ABC	Alabama	
2	Dave Jones	MCI	Florida	
3	Mike Beach	IBM	Delaware	
4	Jerry Miller	MCI	Florida	
5	Ben Stuart	AIC	Nebraska	
6	Fred Flint	ABC	Alabama	
7	Joe Blow	RU Nuts	Iowa	
8	Greg Brown	XYZ	New York	
9	Doug Hope	IBM	Delaware	

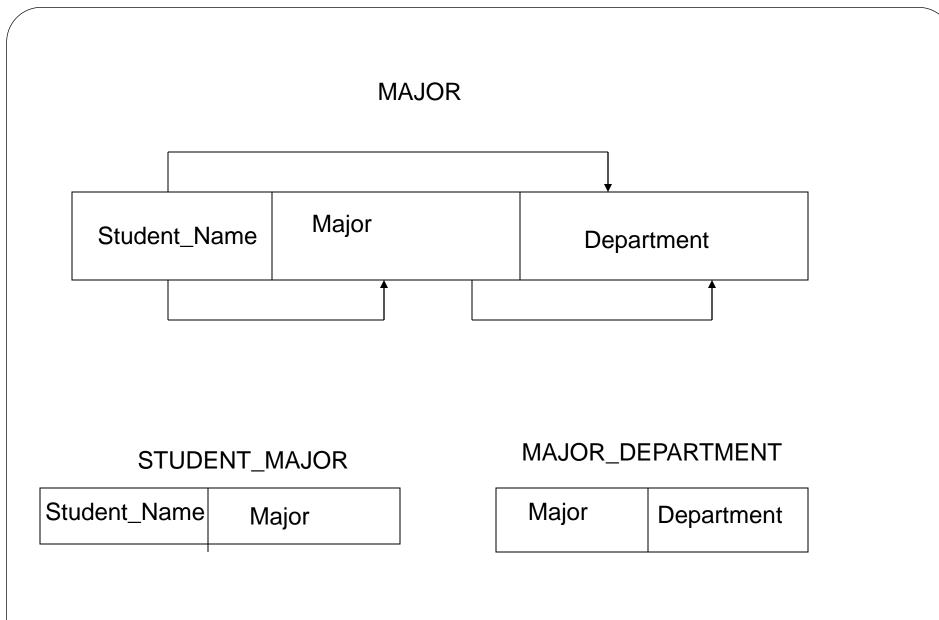
	Member Table				
	MD	Name	CID		
	1	John Smith	1		
	2	Dave Jones	2		
	3	Mike Beach	3		
/	4	Jerry Miller	2		
	5	Ben Stuart	4		
	6	Fred Flint	1		
	7	Joe Blow	5		
	8	Greg Brown	6		
	9	Doug Hope	3		

Company Table			
CID	Name	Location	
1	ABC	Alabama	
2	MCI	Florida	
3	IBM	Delaware	
 4	AIC	Nebraska	
5	RU Nuts	Iowa	
6	XYZ	New York	

37

EXAMPLE- The ENROLLMENT relation Key attribute – Student_Name, Course





39

1/9/2012

Qu1.

A relation schema $R = \{A, B, C, D, E, F, G, H, I, J\}$ & the set of FDs $F = \{AB \rightarrow C, A \rightarrow DE, B \rightarrow F, F \rightarrow GH, D \rightarrow IJ\}$ holds on R. What is the key attribute of R. Covert the relation schema R into 2NF & then into 3NF.

Qu2.

40

Given relation $R = \{A,B,C,D,E,F,G,H,I,J\}$ & set of FDs $F = \{A->B,D->IJ,B->E,BC->I\}$. Also it is given that AB is a key attribute and D is also a key attribute. Convert the relation into 3NF. Sol1.

 $A^{+} = \{A, D, E, I, J\}$ $B^{+} = \{B, C, G, H\}$ $F^{+} = \{F, G, H\}$ $D^{+} = \{I, J, D\}$ $AB^{+} = \{A, B, C, D, E, F, G, H, I, J\}$

<u>A</u> <u>B</u> C D E F G H I J

For the relation to be in 2NF C,D,E,F,G,H,I,J must be fully functionally dependent on AB. But D, E, F are partially dependent on AB.

Multivalued Dependencies

Functional dependencies rule out certain tuples from appearing in a relation. If $A \rightarrow B$, then we cannot have two tuples with the same A value but different B values.

Multivalued dependencies do not rule out the existence of certain tuples.

Instead, they **require** that other tuples of a certain form be present in the relation.

Let *R* be a relation schema, and let α is a subset of *R* and β is a subset of *R*.

