www.GetPedia.com

More than 500,000 articles about almost EVERYTHING !!

Click on your interest section for more information :

Acne

Advertising

Aerobics & Cardio

Affiliate Revenue

Alternative Medicine

Attraction

Online Auction

Streaming Audio & Online Music

Aviation & Flying

Babies & Toddler

Beauty

Blogging, RSS & Feeds

Book Marketing

Book Reviews

Branding

Breast Cancer

Broadband Internet

Muscle Building & Bodybuilding

Careers, Jobs & Employment
Casino & Gambling
Coaching

Coffee

College & University
Cooking Tips

Copywriting

Crafts & Hobbies
Creativity

Credit

Cruising & Sailing
Currency Trading
Customer Service

Data Recovery & Computer

Backup

Dating

Debt Consolidation
Debt Relief
Depression
Diabetes

Divorce

Domain Name
E-Book
E-commerce

Elder Care

Email Marketing
Entrepreneur
Ethics

Exercise & Fitness
Ezine Marketing
Ezine Publishing
Fashion & Style

Fishing

. Fitness Equipment

. Forums

. Game

. Goal Setting

. Golf

. Dealing with Grief & Loss
. Hair Loss

. Finding Happiness

. Computer Hardware

. Holiday

. Home Improvement

. Home Security

. Humanities

. Humor & Entertainment
. Innovation

. Inspirational

. Insurance

. Interior Design & Decorating

. Internet Marketing

. Investing
. Landscaping & Gardening

. Langquage

. Leadership

. Leases & Leasing

. Loan

. Mesothelioma & Asbestos
Cancer

. Business Management
. Marketing

. Marriage & Wedding

. Martial Arts

. Medicine

. Meditation

. Mobile & Cell Phone

. Mortgage Refinance

. Motivation

. Motorcycle

. Music & MP3

. Negotiation

. Network Marketing

. Networking

. Nutrition

. Get Organized - Organization

. Outdoors

. Parenting

. Personal Finance

. Personal Technology
. Pet

. Philosophy

. Photography

. Poetry

. Political

. Positive Attitude Tips

. Pay-Per-Click Advertising

. Public Relations

. Pregnancy

. Presentation

. Psychology

. Public Speaking

. Real Estate

. Recipes & Food and Drink

. Relationship

. Religion

. Sales

. Sales Management

. Sales Telemarketing

. Sales Training

. Satellite TV

. Science Articles

. Internet Security

. Search Engine Optimization
SEO

. Sexuality

. Web Site Promotion

. Small Business

. Software

. Spam Blocking

. Spirituality

. Stocks & Mutual Fund

. Strategic Planning

. Stress Management

. Structured Settlements

. Success

. Nutritional Supplements

. Tax

. Team Building

. Time Management

. Top Quick Tips

. Traffic Building

. Vacation Rental

. Video Conferencing

. Video Streaming

. VOIP.

. Wealth Building

. Web Design

. Web Development

. Web Hosting

. Weight Loss

. Wine & Spirits

. Writing

. Article Writing

. Yoga

http://www.getpedia.com/
http://www.getpedia.com/
http://www.getpedia.com/showarticles.php?cat=100
http://www.getpedia.com/showarticles.php?cat=101
http://www.getpedia.com/showarticles.php?cat=102
http://www.getpedia.com/showarticles.php?cat=103
http://www.getpedia.com/showarticles.php?cat=104
http://www.getpedia.com/showarticles.php?cat=105
http://www.getpedia.com/showarticles.php?cat=106
http://www.getpedia.com/showarticles.php?cat=107
http://www.getpedia.com/showarticles.php?cat=108
http://www.getpedia.com/showarticles.php?cat=109
http://www.getpedia.com/showarticles.php?cat=111
http://www.getpedia.com/showarticles.php?cat=112
http://www.getpedia.com/showarticles.php?cat=113
http://www.getpedia.com/showarticles.php?cat=110
http://www.getpedia.com/showarticles.php?cat=114
http://www.getpedia.com/showarticles.php?cat=115
http://www.getpedia.com/showarticles.php?cat=116
http://www.getpedia.com/showarticles.php?cat=117
http://www.getpedia.com/showarticles.php?cat=118
http://www.getpedia.com/showarticles.php?cat=119
http://www.getpedia.com/showarticles.php?cat=120
http://www.getpedia.com/showarticles.php?cat=121
http://www.getpedia.com/showarticles.php?cat=122
http://www.getpedia.com/showarticles.php?cat=123
http://www.getpedia.com/showarticles.php?cat=124
http://www.getpedia.com/showarticles.php?cat=125
http://www.getpedia.com/showarticles.php?cat=126
http://www.getpedia.com/showarticles.php?cat=127
http://www.getpedia.com/showarticles.php?cat=128
http://www.getpedia.com/showarticles.php?cat=129
http://www.getpedia.com/showarticles.php?cat=130
http://www.getpedia.com/showarticles.php?cat=131
http://www.getpedia.com/showarticles.php?cat=131
http://www.getpedia.com/showarticles.php?cat=132
http://www.getpedia.com/showarticles.php?cat=133
http://www.getpedia.com/showarticles.php?cat=134
http://www.getpedia.com/showarticles.php?cat=135
http://www.getpedia.com/showarticles.php?cat=136
http://www.getpedia.com/showarticles.php?cat=137
http://www.getpedia.com/showarticles.php?cat=138
http://www.getpedia.com/showarticles.php?cat=139
http://www.getpedia.com/showarticles.php?cat=140
http://www.getpedia.com/showarticles.php?cat=141
http://www.getpedia.com/showarticles.php?cat=142
http://www.getpedia.com/showarticles.php?cat=143
http://www.getpedia.com/showarticles.php?cat=144
http://www.getpedia.com/showarticles.php?cat=145
http://www.getpedia.com/showarticles.php?cat=146
http://www.getpedia.com/showarticles.php?cat=147
http://www.getpedia.com/showarticles.php?cat=148
http://www.getpedia.com/showarticles.php?cat=149
http://www.getpedia.com/showarticles.php?cat=150
http://www.getpedia.com/showarticles.php?cat=151
http://www.getpedia.com/showarticles.php?cat=152
http://www.getpedia.com/showarticles.php?cat=153
http://www.getpedia.com/showarticles.php?cat=154
http://www.getpedia.com/showarticles.php?cat=155
http://www.getpedia.com/showarticles.php?cat=156
http://www.getpedia.com/showarticles.php?cat=157
http://www.getpedia.com/showarticles.php?cat=158
http://www.getpedia.com/showarticles.php?cat=159
http://www.getpedia.com/showarticles.php?cat=160
http://www.getpedia.com/showarticles.php?cat=161
http://www.getpedia.com/showarticles.php?cat=162
http://www.getpedia.com/showarticles.php?cat=163
http://www.getpedia.com/showarticles.php?cat=164
http://www.getpedia.com/showarticles.php?cat=165
http://www.getpedia.com/showarticles.php?cat=166
http://www.getpedia.com/showarticles.php?cat=167
http://www.getpedia.com/showarticles.php?cat=168
http://www.getpedia.com/showarticles.php?cat=169
http://www.getpedia.com/showarticles.php?cat=170
http://www.getpedia.com/showarticles.php?cat=171
http://www.getpedia.com/showarticles.php?cat=172
http://www.getpedia.com/showarticles.php?cat=173
http://www.getpedia.com/showarticles.php?cat=174
http://www.getpedia.com/showarticles.php?cat=175
http://www.getpedia.com/showarticles.php?cat=175
http://www.getpedia.com/showarticles.php?cat=176
http://www.getpedia.com/showarticles.php?cat=177
http://www.getpedia.com/showarticles.php?cat=178
http://www.getpedia.com/showarticles.php?cat=179
http://www.getpedia.com/showarticles.php?cat=180
http://www.getpedia.com/showarticles.php?cat=181
http://www.getpedia.com/showarticles.php?cat=182
http://www.getpedia.com/showarticles.php?cat=183
http://www.getpedia.com/showarticles.php?cat=184
http://www.getpedia.com/showarticles.php?cat=185
http://www.getpedia.com/showarticles.php?cat=186
http://www.getpedia.com/showarticles.php?cat=187
http://www.getpedia.com/showarticles.php?cat=188
http://www.getpedia.com/showarticles.php?cat=189
http://www.getpedia.com/showarticles.php?cat=190
http://www.getpedia.com/showarticles.php?cat=191
http://www.getpedia.com/showarticles.php?cat=192
http://www.getpedia.com/showarticles.php?cat=193
http://www.getpedia.com/showarticles.php?cat=194
http://www.getpedia.com/showarticles.php?cat=195
http://www.getpedia.com/showarticles.php?cat=196
http://www.getpedia.com/showarticles.php?cat=197
http://www.getpedia.com/showarticles.php?cat=198
http://www.getpedia.com/showarticles.php?cat=199
http://www.getpedia.com/showarticles.php?cat=200
http://www.getpedia.com/showarticles.php?cat=201
http://www.getpedia.com/showarticles.php?cat=202
http://www.getpedia.com/showarticles.php?cat=203
http://www.getpedia.com/showarticles.php?cat=204
http://www.getpedia.com/showarticles.php?cat=205
http://www.getpedia.com/showarticles.php?cat=206
http://www.getpedia.com/showarticles.php?cat=207
http://www.getpedia.com/showarticles.php?cat=208
http://www.getpedia.com/showarticles.php?cat=209
http://www.getpedia.com/showarticles.php?cat=210
http://www.getpedia.com/showarticles.php?cat=211
http://www.getpedia.com/showarticles.php?cat=212
http://www.getpedia.com/showarticles.php?cat=213
http://www.getpedia.com/showarticles.php?cat=214
http://www.getpedia.com/showarticles.php?cat=215
http://www.getpedia.com/showarticles.php?cat=216
http://www.getpedia.com/showarticles.php?cat=217
http://www.getpedia.com/showarticles.php?cat=218
http://www.getpedia.com/showarticles.php?cat=219
http://www.getpedia.com/showarticles.php?cat=219
http://www.getpedia.com/showarticles.php?cat=220
http://www.getpedia.com/showarticles.php?cat=221
http://www.getpedia.com/showarticles.php?cat=222
http://www.getpedia.com/showarticles.php?cat=223
http://www.getpedia.com/showarticles.php?cat=224
http://www.getpedia.com/showarticles.php?cat=225
http://www.getpedia.com/showarticles.php?cat=226
http://www.getpedia.com/showarticles.php?cat=227
http://www.getpedia.com/showarticles.php?cat=228
http://www.getpedia.com/showarticles.php?cat=229
http://www.getpedia.com/showarticles.php?cat=230
http://www.getpedia.com/showarticles.php?cat=231
http://www.getpedia.com/showarticles.php?cat=232
http://www.getpedia.com/showarticles.php?cat=233
http://www.getpedia.com/showarticles.php?cat=234
http://www.getpedia.com/showarticles.php?cat=235
http://www.getpedia.com/showarticles.php?cat=236
http://www.getpedia.com/showarticles.php?cat=237
http://www.getpedia.com/showarticles.php?cat=238
http://www.getpedia.com/showarticles.php?cat=239
http://www.getpedia.com/showarticles.php?cat=240
http://www.getpedia.com/showarticles.php?cat=241
http://www.getpedia.com/showarticles.php?cat=242
http://www.getpedia.com/showarticles.php?cat=243
http://www.getpedia.com/showarticles.php?cat=244
http://www.getpedia.com/showarticles.php?cat=245
http://www.getpedia.com/showarticles.php?cat=246
http://www.getpedia.com/showarticles.php?cat=247
http://www.getpedia.com/showarticles.php?cat=248
http://www.getpedia.com/showarticles.php?cat=249

Numerical Methods

Real-Time and Embedded Systems Programming

Featuring in-depth
coverage of:

e Fixed and
floating point
mathematical
techniques
without a
coprocessor

e Numerica 1/0
for embedded
systems

e Data conversion
methods

Don Morgan

\N&g&

ﬂ!,,nf
'R\

M&T 32

= =
=
=
=
en

Numerical Methods

Real-Time and Embedded Systems Programming

oooooooooooooooooooooooooooooooo

Numerical Methods

Real-Time and Embedded Systems Programming

Featuring in-depth
coverage of:

e Fixed and
floating point
mathematical
techniques
without a
coprocessor

¢ Numericd 1/0
for embedded
systems

e Data conversion
methods

Don Morgan

M&T 3

= =
E'=
=

e

en

M&T Books

A Division of M& T Publishing, Inc.
411 BOREL AVE.

SAN MATEO, CA 94402

© 1992 by M&T Publishing, Inc.
Printed in the United States of America

All rights reserved. No part of this book or disk may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information storage and
retrieval system, without prior written permission from the Publisher. Contact the Publisher for
information on foreign rights.

Limits of Liability and Disclaimer of Warranty

The Author and Publisher of this book have used their best efforts in preparing the book and the
programs contained in it and on the diskette. These efforts include the development, research, and
testing of the theories and programs to determine their effectiveness.

The Author and Publisher make no warranty of any kind, expressed or implied, with regard to these
programs or the documentation contained in this book. The Author and Publisher shall not be ligble in
any event for incidental or consequential damages in connection with, or arising out of, the furnishing,
performance, or use of these programs.

Library of Congress Cataloging-in-Publication Data
Morgan, Don 1948-

Numerical Methods/Real-Time and Embedded Systems Programming
by Don Morgan

p. cm.
Includes Index
ISBN 1-55851-232-2 Book and Disk set
1. Electronic digital computers—Programming. 2. Red-time data processing.
3. Embedded computer systems—Programming. I. Title
QA76.6.M669 1992
513.2' 0285—dc20 91-47911
CIP
Project Editor: Sherri Morningstar Cover Design: Lauren Smith Design

95 94 93 92 4321

Trademarks: The 80386, 80486 are registered trademarks and the 8051, 8048, 8086, 8088,
80C196 and 80286 are products of Intel Corporation, Santa Clara, CA. The Z80 is a registered
trademark of Zilog Inc., Campbell, CA. The TMS34010 is a product of Texas Instruments, Dallas,
TX. Microsoft C is a product of Microsoft Corp. Redmond, WA.

Acknowledgment

Thank you Anita, Donald and Rachel
for your love and forbearance.

Contents

WHY THIS BOOK IS FOR YOU

... 1
INTRODUCTION . e 3
CHAPTER 1. NUMBERS e 7
Systems Of REPIrESENTAIONttt 8
BaSES . i 9
The Radix Point, Fixed and Floatingc.oiiii e 12
Types of Arthmetic e 15
FIXed POINt . 15
Floating POINt e e e 17
Positive and Negative NUMDENSot e 18
Fundamental Arithmetic PrinCiples 21
IMICTOPIOCESSOIS ... v vt vttt ettt ettt e ettt e e e et e e e e e e e e et eeeee 21
BUSWIAEN . . 22
D 2= 1] 1= 24
a0 - e 24
Rounding and the Sticky Bitot 25
Branching

NUMERICAL METHODS

S 0 ox (0 T PP 26
X [0 11 o) J RS 26
SUDETACHION cevvvereeerrereeiirreeeeiireeesesreeesesssreessassseresessssesssasssnsesasssnnessans 27
LY U oL 1oz 1 oo ST S 27
DIVISION cntieeiieeieeeieeeteeete e et e e te et e e saeesaeeesteesaeesaaeenseesseesaeeenseeaseeaneeenns 28
Negation 8N SIGNS....ccveirriireeiiere e 28
Shifts, Rotates and NOrMaliZationocevveeeeeeeeeeieceeeeeeeeeeeeeereee e 29
Decimal and ASCII INSIUCLIONS .vveveereerreeeerieeeesieeeesseeseessesseesseessens 30

CHAPTER 2: INTEGERS ...ii i 33
PiNo o (11 ToTaT="a o ISV o1 = o1 Lo) o AP USSR 33
Unsigned Addition and SUDLraCtionccooeereerieeneenne e 33
MUItipreciSion ATTHMELIC «o.eovveeeereerieeee e 35
addB4: AIGOTTRM .o 36
2’0 (o[7 I T i o [T 36
SUBBA: AIQOITHM ..o 37
SUDBA: LiStNG -vvveeririeeiiiiisie i 37
Signed Addition and SUBLIACtIONceeieeriiriieeieese e 38
Decimal Addition and SUBLIraCioNccveveerereieesee e see e 40
Multiplication and DiVISIONceeveveiienreenirsie e see e 42
Signed VS, UNSIGNED ..cooeiiiiiiiiiiie e 43
signed-operation: AlgOrthmcceveiiiieeniecee e 44
SIgNEd-0PEration: LiStiNG ...cceceererrireiieesee e esieesee e sree e seee s 45
Binary MUItiPlICAIION ...ccveeiveeiiiiieesiee ettt 46
CmUl: AIGOMTAM ..o e 49

CMUL LISHING ceveeetieeie ettt ettt ne et s e e e neeeneas 49

CONTENTS

A Faster SNift AN Add ..eeeeeiiireieiiiee i 50
CMUIZ: AIGOITTAM et 51
CMUI2: LISHING wvvveierieieiinie s 52

SKIPPING ONES ANA ZETOS ..vvveueeneeneeeeeeeeeeseeeeese e e e e e e e se e ene s 53
(0700 1 RV [o o 11 o U 55
(0707011 W I = 1 o N 95
bit-pair: AlQOMTNMocviieiiicicee e 57
o)) d o= T A IR (] o PSRRI 58

Hardware Multiplication: Single and MUltiprecisioncccocvvvenninninniinenns 61
MUL32: ALGONITIM cevveeieieieccecs e 62
MUL32: LISHNG wvvevererereiesesesseeessseseesesesssssseseseseesessssssesesesessnsssssssesess 63

BIiNATY DIVISION c.vovevevetetiiieeiteietetesese e et s e sese s s s bbb s s s s sesebesenas 64
EITOr CRECKING .v.vveereeeeseeeevetesseseesesestssesessssssessssssessesessssesesssssssesesenas 64

SOFtWEIE DIVISION .veveereveriiereresietesesessesesessesesesse e e sesessssesesassesessssesessssesenans 65
CAIV: AIGOMTNM ettt be s 67
CAIV: LISEING. cveveeeirereeetereiesteteeestete e stete e sete s sesessssesessssesessssesssnssenens 68

HaradWare DiVISION ..c.ccvcveveiieereiiiereeseesesssesessssesessssese e s sessssesesessesessssssesens 69
div32: ALGOrtRM e s 74
AIV32: LiStiNG covveveereeieieeieeeeeeeeete e e se e aeeseeneas 75
(o TRV N [« o (1120 o 79
AIVB4: LiStiNG uveueeeeeeieeieeeieeeeiee e e e ene e enis 80

CHAPTER 3; REAL NUMBERS ... 85

DG o I o T TS 86

SIGNIFICANT BItS wuvveeeuirtereeiirieese ettt 87

B I T=Y =T LD ql o) S 89

101010 o T 89

BasiC Fixed-POoiNt OPEIatioNS «......eereeerrerieeriereeessesesieseeessesessessesessesessessens 92

NUMERICAL METHODS

A Routing for Drawing CirClES ... o reueurirmrerrrrrrerereseesesessseeseseseeseseseseseees 95
CIFCIE: AIGONTRM eeeieiieieirieieee s 98
CIFCIE LISNG woereeeiereeieisisie st 98
Bresenham’s Line-Drawing Algorithm ..., 100
[iNE. AIGOMTAM weeiieieieeee e 101
[INE. LESHING +vtveneeveeeneseeseeseste e s se e sre st se e s sb e sn e ene e 102

DiVISION DY INVEISION ..ttt 105
AiVNEWE: AlQOTtAM. . .eeeieeieieeie e 108
AIVNEWE: LIStING. . eeiveieeeieeieeieeie e e te e ee e e e e e nne e nas 109

DiviSION DY MUItIPIICAHON.....veeueeeeeestee et 114
AiVMUL: ALGOITTML .. 116
AIVMNUEL LISHNG.ttiteterieieesieesesee e e e e e sse s sene e seenessens 117

CHAPTER 4: FLOATING-POINT ARITHMETIC........ccccevivveennee. 123

WhHat TO EXPECL...ueiueeiiieieieieie ettt 124

A Smal Floating-Point Package.........ccccureriirerieniniieseesie e 127
The Elements of a Floating-Point NUMbBEX.........cccvviiiiiiiiniiniiies 128
Extended PreCiSioN.........coeeieirininenisesee e 131

The EXterNal ROULINES.......ccueiieieieieieee et ne s 132
fp_add: AlQOrithMcccviiieeceee e 132
T [0 B IR 3T PP RO 133

THE COME ROULINES . eveeueereruerierierieriesiessesessessessesessessessessessessessessessessessessens 134

Fitting These Routines to an AppliCation.........ccocveiiiininincncseee 136

Addition and Subtraction: FLADD........cccuririireerienee e 136
FLADD: The Prologue. AlQOrithmL.........ccooveriiriiiniesieeeesee e 138
FLADD: The Prologue. LiSting........cccooverierrieereerireesieeseeseee e 138
The FLADD Routine Which Operand is Largest? Algorithm.............. 140

The FLADD Routine: Which Operand is Largest? Listing...........c........ 141

CONTENTS

The FLADD Routine: Aligning the Radix Points. Algorithm................. 142
The FLADD Routine: Aligning the Radix Point. Listing.........cccoenueen 143
FLADD: The Epilogue. AlgOrithm.........ccourriririirirciesseesseeseas 144
FLADD: The Epilogue. Listing.....cccoerereriinirinininineessssess s 145
Multiplication and DiviSion: FLMUL......ccooirinininiiniieeesesesesesesienes 147
MU AIGOMtIM. ...ttt 147
FIMUE LISHING «vvveeeieinere st 148
MULB4A AlGOITTAM...vcvieiieeecectcrctceee e 151
MULGAA LISHNG -euveuerrereserreeeiesreesiese e 152
=T) A 2T 154
FlAiV: AIGOMTtNML.ceeieieeeeee s 154
110 TRV = i o OSSR 155
ROUNDING ¢ttt sttt e s s s s s e s e na s e s s anenene 159
= o 0T o WY o o 1123 o USSR 159
ROUNGE LISHNG 1vveveviveierereseeese st se s s ss s s sesesenas 160

CHAPTER 5: INPUT, OUTPUT, AND CONVERSION............... 163
DL o] 007 I N 110100 1o 164
RAOIX CONVEISIONS.....ecuieuieriitiesiesieeeseeeeeeeeseeseeessessseseeseeseeseeseeseesesseeseesens 165
Integer CONVErSIoN BY DIVISION....cvceerirerereererereeererese e 165
(o 0T [oY [0 11 o TR 166
(o 0T I3 ool T (1o PO 167
Integer Conversion by MUltipliCation........ccourueiiiieiiinninecee e 169
o0V oL AN o o 1 o T 170
o0V o IS 1o S 170
Fraction Conversion by Multiplication.........cccevviiniiniiniiniieiccc e 172
bfc_dc: AIGOMTtRML......eoiee s 173

o) {ogo (ol IR £ (] 4o TR TSP URR PR 173

NUMERICAL METHODS

Fraction Conversion by DiViSIONc.cccuriiriniciiniesse e 175
D] {og o R [o o 1y o OSSR 176
DFC_DN: LiSHNG..vvireeeiierieieririeesisieesesie e 177

TADIE-DIIVEN CONVEISIONS. veveverrerrerterresiessessessessessessessessessessessessessessessessenns 179

(LS G (01 1 | R 179
hexast: AlGOMtAM.....cveiiciiic 180
(1= ol N1 (] o[180

DECIMEl 10 BINAIY «vvovrveeiiiieiiinicsis s 182
th_dChn: AlGOMTHM ..c.vcveieecere s 182
th_dcbn: Listing..cooeveririniininininin 184

Binary t0 DECIMAL.......eeuerieeiirie sttt 187
th_bndc: AlQOrithm.......cceeieece e 188
LC0 T 0o (ol IR 11 o TSR 189

Floating-Point CONVErSIONS.......ccceeieeeiieenieeseeeeeesseesseeseeenseessesssessnsesssesssees 192

ASCII to SINGIE-PreCiSioN FlOaL.......ccovereeriereirieeiesieeie e 192
LB AN o o 11 1o S 193
8 A T] o N 195

SINGle-Precision FIOat 10 ASCl ..c.coveveerieerierieesieseeessees e 200
ftar ALGOIItNM. .. 200
L T (130 PO PRRPRP 202

Fixed Point to Single-Precision Floating POint..........ccccovvoviinieininecneneene, 206
Ftf: ALQONtAM ... 207
LU S 11 o TR RSSO 208

Single-Precision Floating Point to Fixed Point.........ccccceviveveesiiecieeseeseene 211
FEX AIQOITtNM...ceeiceeece e 212

FHEX. LISHING eevereeerise e 212

CONTENTS

CHAPTER 6: THE ELEMENTARY FUNCTIONS........cc..ceeennn.
Fixed POINt AlQOMthMS: e e e
Lookup Tables and Linear |nterpo|a[ion ..
Ig 10: AlgOrithm e
1o T O TR = T o T
Dcsin: Algorithm
DCSIN: LiStiNG .ccceeiiiiiiniii it
Computing With Tables....ccoociiiiiii
Pwrb: AlQOrithm. o
PWrb: Listing: oo,
CORDIC AlgOrithms. eooceeeeiiniiiiis e
Circular: Algorithm. e,
Circular: Listinge s eseesseetmmmmmmuiiiiisssens
Polynomial Evaluations: . e
taylorsin: Algorithm
taylorsing LiSting.....cooviriiniiniiini i
Polyeval: AlQOrithm........ccoviiiiiiiiiii i
Polyeva: Listing:.ccccsmmmimisenn,
Calculating Fixed-Point SQUare ROOES --«««xxxrreessrrsmimiinniiniisieesee e
fX_SOr: AlGOthM e e
1= o A I = 11 o N
school_sgr: AIQOrithm e,
S o 0100 o | I = 1 T
Floati ng-Poi nt Approxi 07 1T0) 8 o T T T
Floating-Point Utilities
frxp: Algorithm
frxp: Listing

[dxp: Algorithm
ldxp: Listing

NUMERICAL METHODS

FIF ALGOTENM vttt 263
TG N1 1o TSRS 263
flail: AIGOTItRIM - «veveresereerisise e 265
FICEILT LISHNG:-eveveereerrreriei s 266
intmd: Algorithm .. 268
INEMO: LiSHNG - eererreerreseeesenine e 268
Sguare ROOLS: .+ v 209
1 o TG oo i o1 IS 270
1 o TG A= 1o RO 271
SINES ANA COSINES....euverereiteiteeteiteetestesrestesresresresressessesressesresressesresresresreerearean 203
flSiN: AlGONItAM..veeceiici 274
Flsin: Liging .. 275
APPENDIXES:
A: A PSEUDO-RANDOM NUMBER GENERATOR.......ccccoceeuue. 281
B: TABLES AND EQUATES ...t 295
C: FXMATH.ASM oo e 297
D: FPMATH. ASM .o e 337

CONTENTS

F: TRANS.ASM AND TABLE.ASM ... 407
G MATH. G 475
GLOS S ARY 485

Additional Disk

Just in case you need an additional disk, simply call the toll-free number listed
below. The disk contains al the routines in the book along with a simple C shell that
can be used to exercise them. This alows you to walk through the routines to see how
they work and test any changes you might make to them. Once you understand how
the routine works, you can port it to another processor. Only $10.00 postage-paid.

To order with your credit card, cal Toll-Free 1-800-533-4372 (in CA 1-800-
356-2002). Mention code 7137. Or mail your payment to M&T Books, 411 Borel
Ave., Suite 100, San Mateo, CA 94402-3522. Cdlifornia residents please add
applicable sales tax.

Why This Book Is For You

The ability to write efficient, high-speed arithmetic routines ultimately depends
upon your knowledge of the elements of arithmetic as they exist on a computer. That
conclusion and this book are the result of a long and frustrating search for
information on writing arithmetic routines for rea-time embedded systems.

With ingtruction cycle times coming down and clock rates going up, it would
seem that speed is not a problem in writing fast routines. In addition, math
coprocessors are becoming more popular and less expensive than ever before and are
readily available. These factors make arithmetic easier and faster to use and
implement. However, for many of you the systems that you are working on do not
include the latest chips or the faster processors. Some of the most widely used
microcontrollers used today are not Digital Signa Processors (DSP), but smple
eight-hit controllers such as the Intel 8051 or 8048 microprocessors.

Whether you are using one on the newer, faster machines or using a simple
eight-bit one, your familiarity with its foundation will influence the architecture of
the application and every program you write. Fast, efficient code requires an
understanding of the underlying nature of the machine you are writing for. Your
knowledge and understanding will help you in areas other than simply implementing
the operations of arithmetic and mathematics. For example, you may want the
ability to use decimal arithmetic directly to control peripherals such as displays and
thumbwhed switches. You may want to use fractional binary arithmetic for more
efficient handling of D/A converters or you may wish to create buffers and arrays that
wrap by themselves because they use the word size of your machine as a modulus.

