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UNIT – I 
GOVERNORS 

Syllabus 
Characteristics of centrifugal governors. Gravity controlled governors such as Porter and 
Proell governors. Spring controlled centrifugal governors such as Hartung and Hartnell 
governors. Performance parameters, sensitivity, stability, isochronism and hunting. Governor 
effort and power. 

1.1 Introduction 

The function of a governor is to regulate the mean speed of an engine, when there are 
variations in the load. When the load on the engine, its speed decreases, therefore, it 
becomes necessary to increase the supply of working fluid. When the load on the engine 
decreases, its speed increases and less working fluid is required. 
The governor automatically controls the supply of working fluid to the engine with varying 
load conditions and keeps the mean speed within certain limits. When the load increases or 
decreases, the configuration of the governor changes and a valve is moved to increase or 
decrease the supply of working fluid respectively 

1.2 Difference between a flywheel and a governor 

The function of a flywheel in an engine is to control the speed variation caused by the 
fluctuations of the engine turning moment during each cycle of operation. 

It does not control the speed variations caused by a varying load. 

The governor meets the varying demand for power by regulating the supply of working 
fluid. 

1.3 Types of Governors 

The governors may be classified as 

1. Centrifugal governors 

2. Inertia governors 

The centrifugal governors may further be classified as follows: 

1. Pendulum type – watt governor 

2. Loaded type 

(a) Dead weight governors – Porter governor, Proell governor 

(b) Spring controlled governors – Hartnell governors, Hartung governor, Wilson Hartnell 
governor, Pickering governor 

1.4 Centrifugal Governors 

The centrifugal governors are based on the balancing of centrifugal force on the 
rotating balls by an equal and opposite radial force, known as the controlling force. It consists 
of two balls of equal mass, which are attached to the arms. The balls revolve with a spindle, 
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which is driven by the engine through 
bevel gears. The upper ends of the 
arms are pivoted to the spindle, so 
that the balls may rise up or fall down 
as they revolve about the vertical 
axis. 

The arms are connected by the 
links to a sleeve, which is keyed to 
the spindle. This sleeve revolves with 
the spindle; but can slide up and 
down. The balls and the sleeve rise 
when the spindle speed increases, 
and falls when the speed decreases. 
In order to limit the travel of the 
sleeve in upward and downward 
directions, two stops S, S are provided on the spindle. The sleeve is connected by a bell 
crank lever to a throttle valve. 

The supply of the working fluid decreases when the sleeve rises and decreases when 
it falls. When the load on the engine increases, the engine and governor speed decreases. 
This results in the decrease of centrifugal force in the balls. Hence the balls move inwards 
and the sleeve moves downwards. The downward movement of the sleeve operates a 
throttle valve at the other end of the bell crank lever to increase the supply o working fluid and 
thus engine speed is increased. The extra power output is provided to balance the increased 
load. 

When the load on the engine decreases, the engine and the governor speed 
increases, which results in the increase of centrifugal force on the balls. Thus the balls move 
outwards and the sleeve rises upwards. This upwards movement of the sleeve reduces the 
supply of the working fluid and hence the speed is decreased. In this case the power output 
is reduced. 

1.5 Terms Used in Governors 

1. Height of a governor. It is the vertical distance from the centre of the ball to a point where 
the axes of the arms (or arms produced) intersect on the spindle axis.  

2. Equilibrium speed. It is the speed at which the governor balls, arms etc. are in complete 
equilibrium and the sleeve does not tend to move upwards or downwards. 

3. Mean equilibrium speed. It is the speed at the mean position of the balls or the sleeve.      

4. Maximum and minimum equilibrium speeds. The speeds at the maximum and minimum 
radius of rotation of the balls, without tending to move either way are known as maximum and 
minimum equilibrium speeds respectively.  

5. Sleeve lift. It is the vertical distance which the sleeve travels due to change in equilibrium 
speed. 
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1.6 Watt Governor 

It is basically a conical pendulum with links attached to a sleeve of negligible mass. 
The arms of the governor may be connected to the spindle in the following three ways. 

1. The pivot P may be on the spindle axis 

2. The pivot may be offset from the spindle axis and the arms when produced intersect at O. 

3. The pivot P may be offset, but the arms cross the axis at O. 

 

 

 

 

 

 

 

 

 

Let  m = Mass of the ball in kg. 

            w = Weight of the ball in newtons = m.g 

            T = Tension in the arm in newtons  

            ω = Angular velocity of the arm and ball about the spindle axis in rad/s. 

             r = Radius of the path of rotation of the ball 

            Fc = Centrifugal force acting on the balls in newtons = m.ω2.r 

             h = Height of the governor in metres.     

It is assumed that the weight of the arms, links and the sleeve are negligible as 
compared to the weight of the balls. The ball is in equilibrium under the action of  

1. the centrifugal force (Fc) acting on the ball, 2. the tension (T) in the arm, and 3. the weight 
(w) of the ball. 

Taking moments about point O 

Fc × h = w × r = m.g.r 

or  m.ω2.r.h = m.g.r   or   h = g/ω2 
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The height of a governor is inversely proportional to N2. Therefore, at high speeds the 
value of h is small.  

At such speeds the change in the value of h corresponding to a small change in speed 
is insufficient to enable a governor of this type to operate the mechanism to give the 
necessary change in the fuel supply. This governor may only work satisfactorily at relatively 
low speeds i.e. from 60 to 80 rpm 

1.7 Porter Governor 

The Porter governor is a modification of a Watt’s governor, with the central load 
attached to the central sleeve. The load moves up and down the central spindle. This 
additional downward force increases the speed of revolution required to enable the balls to 
rise to any pre-determined level.    

Consider the forces acting on one-half of the governor  

Let  m = Mass of each ball in kg, 

       w = Weight of each ball in newtons = 
m.g, 

      M = Mass of the central load in kg, 

       r = radius of rotation in metres, 

       h = Height of governor in metres, 

       N = Speed of the ball in rpm  

        ω = Angular speed of the balls in rad/s 

Fc = Centrifugal force acting on the ball in 

newtons 

T1 = Force in the arm in newtons, 

T2 = Force in the link in newtons    

α = Angle of inclination of the arm to the 

vertical 

β = Angle of inclination of the link to the vertical 

 
Method of resolution of forces 

Considering the resolution of forces acting at D 
 
 

 (i)                                                    

Again, considering the equilibrium of forces acting at B. The point B is in equilibrium 
under the action of following forces 

(i) The weight of the ball (w = m.g) 
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(ii) The centrifugal force (Fc) 

(iii) The tension in the arm (T1) 

(iv) The tension in the link (T2) 

Resolving the forces vertically 

                                           
T1 cos α = T2 cos β + w =         + m.g                                       (ii) 
                                             
Resolving the forces horizontally 
 
T1 sin α + T2 sin β = Fc                                             
 
                        M.g 
T1 sin α = Fc - -------- × tan β                                                 …(iii) 
                         2 
 
Dividing equation (iii) by equation (ii) 
                            
 
 
 
 
 

or 
 
 

Substituting                                       we have     
 
 
 
 
 
 
 
 
 
 
 

 
 
                                                                 
                                                                                                      (v) 
 
 
Notes:1. When the length of arms is equal to the length of links and the points P and D lie on 
the same vertical line, then  
tan α = tan β or q = tan α / tan β = 1, equation (v) becomes 
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2. When the loaded sleeve moves up and down the spindle, the friction force acts on it in a 
direction opposite to that of the motion of sleeve. 

If  F = Frictional force acting on the sleeve in newtons, then the equations (v) and (vi) may be 
written as 

 

 

 

 

The + sign is used when the sleeve moves upwards or the governor speed increases.  

On comparing the equation (vi) with equation (ii) of Watt’s governor, we find that the mass of 
the central load (M) increase the height of governor in the ratio (m + M) / m 

1.8 Proell Governor 

The Proell has the balls fixed at B and C to the extension of the links DF and EG. The arms 

FP and GQ are pivoted at P and Q respectively.  

Consider the equilibrium of the forces on one ball of the governor. The instantaneous centre 

(I) lies on the 

intersection of the line 

FP produced and the 

line from D drawn 

perpendicular to the 

spindle axis. The 

perpendicular BM is 

drawn on ID      

 

Taking moments 
about I 

 

 

 

 

 

2

.
. 1

8952

.

. . 895
( 1)

.

M g F
m g q

N
m g h

m g M g F
Whenq

m g h

 
  
  

 
  

2

.
. ( )

2

.
.

2

c

c

W
F BM w IM ID

M g
m g IM ID i

IM M g IM MD
F m g

BM BM

    

   

 
     

 

.
. ( )

2
c

IM M g IM MD
F m g ID IM MD

BM BM

 
      

 



 

7 

 

Multiplying and dividing by FM 

 

 

 

 

 

 

                                                        or 

 

1.9 Hartnell Governor:  

A Hartnell governor is a spring 
loaded governor. It consists of two bell 
crank levers pivoted at points O,O to 
the frame. The frame is attached to the 
governor spindle. A helical spring in 
compression provided equal 
downward forces on the two rollers 
through a collar on the sleeve.           

For minimum position 

 

 

For maximum position 
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For minimum position, taking moments about point O 
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For maximum position, taking moments about point O 

 

               

 

Subtracting 

 

 

S2 – S1 = h.s,      and   h = (r2 ─ r1) y/x 
 
 

 

Neglecting the obliquity effect of the arms and the moment due to weight of the balls,  

for  minimum position, 

 

 

Similarly for maximum position 

 

 

Subtracting 

 

 

We know that 

 

 

 

 

Since the stiffness of a given spring is constant for all positions, therefore for minimum and 
intermediate positions, 
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and for intermediate and maximum position, 

 

 

From the above equations 

 

 

or 

1.10 Hartung Governor:  

  In this types of governor, the vertical arms of bell crank levers are fitted with spring 
balls which compress against the frame of the governor when the rollers at the horizontal arm 
press against the sleeve. 

 

 

 

 

 

 

 

 

 

 

1.11 Sensitiveness of Governors 

 The sensitiveness is defined as the ration of the difference between the maximum and 
minimum equilibrium speeds to the mean equilibrium speed. 

Let  N1 = Minimum equilibrium speed, 
  N2 = Maximum equilibrium speed, 
 
N = Mean equilibrium speed 
 
      Sensitiveness of the governor 
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1.12 Stability of Governors 

A governor is said to be stable when for every speed within the working range there is 
a definite configuration i.e. there is only one radius of rotation of governor balls at which the 
governor is in equilibrium. For a stable governor if the equilibrium speed increases, the radius 
of governor balls must also increase. 

Note: A governor is said to be unstable, if the radius of rotation decreases as the speed 
increases.  

1.13 Isochronous Governors 

A governor is said to be isochronous when the equilibrium speed is constant (i.e. 
range of speed is zero) for all radii of rotation of the balls within the working range, neglecting 
friction. The isochronism is the stage of infinite sensitivity. 

1.14 Hunting 

A governor is said to hunt if the speed of the engine fluctuates continuously above and 
below the mean speed. This is caused by a too sensitive governor which changes the fuel 
supply by a large amount when a small change in speed of rotation takes place.  
 

1.15 Effort of a Governor  

The effort of a governor is the mean force exerted at the sleeve for a given percentage 
change of speed. When the governor is running steadily , there is no force at the sleeve. 
When the speed changes, there is a resistance at the sleeve which opposes its motion. It is 
assumed that this resistance which is equal to the effort, varies uniformly from a maximum 
value to zero when the governor moves to its new position of equilibrium.      

