
QUERY AND TRANSACTION PROCESSING

 A transaction is a unit of program execution that
accesses and possibly updates various data items.

 A transaction must see a consistent database.

 During transaction execution the database may be
temporarily inconsistent.

 When the transaction completes successfully (is
committed), the database must be consistent.

 After a transaction commits, the changes it has made
to the database persist, even if there are system
failures.

 Multiple transactions can execute in parallel.

 Two main issues to deal with:

◦ Failures of various kinds, such as hardware failures
and system crashes

◦ Concurrent execution of multiple transactions

1/9/2012 2 Bhavana Vishwakarma

1/9/2012 3 Bhavana Vishwakarma

1. A computer failure

2. A transaction or system error

3. Local errors or exception conditions
detected by the transaction.

4. Concurrency control enforcement

5. Disk failure

6. Physical problems and catastropes.

1/9/2012 4 Bhavana Vishwakarma

 Atomicity. Either all operations of the transaction are properly
reflected in the database or none are.

 Consistency. Execution of a transaction in isolation preserves the
consistency of the database.

 Isolation. Although multiple transactions may execute
concurrently, each transaction must be unaware of other
concurrently executing transactions. Intermediate transaction
results must be hidden from other concurrently executed
transactions.

◦ That is, for every pair of transactions Ti and Tj, it appears to Ti
that either Tj, finished execution before Ti started, or Tj started
execution after Ti finished.

 Durability. After a transaction completes successfully, the changes
it has made to the database persist, even if there are system
failures.

A transaction is a unit of program execution that accesses and
possibly updates various data items. To preserve the integrity of data
the database system must ensure:

1/9/2012 5 Bhavana Vishwakarma

 Transaction to transfer $50 from account A to account B:

1. read(A)

2. A := A – 50

3. write(A)

4. read(B)

5. B := B + 50

6. write(B)

 Atomicity requirement — if the transaction fails after
step 3 and before step 6, the system should ensure that
its updates are not reflected in the database, else an
inconsistency will result.

 Consistency requirement – the sum of A and B is
unchanged by the execution of the transaction.

1/9/2012 6 Bhavana Vishwakarma

 Isolation requirement — if between steps 3 and 6,
another transaction is allowed to access the partially
updated database, it will see an inconsistent database
(the sum A + B will be less than it should be).

◦ Isolation can be ensured trivially by running
transactions serially, that is one after the other.

◦ However, executing multiple transactions concurrently
has significant benefits, as we will see later.

 Durability requirement — once the user has been
notified that the transaction has completed (i.e., the
transfer of the $50 has taken place), the updates to the
database by the transaction must persist despite
failures.

1/9/2012 7 Bhavana Vishwakarma

1/9/2012 8 Bhavana Vishwakarma

 Multiple transactions are allowed to run concurrently
in the system. Advantages are:

◦ increased processor and disk utilization, leading to
better transaction throughput: one transaction can
be using the CPU while another is reading from or
writing to the disk

◦ reduced average response time for transactions:
short transactions need not wait behind long ones.

 Concurrency control schemes – mechanisms to
achieve isolation; that is, to control the interaction
among the concurrent transactions in order to prevent
them from destroying the consistency of the database

1/9/2012 9 Bhavana Vishwakarma

 Schedule – a sequences of instructions that specify the
chronological order in which instructions of concurrent
transactions are executed

◦ a schedule for a set of transactions must consist of all
instructions of those transactions

◦ must preserve the order in which the instructions
appear in each individual transaction.

 A transaction that successfully completes its execution
will have a commit instructions as the last statement
(will be omitted if it is obvious)

 A transaction that fails to successfully complete its
execution will have an abort instructions as the last
statement (will be omitted if it is obvious)

1/9/2012 10 Bhavana Vishwakarma

 Let T1 transfer $50 from A to B, and T2 transfer 10% of the
balance from A to B.

 A serial schedule in which T1 is followed by T2:

1/9/2012 11 Bhavana Vishwakarma

• A serial schedule where T2 is followed by T1

1/9/2012 12 Bhavana Vishwakarma

 Let T1 and T2 be the transactions defined previously. The
following schedule is not a serial schedule, but it is
equivalent to Schedule 1.

