
UNIT –V Crash Recovery 

DBMS Notes                                                                     Bhavana Vishwakarma                               1 

UNIT 5 
 

Failure Classification 
 

There are various types of failure that may occur in a system, each of which needs to be dealt with in a 

different manner. The simplest type of failure is one that does not result in the loss of information in the 

system. The failures that are more difficult to deal with are those that result in loss of information. 

 

• Transaction failure - There are two types of errors that may cause a transaction to fail: 

� Logical error - The transaction can no longer continue with its normal execution because of some 

internal condition, such as bad input, data not found, overflow, or resource limit exceeded. 

� System error - The system has entered an undesirable state (for example, deadlock), as a result of 

which a transaction cannot continue with its normal execution. The transaction, however, can be re-

executed at a later time. 

 

• System crash - There is a hardware malfunction, or a bug in the database software or the operating system, 

that causes the loss of the content of volatile storage, and brings transaction processing to a halt. The content 

of nonvolatile storage remains intact, and is not corrupted. 

The assumption that hardware errors and bugs in the software bring the system to a halt, but do not corrupt the 

nonvolatile storage contents, is known as the fail-stop assumption. Well-designed systems have numerous 

internal checks, at the hardware and the software level that brings the system to a halt when there is an error. 

Hence, the fail-stop assumption is a reasonable one. 

 

• Disk failure - A disk block loses its content as a result of either a head crash or failure during a data transfer 

operation. Copies of the data on other disks, or archival backups on tertiary media, such as tapes, are used to 

recover from the failure. To determine how the system should recover from failures, we need to identify the 

failure modes of those devices used for storing data. Next, we must consider how these failure modes affect 

the contents of the database. We can then propose algorithms to ensure database consistency and transaction 

atomicity despite failures. 

 

These algorithms, known as recovery algorithms, have two parts: 

1. Actions taken during normal transaction processing to ensure that enough information exists to 

allow recovery from failures. 

2. Actions taken after a failure to recover the database contents to a state that ensures database 

consistency, transaction atomicity, and durability. 

 

 

Recovery Techniques –  
 

1. Log Based recovery technique 

2. Shadow Paging 

 

Log-Based Recovery 

The most widely used structure for recording database modifications is the log. The log is a sequence 

of log records, recording all the update activities in the database. There are several types of log records. An 

update log record describes a single database write. It has these fields: 

• Transaction identifier is the unique identifier of the transaction that performed the write operation. 
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• Data-item identifier is the unique identifier of the data item written. Typically, it is the location on disk of 

the data item. 

• Old value is the value of the data item prior to the write. 

• New value is the value that the data item will have after the write. Other special log records exist to record 

significant events during transaction processing, such as the start of a transaction and the commit or abort of a 

transaction. 

We denote the various types of log records as: 

• <Ti start>. Transaction Ti has started. 

• <Ti, Xj, V1, V2>. Transaction Ti has performed a write on data item Xj . Xj 

had value V1 before the write, and will have value V2 after the write. 

• <Ti commit>. Transaction Ti has committed. 

• <Ti abort>. Transaction Ti has aborted. 

 

Whenever a transaction performs a write, it is essential that the log record for that write be created before the 

database is modified. Once a log record exists, we can output the modification to the database if that is 

desirable. Also, we have the ability to undo a modification that has already been output to the database. We 

undo it by using the old-value field in log records. For log records to be useful for recovery from system and 

disk failures, the log must reside in stable storage.  

 

Deferred Database Modification 

The deferred-modification technique ensures transaction atomicity by recording all database 

modifications in the log, but deferring the execution of all write operations of a transaction until the 

transaction partially commits. 

When a transaction partially commits, the information on the log associated with the transaction is 

used in executing the deferred writes. If the system crashes before the transaction completes its execution, or if 

the transaction aborts, then the information on the log is simply ignored. 

The execution of transaction Ti proceeds as follows. Before Ti starts its execution, a record <Ti start> is 

written to the log. A write(X) operation by Ti results in the writing of a new record to the log. Finally, when Ti 

partially commits, a record <Ti commit> is written to the log. When transaction Ti partially commits, the 

records associated with it in the log are used in executing the deferred writes. Since a failure may occur while 

this updating is taking place, we must ensure that, before the start of these updates, all the log records are 

written out to stable storage. Once they have been written, the actual updating takes place, and the transaction 

enters the committed state. Observe that only the new value of the data item is required by the deferred 

modification technique. Thus, we can simplify the general update-log record structure that we saw in the 

previous section, by omitting the old-value field. 

 

Let T0 be a transaction that transfers $50 from account A to account B: 

T0: read(A); 

A := A − 50; 

write(A); 

read(B); 

B := B + 50; 

write(B). 

Let T1 be a transaction that withdraws $100 from account C: 

T1: read(C); 

C := C − 100; 

write(C). 

 

Suppose that these transactions are executed serially, in the order T0 followed by T1, and that the values of 

accounts A, B, and C before the execution took place were $1000, $2000, and $700, respectively. The portion 
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of the log containing the relevant information on these two transactions appears in Figure 17.2. There are 

various orders in which the actual outputs can take place to both the database system and the log as a result of 

the execution of T0 and T1. One such order appears in Figure 17.3. 

 

<T0 start> 

<T0 , A, 950> 

<T0 , B, 2050> 

<T0 commit> 

<T1 start> 

<T1 , C, 600> 

<T1 commit> 

Figure 17.2 Portion of the database log corresponding to T0 and T1. 

 

Note that the value of A is changed in the database only after the record <T0, A, 950> has been placed in the 

log. Using the log, the system can handle any failure that results in the loss of information on volatile storage. 

The recovery scheme uses the following recovery procedure: 

• redo(Ti) sets the value of all data items updated by transaction Ti to the new values. 

 

The set of data items updated by Ti and their respective new values can be found in the log. 

The redo operation must be idempotent; that is, executing it several times must be equivalent to executing it 

once. This characteristic is required if we are to guarantee correct behavior even if a failure occurs during the 

recovery process. After a failure, the recovery subsystem consults the log to determine which transactions 

need to be redone. Transaction Ti needs to be redone if and only if the log contains both the record <Ti start> 

and the record <Ti commit>. Thus, if the system crashes after the transaction completes its execution, the 

recovery scheme uses the information in the log to restore the system to a previous consistent state after the 

transaction had completed. 

Transactions T0 and T1 executed one after the other in the order T0 followed by T1. Figure 17.2 shows 

the log that result from the complete execution of T0 and T1.  

 

 

A = 950 

B = 2050 

C = 600 

<T0 start> 

<T0 , A, 950> 

<T0 , B, 2050> 

<T0 commit> 

<T1 start> 

<T1 , C, 600> 

<T1 commit> 

Figure 17.3 State of the log and database corresponding to T0 and T1. 

 

<T0 start>   <T0 start>  <T0 start> 

<T0 , A, 950>   <T0 , A, 950>  <T0 , A, 950> 

<T0 , B, 2050>  <T0 , B, 2050> <T0 , B, 2050> 

<T0 commit>  <T0 commit> 

<T1 start>  <T1 start> 

<T1 , C, 600>  <T1 , C, 600> 

<T1 commit> 

(a)    (b)    (c) 
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Figure 17.4 The same log as that in Figure 17.3, shown at three different times. 