1.16 Power of a Governor 

The power of a governor is the work done at the sleeve for a given percentage change 
of speed. It is the product of mean value of the and the distance through which the sleeve 
moves. Mathematically, 

Power = Mean effort × lift of sleeve   

Example 1: A Porter governor has equal arms each 250 mm long and pivoted on the axis 

of rotation. Each ball has a mass of 5 kg and the mass of the central load on the sleeve is 25 
kg. the radius of rotation of the ball is 150 mm when the governor begins to lift and 200 mm 
when governor is at maximum speed. Find the minimum and maximum speeds and range of 
speed of the governor.                                                                                              K/661 

Solution:  
Minimum speed when r1 = 0.15 mm 
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Maximum speed when r2 = 0.2 m 
h2 = 0.15 m 
N2 = 154.5 rpm 
Range of speed = N2 – N1 = 38 rpm 

 
Example 2: In an engine governor of the Porter type, the upper and lower arms are 200 

mm and 250 mm respectively and pivoted on the axis of rotation. The mass of the central 
load is 15 kg, the mass of each ball is 2 kg and the friction of the sleeve together with the 
resistance of the operating gear is equal to a load of 24 N at the sleeve. If the limiting 
inclinations of the upper arms to the vertical are 30˚ and 40˚, find taking friction into account, 
range of speed.                                                                                                         K/663 

 
Solution:  
r1 = BP sin 30˚ = 0.1 m 
h1 = BP cos 30˚ = 0.1732 m 
 
 
tan β1 = BG/DG = 0.4348 
tan α1 = tan 30˚ = 0.5774 
 
 
 
 
 
N1 = 183.3 rpm 
r2 = BP sin 40˚ = 0.1532 m 
 
 
tan β2 = BG/DG = 0.59 
tan α2 = tan 40˚= 0.839  
 
 
 

Maximum speed is given by 
 
 
 
 
N2 = 222 rpm 
 
Range of speed = N2 – N1 = 38.7 rpm 
 
Example 3: All the arms of a Porter governor are 178 mm long and are hinged at a distance 
of 38 mm from the axis of rotation. The mass of each ball is 1.15 kg and the mass of the 
sleeve is 20 kg. The governor begins to rise at 280 rpm when the links are at an angle of 30˚ 
to the vertical. Assuming the friction force to be constant, determine the minimum and 
maximum speed of rotation when the inclination of the arms to the vertical is 45˚   
                                                                                                                                K/669/(S08)   
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Radius of rotation, r = BG = BF + FG 
= BP × sin α + FG = 127 mm 
Height of governor, h = BG/tan α = 0.22 m 
 
 
 
 
± F = 10 N 
When α = β = 45˚ 
 
r = BG = BF + FG = BP × sinα + FG = 164 mm 
Height of the governor, h = BG/tan α = 0.164 mm 
 
 
 
 
N1 = 309 rpm 
 
 
 
 
N2 = 324 rpm 
 
 
Example 4: In a Porter governor the upper and lower arms are each 250 mm long and are 
pivoted on the axis of rotation. The mass of each rotating ball is 3 kg and mass of the sleeve 
is 20 kg. the sleeve is in its lowest position when the arms are inclined at 30˚ to the governor 
axis. The lift of the sleeve is 36 mm. Find the force of friction at the sleeve, if the speed at the 
moment it rises from the lowest position is equal to the speed at the moment it falls from the 
highest position. Also, find the range of speed of the governor.    
                                                                                                                  K/727/Ex/(W08) 
Solution: Given: BP = BD = 250 mm;  
m = 3 kg; M = 20 kg; α1 = 30˚; Lift of sleeve = 36 mm 
h1 = BP cos 30˚ = 250 × cos 30˚ = 216.5 mm = 0.2165 m 
h2 = 0.2165 – 0.036/2 = 0.1985 m 
Speed when the sleeve rises = Speed when the sleeve falls 
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N1 – N2 = 190 – 174 = 16 rpm 
 
 
Example 5: A Proell governor has equal arms of length 300 mm. The upper and lower ends 
of arms are pivoted on the axis of the governor. The extension arms of lower links are each 
80 mm long and parallel to the axis when the radii of the balls are 150 mm and 200 mm. The 
mass of each ball is 10 kg and the mass of central load is 100 kg. Determine the range of 
speed of the governor.                                                                                                   K/671   

 
Solution: 
 
 
 
FM = 0.26 m, BM = 0.34 m 
 

 
 
 
h2 = PG =                                = 0.224  

 
FM = GD = PG = 0.224 mm 
BM = BF + FM = 0.0.304 mm 
 
 

 
 
 
Range of speed = N2 – N1 = 10 r.p.m. 
 
 
Example 6: A governor of the Proell type has each arm 250 mm long. The pivots of the 
upper and lower arms are 25 mm from the axis. The central load acting on the sleeve has a 
mass of 25 kg. When the governor sleeve is in mid-position, the extension link of the lower 
arm is vertical and the radius of the path of rotation of the masses is 175 mm. the vertical 
height of the governor is 200 mm. If the governor speed is 160 r.p.m. when in mid-position, 
find: 1. length of extension link; and 2. tension in the upper arm. 
                                                                                                                                  K/673 
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Solution:  

1. Length of the extension link 
 

 
 
BM = 0.308 m 
BF = BM – FM = 0.108 m = 108 mm 

2. Tension in the upper arm 
 

 
 
cos α = PK/PF = 0.8 
 
 
T1 =192.5 N 
 
 
Example 7: The mass of each ball of a Proell governor  is 3 kg and the weight on the sleeve 
is 20 kg. Each arm is 220 mm long and the pivots of the upper and the lower arms are 20 mm 
away from the axis. For the mid position of the sleeve, the extension links of the lower arms 
are vertical, the height of the governor is 180 mm and the speed is 150 rpm. Determine the 
lengths of the extension links and the tension in the upper arms.     
                     
                                                                                                        (W 07)  R/595/Exercise 
 
 
 
 
 
 
 
 
 
 
 
Example 8: A Hartnell governor having a central sleeve spring and two right-angled bell 
crank levers between 290 r.p.m. and 310 r.p.m. for a sleeve lift of 15 mm. The sleeve arms 
and the ball arms are 80 mm and 120 mm respectively. The levers are pivoted at 120 mm 
from the governor axis and mass of each ball is 2.5 kg. The ball arms are parallel to the 
governor axis at the lowest equilibrium speed. Determine : 1. loads on the spring at the 
lowest and the highest equilibrium speeds and 2. stiffness of the spring.  
                                                                                                                                  K/680   
Solution: 
 

1. Loads on the spring at the lowest and highest equilibrium speeds  
Centrifugal force at the minimum speed 
Fc1 = m (ω1)2 r1 = 277 N 
 

2

2

895FM m M
N

BM m h

 
  

 

       
2 2 2 2

200PK PF FK PF FG KG mm     

1 cos 154
2

Mg
T mg N   

 2 1

2 1 0.1425

y
h r r

x

x
r r h

y

 

  
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Centrifugal force at the 
maximum speed 
Fc2 = m (ω2)

2 r2 = 376 N 
Neglecting the obliquity 
effect of arms and the 
moment due to the 
weight of the balls, for the 
lowest position 
                                              
 
S1 = 831 N 
and for highest position 
 
 
S2 =1128 N 
Stiffness of the spring 

 
 
 
 
Example 9: In a spring loaded Hartnell type governor , the extreme radii of rotation of the 
balls are 80 mm and 120 mm. The ball arm and sleeve arm of the bell crank lever are equal 
in length. The mass of each ball is 2 kg. If the speeds at the two extreme positions are 400 
and 420 r.p.m., find: 1. the initial compression of central spring, and 2. the spring constant.
                                                                                   K/681/(S 08)   
 
Solution:  
Initial compression of the central spring 
     Fc1 = m (ω1)2 r1 = 281 N 
     Fc2 = m (ω1)

2 r2 = 465 N 
For minimum position 
 
 
S1 = 562 N 
 
For maximum position 
 
 
 
S2 = 562 N 
 
Lift of the sleeve 
 
 
 
 
Stiffness of the spring 
 
 

1 1. 2 831c

x
M g S F N

y
   

2 2. 2 1128c

x
M g S F N

y
   

1 2 19.8 /
S S

s N mm
h


 
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x
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y
  
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x
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2 1( ) 40
x

h r r mm
y
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Initial compression of the central spring 
 
 
 
2. Spring constant 
 
s = 9.2 N/mm 
 
Example 10: A spring loaded governor of the Hartnell type has arms of equal length. The 
masses rotate in a circle of 130 diameter when the sleeve is in the mid position and the ball 
arms are vertical. The equilibrium speed for this position is 450 r.p.m., neglecting friction. The 
maximum speed movement is to be 25 mm and the maximum variation of speed taking into 
account the friction to be 5 % of the mid position speed. 
The mass of the sleeve is 4 kg and the friction may be considered equivalent to 30 N at the 
sleeve. The power of the governor must be sufficient to overcome the friction by 1per cent 
change of speed either way at mid-position. Determine, neglecting obliquity effect of arms; 
The value of each rotating mass; 2. the spring stiffness in N/mm; and 3. The initial 
compression of spring.                                                 K/682 
 
 
Solution:  
Minimum speed at mid position    ω1 = 0.99ω = 46.66 rad/s 
 Maximum speed at mid position               ω2 = 1.01ω = 47.6 rad/s 
Centrifugal force at the minimum speed   Fc1 = m (ω1)

2 r = 141.5 m N 
Centrifugal force at the maximum speed   Fc2 = m (ω2)

2 r = 147.3 m N 
For minimum speed at mid-position   S + (M.g – F) = 2 Fc1 × x/y or S + 9.24 = 283 m    (i) 
For maximum speed at mid-position   S + (M.g + F) = 2 Fc2 × x/y or S + 69.24 = 294 m        (ii) 
From (i) and (ii) 
M = 5.2 kg 
2. Spring stiffness in N/mm 
Minimum speed considering friction    ω1‘= ω – 0.05ω = 44.8 rad/s  
Maximum speed considering friction    ω1‘= ω + 0.05ω = 49.5 rad/s  
Minimum radius of rotation considering friction    r1 = r – h1 × x/y = 0.0525 m 
Maximum radius of rotation considering friction    r2 = r – h2 × x/y = 0.0775 m 
Centrifugal force at minimum speed considering friction  Fc1’ = m (ω1’)

2 r1 = 548 N 
Centrifugal force at maximum speed considering friction  Fc2’ = m (ω2’)

2 r2 = 987 N 
For minimum speed considering friction          S1 + (M.g – F) = 2 Fc1’ × x/y  or S1 = 1086.76 N 
For maximum speed considering friction          S2 + (M.g – F) = 2 Fc2’ × x/y or S2 = 1904.76 N 
Stiffness of spring 
 
 
Initial compression of the spring 
 
 
Example 11: The arms of a Hartnell governor are of equal length. When the sleeve is in the 
mid-position, the masses rotate in a circle with a diameter of 150 mm (the arms are vertical in 
mid-position). Neglecting friction the equilibrium speed for this position is 360 rpm. Maximum 
variation of speed, taking friction into account , is to be 6% of the mid-position speed for a 

1 61
S

mm
s


2 1 32.72 /
S S

s N mm
h


 

1 33.2
S

mm
s

 
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maximum sleeve movement of 30 mm. The sleeve mass id 5 kg and the friction at the sleeve 
is 35 N.                 
Assuming that power of a governor is sufficient to overcome the friction by 1% change of 
speed on each side of the mid-position, find (neglecting obliquity effect of arms), the  

(i) mass of each rotating ball 
(ii) spring stiffness 
(iii) initial compression of the spring                             (W 07)  R/572   

 
Solution: Given: x = y; d = 150 mm or r = 75 mm = 0.075 mm; N = 360 rpm;  
ω = 2π N/60 = 37.7 rad/s; h = 30 mm = 0.03 m; M = 5 kg; F = 35 N. 