The intention in writing this book is to present a broad approach to microproces-
sor arithmetic ranging from data on the positional number system to algorithms for

1

NUMERICAL METHODS

developing many elementary functions with examples in 8086 assembler and
pseudocode. The chapters cover positional humber theory, the basic arithmetic
operations to numerical 1/0, and advanced topics are examined in fixed and floating
point arithmetic. In each subject area, you will find many approaches to the same
problem; some are more appropriate for nonarithmetic, general purpose machines
such as the 8051 and 8048, and others for the more powerful processors like the
Tandy TMS34010 and the Intel 80386. Along the way, a package of fixed-point and
floating-point routines are developed and explained. Besides these basic numerical
algorithms, there are routines for converting into and out of any of the formats used,
as well as base conversions and table driven trandations. By the end of the book,
readers will have code they can control and modify for their applications.

This book concentrates on the methods involved in the computational process,
not necessarily optimization or even speed, these come through an understanding of
numerical methods and the target processor and application. The goal is to move the
reader closer to an understanding of the microcomputer by presenting enough
explanation, pseudocode, and examples to make the concepts understandable. It is
an aid that will allow engineers, with their familiarity and understanding of the target,
to write the fastest, most efficient code they can for the application.

Introduction

If you work with microprocessors or microcontrollers, you work with numbers.
Whether it is a simple embedded machine-tool controller that does little more than
drive displays, or interpret thumbwheel settings, or is a DSP functioning in a red-
time system, you must deal with some form of numerics. Even an application that
lacks specia requirements for code size or speed might need to perform an
occasiona fractional multiply or divide for a D/A converter or another periphera
accepting binary parameters. And though the real bit twiddling may hide under the
hood of a higher-level language, the individua responsible for that code must know
how that operation differs from other forms of arithmetic to perform it correctly.

Embedded systems work involves all kinds of microprocessors and
microcontrollers, and much of the programming is done in assembler because of the
speed benefits or the resulting smaller code size. Unfortunately, few references
are written to specificaly address assembly language programming. One of the
major reasons for this might be that assembly-language routines are not easily
ported from one processor to another. As a result, most of the materia devoted
to assembler programming is written by the companies that make the proces-
sors. The code and agorithms in these cases are then tailored to the particular
advantages (or to overcoming the particular disadvantages) of the product. The
documentation that does exist contains very little about writing floating-point
routines or eementary functions.

This book has two purposes. The first and primary aim is to present a spectrum
of topics involving numerics and provide the information necessary to understand
the fundamentals as well as write the routines themselves. Along with thisinforma-
tion are examples of their implementation in 8086 assembler and pseudocode
that show each algorithm in component steps, so you can port the operation to
another target. A secondary, but by no means minor, goa is to introduce you

3

NUMERICAL METHODS

to the benefits of binary arithmetic on a binary machine. The decimal numbering
system is so pervasive that it is often difficult to think of numbers in any other format,
but doing arithmetic in decimal on a binary machine can mean an enormous number
of wasted machine cycles, undue complexity, and bloated programs. As you proceed
through this book, you should become less dependent on blind libraries and more
able to write fast, efficient routines in the native base of your machine.

Each chapter of this book provides the foundation for the next chapter. At the
code level, each new routine builds on the preceeding algorithms and routines.
Algorithms are presented with an accompanying example showing one way to
implement them. There are, quite often, many ways that you could solve the
algorithm. Fed free to experiment and modify to fit your environment.

Chapter 1 covers positional humber theory, bases, and signed arithmetic. The
information here provides the necessary foundation to understand both decimal and
binary arithmetic. That understanding can often mean faster more compact routines
using the elements of binary arithmetic-in other words, shifts, additions, and
subtractions rather than complex scaling and extensive routines.

Chapter 2 focuses on integer arithmetic, presenting algorithms for performing
addition, subtraction, multiplication, and division. These agorithms apply to ma-
chines that have hardware instructions and those capable of only shifts, additions,
and subtractions.

Real numbers (those with fractional extension) are often expressed in floating
point, but fixed point can also be used. Chapter 3 explores some of the qualities of
real numbers and explains how the radix point affects the four basic arithmetic
functions. Because the subject of fractions is covered, severa rounding techniques
are also examined. Some interesting techniques for performing division, one using
multiplication and the other inversion, are also presented. These routines are
interesting because they involve division with very long operands as well as from a
purely conceptual viewpoint. At the end of the chapter, there is an example of an
algorithm that will draw a circle in a two dimensional space, such as a graphics
monitor, using only shifts, additions and subtractions.

Chapter 4 covers the basics of floating-point arithmetic and shows how scaling
is done. The four basic arithmetic functions are developed into floating-point

INTRODUCTION

routines using the fixed point methods given in earlier chapters.

Chapter 5 discusses input and output routines for numerics. These routines deal
with radix conversion, such as decimal to binary, and format conversions, such as
ASCII to floating point. The conversion methods presented use both computational
and table-driven techniques.

Finaly, the elementary functions are discussed in Chapter 6. These include
table-driven techniques for fast lookup and routines that rely on the fundamental
binary nature of the machine to compute fast logarithms and powers. The CORDIC
functions which deliver very high-quality transcendentals with only afew shifts and
additions, are covered, as are the Taylor expansions and Horner's Rule. The
chapter ends with an implementation of a floating-point sine/cosine agorithm
based upon a minimax approximation and a floating-point square root.

Following the chapters, the appendices comprise additional information and
reference materials. Appendix A presents and explains the pseudo-random number
generator developed to test many of the routines in the book and includes
SPECTRAL.C, a C program useful in testing the functions described in this book.
This program was originally created for the pseudo-random number generator and
incorporates a visual check and Chi-square statistical test on the function. Appendix
B offers a small set of constants commonly used.

The source code for al the arithmetic functions, along with many ancillary
routines and examples, is in appendices C through F.

Integer and fixed-point routines are in Appendix C. Here are the classical
routines for multiplication and division, handling signs, along with some of the more
complex fixed-point operations, such as the Newton Raphson iteration and linear
interpolation for division.

Appendix D consists of the basic floating-point routines for addition,
subtraction, multiplication, and division, Floor, ceiling, and absolute value
functions are included here, as well as many other functions important to the
more advanced math in Chapter 6.

The conversion routines are in Appendix E. These cover the format and
numerical conversions in Chapter 5

In Appendix F, there are two source filess TRANS.ASM contains the elementary

NUMERICAL METHODS

functions described in Chapter 6, and TABLE.ASM that holds the tables, equates
and constants used in TRANS.ASM and many of the other modules.

MATH.C in Appendix F is a C program useful in testing the functions described
in this book. It is a simple shell with the defines and prototypes necessary to perform
tests on the routines in the various modules.

Because processors and microcontrollers differ in architecture and instruction
set, algorithmic solutions to numeric problems are provided throughout the book for
machines with no hardware primitives for multiplication and division as well as for
those that have such primitives.

Assembly language by nature isn't very portable, but the ideas involved in
numeric processing are. For that reason, each algorithm includes an explanation that
enables you to understand the ideas independently of the code. This explanation is
complemented by step-by-step pseudocode and at least one example in 8086
assembler. All the routines in this book are also available on a disk along with a
simple C shell that can be used to exercise them. This alows you to walk through the
routines to see how they work and test any changes you might make to them. Once
you understand how the routine works, you can port it to another processor. The
routines as presented in the book are formatted differently from the same routines on
the disk. Thisis done to accommodate the page size. Any last minute changesto the
source code are documented in the Readme file on the disk.

There is no single solution for all applications; there may not even be a single
solution for a particular application. The fina decision is dways l€eft to the individual
programmer, whose skills and knowledge of the application are what make the
software work. | hope this book is of some help.

CHAPTER 1

Numbers

Numbers are pervasive; we use them in amost everything we do, from counting
the feet in aline of poetry to determining the component frequencies in the periods
of earthquakes. Religions and philosophies even use them to predict the future. The
wonderful abstraction of numbers makes them useful in any situation. Actualy, what
we find so useful aren’t the numbers themselves (numbers being merely a represen-
tation), but the concept of numeration: counting, ordering, and grouping.

Our numbering system has humble beginnings, arising from the need to quantify
objects-five horses, ten people, two goats, and so on-the sort of calculations that
can be done with strokes of a sharp stone or root on another stone. These are natural
numbers-positive, whole numbers, each defined as having one and only one
immediate predecessor. These numbers make up the number ray, which stretches
from zero to infinity (see Figure 1- 1).

1%} 1 2 3 4
Number ray -

7,.6,5, 4,3, 2, 1.9 1 2 3 4,5 6, 7
Number line tb—-+-o-b o b e

-65 -55 -45 -35 25 15 -5 5 15 25 35 45 55 65

Figure 1-1. The number line.

NUMERICAL METHODS

The calculations performed with natural numbers consist primarily of addition
and subtraction, though natural numbers can also be used for multiplication (iterative
addition) and, to some degree, for division. Natural numbers don’t always suffice,
however; how can you divide three by two and get a natural number as the result?
What happens when you subtract 5 from 3? Without decimal fractions, the results of
many divisions have to remain symbolic. The expression "5 from 3" meant nothing
until the Hindus created a symbol to show that money was owed. The words positive
and negative are derived from the Hindu words for credit and debit’.

The number ray-all natural numbers-became part of amuch greater schema
known as the number line, which comprises al numbers (positive, negative, and
fractional) and stretches from a negative infinity through zero to a positive infinity
with infinite resolution®. Numbers on this line can be positive or negative so that 3-
5 can exist as a representable value, and the line can be divided into smaller and
smaller parts, no part so small that it cannot be subdivided. This number line extends
the idea of numbers considerably, creating a continuous weave of ever-smaller
pieces (you would need something like this to describe a universe) that finally give
meaning to calculations such as 3/2 in the form of real numbers (those with decimal
fractional extensions).

This is undeniably a valuable and useful concept, but it doesn’t trandate so
cleanly into the mechanics of a machine made of finite pieces.

Systems of Representation

The Romans used an additional system of representation, in which the symbols
are added or subtracted from one another based on their position. Nine becomes | X
in Roman numerals (a single count is subtracted from the group of 10, equaling nine;
if the stroke were on the other side of the symbol for 10, the number would be 11).
This meant that when the representation reached a new power of 10 or just became
too large, larger numbers could be created by concatenating symbols. The problem
here is that each time the numbers got larger, new symbols had to be invented.

Another form, known as positional representation, dates back to the Babylonians,
who used a sort of floating point with a base of 60.2 With this system, each
successively larger member of a group has a different symbol. These symbols are

NUMBERS

then arranged serialy to grow more significant as they progress to the left. The
position of the symbol within this representation determines its value. This makes for
avery compact system that can be used to approximate any value without the need
to invent new symbols. Positional numbering systems also alow another freedom:
Numbers can be regrouped into coefficients and powers, as with polynomials, for
some alternate approaches to multiplication and division, as you will see in the
following chapters.

If b is our base and a an integer within that base, any positive integer may be
represented as:

n-1

A= Zaibi

i=0

or as:
a *b +a,*bt+ ... +a* b
As you can see, the vaue of each position is an integer multiplied by the base

taken to the power of that integer relative to the origin or zero. In base 10, that
polynomial looks like this:

a * 100 +a., * 10+ ... +a * 10°

and the value 329 takes the form:

3 * 10 +2* 10 + * 10

Of course, since the number line goes negative, so must our polynomial:

a *b +a,*bt+ ... +a*b’+a,*br+a,*bi+... +a,; *"

Bases

Children, and often adults, count by simply making a mark on a piece of paper
for each item in the set they’ re quantifying. There are obvious limits to the numbers

NUMERICAL METHODS

that can be conveniently represented this way, but the solution is simple: When the
numbers get too big to store easily as strokes, place them in groups of equal size and
count only the groups and those that are left over. This makes counting easier because
we are no longer concerned with individual strokes but with groups of strokes and
then groups of groups of strokes. Clearly, we must make the size of each group
greater than one or we are still counting strokes. This is the concept of base. (See
Figure 1-2.) If we choose to group in |10s, we are adopting 10 as our base. In base 10,
they are gathered in groups of 10; each position can have between zero and nine
things in it. In base 2, each position can have either a one or a zero. Base 8 is zero
through seven. Base 16 uses zero through nine and a through f. Throughout this
book, unless the base is stated in the text, a B appended to the number indicates base
2, an O indicates base 8, a D indicates base 10, and an H indicates base 16.

Regardless of the base in which you are working, each successive position to the
left is a positive increase in the power of the position.

In base 2, 999 looks like:

[1rrroolli B

If we add a subscript to note the position, it becomes:

1111100111

This has the value:

1%2% +1%2% +1%27 +1%2° +1%2° +1%2% +1%2% +1%2%7 +1%2' +1%2°
which is the same as.

1¥512 + 1*256 + 1*128 + 1*64 + 1*32 + 0*16 + 0*8 + 1*4 + 1*2 + 1*1
Multiplying it out, we get:

512 + 256 + 128 + 64 + 32 + 0+ 0 +4 + 2 + 1 =999

10

NUMBERS

Octal Base 8
1
11101111 1010 0101 Binary
L 1
Hexidecimal Base 16
|
Base 256

[|
Box 65536

Figure 1-2. The base of a number system defines the number of unique digits
available in each position.

Octal, as the name implies, is based on the count of eight. The number 999 is 1747
in octal representation, which is the same as writing:

1*8° + 7¥8% + 48" + 7*8°
or

1¥*512 + 764 + 4*8 + 7*1

When we work with bases larger than 10, the convention is to use the letters of
the alphabet to represent values equal to or greater than 10. In base 16 (hexadecimal),
therefore, the set of numbersis0123456789abcdef, wherea= 10 and
f = 15. If you wanted to represent the decima number 999 in hexadecimal, it would
be 3e7H, which in decimal becomes:

34162 + 14*16' + 7*16°
Multiplying it out gives us.
3%256 + 14*16 + 7*1

11

NUMERICAL METHODS

Obvioudly, a larger base requires fewer digits to represent the same value.

Any number greater than one can be used as a base. It could be base 2, base 10,
or the number of bitsin the data type you are working with. Base 60, which is used
for timekeeping and trigonometry, is attractive because numbers such as /3 can be
expressed exactly. Bases 16, 8, and 2 are used everywhere in computing machines,
along with base 10. And one contingent believes that base 12 best meets our
mathematical needs.

The Radix Point, Fixed and Floating

Since the physical world cannot be described in simple whole numbers, we need
away to express fractions. If all we wish to do is represent the truth, a symbol will
do. A number such as 2/3 in all its simplicity is a symbol-a perfect symbol, because
it can represent something unrepresentable in decimal notation. That number
trandated to decimal fractional representation is irrational; that is, it becomes an
endless series of digits that can only approximate the original. The only way to
express an irrational number in finite terms is to truncate it, with a corresponding loss
of accuracy and precision from the actua value.

Given enough storage any number, no matter how large, can be expressed as
ones and zeros. The bigger the number, the more bits we need. Fractions present a
similar but not identical barrier. When we're building an integer we start with unity,
the smallest possible building block we have, and add progressively greater powers
(and multiples thereof) of whatever base we're in until that number is represented.
We represent it to the least significant bit (LSB), its smallest part.

The same isn't true of fractions. Here, we're starting at the other end of the
spectrum; we must express a value by adding successively smaller parts. The trouble
is, we don't always have access to the smallest part. Depending on the amount of
storage available, we may be nowhere near the smallest part and have, instead of a
complete representation of a number, only an approximation. Many common values
can never be represented exactly in binary arithmetic. The decimal 0.1 or one 10th,
for example, becomes an infinite series of ones and zeros in binary
(1100110011001100 ... B). The difficulties in expressing fractiona parts completely
can lead to unacceptable errors in the result if you're not careful.

12

NUMBERS

The radix point (the point of origin for the base, like the decimal point) exists on
the number line at zero and separates whole numbers from fractional numbers. As
we move through the positions to the left of the radix point, according to the rules of
positional notation, we pass through successively greater positive powers of that

base; as we move to the right, we pass through successively greater negative powers
of the base.

In the decimal system, the number 999.999 in positional notation is
929190. 9_19_29_3

And we know that base 10

10% = 100
10 = 10
10° = 1
It is also true that
10t =1
10% = .01
10% = . 001

We can rewrite the number as a polynomial

9*10% + 9*10* + 9*10° + 9*10% + 9*10°2 + 9*10°°
Multiplying it out, we get

900 +90 + 9 + .9 + .09 + .009
which equals exactly 999.999.
Suppose we wish to express the same value in base 2. According to the previous

example, 999 is represented in binary as 1111100111B. To represent 999.999, we
need to know the negative powers of two as well. The first few are as follows:

13

NUMERICAL METHODS

2t = .5D

2% = .25D
2% = 125D
2% = .0625D
2% = .03125D

2% = . 015625D

277 = .0078125D

2% = .00390625D

2°° = ,001953125D
2% = . 0009765625D
2" = ., 00048828125D
2% = . 000244140625D

Twelve binary digits are more than enough to approximate the decimal fraction
.999. Ten digits produce

1111100111. 1111111111 =
999. 9990234375

which is accurate to three decimal places.
Representing 999.999 in other bases results in similar problems. In base 5, the
decima number 999.999 is noted

12444. 4444141414 =
1%5% + 2¢5° + 4*5% + 451 + 4*5° + 45 4 4¥57 4 4¥5° 4 455 4 165 4
4+5° + 1¥57 + 4*5°° + 1+57° 4+ 4510 =
1%625 + 2*125 + 4*25 + 4*5 + 4+ 4*.2 + 4*. 04 + 4*.008 + 4*.0016
+ 1*.00032 + 4*.000065 + 1*.0000125 + 4*.00000256
+ 1*.000000512 + 4*.0000001024

or

625+ +250 + 100 + 20 + 4 + .8 + .16 + .032 + .0064 + .00032 + .000256 +
. 0000128 + .00001024 + .000000512 + .00004096 =
999. 9990045696

14

NUMBERS

But in base 20, which is amultiple of 10 and two, the expression is rational. (Note
that digits in bases that exceed 10 are usualy denoted by aphabetical characters; for
example, the digits of base 20 wouldbe0123456789ABCDEFGHIJ)

29J).JJcC
2x20% + 9x20% + 19x20% + 19x20°! + 19x207% + 12x20°% =

2x400 + 9x20 + 19x1. + 19x.05 + 19x.0025 + 12x.000125
or

800 + 180 + 19. + .95 + .0475 + .0015 =
999. 999

As you can seg, it isn't always easy to approximate a fraction. Fractions are a sum
of the value of each position in the data type. A rational fraction is one whose sum
precisely matches the value you are trying to approximate. Unfortunately, the exact
combination of parts necessary to represent a fraction exactly may not be available
within the data type you choose. In cases such as these, you must settle for the
accuracy obtainable within the precision of the data type you are using.

Types of Arithmetic

This book covers three basic types of arithmetic: fixed point (including integer-
only arithmetic and modular) and floating point.

Fixed Point

Fixed-point implies that the radix point is in afixed place within the represen-
tation. When we' re working exclusively with integers, the radix point is always to
the right of the rightmost digit or bit. When the radix point is to the left of the leftmost
digit, we're dealing with fractional arithmetic. The radix point can rest anywhere
within the number without changing the mechanics of the operation. In fact, using
fixed-point arithmetic in place of floating point, where possible, can speed up any
arithmetic operation. Everything we have covered thus far applies to fixed-point
arithmetic and its representation.

15

NUMERICAL METHODS

Though fixed-point arithmetic can result in the shortest, fastest programs, it
shouldn’t be used in al cases. The larger or smaller anumber gets, the more storage
is required to represent it. There are aternatives; modular arithmetic, for example,
can, with an increase in complexity, preserve much of an operation’s speed.

Modular arithmetic is what people use every day to tell time or to determine the
day of the week at some future point. Time is calculated either modulo 12 or 24—
that is, if it is9:00 and six hours pass on a 12-hour clock, it is now 3:00, not 15:00:

9+6 =3

Thisistrueif all multiples of 12 are removed. In proper modular notation, this
would be written:

9 + 6= 3, mod 12.

In this equation, the sign =1 means congruence. In this way, we can make large
numbers congruent to smaller numbers by removing multiples of another number (in
the case of time, 12 or 24). These multiples are often removed by subtraction or
division, with the smaller number actually being the remainder.

If al operands in an arithmetic operation are divided by the same value, the result
of the operation is unaffected. This means that, with some care, arithmetic operations
performed on the remainders can have the same result as those performed on the
whole number. Sines and cosines are calculated mod 360 degrees (or mod 21
radians). Actualy, the input argument is usualy taken mod 7/2 or 90 degrees,
depending on whether you are using degrees or radians. Along with some method for
determining which quadrant the angle is in, the result is computed from the
congruence (see Chapter 6).

Random number generators based on the Linear Congruential Method use
modular arithmetic to develop the output number as one of the fina steps.*
Assembly-language programmers can facilitate their work by choosing a modulus
that's as large as the word size of the machine they are working on. It is then a simple
matter to calculate the congruence, keeping those lower bits that will fit within the

16

NUMBERS

word size of the computer. For example, assume we have a hexadecima doubleword:

12345678H

and the word size of our machine is 16 bits

12345678H = 5678 mod 10000H

For more information on random number generators, see Appendix A.

One fina and valuable use for modular arithmetic is in the construction of self-
maintaining buffers and arrays. If abuffer containing 256 bytes is page aligned-the
last eight bits of the starting address are zero-and an 8-bit variable is declared to
count the number of entries, a pointer can be incremented through the buffer smply
by adding one to the counting variable, then adding that to the address of the base of
the buffer. When the pointer reaches 255, it will indicate the last byte in the buffer;
when it is incremented one more time, it will wrap to zero and point once again at
the initial byte in the buffer.

Floating Point

Floating point is a way of coding fixed-point numbers in which the number of
significant digits is constant per type but whose range is enormoudly increased
because an exponent and sigh are embedded in the number. Floating-point arithmetic
is certainly no more accurate than fixed point-and it has a number of problems,
including those present in fixed point as well as some of its own-but it is convenient
and, used judicioudy, will produce vaid results.

The floating-point representations used most commonly today conform, to some
degree, to the IEEE 754 and 854 specifications. The two main forms, the long real
and the short real, differ in the range and amount of storage they require. Under the
| EEE specifications, along real isan 8-byte entity consisting of asign bit, an 11-bit
exponent, and a 53-bit significand, which mean the significant bits of the floating-
point number, including the fraction to the right of the radix point and the leading one

17

NUMERICAL METHODS

to the left. A short real is a 4-byte entity consisting of asign bit, an 8-bit exponent,
and a 24-bit significand.

To form a binary floating-point number, shift the value to the left (multiply by
two) or to the right (divide by two) until the result is between 1.0 and 2.0. Concatenate
the sign, the number of shifts (exponent), and the mantissa to form the float.

Doing calculations in floating point is very convenient. A short real can express
avalue in the range 10® to 10® in a doubleword, while a long real can handle values
ranging from 10°® to 10°® in a quadword. And most of the work of maintaining the
numbers is done by your floating-point package or library.

As noted earlier, some problems in the system of precision and exponentiation
result in a representation that is not truly "real"—namely, gapsin the number line and
loss of significance. Another problem is that each developer of numerical software
adheres to the standards in his or her own fashion, which means that an equation that
produced one result on one machine may not produce the same result on another
machine or the same machine running a different software package. This compatibil-
ity problem has been partialy alleviated by the widespread use of coprocessors.

Positive and Negative Numbers

The most common methods of representing positive and negative numbersin a
positional number system are sign magnitude, diminished-radix complement, and
radix complement (see Table 1- 1).

With the sign-magnitude method, the most significant bit (MSB) is used to
indicate the sign of the number: zero for plus and one for minus. The number itself
is represented as usual—that is, the only difference between a positive and a negative
representation is the sign bit. For example, the positive value 4 might be expressed
as 0l00B in a 4-bit binary format using sign magnitude, while -4 would be
represented as 1100B.

Thisform of notation has two possible drawbacks. Thefirst is something it has
in common with the diminished-radix complement method: It yields two forms of
zero, 0000B and 1000B (assuming three bits for the number and one for the sign).
Second, adding sign-magnitude values with opposite signs requires that the magni-

18

NUMBERS

tudes of the numbers be consulted to determine the sign of the result. An example of
sign magnitude can be found in the IEEE 754 specification for floating-point
representation.

The diminished-radix complement is also known as the one’s complement in
binary notation. The MSB contains the sign hit, as with sign magnitude, while the rest
of the number is either the absolute value of the number or its bit-by-bit complement.
The decimal number 4 would appear as 0100 and -4 as 1011. Asin the foregoing
method, two forms of zero would result: 0000 and 1111.

The radix complement, or two’s complement, is the most widely used notation
in microprocessor arithmetic. It involves using the MSB to denote the sign, asin the
other two methods, with zero indicating a positive value and one meaning negative.
You derive it simply by adding one to the one’' s-complement representation of the
same negative value. Using this method, 4 is till 0100, but -4 becomes 1100. Recall
that one's complement is a bit-by-bit complement, so that all ones become zeros and
all zeros become ones. The two's complement is obtained by adding a one to the
one's complement.

This method eliminates the dua representation of zero-zero is only 0000
(represented as a three-bit signed binary number)-but one quirk is that the range of
values that can be represented is dightly more negative than positive (see the chart
below). That is not the case with the other two methods described. For example, the
largest positive value that can be represented as a signed 4-hit number is 0111B, or
7D, while the largest negative number is 1000B, or -8D.

19

NUMERICAL METHODS

One' s conpl enent Two's conpl enent Sign conpl enent
0111 7 7 7
0110 6 6 6
0101 5 5 5
0100 4 4 4
0011 3 3 3
0010 2 2 2
0001 1 1 1
0000 0 0 0
1111 -0 o1 -7
1110 -1 -2 -6
1101 -2 -3 -5
1100 -3 -4 -4
1011 -4 -5 -3
1010 -5 -6 -2
1001 -6 -7 -1
1000 -7 .8 -0

Table 1-1. Signed Numbers.

Decimal integers require more storage and are far more complicated to work
with than binary; however, numeric I/0O commonly occurs in decimal, a more
familiar notation than binary. For the three forms of signed representation already
discussed, positive values are represented much the same as in binary (the leftmost

20

NUMBERS

bit being zero). In sign-magnitude representation, however, the sign digit is nine
followed by the absolute value of the number. For nine's complement, the sign digit
is nine and the value of the number isin nine's complement. As you might expect,
10's complement is the same as nine's complement except that a one is added to the
low-order (rightmost) digit.

Fundamental Arithmetic Principles

So far we've covered the basics of positiona notation and bases. While this book
is not about mathematics but about the implementation of basic arithmetic operations
on a computer, we should take a brief look at those operations.

1.

w

N o s

Addition is defined asa + b = ¢ and obeys the commutative rules described
below.

Subtraction is the inverse of addition and is defined asb = ¢ - a.
Multiplication is defined as ab = ¢ and conforms to the commutative,
associative, and distributive rules described below.

Division is the inverse of multiplication and is shown by b = c/a.

A power is ba=c.

A rootish = “Ve

A logarithmis a = log,c.

Addition and subtraction must also satisfy the following rules:
8. Commutative:

a+b=b+a
ab =ba

9. Associative:

a=(b+c)=(a+h)+c
a(bc) = (ab)c

10. Distributive:

ab+c)=a+ac

From these rules, we can derive the following relations:®
11. (ab)° = ab°

21

NUMERICAL METHODS

12. & = ac™
13. (@)° = a™

14. a+0=a

15. ax 1=a

16. a'=a

17. a0 is undefined

These agreements form the basis for the arithmetic we will be using in upcoming
chapters.

Microprocessors

The key to an application’s success is the person who writes it. This statement
is no less true for arithmetic. But it's also true that the functionality and power of the
underlying hardware can greatly affect the software development process.

Table I-2 is a short list of processors and microcontrollers currently in use, aong
with some issues relevant to writing arithmetic code for them (such as the instruction
set, and bus width). Although any one of these devices, with some ingenuity and
effort, can be pushed through most common math functions, some are more capable
than others. These processors are only a sample of what is available. In the rest of this
text, we'll be dealing primarily with 8086 code because of its broad familiarity.
Examples from other processors on the list will be included where appropriate.

Before we discuss the devices themselves, perhaps an explanation of the
categories would be helpful.

Buswidth

The wider bus generally results in a processor with a wider bandwidth because it can
access more data and instruction elements. Many popular microprocessors have a
wider internal bus than external, which puts a burden on the cache (storage internal
to the microprocessor where data and code are kept before execution) to keep up with
the processing. The 8088 is an example of this in operation, but improvements in the
80x86 family (including larger cache sizes and pipdining to allow some paralld
processing) have helped alleviate the problem.