 In Schedules 1, 2 and 3, the sum A + B is

preserved.

1/9/2012 13 Bhavana Vishwakarma

 The following concurrent schedule does not preserve
the value of (A + B).

1/9/2012 14 Bhavana Vishwakarma

©Silberschatz, Korth and Sudarshan 15.15 Database System Concepts - 5th Edition, Sep 10, 2005.

Serializability

 Basic Assumption – Each transaction preserves database

consistency.

 Thus serial execution of a set of transactions preserves database

consistency.

 A (possibly concurrent) schedule is serializable if it is equivalent to a

serial schedule. Different forms of schedule equivalence give rise to

the notions of:

1. conflict serializability

2. view serializability

 We ignore operations other than read and write instructions, and we

assume that transactions may perform arbitrary computations on

data in local buffers in between reads and writes. Our simplified

schedules consist of only read and write instructions.

15

©Silberschatz, Korth and Sudarshan 15.16 Database System Concepts - 5th Edition, Sep 10, 2005.

16

©Silberschatz, Korth and Sudarshan 15.17 Database System Concepts - 5th Edition, Sep 10, 2005.

Conflicting Instructions

 Instructions li and lj of transactions Ti and Tj respectively, conflict if

and only if there exists some item Q accessed by both li and lj, and at

least one of these instructions wrote Q.

 1. li = read(Q), lj = read(Q). li and lj don’t conflict.

 2. li = read(Q), lj = write(Q). They conflict.

 3. li = write(Q), lj = read(Q). They conflict

 4. li = write(Q), lj = write(Q). They conflict

 Intuitively, a conflict between li and lj forces a (logical) temporal order

between them.

 If li and lj are consecutive in a schedule and they do not conflict,

their results would remain the same even if they had been

interchanged in the schedule.

17

©Silberschatz, Korth and Sudarshan 15.18 Database System Concepts - 5th Edition, Sep 10, 2005.

Conflict Serializability

 If a schedule S can be transformed into a schedule S´ by a series of

swaps of non-conflicting instructions, we say that S and S´ are

conflict equivalent.

 We say that a schedule S is conflict serializable if it is conflict

equivalent to a serial schedule

18

©Silberschatz, Korth and Sudarshan 15.19 Database System Concepts - 5th Edition, Sep 10, 2005.

Conflict Serializability (Cont.)

 Schedule 3 can be transformed into Schedule 6, a serial

schedule where T2 follows T1, by series of swaps of non-

conflicting instructions.

 Therefore Schedule 3 is conflict serializable.

Schedule 3 Schedule 6 19

©Silberschatz, Korth and Sudarshan 15.20 Database System Concepts - 5th Edition, Sep 10, 2005.

Conflict Serializability (Cont.)

 Example of a schedule that is not conflict serializable:

 We are unable to swap instructions in the above schedule to obtain

either the serial schedule < T3, T4 >, or the serial schedule < T4, T3 >.

20

©Silberschatz, Korth and Sudarshan 15.21 Database System Concepts - 5th Edition, Sep 10, 2005.

View Serializability

 Let S and S´ be two schedules with the same set of transactions.

S and S´ are view equivalent if the following three conditions are

met:

1. For each data item Q, if transaction Ti reads the initial value of

Q in schedule S, then transaction Ti must, in schedule S´, also

read the initial value of Q.

2. For each data item Q if transaction Ti executes read(Q) in

schedule S, and that value was produced by transaction Tj (if

any), then transaction Ti must in schedule S´ also read the

value of Q that was produced by transaction Tj .

3. For each data item Q, the transaction (if any) that performs the

final write(Q) operation in schedule S must perform the final

write(Q) operation in schedule S´.

As can be seen, view equivalence is also based purely on reads and

writes alone.

21

©Silberschatz, Korth and Sudarshan 15.22 Database System Concepts - 5th Edition, Sep 10, 2005.

View Serializability (Cont.)

 A schedule S is view serializable it is view equivalent to a serial

schedule.

 Every conflict serializable schedule is also view serializable.