1. Value of each rotating mass 
Let m = Value of each rotating mass in kg,  
      S = spring force on the sleeve at mid position in newtons.    
Since the change of speed at mid position to overcome friction is 1 % either way, therefore 
Minimum speed at mid position   ω1 = ω – 0.01ω = 0.99ω rad/s 
Maximum speed at mid position   ω2 = ω + 0.01ω = 1.01ω rad/s 
For minimum speed at mid position  S + (M.g – F) = 2Fc1 × x/y          (i) 
For maximum speed at mid position   S + (M.g + F) = 2Fc2 × x/y          (ii) 
Subtracting (ii) from (i) 2F = 2 (Fc2 – Fc1) or F = m (ω2

2 – ω1
2) r 

  35 = m  × 37.72 ( 1.012 – 0.992) 0.075 or   m = 8.21 kg 
2. Spring stiffness in N/mm 
Let s = spring stiffness in N/mm 
Since the maximum variation of speed, considering friction is ± 6% of the mid position speed, 
therefore 
Minimum speed considering friction ω1

’ = ω – 0.06ω = 0.94ω = 35.44 rad/s 
Maximum speed considering friction ω2

’ = ω + 0.06ω = 1.06ω = 39.96 rad/s 
 
Minimum radius of rotation considering friction 
 
 
Maximum radius of rotation considering friction 
 
Centrifugal force at the minimum speed considering friction 
F’c1= m (ω’1)

2 r1 = 8.21 (35.44)2 0.06  = 618.7 N  
Centrifugal force  at the maximum  speed considering friction 
F’c2= m (ω’2)

2 r2 = 8.21 (39.96)2 0.09  =1179.88 N  
Let  S1 = Spring force at minimum speed considering friction 
       S2 = Spring force at maximum speed considering friction 
For minimum speed considering friction 
S1 + (M.g – F) = 2 Fc1’ × x/y 
S1 + (5 × 9.81 – 35) = 2 × 618.7 or  S1 = 1223.35 N 
For maximum speed considering friction 
S2 + (M.g – F) = 2 Fc2’ × x/y 
S1 + (5 × 9.81 + 35) = 2 × 1179.88 
S2 = 2275.71 N 

Stiffness of spring 
 
 
 

1 1

0.03
0.075 0.06

2

x
r r h m

y
     

2 2

0.03
0.075 0.09

2

x
r r h m

y
     

2 1 2275.71 1223.35
35.078 /

30

S S
s N mm

h

 
  
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Initial compression  
 
 
 
 
Example 12: Each arm of a Porter governor is 250 mm long and is pivoted on the axis of 
rotation. The mass of each ball is 5 kg and the sleeve is 25 kg. The sleeve begins to rise 
when the radius of rotation of the balls is 150 mm and reaches the top when it is 200 mm. 
Determine the range of speed, lift of the sleeve, governor effort and power. In what way are 
these values changed if friction at the sleeve is equivalent to 10 N. 
                                                                                                     (W 07)  R/596/Exercise                
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Example 13: A Porter governor has equal arms each 250 mm long and pivoted on the axis of 
rotation. Each ball has a mass of 5 kg and the mass of the central load on the sleeve is 25 
kg. The radius of rotation of the ball is 150 mm when the governor begins to lift and 20 mm 
when governor is at maximum speed. Find the range of speed, sleeve lift, governor effort and 
power of the governor in the following cases: 

1. When the friction at the sleeve is neglected. 
2. When the friction at the sleeve is equivalent to 10 N.                                (K/704) 

 
 
 
 
 
 
 

1 1223.35
34.87

35.078

sF
or mm

s
 
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Solution:  
When the friction at the sleeve is 
neglected 
 
 
 
 
    

 

 

 

 

Range of speed = N2 – N1 = 25 rpm 
Sleeve lift x = 2 (h1 – h2) = 0.1 m 
Governor effort 
c.N1 = N1 – N2,      c = 0.152 
Governor effort P = c (m + M) g = 44.7 N   
Power of the governor P x = 4.47 N 
2. When friction at the sleeve is taken into account 
 
 
 
N1 = 192.4 rpm 
Range of speed = 31. 4 rpm 
Sleeve lift = 0.1 m 
Governor effort, 
c.N1 = N2 – N1 =31.4 rpm 
C = 0.195 
Governor effort, P = c (m.g + M.g + F) = 57.4 N 
Power of the governor = P. x 
                                     = 5.75 N-m    
Example 14: The radius of rotation of the balls of a Hartnell governor is 80 mm at the 
minimum speed of 300 rpm. Neglecting gravity effect, determine the speed after the sleeve 
has lifted by 60 mm. Also determine the initial compression of the spring, the governor effort 
and the power. The particulars of the governor are given below: 
Length of the ball arm = 150mm; length of the sleeve arm = 100 mm; mass of each ball 
 = 4 m kg and stiffness of the spring.   
                                                                                                                           
K/707/(W 08)     
Solution:  
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Fc1 = m (ω1)
2 r1 = 316 N 

Taking moments about fulcrum O 

 

 

S2 = S1 +h.s = 2448 N 

Centrifugal force at the maximum speed, 

  

 

Taking moments when in maximum position 

 

N2 = 331 rpm 

Initial compression of the spring 

S1/s = 37.92 

Governor effort,  

 

 

Governor power = P× h= 45 N-m 
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UNIT – II 

BALANCING    

2.1 Introduction 

 If all the rotating and reciprocating parts of a high speed engines and other machines 
are not balanced, the dynamic forces are set up which increase the loads on bearings and 
stresses in various members. These forces also produce unpleasant and even dangerous 
vibrations. 

2.2 Balancing of Rotating Masses 

 Whenever a certain mass is attached to a rotating shaft, it exerts some centrifugal 
force. Its effect is to bend the shaft and to produce vibrations in it. In order to prevent this 
effect another mass is attached to the opposite side of the shaft. Centrifugal of both the 
masses are made to be equal and opposite. 

2.3 Balancing of a Single Rotating Mass by a Single Mass Rotating in the same plane. 

 Centrifugal force due to disturbing mass is equal to centrifugal force due to balancing 
mass. 

Fc1 = Fc2    or  m1.ω
2.r1 = m2.ω

2.r2 

 

2.4 Balancing of a Single Rotating Mass by 
Two Masses Rotating in Different Planes.
  

 By introducing a single balancing mass 
in the same plane of rotation as that of 
disturbing mass, the centrifugal forces are 
balanced. But this type of arrangement gives rise to a couple which tends to rock the shaft in 
its bearings. Therefore in order to put the system in complete balance, the two balancing 
masses are placed in two different planes in such a way that they satisfy the following two 
conditions of equilibrium. 

1. The net dynamic force acting on the shaft is equal to zoro. This requires that the centre of 
the masses of the system must lie on the axis of rotation. This is the condition for static 
balancing.   

2. The net couple due to the dynamic forces acting on the shaft is equal to zero. 

 The conditions (1) and (2) together give dynamic balancing. The following are two 
possible methods of attaching the two balancing masses. 

1. The plane of the disturbing mass may be in between the planes of two balancing 
masses. 

2. The plane of the disturbing mass may be on the left or right of the two planes 
containing the balancing masses.  
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The two conditions are discusses below. 

1. When the plane of the disturbing mass lies in between the planes of the two balancing 
masses. 

The net force acing on the shaft must be equal to zero, therefore the centrifugal force 
on the disturbing mass must be equal to the sum of the centrifugal forces on the balancing 
masses, therefore 

Fc = Fc1 + Fc2     or m.ω2.r = m1.ω
2.r1 + m2.ω

2.r2 

m.r = m1.r1 + m2.r2                                                                (i) 

Taking moments about P 

                     Fc1 × l = Fc × l2   or                                                    (ii)                                                      

In order to find the balancing force in the plane M, take moments about Q. 

Therefore 

                      Fc2 × l = Fc × l1   or                                                 (iii)    

Equation (i) represents condition for static balancing .For dynamic balance equations 
(ii) and (iii) must be satisfied. 

 

2. When the plane of the disturbing mass 
lies on one end of the planes of the 
balancing masses. 

The following conditions must be 
satisfied in order to balance the system 

m.r = m2.r2 = m1.r1 

Balancing mass in the plane L is 
given by the equation 

 

Balancing mass in the plane 
M is given by the equation. 
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2.5 Balancing of Several masses rotating in the Same Plane 

 

Resolve the centrifugal forces 
horizontally and vertically and find 
their sum. 

Sum of the horizontal 
components of the centrifugal forces 

ΣH = m1.r1 cosө1 + m2.r2 cosө2 + 
… 

Sum of the vertical components of the centrifugal forces 

ΣV = m1.r1 sinө2 + m2.r2 sinө2 + … 

Magnitude of the resultant centrifugal force 

2 2( ) ( )cF H V     

If ө is the angle which the resultant force makes with the horizontal, then 

 

The balancing force is then equal to the resultant force, but in opposite direction 

 

2.6 Balancing of Several Masses Rotating in Different Planes 

  When several masses revolve in different Planes, they may be transferred to a 
reference plane. The following two conditions must be fulfilled 

1. The forces in the reference plane must balance. 
2. The couples about the reference plane must balance. 

 

tan ( ) / ( )H V   
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Couple vector diagram 

Couple polygon 

Force  polygon 

Angular position of the masses 

Couple vector diagram 

Couple vector turned counter 

clockwise through a right angle 
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2.7 Balancing of Reciprocating Masses.  

 

Consider a horizontal reciprocating 
engine mechanism. 

Let  FR = Force required to 
accelerate the reciprocating parts 

 FI = Inertia force due to 
reciprocating parts. 

FN = Force on the side of the cylinder walls or normal force acting on the cross-  

                head guides.   

  FB = Force acting on the crankshaft bearing or main bearing. 

 FR and FI balance each other. 

The force FBH = FU is an unbalanced force or shaking force and is required to be 
properly balanced.  

The force on the side of the cylinder walls (FN) and the vertical component of FB (FBV) 
are equal and opposite and thus form a shaking couple of magnitude FN × x or FBV × x. 
Shaking force and shaking couple cause very objectionable vibrations. 

2.8 Primary and Secondary Unbalanced Forces of Reciprocating  

         Masses. 

Consider a reciprocating engine mechanism.  

Let  m = mass of the reciprocating parts 

 l = length of the connecting rod PC  

 r = radius of the crank PC 

 ө = Angle of inclination of crank with the line of stroke PO, 

 ω = Angular speed of the crank, 

 n = ratio of length of connecting rod to the crank radius = l/r 

Acceleration of the reciprocating parts is given by the relation 

 

 

 Inertia force due to reciprocating parts 

 

2 cos 2
. cosRa r

n
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 
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Fl = FR = mass × acceleration  

 

Horizontal component of the force exerted on the crankshaft bearing (FBH) is equal and 
opposite to the inertia force (FI) and is denoted by FU 

 

FU  

 

The expression                           is known as primary unbalanced force and 

                                   Is called secondary unbalanced force  

The primary unbalanced force is maximum when ө = 0˚ or 180˚. 

The secondary unbalanced force is maximum when ө = 0˚, 90˚. 180˚ or 270˚. 