22

UQJ
¢4,%9
7
'0,5,09@%
e,
o SN S
@ s,
g S S
* G S
N S S
@, % OEIEN
,‘09[/,0
O
S
%"%O S
o}
o,
Qx8 Y
=7
852 l/q‘;\
b
%% SN NS
4
o,
“ans, g,
7 b
N
)1.9,,/ e,
,Ob./e.oe N
g S S OS
&
‘?//e?,/b
“o
17 N
7,
< s‘?’ls,‘/
“ iy, S
@
04‘4 Q/P
S S S S
Ib’% S O8NS
00’5‘
"5t
g,
g S
’Uszslq‘(/o
9"711/00‘578 N
g %, S 0SS
O,
)/q’l/fz
Yo,
% N
g,
U@s)a:o
o,
T, g S
4
iy o,
9, N S
L S
o%”& S
.
° Y
W NTNTS
Dy NN S
@X -~ o
g 8 R

Y

v 7/

v v/ v / /7

8086

v /7

IS

v/

v/ /7

v v/

80386

v J I/ v /7

4

/7Y

4

s

80C196 v v

IS

S/

SIS

a4

'4

TMS34010 v

*Note: Actually means that the accumulator is = zero

Table 1-2. Instructions and flags.

NUMBERS

23

NUMERICAL METHODS

Data type

The larger the word size of your machine, the larger the numbers you can process
with single instructions. Adding two doubleword operands on an 8051 is a
multiprecision operation requiring several steps. It can be done with asingle ADD
on a TMS34010 or 80386. In division, the word size often dictates the maximum size
of the quotient. A larger word size allows for larger quotients and dividends.

Flags
The effects of a processor’s operation on the flags can sometimes be subtle. The

following comments are generdly true, but it is aways wise to study the data sheets
closely for specific cases.

24

Zero. Thisflagis set to indicate that an operation has resulted in zero. This can
occur when two operands compare the same or when two equal values are
subtracted from one another. Simple move instructions generally do not affect
the state of the flag.

Carry. Whether this flag is set or reset after a certain operation varies from
processor to processor. On the 8086, the carry will be set if an addition overflows
or a subtraction underflows. On the 80C196, the carry will be set if that addition
overflows but cleared if the subtraction underflows. Be careful with this one.
Logicd instructions will usualy reset the flag and arithmetic instructions as well
as those that use arithmetic elements (such as compare) will set it or reset it based
on the results.

Sgn. Sometimes known as the negative flag, it is set if the MSB of the data type
is set following an operation.

Overflow. If the result of an arithmetic operation exceeds the data type meant
to contain it, an overflow has occurred. This flag usualy only works predictably
with addition and subtraction. The overflow flag is used to indicate that the result
of a signed arithmetic operation is too large for the destination operand. It will
be set if, after two numbers of like sign are added or subtracted, the sign of the
result changes or the carry into the MSB of an operand and the carry out don't
match.

NUMBERS

» Overflow Trap. If an overflow occurred at any time during an arithmetic
operation, the overflow trap will be set if not already set. This flag bit must be
cleared explicitly. It allows you to check the validity of a series of operations.

« Auxiliary Carry. The decimal-adjust instructions use this flag to correct the
accumulator after a decimal addition or subtraction. This flag alows the
processor to perform a limited amount of decimal arithmetic.

» Parity. The parity flag is set or reset according to the number of bits in the lower
byte of the destination register after an operation. It is set if even and reset if odd.

« Sicky Bit. This useful flag can obviate the need for guard digits on certain
arithmetic operations. Among the processors in Table I-2, it is found only on
the 80C196. It is set if, during a multiple right shift, more than one hit was shifted
into the carry with a one in the carry at the end of the shift.

Rounding and the Sticky Bit

A multiple shift to the right is a divide by some power of two. If the carry is s,
the result is equal to the integer result plus I/2, but should we round up or down? This
problem is encountered frequently in integer arithmetic and floating point. Most
floating-point routines have some form of extended precision so that rounding can
be performed. This requires storage, which usually defaults to some minimal data
type (the routines in Chapter 4 use aword). The sticky bit reduces the need for such
extended precision. It indicates that during a right shift, a one was shifted into the
carry flag and then shifted out.

Along with the carry flag, the sticky bit can be used for rounding. For example,
suppose we wish to divide the hex value 99H by 16D. We can do this easily with a
four-bit right shift. Before the shift, we have:

Oper and Carry flag Sticky bit
10011001 0 0

We shift the operand right four times with the following instruction:

shr ax, #4

25

NUMERICAL METHODS

During the shift, the Least Significant Bit (LSB) of the operand (a one) is shifted
into the carry and then out again, setting the sticky bit followed by two zeros and a
final one. The operand now has the following form:

Oper and Carry flag Sticky bit
00001001 1 (fromthe last shift) 1 (because of the first one
shifted in and out of the carry)

To round the result, check the carry flag. If it's clear, the bits shifted out were less
than half of the LSB, and rounding can be done by truncation. If the carry is set, the
bits shifted out were at least half of the LSB. Now, with the sticky bit, we can seeif
any other hits shifted out during the divide were ones; if so, the sticky hit is set and
we can round up.

Rounding doesn’'t have to be done as described here, but however you do it the
sticky bit can make your work easier. Too bad it's not available on more machines.

Branching
Y our ability to do combined jumps depends on the flags. All the processors listed
in the table have the ahility to branch, but some implement that ability on more
sophigticated relationships. Instead of a simple “jump on carry,” you might find
“jump if greater,” “jump if lessthan or equal,” and signhed and unsigned operations.
These extra instructions can cut the size and complexity of your programs.

Of the devices listed, the TMS34010, 80x86 and 80C196 have the richest set of
branching instructions. These include branches on signed and unsigned comparisons
as well as branches on the state of the flags alone.

Instructions
Addition

« Add. Of course, to perform any useful arithmetic, the processor must be capable
of some form of addition. This instruction adds two operands, signaling any
overflow from the result by setting the carry.

26

NUMBERS

Add-with-Carry. The ability to add with a carry hit alows streamlined,
multiprecision additions. In multibyte or multiword additions, the add instruc-
tion is usually used first; the add-with-carry instruction is used in each succeed-
ing addition. In this way, overflows from each one addition can ripple through
to the next.

Subtraction

Subtract. All the devices in Table I-2 can subtract except the 8048 and 8051.
The 8051 uses the subtract-with-carry instruction to fill this need. On the 8048,
to subtract one quantity (the subtrahend) from another (the minuend), you must
complement the subtrahend and increment it, then add it to the minuend-in
other words, add the two's complement to the minuend.

SQubtract-with-Carry. Again, the 8048 does not support this instruction, while all
the others do. Since the 8051 has only the subtract-with-carry instruction, it is
important to see that the carry is clear before a subtraction is performed unless
it is a multiprecision operation. The subtract-with-carry is used in multiprecision
subtraction in the same manner as the add-with-carry is used in addition.

Compare. This instruction is useful for boundary, magnitude and equality
checks. Most implementations perform a comparison by subtracting one value
from another. This process affects neither operand, but sets the appropriate flags.
Many microprocessors alow either signed or unsigned comparisons.

Multiplication

Multiply. This instruction performs a standard unsigned multiply based on the
word size of the particular microprocessor or microcontroller. Hardware can
make life easier. On the 8088 and 8086, this instruction was embarrassingly slow
and not that much of a challenge to shift and add routines. On later members of
the 80x86 family, it takes a fraction of the number of cyclesto perform, making
it very useful for multiprecision and single-precision work.

Sgned Multiply. The signed multiply, like the signed divide (which we'll

27

NUMERICAL METHODS

discuss in a moment), has limited use. It produces a signed product from two
signed operands on al data types up to and including the word size of the
machine. This is fine for tame applications, but makes the instruction unsuitable
for multiprecision work. Except for special jobs, it might be wise to employ a
generic routine for handling signed arithmetic. One is described in the next
chapter.

Division

Divide. A hardware divide simplifies much of the programmer’s work unless it
is very, very dow (asit is on the 8088 and 8086). A multiply canextend the useful
range of the divide considerably. The following chapter gives examples of how
to do this.

Sgned Divide. Except in specialized and controlled circumstances, the signed
divide may not be of much benefit. It is often easier and more expeditious to
handle signed arithmetic yoursalf, as will be shown in Chapter 2.

Modulus. This handy instruction returns the remainder from the division of two
operands in the destination register. As the name implies, this instruction is very
useful when doing modular arithmetic. This and signed modulus are available on
the TM S34010.

Sgned Modulus. Thisis the signed version of the earlier modulus instruction,
here the remainder bears the sign of the dividend.

Negation and Signs

28

One's Complement. The one’'s complement is useful for logical operations and
diminished radix arithmetic (see Positive and Negative Numbers, earlier in this
chapter). This instruction performs a bit-by-bit complement of the input argu-
ment; that is, it makes each one a zero and each zero a one.

Two's Complement. The argument is one's complemented, then incremented by

NUMBERS

one. This is how negative numbers are usually handled on microcomputers.

Sgn Extension. This instruction repeats the vaue of the MSB of the byte or word
through the next byte, word, or doubleword so the proper results can be obtained
from an arithmetic operation. This is useful for converting a small data type to
alarger data type of the same sign for such operations as multiplication and
division.

Shifts, Rotates and Normalization

Rotate. This simple operation can occur to the right or the l€eft. In the case of a
ROTATE to the right, each bit of the data type is shifted to the right; the LSB is
deposited in the carry, while azero is shifted in on the | eft. If the rotate isto the
left, each bit is moved to occupy the position of the next higher bit in the data type
until the last bit is shifted out into the carry flag (see figure I-3). On the Z80,

some shifts put the same bit into the carry and the LSB of the byte you are
shifting. Rotation is useful for multiplies and divides as well as normalization.

Rotate-through-Carry. This operation is similar to the ROTATE above, except
that the carry is shifted into the LSB (in the case of aleft shift), or the MSB (in
the case of a right shift). Like the ROTATE, this instruction is useful for
multiplies and divides as well as normalization.

Arithmetic Shift. This shift is similar to aright shift. As each bit is shifted, the
value of the MSB remains the same, maintaining the value of the sign.

Normalization. This can be either a single instruction, as is the case on the
80C196, or a set of instructions, as on the TMS34010. NORML will cause the
80C196 to shift the contents of a doubleword register to the left until the MSB
isaone, “normalizing” the value and leaving the number of shifts requiredin a
register. On the TMS34010, LMO leaves the number of bits required to shift a
doubleword so that its MSB is one. A multibit shift can then be used to normalize
it. This mechanism is often used in floating point and as a setup for binary table
routines.

29

NUMERICAL METHODS

Left Shift

4— r 15 <— J <4— 9 Shifts zeros inyo LSB
MSB goes into Carry

Left Rotate
<« | 15 4— | 4—‘ Carry is shifted into LSB

MSB goes into Carry

Right Shift (IOGICAL)

o —» [—» 15] —»[cv] sits zeros into msB
LSB goes into Carry

Right Shift (Arithmetic, sign preservation)

z ’ —» 15 I —> MSB does not change

LSB shifted into Carry

Right Rotate

r;[—» 15]—» Carry shifted into MSB

LSB goes into Carry

Figure 1-3. Shifts and rotates.

Decimal and ASCII Instructions

30

Decimal Adjust on Add. This instruction adjusts the results of the addition of two
decimal values to decimal. Decimal numbers cannot be added on a binary
computer with guaranteed results without taking care of any intrabyte carries
that occur when a digit in a position exceeds nine. On the 8086, this instruction
affects only the AL register. This and the next instruction can be very useful in
an embedded system that receives decimal data and must perform some simple
processing before displaying or returning it.

Decimal Adjust on Subtract. This instruction is similar to the preceeding one
except that it applies to subtraction.

ASCII Adjust. These instructions prepare either binary data for conversion to
ASCIl or ASCII data for conversion to binary. Though Motorola processors also
implement these instructions, they are found only in the 80x86 series in our list.
Used correctly, they can also do a certain amount of arithmetic.

NUMBERS

Most of the earlier microprocessors-such as the 8080, 8085, Z80, and 8086—
aswell as microcontrollers like the 8051 were designed with general applicationsin
mind. While the 8051 is billed as a Boolean processor, it's general set of instructions
makes many functions possible and keeps it very popular today.

All these machines can do arithmetic at one level or another. The 8080, 8085, and
Z80 are hit-oriented and don’t have hardware multiplies and divides, making them
somewhat slower and more difficult to use than those that do. The 8086 and 8051
have hardware multiplies and divides but are terribly slow about it. (The timings for
the 8086 instructions were cleaned up considerably in subsequent generations of the
286, 386, and 486.) They added some speed to the floating-point routines and
decreased code size.

Until afew years ago, the kind of progress usually seen in these machines was
an increase in the size of the data types available and the addition of hardware
arithmetic. The 386 and 486 can do some 64-bit arithmetic and have nice shift
instructions, SHLD and SHRD, that will happily shift the bits of the second operand
into the first and put the number of bits shifted in athird operand. Thisisdonein a
single stroke, with the bits of one operand shifted directly into the other, easing
normalization of long integers and making for fast binary multiplies and divides. In
recent years we've seen the introduction of microprocessors and microcontrollers
that are specialy designed to handle floating-point as well as fixed-point arithmetic.
These processors have significantly enhanced real-time control applications and
digital signal processing in general. One such microprocessor is the TMS34010; a
microcontroller with a similar aptitude is the 80C196.

31

NUMERICAL METHODS

32

Kline, Morris. Mathematics for the Nonmathematician. New York, NY: Dover
Publications, Inc., 1967, Page 72.

Gellert, W., S. Gottwald, M. Helwich, H. Kastner, and H. Kistner (eds.). The
VNR Concise Encyclopedia of Mathematics. New York, NY: Van Nostrand
Reinhold, 1989, Page 20.

Knuth, D. E. Seminumerical Algorithms. Reading, MA: Addison-Wesley Pub-
lishing Co., 1980, Page 180.

Knuth, D. E. Seminumerical Algorithms. Reading, MA: Addison-Wesley Pub-
lishing Co., 1981, Pages 1-127.

Cavanagh, Joseph J. F. Digital Computer Arithmetic. New York, NY: McGraw-
Hill Book Co., 1984, Page 2.

Pearson, Carl E. (ed.) Handbook of Applied Mathematics. New York, NY: Van
Nostrand Reinhold, 1983, Page 1.

CHAPTER 2

Integers

Reducing a problem to the integer level wherever possible is certainly one of the
fastest and safest ways to solve it. But integer arithmetic is only a subset of fixed-
point arithmetic. Fixed-point arithmetic means that the radix point remains in the
same place during al calculations. Integer arithmetic is fixed point arithmetic with
the radix point consistently to the right of the LSB. Conversdly, fractional arithmetic
is simply fixed point with the radix point to the left of the MSB. There are no specific
requirements regarding placement of the radix point; it depends entirely on the needs
of the operation. Sines and cosines may require no integer a al, while a power-series
calculation may require an integer portion. You may wish to use two guard digits
during multiplication and division for rounding purposes-it depends on you and the
application.

To present agorithms for the four basic operations of mathematics-addition,
subtraction, multiplication, and division-this chapter will concentrate on integer-
only arithmetic. The operations for fixed-point and integer-only arithmetic are
essentially the same; the former simply involves some attention to the placement of
the radix point.

This chapter begins with the basic operations and the classic algorithms for them,
followed by some more advanced algorithms. The classic algorithms aren’t neces-
sarily the fastest, but they are so elegant and reflect the character of the binary
numbering system and the nature of arithmetic itself so well that they are worth
knowing. Besides, on any binary machine, they’ll aways work.

Addition and Subtraction
Unsigned Addition and Subtraction

Simply put, addition is the joining of two sets of numbers or quantities, into one
sat. We could aso say that when we add we're really incrementing one value, the

33

NUMERICAL METHODS

augend, by another value, the addend. Subtraction is the inverse of addition, with one
number being reduced, or decremented, by another.
For example, the addition operation

0111
+2 or 0010
9 1001

might be accomplished on the 8086 with this instruction sequence:

mv al,7
add al,2

In positional arithmetic, each position is evaluated 0<. x <base, with x being the
digit in that position, and any excessis carried up to the next position. If the baseis
10, no number greater than nine can exist in any position; if an operation resultsin
avalue greater than nine, that value is divided by 10, the quotient is carried into the
next position, and the remainder is left in the current position.

The same is true of subtraction except that any underflow in an operation results
in a borrow from the next higher position, reducing the strength of that position by
one. For example:

17 1 0001
-9 or 1001
8 1000

In 8086 assembler, this would be;

mv al,llh
Sub al, 9h

On amicroprocessor, the carry and borrow use the carry flag. If adding any two
unsigned numbers results in a value that cannot be contained within the data type
we're using, a carry results (the carry flag is set); otherwise, it is reset. To demonstrate
this, lets add two bytes, 7H and 9H:

34

INTEGERS

0111
+1001
1 0000 the result

| the carry

This addition was unsigned and produced a result that was too large for the data
type. In this case, the overflow was an error because the value represented in the
result was not the full result. This phenomenon is useful, however, when performing
multiprecision arithmetic (discussed in the next section).

Subtraction will produce a carry on an underflow (in this case, it's known as a
borrow):

1 0001

-1001
0 1000 the result
! the borrow

Processors use the carry flag to reflect both conditions; the trick is to know how
they’ re representing the borrow. On machines such as the 8086, the carry is set for
both overflow from addition and underflow from subtraction. On the 80C196, the
carry is set on overflow and reset (cleared) on underflow, so it's important to know
what each setting means. Besides being set or reset as the result of an arithmetic
operation, the carry flag is usually reset by alogical operation and is unaffected by
amove.

Because not every problem can be solved with single precision arithmetic, these
flags are often used in multiprecision operations.

Multiprecision Arithmetic

Working with large numbers is much the same as working with small numbers.
As you saw in the earlier examples, whenever we ADDed a pair of numbers the carry
flag was set according to whether or not an overflow occurred. All we do to add a very
large number is ADD the least significant component and then ADD each subsequent

35

NUMERICAL METHODS

component with the carry resulting from the previous addition.
Let's say we want to add two doubleword values, 99999999H and 15324567H.
The sequence looks like this:

mov dx, 9999h
mov ax, 9999h
add ax, 4567h
adc dx, 1532h

DX now contains the most significant word of the result, and AX contains the
least. A 64-bit addition is done as follows.

add64: Algorithm

1. A pointer is passed to the result of the addition.
2. The least significant words of addendO are |oaded into AX DX

3. The least significant words of addendl are added to these registers,
| east significant word first, using the ADD instruction. The next nore
significant word uses the ADC instruction.

4, The result of this addition is witten to result.
5. The upper words of addend0 are |oaded into AX: DX

6. The upper words of addendl are added to the upper words of addend0 using
the ADC instruction. (Note that the MOV instructions don't change the
flags.)

7. The result of this addition is witten to the upper words of result.

add64: Listing

;add6é4 - adds two fixed-point nunbers

;the argunents are passed on the stack along with a pointer to storage for the
resul t

add64 proc uses ax dx es di, addendO qword, addendl:qword, result:word

nov di, word ptr result

nov ax, word ptr addendO[0] ;ax = low word, addend0
nov dx, word ptr addendQ[2] ; dx = high word, addend0
add ax, word ptr addendl 0] ; add |low word, addendl
adc dx, word ptr addendl[2] ; add high word, addendl
nov word ptr [di], ax

nmv word ptr [di][2], dx

36

INTEGERS

mo v ax, word ptr addend0[4] ; ax = low word, addend0
mov dx, word ptr addendO[6] ; dx = high word, addend0
adc ax, word ptr addendl [4] ; add | ow word, addendl
adc dx, word ptr addendl [6] ; add high word, addendl
mov word ptr [di][4], ax
mov word ptr [di] [6], dx
ret

add64 endp

This example only covered 64 bits, but you can see how it might be expanded

to deal with operands of any size. Although the word size and mnemonics vary from
machine to machine, the concept remains the same.

Y ou can perform multiprecision subtraction in asimilar fashion. In fact, al you

need to do is duplicate the code above, changing only the add-with-carry (ADC)
instruction to subtract-with-borrow (SBB). Remember, not al processors (the 8048
and 8051, for instance) have a simple subtract instruction; in case of the 8051, you
must clear the carry before the first subtraction to simulate the SUB. With the 8048
you must have two’s complement the subtrahend and ADD.

sub64: Algorithm

1

A pointer is passed to the result of the subtraction.

2. The least significant words of subO are |oaded into AX DX

3. The least significant words of subl are subtracted fronthese registers
| east significant word first, using the SUB instructions with the next
nost significant word using the SBB instruction

4. The result of this subtraction is witten to result

5. The upper words of subO are loaded into AX: DX

6. The upper words of subl are subtracted fromthe upper words of sub0 using
the SBB intruction. (Note that the M instructions don't change the
flags.)

7. The result of this subtraction is witten to the upper words of result

sub64: Listing

s kkkkk

; sub64

;arguments passed on the stack, pointer returned to result

37

NUMERICAL METHODS

sub64 proc uses dx es di,
sub0: qword, subl:qword, result:word

mv di, word ptr result
nmov ax, word ptr subO[0] ; ax = low word, subO
nov dx, word ptr subO[2] ; dx = high word, subO
sub ax, word ptr sublf[0] ; subtract |ow word, subl
sbb dx, word ptr subl[2] ; subtract high word, subl
mv word ptr [di] [0],ax
mv word ptr [di] [2],dx
mov ax, word ptr subO[4] ;ax = low word, subO
mov dx, word ptr sub0Q[6] ; dx = high word, subO
sbb ax, word ptr subl[4] ; subtract |ow word, subl
sbb dx, word ptr subl[6] ; subtract high word, subl
mov word ptr [di][4],ax
mov word ptr [di][6],dx
ret

sub64 endp

For examples of multiprecision addition and subtraction using other processors,
see the SAMPLES. module included on the disk.

Signed Addition and Subtraction

We perform signed addition and subtraction on a microcomputer much as we
perform their unsigned equivalents. The primary difference (and complication)
arises from the MSB, which is the sign bit (zero for positive and one for negative).
Most processors perform signed arithmetic in two's complement, the method we'll
use in this discussion. The two operations of addition and subtraction are closely
related; each can be performed using the logic of the other. For example, subtraction
can be performed identically to addition if the subtrahend is two's-complemented
before the operation. On the 8048, in fact, it must be done that way due to the absence
of a subtraction instruction.

15-7=15+(-7) =8

OfH - 7H = 0fh + Of9H = 8H

These operations are accomplished on a microprocessor much as we performed
them in school using a pencil and paper.

38

INTEGERS

One aspect of using signed arithmetic is that the range of vaues that can be
expressed in each data type is limited. In two’'s-complement representation, the
range is -2"" to 2*-1. Use signed arithmetic carefully; ordinary arithmetic processes
can result in a sign reversal that invalidates the operation.

Overflow occurs in signed arithmetic when the destination data type is too small
to hold the result of a signed operation-that is, a bit is carried into the MSB (the sign
bit) during addition and is not propagated through to the carry, or a borrow was made
from the MSB during subtraction and is not propagated through to the carry. If either
event occurs, the carry flag may not be set correctly because the carry that did occur
may not propagate through the sign hit into the carry flag.

Adding 60H and 50H in an eight-bit accumulator results in bOH, a negative
number in signed notation even though the original operands were positive. Guard
against such overflows when using signed arithmetic.

This is where the overflow flag comes in. Simply put, the overflow flag is used
to indicate that the result of a signed arithmetic operation is too large or too small for
the destination operand. It is set after two numbers of like sign are added or subtracted
if the sign of the result changes or if the carry into the MSB of an operand and the
carry out don’t match.

When we added 96D (60H) and 80D (50H), we got an overflow into the sign bit
but Ieft the carry flag clear:

0l 0l 0000B (+50H)
+01100000B (+60H)
| 01 1 0000B (bOH, or -80D)

The result was a specious negative number. In this case, the overflow flag is set
for two reasons. because we're adding two numbers of like sign with a subsequent
change in the sign of the result and because the carry into the sign bit and the carry
out don’t match.

To guard against accidental overflows in addition and subtraction, test the
overflow flag at the end of each operation.

Assume a 32-bit signed addition in 8086 assembler. The code might look like
this:

39

NUMERICAL METHODS

si gned _add:
nmov ax, word ptr summend| ;first load one sumend
;into dx:ax
nmov dx, word ptr sumrendl[2]
add ax, word ptr summend ;add the two, using the carry flag
add dx, word ptr sumend2[?2] ;to propagate any carry
jo bogus_resul t ;out of the |ower word;
;check for a valid result
good-resul t:

When writing math routines, be sure to alocate enough storage for the largest
possible result; otherwise, overflows during signed operations are inevitable.

Decimal Addition and Subtraction

Four bits are needed to represent the decimal numbers zero through nine. If the
microcomputer we're using has a base 10 architecture rather than one based on
binary, we could increment the value 1001 (9D) and get O (OD) or decrement O and
get 1001. We could then add and subtract decimal numbers on our machine and get
valid results. Unfortunately, most of the processors in use are base 2, so when we
increment 1001 (9D) we get 1010 (OAH). This makes performing decima arithmetic
directly on a microcomputer difficult and awkward.

In packed binary coded decimal, a digit is stored in each nibble of a byte (as
opposed to unpacked, in which a byte holds only one digit). Whenever addition or
subtraction on packed BCD results in a digit outside the range of normal decimal
arithmetic (that is, greater than nine or less than zero), a special flag known as the
auxiliary carry is set. This indicates that an overflow or underflow has resulted
during a particular operation that needs correction. This is analogous to the carry bit
being set whenever an overflow occurs. On the 80x86, this flag, in association with
the appropriate instruction—DAA for addition and DAS for subtraction-will
produce a decimally correct result on the lower byte of the AX register. Unfortu-
nately, these instructions only work eight bits at a time and even then in only one
register, with the operands moved into and out of AL to perform a caculation of any
length. As limited as this is, the instructions do alow you to perform a certain amount
of decimal arithmetic on a binary machine without converting to binary.

40

INTEGERS

When decima addition is performed, each addition should be followed by a DAA
or its equivalent. This instruction forces the CPU to add six to a BCD digit if it is
outside the range, zero through nine, or if there has been a carry from the digit. It then
passes the resulting carry into the next higher position. This adjusts for decimal
overflows and allows normal decimal addition to be performed correctly in a packed
format.

As an example, if we add 57D and 25D on a binary machine without converting
to binary, we might first store the two values in registers in the following packed
format:

A= 01010111B(57H)
B= 00100101B(25H)

We follow this with an ADD instruction (note that the carry is ignored here):
add ab
with the result placed in A:

A = 11111008 (7cH)

Because a decimal overflow occurred in the first nibble (1100B = 12D), the
auxiliary carry flag is set. Now when the DAA instruction is executed, asix is added
to this nibble and the carry propagated into the next higher nibble:

11008
01108
| 001 0B

This leaves a two as the least significant digit with a carry into the next higher
position, which is the same as adding a one to that digit:

0111 (7H)
0001 (1H)
1000 (8H)

41

NUMERICAL METHODS

The fina result is 10000010B (82H).

This mechanism is widely implemented on both microprocessors and
microcontrollers, such as the 8048, 8051, Z80, 80x86, and 80376. Unfortunately,
neither the decimal adjust nor the auxiliary carry flag exists on the 80C196 or the
TMS34010.

The DAA will work with decimal additions but not with decimal subtractions.
Machines such as the Z80 and 80x86 make up for this with additional hardware to
support subtraction. The Z80 uses the N and H flags along with DAA, while the 80x86
provides the DAS instruction.

The 8086 series and the 68000 series of microprocessors provide additional
support for ASCII strings. On the 8086, these instructions are AAM, AAS, AAA, and
AAD (see Chapter 5 for examples and greater detail). Since they do offer some
arithmetic help, let's take a brief ook at them now.*

» AAA adjusts the result of an addition to a simple decimal digit (a vaue from zero
through nine). The sum must be in AL; if the result is greater than ning, AH is
incremented. This instruction is used primarily for creating ASCII strings.

» AAD converts unpacked BCD digitsin AH and AL to a binary number in AX.
This instruction is aso used to convert ASCII strings.

+ AAM converts a number less than 100 in AL to an unpacked BCD number in AX,
the high byte in AH, and the low byte in AL.

» AAS similar to AAA, adjusts the result of a subtraction to asingle decimal digit
(a value from zero through nine).

Multiplication and Division

This group comprises what are known as “arithmetic operations of the second
kind,” multiplication being iterative addition and division being iterative subtrac-
tion. In the sections that follow, you'll see several agorithms for each operation,
starting with the classic methods for each.

The classic algorithms, which are based on iterative addition or subtraction, may
or may not be the fastest way to execute a particular operation on your target machine.

42

INTEGERS

Though error checking must always be done for correct results, the errors that occur
with these routines don’t have the same impact on the processor state as those
involving hardware instructions. What's more, these a gorithms work in any binary
environment because they deal with the most fundamental elements of the machine.
They often provide fast, economica solutions to speciaized situations that might
prove awkward or slow with hardware instructions (see the multen routine in
FXMATH.ASM). Along with the classic algorithms, there will be examples of
enhancements to these routines and some algorithms that work best in silicon;
nonetheless, they’re based on arithmetic viewpoints that you may find interesting.

Signed vs. Unsigned

Without special handling, multiplication or division of signed numbers won't
always result in correct answers, even if the operands themselves are sign-extended.