 

Let us suppose that the Log Database system crashes before the completion of the transactions, so that 

we can see how the recovery technique restores the database to a consistent state. Assume that the crash occurs 

just after the log record for the step write(B) of transaction T0 has been written to stable storage. The log at the 

time of the crash appears in Figure 17.4a. When the system comes back up, no redo actions need to be taken, 

since no commit record appears in the log. The values of accounts A and B remain $1000 and $2000, 

respectively. The log records of the incomplete transaction T0 can be deleted from the log. 

Now, let us assume the crash comes just after the log record for the step write(C) of transaction T1 has 

been written to stable storage. In this case, the log at the time of the crash is as in Figure 17.4b. When the 

system comes back up, the operation redo(T0) is performed, since the record <T0 commit> appears in the log 

on the disk. After this operation is executed, the values of accounts A and B are $950 and $2050, respectively. 

The value of account C remains $700. As before, the log records of the incomplete transaction T1 can be 

deleted from the log. 

Finally, assume that a crash occurs just after the log record <T1 commit> is written to stable storage. 

The log at the time of this crash is as in Figure 17.4c. When the system comes back up, two commit records 

are in the log: one for T0 and one for T1. Therefore, the system must perform operations redo(T0) and 

redo(T1), in the order in which their commit records appear in the log. After the system executes these 

operations, the values of accounts A, B, and C are $950, $2050, and $600, respectively. 

Finally, let us consider a case in which a second system crash occurs during recovery from the first crash. 

Some changes may have been made to the database as a result of the redo operations, but all changes may not 

have been made. When the system comes up after the second crash, recovery proceeds exactly as in the 

preceding examples. For each commit record <Ti commit> found in the log, the the system performs the 

operation redo(Ti). In other words, it restarts the recovery actions from the beginning. Since redo writes values 

to the database independent of the values currently in the database, the result of a successful second attempt at 

redo is the same as though redo had succeeded the first time. 

 

Immediate Database Modification 

The immediate-modification technique allows database modifications to be output to the database 

while the transaction is still in the active state. Data modifications written by active transactions are called 

uncommitted modifications. In the event of a crash or a transaction failure, the system must use the old-value 

field of the log records described in Section 17.4 to restore the modified data items to the value they had prior 

to the start of the transaction. The undo operation, described next, accomplishes this restoration. Before a 

transaction Ti starts its execution, the system writes the record <Ti start> to the log. During its execution, any 

write(X) operation by Ti is preceded by the writing of the appropriate new update record to the log. When Ti 

partially commits, the system writes the record <Ti commit> to the log. 

Since the information in the log is used in reconstructing the state of the database, we cannot allow the 

actual update to the database to take place before the corresponding log record is written out to stable storage. 

We therefore require that, before execution of an output(B) operation, the log records corresponding to B be 

written onto stable storage. We shall return to this issue in Section 17.7.As an illustration, let us reconsider our 

simplified banking system, with transactions T0 and T1 executed one after the other in the order T0 followed 

by T1. The portion of the log containing the relevant information concerning these two transactions appears in 

Figure 17.5. Figure 17.6 shows one possible order in which the actual outputs took place in both the database 

system and the log as a result of the execution of T0 and T1.  

<T0 start> 

<T0 , A, 1000, 950> 

<T0 , B, 2000, 2050> 

<T0 commit> 

<T1 start> 
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<T1 , C, 700, 600> 

<T1 commit> 

Figure 17.5 Portion of the system log corresponding to T0 and T1. 

 

 

 

 

 

Log     Database 

<T0 start> 

<T0 , A, 1000, 950> 

<T0 , B, 2000, 2050> 

A = 950 

B = 2050 

<T0 commit> 

<T1 start> 

<T1 , C, 700, 600> 

C = 600 

<T1 commit> 

 

Figure 17.6 State of system log and database corresponding to T0 and T1. 

 

Notice that this order could not be obtained in the deferred-modification technique. Using the log, the 

system can handle any failure that does not result in the loss of information in nonvolatile storage. The 

recovery scheme uses two recovery procedures: 

• undo(Ti) restores the value of all data items updated by transaction Ti to the old values. 

• redo(Ti) sets the value of all data items updated by transaction Ti to the new values. 

 

The set of data items updated by Ti and their respective old and new values can be found in the log. The undo 

and redo operations must be idempotent to guarantee correct behavior even if a failure occurs during the 

recovery process. 

After a failure has occurred, the recovery scheme consults the log to determine which transactions need to be 

redone, and which need to be undone: 

 

• Transaction Ti needs to be undone if the log contains the record <Ti start>, 

but does not contain the record <Ti commit>. 

• Transaction Ti needs to be redone if the log contains both the record <Ti start> and the record <Ti commit>. 

 

As an illustration, return to our banking example, with transaction T0 and T1 executed one after the other in 

the order T0 followed by T1. Suppose that the system crashes before the completion of the transactions. We 

shall consider three cases. The state of the logs for each of these cases appears in Figure 17.7.  
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First, let us assume that the crash occurs just after the log record for the step write(B) of transaction T0 has 

been written to stable storage (Figure 17.7a). When the system comes back up, it finds the record <T0 start> 

in the log, but no corresponding <T0 commit> record. Thus, transaction T0 must be undone, so an undo(T0) is 

performed. As a result, the values in accounts A and B (on the disk) are restored to $1000 and $2000, 

respectively. 

Next, let us assume that the crash comes just after the log record for the step write(C) of transaction T1 

has been written to stable storage (Figure 17.7b). When the system comes back up, two recovery actions need 

to be taken. The operation undo(T1) must be performed, since the record <T1 start> appears in the log, but 

there is no record 

<T1 commit>. The operation redo(T0)must be performed, since the log contains both the record <T0 start> 

and the record <T0 commit>. At the end of the entire recovery procedure, the values of accounts A, B, and C 

are $950, $2050, and $700, respectively. Note that the undo(T1) operation is performed before the redo(T0). In 

this example, the same outcome would result if the order were reversed.   

Finally, let us assume that the crash occurs just after the log record <T1 commit> has been written to 

stable storage (Figure 17.7c). When the system comes back up, both T0 and T1 need to be redone, since the 

records <T0 start> and <T0 commit> appear in the log, as do the records <T1 start> and <T1 commit>. After 

the system performs the recovery procedures redo(T0) and redo(T1), the values in accounts A, B, and C are 

$950, $2050, and $600, respectively. 

 

Checkpoints 

When a system failure occurs, we must consult the log to determine those transactions that need to be 

redone and those that need to be undone. In principle, we need to search the entire log to determine this 

information. There are two major difficulties with this approach: 

 

1. The search process is time consuming. 

2. Most of the transactions that, according to our algorithm, need to be redone have already written 

their updates into the database. Although redoing them will cause no harm, it will nevertheless cause 

recovery to take longer.  

 

To reduce these types of overhead, we introduce checkpoints. During execution, the system maintains the log, 

using one of the two techniques, i.e. deferred or immediate database modification. In addition, the system 

periodically performs checkpoints, which require the following sequence of actions to take place: 

 

1. Output onto stable storage all log records currently residing in main memory. 

2. Output to the disk all modified buffer blocks. 

3. Output onto stable storage a log record <checkpoint>. 
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Transactions are not allowed to perform any update actions, such as writing to a buffer block or writing a log 

record, while a checkpoint is in progress. The presence of a <checkpoint> record in the log allows the system 

to streamline its recovery procedure. Consider a transaction Ti that committed prior to the checkpoint. For 

such a transaction, the  

<Ti commit> record appears in the log before the <checkpoint> record. Any database modifications made by 

Ti must have been written to the database either prior to the checkpoint or as part of the checkpoint itself. 