2.9 Partial Balancing of Unbalanced force in a Reciprocating Engine   

The primary unbalanced force (m.ω2.r cos ө) may be considered as the component of 
the centrifugal force produced by a rotating mass m placed at the crank radius r. 
Balancing of primary force is considered as equivalent to balancing of a mass m rotating 
at the crank radius r. This is balanced by having a mass B at radius b, placed 
diametrically opposite to the crank pin C. 

The primary force is balanced if B.ω2.bcos Ө = m.ω2.r cos Ө    or B.b = m.r. 

The centrifugal force produced due to revolving mass B has also a vertical component 
of magnitude B.ω2.b.sinӨ. This force remains unbalanced. As a compromise let a fraction 
‘c’ of the reciprocating masses is balanced, such that 

c.m.r = B.b 

Unbalanced force along the line of stroke 

= m.ω2.r cos Ө – B.ω2.b.cos Ө = m.ω2.r cos Ө – c.m.ω2.r cos Ө 

= (1 – c) m.ω2.r cos Ө 

And unbalanced force along the perpendicular to the line of stroke  

= B.ω2.b.sin Ө = c.m.ω2.b.sin Ө 

Resultant unbalanced force at any moment 
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2.10 Partial Balancing of Locomotives 

The two cylinder locomotive may be classified as: 

1. Inside cylinder locomotives 
2. Outside cylinder locomotives. 

The locomotives may be  

(a) Single or uncoupled locomotives 
(b) Coupled locomotives 

 

In coupled locomotives the driving wheels are connected to the trailing and leading 
wheels by an outside coupling rod.       

2.11 Effect of Partial Balancing of Reciprocating Parts of Two Cylinder 
Locomotives. 

Due to partial balancing of the reciprocating parts, there is an unbalanced primary force 
along the line of stroke and also an unbalanced primary force perpendicular to the line of 
stroke. The effect of an unbalanced primary force along the line of stroke is to produce; 

1. Variation in tractive force along the line of stroke; and 2. Swaying couple. 
2. The effect of an unbalanced force primary force perpendicular to the line of stroke is 

to produce variation in pressure.on the rails. The maximum magnitude of the 
unbalanced force perpendicular to the line of stroke is known as hammer blow. 

Variation of Tractive Force 

Unbalanced force along the line of stroke for cylinder 1 

= (1 – c) m.ω2.r cos Ө 

Unbalanced force along the line of stroke for cylinder 2 

= (1 – c) m.ω2.r cos (90˚ + Ө) 

 

Tractive force FT = (1 – c) m.ω2.r (cos Ө – sin Ө) 

The tractive force is maximum or minimum when (cos Ө – sin Ө) is maximum or 
minimum. 

(cos sin ) 0
d

d
 


 
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∴                                or Ө = 135˚ or 315˚ 

Maximum or minimum value of tractive force 

= ± (1- c) m.ω2.r (cos 135˚ - sin 135˚) 

= ± √2 (1– c) m.ω2.r 

2.13 Swaying Couple 

  The unbalanced forces along the line of stroke for the two cylinders constitute a couple 
about thr centre line YY between the cylinders. 

This couple has swaying effect about a vertical axis. 

 

 

 

 

 

 

 

Swaying couple 

  

The swaying couple is maximum or minimum when (cos Ө + sin Ө) is maximum or 
minimum . 

  he swaying couple is maximum or minimum when Ө = 45˚ or 225˚. 

Maximum and minimum value of swaying couple 

   

 

2.12 Hammer Blow 

Hammer blow = B.ω2.b 

The effect of hammer blow is to cause 
the variation in pressure between the 
wheel and the rail.  

Let P be the downward pressure on 
the rails (or static wheel load). 
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Net pressure between the wheel and the rail = P ± B.ω2.b. 

If (P – B.ω2.b) is negative, then the wheel will be lifted from the rail.. Therefore the 
limiting condition that the wheel is not lifted from the rail is given by 

P = B.ω2.b 

                                           .

P

B b
   

 2.15 Balancing of Coupled Locomotives 

 In a coupled locomotive, the driving wheels are connected to the leading and trailing 
wheels by an outside coupling rod. The coupling rod cranks are placed diametrically 
opposite to the adjacent main cranks. 

2.16 Balancing of Primary Forces of Multi-cylinder In-line Engines      

 The multi-cylinder engines with the cylinder centre lines in the same planes and on the 
same side of the centre line of the crankshafts, are known as In-line engines. The following 
two conditions must be satisfied in order to give the primary balance of the reciprocating 
parts. 

1. The algebraic sum of the primary forces must be equal to zero. 
2. The algebraic sum of the couples about any point in the plane of the primary forces 

must be equal to zero. 

In order to give the primary balance of reciprocating parts of a multi-cylinder , it is 
convenient to imagine the reciprocating masses to be transferred to their respective 
crankpins and to treat the  problem as one of revolving masses. 

Notes: 1. For a two cylinder engine with cranks at 180˚, condition (1) may be satisfied, 
but an unbalanced couple will remain. 

2. For a three cylinder engine with cranks at 120˚ and same reciprocating masses per 
cylinder , condition (1) will be satisfied but unbalanced couples will remain. 

  3. For a four cylinder engine, primary balance is possible. 

For a four-cylinder engine, the primary forces may be completely balanced by suitably 
arranging the crank  angles, provided the number of cranks are not less than four. 

2.17 Balancing of Secondary Forces of Muti-cylinder In-line Engines 

Secondary Force = 

 The expression may be written as 
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The secondary forces may be considered to be equivalent to the component, parallel 
to the line of stroke, of the centrifugal force produced by an equal mass placed by an 
imaginary crank of length r/4n and revolving at twice the speed of the actual crank  

2.18 Balancing of Radial Engines (Direct and Reverse Cranks Method) 

       The Primary Forces 

Let us suppose that mass (m) of the reciprocating parts is divided into two parts, each 
equal to m/2. It is assumed that that m/2 is fixed at the primary direct crank pin C and 
m/2 at the secondary reverse crank pin C’. 

The centrifugal force acting on the primary direct and reverse crank =    

    Component of the centrifugal force acting on the primary direct crank  

   

 

and component of the centrifugal force acting on the primary reverse crank  

 

Total component of the centrifugal force acting along the line of stroke 

 

 

Secondary Forces 

Secondary Force  

 

2.19 Balancing of V-engines 

Inertia force due to reciprocating 
parts  

due to cylinder 1 

 

 

Inertia force due to reciprocating 
parts due to cylinder 2 
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Primary forces 
Primary forces acting along the line of stroke of cylinder 1,FP1 = m.ω2 r cos(α – Ө) 
 
Component of FP1 along the vertical line OY 

 
FP1 cos α = m.ω2 r cos(α – Ө) cos α  

 
Component of FP1 along the horizontal line OX 

 
FP1 sin α = m.ω2 r cos(α – Ө) sin α  

 

Primary forces acting along the line of stroke of cylinder 2, FP2 = m.ω2 r cos(α + Ө) 
 
 
 
 
Component of FP2 along the vertical line OY, FP2 cos α = m.ω2 r cos(α + Ө) cos α  

Component of FP1 along the horizontal line OX’ FP2  sin α = m.ω2 r cos (α + Ө) sin α  

Total component of primary force along the horizontal line OX 

= m.ω2 r cos α [cos(α – Ө) – cos( α +Ө) 

= m.ω2 r cos α × 2 cosα cos Ө 

= 2m. ω2.r cos2 α.cos Ө  

Resultant primary force 

 
 

 

Secondary forces 
Secondary force acting along the line of stroke of cylinder 1, 
 
 
  
Component of FS1 along the vertical line OY 
  
 
 
 
 
Component of FS1 along the horizontal line OX 
 
 
 
Secondary force acting along the line of stroke of cylinder 2, 
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Component of FS2 along the vertical line OY 
 
 
Component of FS2 along the Horizontal  line OX’ 
 
 
Total component of secondary force along the vertical line OY,  
 
 

 

Total component of secondary force along the vertical line OX’,  

 
 
 
 
 
Resultant secondary force 
 
 

 

 

Example 1: Four masses m1, m2, m3 and m4 are 200 kg, 300 kg, 240 kg and 260 kg 
respectively. The corresponding radii of rotation are 0.2 m. 0.15 m, 0.25 m and 0.3 m 
respectively. And the angles between the successive masses are 45˚, 75˚ and 135˚. 
Find the position and magnitude of the balance mass required if the radius of rotation is 
0.2 m.   

 

 

Example 2: A single cylinder reciprocating engine has speed 240 r.p.m., stroke 300 
mm, mass of reciprocating parts 50 kg,, mass of revolving parts at 150 mm radius 37 kg. 
If two-third of reciprocating parts and all the revolving  parts are to be balanced, find: 1. 
The balance mass required at a radius of 400 mm, and 2. The residual unbalanced force 
when the crank has rotated 60˚ from top dead centre.     

Solution: 

1, Balance mass required 

2. Residual unbalanced force 

Residual unbalanced force   = 712.2 N                                            

B = 26.38 kg Ans. 
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Example 3: A shaft carries four masses A, B, C and D of magnitude 200 kg, 300 kg, 400 
kg and 200 kg respectively and revolving at radii 80 mm, 70 mm,C to  60 mm and 80 mm 
in planes measured from A at 300 mm, 400 mm and 700 mm. The angles between the 
cranks measured anticlockwise are A to B 45˚, B to C 70˚ and C to D 120˚ The balancing 
masses are to be placed in planes X and Y. the distance between the planes A and X are 
100 mm, between X and Y is 400 mm and between Y and D is 200 mm. If the balancing 
masses revolve at a radius of 100 mm, find their magnitudes and angular positions. 

Solution. 

Plane 
 

(1) 

Mass (m) 
kg 
(2) 

Radius (r) 
m 
3) 

Cent. force‚ω2 

(m.r) kg-m 
(4) 

Distance from 
Plane x(l) m 

(5) 

Couple‚ω2 

(m.r.l) kg-m2 

(6) 

   A 200 0.08 16 0.1 1.6 

X(R.P.) mx 0.1 0.1mx 0 0 

B 300 0.07 21 0.2 4.2 

C 400 0.06 24 0.3 7.2 

Y my 0.1 0.1my 0.4 0.04mY 

D 200 0.08 16 0.6 0.6 

 

The vector d’o’ represents the balanced couple. Since the balanced couple is proportional 
to 0.04 mY , therefore by measurements 

0.04 mY = vector d’o’ = 7.3 kg.m2    or mY = 182.5 kg. 

The angular position of mY is    өY = 12˚ in the clockwise direction from mass mA. 

From force polygon by measurements 

0.1 mX = vector eo = 35.5 kg-m   or mX = 355 kg .   

By measurement, the angular position of mX is ӨX = 145˚ in the clockwise direction from 
mass mA  

 

Example 3: An inside cylinder locomotive has its cylinder centre lines 0.7 m apart and 
has a stroke of 0.6 m. The rotating masses per cylinder are equivalent to 150 kg at the 
crank pin, and the reciprocating masses per cylinder to 180 kg. The wheel centre lines 
are 1.5 m apart. The cranks are at right angles. 

 The whole of the rotating masses and 2/3 of the reciprocating masses are to be 
balanced by masses placed at a radius of 0.6 m. Find the magnitude and direction of the 
balancing masses. 