In multiplication, a problem arises in that the number of bitsin the result of the
multiplication is equal to, at a minimum, the number of bits in the largest operand (if
neither operand is zero) and, at a maximum, the sum of bits in both operands (if each
operand is equal to or greater than 2™, where n isthe size of the data type). It is usually
wise to provide a result data type equd in size to the number of bits in the multiplicand
plus the number of bits in the multiplier, or twice the number of bitsin the largest
operand. For a signed operation, this can mean the result may not have the sign
required by the operands. For example, multiplying the two unsigned integers,
ffH(255D) and ffH(255D), produces fe0lH(65025D), which is correct. If, however,
two numbers are signed, ffH(-1D) and ffH(-1D), the correct result is 1H(1D), not
fe01H(-511D). Further, an ordinary integer multiply knows nothing about sign
extension, multiplying ffH(-1D) by 1H(1D) produces ffH(255D) in a 16-bit data
type.

Similar problems occur in division. Unlike multiplication, the results of a divide
require the difference in the number of bits in the operands. That means two 8-bit
operands could require as little as one hit to represent the result of the division, or as
many as eight. With division, it is wise to allot storage equal to the size of the dividend
to account for any solution. With this in mind, dividing the two signed 8-bit operands,
ffH(-1D) by 1H(1D), is no problem-in this case the result is ffH(-1D). But if the

43

NUMERICAL METHODS

divisor is any larger, the result is incorrect—FFH/5H = 33H, when the correct
answer is OH.

Many processors offer a signed version of their multiply and divide instructions.
On the 8086, those instructions are IMUL and IDIV. To use them on single-precision
operands, be sure both operands are signed and the (byte) word sizes are compatible
s0 the result won't overflow. If you attempt to multiply a signed word operand by an
unsigned word operand greater than 7fffH, your result will be in error. Be careful;
this problem can go undetected for a long time.

In multiprecision multiplication, the use of IMUL and IDIV is often impractical,
because the operation treats the large numbers as polynomials, breaking them apart
into smaller units, or coefficients. These instructions handle all nhumbers as signed
with 2** significant bits, where n is the size of the data type. This inevitably produces
an incorrect result because the instructions can only handle word operands in the
range -32,768 to 32,767 and byte operands ranging from -128 to 127, with the MSB
of each word or byte treated as a sign bit. Multiplying the numbers 1283H and 1234H
will result in one subproduct that is out of range and an incorrect product because any
of the submultiplies that involve 83H will incorrectly interpret it as a signed number.

A foolproof way to work with signed multiplies and divides, either single- or
multiprecision, is to check the operands for a sign before the multiply or divide. You
then handle the operation as unsigned by two’'s-complementing any negative
operands. If necessary, the result can be two’s-complemented at the end of the
procedure. The agorithm is shown in pseudocode, and the code fragment is an
example of how it might be implemented.

sign_operation: Algorithm

1. Declare and clear a byte variable, sign.

2. Check the sign of the first operand to see if it's negative.
If not, go to step 3.
If so, conplenent sign, then conplement the operand.

3. Check the sign of the second operand to see if it's negative.
If not, go to step 4.

If so, conplenment sign, then conplement the operand.

44

4. Performthe nultiply or divide.

5. Check ign.

If it's zero,

If it's

signed-operation:

*kkkkk

si gned- operation

| ocal

mov

or

jns

not

not

neg

jc

add

check- second:

nov

or

jns

not

not

neg

jc

add
done_wi th_check:

; perform operation

on_the_way_out:
nmov
or
jns
nmov
not

-1 (OffH),

proc operand0: dword,

you' re done.

Listing

sign:byte
ax, word ptr operand0OL21
=, ax

check-second

byte ptr sign

word ptr operand0[2]
word ptr operand0
check-second

word ptr operandO[2],1

ax, word ptr operandl]2]
ax, ax

done-wi t h- check

byte ptr sign

word ptr operandl[2]
word ptr operandl
done_wi th_check

word ptr operandl[2],1

here

al, byte ptr sign
al, al

al | -done

si, word ptr result
word ptr si[6]

INTEGERS

two' s-conpl ement the result and go hone.

operandl : dword, result:word

;if not sign, it is positive

;two's conplenent of operand

45

NUMERICAL METHODS

not word ptr si[4]

not word ptr si[2]
neg word ptr si[0]

jc all _done

add word ptr si[2], 1
adc word ptr si[4], O
adc word ptr si[6], O

al | _done:

Adding this technique to one of those described below will make it a signed
process.

Binary Multiplication

Multiplication in a binary system may generaly be represented as the multiplica
tion of polynomials, with the algorithm handling each bit, byte, or word as a
coefficient of the power of the bits position or the least significant position within that
word or byte:

a, * 2"+ .. a2 var 2
b, * 2™ ... by * 2" + b, * 2°

*

b, *(a) * 2"+ ...by *(a) * 2' + by*(a) * 2°

where n = the bit position. It is the same for bytes and words except that n is then the
power of the least significant bit within the word or byte:

12345678H = 1234H * 16* + 5678H * 16° = 1234H * 2% + 5678H * 2°

In the following example involving the multiplication of two 4-bit quantities,
you may recognize the pencil-and-paper method you learned in school:

Step 1 a3x23 + a2x22 + alx21 + a0x20
* b3x23 + b2x22 + bi1x21 + bOx20
b0 * a3 + b0 * a2 + b0 * al + b0 * a0

46

INTEGERS

Step 2: adx23 + a2x22 + alx2l + a0x20
* b3x23 + b2x22 + b1x21 + b0Ox20
ho * a3 + b0 * a2 + b0 * al + b0 * a0
bl * a3t bl * a2 + bl * al + bl * a0

Step 3: a3x23 + a2x22 + alx21l + a0x20
* b3x23 + b2x22 + b1x21 + b0x20
b0 * a3 + b0 * a2 + b0 * al + b0 * a0
bl * a3 + bl * a2 + bl * al + bl * a0
b2 * a3 + b2 * a2 + b2 * al + b2 * a0

Step 4 a3x23 + a2x22 + alx2l + a0x20
* b3x23 + b2x22 + b1x21 + b0x20
b0 * a3 + b0 * a2 + b0 * al + b0 * a0
bl * a3 + bl * a2 + bl * al + bl * a0
b2 * a3 + b2 * a2 + b2 * al + b2 * a0
b3 * a3 + b3 * a2 + b3 * al + b3 * &l

b3 * a3 + ((b2 * a3)+ (b3 * a2))((b0 * al)+ (b0 * al) + (bl * a0))+ b0 * a0
An example of this in a four-bit multiply could be shown as:

1100=12D
* 1101=13D

1100
0000
1100
1100
10011100=156

This is also how the basic shift-and-add algorithm for microprocessors is
written. This procedure is taken directly from the positiona number theory, which
simply states that the value of a bit or integer within a number depends on its position.
Thus, each pass through the algorithm shifts both the multiplier and the multiplicand
through their corresponding positions, adding the multiplicand to the result if the
multiplier has aonein the 0th position. (The right shift is arithmetic; that is, a zero
is shifted into the MSB.) As with the pencil-and-paper method, the multiplicand is
rotated left and the multiplier is rotated right.

To demonstrate, let’s multiply two numbers, 1100 (12D) and 1101 (13D). We

47

NUMERICAL METHODS

must first designate one as the multiplicand and the other as the multiplier and set up
registers to hold them. We also need a loop counter to indicate when we have passed
through dl the bit positions of the multiplier. We can call this variable cntr (counter)
and a variable to hold the product prdct. We'll call 1100 (the multiplicand) mitpnd
and 1101 (the multiplier) mitpr. In the following example, the values in parentheses
are al decimd:
0. mitpnd = 1100 (12)

mitpr = 1101 (13)

cntr = 100 (4)

prdct =0

Then, with each pass through the algorithm, the results are:

1. mitpnd = 11000 (24)
mitpr = 0110 (6)
cntr = 011 (3)
prdct = 1100 (12)

2. mitpnd = 110000 (48)
mitpr = 0011 (3)
cntr =010 (2)
prdct = 1100 (12)

3. mitpnd = 1100000 (96)
mitpr = 0001 (1)
cntr = 1 (1)
prdct = 111100 (60)

4. mitpnd = 11000000 (192)
mitpr = 0000 (0)
cntr = 00 (0)
prdct = 10011100 (156)

48

INTEGERS

The following routine is based on this algorithm but expects 32-bit operands.

cmul: Algorithm

1. Alocate enough space to store nultiplicand and allow for 32 left shifts,
set the variable nunbits to 32, and see that the registers where product
is formed contain zeros. (Be certain to provide enough storage for the
output, at most Product_bits = Miltiplicand_bits + Miltiplier_bits.
Here, 4 Multiplicand_bits+ 4 Multiplier_bits = 8 Product bits.)

2. Shift nultiplier right one position and check for a carry.
If there is not a carry, go to step 3.
If there is, add the current value in mtpcend to the product registers.

3. shift mtpend left one position and decrenent the counter variable
numbits. Test nunbits for zero.

If it's zero, go to step 4.
If not, return to step 2.
4. Wite the product registers to product and go hone.

cmul: Listing

*kkk k%
’

; classic multiply

cmul proc uses bx cx dx si di, multiplicand:dword, nmultiplier:dword,
product : word

[ocal numbits: byte, nltpcnd: quword
pushf
cld
sub ax, ax
lea sl, word ptr multiplicand
| ea di, word ptr nmtpcnd
nmv cx, 2
rep nmvsw
stosw
st osw ;clear upper words
nov bx, ax ;clear register to be used to form product
mov CX, ax
dx, ax

byte ptr nunbits, 32

49

NUMERICAL METHODS

test-multiplier:

shr word ptr multiplier[2], 1
rer word ptr multiplier, 1
jnc decrenent . count er
add ax, word ptr nltpcend
adc bx, word ptr mtpcnd[2]
adc cx, word ptr nitpend[4]
adc dx, word ptr nltpcnd|6]

decrenent _counter:
shl word ptr mtpend, 1
rel word ptr mtpend[2], 1
rel word ptr mtpend[4], 1
rel word ptr nitpcend[6], 1
dec byte ptr numbits
jnz test-multiplier

exit:
nmv di, word ptr product
nmv word ptr [di], ax
nmv word ptr [di] [2], bx
nmv word ptr [di][4], cx
nmv word ptr [di][6], dx
popf
ret

cmul endp

One possible variation of this example is to employ the “early-out” method. This
technique doesn’'t use a counter to track the multiply but checks the multiplier for
zero each time through the loop. If it's zero, you're done. For examples of early-out
termination, see the routinesin the section “ Skipping Ones and Zeros” and othersin
FXMATH.ASM included on the accompanying disk.

A Faster Shift and Add

The same operation can be performed faster and in a smaller space. For one thing,
the shifts being done on the multiplicand and multiplier result in unnecessary double-
precision additions. Eliminating any unnecessary additions saves time and space.
Arranging any shifts so that they are al in the same direction, means fewer registers
or memory variables.

As you may recal, positional notation lends itself quite nicely to polynomia

50

INTEGERS

interpretation. Using a binary byte as an example, let’s say we have two numbers, a
and b:

a;#2% + a,*2% + a*2™ a*2’ = a
and

by* 2%+ b,*2%+ b*2'+ by*2°= b
When we multiply them, we get:

bs* as* 2345 a,* 2%+ a* 2;+ ap* 6210) * 23+1 bo* (as*2 + a* 2%+ ar 2%+ ,
+ a*2'+ ax*2%* 2°%= a * b

Assuming an initial division by 2* produces a fraction:

a* b =[byf(a2)+ b, * (a 2%+ by (a*27) + by * (a*2%)] *
10000H

Now we can arrive at the same result asin the previous shift-and-add operation
using only right shifts.

In cmul2, we'll be using the multiplicand as the product as well. Since the data
type is a quadword, the initial division must be by 2*. Storing the multiplicand in the
product variable and concatenating this variable with the internal registers alows us
eight words, enough for the largest possible product of two quadwords. As the
multiplicand is shifted right and out, the lower bytes of the product are shifted in. This
way, we can use one less register (or memory location).

cmul2: Algorithm

1. Mve the nultiplicand into the |owest four words of the product and | oad
the shift counter (numbits) with 64. Cear registers AX, BX, CX and DX
to hold the upper words of the product.

2. Check bit 0 of the nultiplicand.

51

NUMERICAL METHODS

If it's one, go to step 3.
Shift the product and multiplicand right one bit.
Decrement the counter.
If it's not zero, return to the beginning of step 2.
If it's zero, we're done.

3. Add the nultiplier to the product.
Shift the product and the multiplicand right one bit.
Decrement the counter.
If it's not zero, return to step 2.
If it's zero, we're done.

cmul2: Listing

vokkkkkk
’

; A faster shift and add. Multiply one quadword by another,
; passed on the stack, pointers returned to the results.
; Conmposed of shift and add instructions.

cmul 2 proc uses bx cx dx si di, multiplicand:qword, multiplier:qgword,
product : word

[ocal numbits: byte

pushf

cld

sub ax, ax

nmov di, word ptr product

lea si, word ptr rmultiplicand ;wite the multiplicand
;to the product

nmv cx, 4

rep nmv Sw

sub di, 8 ;point to base of product

| ea si, word ptr nultiplier ;number of bits

nmov byte ptr nunbits, 40h

sub ax, ax

nmov bx, ax

nmov CX, ax

nmov dx, ax

test_for_zero:

test word ptr [di], 1 ;test the multiplicand for a
;one in the LSB

jne add multiplier ;makes the junp if the

52

INTEGERS

:LSB is a one

imp short shift
add multiplier
add ax, word ptr [si] ;add the multlplier to
; subpr oduct
adc bx, word ptr [si][2]
adc cx, word ptr [si][4]
adc dx, word ptr [si][6]
shift:
shr dx, 1 cshift it into the |ower
;bytes of the product
rer cx, 1
rer bx, 1
rer ax, 1
rer word ptr [di][6], 1
rer word ptr [d1][4], 1
rer word ptr [di][2], 1
rer word ptr [di][Q, 1
dec byte ptr nunbits
iz exit
imp short test for_zero
exit:
nmov word ptr [di][8], ax ;move the upper byte of
;the product
nmov word ptr [dil [10], bx
nmov word ptr [di][12], cx
nmov word ptr [di][14], dx
popf
ret
cmul endp

For an example of a routine written for the Z80 and employing this technique,
see the SAMPLES. module on the accompanying disk.

Skipping Ones and Zeros

Anyone who has ever struggled with time-critical code on a bit-oriented machine
has probably tried to find away to lump the groups of ones and zerosin multipliers
and multiplicandsinto one add or shift. A number of methods involve skipping over
series of ones and zeros; we'll look at two such procedures. Their efficiency depends
on the hardware involved: On machines that provide a sticky bit, such as the 80C196,

53

NUMERICAL METHODS

these routines can provide the most improvement. Unfortunately, the processors that
provide that bit also normally have a hardware multiply.

The first technique we'll ook at is the Booth algorithm which finds its way
around ones and zeros by restating the multiplier.” Suppose we want to multiply
1234H by OfffOH. Studying the multiplier, we find that OfffOH is equal to 170000H
-10H. A long series of rotates and additions can thus be replaced by one subtraction
and one addition-that is, subtract 10H x 1234H from the product, then add 10000H
x 1234H to the product. The drawback is that the time it takes to execute this
operation depends on the data. If the worst-case condition arises-a multiplier with
alternating ones and zeros-the procedure can take longer than a standard shift and
add.

The trick here is to scan the multiplier looking for changes from ones to zeros
and zeros to ones. The way this is done depends on the programmer and the MPU
selected. The following table presents the possible combinations of bits examined
and the actions taken.

Bit O Carry Acti on*
0 0 No action
0 1 Add the current state of the multiplicand
1 0 Subtract the current state of the nmultiplicand
1 1 No action

* This chart assumes that the multiplicand has been rotated along with the multiplier
asit is being scanned.

Remember that as the multiplier is scanned from position O through position n,
the multiplicand must aso be shifted (multiplied) through these positions.

Inits smplest form, the Booth algorithm may be implemented similarly to the
shift and add above except that bit 0 of the multiplier is checked along with the carry
to determine the appropriate action. As you can see from the table, if you'rein the
middle of a stream of zeros or ones, you do nothing but shift the multiplier and
multiplicand. Depending on the size of the operands involved and the instruction s,
it may be faster simply to increment a counter for a multibit shift when the time
comes.

The coding for this agorithm is heavily dependent on the device (instruction
54

set),

INTEGERS

but one possible schene is as follows.

booth: Al gorithm

1

Al | ocate space for the nultiplicand and 32 shifts. Cear the carry and
the registers used to formthe product.

Junp to step 6 if the carry bit is set.

Test the Oth bit. If it's not set, junp to step 5.

Subtract mtpcnd fromthe registers used to form the product.
Shift mtpend left one position.

Check multiplier to see if it's zero. If so, go to step 8.

Shift nultiplier right one position, shifting the LSB into the carry,
and junp to step 2.

Test the Oth bit. If it's set, junp to step 5.
Add mtpcnd to the product registers and junp to step 5.
Wite the product registers to product and go hone.

booth: Listing

vokkkkk
[

;. hbooth

; unsigned multiplication algorithm
; 16 X 16 multiply

booth proc uses bx cx dx, multiplicand:dword, multiplier:dword, product:word

rep

| ocal m t pend: qwor d

pushf

cld

sub ax, ax

| ea si, word ptr multiplicand
lea di, word ptr mtpcnd

nmv cX, 2

nmov SW

stosw

st osw ;clear upper words
nov bx, ax

nmov CX, ax

nmov dx, ax

clc

check_carry:

55

NUMERICAL METHODS

jc
test
jz
sub_nul tiplicand:
sub
shb
shb
shb
shift_multiplicand:
shl
rel
rel
rel
or
jnz
or
jnz
jw
shift mltiplier:
shr
rer
, i
exit:

popf
ret

carry-set:
test
jnz
add nul tiplicand:
add
adc
adc
adc

jmp
booth endp

carry_set
word ptr multiplier, 1 ;test bit 0
shift_multiplicand

ax, word ptr nltpcnd

bx, word ptr mtpcnd|2]
cx, word ptr ntpend[4]
dx, word ptr mtpend] 61

word ptr mtpend, 1

word ptr mtpend[2], 1

word ptr mtpend[4], 1

word ptr nmitpcnd[6], 1

word ptr multiplier[2], O ;early-out mechani sm
shift multiplier

word ptr nmultiplier, 0

shift multiplier

short exit

word ptr multiplier[2], 1 ;shift nultiplier
word ptr nmultiplier, 1
short check carry

di, word ptr product
word ptr [di], ax

word ptr [dil[2], bx
word ptr [di][4], cx
word ptr [di][6], dx

word ptr multiplier, 1 ;test bit 0
shift-multiplicand

ax, word ptr ntpcnd

bx, word ptr mtpcnd|2]
cx, word ptr ntpend[4]
dx, word ptr mtpcnd|6]
short shift_multiplicand

A corollary to the Booth algorithm is bit pair encoding. The multiplier is
scanned, as in the Booth agorithm, but this time three bits are considered at once (see

56

INTEGERS

the following chart). This method is attractive because it guarantees that half as many
partial products will be required as with the shift and add to produce the result.

Bit n+l Bit n Bit n-I Action*
0 0 0 No action
0 0 1 Add the current state of the multiplicand
0 1 0 Add the current state of the multiplicand
0 1 1 Add twice the current state of the multiplicand
1 0 0 Subtract twice the current state of the

mul tiplicand

1 1 Subtract the current state of the multiplicand
1 1 0 Subtract the current state of the multiplicand
1 No action

* This chart assumes that the multiplicand has been shifted along with the multiplier
scanning.

The multiplier is examined two bits at atime relative to the high-order bit of the
next lower pair (bit n-1 in the table). First, the multiplier is understood to have a
phantom zero to the right of bits 0 and 1; These bits are analyzed accordingly.
Second, a phantom zero can be assumed to the left of the multiplier for the purpose
of filling out the table. For example, the number 21H would be viewed as.

25 2% 23 22 2! 20
0 1 0 0 0O 0 1 O

The basic approach to implementing this routine is similar to the Booth
algorithm.

bit_pair: Algorithm

1. Alocate space to hold the nultiplicand plus 32 bits for shifting. Cear
the carry and the registers to be used to formthe product.
2. If the carry bit is set, junp to step 8.

3. Test the Oth bit. If it's clear, jump to step 5.

57

NUMERICAL METHODS

4. Test hit 1.

If it's set, subtract mtpcnd fromthe product registers and continue
with step 7.

QG herwise, add mtpcnd to the product registers and go to step 7.
5. Test bit 1.
If it's set, junp to step 6.
O herwi se, continue from step 7.
6. Subtract twice mtpcnd from the product registers.
7. Shift mtpend left two positions.
Check multiplier to see if it's zero. If so, continue at step 13.
Shift multiplier two positions to the right and into the carry.
Jump to step 2.
8. Test the Oth bit.
If it's set, junp to step 11.
Ot herwise, go to step 12.
9. Add the current value of nitpcnd to the product registers.

10. Add the current value of mtpcnd to the product registers and continue
with step 7.

11. Test bit 1.
If it's set, junp to step 7.

O herwise, add twice mtpend to the product registers and continue from
step 7.

12. Test bit 1.

If it's set, subtract mMtpcnd fromthe product registers and continue
with step 7.

QG herwise, add mtpcnd to the product registers and go to step 7.
13. Wite the product registers to product and go hone.

bit_pair: Listing

; bit pair encoding

1

E)it_pair proc uses bx cx dx, nultiplicand:dword, multiplier:dword, product:word

58

INTEGERS

[ocal m t pcnd: qwor d
pushf
cld
sub ax, ax
| ea si, word ptr nultiplicand
| ea di, word ptr mtpcnd
nmv cx, 2
rep nmvsw
st osw
stosw ;clear upper words
nmv bx, ax
nmov CX, ax
nmv dx, ax
cle
check carry:
ic carry set ;test bit n-l
test word ptr nultiplier, 1 ;test bit 0
iz shiftorsub
test word ptr nultiplier, 2 ;test bit 1
jnz sub mul tiplicand

jim add nmultiplicand
shiftorsub:

test word ptr multiplier, 2 ;test bit 1
i shift nultiplicand
subx2_mul ti pli cand: ;cheap in-line multiply
sub ax, word ptr nltpcnd
shb bx, word ptr nitpcnd|2]
shb cx, word ptr nltpend[4]
shb dx, word ptr nitpcnd]6]
sub multiplicand:
sub ax, word ptr nltpcnd
shb bx, word ptr nltpend]2]
shb cx, word ptr nltpend]4]
shb dx, word ptr nitpcnd]6]
shift multiplicand:
shl word ptr mtpend, 1
rel word ptr mtpend[2], 1
rcl word ptr mtpend[4], 1
rel word ptr mtpend[6], 1
shl word ptr nmtpend, 1
rcl word ptr mtpend[2], 1
rcl word ptr mtpend[4], 1
rel word ptr mtpcnd[6], 1
or word ptr nultliplier[2], O ;early out if multiplier is zero

59

NUMERICAL METHODS

jnz shift_multiplier
or word ptr multiplier, 0
jnz shift multiplier
imp short exit
shift mltiplier:
shr word ptr multiplier[2], 1 ; shift nmultiplier right twce
rer word ptr multiplier, 1
shr word ptr multiplier[2], 1
rer word ptr multiplier, 1
inp short check_carry
exit:
nov di, word ptr product ;wite product out beforel eaving
nmv word ptr [di], ax
nmv word ptr [di] [2], bx
nmv word ptr [di][4], cx
nov word ptr [di][6], dx
popf
ret
carry_set:
test word ptr multiplier, 1
jnz addor subx2
imp short addor subx1
addx2_nul tipl i cand:
add ax, word ptr mtpcnd ;cheap in-line multiplier
adc bx, word ptr mtpcnd|2]
adc cx, word ptr mtpend[4]
adc dx, word ptr nitpend|6]
add-nul tiplicand:
add ax, word ptr mltpcnd
adc bx, word ptr mtpcnd|2]
adc cx, word ptr ntpend[4]
adc dx, word ptr nitpend|6]
jmp short shift_nultiplicand
addor subx2:
test word ptr multiplier, 2 ;test bit 1
jnz shift-nmultiplicand
jmp short addx2_nul tiplicand
addor subx1:
test word ptr multiplier, 2 ;test bit 1
jnz sub_mul tiplicand
jmp short add_nultiplicand

60

INTEGERS

bit_pair endp

Hardware Multiplication: Single and Multiprecision

If the processor you're using has a hardware multiply, you're in luck. Depending
on the size of the operands, it's almost aways faster than any of the preceeding
techniques and can be extended to handle operands of virtually any size. There are
exceptions, however; for example, the MUL instruction on the 8086 was terribly
slow, making it a draw in certain situations. The 80286 was faster in both cycle time
and clock speed, and the 80386 was even faster; nevertheless, many examples show
that multiplication using the shift and add technique is highly competitive. Thisis
almost never true of multiprecision multiplication, although the double precision
shift available on the 80386 and up may be an exception.

In earlier examples involving multiplication, we saw numbers represented as
binary polynomials in which each position contained either a zero or a one times base
2 taken to a certain power. To perform that multiplication, we multiplied each bit of
the muliplicand by each bit of the multiplier, and summed the subproducts according
to their power to form the product (see the section Binary Multiplication). Working
with larger numbers is much the same except that the polynomials generally show
the operands broken into bytes or words. For example, suppose we needed to
multiply two 24-bit quantities, such as 123456H and 654321H. We would want to
restate these numbers in terms of a new base, that of our hardware multiply. In this
case, We're using an 8086 with a 16-bit multiply, so our base is 21° (10000H). First,
123456H becomes three single-byte quantities:

12x10000H1 + 3456x10000H)
and 654321H becomes:

65x10000H1L + 4321x10000H0

To better understand this process, let's relabel each byte. The quantity 123456H
can be seen as the sum of 120000H + 3456H, which becomes a + b. The quantity

61

NUMERICAL METHODS

654321H becomes 650000H + 4321H, which then becomes d + e. Now, multiply:

d+e
atb
be
bd
ae

ad

With the original numbers, that calculation is:

650000H + 43218

*120000H + 34568

0db94116H
14a5ee0000H
4b8520000H
71a00000000H
7336bf 94116H

The direction the multiply takes is not significant; that is, the most significant

words could have been multiplied first because the fina additions align the results.
This technique can be extended as far as needed to produce a result. It's also fast,
requiring only a few multiplies and divides.

In mul32, we multiply two doubleword numbers and arrive at a quadword result.

mul32: Algorithm

1
2.

62

Use DI to hold the address of the result, a quadword.

Move the nost significant word of the nmultiplicand into AX and multiply
by the mpst significant word of the nultiplier. The product of this
nmultiplication is witten to result.

The most significant word of the multiplicand is returned to AX and
nmultiplied by the least significant word of the multiplier. The |east
significant word of this product is MOVed to the second word of result,
the most significant word of the product is ADDed to the third word of
result, and any carry is propagated to the nost significant word by
addi ng-wi th-carry a zero.

The least significant word of the multiplicand is mved to AX and
nmultiplied by the most significant word of the nultiplier. The product

is added to the second word of

INTEGERS

result and added-with-carry to the third

word of result, with any carry propagated into the nost significant word.

5. Finally,

the least significant word of the multiplicand is nmoved into

AX and nultiplied by the least significant word of the multiplier. The

| east significant word of this product

is moved to the least significant

word of result, the nost significant word of the product is added to the
result, and any carry is propagated into the third and

second word of
then the nost

mul32: Listing

ckkkkk
1

significant word of result.

;mul32 - Miltiplies two unsigned fixed-point values. The

;arguments and a pointer to the result are passed on the stack.
mil132 proc uses dx di,
smul tiplicand:dword, smultiplier:dword, result:word

add
adc
nov
mmul

add
adc
adc
nov
mmul

nov
add
adc
adc
ret

mil132 endp

di, word ptr result

ax, word ptr smultiplicand]?2]
word ptr smultiplier[2]

word ptr [di][4], ax

word ptr [di] [6], dx

ax, word ptr smultiplicand]2]
word ptr smultiplier[0]

word ptr [di][2], ax

word ptr [di][4], dx

word ptr [di][6], O

ax, word ptr smultiplicand[0]
word ptr smultiplier[2]

word ptr [di][2], ax

word ptr [di][4], dx

word ptr [di][6], O

ax, word ptr smultiplicand[0]
word ptr smultiplier[0]

word ptr [di] [0], ax

word ptr [di][2], dx

word ptr [di][4], O

word ptr [di][6], O

;small nodel pointer is near
;multiply multiplicand high
;word by multiplier high word

;multiply multiplicand high
;word by multiplier |ow word

;add any remant carry
;multiply multiplicand |ow
;word by multiplier high word

;add any remnant carry
;multiply multiplicand |ow
;word by multiplier |ow word

;add any remmant carry

For additional examples of this technique, see the FXMATH.ASM module.