Thus, at recovery time, there is no need to perform a redo operation on Ti. 

 

After a failure has occurred, the recovery scheme examines the log to determine the most recent 

transaction Ti that started executing before the most recent checkpoint took place. It can find such a 

transaction by searching the log backward, from the end of the log, until it finds the first <checkpoint> record 

(since we are searching backward, the record found is the final <checkpoint> record in the log); then it 

continues the search backward until it finds the next <Ti start> record. This record identifies a transaction Ti. 

Once the system has identified transaction Ti, the redo and undo operations need to be applied to only 

transaction Ti and all transactions Tj that started executing after transaction Ti. Let us denote these transactions 

by the set T. The remainder (earlier part) of the log can be ignored, and can be erased whenever desired. The 

exact recovery operations to be performed depend on the modification technique being used. For the 

immediate-modification technique, the recovery operations are: 

• For all transactions Tk in T that have no <Tk commit> record in the log, execute 

undo(Tk). 

• For all transactions Tk in T such that the record <Tk commit> appears in the 

log, execute redo(Tk). 

 

Obviously, the undo operation does not need to be applied when the deferred-modification technique is being 

employed. As an illustration, consider the set of transactions {T0, T1, . . ., T100} executed in the order of the 

subscripts. Suppose that the most recent checkpoint took place during the execution of transaction T67. Thus, 

only transactions T67, T68, . . ., T100 need to be considered during the recovery scheme. Each of them needs 

to be redone if it has committed; otherwise, it needs to be undone. 

 

Shadow Paging 

An alternative to log-based crash-recovery techniques is shadow paging. Under certain circumstances, 

shadow paging may require fewer disk accesses than do the log-based methods. There are, however, 

disadvantages to the shadow-paging approach, as we shall see, that limit its use. For example, it is hard to 

extend shadow paging to allow multiple transactions to execute concurrently. As before, the database is 

partitioned into some number of fixed-length blocks, which are referred to as pages. The term page is 

borrowed from operating systems, since we are using a paging scheme for memory management. Assume that 

there are n pages, numbered 1 through n.These pages do not need to be stored in any particular order on disk. 

However, there must be a way to find the ith page of the database for any given i.We use a page table, as in 

Figure 17.8, for this purpose. The page table has n entries—one for each database page. Each entry contains a 

pointer to a page on disk. The first entry contains a pointer to the first page of the database, the second entry 

points to the second page, and so on. The example in Figure 17.8 shows that the logical order of database 

pages does not need to correspond to the physical order in which the pages are placed on disk. 
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The key idea behind the shadow-paging technique is to maintain two page tables during the life of a 

transaction: the current page table and the shadow page table. When the transaction starts, both page tables 

are identical. The shadow page table is never changed over the duration of the transaction. The current page 

table may be changed when a transaction performs a write operation. All input and output operations use the 

current page table to locate database pages on disk. Suppose that the transaction Tj performs a write(X) 

operation, and that X resides on the ith page. The system executes the write operation as follows: 

1. If the ith page (that is, the page on which X resides) is not already in main memory, then the system 

issues input(X). 

2. If this is the write first performed on the ith page by this transaction, then the system modifies the 

current page table as follows: 

a. It finds an unused page on disk. Usually, the database system has access to a list of unused 

(free) pages  

b. It deletes the page found in step 2a from the list of free page frames; it copies the contents of 

the ith page to the page found in step 2a. 

c. It modifies the current page table so that the ith entry points to the page found in step 2a. 

3. It assigns the value of xj to X in the buffer page. 

Step 2, manipulates the current page table. Figure 17.9 shows the shadow and current page tables for a 

transaction performing a write to the fourth page of a database consisting of 10 pages. Intuitively, the shadow-

page approach to recovery is to store the shadow page table in nonvolatile storage, so that the state of the 

database prior to the execution of the transaction can be recovered in the event of a crash, or transaction abort. 

When the transaction commits, the system writes the current page table to nonvolatile storage. 

The current page table then becomes the new shadow page table, and the next transaction is allowed to begin 

execution. It is important that the shadow page table be stored in nonvolatile storage, since it provides the only 

means of locating database pages. The current page table may be kept in main memory (volatile storage).We 

do not care whether the current page table is lost in a crash, since the system recovers by using the shadow 

page table. Successful recovery requires that we find the shadow page table on disk after a crash. A simple 

way of finding it is to choose one fixed location in stable storage that contains the disk address of the shadow 

page table. When the system comes back up after a crash, it copies the shadow page table into main memory 
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and uses it for subsequent transaction processing. Because of our definition of the write operation, we are 

guaranteed that the shadow page table will point to the database pages corresponding to the state of the 

database prior to any transaction that was active at the time of the crash. Thus, aborts are automatic. Unlike 

our log-based schemes, shadow paging needs to invoke no undo operations. To commit a transaction, we must 

do the following: 

 

1. Ensure that all buffer pages in main memory that have been changed by the transaction are output to 

disk.  

2. Output the current page table to disk. Note that we must not overwrite the shadow page table, since 

we may need it for recovery from a crash. 

3. Output the disk address of the current page table to the fixed location in stable storage containing the 

address of the shadow page table. This action overwrites the address of the old shadow page table. 

Therefore, the current page table has become the shadow page table, and the transaction is committed. 

 

If a crash occurs prior to the completion of step 3, we revert to the state just prior to the execution of the 

transaction. If the crash occurs after the completion of step 3, the effects of the transaction will be preserved; 

no redo operations need to be invoked. Shadow paging offers several advantages over log-based techniques. 

The overhead of log-record output is eliminated, and recovery from crashes is significantly.  

 

Drawbacks to the shadow-page technique: 

 

• Commit overhead. The commit of a single transaction using shadow paging requires multiple blocks to be 

output—the actual data blocks, the current page table, and the disk address of the current page table. Log-

based schemes need to output only the log records, which, for typical small transactions, fit within one block. 

The overhead of writing an entire page table can be reduced by implementing the page table as a tree structure, 

with page table entries at the leaves. The nodes of the tree are pages and have a high fanout, like B+-trees. The 

current page table’s tree is initially the same as the shadow page table’s tree. When a page is to be updated for 

the first time, the system changes the entry in the current page table to point to the copy of the page. If the leaf 

page containing the entry has been copied already, the system directly updates it. Otherwise, the system first 

copies it, and updates the copy. In turn, the parent of the copied page needs to be updated to point to the new 

copy, which the system does by applying the same procedure to its parent, copying it if it was not already 

copied. The process of copying proceeds up to the root of the tree. Changes are made only to the copied nodes, 

so the shadow page table’s tree does not get modified. The benefit of the tree representation is that the only 

pages that need to be copied are the leaf pages that are updated, and all their ancestors in the tree. All the other 

parts of the tree are shared between the shadow and the current page table, and do not need to be copied. The 

reduction in copying costs can be very significant for large databases. However, several pages of the page 

table still need to be copied for each transaction, and the log-based schemes continue to be superior as long as 

most transactions update only small parts of the database. 

• Data fragmentation. In Shadow paging causes database pages to change location when they are updated. As 

a result, either we lose the locality property of the pages or we must resort to more complex, higher-overhead 

schemes for physical storage management.  

