EE 351M Digital Signal Processing

Course Details

- Objective
 - Establish a background in Digital Signal Processing Theory
- Required Text
 - Discrete-Time Signal Processing,
 - Prentice Hall, 2nd Edition
 - Alan Oppenheim, Ronald Schafer, John Buck
- Grading
 - Midterm #1: 20%
 - Midterm #2: 20%
 - Homework: 20%
 - Final: 40%
- Homework: Due to beginning of Wednesday Classes
 - Problems
 - MATLAB assignments

Useful References

- Text Books
 - DSP First A Multimedia Approach
 - James McClellan, Ronald Schafer, Mark Yoder
 - Digital Signal Processing, A Computer Science Perspective
 - Jonathan Stein
 - A Course in Digital Signal Processing
 - Boaz Porat
- Web Sites
 - Matlab Tutorial
 - http://www.utexas.edu/cc/math/tutorials/matlab6/matlab6.html

DSP is Everywhere

- Sound applications
 - Compression, <u>enhancement</u>, special effects, synthesis, recognition, echo cancellation,...
 - Cell Phones, MP3 Players, Movies, Dictation, Text-to-speech,...
- Communication
 - Modulation, coding, detection, equalization, echo cancellation,...
 - Cell Phones, dial-up modem, DSL modem, Satellite Receiver,...
- Automotive
 - ABS, GPS, Active Noise Cancellation, Cruise Control, Parking,...
- Medical
 - Magnetic Resonance, Tomography, Electrocardiogram,...
- Military
 - Radar, Sonar, Space photographs, remote sensing,...
- Image and Video Applications
 - DVD, JPEG, Movie special effects, video conferencing,...
- Mechanical
 - Motor control, process control, oil and mineral prospecting,...

Course Outline

- Introduction to Digital Signal Processing
- Sampling of Continuous-Time Signals
 - Periodic (Uniform) Sampling (4.1)
 - Frequency-Domain Representation of Sampling (4.2)
- Discrete-Time Signals and System
 - Discrete-Time Signals: Sequences (2.1)
 - Discrete-Time Systems (2.2)
 - Linear Time-Invariant Systems (2.3)
 - Properties of Linear Time-Invariant Systems (2.4)
 - Linear Constant-Coefficient Difference Equations (2.5)
 - Freq. Domain Representation of Discrete-Time Signals (2.6)
 - Representation of Sequences by Fourier Transforms (2.7)
 - Symmetry Properties of the Fourier Transform (2.8)
 - Fourier Transform Theorems (2.9)
 - Reconstruction of a Bandlimited Signal from Its Samples (4.3)

Course Outline

- The Z-Transform
 - Z-Transform (3.1)
 - Properties of the Region of Convergence of the z-Transform (3.2)
 - The Inverse Z-Transform (3.3)
 - Z-Transform Properties (3.4)
- Transform Analysis of Linear Time-Invariant Systems
 - The Frequency Response of LTI Systems (5.1)
 - Constant-Coefficient Difference Equations (5.2)
 - Frequency Response for Rational System Functions (5.3)
 - Relationship between Magnitude and Phase (5.4)
 - All-Pass Systems (5.5)
 - Minimum-Phase Systems (5.6)
- Filter Design Techniques
 - Design of Discrete-Time IIR Filters from Continuous-Time Filters (7.1)
 - Design of FIR Filters by Windowing (7.2)
 - Optimum Approximation of FIR Filters (7.4)

www.mycsvtunotes.in MYcsvtu Notes

Course Outline

- Structures for Discrete-Time Systems
 - Block Diagram Representation (6.1)
 - Signal Flow Graph Representation (6.2)
 - Basic Structures for IIR Systems (6.3)
 - Transposed Forms (6.4)
 - Basic Structures for FIR Systems (6.5)
 - Finite Precision Numerical Effects (6.6)
 - Effects of Coefficient Quantization (6.7)
 - Effects of Round-Off Noise in Digital Filters (6.8)
- The Discrete-Fourier Transform
 - Discrete Fourier Series (8.1)
 - Properties of the Discrete Fourier Series (8.2)
 - The Fourier Transform of Periodic Signals (8.3)
 - Sampling the Fourier Transform (8.4)
 - The Discrete Fourier Transform (8.5)
 - Properties of the DFT (8.6)
- Computation of the Discrete-Fourier Transform

Signal Processing

- Humans are the most advanced signal processors
 - speech and pattern recognition, speech synthesis,...
- We encounter many types of signals in various applications
 - Electrical signals: voltage, current, magnetic and electric fields,...
 - Mechanical signals: velocity, force, displacement,...
 - Acoustic signals: sound, vibration,...
 - Other signals: pressure, temperature,...
- Most real-world signals are analog
 - They are continuous in time and amplitude
 - Convert to voltage or currents using sensors and transducers
- Analog circuits process these signals using
 - Resistors, Capacitors, Inductors, Amplifiers,...
- Analog signal processing examples
 - Audio processing in FM radios
 - Video processing in traditional TV sets

Limitations of Analog Signal Processing

- Accuracy limitations due to
 - Component tolerances
 - Undesired nonlinearities
- Limited repeatability due to
 - Tolerances
 - Changes in environmental conditions
 - Temperature
 - Vibration
- Sensitivity to electrical noise
- Limited dynamic range for voltage and currents
- Inflexibility to changes
- Difficulty of implementing certain operations
 - Nonlinear operations
 - Time-varying operations
- Difficulty of storing information

Digital Signal Processing

- Represent signals by a sequence of numbers
 - Sampling or analog-to-digital conversions
- Perform processing on these numbers with a digital processor
 - Digital signal processing
- Reconstruct analog signal from processed numbers
 - Reconstruction or digital-to-analog conversion

- Analog input analog output
 - Digital recording of music
- Analog input digital output
 - Touch tone phone dialing
- Digital input analog output
 - Text to speech
- Digital input digital output
 - Compression of a file on computer

Pros and Cons of Digital Signal Processing

- Pros
 - Accuracy can be controlled by choosing word length
 - Repeatable
 - Sensitivity to electrical noise is minimal
 - Dynamic range can be controlled using floating point numbers
 - Flexibility can be achieved with software implementations
 - Non-linear and time-varying operations are easier to implement
 - Digital storage is cheap
 - Digital information can be encrypted for security
 - Price/performance and reduced time-to-market
- Cons
 - Sampling causes loss of information
 - A/D and D/A requires mixed-signal hardware
 - Limited speed of processors
 - Quantization and round-off errors