63

NUMERICAL METHODS

Binary Division
Error Checking

Division requires more error checking than any of the other basic arithmetic
operations. Depending on whether you're using the hardware division instructions
or a brew of your own, you'll need to know if a mistake has been made. The primary
difference between using a hardware instruction and using your own solution is that
an error made during the execution of a hardware instruction can blow up a program
quite unaesthetically by invoking an exception or trap.

Three basic errors can occur during division: overflow, division of zero, and an
attempt to divide by zero.

You can avoid overflow by checking the dividend and divisor to see whether
their quotient will fit in the space provided, or by aways breaking the dividend into
coefficients of the same size data type as the dividend. An overflow (or underflow)
can happen quite easily when the dividend is very large and the divisor is small. If
you're using a software algorithm to perform the divide, you may find that you lose
part of your data. If you're using a hardware instruction, a hardware exception will
be invoked. On the 8086, the largest dividend allowed is 32-hits, the largest divisor
is 16 with a 16-hit quotient. In this case, dividing 12345678H by 01DEH resultsin
a quotient of 9bfe9H and a hardware exception (the result too large for the 16 bits the
8086 allows).

If you think such an overflow could occur in your code, it might be wise to
include a test before the divide to ascertain how much storage the quotient will
require and, therefore, which form of the divide to use. The largest dividend a divisor
can divide and store is equal to the size of the data type multiplied by the divisor. By
comparing the number obtained from such a multiplication with an arbitrary
dividend, you can determine whether the result of that operation will fit in the data
type specified.

With binary numbers, this is easy. The largest quotient an 8086 can produce
without overflow is 16 bits, which amounts to a left shift of the divisor of 16 bits or
a multiplication of 10000H. If the value obtained is greater than or equa to the
dividend, the result of the division will fit; if not, it won't. In other words, if you're
dividing a 32-hit quantity by a 16-bit quantity, simply comparing the divisor with the

64

INTEGERS

upper word of the dividend (dividend/I0000H) will tell you whether the quotient will
fit in 16 bits or not. If the upper 16 bits of the dividend are greater than your divisor,
the operation will overflow. Thistest can be extended to 16-hit dividends and eight-
bit divisors.

Suppose we wish to divide 12345678H by 1deH. Since this divisor is larger than
one byte, we must use 16-bit division. The 1deH need not be multiplied by 10000H
or shifted; we only need to compare the upper word of the dividend and the divisor
to see which is greater.

nmv dx, dvdnd[2] ; 1234H

mv ax, dvdnd[0] :5678H

mv cx, dvsr ; 1DEH

cnp dx, c¢x ; conpare

ja not _bi g_enuf ;the quotient won't fit

div32:

Depending on the circumstances, the best method may be to begin any
multiprecision divide by clearing DX and loading AX with the most significant
word. An overflow is impossible with this technique as long as you have a divisor,
since 1H multiplied by 10000H is greater than any one-word dividend.

The other two errors, division of zero and an attempt to divide by zero, are easily
detected in the beginning of the routine. If either condition is true, the program can
branch to a predetermined error routine and return.

Finally, two conditions are worth checking if your arithmetic gets very big:

. Arethe divisor and dividend equal?

+ Isthe divisor greater than the dividend?

If the two are equal, return a one; if the divisor is greater, return a zero with the
dividend in the remainder.

Examples of this kind of checking can be found in the FXMATH.ASM module
and later in this chapter in the section Hardware Division.

Software Division

The classic multiplication algorithm is based on the idea of multiplication as
iterative addition, so you shouldn’t be surprised to learn that the method for division

65

NUMERICAL METHODS

Step

0)

1)
2)

3)

4)

5)

6)

7)

colv

Remainder

Dividend

1

Ll

[

<

Remainder

Dividend

[LR

00000000

10111000

<
00000001

<

01110000

00000010
00000101
00001011

-0110

11100000
11000000
10000000

+0001

00000101
00001011
-0110

10000001
00000010
+0001

00000101
00001010
-0110

00000011
00000110
+0001

00000100
00001000
-0110

00000111
00001110
00000001

00000010
00000100

00001111
00011110

J <4—— Quotient

0 1 1 O pivisor

shift
dvsr >Remainder? No
shift
dvsr >Remainder? No
shift
shift
dvsr >Remainder? Yes

Remainder = Remainder - dvsr,
Quotient = Quotient + 1

shift

dvsr >Reminder? Yes

shift
dvsr >Reminder?

shift
dvsr>Reminder?

shift
dvsr >Reminder?

Figure 2-1. Division using shift and subtract.

66

INTEGERS

is based on shift and subtract. This procedure isn’t fast, but it's friendly.

The procedure involves shifting the dividend left into a variable, the remainder,
and comparing this remainder with the divisor. If the remainder is equal to or larger
than the divisor, the divisor is subtracted from the remainder and a one is left-shifted
into avariable, called the quotient. This continues until the requisite number of bits
have been shifted. No early out is available here; the number of shifts necessary
depends on the size of the operands.

The following variables will be used for the division algorithms: dvsr, dvdnd,
gtnt, cntr, and rmndr. Note that during execution of the agorithm the quotient,
dividend, and remainder share memory locations (Figure 2- 1). Shifting the dividend
into the remainder leaves the lower bits free to become the quotient. At the end of the
routine the dividend is gone, leaving only the quotient and the remainder. For the
programmer, this means fewer shifts, some increase in speed, and a dightly smaller
routine. The integers these routines are meant to handle are unsigned; the method for
signed division is the same as for multiplication which was described earlier (see
Signed vs. Unsigned), and is demonstrated in FXMATH.ASM.

cdiv: Algorithm

1. Load the quotient (qtnt) with the dividend (dvdnd); set an onboard
register, si, with the nunber of bits in the dividend(this will also
be the size of our quotient); and clear registers AX BX, CX, and DX

2. Left-shift the dividend into the quotient and remainder sinultaneously.
3. Conpare rmdr and dvsr.
If dvsr > = romdr, subtract dvsr fromrmmdr and increnent qtnt.
G herwise, fall through to the next step.
4. Decrement si and test it for zero. If si is not O, return to step 2.
Wite the remainder and |eave.

This will work for any size data type and, as you can see, is basicdly an iterative
subtract.

67

NUMERICAL METHODS

cdiv: Listing

ckkkkk
’

; classic divide

; one quadword by another, passed on the stack, pointers returned

. to the results

;conposed of shift and sub instructions
; returns all zeros in remainder and quotient if attenpt is made to divide
; zero. Returns all ffs in quotient and dividend in remainder if divide by

; zero is attenpted.
cdiv proc uses bx cx dx si di, dvdnd:qword, dvsr:qword,

gtnt:word, rmdr:word

pushf

cld

nmv

| ea

mv
rep mvsw

shift:
shl
rcl
rcl
rcl
rcl
rcl
rcl
rcl

conpare:
cnp

jb
cnp
jb
cnp
jb
cnp
jb

68

cx, 4
si, word ptr dvdnd
di, word ptr gtnt

di, 8
si, 64
ax, ax
bx, ax
cX, ax
dx, ax

word ptr [dil, 1

word ptr [dil[2], 1
word ptr [dil[41, 1
word ptr [di] [6], 1
ax,
bx,
CX,
dx,

[EEG TN TN

dx, word ptr dvsr[6]

test-for-end
cx, word ptr dvsr[4]
test-for-end
bx, word ptr dvsr[2]
test-for-end
ax, word ptr dvsr[0]
test-for-end

;upward

;move dividend to quotient
;dvdnd and gtnt share sane
; MeNDry space

;reset pointer

ynurrber of bits

;shift quotient/dividend Ieft
;into registers (reminder)

; Compare the remainder and
; di visor

;if remainder > divi sor

INTEGERS

sub ax, word ptr dvsr ;if it is greater than
; the divisor
shb bx, word ptr dvsr[2] ;subtract the divisor and
shb cx, word ptr dvsr[4]
shb dx, word ptr dvsr{6]
add word ptr [di], 1 ;increment the quotient
adc word ptr [di][2], O
adc word ptr [di][4], O
adc word ptr [di][6], O
test_for_end:
dec si ;decrement the counter
jnz shift
nmv di, word ptr rmmdr
nmov word ptr [di], ax ;wite remainder
nmv word ptr [di][2], bx
nmv word ptr [di][4], cx
nov word ptr [di][6], dx
exit:
popf ;to take care of cld
ret
cdiv endp

Hardware Division

Many microprocessors and microcontrollers offer hardware divide instructions
that execute within a few microseconds and produce accurate quotients and remain-
ders. Except in special cases, from the 80286 on up, the divide instructions have an
advantage over the shift-and-subtract methods in both code size (degree of complex-
ity) and speed. Techniques that involve inversion and continued multiplication
(examples of both are shown in Chapter 3) don’t stand a chance when it comesto the
shorter divides these machine instructions were designed to handle.

The 8086 offers hardware division for both signed and unsigned types; the 286,
386, and 486 offer larger data types but with the same constraints. The DIV
instruction is an unsigned divide, in which an implied destination operand is divided
by a specific source operand. If the divisor is 16 bits wide, the dividend is assumed
to be in DX:AX. The results of the division are returned in the same register pair (the
quotient goesin AX and the remainder in DX). If the divisor is only eight bits wide,
the dividend is expected to be in AX; at the end of the operation, AL will contain the
quotient, while AH will hold the remainder.

69

NUMERICAL METHODS

As a result, you should make sure the implied operands are set correctly. For
example,

div cX

says that DX:AX is to be divided by the 16-bit quantity in CX. It also means that DX
will then be replaced by the remainder and AX by the quatient. This is important
because not al divisions turn out nestly. Suppose you need to divide a 16-bit quantity
by a 9-bit quantity. You'll probably want to use the 16-bit form presented in the
example. Since your dividend is only a word wide, it will fit neatly in AX. Unless you
zero DX, you'll get erroneous results. This instruction divides the entire DX:AX
register pair by the 16-bit value in CX. This can be a mgor annoyance and something
you need to be aware of.

Asnice as it is to have these instructions available, they do have a limitation;
what if you want to perform a divide using operands larger than their largest data
type? The 8086 will alow only a 32-hit dividend and a 16-bit divisor. With the 386
and 486, the size of the dividends has grown to 64 bits with divisors of 32;
nevertheless, if you intend to do double-precision floating point, these formats are
still too small for a single divide.

Severa techniques are available for working around these problems. Actualy,
the hardware divide instructions can be made to work quite well on very large
numbers and with divisors that don't fit so neatly in a package.

Division of very large numbers can be handled in much the same fashion as
hardware multiplication was on similarly large numbers. Begin by dividing the most
significant digits, using the remainders from these divisions as the upper words (or
bytes) in the division of the next most significant digits. Store each subquotient as
aless and less significant digit in the main quotient.

The number 987654321022H can be divided by a 2987H bit on the 8086 using
the 16-hit divide, as follows (also see Figure 2-2):

1. Allocate storage for intermediate results and for the final quotient. Assum-
ing 32 hits for the quotient (gtnt) and 16 bits for the remainder (rmndr), three
words will be required for the dividend (dvdnd) and only 16 bits for the divisor

70

INTEGERS

9876 5432 1022H dividend
2987H divisor

L9009 | 9876H , + | 9876H | = Subquolient:i/—\

Remainder 1be1

DX : AX CX 23 Ll Quotient
/ word [4] word [2] word [O]
{ 1b21 | | 5432 |+ 2987 ;= SubquolientOAbm

DX : AX cx Remainder 2420H ABDE Quotient
word [4] word [2] word [Q]

L2420 | [1022 ,+ 2987 ;= Subquotientdeb(’-\(

DX : AX cx Remainder 144 H @3, |ABDE deb2, Quoient
word [4] word [2] word [@]

5

1e44H Remainder

Figure 2-2. Multiprecision division

(dvsr). Actually, the number of bitsin the QUOTIENT is equal to the
log, DIVIDEND - log,, DIVISOR, or 34 hits.

2. Clear DX, load the most significant word of the dividend into AX and the
divisor into CX, and divide:

sub, dx, dx
nmov ax, word ptr dvdnd[4] ;9876
div cX ;divide

3. At the completion of the operation, AX will hold 3 and DX will hold 1 be 1H.

4. Store AX in the upper word of the quotient:

nmv word ptr qtnt[4], ax 1 3H

5. With the remainder till in DX as the upper word of the “new” dividend, load

71

NUMERICAL METHODS

the next most significant word into AX and divide again:

nov ax, word ptr dvdnd[2] ; 5432H
div CcX ;recall that the divisor
dis still in CX

6. Now DX holds 2420H and AX holds OabdeH as the remainder. Store AX in
the next most significant word of the quotient and put the least significant word
of the dividend into AX.

nov word ptr qtnt[2],ax ; CabdeH

7. Divide DX:AX one find time:

nov ax, word ptr dvdnd[0]
div CX

8. Storetheresult AX in the least significant word of the quotient and DX
in the remainder.

nov word ptr qgtnt[0],ax ; 0deb2H
nov word ptr rondr, dx ;1 e44H

This technique can be used on arbitrarily large numbers; it’s simply a matter of
having enough storage available.

What if both the divisor and the dividend are too large for the hardware to handle
by itself? There are at least two ways to handle this. In the case below, the operands
are of nearly equal size and only need to be normalized; that is, each must be divided
or right-shifted by an amount great enough to bring the divisor into range for a
hardware divide (on an 8086, this would be a word). This normalization doesn’t
affect the integer result, since both operands experience the same number of shifts.
Because the divisor is truncated, however, there is a limitation to the accuracy and
precision of this method.

If we have good operands, right-shift the divisor, counting each shift, until it fits

72

INTEGERS

within the largest data type alowed by the hardware instruction with the MSB a one.
Right shift the dividend an equa number of shifts. Once this has been done, divide
the resulting values. This approximate quotient is then multiplied by the original
divisor and subtracted from the original dividend. If there is an underflow, the
guotient is decremented, the new quotient multiplied by the divisor with that result
subtracted from the original dividend to provide the remainder. When there is no
underflow, you have the correct quotient and remainder.

12345678H dividend
76543H divisor
Shift: Shits ——» 91A22 b3CH dividend
both o
3b2A1H divisor
Shifts ——» 480159EH dividend
both N
10950H divisor
Shits ——» 2468ACFH
both
ECAS8H! divisor fits 16 bits
Estimate: 2468ACFH:-QECA8H= Approximate Quotient = 276H
Reconstruct: 276H*76543H= 123 33 2E2
Verify: 12345678H-123332E2H=4| 12396H~*
True Quotient=276 H
True Remainder=12396 H
* No underflow means Quotient and Reminder are correct.

Figure 2-3. Multiword division. This process can continue as long as there is a remainder.

73

NUMERICAL METHODS

The normalization mentioned earlier isillustrated in Figure 2-3. It requires only

that the operands be shifted right until the 16 M SBs of the divisor reside within aword
and the MSB of that word is a one.

An example of this technique for 32 bit operands is shown in div32.

div32: Algorithm

1

74

Set aside a workspace of eight words. Load the dividend (dvdnd) into the
| owest two words and the divisor (dvsr) into the next two words. Use Dl
to point to the quotient.

Check to see that the dividend is not zero.

If it is, clear the quotient, set the carry, and |eave.

Check for divide by zero.

If division by zero has occurred, return -1 with the carry set.
If the divisor is greater than a word, go to step 4.

Use BX to point at the remainder (rmndr).

Bring the nost significant word of the dividend into AX (DX is zero) and
divide by the nornalized divisor.

Store the result in the upper word of the quotient.

Bring the least significant word of the dividend into AX (DX contains
the remai nder fromthe last division) and divide again.

Store the result in the least significant word of the quotient.
Store DX and clear the upper word of the remainder.

Shift both the dividend and the divisor until the upper word of the
divisor is zero. This is the normalization.

Move the normalized dividend into DX AX and divide by the normalized
di vi sor.

Point to the quotient with BX and the top of the workspace with Di.

Miultiply the divisor by the approximate quotient and subtract the result
froma copy of the original dividend.

If there is no overflow, you have the correct quotient and remainder.

Ot herwi se, decrement the approximate quotient by one and go back to the
begi nning of step 7. This is necessary to get the correct remainder.

Wite the remainder, clear the carry for success, and go hone.

div32: Listing

vokkk kK
1

i div32

; 32-by-32-bit divide
;Arguments are passed on the stack along with pointers to the
;quotient and remai nder

div32 proc uses ax dx di si
dvdnd: dword, dvsr:dword, qgtnt:word, rmmdr:word

| ocal
sub
nmov
nmov
lea
lea
rep novsw
nmov
lea
lea
rep movsw
nmov
cnP
jne
cnp
jne
jm
do_di vi de
cnp
jne
cnp
je

wor kspace[8] :word

ax, ax
dx, a
cX, 2
si, word ptr dvdnd

di, word ptr workspace

cx, 2
si, word ptr dvsr

di, word ptr workspace[4]

di, word ptr qgtnt
word ptr dvdnd, ax
do- di vi de

word ptr dvdnd[2], ax

do_di vi de
zero_div

word ptr dvsr[2],ax
shift

word ptr dvsr, ax
div_by_zero

bx, word ptr rmdr
ax, word ptr dvdnd[2]
word ptr dvsr

word ptr [di][2],ax
ax, word ptr dvdnd
word ptr dvsr

word ptr [di],ax
word ptr [bx],dx
ax, ax

word ptr [bx][2],ax
exit

INTEGERS

:check for a
:zero dividend

;see if it is small enough
;check for divide by zero
;as long as dx is zero

;no overflow is possible
;point at remainder

;first divide upper word

;and save it
:then the |ower word

;and save it
;save remainder

75

NUMERICAL METHODS

shift:
shr

rer
shr
rer

cnp
jne
di vi de:
nmov
nmov
div
nmov
get - remai nder
nmov
| ea

reconstruct:

nov
nul

nov
nov
nov
nul

add
nov
nov
sub

shb
jnc

div_ex:

76

word ptr dvdnd[2], 1

word ptr dvdnd[0], 1
word ptr dvsr[2], 1
word ptr dvsr[0], 1
word ptr dvsr[2],ax

shift

ax, word ptr dvdnd
dx, word ptr dvdnd[2]
word ptr dvsr

word ptr [di] [0], ax

bx, di
di, word ptr workspace[8]

ax, word ptr workspace[4]
word ptr [bx]

word ptr [di] [0], ax
word ptr [di][2], dx

ax, word ptr workspace[6]
word ptr [bx]

word ptr [di][2], ax

ax, word ptr workspace[0]
dx, word ptr workspace[2]
ax, word ptr [di] [0]

dx, word ptr [di][2]
div_ex

ax, word ptr [bx]
dx, word ptr [bx][2]
word ptr [bx], 1
word ptr [bx] [2], O
short reconstruct

di, word ptr rmmdr

word ptr [di], ax
word ptr [di] [2], dx

;normalize both dvsr and
:dvdnd
;shift both the sane nunber

;shift until last one
;1 eaves upper word

;since MSB of dvsr is a one, no
;overflow is possible here

;approximate quotient

;quot i ent

;test first approximtion of
;quotient by multiplying it by
;dvsr and conparing it with dvdnd

;low word of multiplicand by
;low word of multiplier

chigh word of multiplicand by
;low word of multiplier

;conpare results of divide
; approximation

;good or overflows

;overflow, decrement approx
;quot i ent

;decrenent the quotient

;the result is a good quotient
;and remai nder

INTEGERS

cle
exit:
ret
div_by_zero
not ax ;division by zero
nov word ptr [di][0], ax
nmv ord ptr [di] [2], ax
stc
jmp exit
zero_div: ;division of zero
nov word ptr [di][0], ax
nmov word ptr [di][21, ax
stc
jmp exit
div32 endp

If very large operands are possible and the greatest possible precision and
accuracy is required, there is a very good method using a form of linear interpolation.
Thisis very useful on machines of limited word length. In this technique, the division
is performed twice, each time by only the Most Significant Word of the divisor, once
rounded down and once rounded up to get the two limits between which the actual
quotient exists. In order to better understand how this works, take the example,
98765432H/54321111H. The word size of the example machine will be 16 bits,
which means that the MSW of the divisor is 5432H * 2'°. The remaining divisor bits
should be imagined to be a fractional extension of the divisor, in this manner:
5432.1111H.

The first division is of the form:

987654328/ 54320000H
and produces the resullt:
1. ¢f 910000H.

Next, increment the divisor, and perform the following division:

7

NUMERICAL METHODS

98765432H 54330000H
for the second quotient:

1. cf 8c0000H.

Now, take the difference between these two values;
1cf 91 0000H - 1cf8c0000H = 50000H.

This is the range within which the true quotient exists. To find it, multiply the
fraction part of the divisor described in the lines above by this range:

50000H * .1111H = 5555H,

and subtract this from the first quotient:

1cf 910000H - 5555H = 1. cf90aaabH.

To prove this result is correct, convert this fixed point result to decimal, yielding:

1. 810801188229D.

Convert the operands to decimal, as well:

98765432H 54321111H = 25578916340 1412567313D = 1.81081043746D.

This divide does not produce a remainder in the same way the division above does,
its result is true fixed point with a fractional part reflecting the remainder. This
method can be very useful for reducing the time it takes to perform otherwise time
consuming multiple precision divisons. However, for maximum efficiency, it
requires that the position of the Most Significant Word of the divisor and dividend
be known in advance. If they are not known, the routine is responsible for locating
these hits, so that an attempt to divide zero, or divide by zero, does not occur.

The next routine, dive4, was specialy written for the floating point divide in

78

INTEGERS

Chapter Four. This method was chosen, because it can provide distinct advantages
in code size and speed in those instances in which the position of the upper bits of
each operand is known in advance. In the next chapter, two routines are presented
that perform highly accurate division without this need. They, however, have their
own complexities.

To begin with, the operands are broken into word sizes (machine dependent),
and an initial division on the entire dividend is performed using the MSW of the
divisor and saved. The MSW of the divisor is incremented and the same division is
performed again, this will, of course result in a quotient smaller than the first division.
The two quotients are then subtracted from one another, the second quotient from the
first, with the result of this sutraction multiplied by the remaining bits of the divisor
as afractional multiply. This product is subtracted from the first quotient to yield a
highly accurate result. The final accuracy of this operation is not to the precision you
desire, it can be improved by introducing another different iteration.

dive4: Algorithm
1. Cear the result and tenporary variables.

2. Divide the entire dividend by the Mst Significant Wrd of the divisor.
(The remaining bits will be considered the fractional part.)

This is the first quotient, the larger of the two, save this result in
a tenporary variable.

3. Increnment the divisor.

If there is an overflow, the next divide is really by 2% therefore,
shift the dividend by 16 bits and save in a tenporary variable.

Continue with step 5.
4. Divide the entire dividend by the incremented divisor.

This is the second quotient, the smaller of the two, save this result
in a tenporary variable.

5. Subtract the second quotient fromthe first.

6. Miltiply the result of this subtraction by the fractional part of the
di vi sor.

7. Subtract the integer portion of this result fromthe first quotient.
8. Wite the result of step 7 to the output and return.

79

NUMERICAL METHODS

dive4: Listing
; kkkkkk
; di vo4
;will divide a quad word operand by a divisor
; dividend occupies upper three words of a 6 word array
;divisor occupies lower three words of a 6 word array
;used by floating point division only
dive4 proc uses es ds,
dvdnd: gqword, dvsr:gword, qtnt:word

[ocal result:tbyte, tnpO:qword,
tnpl:gword, opa:qword, opb:qword

pushf
cld
sub ax, ax
| ea di, word ptr result
nmv cx, 4
rep stosw
| ea di, word ptr tnpO ;quoti ent
nmv cx, 4
rep stosw
setup:
nmv bx, word ptr dvsr[3]
continue_setup:
lea si, word ptr dvdnd :divisor no higher than
lea di, word ptr tnp0 ;receives stuff for quotient
sub a, dx
nmv ax, word ptr [si][3]
div bx
nmv word ptr [di][4], ax ;result goes into tenporary varriable
nmv ax, word ptr [si][1]
div bx
nmv word ptr [di][2], ax
sub ax, ax
mv ah, byte ptr [si]
div bx
nov word ptridi] [Q, ax ;entire first approximtion

80

si, word ptr dvdnd
di, word ptr tnpl
dx, dx

bx, 1

as_before

ax, word ptr [si] [3]

mov word ptr [di][2], ax
mov ax, word ptr [si] [I]

jmp

as- before:

find-difference:

rep

div
nov

i nvoke

| ea
| ea
nov
movsh
sub
stosb
st osw

i nvoke

| ea

word ptr [di][0], ax
find-difference

ax, word ptr [si] [3]

bx
word ptr [di][4], ax
ax, word ptr [si] [I]

bx

word ptr [di][2], ax
a, ax

ah, byte ptr [si]

bx

word ptr [di] [0], ax

sub64, tnmp0, tnpl, addr opa
si, word ptr dvsr

di, word ptr opb

cx, 3

ax, ax

mul64a, opa, opb, addr result

si, word ptr result[3]

INTEGERS

;divisor no higher than
;receives stuff for quotient

;round divisor up

;if the increment results in
overflow

;there is no divide, only a
cshift by 2%

;divide entire dividend by new
; divisor

;result goes into quotient

;result goes into quotient

;resul't goes into quotient

;get the difference between the
;two extrenes

fractional
;portion of
;difference to subtract from
;initial quotient

miltiply to get

81

NUMERICAL METHODS

lea di, word ptr opb ; (high quotient)
nov cx, 3
rep novsh

sub ax, ax
stosb
st osw

i nvoke sub64, tnp0, opb, addr tnp0 ;subtract and wite out result
| ea si, word ptr tnp0

div_exit
mv di, word ptr gtnt
mv cx, 4

rep novsw

popf
ret
divé4 endp

When writing arithmetic routines, keep the following in mind:

» Addition can aways result in the number of bits in the largest summend plus
one.

» Subtraction requires at least the number of bits in the largest operand for the
result and possibly a sign.

» The number of bits in the product of a multiplication is aways equa to log,

multiplier + log, multiplicand. It is safest to alow 2n bits for an n-bit by n-
bit multiplication.

» Thesize, in bits, of the quotient of adivision isequa to the difference, log,
dividend - log,, divisor. Allow as many bits in the quotient as in the dividend.

82

INTEGERS

Microsoft Macro Assembler Reference. Version 6.0. Redmond, WA Microsoft
Corp., 1991.

Cavanagh, Joseph J. F. Digital Computer Arithmetic. New York, NY: McGraw-
Hill Book Co., 1984, Page 148.

83

84

CHAPTER 3

Real Numbers

There are two kinds of fractions. A symbolic fraction represents a division
operation, the numerator being the dividend and the denominator the divisor. Such
fractions are often used within the set of natural numbers to represent the result of
such an operation. Because this fraction is a symboal, it can represent any value, no
matter how irrational or abstruse.

A real number offers another kind of fraction, one that expands the number line
with negative powers of the base you' re working with. Base 10, involves a decimal
expansion such that a;, * 10" + a* 10"+ a, * 10" Nearly all scientific,
mathematical, and everyday work is done with real numbers because of their
precision (number of representable digits) and ease of use.

The symbolic fraction 1/3 exactly represents the division of one by three, but a
fractional expansion in any particular base may not, For instance, the symbolic
fraction 1/3 is irrationa in bases 10 and 2 and can only be approximated by
.33333333D and .55555555H.

A vaue in any base can be irrationa-that is, you may not be able to represent
it perfectly within the base you're using. This is because the positional numbering
system we use is modular, which means that for a base to represent a symbolic
fraction rationaly all the primes of the denominator must divide that base evenly.
It's not the value that' s irrational; it's just that the terms we wish to use cannot express
it exactly. The example given in the previous paragraph, |/3, isirrationa in base 10
but is perfectly rational in base 60.

There have been disputes over which base is best for a number system. The
decimal system is the most common, and computers must deal with such numbers
at some level in any program that performs arithmetic calculations. Unfortunately,
most microprocessors are base 2 rather than base 10. We can easily represent decimal

85

NUMERICAL METHODS

integers, or whole numbers, by adding increasingly larger powers of two. Decimal
fractions, on the other hand, can only be approximated using increasingly larger
negative powers of two, which means smaller and smaller pieces. If afraction isn't
exactly equal to the sum of the negative powers of two in the word size or data type
available, your representation will only be approximate (and in error). Since we have
little choice but to deal with decimal reals in base 2, we need to know what that means
in terms of the word size required to do arithmetic and maintain accuracy.

The focus of this chapter is fixed-point arithmetic in general and fractional fixed
point in particular.

Fixed Point

Embedded systems programmers are often confronted with the task of writing
the fastest possible code for real-time operation while keeping code size as small as
possible for economy. In these and other situations, they turn to integer and fixed-
point arithmetic.

Fixed point is the easiest-to-use and most common form of arithmetic performed
on the microcomputer. It requires very little in the way of protocol and is therefore
fast-a great deal faster than floating point, which must use the same functions as
fixed point but with the added overhead involved in converting the fixed-point
number into the proper format. Floating point is fixed point, with an exponent for
placing the radix and a sign. In fact, within the data types defined for the two standard
forms of floating-point numbers, the long real and short real, fewer significant bits
are available than if the same data types were dedicated to fixed-point numbers. In
other words, no more precision is available in a floating-point number than in fixed
point.