• Garbage collection. Each time that a transaction commits the database pages containing the old version of 

data changed by the transaction become inaccessible. In Figure 17.9, the page pointed to by the fourth entry of 

the shadow page table will become inaccessible once the transaction of that example commits. Such pages are 

considered garbage, since they are not part of free space and do not contain usable information. Garbage may 

be created also as a side effect of crashes. Periodically, it is necessary to find all the garbage pages, and to add 

them to the list of free pages. This process, called garbage collection, imposes additional overhead and 

complexity on the system. There are several standard algorithms for garbage collection.  
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In addition to the drawbacks of shadow paging just mentioned, shadow paging is more difficult than logging 

to adapt to systems that allow several transactions to execute concurrently. In such systems, some logging is 

usually required, even if shadow paging is used. 

 

On-line backup during database updates 

Or 

Remote Backup Systems 
 

Traditional transaction-processing systems are centralized or client–server systems. Such systems are 

vulnerable to environmental disasters such as fire, flooding, or earthquakes. Increasingly, there is a need for 

transaction-processing systems that can function in spite of system failures or environmental disasters. Such 

systems must provide high availability, that is, the time for which the system is unusable must be extremely 

small. 

We can achieve high availability by performing transaction processing at one site, called the primary 

site, and having a remote backup site where all the data from the primary site are replicated. The remote 

backup site is sometimes also called the secondary site. The remote site must be kept synchronized with the 

primary site, as updates are performed at the primary. We achieve synchronization by sending all log records 

from primary site to the remote backup site. The remote backup site must be physically separated from the 

primary—for example; we can locate it in a different state—so that a disaster at the primary does not damage 

the remote backup site. Figure 17.10 shows the architecture of a remote backup system. 
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When the primary site fails, the remote backup site takes over processing. First, however, it performs 

recovery, using its (perhaps outdated) copy of the data from the primary, and the log records received from the 

primary. In effect, the remote backup site is performing recovery actions that would have been performed at 

the primary site when the latter recovered. Standard recovery algorithms, with minor modifications, can be 

used for recovery at the remote backup site. Once recovery has been performed, the remote backup site starts 

processing transactions. Availability is greatly increased over a single-site system, since the system can 

recover even if all data at the primary site are lost. The performance of a remote backup system is better than 

the performance of a distributed system with two-phase commit. 

Several issues must be addressed in designing a remote backup system: 

 

• Detection of failure. As in failure-handling protocols for distributed system, it is important for the remote 

backup system to detect when the primary has failed. Failure of communication lines can fool the remote 

backup into believing that the primary has failed. To avoid this problem, we maintain several communication 

links with independent modes of failure between the primary and the remote backup. For example, in addition 

to the network connection, there may be a separate modem connection over a telephone line, with services 

provided by different telecommunication companies. These connections may be backed up via manual 

intervention by operators, who can communicate over the telephone system. 

• Transfer of control. When the primary fails, the backup site takes over processing and becomes the new 

primary. When the original primary site recovers, it can either play the role of remote backup, or take over the 

role of primary site again. In either case, the old primary must receive a log of updates carried out by the 

backup site while the old primary was down. The simplest way of transferring control is for the old primary to 

receive redo logs from the old backup site, and to catch up with the updates by applying them locally. The old 

primary can then act as a remote backup site. 

If control must be transferred back, the old backup site can pretend to have failed, resulting in the old primary 

taking over. 

• Time to recover. If the log at the remote backup grows large, recovery will take a long time. The remote 

backup site can periodically process the redo log records that it has received, and can perform a checkpoint, so 

that earlier parts of the log can be deleted. The delay before the remote backup takes over can be significantly 

reduced as a result. A hot-spare configuration can make takeover by the backup site almost instantaneous. In 

this configuration, the remote backup site continually processes redo log records as they arrive, applying the 

updates locally. As soon as the failure of the primary is detected, the backup site completes recovery by rolling 

back incomplete transactions; it is then ready to process new transactions.  

• Time to commit. To ensure that the updates of a committed transaction are durable, a transaction must not 

be declared committed until its log records have reached the backup site. This delay can result in a longer wait 

to commit 

a transaction, and some systems therefore permit lower degrees of durability. The degrees of durability can be 

classified as follows. 

 One-safe. A transaction commits as soon as its commit log record is written to stable storage at the 

primary site. The problem with this scheme is that the updates of a committed transaction may not 

have made it to the backup site, when the backup site takes over processing. Thus, the updates may 

appear to be lost. When the primary site recovers, the lost updates cannot be merged in directly, since 

the updates may conflict with later updates performed at the backup site. 
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 Two-very-safe. A transaction commits as soon as its commit log record is written to stable storage at 

the primary and the backup site. The problem with this scheme is that transaction processing cannot 

proceed if either the primary or the backup site is down. Thus, availability is actually less than in the 

single-site case, although the probability of data loss is much less. 

 Two-safe. This scheme is the same as two-very-safe if both primary and backup sites are active. If 

only the primary is active, the transaction is allowed to commit as soon as its commit log record is 

written to stable storage at the primary site. This scheme provides better availability than doe’s two-

very-safe, while avoiding the problem of lost transactions faced by the one-safe scheme. It results in a 

slower commit than the one-safe scheme, but the benefits generally outweigh the cost. Several 

commercial shared-disk systems provide a level of fault tolerance that is intermediate between 

centralized and remote backup systems. 

 

Lock-Based Protocols 
 

One way to ensure serializability is to require that data items be accessed in a mutually exclusive manner; that 

is, while one transaction is accessing a data item, no other transaction can modify that data item. The most 

common method used to implement this requirement is to allow a transaction to access a data item only if it is 

currently holding a lock on that item. 

 

Locks –  

 

There are various modes in which a data item may be locked. In this section, we restrict our attention 

to two modes: 

 

1. Shared. If a transaction Ti has obtained a shared-mode lock (denoted by S) on item Q, then Ti can read, but 

cannot write, Q. 

2. Exclusive. If a transaction Ti has obtained an exclusive-mode lock (denoted by X) on item Q, then Ti can 

both read and write Q. 

 

We require that every transaction request a lock in an appropriate mode on data item Q, depending on the 

types of operations that it will perform on Q. The transaction makes the request to the concurrency-control 

manager. The transaction can proceed with the operation only after the concurrency-control manager grants 

the lock to the transaction. Given a set of lock modes, we can define a compatibility function on them as 

follows.  

Let A and B represent arbitrary lock modes. Suppose that a transaction Ti requests a lock of mode A on 

item Q on which transaction Tj (Ti _= Tj ) currently holds a lock of mode B. If transaction Ti can be granted a 

lock on Q immediately, in spite of the presence of the mode B lock, then we say mode A is compatible with 

mode B. Such a function can be represented conveniently by a matrix. The compatibility relation between the 

two modes of locking appears in the matrix comp of Figure 16.1. An element comp(A, B) of the matrix has the 

value true if and only if mode A is compatible with mode B. 

 
Note that shared mode is compatible with shared mode, but not with exclusive mode. At any time, several 

shared-mode locks can be held simultaneously (by different transactions) on a particular data item. A 

subsequent exclusive-mode lock request has to wait until the currently held shared-mode locks are released.  
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A transaction requests a shared lock on data item Q by executing the lock-S(Q) instruction. Similarly, a 

transaction requests an exclusive lock through the lock-X(Q) instruction. A transaction can unlock a data item 

Q by the unlock(Q) instruction. 

 

 To access a data item, transaction Ti must first lock that item. If the data item is already locked by 

another transaction in an incompatible mode, the concurrency control manager will not grant the lock 

until all incompatible locks held by other transactions have been released. Thus, Ti is made to wait 

until all incompatible locks held by other transactions have been released. 