 Find the fluctuation in rail pressure under one wheel, variation of  tractive effort and the 
magnitude of swaying couple at a crank speed of 300 r.p.m. 
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Solution:  

Example: The following particulars relate to a two cylinder locomotive with two coupled 
wheels on each side: 

 Stroke        = 650 mm 

 Mass of reciprocating parts per cylinder   = 240 kg 

 Mass of revolving parts per cylinder   = 200 kg 

 Mass of each coupling rod     = 250 kg 

 Radius of centre of coupling rod pin   = 250 mm 

 Distance between cylinders    = 0.6 m 

 Distance between coupling rods    = 1.8 m 

 The main cranks are at right angles and the coupling rod pins are at 180˚ to their 
respective main cranks. The balance masses are to be placed at the wheels at a mean 
radius of 675 mm in order to balance whole of the revolving and 3/4th of the 
reciprocating masses. The balance mass for the reciprocating masses is to divided 
equally between the driving wheels and the coupled wheels. Find: 1. The magnitude and 
angular position of the masses required for the driving and trailing wheels, and  2. The 
hammer blow at 120 km/h, if the wheels are 1.8 metre diameter. 

Solution: 

 

 

 

 

 

 

 

 

 

Example 4: A four cylinder vertical engine has cranks 150 mm long. The planes of the 

rotation of the first, second and fourth cranks are 400 mm, 200 mm and 200 mm 
respectively from the third crank and their reciprocating masses are 50 kg, 60 kg and 50 
kg respectively. Find the mass of the reciprocating parts for the third cylinder  and the 
relative angular positions of the cranks in order that the engine may be in complete 
primary balance.  
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Solution: 

Plane 
 

(1) 

Mass (m) 
kg 
(2) 

Radius  
(r) m 
(3) 

Cent. Force ‚ ω2 
(m.r) kg-m 

(4) 

Distance from 
plane 3(l) m 

(5) 

Couple‚ω2 
(m.r.l) kg-m2 

(6) 

1 50 0.15 7.5 –0.4 -3 

2 60 0.15 9 –0.2 -1.8 

3(R.P.) m1 0.15 0.15m3 0 0 

4 50 0.15 7.5 0.2 1.5 

 

Ө2 = 160˚, Ө4 = 26˚, m3 = 60 kg, Ө3 = 227˚ 

 

Example 6: A vee-twin engine has the cylinder axis at right angles and the connecting 
rods operate a common crank. The reciprocating mass per cylinder is 11.5 kg and the 
crank  radius id 75 mm. The length of the connecting rod is 0.3 m. Show that the engine 
may be  

Solution: 

 

 

This is maximum when sin 2Ө is maximum i.e. when 2Ө = ±1 or Ө = 45˚ or 135˚. 

Maximum resultant secondary force = 8.36 N. 
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Unit – 3 

Gyroscope 

3.1 Introduction. 1.When a body moves along a curved path, a force in the direction of 

centripetal acceleration (centripetal force ) has to be applied externally. This external force is 
known as active force. 

2. When a body is moving along a circular path, it is subjected to the centrifugal force radially 
outwards. This centrifugal force is known as reactive force. 

Note: Whenever the effect of any force or couple is to be considered, it should be with 
respect to reactive force. or couple. 

3.2 Precessional Angular Motion 

Consider a disc spinning about the axis OX (axis of spin) with an angular velocity ω. After a 
short interval of time δt, let the disc be spinning about the new axis of spin OX’ 

Total angular acceleration of the disc   

 

 

Angular velocity of the 
axis of spin is known as 
angular velocity of 
precession. The axis about 
axis of spin is to turn is 
known as axis of 
precession.  

If the angular velocity of the disc changes direction but remains constant in magnitude, 
then angular acceleration of the disc is given by 

αc = ω.dӨ/dt = ω.ωP 

The angular acceleration αc is known as gyroscopic acceleration.  

3.3 Gyroscopic Couple 

Consider a disc spinning with an angular 
velocity ω rad/s. 

Angular momentum of the disc = I.ω 

The couple applied to the disc causing 
precession 

C = I.ω.ωP 

The couple  I.ω.ωP in the direction of the  

. P

d

dt


 
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vector xx’ (representing the change in  

angular momentum) is the active gyroscopic couple 
which has to be applied over the disc. 

When  the axis of spin moves with an angular velocity 
ωP, the disc is subjected to reactive gyroscopic couple 
which is opposite in direction to that of active couple.      

3.4 Effect of the Gyroscopic Couple on an Aeroplane 

Let  ω = Angular velocity of the engine in rad/s, 

 m = mass of the engine and propeller in kg,   

 k = Its radius of gyration in metres, 

 I – Mass moment of inertia of the engine and propeller in kg-m2 = m.k2 

 v = Linear velocity of the aeroplane in m/s 

 R = radius of curvature in metres, and  

 ωP = Angular velocity of precession = 
 

 
   rad/s 

Notes: 

1. When the aeroplane takes a 
left turn, the effect of the 
reactive gyroscopic couple 
will be to raise the nose and 
dip the tail.  

2. When the aeroplane takes a 
right turn, the effect will be to 
dip the nose and raise the tail. 

3. When the engine rotates in 
anticlockwise direction when 
viewed from the front and the 
aeroplane takes a left turn, 
the effect will be to raise the 
tail and dip the nose.  

4. When the aeroplane takes a 
right turn and the engine rotates 
in anticlockwise direction, the 
effect will be to raise the nose 
and dip the tail. 

5. When the engine rotates in 
clockwise direction and the aeroplane takes a left turn, the effect will be to raise the tail 
and dip the nose. 

6. When the aeroplane takes a right turn and the engine rotates in clockwise direction, the 
effect will be to raise the nose and dip the tail. 
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3.5 Effect of Gyroscopic Couple on a Naval Ship during Steering 

1. When the rotor of the ship rotates in the clockwise direction when viewed from the 
stern, and the ship steers to the left, the effect of the reactive gyroscopic couple is to 
raise the bow and lower the stern. 

2. When the ship steers to the right and the rotor rotates in the clockwise direction, the 
effect will be to raise the stern and lower the bow. 

3. When the rotor rotates in the anticlockwise direction and the ship steers to the left and 
the effect will be to lower the bow and raise the stern 

 
 

 
 
 
 

 
 

3.6 Effect of Gyroscopic Couple on a Naval Ship during Pitching 

Pitching is the movement of a complete ship up and down in a vertical plane about 
transverse axis. The pitching of the ship is assumed to takes place with simple harmonic 
motion. 

Angular displacement of the axis of spin 
from mean position after time t seconds 

Ө = ф sin ω1.t 

where ф = Amplitude of swing,  tp 

  ω1 = Angular velocity of S.H.M.  

       = 
  

                               
  =
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   Maximum angular velocity of precession  

ωPmax = ф.ω1 = ф × 2π/tP 

Maximum gyroscopic couple Cmax = I. ω. ωPmax 

When the pitching is upward, the reactive gyroscopic couple will try to move the ship 
toward star-board. If the pitching is downward, the effect is to turn the ship towards port 
side. 

Note: There is no effect of the gyroscopic couple acing on the body of the ship. 

 

3.7 Stability of  a Four Wheel Drive Moving in a Curved Path 

Let  m = Mass of the vehicle in kg,  

W = Weight of the vehicle in newtons =m.g, 

rW = Radius of the wheels in metres, 

R = Radius of curvature in metres, 

h = Distance of c.g. vertical above the road surface in metres, 

x = Width of track in metres,  

I = Mass moment of inertia of one of the wheels in kg-m2, 

ωW = Angular velocity of the wheels, 

I =    Mass moment of inertia of the rotating parts of the engine 
in rad/s, 

G = gear ratio = ωE/ωW 

v = Linear velocity of the vehicle in m/s = ωW.rW 

1. Effect of the gyroscopic couple  

Velocity of precession  

ωP = v/R 

Gyroscopic couple due to four wheels, 

CW = 4IW.ωP.ωP    

Gyroscopic couple due to rotating parts of the engine 

 CE = IE.ωE.ωP = IE.GωW.ωP      

Net gyroscopic couple = CW ± CE = ωW.ωP (4IW ± G.IE) 
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Example 1: A uniform disc of diameter 300 mm and of mass 5 kg is mounted on one end 
of an arm of length 600 mm. The other end of the arm is free to rotate in a universal 
bearing. If the disc rotates about the arm with a speed of 300 rpm. clockwise, looking from 
the front, with what speed will it precess about the vertical axis.      K/  

Solution: 

 
 
 
 
 
 
 
 
 

Example 2: An aeroplane makes a complete half circle of 50 metres radius, towards left, 
When flying at 200 km/hr. The rotary engine and propeller of the plane has a mass of 400 
kg and a radius of gyration of 0.3 m. The engine rotates at 2400 r.p.m. clockwise when 
viewed from the rear. Find the gyroscopic couple on the aircraft and state its effect on it. 

Solution:  

 

 

 

 

 

 

 

 

Example 3: The turbine rotor of a ship has a mass of 8 tonnes and a radius of gyration 0.6 
m. It rotates at 1800 rpm clockwise, when looking from the stern. Determine the gyroscopic 
couple, if the ship travels at 100 km/h and steer to the left in a curve of 75 m radius. 

Solution:  
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UNIT – IV 

Mechanical Vibrations 

Introduction: When elastic bodies such as a spring, a beam and a shaft are displaced 

from the equilibrium position by the application of external forces, and then released, they 
execute a vibratory motion. 

4.1 Types of Vibratory Motion 

1. Free or natural vibrations. When no external force acts on the body, after giving it 
an initial displacement, then the body is said to be under free or natural vibrations  

2. Forced vibrations. When the body vibrates under the influence of external force, 
then the body is said to be under forced vibrations. The external force is a periodic 
disturbing force created due to unbalance. The vibrations have the same frequency 
as the applied force. When the frequency of external force is same as that of the 
natural vibrations, resonance takes place. 

3. Damped vibrations. When there is reduction in amplitude over every cycle of 
vibration, the motion is said to be damped vibration. A certain amount of energy is 
always dissipated in overcoming frictional resistance to the motion. 

Types of Free Vibrations 

1. Longitudinal vibrations   2. Transverse vibrations  3. Torsional vibrations. 

4. (a) Define free vibration and natural frequency.                                      2 

                                                                                                                                  (W08) 
iv. (a) The natural frequency (in Hz) of free longitudinal vibrations is equal to 

       

       (i)                  (ii)                 (iii) 

         

      (iv)  Any one of these                                                                                      2 marks 
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4.2 Natural Frequency of Free Longitudinal Vibrations  

Equilibrium Method 

Consider a constraint (i.e. spring) of negligible mass in an unstrained position. 

Let s = stiffness of the constraint. 

  m = Mass of the body suspended from the constraint in kg.  

  W = Weight of the body in newtons =m.g 

  δ = Static deflection of the spring in metres due to weight W newtons, and  

  x = displacement given to the body by the external force  

Natural frequency 

 

  

   Natural Frequency of Free Transverse 
Vibrations  

Consider a shaft of negligible mass, whose 
one end is fixed and the other end carries a 

body of weight W 

Natural frequency 

 

 

 (b) Derive an expression for the natural frequency of 

free longitudinal  vibrations  by equilibrium method.         

Natural Frequency of Free Transverse  Vibrations  

Let  s = Stiffness of shaft 

 δ = Static deflection due to weight of 

              the body  

 x = Displacement of body from mean 

              position after time t  
 m = Mass of the body after time t  =  W/g          
                                                                                                                                7 

                                                                                                                                      (W07)  
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Time period,  

 

Natural frequency   

 

(c) Establish an expression for the natural frequency of free transverse vibrations for a 
simply supported beam carrying a number of point loads, by   

Energy method       

Dunkerley’s method                                                                                                   7 marks                                                           

                                                                                                                                     (W08) 

 

4.3 Natural Frequency of Free Transverse Vibrations for a shaft subjected to a Number 
of Point Loads 

Consider a shaft AB of negligible mass loaded with point loads W
1

, W
2

, W
3

 and W
4

 etc. in 

Newtons. Let m
1

, m
2

, m
3

 and m
4

 etc. be the corresponding masses in kg. 