In embedded applications, fixed point is often a must, especialy if the system
can not afford or support a math coprocessor. Applications such as servo systems,
graphics, and measurement, where values are computed on the fly, smply can’t wait
for floating point to return a value when updating a Proportional-1ntegral -Derivative
(PID) control loop such as might be used in a servo system or with animated graphics.
So why not always use integer or fixed-point arithmetic?

Probably the most important reason is range. The short real has adecimal range
of approximately 10® to 10 (this is a range, and does not reflect resolution or

86

REAL NUMBERS

accuracy; as you'll see in the next chapter, floating-point numbers have a rea
problem with granularity and significance). To perform fixed-point arithmetic with
this range, you would need 256 bitsin your datatype, or 32 bytes for each operand.

Another reason is convenience. Floating-point packages maintain the position
of the radix point, while in fixed point you must do it yourself.

Still another reason to use floating-point arithmetic is the coprocessor. Using a
coprocessor can make floating point as fast as or faster than fixed point in many
applications.

The list goes on and on. | know of projects in which the host computer
communicated with satellites using the |EEE 754 format, even though the satellite
had no coprocessor and did not use floating point. There will always be reasons to
use floating point and reasons to use fixed point.

Every application is different, but if you're working on a numericaly intensive
application that requires fast operation or whose code size is limited, and your system
doesn’t include or guarantee a math coprocessor, you may need to use some form of
fixed-point arithmetic.

What range and precison do you need? A 32-bit fixed-point number can
represent 2% separate values between zero and 4,294,967,296 for integer-only
arithmetic and between zero and 2.3283064365E-10 for fractional arithmetic or a
combination of the two. If you use a doubleword as your basic data type, with the
upper word for integers and the lower one for fractions, you have a range of
1.52587890625E-5 to 65,535 with aresolution of 4,294,967,296 numbers.

Many of the routines in FXMATH.ASM were written with 64-bit fixed-point
numbers in mind: 32 bits for integer and 32 bits for fraction. This allows a range of
2.3283064365E- 10 to 4,294,967,295 and a resolution of 1.84467440737E30 num-
bers, which is sufficient for most applications. If your project needs a wider range,
you can write specialized routines using the same basic operations for all of them;
only the placement of the radix point will differ.

Significant Bits

We normally express decimal values in the language of the processor-binary.
A 16-bit binary word holds 16 binary digits (one bit per digit) and can represent
65,536 binary numbers, but what does this mean in terms of decimal numbers? To

87

NUMERICAL METHODS

estimate the number of digits of one base that are representable in another, smply
find ceil(log,B"), where a is the target base, B is the base you're in, and n is the power
or word size. For example, we can represent a maximum of

decimal -digits = 5 = ceil ((l0gy(2")

in a 16-hit binary word (a word on the 8086 is 16 hits, 2'° = 65536, and log,, 65536
= 4.8, or five decimal digits). Therefore, we can represent 50,000 as ¢350H, 99.222D
as 63.39H, and .87654D as .e065H.

Note: A reference to fixed-point or fractional arithmetic refers to binary fractions.
For the purposes of these examples, decimal fractions are converted to hexadecimal
by multiplying the decimal fraction by the data type. To represent .5D in a byte, or
256 bits, | multiply .5 by 256. The result is 128, or 80H. These are binary fractions
in hexadecimal format. Results will be more accurate if guard digits are used for
proper rounding. Conversion to and from fixed-point fractions is covered in Chapter
5.

We can express five decima numbersin 16 bits, but how accurately are we doing
it? The Random House dictionary defines accuracy as the degree of correctness of
a quantity, so we could say that these five decimal digits are accurate to 16 bits. That
is, our representation is accurate because it’s correct given the 16 bits of precision
we're using, though you still may not find it accurate enough for your purposes.

Clearly, if the fraction cannot be expressed directly in the available storage or is
irrational, the representation won't be exact. In this case, the error will be in the LSB;
in fact, it will be equal to or less than this bit. As a result, the smallest value
representable (or the percent of error) is shown as 2™, where m is the number of
fraction bits. For instance, 99.123D is 63.1fH accurate to 16 hits, while 63.1f7cH is
accurate to 24 bits. Actually, 63.I1fH is99.121D and 63.1f7cH is 99.12298, but each
is accurate within the constraints of its precision. Assuming that no extended
precision is available for rounding, no closer approximation is possible within 16 or
24 bits. The greater the precision, the better the approximation.

88

REAL NUMBERS

The Radix Point

Theradix point can occur anywhere in anumber. If our word size is 16 bits, we
can generally provide eight bits for the integer portion and eight bits for the fractional
portion though specia situations might call for other forms. Floating point involves
fixed-point numbers between 1.0 and 2.0. In a 24-bit number, this leaves 23 bits for
the mantissa. The maximum value for a sine or cosine is 1, which may not even need
to be represented, leaving 16 bits of a 16-bit data type for fractions. Perhaps you only
need the fraction bits as guard digits to help in rounding; in such cases you might
choose to have only two bits, leaving the rest for the integer portion.

Depending on your application, you may want a complete set of fixed-point
routines for each data type you use frequently (such as 16- and 32-bit) and use other
routines to address specific needs. In any event, maintaining the radix point (scaing)
requires more from the programmer than does floating point, but the results, in terms
of both speed and code size, are worth the extra effort.

The nature of the arithmetic doesn’'t change because of the radix point, but the
radix point does place more responsibility on the programmer. Y our software must
know where the radix point is at all times.

Rounding

If al the calculations on a computer were done with symbolic fractions, the error
involved in approximating fractionsin any particular base would cease to exist. The
arithmetic would revolve around multiplications, divisions, additions, and subtrac-
tions of numerators and denominators and would always produce rational results.
The problem with doing arithmetic this way is that it can be very awkward, time-
consuming, and difficult to interpret in symbolic form to any degree of precision.

On the other hand, real numbers involve error because we can't always express
afraction exactly in a target base. In addition, computing with an erroneous value
will propagate errors throughout the calculations in which it is used. If a single
computation contains several such values, errors can overwhelm the result and
render the result meaningless. For example, say you're multipying two 8-bit words
and you know that the last two bits of each word are dubious. The result of this
operation will be 16 bits, with two error bits in one operand plus two error bits in the

89

NUMERICAL METHODS

other operand. That means the product will contain four erroneous hits.

For this reason, internal calculations are best done with greater precision than
you expect in the result. Perform the arithmetic in a precision greater than needed in
the result, then represent only the significant bits as the result. This helps eliminate
error in your arithmetic but presents another problem: What about the information
in the extra hits of precision? This brings us to the subject of rounding.

Y ou can always ignore the extra bits. This is called truncation or chop, and it
simply means that they are left behind. This method is fast, but it actually contributes
to the overall error in the system because the representation can only approach the
true result at exact integer multiples of the LSB. For example, suppose we have a
decimal value, 12345D, with extended bits for greater precision. Since 5 isthe least

significant digit, these extended hits are some fraction thereof and the whole number
can be viewed as.

12345 XXXXD
t extended bits

Whenever the result of a computation produces extended bits other than zero, the
result, 12345D, is not quite correct. As long as the bits are always less than one-half
the LSB, it makes little difference. But what if they exceed one-half? A particular
calculation produces 12345.7543D. The true value is closer to 12346D than to
12345D, and if this number is truncated to 12345D the protection allowed by the
extended bits is lost. The error from truncation ranges from zero to almost one in the
LSB but is definitely biased below the true value.

Another technique, called jamming, provides a symmetrical error that causes the
true value or result to be approached with an amost equal bias from above and below.
It entails almost no loss in speed over truncation. With this technique, you simply set
the low-order bit of the significant bits to one. Using the numbers from the previous
example, 12345.0000D through 12345.9999D remain 12345.0000D.

And if the result is even, such as 123456.0000D, the LSB is set to make it
123457.0000D. The charm of this technique is that it is fast and is ailmost equally
biased in both directions. With this method, your results revolve symmetrically

90

REAL NUMBERS

about the ideal result as with jamming, but with a tighter tolerance (one half the LSB),
and, at worst, only contributes a small positive bias.

Perhaps the most common technique for rounding involves testing the extended
bits and, if they exceed one-half the value of the LSB, adding one to the LSB and
propagating the carry throughout the rest of the number. In this case, the fractional
portion of 12345.5678D is compared with .5D. Because it is greater, aone is added
to 12345D to make it 12346D.

If you choose this method of rounding to maintain the greatest possible accuracy,
you must make still more choices. What do you do if the extended bits are equal to
exactly one-half the LSB?

In your application, it may make no difference. Some floating-point techniques
for calculating the elementary functions call for a routine that returns an integer
closest to a given floating-point number, and it doesn’t matter whether that number
was rounded up or down on exactly one-half LSB. In this case the rounding technique
iS unimportant.

If it is important, however, there are a number of options. One method commonly
taught in school isto round up and down alternately. This requires some sort of flag
to indicate whether it is a positive or negative toggle. This form of rounding
maintains the symmetry of the operation but does little for any bias.

Another method, one used as the default in most floating-point packages, is
known as round to nearest. Here, the extended hits are tested. If they are greater than
one-half the LSB, the significant bits are rounded up; if they are less, they are rounded
down; and if they are exactly one-half, they are rounded toward even. For example,
12345.5000D would become 12346.0000D and 12346.5000D would remain
12346.0000D. This technique for rounding is probably the most often chosen, by
users of software mathematical packages. Round to nearest provides an overall high
accuracy with the least bias.

Other rounding techniques involve aways rounding up or aways rounding
down. These are useful in interval arithmetic for assessing the influences of error
upon the calculations. Each calculation is performed twice, once rounded up and
once rounded down and the results compared to derive the direction and scope of any
error. This can be very important for calculations that might suddenly diverge.

91

NUMERICAL METHODS

At least one bit, aside from the significant bits of the result, is required for
rounding. On some machines, this might be the carry flag. This one bit can indicate
whether there is an excess of equal to or greater than one-half the LSB. For greater
precision, it's better to have at least two bits: one to indicate whether or not the
operation resulted in an excess of one-half the LSB, and another, the sticky bit, that
registers whether or not the excess is actually greater than one-half. These hits are
known as guard bits. Greater precision provides greater reliability and accuracy.
This is especialy true in floating point, where the extended bits are often shifted into
the significant bits when the radix points are aigned.

Basic Fixed-Point Operations

Fixed-point operations can be performed two ways. The first is used primarily
in applications that involve minimal number crunching. Here, scaled decimal values
are trandated into binary (we'll use hex notation) and handled as though they were
decimal, with the result converted from hex to decimal.

To illustrate, let’s look at a simple problem: finding the area of a circle(A =nr?).
If the radius of the circle is 5 inches (and we use 3.14 to approximate it), the solution
is3.14* (5* 5), or 78.5 square inches. If we were to code this for the 8086 using the
scaled decima method, it might look like this:

nov ax, b5 ;the radius

mul al ;square the radius

mv dx, 13aH ;314 = 3.14D * 100D

mmul dx cax Wll now hold leaaH

The value leaaH converted to decimal is 7,850, which is 100D times the actual
answer because it -‘was multiplied by 100D to accommodate the fraction. If you only
need the integer portion, divide this number by 100D. If you also need the fractional
part, convert the remainder from this division to decimal.

The second technique is binary. The difference between purely binary and scaled
decimal arithmetic is that instead of multiplying a fraction by a constant to make it
an integer, perform the operation, then divide the result by the same constant for the
result. We express a binary fraction as the sum of negative powers of two, perform

92

REAL NUMBERS

the operation, and then adjust the radix point. Addition, subtraction, multiplication,
and division are done just as they are with the integer-only operation; the only
additional provision isthat you pay attention to the placement of the radix point. If
the above solution to the area of a circle were written using binary fixed point, it
would look like this:

nmov ax, 5 ;the radius

mul al ;square the radius
mov dx, 324H 804D = 3.14D * 256D
nul dx cax will now hold 4e84H

The value 4eH is 78D, and 84H is .515D (132D/256D).

Performing the process in base 10 is effective in the short term and easily
understood, but it has some drawbacks overall. Both methods require that the
program keep track of the radix point, but correcting the radix point in decimal
requires multiplies and divides by 10, while in binary these corrections are done by
shifts. An added benefit is that the output of a routine using fixed-point fractions can
be used to drive D/A converters, counters, and other peripherals directly because the
binary fraction and the peripheral have the same base. Using binary arithmetic can
lead to some very fast shortcuts; we'll see several examples of these later in this
chapter.

Although generdized routines exist for fixed-point arithmetic, it is often
possible to replace them with task specific high-speed routines, when the exact
boundaries of the input variables are known. This is where thinking in base 2 (even
when hex notation is used) can help. Scaling by 1,024 or any binary data type instead
of 1,000 or any decimal power can mean the difference between a divide or multiply
routine and a shift. Asyou'll seein aroutine at the end of this chapter, dividing by
a negative power of two in establishing an increment results in a right shift. A
negative power of 10, on the other hand, is often irrational in binary and can result
in a complex, inaccurate divide.

Before looking at actual code, lets examine the basic arithmetic operations. The
conversions used in the following examples were prepared using the computational
techniques in Chapter 5.

93

NUMERICAL METHODS

Note: The".” does not actually appear. They are assumed and added by the author
for clarification.

Say we want to add 55.33D to 128.67D. In hex, this is 37.54H + 80.acH,
assuming 16 bits of storage for both the integer and the mantissa:

37.54H (55. 33D)
+ 80. acH (128.67D)
b8. 00H (184.00D)

Subtraction is also performed without ateration:

80. acH (128.67D)
- 37.54H (55. 33D)
49. 58H (73.34D)
37.54H (55.33D)
80. acH (128.67D)
b6. a8H (-73.34D)

Fixed-point multiplication is similar to its pencil-and-paper counterpart:

80. acH (128.67D)
X 37.548 (55. 33D)
I bcf.2c70H (7119.3111D)

asisdivision:

80. acH (128. 67D)
+ 37. 54H (55.33D)
2.53H (2.32D)

The error in the fractional part of the multiplication problem is due to the lack
of precision in the arguments. Perform the identical operation with 32-bit precision,
and the answer is more in line: 80.ab85H x 37.547bH = 1bcf.4fadOce7H.

94

REAL NUMBERS

Thedivision of 80acH by 3754H initially results in an integer quotient, 2H, and
aremainder. To derive the fraction from the remainder, continue dividing until you
reach the desired precision, as in the following code fragment:

sub a, dx

mv ax, 80ach

mv cx, 37548

div cX ;this divide leaves the quotient
;(2) in ax and the remainder
;remai nder (1204H) in dx

nov byte ptr quotient[I], al

sub ax, ax

div cX ;Divide the remainder multiplied
; by 10000H x to get the fraction
;bits Overflow is not a danger
;since a remainder may never be
;greater than or
;even equal to the divisor.

mv byte ptr quotient[0], ah

:the fraction bits are then 53H,
;making the answer constrained
;to a 16-bit word for this
;exanple, 2.53H

* The 8086 thoughtfully placed the remainder from the previous division in the
DX register, effectively multiplying it by 10000H.

Of course, you could do the division once and arrive at both fraction bits and
integer bits if the dividend is first multiplied by 10000H (in other words, shifted 16
places to the left). However, the danger of overflow exists if this scaling produces
a dividend more than 10000H times greater than the divisor.

The following examples illustrate how fixed-point arithmetic can be used in
place of floating point.

A Routine for Drawing Circles

This first routine is credited to Ivan Sutherland, though many others have worked
with it.” The agorithm draws a circle incrementally from a starting point on the circle

95

NUMERICAL METHODS

and without reference to sines and cosines, though it's based on those rel ationships.
To understand how this algorithm works, recall the two trigonometric identities
(see Figure 3- 1):

sin 8= ordinate / radius vector

cos 0 = abscissa / radius vector

(where Bis an angle)

Multiplying a fraction by the same value as in the denominator cancels that
denominator, leaving only the numerator. Knowing these two relationships, we can
derive both the vertical coordinate (ordinate) and horizontal coordinate (abscissa)

y(o+B)=y(o)+x(o+B)*p

X(a+B)=x(o)-y(a)*B

Figure 3-1. A circle drawn using small increments of t.

96

REAL NUMBERS

in a rectangular coordinate system by multiplying sin® by the radius vector for the
ordinate and cos © by the radius vector for the abscissa. This results in the following
polar equations:

x(a) =r * cos a

y(a) =r * sin a

Increasing values of 6, from zero to 2n radians, will rotate the radius vector
through a circle, and these equations will generate points along that circle. The
formula for the sine and cosine of the sum of two angles will produce those increasing
values of 8 by summing the current angle with an increment:

sin(o+B) = sin « cos B + cos O sin B

cos{(otR) = cos & cos B - sin o sin B

Let a be the current angle and b the increment. Combining the polar equations
for deriving our points with the summing equations we get:

y(0+R) r * sin & cos B + r * cos & sin B

X(O+R) = r * cos O cos B - r * sin o sin B

For small angles (much smaller than one), an approximation of the cosine is
about one, and the sineis equd to the angleitsdlf. If the increment is small enough,
the summing equations become:

y(+B) = r * sina + r * cos o * B
X(Q+B) = r * cos @ - r * sin o * B,
and then:
y(o+B) = y(a) + x(a) * B

x(0+B) x(o) - y(a) * B

97

NUMERICAL METHODS

Using these formulag, you can roughly generate points aong the circumference
of a circle. The difficulty is that the circle gradually spirals outward, so a small
adjustment is necessary-the one made by Ivan Sutherland:

yv(a+B) = y(o) + x{(a+B) * B

x(a+B) = x(a) - y(o) * B

When you select an increment that is a negative power of two, the following
routine generates a circle using only shifts and adds.

circle: Algorithm

1. Initialize local variables to the appropriate values, making a copy of
x and y and clearing x_point and y_point. Calculate the value for the
the loop counter, count.

2. Get_x and_y and round to get new values for pixels. Performa de facto
divide by 1 000H by taking only the value of DX in each case for the points.

3. Call your routine for witing to the graphics screen.

4, Get _y, divide it by the increment, inc, and subtract the result from
X

5, Get _x, divide it by inc, and add the result to _y.

6. Decrement count.
If it isn't zero, return to step 2.

If it is, we're done.
circle: listing

vokkkkk
[

circle proc uses bx cx dx si di, x_ coordinate:dword, y_ coordinate: dword,
i ncrement : wor d

| ocal x:dword, y:dword, x_point:word, y_point:word, count
nmov ax, word ptr x_ coordinate
nov dx, word ptr x_coordinate[2]

98

get _num points
shl
rel
| oop
mov

set _poi nt
mov
mov
add
jnc
adc

store_x:
mov

nov
nov
add
jnc
adc

store_y:
nov

;your routine for witing to the screen goes here and

word ptr x, ax
word ptr x[2], dx

ax, word ptr y_coordinate
dx, word ptr y_coordinate[2]

word ptr y, ax
word ptr y[2], dx

ax, ax
X_point, ax
y__point, ax
ax, 4876h
dx, 6h

¢x, word ptr increment

ax, 1

dx, 1

get_num points
count, dx

ax, word ptr x
dx, word ptr x[2]
ax, 8000h
store_x

dx, Oh

x_point, dx

ax, word ptry
dx, word ptr y[2]
ax, 8000h
store_y

dx, h

y_point, dx

;y_point as screen coordinates

mv
mv

ax, word ptr y
dx, word ptr y[2]

REAL NUMBERS

:load |ocal variables

;X coordinate
;y coordinate

;2% pi
;make this a negative
; pover of two

;2 * pi radians

;divide by 10000h

;add .5 to round up
;to integers

;add .5

uses x-point and

99

NUMERICAL METHODS

nmov cX, word ptr increnent
updat e_x:
sar dx 1 ;arithmetic shift to maintain
sign
rer ax, 1
| oop update x
sub word ptr x, ax ;new x equals x - y * increnent
shb word ptr x[2], dx
nmov ax, word ptr X
nmv dx, word ptr x[2]
nmov cx, word ptr increment
update_y:
sar dx, 1 ;arithmetic shift to maintain
sign
rer ax, 1
| oop update_y
add word ptr y, ax ;new y equals y + x * increnent
adc word ptr y[2], dx
dec count
jnz set _point
ret
circle endp

Bresenham’s Line-Drawing Algorithm

This agorithm is credited to Jack Bresenham, who published a paper in 1965
describing a fast line-drawing routine that used only integer addition and subtrac-
tion.?

Theideaissimple: A lineis described by the equation f(x,y) = y' * x-X' * y for
aline from the origin to an arbitrary point (see Figure 3-2). Points not on the line are
either above or below the line. When the point is above the line, f(x,y) is negative;
when the point is below the line, f(x,y) is positive. Pixels that are closest to the line
described by the equation are chosen. If apixel isn't exactly on the line, the routine
decides between any two pixels by determining whether the point that lies exactly
between them is above or below the line. If above, the lower pixel is chosen; if below,
the upper pixd is chosen.

In addition to these points, the routine must determine which axis experiences
the greatest move and use that to program diagona and nondiagonal steps. It

100

REAL NUMBERS

y f(x,y)=y*x-x*y
Each dot is a pixel

y { I/ True line
QA —

W

[J
pproximation

If the pixel is not exactly on the line, the choice
between any two pixels is made by determining
whether the point that lies between them

is above or below the actual line.

Figure 3-2. Bresenham’s line-drawing algorithm.

calculates a decision variable based on the formula 2 * b+a, where ais the longest
interval and b the shortest. Finally, it uses 2 * b for nondiagonal movement and 2 *
b - 2* afor the diagonal step.

line: Algorithm

1. Set up appropriate variables for the routine. Mve xstart to x and ystart
toy.

2. Subtract xstart from xend.

If the result is positive, make xstep_diag 1 and store the result in
x dif.

If the result is negative, neke xstep_diag -1 and two's-conpl ement the

101

NUMERICAL METHODS

result before storing it in x_dif.
3. Subtract ystart from yend.

If the result is positive, nmake ystep_diag 1 and store the result in
y_dif.

If the result is negative, neke ystep_diag -1 and two's-conpl ement the
result before storing it in y_dif.

4. Conpare x_dif with y_dif.

If x_dif is smaller, swap x_dif and y_dif, clear xstep, and store the
value of ystep_diag in ystep.

If x_dif is larger, clear ystep and store the value of xstep_diag in
xst ep.

5. Call your routine for putting a pixel on the screen.
6. Test decision.

If it's negative, add xstep to x, ystep to y, and inc to decision, then
continue at step 7.

If it's positive, add xstep_diag to x, ystep_diag to y, and diag_inc to
decision, then go to step 7.

7. Decrement x dif.
If it's not zero, go to step 5.
If it is, we're done.

line: Listing
ckkkkk

line proc wuses bx cx dx si di, xstart:word, ystart:word, xend:word, yend:word

| ocal x:word, y:word, decision:word, x_dif:word, y_dif:word,
xst ep_di ag: wor d,
ystep_diag:word, xstep:word, ystep:word, diag_incr:word, incr:word

nmov ax, word ptr xstart
mv word ptr x, ax cinitialize local variables
nov ax, word ptr ystart
nov word ptr y, ax
direction:
nmov ax, word ptr xend
sub ax, word ptr xstart ;total x distance
jns large_x ;which direction are we drawing?

102

neg
nmov
jmp

large_x
nmov

store xdif

nmv

nmov
sub
jns
neg
nmov
jmp
large_y:
nmov

store ydif

mv

octant:

bi gger x:

nov
sub
nov
setup inc:
nov
shl
nov

ax

word ptr xstep_diag, -

short store xdif
word ptr xstep_diag
x dif, ax

ax, word ptr yend

ax, word ptr ystart

large_y
ax

word ptr ystep_diag, -

short store ydif
word ptr ystep_diag

word ptr y dif, ax

ax, word ptr x dif
bx, word ptr y-dif
ax, bx

bi gger x

y_dif, ax
x dif, bx

ax, ax
word ptr xstep, ax

ax, word ptr ystep_diag

word ptr ystep, ax
setup inc

ax, word ptr xstep_diag

word ptr xstep, ax
ax, ax
word ptr ystep, ax

ax, word ptr y dif
ax, 1
word ptr incr, ax

REAL NUMBERS

;went negative

;y distance

;which direction?

;direction is determned by signs

;the axis with greater difference
; becomes our reference

;we have a higger y move
‘than x

;X won't change on nondi agona
;steps, y changes every step

;X changes every step
;y changes only
;on diagonal steps

;calculate decision variable

; nondi agonal i ncrement
;=2 r y dif

103

NUMERICAL METHODS

sub ax, word ptr x_dif

mv word ptr decision, ax cdecision variable
o= 2%y dif - x dif

sub ax, word ptr x_dif

nmov word ptr diag incr, ax ; di agonal i ncrement
;o= 2%y dif - 2% x dif

mv ax, word ptr decision cwe will doit all in
;the registers

nov bx, word ptr x

mv cx, word ptr x_dif

nov dx, word ptr vy

l'ine Ioop:

; Put your routine for turning on pixels here. Be sure to push ax, cx, dx,

; and bx before destroying them they are used here. The value for the x
; coordinate is in bx, and the value for the y coordinate is in dx.

or ax, ax
jns dpositive
;calculate new position and
add bx, word ptr xstep ;update the decision variable
add dx, word ptr ystep
add ax, incr
inp short chk | oop
dposi tive:
add bx, word ptr xstep_diag
add dx, word ptr ystep_diag
add ax, word ptr diag incr
chk_| oop:
| oop line |oop
ret
line endp

When fixed-point operands become very large, it sometimes becomes necessary
to find aternate ways to perfom arithmetic. Multiplication isn’t such a problem; if
it exists as a hardware instruction on the processor you are using, it isusually faster
than division and is easily extended.

Division is not so straightforward. When the divisors grow larger than the size
alowed by any hardware instructions available, the programmer must resort to other

104

REAL NUMBERS

methods of division, such as CDIV (described in Chapter 2), linear polation (used in
the floating-point routines), or one of the two routines presented in the following
pages involving Newton-Raphson approximation and iterative multiplication. The
first two will produce a quotient and a remainder, the last two return with a fixed point
real number. Choose the one that best fits the application.® *

Division by Inversion

A root of an equation exists whenever f(x)=0. Rewriting an equation so that
f(X)=0 makes it possible to find the value of an unknown by a process known as
Newton-Raphson Iteration. This isn't the only method for finding roots of equations
and isn't perfect, but, given a reasonably close estimate and a well behaved function,
the results are predictable and correct for a prescribed error.

Look at Figure 3-3. The concept is ssimple enough: Given an initial estimate of
apoint on the x axis where a function crosses, you can arrive at a better estimate by
evaluating the function at that point, f(x,), and its first derivative of f(x,) for the sope
of the curve at that point. Following aline tangent to f(x,) to the x axis produces an
improved estimate. This process can be iterated until the estimate is within the
allowed error.

The dope of aline is determined by dividing the change in the y axis by the
corresponding change in the x axis: dy/dx. In the figure, dy is given by f(x,), the
distance from the x axis at X, to the curve, and dx by (x;- Xy), which results in

f (xo) = f(Xo)/! (Xi-Xp)
Solving for x, gives
Xi= Xo - f (%) /" (Xo)
Subgtituting the new x, for X, each time the eguation is solved will cause the
estimate to close in on the root very quickly, doubling the number of correct

significant bits with each pass.
To using this method to find the inverse of a number, divisor, requires that the

105

NUMERICAL METHODS

Slope of tangent line =

f ()= Ll

f(xo)

e

I
I
I
I
I
I
I
+ X

X1 Xo
L Initial estimate

Improved estimate

Figure 3-3. Newton-Raphson iteration.

equation be formulated as aroot. A simple equation for such a purpose is
f(x) = 1/x - divisor
From there, it's a short step to
x = 1/ di vi sor

Now the equation for finding the root becomes an equation for finding the
inverse of a number:

X1, =((1/ x) - di visor)/(-1/ divisor?)

106

REAL NUMBERS

which simplifies to:
Xnew = Xold * (2 - di vi sor (X)old)

In his book Digital Computer Arithmetic, Joseph Cavanagh suggests that this
equation be simplified even further to eliminate the divisor from the iterative process
and use two equations instead of one. He makes the term divisor(x) equa to one
caled unity (because it will close in on one) in this routine, which reduces the
equation to:

Xnew™ Xold * (2 - unity)

Multiplying both sides of this equation by the divisor, divisor, and substituting
again for his equality, divisor(x) = unity, he generates another equation to produce
new values for unity without referring to the original divisor:

(divisor (X))pew = (divisor (X))ogq * (2 - unity)=
unity o= unity o4 (2 - unity)

This breaks the process down to just two multiplies and a two’'s complement.
When these two equations are used together in each iteration, the algorithm will
compute the inverse to an input argument very quickly.

To begin, there must be an initial estimate of the reciprocal. For speed, this can
be computed with a hardware instruction or derived from a table if no such
ingtruction exists on your processor. Multiply the initia estimate by the divisor to get
the first unity. Then, the two eguations are evaluated as a unit, first generating a new
divisor and then a new unity, until the desired precision is reached.