 

 Transaction Ti may unlock a data item that it had locked at some earlier point.A transaction must hold 

a lock on a data item as long as it accesses that item. 

 

 For a transaction to unlock a data item immediately after its final access of that data item is not always 

desirable, since serializability may not be ensured. 

 

Let A and B be two accounts that are accessed by transactions T1 and T2. Transaction T1 transfers $50 from 

account B to account A (Figure 16.2). 

 
Transaction T2 displays the total amount of money in accounts A and B—that is, the sum A + B (Figure 16.3).  

 
Suppose that the values of accounts A and B are $100 and $200, respectively. If these two transactions are 

executed serially, either in the order T1, T2 or the order T2, T1, then transaction T2 will display the value 

$300. If, however, these transactions are executed concurrently, then schedule 1, in Figure 16.4 is possible.  
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In this case, transaction T2 displays $250, which is incorrect. The reason for this mistake is that the transaction 

T1 unlocked data item B too early, as a result of which T2 saw an inconsistent state. 

The schedule shows the actions executed by the transactions, as well as the points at which the concurrency-

control manager grants the locks. The transaction making a lock request cannot execute its next action until 

the concurrency-control manager grants the lock. Hence, the lock must be granted in the interval of time 

between the lock-request operation and the following action of the transaction.  

Suppose now that unlocking is delayed to the end of the transaction. Transaction T3 corresponds to T1 

with unlocking delayed (Figure 16.5). Transaction T4 corresponds to T2 with unlocking delayed (Figure 16.6). 

 

 
Unfortunately, locking can lead to an undesirable situation. Consider the partial schedule of Figure 16.7 for T3 

and T4. Since T3 is holding an exclusive-mode lock on B and T4 is requesting a shared-mode lock on B, T4 is 

waiting for T3 to unlock B.  
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Similarly, since T4 is holding a shared-mode lock on A and T3 is requesting an exclusive-mode lock on A, T3 

is waiting for T4 to unlock A. Thus, we have arrived at a state where neither of these transactions can ever 

proceed with its normal execution. This situation is called deadlock. When deadlock occurs, the system must 

roll back one of the two transactions. Once a transaction has been rolled back, the data items that were locked 

by that transaction are unlocked. These data items are then available to the other transaction, which can 

continue with its execution.  

 

If we do not use locking, or if we unlock data items as soon as possible after reading or writing them, we may 

get inconsistent states. On the other hand, if we do not unlock a data item before requesting a lock on another 

data item, deadlocks may occur. Deadlocks are a necessary evil associated with locking, if we want to avoid 

inconsistent states. Deadlocks are definitely preferable to inconsistent states, since they can be handled by 

rolling back of transactions, whereas inconsistent states may lead to real-world problems that cannot be 

handled by the database system. 

 

We shall require that each transaction in the system follow a set of rules, called a locking protocol, indicating 

when a transaction may lock and unlock each of the data items. Locking protocols restrict the number of 

possible schedules. The set of all such schedules is a proper subset of all possible serializable schedules.   

 

Let {T0, T1, . . ., Tn} be a set of transactions participating in a schedule S. We say that Ti precedes Tj in 

S, written Ti → Tj, if there exists a data item Q such that Ti has held lock mode A on Q, and Tj has held lock 

mode B on Q later, and comp(A,B) = false. If Ti → Tj , then that precedence implies that in any equivalent 

serial schedule, Ti must appear before Tj .  

 

Granting of Locks –  

 

When a transaction requests a lock on a data item in a particular mode, and no other transaction has a lock on 

the same data item in a conflicting mode, the lock can be granted. However, care must be taken to avoid the 

following scenario. Suppose a transaction T2 has a shared-mode lock on a data item, and another transaction 

T1 requests an exclusive-mode lock on the data item. Clearly, T1 has to wait for T2 to release the shared-mode 

lock. Meanwhile, a transaction T3 may request a shared-mode lock on the same data item. The lock request is 

compatible with the lock granted to T2, so T3 may be granted the shared-mode lock. At this point T2 may 

release the lock, but still T1 has to wait for T3 to finish. But again, there may be a new transaction T4 that 

requests a shared-mode lock on the same data item, and is granted the lock before T3 releases it. In fact, it is 

possible that there is a sequence of transactions that each requests a shared-mode lock on the data item, and 

each transaction releases the lock a short while after it is granted, but T1 never gets the exclusive-mode lock 

on the data item. The transaction T1 may never make progress, and is said to be starved. We can avoid 

starvation of transactions by granting locks in the following manner: 
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When a transaction Ti requests a lock on a data item Q in a particular mode M, the concurrency-control 

manager grants the lock provided that –  

 

1. There is no other transaction holding a lock on Q in a mode that conflicts with M. 

2. There is no other transaction that is waiting for a lock on Q, and that made its lock request before Ti. 

 

The Two-Phase Locking Protocol 

 

One protocol that ensures serializability is the two-phase locking protocol. This protocol requires that 

each transaction issue lock and unlock requests in two phases: 

 

1. Growing phase. A transaction may obtain locks, but may not release any lock. 

2. Shrinking phase. A transaction may release locks, but may not obtain any new locks. Initially, a transaction 

is in the growing phase. The transaction acquires locks as needed. Once the transaction releases a lock, it 

enters the shrinking phase, and it can issue no more lock requests. 

 

For example, transactions T3 and T4 are two phase. On the other hand, transactions T1 and T2 are not two 

phase. Note that the unlock instructions do not need to appear at the end of the transaction. For example, in the 

case of transaction T3, we could move the unlock(B) instruction to just after the lock-X(A) instruction, and 

still retain the two-phase locking property. 

 

We can show that the two-phase locking protocol ensures conflict serializability. 

Consider any transaction. The point in the schedule where the transaction has obtained its final lock (the end 

of its growing phase) is called the lock point of the transaction. Now, transactions can be ordered according to 

their lock points—this ordering is, in fact, a serializability ordering for the transactions.  

 

Two-phase locking does not ensure freedom from deadlock. Observe that transactions T3 and T4 are two 

phase, but, in schedule 2 (Figure 16.7), they are deadlocked.  

 

  
To being serializable, schedules should be cascade less. Cascading rollback may occur under two-phase 

locking. As an illustration, consider the partial schedule of Figure 16.8. Each transaction observes the two-

phase locking protocol, but the failure of T5 after the read(A) step of T7 leads to cascading rollback of T6 and 

T7. Cascading rollbacks can be avoided by a modification of two-phase locking called the strict two-phase 
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locking protocol. This protocol requires not only that locking be two phase, but also that all exclusive-mode 

locks taken by a transaction be held until that transaction commits. This requirement ensures that any data 

written by an uncommitted transaction are locked in exclusive mode until the transaction commits, preventing 

any other transaction from reading the data. Another variant of two-phase locking is the rigorous two-phase 

locking protocol, which requires that all locks be held until the transaction commits. We can easily verify that, 

with rigorous two-phase locking, transactions can be serialized in the order in which they commit. Most 

database systems implement either strict or rigorous two-phase locking. 

 

Consider the following two transactions, for which we have shown only some of the significant read and write 

operations: 

 

T8: read(a1); 

read(a2); 

. . . 

read(an); 

write(a1). 

T9: read(a1); 

read(a2); 

display(a1 + a2). 