1. Energy (or Rayleigh’s) Method  

Let y
1

, y
2

, y
3

, y
4

 etc. be total deflection 

under loads W
1

, W
2

, W
3

, W
4

 etc.  

 

Maximum potential energy 

 

 

 

 

 

 

Maximum kinetic energy 
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Equating the maximum K.E. to the maximum P.E. 

 

 

 

 

    Natural Frequency of transverse vibrations  

 

 

 

2. Dunkerley’s method 

According to Dunkerley’s empirical formula 

where f
n

 = Natural frequency of transverse vibrations of the shaft carrying point loads and 

uniformly distributed load. 

f
n1 

, f
n2 

, f
n3  

etc. = Natural frequency of transverse vibration of each point load. 

 

 

 

F
ns

 = Natural frequency of 

transverse vibration of uniformly 

distributed load (or due to mass 

of the shaft)    

Consider a shaft loaded as 

shown in the figure. 

Let δ
1

, δ
2

, δ
3

, etc. = Static deflection due to the load W
1

, W
2

, W
3

 etc. when considered 

separately. 
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Natural frequency of transverse vibration due to load W
1

,  

 

Natural frequency of transverse vibration due to load W
2

, 

 

Natural frequency of transverse vibration due to load W
3

,  

 

Natural frequency of transverse vibration due to uniformly distributed load or weight of the 
shaft, 

 

 

According to Dunkerley’s empirical formula, the natural frequency of the whole system, 

 

 

 

where f
n

 = Natural frequency of transverse vibrations of the shaft carrying point loads and 

uniformly distributed load. 

f
n1 

, f
n2 

, f
n3  

etc. = Natural frequency of transverse vibration of each point load. 

 

F
ns

 = Natural frequency of transverse 

vibration of uniformly distributed load 
(or due to mass of the shaft)    

Consider a shaft loaded as shown in 
the figure. 

Let δ
1

, δ
2

, δ
3

, etc. = Static deflection 

due to the load W
1

, W
2

, W
3

 etc. when considered separately. 

Natural frequency of transverse vibration due to load W
1

,  

Natural frequency of transverse vibration due to load W
2

, 

Natural frequency of transverse vibration due to load W
3

,  
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         
2 2 2 2 2

1 2 3

1 1 1 1 1
....

n n n n nsf f f f f
    

 

Natural frequency of transverse vibration due to uniformly distributed load or weight of the 
shaft, 

 

According to Dunkerley’s empirical formula, the natural frequency of the whole system,  
 

 

 

 

 

 

 

or  

 

The value of simply supported shaft may be obtained from the relation 

 

 

 

Q.  What is whirling or critical speed? 

4.4 Critical or Whirling Speed of a Shaft 

A rotating shaft carries different mountings and accessories in the form of gears and 
pulleys. The centre of gravity of these mountings does not coincide with the axis of the shaft. 
As a result, when the shaft rotates, it is subjected to centrifugal force. This force will bend the 
shaft which will further increase the distance of the c.g. 

This correspondingly increases the value of centrifugal force which further increases the 
distance of c.g. This effect is cumulative and ultimately the shaft fails. The bending of shaft 
not only depends upon the value of eccentricity but also upon the speed of the shaft. 

 The speed at which the shaft runs so that the additional deflection of the shaft from the 
axis of rotation becomes infinite, is known as critical or whirling speed. 
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Critical or whirling speed is the same as the natural frequency of transverse vibrations. Its 
unit is revolutions per second.   

 

 

4.6 Frequency of Free Damped Vibrations  

(Viscous Damping)  

The motion of a body is resisted by frictional forces. In vibrating systems, the effect of 
friction is referred to as damping. The damping provided by fluid resistance is known as 
viscous damping. 

In damped vibrations the amplitude of the resulting 
vibration gradually diminishes. 

Damping force or frictional force on the mass acting in  

opposite direction  to the motion of the mass = 

Accelerating force on the mass = 

Spring force on the mass, acting in opposite direction to 

the motion of the mass = s.x  

Therefore the equation of motion becomes    

 

 

(Negative sign indicates that force opposes the motion) 

 

or 
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dt
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This is a differential equation of the second order. Assuming a solution of the form  

x = e
kt  

where k is a constant to be determined. The differential equation reduces to  
 

 

or  

 

   and                                          

 

The two roots of the equation are 

 

                               and  

 

The most general solution of the differential equation is 

 

where C
1

 and C
2

 are two arbitrary constants  which are to be determined from the initial 

conditions of the motion of the mass. The roots k
1

 and k
2 

may be real, complex conjugate or 

equal.    
 

When the roots are real (overdamping) 

 

If                        then the roots k1 and k2   

 

are real but negative. This is a case of  

overdamping and the mass moves slowly to  

the equilibrium position. This motion is  

known as aperiodic.  

In actual practice overdamped vibrations are avoided. 

When the roots are complex conjugate (underdamping) 
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If                  ,   then the radical becomes negative. The two roots are then known as  

complex conjugate. This is most practical case of damping and it is known as  

underdamping . 

The two roots are 

 

                                               

  

 and     

 

For the sake of mathematical calculations, let 

 

 

 

 

Therefore the two roots may be written as 

k
1

 = -a + ί ω
d

 and k
1

 = -a + ί ω
d

  

General solution of a differential equation is 

If t is measured from the instant at which the mass m is released after an initial displacement 
A, then 

 

 

x = Ae
-at

 cosω
d
.t  

where 

The motion is S.H.M. whose circular damped frequency is ω
d
 and the amplitude is  Ae

-at 

which diminishes exponentially with time. The oscillations may take some considerable time 

to die away.  
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Periodic time of vibration 

 

 

 

Frequency of damped vibration 

 

 

 

(a) What do you understand by over-damped, under damped and critical damped system?       

                                                                                                                                  2 marks 

                                                                                                                                      (S08) 

(a) Show that the ratio of two successive amplitudes of oscillations is constant in a damped 

vibratory system.                                                                                                         7 marks 

                                                                                                                                        (W08) 

3. When the roots are equal (critical damping) 

When                    the two roots are equal. This is known as critical damping. In this case 

frequency of damped vibrations (f
d

) is zero. This type of damping is also avoided because the 

mass moves back rapidly to its equilibrium position in the shortest possible time. 

The critical damping coefficient 

 

 

The critical damping coefficient is the amount of damping required for a system to be 
critically damped. 

Damping Factor or Damping Ratio 

The ratio of the actual damping coefficient (c) to the critical damping coefficient (c
c
) is known 

as damping factor or damping ratio.  
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Logarithmic Decrement 

It is defined as the natural logarithm of the amplitude reduction factor. Amplitude reduction 

factor is the ratio of any two successive amplitudes on the same side of the mean position.   

If x
1

 and x
2

 are successive values of the amplitude on the same side of the mean position, 

then the amplitude factor, 
 

 

 

Logarithmic decrement 

 

 

 

 

 

 

 

 

In general, amplitude reduction factor, 

 

                                                      constant  

 

Therefore logarithmic decrement. 

(b) Define: 

Critical speed 

Damping factor 

Logarithmic decrement 

Underdamping                                                                                             4 marks 

                                                                                                                        (S09) 
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(a) Define critical speed of a shaft                                                       01 mark 

(b) Explain torsional vibration.                                                              01 mark 

                                                                                                              (W09) 

Frequency of Under Damped Forced Vibrations  

Consider a system consisting of spring, mass and damper. Let the system is acted 

upon by an external periodic (i.e. harmonic) disturbing force. 

F
x
 = F cos ω  

F = Static force 

ω = Angular velocity of periodic disturbing force  

The displacement x at any time t is given by 

 

 

 

Where   

 

The equation shows that the motion is S.H.M. whose 
circular frequency is ω and the amplitude is 

 

 

Maximum displacement or amplitude of forced vibration 

 

The equation may be written as 

 

 

Substituting F/s = x
0

 

 

 

where x
0

 is the deflection under the static force F  

Natural frequency of free vibration is given by 
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(ω
n

)
2

 = s/m 

 

 

3. When damping is negligible, then  c = 0 

   

 

 

4. At resonance     

 

and  

 

 Magnification Factor or Dynamic Magnifier 

It is the ratio of maximum displacement of the forced vibrations (x
max

) to the deflection due to 

the static force F(x
0

)  

Maximum displacement or the amplitude of forced vibration 

 

 Magnification factor or dynamic magnifier 

 

 

 

 

The magnification factor gives the factor by which the static deflection (i.e. x
0

) must be 

multiplied in order to obtain the maximum amplitude of the forced vibration (i.e. x
max

) by the 

harmonic force F cos ω.t 
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2. At resonance ω
n

 = ω, Therefore 

 

Vibration Isolation and Transmissibility 

When an unbalanced machine is installed on the foundation, it produces vibration in the 
foundation. In order to prevent these vibrations or to minimise the transmission of forces to 
the foundation, the machines are mounted on springs or on some vibration isolation material. 
The ratio of the force transmitted (F

T

) to the force applied (F) is known as isolation factor or 

transmissibility ratio of the spring support.   
 

Natural Frequency of Free Torsional 
Vibrations 

Let Ө = Angular displacement of the shaft  

       from mean position after time t in 
radians, 

  m = Mass of disc in kg, 

    I = Mass moment of inertia of disc in kg-

m

2

   

      = m.k

2

  

    r = Radius of gyration in metres. 

    q = Torsional stiffness of the shaft in N-m  

Restoring force = q.Ө                                                     …(i) 

Accelerating force =                                                       …(ii) 

Equating equations (i) and (ii) the equation of motion is 

                            

          = - q.Ө         or              + q.Ө = 0 

 

                                                                                                   (iii) 

 

 The fundamental equation of S.H.M. is 
 

                                                                                      (iv) 
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Comparing equations (iii) and (iv)  

 

Time period = 

 

Natural frequency,       

 

                                                                              (iv) 

Comparing equations (iii) and (iv) 

 

 

Time period,  

 

Natural frequency,   

 

Note: 1. The value of torsional stiffness may be obtained from the torsion equation,  

 

 

 

 

where  C = Modulus of rigidity of the shaft  

                   material 

             J = Polar moment of inertia         

Free Torsional Vibrations of a Single Rotor System 

For a shaft fixed at one end and carrying a rotor at the free end, the natural frequency of 
torsional vibration, 
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The section of the shaft whose amplitude of torsional vibration is zero, is known as node.       

Effect of Inertia of the Constraint on Torsional Vibrations 

Let m
c

 = total mass of constraint = m.l  

      l
c

 = Total mass moment of inertia of  

             constraint 

Natural frequency of vibration, 

 

 

 

   
Free Torsional Vibrations of a Two Rotor System 

Natural frequency of torsional vibration for rotor A, 

 

 

Natural frequency of torsional vibration for rotor B, 

 

 

Since f
nA

 = f
nB

, therefore 

                     

 

 

 

 

Free Torsional Vibrations of a Three Rotor System 

Natural frequency of torsional vibration for rotor A, 

 

 

 

Natural frequency of torsional vibration for rotor B 

1

2 / 3
n

c

q
f

I I




1 .

2 .
nA

A A

C J
f

l I


1 .

2 .
nB

B B

C J
f

l I


1 .

2 .A A

C J

l I


1 .

2 .B B

C J

l I


.B B

A

B

l I
l

I


1 .