The next routine expects the input divisor to be a value with the radix point
between the doublewords of a quadword, fixed-point number. The routine finds the
most significant word of the divisor, then computes and saves the number of shifts
required to normalize the divisor at that point-that is, position the divisor so that its
most significant one is the bit just to the right of the implied radix point: .1XXX...

107

NUMERICAL METHODS

For example, the number 5 is

101. 000B
1 radi x point
Normalized, it is:
000. 101B
1+ radi x poi nt

After that, the actual divisor is normalized within the divisor variable as if the

radix point were between the third and fourth words. Since the greatest number
proportion or divisor will see istwo or less, there is no danger of losing significant

hits.

Placing the radix point there also allows for greater precision.
Instead of subtracting the new proportion from two, as in the equation, we two's

complementproportion and the most significant word is ANDed with 1H to simulate
a subtraction from two. This removes the sign bits generated by the two’s comple-
ment and leaves an integer value of one plus the fraction hits.

Finaly, the reciprocal is realigned based on aradix point between the doublewords
as the fixed-point format dictates, and multiplied by the dividend.

divnewt: Algorithm

1.

108

Set the loop counter,lp, for three passes. This is a reasonabl e nunber
since the first estimate is 16-bits. Check the dividend and the divisor
for zero.

If no such error conditions exist, continue with step 2,
QO herwise, go to step 10.
Find the nost significant word of the divisor.

Determ ne whether it is above or below the fixed-point radix point.
In this case, the radix point is between the doubl ewords.

Test to see if it is already normalized.
If so, go to step 5.

Shift a copy of the nost significant word of the divisor left or right
until it is nornalized, counting the shifts as you proceed.

Shift the actual divisor until its nost significant one is the MSB of

REAL NUMBERS

the third word of the divisor. This is to provide maxi num precision for
the operation.

Di vide 10000000H by the most significant word of the divisor for a first
approximation of the reciprocal. The greater the precision of this first
estimate, the fewer passes will be required in the algorithm (the result
of this division will be between one and two.)

Shift the result of this division left one hex digit, four bits, to align

it as an integer with a three-word fraction part. This initial estimte
is stored in the divisor variable.

Divide this first estimate by two to obtain the proportionality variable,
proporti on.

Perform a two's conplement on proportion to sinulate subtracting it from
two. Miltiply proportion by divisor. Leave the result in divisor.

Mul tiply proportion by the estimate, storing the results in both
proportion and estinmate. Decrenent |p.

If it isn't zero, continue with step 6.
Ot herwise, go to step 8.

Using the shift counter, shift, reposition divisor for the final
mul tiplication.

Mul tiply divisor, now the reciprocal of the input argument, by the

dividend to obtain the quotient. Wite the proper nunber of words to the
ouput and exit.

10. An attenpt was made to divide zero or divide by zero; exit with error.

divnewt: Listing

vokkk kK
1

;divnewt- division by Raphson-Newton zeros approxination

f‘JivneWt proc uses bx cx dx di si, dividend:qword, divisor:qword,
quotient:word

| ocal tenp[8]:word, proportion:qword, shift:byte, qtnt_adjust:byte,
| p:byte, tnp:qword, unity:qword

cld ; upwar d

sub CX, CX

109

NUMERICAL METHODS

nmov byte ptr Ip, 3
nov gtnt _adj ust, cl
or cx, word ptr dividend[O
or cx, word ptr dividend[2]
or cx, word ptr dividend[4]
or cx, word ptr dividend[6]
je ovrflw
sub CX, CX
or cxr word ptr divisor [
or cx, word ptr divisor [2]
or cx, word ptr divisor [4]
or cx, word ptr divisor [6]
je ovrflw
sub ax, ax
nov bx, 8

find_msb
| ea di, word ptr divisor
dec bx
dec bx
cnp word ptr [di] [bx], ax
je find_nsb
nov byte ptr gtnt_adjust, b
nmv ax, word ptr [di][bx]
sub CX, CX
cnp bx, 2h
ib shift_left
ja shift_right
test word ptr [di][bx], 8000h
jne norm dvsr

shift_left
dec X
shl ax, 1
test ah, 80h
jne save_shift
jmp shift_ left

normal i ze

shift_right
inc CcX
shr ax, 1
or ax, ax

110

;should only take three passes

:zero dividend

:zero divisor

:look for MSB of divisor

;di is pointing at divisor

;get nmost significant word
;save shifts here
;see if already normalized

:nornal i zed?
;it's already there

;count the nunber of shifts to

je
jm

save shift:

nov
sub

shift back:

cnp
je

shr
rer

rcr
rcr

jmp

norm dvsr:

test
jne
shl
rcl
rcl

jmp

make first:

correct

nov
sub
nmov

div
sub

dvsr:
shl

rel
| oop

nov
sub

nov
shr

save-shift
shift right

byte ptr shift, cl
ax, ax

word ptr [di][6],

nor m dvsr
wordptr [di][6],
word ptr [di][4],
word ptr [di][2],
word ptr [di] [O],
shift back

Y

Q
>

word ptr [di][4], 8000h

meke _first
word ptr [di][Q,
word ptr [di][2],
word ptr [di][4],
norm dvsr

[

dx, 1000h
ax, ax
bx, word ptr [di][4]

bx

dx, dx
cx, 4

ax, 1

dx, 1

correct _dvsr

word ptr divisor[4],
word ptr divisor[6],
CX, CX

word ptr divisor[2],
word ptr divisor[0],
dx 1

ax
dx

CcX
CcX

REAL NUMBERS

;count the nunber of shifts to
;normalize

;we will put radix point
;at word three

;the divisor

;truly normalized

;for maxi mum

;this should nornalize divisor

;first approximtion
;could come froma table

;keep only the four least bits

;don't want to waste time with
;a big shift

;don't want to waste tine

111

NUMERICAL METHODS

rer ax, 1
ml bx

shl ax, 1
rel dx, 1
nmv word ptr
sub CX, CX
nmv word ptr
nmv word ptr
nmv word ptr

makeproportion:

nmov word ptr proportion[4], dx
sub ax, ax
nmov word ptr proportion[6], ax
nmv word ptr proportion[2], ax
nmv word ptr proportion, ax
invert _proportion:
not word ptr proportion[6]
not word ptr proportion[4]
not word ptr proportion[2]
neg word ptr proportion
jc m oop
add word ptr proportion[2], 1
adc word ptr proportion[4], O
adc word ptr proportion[6], O
n oop:
and word ptr proportion[6], 1
i nvoke mul64, proportion, divisor,
lea si, word ptr tenp[6]
lea di, word ptr divisor
nmv cx, 4
rep nmovsw
i nvoke mul64, proportion, unity,
lea si, word ptr tenp[6]

112

unity[4], dx
unity[6], cx
unity[2], cx
unity, cx

;wWith a big shift

;reconstruct for first attenpt
;don't want to waste tine
;wWith a big shift

;this could be done with
;a table

;attenpt to develop with
;2's conpl ement

;make it look like it was
;subtracted from 2

addr tenp

addr tenp

| ea
rep mvsw

| ea

| ea

rep nmvsw

dec

ovrflw

rep stosw
j m

divnewt shift:

| ea
nov
or
IB
gtnt_right:
nov
sub
nov
sub
jm
gtnt_left:
neg
sub
add
qtlft:
shl
rcl
rcl
rcl
| oop

divnewt _mult:

di, word ptr unity
cx, 4

si, word ptr tenp[6]
di, word ptr proportion
cx, 4

byte ptr Ip
di vnewt _shift
invert_proportion

ax, ax

ax

cx, 4

di, word ptr quotient

di vnewt exit
di, word ptr divisor

cl, byte ptr shift
cl, cl

gtnt_left
ch, 10h
ch, cl
cl, ch
ch, ch
qtlft

c

ch, ch
cl, 10h

word ptr [dil[Q,
word ptr [di][2],
word ptr [dil[4],
word ptr [di][6],
qtlft

A

REAL NUMBERS

;Six passes for 64 bits

;mke infinite answer

;get shift count

;positive, shift left

;we Want to take it to the MSB

;mul tiply reciprocal by dividend

113

NUMERICAL METHODS

sub ax, ax ;see that tenp is clear
nmov cx, 8
| ea di, word ptr tenmp
rep st osw
i nvoke mul 64, dividend, divisor, addr tenp
nov bx, 4 ;adjust for nmagnitude of result
add bl, byte ptr qtnt_adjust
nov di, word ptr quotient
lea si, word ptr tenp
add si, bx
cnp bl, Oah
jae wite zero
myv cx, 4
rep mvsw
inp di vnewt exit
wite_zero:
nmov cx, 3
rep novsw
sub ax, ax
stosw
divnewt _exit:
popf
ret
divnewt endp

Division by Multiplication

If the denominator and numerator of a fraction are multiplied by the same factor,
the ratio does not change. If afactor could be found, such that multiplying it by the
denominator causes the denominator to approach one, then multiplying the numera-
tor by the same factor must cause that numerator to approach the quotient of the ratio
or simply the result of the division.

In this procedure, as in the last, you normalize the divisor, or numerator-that
is, shift it so that its most significant one is to the immediate right of the radix point,
creating a number-such that .5 > number < 1. To keep the ratio between the
denominator and numerator equal to the original fraction, perform the same number
of shifts, in the same direction, on the dividend or numerator.

Next, express the divisor, which is equal to or greater than one half and less than
one, as one minus some offset:

114

REAL NUMBERS

divisor = |- offset

To bring this number, 1- offset, closer to one, choose another number by which

to multiply it which will retain its original value and increase it by the offset, such
as:

multiplier = 1 + offset.
To derive the first attempt, multiply this multiplier by the divisor:
multiplier * divisor = (1 - offset) * (1 + offset) = 1 - offset?
followed by
(1 + offset) * dividend

As you can see, the result of this single multiplication has brought the divisor
closer to one (and the dividend closer to the quotient). For the next iteration, 1 - offset®
is multiplied by 1 + offset® (with a similar multiplication to the dividend). The result
is 1 - offset*, which is closer till to one. Each following iteration of 1 - offset” is
multiplied by 1 + offset” (with that same 1 + offset” multiplying the dividend) until
the divisor is one, or amost one, which is .11111111...B to the word size of the
machine you're working on. Since the same operation was performed on both the
dividend and the divisor, the ratio did not change and you need not realign the
quotient.

To illugtrate, let’s look a how this procedure works on the decimal division
12345/1222. Remember that a bit isadigit in binary. Normalizing the denominator
in the discussion above required shifting it so that its most significant one was to the
immediate right of the radix point. The same thing must be done to the denominator
in the decimal fraction 12345/1222D; 1222D becomes .9776D, and performing the
same number of shifts (in the same direction) on the numerator, 12345, yields
9.8760D. Since the divisor (.9976D) is equal to 1 - .0224, make the first multiplier

115

NUMERICAL METHODS

equal to 1 +.0224 and multiply divisor * (1. + .0224) = .99949824D. Y ou then take
9.8760D, the dividend, times (1. + .0224) to get 10.0972224D. On the next iteration,
the multiplier is (1 + .0224?), or 1.000501760D, which multiplied by the denomina-
tor is .999999748D and by the numerator is 10.10228878D. Finally, multiplying
.999999748D by (1 + .0224" produces a denominator of .999999999D, and (1 +
.0224% times 10.10228878D equals 10.10229133D, our quotient. The next routine
illustrates one implementation of this idea.

clivmul: Algorithm

1. Set pass counter, |Ip, for 6, enough for a 64-bit result. Check both
operands for zero,

If either is zero, go to step 10.
Qtherwi se continue with step 2.

2. Find the nost significant word of divisor, and see whether it is above
or bel ow the radix point,

If it's below, nornalization is to the left; go to step 3a.
If it's above, nornmalization is to the right; go to step 3b.
If it's right there, see whether it's already normalized.

if so, skip to step 4.

Qtherwi se, continue with step 3a.

3. a) Shift a copy of the nost significant word of the divisor left until
the MSB is one, counting the shifts as you go. Continue with step 4.

b) Shift a copy of the nost significant word of the divisor right until
it is zero, counting the shifts as you go. Continue with step 4.

4, Shift the actual divisor so that the MSB of the nost significant word
is one.

5. Shift the dividend right or left the same nunber of bits as cal cul ated

in step 3. This keeps the ratio between the dividend and the divisor the
sane.

6. Ofset = 1 - nornalized divisor.

7. Miltiply the offset by the divisor, saving the result in a tenporary
register. Add the divisor to the tenporary register to sinulate the
multiplication of 1 + offset by the divisor. Wite the tenporary
register to the divisor.

8. Miltiply the offset by the dividend, saving the result in a tenporary

116

REAL NUMBERS

sinulate the nultiplication of 1 + offset by the dividend. Wite the
temporary register to the divisor.

9. Decrement 1p,

If it's not yet zero, go to step 6.

Ot herwise, the current dividend is the quotient; exit.
10. Overflow exit, leave with an error condition.

divmul: Listing
;diviul -division by iterative multiplication
; Underflow and overflow are determined by shifting. If the dividend shifts out on

;any attenpt to normalize, then we have "flowed" in whichever direction it
;shifted out.

ai vmul proc uses bx cx dx di si, dividend:qword, divisor:gword, guotient:word

| ocal tenp[8]:word, dvdnd:qword, dvsr:qword, delta:quord,

di vmsb: byt e,
| p:byte, tnp:qword

cld ; upwar d

sub CX, CX

nov byte ptr Ip, 6 ;should only take six passes

lea di, word ptr dvdnd ;check for zero

nov ax, word ptr dividend[Q

nmv dx, word ptr dividend[2]

or CX, ax

or cx, dx

mv word ptr [di][0], ax

mov word ptr [di][2], dx

nmv ax, word ptr dividend[4]

nov dx, word ptr dividend[6]

nmv word ptr [di][4], ax

mv word ptr [di][6], dx

or CX, ax

or cx, dx

je ovrflw :zero dividend

sub CX, CX

| ea di, word ptr dvsr :check for zero

nov ax, word ptr divisor[0]

nmov dx, word ptr divisor[2]

117

NUMERICAL METHODS

or CX, ax

or cx, dx

nov word ptr [dil[0], ax

nov word ptr [di] [2], dx

nov ax, word ptr divisor[4]

nov dx, word ptr divisor[6]

nov word ptr [di][4], ax

nov word ptr [di][6], dx

or CX, ax

or cx, dx

je ovrflw :zero divisor

sub ax, ax

nov bx, 8
find_MBB: :look for MSB of divisor

dec bx

dec bx

cp word ptr [di] [bx], ax ;di is pointing at dvsr

je find nsb

nov ax, word ptr [di] [bx] ;get MW

sub CX, CX ;save shifts here

cnp bx, 2h ;see if already

;nornal i zed

ib shift left

ja shift right

test word ptr [di][bxl, 8000h ; nor mal i zed?

jne norm dvsr ;it's already there
shift_left:

dec CX

shl ax, 1

test ah, 80h

jne nor m dvsr

inp shift_left ;count the number of

;shifts to normalize

shift_right:

inc X

shr ax, 1

or ax, ax

je nor m dvsr

inp shift_right ;count the nunber of shifts

:to normalize

118

norm dvsr:
test
jne
shl
rcl
rcl
rcl

jm
norm dvdnd:
cnp

j be

add

jmp
chk_2:

cnp

jae

sub

ready_dvdnd:
| ea
or
je
or
jns
neg
sub
jmp

do_dvdnd_ri ght:
shr
rer

useabl e information

rer

rer

| oop

sub

or

or

or

or

REAL NUMBERS

word ptr [di][6], 8000h

norm dvdnd ;we want to keep

word ptr [di][O], 1 ;the divisor

word ptr [di] [2], 1 ;truly normalized

word ptr [di] [4], 1 ;for maximum

word ptr [di] [6], 1 ; preci sion

nor m dvsr :this should normalize dvsr

bl, 4h ;bx still contains pointer
(to dvsr

chk 2

cl, 10h ;adjust for word

ready_dvdnd

bl, 2h

ready_dvdnd

cl, 10h ;adjusting again for size
cof shift

di, word ptr dvdnd

cl, cl

makedel t a ;no adjustment necessary

cl, cl

do_dvdnd_ri ght

cl

ch, ch

do_dvdnd_l eft

word ptr [di][6], 1 ;no error on underflow

word ptr [di][4], 1 ;unless it becones zero,
;there may still be some

word ptr [di][2], 1

word ptr [di] [0], 1

do_dvdnd_ri ght ;this should normalize dvsr

ax, ax

ax, word ptr [di][6]
ax, word ptr [di][4]
ax, word ptr [di][2]
ax, word ptr [di][0]

119

NUMERICAL METHODS

jne setup
nmv di, word ptr quotient
myv cx, 4
rep stosw
jm divmul exit (if it is now a zero,

;that is the result

do_dvdnd_| eft

shl word ptr [di] [0], 1
rel word ptr [di][2], 1
rel word ptr [di][4], 1
rel word ptr [di][6], 1
ic ovrflw ;significant bits
;shifted out
;data unusable
| oop do dvdnd_| eft ;this should normalize dvsr
setup:
nmov si, di
mv di, word ptr quotient
nmov cx, 4
rep nmovsw ;put shifted dividend
;into quotient
makedel ta: ;this could be done with
;a table
lea si, word ptr dvsr
lea di, word ptr delta
nmov cx, 4
rep movsw ;move normalized dvsr
;into delta
not word ptr delta[6]
not word ptr delta[4]
not word ptr delta[2]
neg word ptr delta ;attenpt to develop with
;2's conpl ement
jc m oop
add word ptr delta[2], 1
adc word ptr delta[4], O
adc word ptr delta[6], O
n oop:
i nvoke mul64, delta, dvsr, addr tenp

120

REAL NUMBERS

| ea si, word ptr tenp[8§]
| ea di, word ptr tnp
mv cx, 4

rep movsw

i nvoke add64, tnp, dvsr, addr dvsr
| ea di, word ptr divisor
nov si, word ptr quotient
mv cx, 4
rep nmovsw
i nvoke mul64, delta, divisor, addr tenp
sub ax, ax
cnp word ptr tenp[6], 8000h ;an attenpt to round
ib no_round ;.5 or above rounds up
add word ptr tenp[8], 1
adc word ptr temp[l0], ax
adc word ptr temp[l2], ax
adc word ptr tenp[l4], ax
no_round:
| ea si, word ptr tenp[8§]
lea di, word ptr tnp ; doubl e duty
mv cx, 4
rep novsw
i nvoke add64, divisor, tnp, quotient
dec byte ptr Ip
je di viul _exi t
jmp makedel t a ;six passes for 64 bits
ovrflw
sub ax, ax
not ax
mv cx, 4
nov di, word ptr quotient
rep st osw ;make infinite answer
jmp divmul exit
divmul _exit:
popf
ret
di vl endp

121

NUMERICAL METHODS

122

Van Aken, Jerry, and Ray Simar. A Conic Spline Algorithm. Texas Instruments,
1988.

Van Aken, Jerry, and Carrel Killebrew Jr. The Bresenham Line Algorithm.
Texas Instruments, 1988.

Cavanagh, Joseph J. F. Digital Computer Arithmetic. New York, NY: McGraw-
HillBook Co., 1984, Pages 278-284. Also see Knuth, D. E. Seminumerical
Algorithms. Reading, MA: Addison-Wesley Publishing Co., 1981, Pages.
295-297.

Cavanagh, Joseph J. F. Digital Computer Arithmetic. New York, NY: McGraw-
HillBook Co., 1984, Pages 284-289.

CHAPTER 4

Floating-Point Arithmetic

Floating-point libraries and packages offer the software engineer a number of
advantages. One of these is a complete set of transcendental functions, logarithms,
powers, and square-root and modular functions. These routines handle the decimal-
point placement and housekeeping associated with arithmetic and even provide
some rudimentary handles for numerical exceptions.

For the range of representable values, the IEEE 754 standard format is compact
and efficient. A single-precision real requires only 32 bits and will handle adecimal
range of 10% to 10%, while a double-precision float needs only 64 bits and has a range
of 10*® to 10 *®. Fixed-point representations of the same ranges can require a great
deal more storage.

This system of handling rea numbers is compact yet has an extremely wide
dynamic range, and it's standardized so that it can be used for interapplication
communication, storage, and calculation. It is slower than fixed point, but if a math
coprocessor is available or the application doesn’t demand speed, it can be the most
satisfactory answer to arithmetic problems.

The advantages of floating point do come with some problems. Floating-point
libraries handle so much for the programmer, quietly and automatically generating
8 to 15 decimal digits in response to input arguments, that it's easy to forget that those
digits may be in error. After al, floating point is just fixed point wrapped up with an
exponent and a sign; it has al the proclivities of fixed point to produce erroneous
results due to rounding, loss of significance, or inexact representation. But that’s true
of any form of finite expression-precautions must aways be taken to avoid errors.
Floating-point arithmetic is still a valuable tool, and you can use it safely if you
understand the limitations of arithmetic in general and of floating-point format, in
particular.

123

NUMERICAL METHODS

What To Expect

Do you know what kind of accuracy your application needs? What is the

accuracy of your input? Do you require only dlide rule accuracy for fast plotting to
screen? Or do you need the greatest possible accuracy and precision for iterative or
nonlinear calculation?

These are important questions, and their answers can make the difference

between calculations that succeed and those that fail. Here are a few things to keep
in mind when using floating-point arithmetic.

124

No mathematical operation produces a result more accurate than its weakest
input. It's fine to see a string of numbers following a decimal point, but if that's
the result of multiplying pi by a number accurate to two decimal places, you have
two decimal places of accuracy at best.

Floating point suffers from some of the very conveniences it offers the devel-
oper. Though most floating-point libraries use some form of extended precision,
that's still a finite number of significant bits and may not be enough to represent
the input to or result of a calculation. In an iterative loop, you can lose a bit more
precision each time through an operation, this is especialy true of subtraction.

Floating point’s ability to cover a wide range of values also leads to inaccuracies.
Again, thisis because the number of significant bitsisfinite: 24 for a short real
and 53 for along real. That means a short real can only represent 2°° possible
combinations for every power of two.

To get the greatest possible precision into the double- and quadword formats of
the short and long real, the integer 1 that must always exist in a number coerced
to a value between 1.0 and 2.0 is omitted. This is called the hidden bit, and using
its location for the LSB of the exponent byte allows an extra bit of precision. Both
single and double-precision formats include the hidden hit.

Between 2'(2D) and 2° (4D), 2* individual numbers are available in a short real.
That leaves room for two cardinals (counting numbers, such as 1, 2, and 3) and
a host of fractions-not an infinite number, as the number line allows, but still
quite a few. These powers of two increase (1, 2, 4, 8...) and decrease (.5, .25,
.125...), but the number of significant bits remains the same (except for denormal

FLOATING-POINT ARITHMETIC

arithmetic); each power of two can only provide 2* individual numbers. This
means that between two consecutive powers of two, such as 2% and 2%, on the
number line are 4,294,967,296 whole numbers and an infinite number of
fractions thereof. However, a single-precision float will only represent 2%
unique values. So what happens if your result isn't one of those numbers? It
becomes one of those that 23 bits can represent.

Around 0.0 is a band that floating-point packages and coprocessors handle
differently. The smallest legal short real has an exponent of 2-'°. The significand
is zero, with only the implied one remaining (the hidden bit). That still leaves
8,388,607 numbers known as denormals to absolute zero. As the magnitude of
these numbers decreases from 2% to 27, theimplied one is gone and a hit of
precision islost for every power of two until the entire significand is zero. This
is described in the IEEE 854 specification as “gradual underflow” and isn't
supported by all processors and packages. Use caution when using denormals;
multiplication with them can result in so little significance that it may not be
worth continuing, and division can blow up.

It's easy to lose significance with floating-point arithmetic, and the biggest
offender is subtraction. Subtracting two numbers that are close in value can
remove most of the significance from your result, perhaps rendering your result
meaningless as well. The lost information can be estimated according to the
formula Sgnificance lost = -In(1 -minuend/subtrahend)/In(2), but this is of
little value after the loss.’

Assume for a moment that you're using a floating-point format with seven
significant decimal digits (a short real). If you subtract. 1234567 from .1234000,
the result is -5.67E-5. You have lost four decimal digits of significance.
Instances of such loss are common in function calls involving transcendentals,
where the operands are between 0.0 and 1.0.

This loss of significance can occur in other settings as well, such as those that
involve modularity. Sines and cosines have a modularity based on /2 or 90
degrees. Assuming a computation of harmonic displacement, x = L sin(ct), if wt
gets very large, which can happen if we are dealing with a high enough frequency

125

NUMERICAL METHODS

126

or along enough time, very little significance will be left for calculating the sine.
The equation x = L sinmt), m=2xf,, with f being frequency and t being time, will
calculate the angular displacement of areference on asinusoid in a given period
of time. If the frequency of the sinusoid is 10 MHz and the time is 60 seconds,
theresult isan ot of 3769911184.31. If this is expressed as a short rea without
extended precision, however, we'll have only enough bits to express the eight
most significant digits (3.769911I1E9). The very information necessary to
compute the sine and quadrant is truncated. The sine of 3769911184.31 is
2.24811195116E-3, and the sine of 3.769911IE9 is-.492752198651. Comput-
ing with long reals will help, but it’s limited to 15 decimal digits.

The normal associative laws of addition and multiplication don't always
function as expected with floating point. The associative law states:

(A+B)+C = A+(B+Q)
Look at the following seven-digit example of floating point:

(7.654321 + (-1234567)) + 1234568 =
-1234559 + 1234568 =
9
while

7.654321 + (-1234567 + 1234568) =
7.654321 + 1 =
8. 654321

Note that the results aren’t the same. Of course, using double-precision argu-
ments will minimize such problems, but it won't eliminate them. The number of
significant bits available in each precision heavily affects the accuracy of what
you're representing.

It is hard to find any true equalities in floating-point arithmetic. It's nearly
impossible to find any exactitudes, without which there can be no equalities. D.
E. Knuth suggested a new set of symbols for floating point.” These symbols were

FLOATING-POINT ARITHMETIC

“round” (because the arithmetic was only approximate) and included a round
plus, a round minus, a round multiply, and a round divide. Following from that
set was a floating-point compare that assessed the relative vaues of the numbers.
These operations included conditions in which one number was definitely less
than, approximately equal to, or definitely greater than another.

Most floating-point packages compare the arguments exactly. This usualy
works in greater-than/less-than situations, depending on the amount of signifi-
cance left in the number, but almost never works in equal-to comparisons.

What this means is that the results of a computation depend on the precision and
range of the input and the kind of arithmetic performed. When you prepare
operations and operands, make sure the precision you choose is appropriate.

Though single-precision arguments will be used in this discussion, the same
problems exist in double precision.

A Small Floating-Point Package

The ability to perform floating-point arithmetic is a big advantage. Without a
coprocessor to accelerate the calculations it may never equal fixed points for speed,
but the automatic scaling, convenient storage, standardized format, and the math
routines are nice to have at your fingertips. Unfortunately, even in systems where
speed isn't aproblem, code size can make the inclusion of a complete floating-point
package impossible.

Your system may not require double-precision support-it might not need the
trigonometric or power functions—but could benefit from the ability to input and
process real-world numbers that fixed point can’'t handle comfortably. Unfortu-
nately, most packages are like black boxes that require the entire library or nothing;
this is especialy true of the more exotic processors that have little third-party
support. It's hard to justify an entire package when only a few routines are necessary.
At times like this, you might consider developing your own.

The rest of this chapter introduces the four basic arithmetic operations in floating
point. The routines do not conform to IEEE 754 in al ways-most notably the
numeric exceptions, many of which are a bit dubious in an embedded application—

127

NUMERICAL METHODS

but they do deliver the necessary accuracy and resolution and show the inner
workings of floating point. With the routines presented later in the book, they're dso
the basis for a more complete library that can be tailored to the system designer’s
needs.

The following procedures are single-precision (short real) floating-point rou-
tines written in 80x86 assembler, small model, with step-by-step pseudocode so you
can adapt them to other processors.

Only the techniques of addition, subtraction, multiplication, and division will be
described in this chapter; refer to FPMATH.ASM for complementary and support
functions.

The Elements of a Floating-Point Number

To convert a standard fixed-point value to one of the two floating-point formats,
you must first normalize it; that is, force it through successive shifts to a number
between 1.0 and 2.0. (Note that this differs from the normalization described earlier
in the fixed-point routines, which involved coercing the number to a value greater
than or equa to one-half and less than one. This results in a representation that
consists of: a sign, a number in fixed-point notation between 1.0 and 2.0, and an
exponent representing the number of shifts required. Mathematically, this can be
expressed as’®

24
S E *x 2™
for-125 <exponent < 128 in single precision and

53
sign * Zexponent * f * 2—k

for -1,021< «xponent £ 1,024 in double precision.

128

FLOATING-POINT ARITHMETIC

Since the exponent is really the signed (int) log, of the number you're represent-
ing, only numbers greater than 2.0 or less than 1.0 have an exponent other than zero
and require any shifts a all. Very small numbers (less than one) must be normalized
using left shifts, while large numbers with or without fractional extensions reguire
right shifts. As the number is shifted to the right, the exponent is incremented; as the
number is shifted to the left, the exponent is decremented.