 

If we employ the two-phase locking protocol, then T8 must lock a1 in exclusive mode. Therefore, any 

concurrent execution of both transactions amounts to a serial execution. Notice, however, that T8 needs an 

exclusive lock on a1 only at the end of its execution, when it writes a1. Thus, if T8 could initially lock a1 in 

shared mode, and then could later change the lock to exclusive mode, we could get more concurrency, since 

T8 and T9 could access a1 and a2 simultaneously. This observation leads us to a refinement of the basic two-

phase locking protocol, in which lock conversions are allowed. We shall provide a mechanism for upgrading a 

shared lock to an exclusive lock, and downgrading an exclusive lock to a shared lock. We denote conversion 

from shared to exclusive modes by upgrade, and from exclusive to shared by downgrade. Lock conversion 

cannot be allowed arbitrarily. Rather, upgrading can take place in only the growing phase, whereas 

downgrading can take place in only the shrinking phase. 

 

Returning to our example, transactions T8 and T9 can run concurrently under the refined two-phase locking 

protocol, as shown in the incomplete schedule of Figure 16.9, where only some of the locking instructions are 

shown. 

 
 

Note that a transaction attempting to upgrade a lock on an item Q may be forced to wait. This enforced wait 

occurs if Q is currently locked by another transaction in shared mode. Just like the basic two-phase locking 

protocol, two-phase locking with lock conversion generates only conflict-serializable schedules, and 
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transactions can be serialized by their lock points. Further, if exclusive locks are held until the end of the 

transaction, the schedules are cascade less. 

For a set of transactions, there may be conflict-serializable schedules that cannot be obtained through the two-

phase locking protocol. However, to obtain conflict serializable schedules through non-two-phase locking 

protocols, we need either to have additional information about the transactions or to impose some structure or 

ordering on the set of data items in the database. In the absence of such information, two-phase locking is 

necessary for conflict serializability—if Ti is a non-two-phase transaction, it is always possible to find another 

transaction Tj that is two-phase so that there is a schedule possible for Ti and Tj that is not conflict serializable. 

 

Strict two-phase locking and rigorous two-phase locking (with lock conversions) are used extensively in 

commercial database systems.  

A simple but widely used scheme automatically generates the appropriate lock and unlocks 

instructions for a transaction, on the basis of read and writes requests from the transaction: 

• When a transaction Ti issues a read(Q) operation, the system issues a lock-S(Q) instruction followed by the 

read(Q) instruction. 

• When Ti issues a write(Q) operation, the system checks to see whether Ti already holds a shared lock on Q. 

If it does, then the system issues an upgrade (Q) instruction, followed by the write(Q) instruction. Otherwise, 

the system issues a lock-X(Q) instruction, followed by the write(Q) instruction. 

• All locks obtained by a transaction are unlocked after that transaction commits or aborts. 
 
 

Graph based protocol –  

 

To acquire the knowledge about the order in which the database items will be accessed we impose a partial 

ordering → on the set 

D = {d1, d2, . . ., dh} of all data items. If di → dj , then any transaction accessing both di and dj must access di 

before accessing dj . This partial ordering may be the result of either the logical or the physical organization of 

the data, or it may be imposed solely for the purpose of concurrency control. The partial ordering implies that 

the set D may now be viewed as a directed acyclic graph, called a database graph. 

 

In the tree protocol, the only lock instruction allowed is lock-X. Each transaction Ti can lock a data item at 

most once, and must observe the following rules: 

1. The first lock by Ti may be on any data item. 

2. Subsequently, a data item Q can be locked by Ti only if the parent of Q is currently locked by Ti.  

3. Data items may be unlocked at any time. 

4. A data item that has been locked and unlocked by Ti cannot subsequently be relocked by Ti. 

All schedules that are legal under the tree protocol are conflict serializable.  

 

To illustrate this protocol, consider the database graph of Figure 16.11.  
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The following four transactions follow the tree protocol on this graph. We show only the lock and unlock 

instructions: 

 

T10: lock-X(B); lock-X(E); lock-X(D); unlock(B); unlock(E); lock-X(G); unlock(D); unlock(G). 

T11: lock-X(D); lock-X(H); unlock(D); unlock(H). 

T12: lock-X(B); lock-X(E); unlock(E); unlock(B). 

T13: lock-X(D); lock-X(H); unlock(D); unlock(H). 

 

One possible schedule in which these four transactions participated appears in Figure 16.12. Note that, during 

its execution, transaction T10 holds locks on two disjoint sub-trees. 

 

 
Observe that the schedule of Figure 16.12 is conflict serializable. It can be shown not only that the tree 

protocol ensures conflict serializability, but also that this protocol ensures freedom from deadlock. The tree 

protocol in Figure 16.12 does not ensure recoverability and cascadelessness. To ensure recoverability and 

cascadelessness, the protocol can be modified to not permit release of exclusive locks until the end of the 

transaction. Holding exclusive locks until the end of the transaction reduces concurrency. Here is an 

alternative that improves concurrency, but ensures only recoverability: For each data item with an 

uncommitted write we record which transaction performed the last write to the data item. Whenever a 

transaction Ti performs a read of an uncommitted data item, we record a commit dependency of Ti on the 
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transaction that performed the last write to the data item. Transaction Ti is then not permitted to commit until 

the commit of all transactions on which it has a commit dependency. If any of these transactions aborts, Ti 

must also be aborted. 

The tree-locking protocol has an advantage over the two-phase locking protocol in that, unlike two-phase 

locking, it is deadlock-free, so no rollbacks are required. The tree-locking protocol has another advantage over 

the two-phase locking protocol in that unlocking may occur earlier. Earlier unlocking may lead to shorter 

waiting times, and to an increase in concurrency. 

 

However, the protocol has the disadvantage that, in some cases, a transaction may have to lock data items that 

it does not access. For example, a transaction that needs to access data items A and J in the database graph of 

Figure 16.11 must lock not only A and J, but also data items B, D, and H. These additional locking results in 

increased locking overhead, the possibility of additional waiting time, and a potential decrease in concurrency. 

Further, without prior knowledge of what data items will need to be locked, transactions will have to lock the 

root of the tree, and that can reduce concurrency greatly. For a set of transactions, there may be conflict-

serializable schedules that cannot be obtained through the tree protocol. Indeed, there are schedules possible 

under the two-phase locking protocol that is not possible under the tree protocol, and vice versa. 

 

Timestamp-Based Protocols 
 

The locking protocols that we have described thus far determine the order between every pair of conflicting 

transactions at execution time by the first lock that both members of the pair request that involves 

incompatible modes. Another method for determining the serializability order is to select an ordering among 

transactions in advance. The most common method for doing so is to use a timestamp-ordering scheme. 

 

Timestamps –  

With each transaction Ti in the system, we associate a unique fixed timestamp, denoted by TS(Ti). This 

timestamp is assigned by the database system before the transaction Ti starts execution. If a transaction Ti has 

been assigned timestamp TS(Ti), and a new transaction Tj enters the system, then TS(Ti) < TS(Tj ). There are 

two simple methods for implementing this scheme: 

1. Use the value of the system clock as the timestamp; that is, a transaction’s timestamp is equal to the value of 

the clock when the transaction enters the system. 

2. Use a logical counter that is incremented after a new timestamp has been assigned; that is, a transaction’s 

timestamp is equal to the value of the counter when the transaction enters the system. 