2 .
nA

A A

C J
f

l I




 

59 

, 

 

 

 

 

 

 

 

 

Natural frequency of torsional vibration for rotor C, 

 

 

Torsionally Equivalent Shaft 

Since the total angle of twist of the shaft is 
equal to the sum of the angle of twists of 
different lengths, therefore 

Ө = Ө
1

 + Ө
2

 + Ө
3

  

or 

 

 

 

 

 

 

 

In actual practice it is assumed that the diameter d of the equivalent shaft is equal to one of 
the diameter of the actual shaft. Let us assume d = d
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This expression gives the length l of the equivalent shaft 

 

Free Torsional Vibration of a Geared System 
 

Let G = Gear ratio = 

      d = Diameter of the equivalent shaft 

       l = Length of the equivalent shaft 

   I
B

’ = Mass moment of inertia of the  equivalent rotor B’    

The following two conditions must be satisfied by an 

equivalent system. 

The K.E. of the equivalent system must be equal to the K.E. 

of the original system.  

The strain energy of the equivalent system must be equal to the strain energy of the original 

system. 

If condition (1) is satisfied then 

 

 

If condition (2) is satisfied, then 

 

 

Length of the equivalent shaft  

Let the node of the equivalent system lies at N, then 
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When the inertia of gearing is taken into consideration, the an additional rotor (shown dotted) 
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Example 1: A refrigerator unit having a mass of 35 kg is to be supported on three springs, 
each having a spring stiffness s. The unit operates on 480 rpm. Find the value of stiffness 
s if only 10% of the shaking force is allowed to be transmitted to the supporting structure.     
R/645/(W07) 

Solution: As no damper is used 

            

    ε =  
 

 

 

           

 

 

 

If the positive sign is changed,   

 

Therefore by taking the negative sign, 

                                or ωn = 15.15 rad/s 

 

or  

 

 

Equivalent stiffness,     

s = 8037 N/m = 8.037 n/mm 

Stiffness of each spring = 

 

Example 2: A machine of mass 10 kg is supported on springs and dashpots. The total 
stiffness of the spring is 5 N/mm and total damping is 0.075 m/mmls. The system is initially 
at rest and a velocity of 100 m/s is imparted to the mass. Determine (i) the displacement 
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and velocity of mass as function of time (ii) the displacement and velocity  after one 
second.                 (S08) 

Solution:   

 

 

 

 

Example 3: A machine part of mass 2 kg vibrates in a viscous medium. Determine the 
damping coefficient when a harmonic exciting force of 25 N results in resonant amplitude 
of 12.5 mm with a period of 0.2 second. If the system is excited by a harmonic force of 
frequency 2 Hz, what will be percentage increase in the amplitude of vibration when 
damper is removed as compared with that with damping? 

                                                                                                                         K/959/(W08) 

Solution: 

ωn = 2π/tp = 31.42 rad/s 

Maximum amplitude of vibration at resonance (xmax), 

  

 

Percentage increase in amplitude 

 

 

 

Example 4: Calculate the whirling speed of a shaft 20 mm diameter and 0.6 m long carrying 

a  mass of 1 kg at its mid-point. The density of shaft material is 40 Mg/m
3

, and Young’s 

modulus is 200 GN/m
2

. Assume the shaft to be freely supported.         

                                                                                                                                 K/932/W07 

Solution:  

 

 

Mass of the shaft per metre length,  

M
s

 = Area × length × density = 12.6 kg/m 

0.0125 63.7 / /
. n

F
N m s

c
 

4 9 47.855 10
64

I d m
    
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Static deflection due to 

Example 5: A shaft of length 1.25 m is 75 mm in diameter for the first 275 mm of its length, 
125 mm in diameter for the next 500 mm length, 87.5 mm in diameter for next 375 mm and 
175 mm in diameter for remaining 100 mm length. The shaft carries two rotors at two ends. 

The mass moment of inertia  of first and second rotor is 75 kg-m

2

 and 50 kg-m

2 

respectively. 
Find the frequency of natural torsional vibration of the system. Take modulus of rigidity of 

material as 800 N/m

2

.   

 

   
 

Example 6: A shaft of length 0.75 m, supported freely at the ends, is carrying a body of mass 
90 kg at 0.25 m from one end. Find the natural frequency of transverse vibrations. 

 Assume E = 200 GN/m

2

 and shaft diameter = 50 mm.     

Solution:  
 

Moment of inertia =              = 0.307 × 10-6 m4 

 

Static deflection at the load point 

 

 

Natural frequency of transverse vibrations  
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UNIT – V 

Inertia Force Analysis 

 

5.1 Approximate Analytical Method for Velocity and Acceleration of   

       the Piston 

Consider the motion of a crank and connecting rod  of a reciprocating steam engine. 

Let l = Length of the connecting rod 
between the centres. 

r = Radius of crank 

 

Φ = Inclination of connecting rod 

to the line of stroke PO 

       n = Ratio of length of c. rod to the radius of crank = l/r 

From the geometry of the figure, 

x = P’P = OP’ – OP = (P’C’ + C’O) – (PQ – QO) = (l +r) – (l cos Φ + r sin Ө) 

 

 

                                                                                                                           (i) 

From triangles CPQ and CQA, 

CQ = l sin Φ = r sin Ө  or  l/r = sin Ө/sin Φ or  sin Φ = sin Ө/n           ………..   (ii) 

 

We know that 

 

Expanding the above equation by binomial theorem 

 

                                          (Neglecting the higher terms) 

 

                                                                                                                   …… (iii) 
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Substituting the value of (1- cos Φ) in equation (i) 

 

                                                                                                                   …… (iv) 

 

Differentiating equation (iv) with respect to Ө,  

 

                                                                                                                            (v) 

 

Velocity of P with respect to O or velocity of the piston P, 

 

 

Substituting the value of dx/dӨ from equation (v), we have 

 

                                                                                                                       ….. (vi) 

 

Acceleration of the piston 

 

 

Differentiating equation (vi) with respect to Ө, 

 

 

 

Substituting the value of          in the above equation 
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Q.   Deduce an expression for the inertia force of reciprocating parts, neglecting the weight  

       of the connecting rod.                                                                                           7 marks 

                                                                                                                                   (S08) 

Acceleration of the reciprocating parts 

        

 

     Accelerating force or inertia force of reciprocating parts, 

 

 

where  m
R

 = Mass of the reciprocating parts   

 

5.2 Angular Velocity and Acceleration of the Connecting Rod 

 

 

 

 

5.2 Forces on the Reciprocating Parts of an Engine, neglecting the weight  

      of the Connecting rod  

1. Piston effort. It is the net force acting on the piston or crosshead pin, along the line of 

stroke. 

Piston Effort,  

FP = Net load on the piston     Inertia Force 

     = FL     FI                  (Neglecting frictional resistance) 

     = FL     FI – RF           (Considering frictional resistance) 

 

2. Force acting along the connecting rod 
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3. Thrust on the sides of the cylinder 

 

 

4. Crank-pin effort and thrust on crank shaft bearings. 

The force acting on the connecting rod F
Q
 may be resolved into two components, one 

perpendicular to the crank and other along the crank. The component of FQ 
 
perpendicular to 

the crank is known as crank-pin effort and is denoted by F
T
. The component of FQ along the 

crank produces a thrust on the crank shaft bearings and is denoted by FB  

Resolving FQ perpendicular to the crank, 

 

Resolving F
Q

 along the crank, 

 

5. Crank effort or turning moment or torque on the crank. 

The product of the crank-pin effort FT and the crank pin radius (r) is known as crank 

effort or turning moment or torque on the crank. 

Crank effort 

 

 

Q. A rigid body, under the action of external forces, can be replaced by two masses placed at 

a fixed distance apart. The two masses form an equivalent dynamical system, if 

i. the sum of the two masses is equal to the total mass of the body, 

ii. the centre of gravity of the two masses coincides with the body, 

iii. the sum of the moment of inertia of the masses about their centre of gravity is equal to 

the mass moment of inertia of the body 
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iv. All of the above.                                                                                                   2 marks 

                                                                                                                                           (S09) 

 5.3 Equivalent Dynamical System 

In order to determine the motion of rigid body, under the action of external forces, it is 

usually convenient to replace the rigid body by two masses placed at fixed distance apart, in 

such a way that,  

1. the sum of their masses is equal to the total mass of the body; 
2. the centre of gravity of the two masses coincides with that of the body; and 
3. the sum of the mass moment of inertia of the masses about their centre of gravity is 

equal to the mass moment of inertia  of the body.  

When these three conditions are satisfied, then it is said to be an equivalent dynamical 
system. 

 

For the two masses to be dynamically equivalent, 

m
1
 + m

2
 = m                                       (i) 

m
1
.l

1
 = m

2
.l

2
                                       (ii) 

and  m
1
(l

1
)
2

 + m
2
 (l

2
)
2

 = m (k
G
)
2

 

From equations (i) and (ii) 

                                                          (iv)   

                                               

                                                           (v) 

 

I1.I2= (k
G
)2

 

 

5.4 Turning Moment Diagram for a Single Cylinder Double Acting Steam 

Engine 

Turning Moment on the crank shaft  

 

 

where Fp = Piston effort 
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 r = radius of crank 

           n = Ratio of the connecting rod length  and radius of crank  

 Ө = Angle turned by the crank from  inner dead centre 

5.5 Turning moment diagram for a Four Stroke Cycle Internal Combustion  

      Engine  

In four stroke cycle internal combustion engine there is one working stroke after the 

crank has turned through two revolutions. During the working stroke, work is done by the 

gases. During exhaust stroke, work is done on the gases.    

 

 

 

 

 

5.6 Turning Moment Diagram for a Multi-cylinder Engine 

 

 

 

 

 

 

 

5.7 Coefficient of Fluctuation of Speed 

The difference between the maximum and minimum speeds during a cycle is called 

the maximum fluctuation of speed. The ratio of the maximum fluctuation of speed to the mean 

speed is called the coefficient of fluctuation of speed 

Let N1 and N2 = Maximum and minimum speeds in rpm during the cycle, and  
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Q. Determine the equation of maximum fluctuation of energy.                                     2 marks 

                                                                                                                                      (W09) 

5.8 Determination of Maximum Fluctuation of Energy  
 

The horizontal line AG represents the 

mean torque line. 

Let the energy in the flywheel at A = E, 

Energy at B = E + a
1

 

Energy at C = E + a
1

 – a
2

 

Energy at D = E + a
1

 – a
2

 + a
3

 

Energy at E = E + a
1

 – a
2

 + a
3

 – a
4

 

Energy at F = E + a
1

 – a
2

 + a
3

 – a
4

 +a
5

 

Energy at G = E + a
1
 – a

2
 + a

3
 – a

4
 + a

5
 – a

6
 

                    = Energy at A (cycle repeats after G)  

Let us suppose that the greatest of these energies is at B and least at E. Therefore,  

Maximum energy in the flywheel = E + a2 

Minimum energy in the flywheel  

= E + a
1

 – a
2

 + a
3

 – a
4

 

    Maximum fluctuation of energy, 

Δ E = (E +a
1

)
 

– (E + a
1

 – a
2

 + a
3

 – a
4

) 

       = a
2

 – a
3 

+ a
4

  

 

5.9 Coefficient of Fluctuation of Energy  

It may be defined as the ratio of maximum fluctuation of energy to the work done 

perpendicular cycle 

Coefficient of fluctuation of energy  

 

E

Maximum fluctuationof energy
C

Work done per cycle

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1. Work done per cycle = T
mean

 × Ө  

Where T
mean 

= Mean torque 

 Ө = 2π in case of steam engine and two stroke I.C. engine. 