The multivalued dependency

 $\alpha \rightarrow \beta$

holds on *R* if in any legal relation r(R), for all pairs of tuples t_1 and t_2 in *r* such that $t_1[\alpha] = t_2[\beta]$, there exist tuples t_3 and t_4 in *r* such that:

$$t_1[\alpha] = t_2[\alpha] = t_3[\alpha] = t_4[\alpha]$$
$$t_3[\beta] = t_1[\beta]$$
$$t_3[R-\beta] = t_2[R-\beta]$$
$$t_4[\beta] = t_2[\beta]$$
$$t_4[R-\beta] = t_1[R-\beta]$$

Tabular representation of $\Box \longrightarrow B$

	α	β	R-lpha-eta
t_1	$a_1 \cdots a_i$	$a_{i+1}\cdots a_j$	$a_{j+1}\cdots a_n$
t_2	$a_1 \cdots a_i$	$b_{i+1} \cdots b_j$	$b_{j+1} \cdots b_n$
t_{3}	$a_1 \cdots a_i$	$a_{i+1}\cdots a_j$	$b_{j+1}\cdots b_n$
Bhayana Vish	wakarma CIL · · · CI	$b_{i+1}\cdots b_j$	₢ _j +ュ・・。₢ ^{1/9/201}

43

name	address	car
Tom	North Rd.	Toyota
\mathbf{Tom}	Oak St.	Honda
\mathbf{Tom}	North Rd.	\mathbf{Honda}
Tom	Oak St.	Toyota

(*name*, *address*, *car*) where $name \rightarrow address$ and $name \rightarrow address$ and $name \rightarrow address$

Course	Book	Lecturer
AHA	Silberschatz	John D
AHA	Nederpelt	John D
AHA	Silberschatz	William M
AHA	Nederpelt	William M
AHA	Silberschatz	Christian G
AHA	Nederpelt	Christian G
OSO	Silberschatz	John D
OSO ^{aV}	Silberschatz	William M

44

Teaching database

{course} ->> {book}

{course} ->> {lecturer}.

1/9/2012

FOURTH NORMAL FORM

- Fourth normal form (4NF) is a <u>normal form</u> used in <u>database</u> <u>normalization</u>. 4NF ensures that independent multivalued facts are correctly and efficiently represented in a database design. 4NF is the next level of normalization after <u>Boyce-Codd normal form</u> (BCNF).
- The definition of 4NF relies on the notion of a <u>multivalued</u> <u>dependency</u>. A table with a multivalued dependency is one where the existence of two or more independent <u>many-to-many</u> relationships in a table causes redundancy; and it is this redundancy which is removed by fourth normal form.

ENAME	<u>PNAME</u>	DNAME		EMP_PROJE	=CTS
Smith	X	John			
Smith	Y	Anna	EMP	<u>ENAME</u>	<u>PNAME</u>
Smith	X	Anna		Smith	X
Smith	Y	John		Smith	Y
Brown	W	Jim		Brown	W
Brown	X	Jim		Brown	X
Brown	Y	Jim		Brown	Y
Brown	Z	Jim		Brown	Z
Brown	W	Joan			
Brown	X	Joan		_	1
Brown	Y	Joan		ENAME	DNAME
Brown	Z	Joan		Smith	Anna
	W Z	Bob	1	Smith	John
Brown			1	Brown	Jim
Brown	X	Bob			
Brown	Y	Bob		Brown	Joan
Brown	Z	Bob	46	Brown	Bob

Pizza Delivery Permutations

Restaurant	Pizza Variety	Delivery Area
Vincenzo's Pizza	Thick Crust	Springfield
Vincenzo's Pizza	Thick Crust	Shelbyville
Vincenzo's Pizza	Thin Crust	Springfield
Vincenzo's	ThinCrust	Shelbyville
Elite Pizza	Thin Crust	Capital City
Elite Pizza	Stuffed Crust	Capital City
A1 Pizza	Thick Crust	Springfield
A1 Pizza	Thick Crust	Shelbyville
A1 Pizza	Thick Crust	Capital City
A1 Pizza	Stuffed Crust	Springfield
A1 Pizza	Stuffed Crust	Shelbyville
A1 Pizza	Stuffed Crust	Capital City

To satisfy 4NF, we must place the facts about varieties offered into a different table from the facts about delivery areas:

Varieties By Restaurant

Delivery Areas By Restaurant

Restaurant	Pizza Variety	Restaurant	Delivery Area
Vincenzo's Pizza	Thick Crust	Vincenzo's Pizza	Springfield
Vincenzo's Pizza	Thin Crust	Vincenzo's Pizza	Shelbyville
Elite Pizza	Thin Crust	Elite Pizza	Capital City
Elite Pizza	Stuffed Crust	A1 Pizza	Springfield
A1 Pizza	Thick Crust	A1 Pizza	Shelbyville
A1 Pizza	Stuffed Crust	A1 Pizza	Capital City