 

The timestamps of the transactions determine the serializability order. Thus, if TS(Ti) < TS(Tj ), then the 

system must ensure that the produced schedule is equivalent to a serial schedule in which transaction Ti 

appears before transaction Tj . To implement this scheme, we associate with each data item Q two timestamp 

values: 

• W-timestamp(Q) denotes the largest timestamp of any transaction that executed write(Q) successfully. 

• R-timestamp(Q) denotes the largest timestamp of any transaction that executed read(Q) successfully. 

 

These timestamps are updated whenever a new read(Q) or write(Q) instruction is executed. 

 

The Timestamp-Ordering Protocol –  

The timestamp-ordering protocol ensures that any conflicting read and write operations are executed 

in timestamp order. This protocol operates as follows: 

 

1. Suppose that transaction Ti issues read(Q). 

a. If TS(Ti) < W-timestamp(Q), then Ti needs to read a value of Q that was already overwritten. 

Hence, the read operation is rejected, and Ti is rolled back. 
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b. If TS(Ti) ≥ W-timestamp(Q), then the read operation is executed, and Rtimestamp(Q) is set to the 

maximum of R-timestamp(Q) and TS(Ti). 

 

2. Suppose that transaction Ti issues write(Q). 

a. If TS(Ti) < R-timestamp(Q), then the value of Q that Ti is producing was needed previously, and the 

system assumed that that value would never be produced. Hence, the system rejects the write operation 

and rolls T back. 

b. If TS(Ti) < W-timestamp(Q), then Ti is attempting to write an obsolete value of Q. Hence, the 

system rejects this write operation and rolls Ti back. 

c. Otherwise, the system executes the write operation and sets W-timestamp(Q) to TS(Ti). 

If a transaction Ti is rolled back by the concurrency-control scheme as result of issuance of either a read or 

writes operation, the system assigns it a new timestamp and restarts it. To illustrate this protocol, we consider 

transactions T14 and T15. 

 

Transaction T14 displays the contents of accounts A and B: 

 

T14: read(B); 

read(A); 

display(A + B). 

 

Transaction T15 transfers $50 from account A to account B, and then displays the contents of both: 

 

T15: read(B); 

B := B − 50; 

write(B); 

read(A); 

A := A + 50; 

write(A); 

display(A + B). 

 

In presenting schedules under the timestamp protocol, we shall assume that a transaction is assigned a 

timestamp immediately before its first instruction. Thus, in schedule 3 of Figure 16.13, TS(T14) < TS(T15), 

and the schedule is possible under the timestamp protocol. 

 
We note that the preceding execution can also be produced by the two-phase locking protocol. There are, 

however, schedules that are possible under the two-phase locking protocol, but are not possible under the 

timestamp protocol, and vice versa. 

The timestamp-ordering protocol ensures conflict serializability. This is because conflicting operations 

are processed in timestamp order. The protocol ensures freedom from deadlock, since no transaction ever 

waits. However, there is a possibility of starvation of long transactions if a sequence of conflicting short 
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transactions causes repeated restarting of the long transaction. If a transaction is found to be getting restarted 

repeatedly, conflicting transactions need to be temporarily blocked to enable the transaction to finish. The 

protocol can generate schedules that are not recoverable. However, it can be extended to make the schedules 

recoverable, in one of several ways: 

 

• Recoverability and cascadelessness can be ensured by performing all writes together at the end of the 

transaction. The writes must be atomic in the following sense: While the writes are in progress, no transaction 

is permitted to access any of the data items that have been written. 

• Recoverability and cascadelessness can also be guaranteed by using a limited form of locking, whereby reads 

of uncommitted items are postponed until the transaction that updated the item commits  

• Recoverability alone can be ensured by tracking uncommitted writes, and allowing a transaction Ti to 

commit only after the commit of any transaction that wrote a value that Ti read. Commit dependencies. 

 

Multiple Granularity – 

 

There are circumstances, however, where it would be advantageous to group several data items, and to treat 

them as one individual synchronization unit. For example, if a transaction Ti needs to access the entire 

database, and a locking protocol is used, then Ti must lock each item in the database. Clearly, executing these 

locks is time consuming. It would be better if Ti could issue a single lock request to lock the entire database. 

On the other hand, if transaction Tj needs to access only a few data items, it should not be required to lock the 

entire database, since otherwise concurrency is lost. 

 

Multiple levels of granularity allow data items to be of various sizes and define a hierarchy of data 

granularities, where the small granularities are nested within larger ones. Such a hierarchy can be represented 

graphically as a tree. A non-leaf node of the multiple-granularity tree represents the data associated with its 

descendants. In the tree protocol, each node is an independent data item. 

 Granularity is a measure of the size of the components, or descriptions of components, that make up a 

system. Granularity is the relative size, scale, level of detail or depth of penetration that characterizes an object 

or activity. It is the "extent to which a larger entity is subdivided. For example, a yard broken into inches has 

finer granularity than a yard broken into feet 

 

As an illustration, consider the tree of Figure 16.16, which consists of four levels of nodes. 

 
The highest level represents the entire database. Below it is the nodes of type area; the database consists of 

exactly these areas. Each area in turn has nodes of type file as its children. Each area contains exactly those 

files that are its child nodes. No file is in more than one area. Finally, each file has nodes of type record. As 

before, the file consists of exactly those records that are its child nodes, and no record can be present in more 

than one file. Each node in the tree can be locked individually. When a transaction locks a node, in either 

shared or exclusive mode, the transaction also has implicitly locked all the descendants of that node in the 

same lock mode. For example, if transaction Ti gets an explicit lock on file Fc of Figure 16.16, in exclusive 

http://en.wikipedia.org/wiki/System
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mode, then it has an implicit lock in exclusive mode all the records belonging to that file. It does not need to 

lock the individual records of Fc explicitly. 

Suppose that transaction Tj wishes to lock record rb6 of file Fb. Since Ti has locked Fb explicitly, it 

follows that rb6 is also locked (implicitly). But, when Tj issues a lock request for rb6 , rb6 is not explicitly 

locked! How does the system determine whether Tj can lock rb6? Tj must traverse the tree from the root to 

record rb6. If any node in that path is locked in an incompatible mode, then Tj must be delayed. Suppose now 

that transaction Tk wishes to lock the entire database. To do so, it simply must lock the root of the hierarchy. 

However, Tk should not succeed in locking the root node, since Ti is currently holding a lock on part of the 

tree (specifically, on file Fb).  

This solution, however, defeats the whole purpose of the multiple-granularity locking scheme. A more 

efficient way to gain this knowledge is to introduce a new class of lock modes, called intention lock modes. 

If a node is locked in an intention mode, explicit locking is being done at a lower level of the tree (that is, at a 

finer granularity). Intention locks are put on all the ancestors of a node before that node is locked explicitly. 

Thus, a transaction does not need to search the entire tree to determine whether it can lock a node successfully. 

A transaction wishing to lock a node—say, Q—must traverse a path in the tree from the root to Q. While 

traversing the tree, the transaction locks the various nodes in an intention mode. There is an intention mode 

associated with shared mode, and there is one with exclusive mode. If a node is locked in intention-shared 

(IS) mode, explicit locking is being done at a lower level of the tree, but with only shared-mode locks. 

 Similarly, if a node is locked in intention-exclusive (IX) mode, then explicit locking is being done at 

a lower level, with exclusive-mode or shared-mode locks. Finally, if a node is locked in shared and 

intention-exclusive (SIX) mode, the subtree rooted by that node is locked explicitly in shared mode, and that 

explicit locking is being done at a lower level with exclusive-mode locks. The compatibility function for these 

lock modes is in Figure 16.17. 