 Below is a schedule which is view-serializable but not conflict

serializable.

 Every view serializable schedule that is not conflict serializable has

blind writes.

22

©Silberschatz, Korth and Sudarshan 15.23 Database System Concepts - 5th Edition, Sep 10, 2005.

Other Notions of Serializability

 The schedule below produces same outcome as the serial

schedule < T1, T5 >, yet is not conflict equivalent or view

equivalent to it.

 Determining such equivalence requires analysis of operations

other than read and write.

©Silberschatz, Korth and Sudarshan 15.24 Database System Concepts - 5th Edition, Sep 10, 2005.

Testing for Serializability

 Consider some schedule of a set of transactions T1, T2, ..., Tn

 Precedence graph — a direct graph where the vertices are

the transactions (names).

 We draw an arc from Ti to Tj if the two transaction conflict,

and Ti accessed the data item on which the conflict arose

earlier.

 We may label the arc by the item that was accessed.

 Example 1

x

y

©Silberschatz, Korth and Sudarshan 15.25 Database System Concepts - 5th Edition, Sep 10, 2005.

Example Schedule (Schedule A) + Precedence Graph

 T1 T2 T3 T4 T5

 read(X)

read(Y)

read(Z)

 read(V)

 read(W)

 read(W)

 read(Y)

 write(Y)

 write(Z)

read(U)

 read(Y)

 write(Y)

 read(Z)

 write(Z)

read(U)

write(U)

T3
T4

T1 T2

©Silberschatz, Korth and Sudarshan 15.26 Database System Concepts - 5th Edition, Sep 10, 2005.

Test for Conflict Serializability

 A schedule is conflict serializable if and only

if its precedence graph is acyclic.

 Cycle-detection algorithms exist which take

order n2 time, where n is the number of

vertices in the graph.

 (Better algorithms take order n + e

where e is the number of edges.)

 If precedence graph is acyclic, the

serializability order can be obtained by a

topological sorting of the graph.

 This is a linear order consistent with the

partial order of the graph.

 For example, a serializability order for

Schedule A would be

T5 T1 T3 T2 T4

 Are there others?

©Silberschatz, Korth and Sudarshan 15.27 Database System Concepts - 5th Edition, Sep 10, 2005.

Test for View Serializability

 The precedence graph test for conflict serializability cannot be used

directly to test for view serializability.

 Extension to test for view serializability has cost exponential in the

size of the precedence graph.

 The problem of checking if a schedule is view serializable falls in the

class of NP-complete problems.

 Thus existence of an efficient algorithm is extremely unlikely.

 However practical algorithms that just check some sufficient

conditions for view serializability can still be used.

©Silberschatz, Korth and Sudarshan 15.28 Database System Concepts - 5th Edition, Sep 10, 2005.

Recoverable Schedules

 Recoverable schedule — if a transaction Tj reads a data item

previously written by a transaction Ti , then the commit operation of Ti

appears before the commit operation of Tj.

 The following schedule (Schedule 11) is not recoverable if T9 commits

immediately after the read

 If T8 should abort, T9 would have read (and possibly shown to the user)

an inconsistent database state. Hence, database must ensure that

schedules are recoverable.

Need to address the effect of transaction failures on concurrently

running transactions.

©Silberschatz, Korth and Sudarshan 15.29 Database System Concepts - 5th Edition, Sep 10, 2005.

Cascading Rollbacks

 Cascading rollback – a single transaction failure leads to a

series of transaction rollbacks. Consider the following schedule

where none of the transactions has yet committed (so the

schedule is recoverable)

If T10 fails, T11 and T12 must also be rolled back.

 Can lead to the undoing of a significant amount of work

©Silberschatz, Korth and Sudarshan 15.30 Database System Concepts - 5th Edition, Sep 10, 2005.

Cascadeless Schedules

 Cascadeless schedules — cascading rollbacks cannot occur; for

each pair of transactions Ti and Tj such that Tj reads a data item

previously written by Ti, the commit operation of Ti appears before the

read operation of Tj.

 Every cascadeless schedule is also recoverable

 It is desirable to restrict the schedules to those that are cascadeless