     = 4π, in case of four stroke I.C. engines. 

 

 

Where P = Power transmitted in Watts 

2. Work done per cycle =  

where n = number of working strokes per minute  

Q. Describe the function of a flywheel.                                                     2 marks 

                                                                                                                      (W08)  

Q. Prove that the maximum fluctuation of energy, 

ΔE = E × 2C
S

 

where E = mean kinetic energy of the flywheel, and 

Cs  = coefficient of fluctuation of sped                                                                  4 marks 

                                                                                                                                 (S09)  

5.10 Flywheel  

 A flywheel used in machines serve as a reservoir, which stores energy during the 

period when the supply of energy is more than the requirement and releases it during the 

period when the requirement of energy is more than the supply. 

A flywheel controls the speed variations caused by the fluctuation of engine turning 

moment during each cycle of operation. 

5.11 Energy Stored in a Flywheel 

Mean K.E. of the flywheel, 

Maximum fluctuation of energy,  Δ E = Maximum K.E. – Minimum K.E. 

 

 

Example 1: The crank and connecting rod of a vertical petrol engine, running at 1800 rpm 
are 60 mm and 270 mm respectively. The diameter of the piston is 100 mm and the mass of 
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the reciprocating parts is 1.2 kg. During the expansion stroke when the crank has turned 

through 20˚ from the top dead centre, the gas pressure is 650 kN/m

2

. Determine: 
(i) the net force on the piston; 
(ii) the net load on the gudgeon pin;   
(iii) the thrust on the cylinder walls; 
(iv) the speed at which the gudgeon pin load is reversed in direction.                   10 marks  
                                                                                                                                               
                                                                                                                                               R/444(W08) 

 

Solution:   
  Load on the piston 

n = l/r = 270/60 = 4.5 

Inertia force on the piston  

(i). For a vertical engine, net force on the piston 

F
P

 = F
L

 – F
I

 + W
R

 = 2276.8 N 

(ii) Let Φ = Angle of inclination of the connecting rod to the line of stroke   

 sin Φ = sin Ө/n       Φ = 4.36˚ 

Resultant load on the gudgeon pin,   
 

(iii) Thrust on the cylinder walls 

F
N

 = F
P

 tan Φ = 173.6 N 

(iv) Speed above which the gudgeon pin load will be reversed in direction 

Let N1 = Required speed in rpm. 

The gudgeon pin load i.e. F
Q

 will be reversed in direction, if F
Q

 becomes negative. This is 

only possible if F
P

 is negative. Therefore, for F
P

 to be negative F
I

 must be greater than 

 (F
L

 + W
R

)     

 

ω > 253 rad/s 

N > 2416 rpm 

Example 2: A certain machine requires a torque of (5000 + 500 sin Ө) N-m to drive it, where 

Ө is the angle of rotation of shaft measured from certain datum. The machine is directly 

coupled to an engine which produces a torque of (5000 + 600 sin 2Ө) N-m. The flywheel and 
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other rotating parts attached to the engine has a mass of 500 kg at a radius of gyration of 0.4 

m. If the mean speed is 150 rpm, find: 1. the fluctuation of energy, 2. the total percentage 

fluctuation of speed, and    3. the maximum and minimum angular acceleration of the flywheel 

and the corresponding shaft position.                                                                     K/587/(W07) 

Solution:  

1. Fluctuation of energy  

Change in torque = T
2

 – T
1

 = 600 sin 2Ө – 500 sinӨ 

                              

This change is zero when 

600 sin 2Ө = 500 sinӨ or 1.2 sin 2Ө = sin Ө  

or 2.4 sin Ө cos Ө = sinӨ  

Either sin Ө = 0 or cos Ө = 1/2.4 = 0.4167 

When sin Ө = 0, Ө = 0˚, 180˚ and 360˚ 

Ө
A

 = 0˚, Ө
C 

=
 

180˚, Ө
E 

360˚,   

When cos Ө = 0.4167, Ө = 65.4˚ and 294.6˚ i.e  Ө
B

 = 65.4˚, Ө
D

 = 294.6˚ 

The maximum fluctuation of energy lies between C and D (i.e. between 180˚ and 294.6˚)  

 Maximum fluctuation of energy, 

 

 

 

 

 

2. Total percentage fluctuation of speed 

Let C
s
 = Total percentage fluctuation of speed 

Maximum fluctuation of energy (Δ E) 

1204 = m.k
2

.ω
2

.C
s
 = 19744 C

s
 

         C
s
 = 0.061 = 6.1% 
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3. Maximum and minimum angular acceleration of the flywheel and the corresponding shaft 

positions 

The change in torque must be maximum or minimum when acceleration is maximum or 

minimum. 

Change in torque, T = T
2

 – T
1

  

= (5000 + 600 sin 2Ө) – (5000 + 500 sin Ө) 

= 600 sin 2Ө – 500 sin Ө                      … (i) 

Differentiating with respect to Ө and equating to zero for maximum or minimum values, 

 

 

or 1200 cos 2Ө – 500 cos Ө = 0 

or 12 cos 2Ө – 5 cos Ө = 0 

 or 24 cos

2

Ө – 5 cos Ө – 12 = 0    

 

 
 

                       Ө = 35˚ or 127.6˚   

Substituting Ө = 35˚ in equation (i) 

T
max

 = 600 sin 70˚ – 500 sin 35˚ = 277 N-m  

Substituting Ө = 35˚ in equation (i) 

T
min

 = 600 sin 225.2˚ – 500 sin 127.6˚ = – 976 N-m  

 

Maximum acceleration  

 

Minimum acceleration 

 
Example 3: In a machine, the intermittent operations demand the torque to be applied as 
follows: 

• During the first half-revolution, the torque increases uniformly from 800 N-m to 3000 N-m. 

• During the next one revolution, the torque remains constant. 
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• During the next one revolution, the torque decreases uniformly from 3000 N-m to 800 N-m. 

•During the last half-revolution, the torque remains constant.  

Thus, a cycle is completed in 4 revolutions. The motor to which the machine is coupled 
exerts a constant torque at a mean speed of 250 rpm. A flywheel of mass 1800 kg and radius 
of gyration of 500 mm is fitted to the shaft. Determine the 

(i) power of the motor 
(ii) total fluctuation of the speed of machine shaft.                                                10  marks                       

                                                                                                                                R/468/(W08)   
 

Solution:  

Torque for one complete cycle, T = area OABCDEF 

or T = Area OAEF + Area ABL  

       + Area LBCM + Area MCD 

 

 

 

 

 

(ii)  

The fluctuation of energy is equal to the area above the mean torque line. 

e = Area JBCK = area JBJ + area GBCH + area HCK    

 

 

 

 

 

 

 

Example 4: A punching press is required to punch 40 mm diameter holes in a plate of 15 mm 

thickness at the rate of 30 holes perpendicular minute. It requires a 6 N-m energy per mm

2

 of 
sheared area. If the punching takes 1/10 of a second and the rpm of the flywheel varies from 
160 to 140, determine the mass of the flywheel having radius of gyration of 1 metre.  
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Solution:  

Sheared area per hole = π.d.t = 1885 mm2 

Energy required to punch a hole  

 E1 = 6 × 1885 = 11 310 N-m 

Energy required for punching work per second 

= Energy required per hole × No. of holes per second 

= 11 310 × 30/60 = 5655 N-m/s 

Energy supplied by the motor in 1/10 second, 

E2 = 5655 × 1/10 = 565.5 N-m 

Energy to be supplied by the flywheel during punching a hole or maximum fluctuation of 

energy of the flywheel, 

ΔE = E1 – E2 =10 744.5 N-m  

Mean speed of the flywheel,  

Maximum fluctuation of energy (ΔE) 

m = 327 kg 

 

 

 

 

 

 

 

 

 

 

 

Example 5: The flywheel of a steam engine has a radius of gyration of 1 m and mass 2900 

kg. The starting torque of steam engine is 1500 N-m. Determine: 1. the angular acceleration 

of the flywheel. 2. the kinetic energy of the flywheel after 10 seconds from the start. 

                                                                                                                                      K/       / 

Solution: 
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I = m.k2 = 2900 × 12 = 2900 kg-m2      

Starting torque of the engine (T) 

   1500 = 2900 × α or α = 0.52 rad/s2 

2. Kinetic energy of the flywheel 

Let  ω1 = Angular speed at rest = 0 

       ω2 = Angular speed after 10 seconds 

        ω2
 = ω1

 + α t = 0.52 × 10 = 5.2 rad/s 

K.E. of the flywheel =  

 

Example 6: The turning moment diagram for a petrol engine is drawn to the following scales: 

Turning moment , 1 mm = 5 N-m; crank angle, 1 mm = 1˚. The turning moment diagram 

repeats itself at every half revolution of the engine and the areas above and below the mean 

turning moment line taken in order are 295, 685, 40, 340, 960, 270 mm

2

. The rotating parts 

are equivalent to a mass of 30 kg at a radius of gyration of 150 mm. Deflection the coefficient 

of fluctuation of speed when the engine runs at 1800 r.p.m 

Solution: 1 mm
2

 on turning moment diagram =  

Let the total energy at A = E 

Let the total energy at A = E 

Energy at B = E + 295                           ….(Maximum energy) 

Energy at C = E + 295 - 685 = E – 390 

Energy at D = E – 390 + 40 = E – 350  

Energy at E = E – 350 – 340 = E – 690 ….(Minimum energy) 

Energy at F = E – 690 + 960 = E + 270  

Energy at G = E + 270 - 270 = E = Energy at A  

Maximum fluctuation of energy, 

Δ E = Maximum energy – Minimum energy  

       = (E + 295) – (E – 690) = 985 mm

2

 

       = 985 ×      = 86 N-m = 86 J 

Let C
s

 = Coefficient of fluctuation of speed 

Δ E = m.k

2

 ω

2

. C
s
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86 = 36 × (0.15)

2

 × (188.52)

2

. C
s

 

C
s 

= 0.003 or 0.3%  

 

Example 7: A horizontal cross compound steam engine develops 300 kW at 90 rpm. The 

coefficient of fluctuation of energy is 0.1 and the fluctuation of speed is to be kept within ± 

0.5% of the mean speed. Find the weight of the flywheel required, if the radius of gyration is 2 

metres.                                                                                                                 K/        /(W08) 

 

Solution: 

Mean angular speed, ω = 2 π × 90/60 =   9.426 rad/s    

Let ω
1
 and ω

2
 = Maximum and minimum respectively. 

Total fluctuation of speed, ω
1 
– ω

2
   = 0.1 ω  

Coefficient of fluctuation of speed, 

Work done per cycle = P × 60/N = 200 × 10
3

 N-m 

 Maximum fluctuation of energy  

   Δ E = Work done per cycle × C
E
 = 20 × 10

3

 N-m 

 Maximum fluctuation of energy (Δ E)  

 20 × 10
3 

= m.k
2
.ω

2

.C
s
 = 3.554 m 

                m = 5630 kg  

 

Example 8:  The crank pin circle radius of a horizontal engine is 300 mm. The mass of the 
reciprocating parts is 250 kg. When the crank has travelled 60˚ from I.D.C. the difference 

between the driving and back pressure is 0.35 N/mm

2

. The connecting rod length between 
the centres is 1.2 m and the cylinder bore is 0.5 m. If the engine runs at  250 rpm and if the 
effect of piston rod diameter is neglected, calculate:  

1. pressure on slide bars, 2. thrust in the connecting rod 3. tangential force on the crank-pin 
and 4. turning moment on the crank shaft.                                                                      14 

                                                                                                                                        (W09)  
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