 
The multiple-granularity locking protocol, which ensures serializability, is this: 

Each transaction Ti can lock a node Q by following these rules: 

1. It must observe the lock-compatibility function of Figure 16.17. 

2. It must lock the root of the tree first, and can lock it in any mode. 

3. It can lock a node Q in S or IS mode only if it currently has the parent of Q locked in either IX or IS mode. 

4. It can lock a node Q in X, SIX, or IX mode only if it currently has the parent of 

Q locked in either IX or SIX modes. 

5. It can lock a node only if it has not previously unlocked any node (that is, Ti is two phase). 

6. It can unlock a node Q only if it currently has none of the children of Q locked. Observe that the multiple-

granularity protocol requires that locks be acquired in topdown (root-to-leaf) order, whereas locks must be 

released in bottom-up (leaf-to-root) order. 

As an illustration of the protocol, consider the tree of Figure 16.16 and these transactions: 

• Suppose that transaction T18 reads record ra2 in file Fa. Then, T18 needs to lock the database, area A1, and 

Fa in IS mode (and in that order), and finally to lock ra2 in S mode. 

• Suppose that transaction T19 modifies record ra9 in file Fa. Then, T19 needs to lock the database, area A1, 

and file Fa in IX mode, and finally to lock ra9 in X mode. 

• Suppose that transaction T20 reads all the records in file Fa. Then, T20 needs to lock the database and area 

A1 (in that order) in IS mode, and finally to lock Fa in S mode. 

• Suppose that transaction T21 reads the entire database. It can do so after locking the database in S mode. 
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We note that transactions T18, T20, and T21 can access the database concurrently. Transaction T19 can 

execute concurrently with T18, but not with either T20 or T21. This protocol enhances concurrency and 

reduces lock overhead. It is particularly useful in applications that include a mix of 

• Short transactions that access only a few data items 

• Long transactions that produce reports from an entire file or set of files 

There is a similar locking protocol that is applicable to database systems in which data granularities are 

organized in the form of a directed acyclic graph.  

 

Database Integrity and Security –  
 

Database Integrity –  

 It is the mechanism that is applied to ensure that the data in the database is correct and consistent. The 

term semantic integrity is sometimes used to refer to the need for maintaining database consistency in the 

presence of user modifications. Semantic integrity is maintained either implicitly by the data model, or is 

specified explicitly by appropriate constraints on the data that can be entered by the user, and this data is 

checked by the DBMS. Entity and referential integrity constraints are implicit in the relational data model. Set 

insertion and retention rules are implicit in the network model.  

 

Database Security –  

 Protection of the information contained in the database against unauthorized access, modification, or 

destruction. 

 

Authorization –  

 The culmination of the administrative policies of the organization, expressed as a set of rules that can 

be used to determine which user has what type of access to which portion of the database. Persons who are in 

charge of specifying the authorization of different portions of the database are usually called security 

administrators or authorizers. 

 

Integrity constraints specifications in SQL –  
 

Data Constraint 

A constraint is a limitation that you place on the data that users  can enter into a column or group of 

columns. A constraint is  part of the table definition; you can implement constraints when  you create 

the table or later. You can remove a constraint from  the table without affecting the table or the data, and you 

can temporarily disable certain constraints. . . .  

 

Types Of Constraints- 

 

 I/O Constraint: 

 Primary Key Constraint 

 Foreign Key Constraint 

 Unique Key Constraint 

 

 Business Rule Constraint 

 Check Constraint 

 Not Null Constraint 

 

Primary Key  
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The primary key of a relational table uniquely identifies each record in the table. Primary keys may consist of 

a single attribute or multiple attributes in combination.  

Syntax: 

 CREATE TABLE <TableName>(<ColumnName> <DataType>(<Size>) PRIMARY KEY,…….); 

Ex: 

  CREATE TABLE Customer  

 (SID integer PRIMARY KEY,  

 Last_Name varchar(30),  

 First_Name varchar(30));  

 

   ALTER TABLE Customer ADD PRIMARY KEY (SID);  

 

Foreign Key 
A foreign key is a field (or fields) that points to the primary key of another table. The purpose of the foreign 

key is to ensure referential integrity of the data. In other words, only values that are supposed to appear in the 

database are permitted.  

 

Syntax: 

 <ColumnName> <DataType>(<Size>) 

  REFERENCES <TableName>[(<ColumnName>)]… 

Ex: 

 CREATE TABLE ORDERS  

(Order_ID integer primary key,  

Order_Date date,  

Customer_SID integer references CUSTOMER(SID),  

Amount double);  

 

 ALTER TABLE ORDERS  

ADD (CONSTRAINT fk_orders1) FOREIGN KEY (customer_sid) REFERENCES CUSTOMER(SID);  

 

Unique Key 
Des:  

• In relational database design, a unique key or primary key is a candidate key to uniquely identify 

each row in a table. A unique key or primary key comprises a single column or set of columns. No two distinct 

rows in a table can have the same value (or combination of values) in those columns. Depending on its design, 

a table may have arbitrarily many unique keys but at most one primary key. 

• A unique key must uniquely identify all possible rows that exist in a table and not only the currently 

existing rows. 

Syntax: 

      <ColumnName> <DataType>(<Size>) UNIQUE 

 

Difference Primary / Unique Key 

 

1) Unique key can be null but primary key cant be null. 

2) Primary key can be referenced to other table as FK. 

3) We can have multiple unique key in a table but PK is one and only one. 

4) PK in itself is unique key. 

 

Check Constraint 
Des: 

http://en.wikipedia.org/wiki/Relational_database
http://en.wikipedia.org/wiki/Candidate_key
http://en.wikipedia.org/wiki/Candidate_key
http://en.wikipedia.org/wiki/Row_%28database%29
http://en.wikipedia.org/wiki/Table_%28database%29
http://en.wikipedia.org/wiki/Column_%28database%29
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A check constraint allows you to specify a condition on each row in a table. 

 

Note: 

• A check constraint can NOT be defined on a VIEW.  

• The check constraint defined on a table must refer to only columns in that table. It can not refer to 

columns in other tables.  

• A check constraint can NOT include a SUBQUERY.  

Ex: 

 CREATE TABLE suppliers(supplier_idnumeric(4),supplier_namevarchar2(50),CONSTRAINT 

check_supplier_idCHECK (supplier_id BETWEEN 100 and 9999)); 

 ALTER TABLE suppliers 

add CONSTRAINT check_supplier_name 

CHECK (supplier_name IN ('IBM', 'Microsoft', 'Nvidia')); 

 

Using The Not Null Constraint 
Des: 

• Use the NOT NULL keywords to require that a column receive a value during insert or update 

operations. If you place a NOT NULL constraint on a column (and no default value is specified), you must 

enter a value into this column when you insert a row or update that column in a row. If you do not enter a 

value, the database server returns an error, because no default value exists. 

• The following example creates the newitems table. In newitems, the column menucode does not have 

a default value nor does it allow NULL values.  

Ex: CREATE TABLE newitems ( newitem_num INTEGER, menucode CHAR(3) NOT NULL, promotype     

      INTEGER, descrip CHAR(20))  

Note: 

 You cannot specify NULL as the explicit default value for a column if you also specify the NOT 

NULL constraint. 

  

http://www.techonthenet.com/sql/views.php
http://www.techonthenet.com/oracle/subqueries.php