The |EEE 754 standard dictates that the exponent take a certain form for some
errors and for zero. For a Not a Number (NAN) and infinity, the exponent is al ones;
for zero, it is al zeros. For thisto be the case, the exponent is biased—127 bits for
single precision, 1023 for double precision.

Figure 4-I shows the components of a floating-point number: a single bit
representing the sign of the number (signed magnitude), an exponent (8 bits for
single precision and 11 bits for double precision, and a mantissa (23 bits for single
precision, 52 bits for double).

word [2] word @]
X xxxxxxxx\xxxxxxx' XXXXXXXXXXXXXXXX
Wl s mamamesaan |zamreierie suiziiee 8765 632 0
sign i '
o Efpg'rfzm MANTISSA
22 bit + "hidden" bit = 23 bits

if hidden bit were represented,
it would go here

word [6] word [4] word [2] word (@]
XX XXX XXXKXX | XXXXKXXXXKXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
62 5t o0 50 60 67 5 58 54 53 52 | 1 80 4348 47 48 5 44 43 42 1 2030 20 27 3 A5 22 3 20202 27 26 28 N 232271 H0 18 1B NP TSI 1IN 10D B T 63 45200
sign 11 bits ; '
9 Exponent MANTISSA
hidden bit

would go here

x = bit

Figure 4-1. Single and double-precision floating-point numbers.

129

NUMERICAL METHODS

Let'slook at an example of a single-precision float. The decimal number 14.92

has the following binary fixed-point representation (the decimal point is shown for
clarity):

1110.11101011100001010010

We need three right shifts to normalize it:

1.11011101011100001010010 x 2°

We add 127D to the exponent to make it 130D (127 + 3):

100000108

Because this is a positive number, the sign bit is O (the bit in parentheses is the hidden
bit):

0+10000010+(1) 1101110! Ol I 1 000O0I Ol 0Ol OB
or

416eb852H

The expression of the fractional part of the number depends on the precision
used. This example used 24 hits to conform to the number of bits in the single-
precision format. If the number had been converted from a 16-bit fixed-point word,
the single-precision version would be 416eb000H. Note the loss of significance.

Retrieving the fixed-point number from the float is simply a matter of extracting
the exponent, subtracting the bias, restoring the implied leading bit, and performing
the required number of shifts. The bandwidth of the single-precision float if fairly
high-approximately 3.8 db—so having a data type to handle this range would
require more than 256 bits. Therefore we need some restrictions on the size of the
fixed-point value to which we can legally convert. (For more information, refer to
Chapter 5.)

130

FLOATING-POINT ARITHMETIC

Extended Precision

If al floating-point computations were carried out in the precision dictated by
the format, calculations such as those required by a square-root routine, a polynomial
evaluation, or an infinite series could quickly lose accuracy. In some cases, the
results would be rendered meaningless. Therefore, IEEE 754 also specifies an
extended format for use in intermediate calculations.® This format increases both the
number of significant bits and the exponent size. Single-precision extended is
increased from 24 significant bits to at least 32, with the exponent increased to at least
11 bits. The number of significant bits for double precision can be greater than 79 and
the exponent equal to or greater than 15 bits.

This extended precision is invisible to users, who benefit from added accuracy
in their results. Those results are still in the standard single or double-precision
format, necessitating a set of core routines (using extended precision) that are
generally unavailable to the normal user. Another set of routines is needed to convert
standard format into extended format and back into standard format, with the results
rounded at the end of a calculation.

The routines described later in this chapter take two forms. Some were written,
for debugging purposes, to be caled by a higher-level language (C); they expect
single-precision input and return single-precision output. They simply convert to and
from single precision to extended format, passing and receiving arguments from the
core routines. These external routines have names that begin with fp_, such as
fp_mul. The core routines operate only with extended precision and have names
beginning with fl, such as fimul; these routines cannot be called from C.*

The extended-precision level in these routines uses a quadword for simple
parameter passing and offers at least a 32-bit significand. This simplifies the
translation from extended to standard format, but it affords less immunity to |oss of
significance at the extremes of the single precision floating range than would a
greater number of exponent bits. If your application requires a greater range, make
the exponent larger—15-hits is recommended-in the higher level routines before
passing the values to the core routines. This can actually simplify exponent handling
during intermediate calculations.

Use the core routines for as much of your work as you can; use the externd

131

NUMERICAL METHODS

routines when the standard format is needed by a higher-level language or for
communications with another device. An example of a routine, cylinder, that uses
these core routines to compute the volume of a cylinder appears in the module
FPMATH.ASM, and many more appear in TRANS.ASM.

The External Routines

This group includes the basic arithmetic procedures—fp_mul, fp_div, fp_add,
and fp_sub. Written as an interface to C, they pass arguments and pointers on the
stack and write the return values to static variables.

In fp_add, two single-precision floating-point numbers and a pointer to the result
arrive on the stack. Local variables of the correct precision are created for each of the
floats, and memory is reserved for the extended result of the core routines. A
quadword is reserved for each of the extended variables, including the return; the
single-precision float is written starting at the second word, leaving the least
significant word for any extended bits that result from intermediate calculations.

After the variables are cleared, the doubleword floats are written to them and the
core routine, fladd, is called. Upon return from fladd, the routine extracts the single-
precision float (part of the extended internal float) from the result variable, rounds
it, and writes it out with the pointer passed from the calling routine.

fp_add: Algorithm

1. Alocate and clear storage for three quadwords, one for each operand and
one for the extended-precision result.

2. Align the 32-bit operands within the extendedvariables so that the |east
significant byte is at the boundary of the second word.

3. Invoke the core addition routine with both operands and a pointer to the
quadword result.

4. Invoke the rounding routine with the result of the previous operation
and a pointer to that storage.

5. Pull the 32-bit float out of the extended variable, wite it to the static
variable, and return.

132

FLOATING-POINT ARITHMETIC

fp-add: Listing

Cokkkkk
'

fp_add proc wuses bx cx dx si di,
fp0:dword, fpl:dword, rptr:word

| ocal f1p0: qword, flpl:qword, result:qword
pushf
cld
xor ax, ax
| ea di,word ptr result
mv cX, 4
rep stosw
| ea di,word ptr flp0
mv cX, 4
rep stosw
| ea di,word ptr flpl ;clear variables for
:the core routine
nmov cx, 4
rep stosw
lea si,word ptr fp0
lea di,word ptr flp0[2]
mv CX, 2
rep novsw
lea si,word ptr fpl
| ea di,word ptr flpl[2] ;align the floats
:within the extended
;variabl es
nmov cxX, 2
rep novsw
i nvoke fladd, flp0, flpl, addr result :do the add
i nvoke round, result, addr result ;round the result
lea si, word ptr result[2] ;make it a standard float
mv di,rptr
nmov cX, 2
rep novsw
popf
ret
fp_add endp

133

NUMERICAL METHODS

This interface is consistent throughout the external routines. The prototypes for
these basic routines and fp_comp are:

fp_add proto ¢ fpO:dword, fpl:dword, rptr:word
fp_sub proto ¢ fpO:dword, fpl:dword, rptr:word
fp_mul proto ¢ fp0:dword, fpl:dword, rptr:word
fp_div proto ¢ fp0:dword, fpl:dword, rptr:word
fp_canmp proto c¢ fp:dword, fpl:dword

Fp_comp compares two floating-point values and returns aflag in AX specify-
ing whether fp0 is greater than fpl (1), equal to fpl (0), or less than fpl (-1). The
comparison assumes the number is rounded and does not include extended-precision
bits. (FPMATH.ASM contains the other support routines.)

The Core Routines

Because these routines must prepare the operands and pass their arguments to the
appropriate fixed-point functions, they’'re a bit more complex and require more
explanation. They disassemble the floating-point number, extract the exponent, and
align the radix points to allow a fixed-point operation to take place. They then take
the results of these calculations and reconstruct the float.

The basic arithmetic routines in this group include:

fl add proto flp0:gword, flpl:gword, rptr:word
-flp0 is addend0; flpl is addendl

flsub proto flp0:qword, flpl:qword, rptr:word
-flp0 is the mnuend; flpl is the subtrahend

f1 mul proto flp0:gword, flpl:gword, rptr:word
-flp0 is the nmultiplicand; flpl is the miltiplier

fldiv proto flp0:qword, flpl:qword, rptr:word
-flp0 is the dividend; flpl is the divisor

134

FLOATING-POINT ARITHMETIC

For pedagogical and portability reasons, these routines are consistent in terms of
how they prepare the data passed to them.
Briefly, each floating-point routine must do the following:

1. Set up any variables required for the arguments that are passed and for the
results of the current computations.

2. Check for initial errors and unusual conditions.
» Division:
divisor == zero: return divide by zero error
divisor == infinite: return zero
dividend == zero: return infinity error
dividend == infinite: return infinite
dividend == divisor: return one
+ Multiplication:
either operand == zero: return zero
either operand == infinite: return infinite
e Subtraction:
minuend == zero: do two's complement of subtrahend
subtrahend == zero: return minuend unchanged
operands cannot align: return largest with appropriate sign
« Addition:
either addend == zero: return the other addend unchanged
operands cannot align: return largest
3. Get the signs of the operands. These are especialy useful in determining what
action to take during addition and subtraction.

4. Extract the exponents, subtracting the bias. Perform whatever handling is
required by that procedure. Calculate the approximate exponent of the resuilt.

5. Get the mantissa
6. Align radix points for fixed-point routines.

135

NUMERICAL METHODS

7. Perform fixed-point arithmetic.

8. Check for initia conditions upon return. If a zero is returned, this is a shortcut
exit from the routine.

9. Renormalize, handling any underflow or overflow.
10. Reassert the sign.
11. Write the result and return.

Fitting These Routines to an Application

One of the primary purposes of the floating-point routines in this book is to
illustrate the inner workings of floating-point arithmetic; they are not assumed to be
the best fit for your system. In addition, al the routines are written as near calls. This
is adequate for many systems, but you may require far calls (which would reguire far
pointers for the arguments). The functions write their return values to static variables,
an undesireable action in multithreaded systems because these values can be
overwritten by another thread. Though the core routines use extended precision, the
exponents are not extended; if you choose to extend them, 15 bits are recommended.
This way, the exponent and sign bit can fit neatly within one word, allowing as many
as 49 hits of precision in a quadword format. The exceptions are not fully imple-
mented. If your system needs to detect situations in which the mathematica
operation results in something that cannot be interpreted as a number, such as
Signding or Quiet NANS, you will have to write that code. Many of the in-line utility
functions in the core and external routines may also be rewritten as stand aone
subroutines. Doing so can make handling of the numerics a bit more complex but will
reduce the size of the package.

These routines work well, but feel free to make any changes you wish to fit your
target. A program on the disk, MATH.C, may help you debug any modifications; |
used this technique to prepare the math routines for this book.

Addition and Subtraction: FLADD

Fladd, the core routine for addition and subtraction, is the longest and most
complex routine in FPMATH.ASM (and perhaps the most interesting). We'll use it

136

FLOATING-POINT ARITHMETIC

as an example, dissecting it into the prologue, the addition, and the epilogue.

The routine for addition can be used without penalty for subtraction because the
signin the |EEE 754 specification for floating point is signed magnitude. The MSB
of the short or long real is a 1 for negative and a O for positive. The higher-level
subtraction routine need only XOR the MSB of the subtrahend before passing the
parameters to fladd to make it a subtraction.

Addition differs from multiplication or division in at least two respects. First,
one operand may be so much smaller than the other that it will contribute no
significance to the result. It can save steps to detect this condition early in the
operation. Second, addition can occur anywhere in four quadrants: both operands
can be positive or both negative, the summend can be negative, or the addend can be
negative.

The first problem is resolved by comparing the difference in the exponents of the
two operands against the number of significant bits available. Since these routines
use 40 hits of precision, including extended precision, the difference between the
exponents can be no greater than 40. Otherwise no overlap will occur and the answer
will be the greater of the two operands no matter what. (Imagine adding .00000001
to 100.0 and expressing the result in eight decimal digits). Therefore, if the difference
between the exponentsis greater than 40, the larger of the two numbersis the result
and the routine is exited at that point. If the difference is less than 40, the smaller
operand is shifted until the exponents of both operands are equal.

If the larger of the two numbers is known, the problem of signs becomestrivial.
Whatever the sign of the larger, the smaller operand can never change it through
subtraction or addition, and the sign of the larger number will be the sign of the result.
If the signs of both operands are the same, addition takes place normally; if they
differ, the smaller of the two is two's complemented before the addition, making it
a subtraction.

The fladd routine is broken into four logical sections, so each part of the
operation can be explained more clearly. Each section comprises a pseudocode
description followed by the actual assembly code listing.

137

NUMERICAL METHODS

FLADD: The Prologue.

1.

We

Two quadword variables, opa and opb, are allocated and cleared for use later in
the routine. Byte variables for the sign of each operand and a general sign byte
are also cleared.

Each operand is checked for zero.
If either is zero, the routine exits with the other argument as its answer.

The upper word of each float is loaded into aregister and shifted Ieft once into
the sign byte assigned to that operand. The exponent is then moved to the
exponent byte of that operand, expO and expl. Finally, the exponent of the
second operand is subtracted from the exponent of the first and the difference
placed in avariable, diff.

The upper words of the floats are ANDed with 7fH to clear the sign and exponent
bits. They’ re then ORed with 80H to restore the hidden hit.

now have a fixed-point number in the form 1.xxx.

FLADD: The Prologue

Cokkkkk

’

fladd proc uses bx cx dx si di,

rep

rep

138

fp:qword, fpl:gword, rptr:word
| ocal opa: qword, opb:qword, signa:byte,
signb: byte, exponent:byte, sign:byte,
diff:byte, sign0:byte, signl:byte,
exp0: byte, expl:byte

pushf

std : decr ement

xor ax, ax ;clear appropriate variables
| ea di,word ptr opal6] ;larger operand
mv cX, 4

stosw word ptr [di]

lea di,word ptr opb[6] ;smaller operand
nov cX, 4

st osw word ptr [di]

nov byte ptr sign0, al

nov byte ptr signl, al

mv byte ptr sign, al ;clear sign

chk_f poO:
nov
lea
repe
nonzer o
jnz
lea
jmp
chk_fpl:

repe

vokkkkk
[

leave with other:
nmov
add
nmov

rep MVsSw
jm

; *kkkk

do_add:
lea
lea
nmov
shl
rel
nmov
nmov
shl
rel
nmov
sub
nmov

restore-mssing-bit:
and
or

FLOATING-POINT ARITHMETIC

cx, 3
di,word ptr fpO[4]
scasw

chk_fpl
si,word ptr fpl[4]
short |eave with other

X, 3
di,word ptr fpl[4]
scasw

do add
si,word ptr fpO[4]

di,word ptr rptr
di, 4
cx, 3

f p_addex

si,word ptr fp0
bx, word ptr fpl
ax,word ptr [si][4]
ax, 1

byte ptr sign0, 1
byte ptr exp0, ah
dx,word ptr [bx][4]
dx, |

byte ptr signi, 1
byte ptr expl, dh
ah, dh

byte ptr diff, ah

word ptr fpO[4], 7fh
word ptr fpO[4], 80h

:check for zero

;di will point to the first

;return other addend

;di will point to the
first

nonzero

;return other addend

;fpOo

;dunp the sign
;collect the sign
;get the exponent
fpl

;get sign

;and the exponent
;and now the difference

;set up operands

139

NUMERICAL METHODS

nmv ax, word ptr fpl ;load these into registers;
;we' Il use them

nmv bx, word ptr fpl[2]

nov dx, word ptr fpl[4]

and dx, 7fh

or dx, 80h

nmv word ptr fpl[4], dx

The FLADD Routine:

5.

140

Compare the difference between the exponents.
If they're equal, continue with step 6.

If the difference is negative, take the second operand as the |argest
and continue with step 7.

If the difference is positive, assume that the first operand is |argest
and continue with step 8.

Continue conparing the two operands, nost significant words first.

[f, on any conpare except the last, the second operand proves the |argest,
continue with step 7.

If, on any conpare except the last, the first operand proves the |argest,
continue with step 8.

If neither is larger to the last conpare, continue with step 8 if the
second operand is larger and step 7 if the first is equal or larger.

Two' s-conpl enent the variable diff and conpare it with 40D to deternine
whet her to go on.

If it's out of range, wite the value of the second operand to the result
and |eave.

If it's in range, nove the exponent of the second operand to exponent,
move the sign of this operand to the variable holding the sign of the
| argest operand,and nmove the sign of the other operand to the variable
hol ding the sign of the smaller operand.

Load this fixed-point operand into opa and continue with step 9.
Compare diff with 40D to deternmine whether it's in range.
If not, wite the value of the first operand to the result and |eave.

If so, nove the exponent of the first operand to exponent, nove the sign
of this operand to the variable holding the sign of the largest operand,
and nove the sign of the other operand to the variable holding the sign
of the smaller operand. Load this fixed-point operand into opa and
continue with step 9.

FLOATING-POINT ARITHMETIC

The FLADD Routine: Which Operand is Largest?

find_largest:
cnp
je
test
je
jm
cnp_rest:
cnp
ja
ib
cnp
ja
ib
cnp
ib
nunb_bi gger:
sub
nov
neg
nov
cnp
jna
; %k kkk

lea
| eave_with_largest:

nov
add

mv
rep mvsw
jw
range_errora:
| ea

jmp

Cokkkkk
'

byte ptr diff,0
cnp_rest

byte ptr diff,80h
nume_bi gger

short nunb_hi gger

dx, word ptr fp0[4]
nunb_bi gger
nume_bi gger
bx, word ptr fp0[2]
nunb_bi gger
nume_bi gger
ax, word ptr fp0[0]
nume_bi gger

ax, ax

al,byte ptr diff
al

byte ptr diff,al
al, 60

in range

si,word ptr fpl]6]
di,word ptr rptr
di,6

cx, 4

fp_addex

si,word ptr fpO[6]

short leave_with_|largest

;test for negative

(if above
(if bel ow

;defaults to nunb

;save difference
;do range test

;this is a range error
;operands will not
;line up

;for a valid addition

leave with largest

; operand
;that is where the

;significance is anyway

NUMERICAL METHODS

in range:
nov al, byte ptr expl
nmov byte ptr exponent, al ;save exponent of |argest
;val ue
nov al, byte ptr signl
nov signa, al
nov al, byte ptr sign0
nov byte ptr signb, al
| ea si, word ptr fpl[6] ;load opa with largest operand
lea di,word ptr opa[6]
mv cx, 4
rep nmovsw
si gnb_positive:
| ea si, word ptr fpO[4] ;set to load opb
inp shift_into_position
nume_bi gger :
sub ax, ax
nov al,byte ptr diff
cnp al, 60
jae range errora ;do range test
nov al,byte ptr exp0
nov byte ptr exponent, al ;save exponent of largest value
nov al, byte ptr signl
nov byte ptr signb, al
nov al, byte ptr sign0
nov byte ptr signa, al
lea si, word ptr fpO[6] ;load opa with |argest
; operand
| ea di,word ptr opa[6]
mv cx, 4
rep novSsw
| ea si, word ptr fpl[4] ;set to load opb

The FLADD Routine: Aligning the Radix Points.

9. Divide diff by eight to determ ne how nany bytes to shift the smaller
operand so it aligns with the larger operand.

Adj ust the remainder to reflect the nunber of bits yet to be shifted,
and store it in AL

Subtract the nunber of bytes to be shifted froma maxi mum of four and

142

10.

11.

12.

13.
14.

FLOATING-POINT ARITHMETIC

add this to a pointer to opb. That gives us a starting place to wite
the nmost significant word of the smaller operand (we're witing
downwar d) .

Wite as many bytes as will fit in the remaining bytes of opb. Mve the
adj usted reminder fromstep 9 to CL and test for zero.

If the remainder is zero, no nore shifting is required; continue with
step 12.

QG herwise, continue at step 11.

Shift the smaller operand bit by bit until it's in position.
Compare the signs of the larger and smaller operands.

If they're the sane, continue with step 14.

If the larger operand is negative, continue with step 13.

O herwise, subtract the smaller operand fromthe larger and continue with
step 15.

Two' s-conpl ement the |arger operand.
Add the smaller operand to the larger and return a pointer to the result.

The FLADD Routine: Aligning the Radix Point

shift_into_position: ;align operands
xor ax, ax
nmov bx, 4
nov cl,3
nmov ah, byte ptr diff
shr ax, cl ;ah contains # of bytes
;al # of bits
nmov cx, 5h
shr al,cl
sub bl , ah ;reset pointer belowinitia
| Zeros
lea di,byte ptr opb
add di, bx
nmov cX, bx
inc CX
| oad_oper and
movsh
| oop | oad_oper and
nmov cl,al
xor ch, ch
or CX, CX

143

NUMERICAL METHODS

je end shift
shift_operand:

shr word ptr opb[6], 1

rer word ptr opb[4],1

rer word ptr opb[2],1

rer word ptr opb[0],I

| oop shift_operand
end shift:

nov al, byte ptr signa

cnp al, byte ptr signb

je just _add ;signs alike, just add
opb_negati ve:

not word ptr opb[6] ;do two's conpl ement

not word ptr opb[4]

not word ptr opb[2]

neg word ptr opb[0]

jc just_add

adc word ptr opb[2],0

adc word ptr opb[41,0

adc word ptr opb[6],0
just _add:

i nvoke add64, opa, opb, rptr

FLADD: The Epilogue.

15. Test the result of the fixed-point addition for zero. If it's zero, |eave
the routine and wite a floating-point zero to output.

16. Determine whether nornalization is necessary and, if so, whichdirection
to shift.

If the nost significant word of the result is zero, continue with step
18.

If the MSB of the nost significant word is zero, continue with step 17.

If the MBB of the second nost significant byte of the result (the hidden
bit) isn't set, continue with step 18.

QO herwise, no shifting is necessary; continue with step 19.

17. shift the result right, increnenting the exponent as you go, until the
second nost significant byte of the nmost significant word is set. This
will be the hidden bit. Continue with step 19.

18. Shift the result left, decrementing the exponent as you go, until the
second nost significant byte of the nmost significant word is set. This

144

FLOATING-POINT ARITHMETIC

will be the hidden bit. Continue with step 19.

19. sShift the nost significant word left once to insert the exponent. Shift
it back when you're done, then or in the sign.

20. Wite the result to the output and return.

FLADD: The Epilogue

handl e_si gn:

nmv si, word ptr rptr

nov dx, word ptr [si][4]

nmov bx, word ptr [si][2]

nov ax, word ptr [si][0]
norm

sub CX, CX

cnp ax, cx

jne not _zero

cnp bx, cx

jne not _zero

cnp dX,CX

jne not _zero

jmp wite_result cexit with a zero
not _zero:

nmv cx, 64

cnp dx, Oh

je rotate_result_|eft

cnp dh, 00h

jne rotate_result_right

test d1, 80h

je rotate_result_|eft

jmp short _done_rotate
rotate_result_right:

shr dx, 1
rer bx, |
rer ax, 1
inc byte ptr exponent ;decrement exponent with
;each shift
test dx, 0f f 00h
je done rotate
[oop rotate result right
rotate_result_left:
shl ax, 1
rcl bx, |

145

NUMERICAL METHODS

rel
dec

test
jne
| oop
done rotate:
and
shl
or
shr
nov

or

je

or
fix-sign

nov

or

je

or
wite result:

nov
sub
nov

fp_addex
popf
ret

fladd endp

At the core of this routine is a fixed-point subroutine that actually does the
arithmetic. Everything else involves extracting the fixed-point numbers from the
floating-point format and aligning. Fladd calls add64 to perform the actua addition.
(This is the same routine described in Chapter 2 and contained in the FXMATH.ASM
listing in Appendix C and included on the accompanying disk). It adds two quadword
variables passed on the stack with multiprecision arithmetic and writes the output to

dx, 1
byte ptr exponent

dx, 80h
done rotate
rotate result left

dx, 7fh

dx 1

dh, byte ptr exponent
dx, 1

cl, byte ptr sign

cl, cl
fix sign
dx, 8000h

cl, byte ptr signa
cl, cl

wite result

dx, 80; 0h

di,word ptr rptr
word ptr [di],ax
word ptr [di][2], bx
word ptr [di][4],dx
ax, ax

word ptr [di][6],ax

a static variable, result.

146

; decrenent exponent with
;each shift

;insert exponent

;sign of result of
; conmput ation

;sign of larger operand

FLOATING-POINT ARITHMETIC

Multiplication and Division

One minor difference between the multiplication and division algorithmsis the
error checking at the entry point. Not only are zero and infinity tested in the prologue
to division as they are in the prologue to multiplication, we aso check to determine
whether the operands are the same. If they are identical, a one is automatically
returned, thereby avoiding an unnecessary operation.

Floating point treats multiplication and division in amanner similar to logarith-
mic operations. These are essentialy the same algorithms taught in school for doing
multiplication and division with logarithms except that instead of log,, these
routines use log,. (The exponent in these routines is the log, of the value being
represented.) To multiply, the exponents of the two operands are added, and to divide
the difference between the exponents is taken. Fixed point arithmetic performs the
multiplication or division, any overflow or underflow is handled by adjusting the
exponents, and the results are renormalized with the new exponents. Note that the
vaues added and subtracted as the biases aren’'t exactly 127D. This is because of the
manner in which normalization is accomplished in these routines. Instead of
orienting the hidden bit at the MSB of the most significant word, it is a the MSB of
the penultimate byte (in this case DL). This shifts the number by 8 bits, so the bias
that is added or subtracted is 119D.

FLMUL
The pseudocode for floating point multiplication is as follows:

fimul: Algorithm

1. Check each operand for zero and infinity.
If one is found to be infinite, exit through step 9.
If one is found to be zero, exit through step 10.

2. Extract the exponent of each operand, subtract 77H (119D) from one of
them and add to form the approxi nate exponent of the result.

3. Test each operand for sign and set the sign variable accordingly.

4, Restore the hiddenbit in eachoperand. Now each operand is a fixed-point
number in the form 1. XXXX. ..

147

NUMERICAL METHODS

5. Miltiply the two nunbers with the fixed-point routine nul64a.
6. Check the result for zero. If it is zero, exit through step 10.

7. Renormalize the result, increnenting or decrementing the exponent at the
same tine. This accounts for any overflows in the result.

8. Replace the exponent, set the sign, and exit.
9. Infinity exit.
10. Zero exit.

flmul: Listing

vokkkkk
)

’

flmul proc c uses bx cx dx si di,
fpOgword, fpl:qword, rptr:word

| ocal resul t[8]:word, sign:byte, exponent:byte

pushf

std

sub ax, ax

nov byte ptr sign,al ;clear sign variable

lea di,word ptr result[14]

nmov cx, 8
rep st osw ;and result variable

lea si,word ptr fp0 ;nane a pointer to each fp

lea bx,word ptr fpl

nov ax,word ptr [si][4]

shl ax, 1

and ax, 0f f 00h ;check for zero

jne is_a_inf

jmp make_zero ,zero exponent
is_a_inf:

cnp ax, 0ffQGh

jne is b zero

jmp return_infinite ;multiplicand is infinite
is_b_zero:

nov dx,word ptr [bx][4]

shl dx, 1

and dx, 0f f 00h ;check for zero

148

jnz

o]

is b inf:
cnp
jne
jmp

(:Jet_exp:
sub

add
nov

mov
or
jns
not
a_pl us:
mov

or
jns
not

restore mssing bit:
and
or
and
or

i nvoke

sub
cnp
jne
cnp
jne
cnp
jne
jmp

FLOATING-POINT ARITHMETIC

is b inf
make zero

dx, 0f f 00h
get _exp
return infinite

ah, 77h
ah, dh
byte ptr exponent,ah

dx,word ptr
dx, dx
a_plus
byte ptr sign

[si][4]

dx,word ptr [bx][4]
dx, dx

restore nissing bit
byte ptr sign

word ptr fpO[4], 7fh
word ptr fpO[4], 80h
word ptr fpl[4], 7fh
word ptr fpl[4], 80h

mul64a, fp0, fpl, addr result

dx, word ptr result [10]
bx, word, ptr result[8]
ax, word, ptr results[6]

X, CX
ax, cx
not _zero
bx, cx
not zero
dx, cx
not zero
fix_sign

; Zero exponent

;multiplicand is infinite

;add exponents
;save exponent

;set sign variable according
:to msh of float

;set sign according to nsb
;of float

;renmove the sign and exponent
;and restore the hidden bit

;multiply with fixed point
;routine

:check for zeros on return

cexit with a zero

149

NUMERICAL METHODS

not_zero:
mov cX, 64 ;should never go to zero
cnp dx, Oh ;realign float
je rotate result left
cnp dh, 00h
jne rotate result_right
test di1, 80h

je rotate result left
imp short _done_rotate
rotate result right:

shr dx, |
rer bx, |
rer ax, 1
test dx, 0f f 00h
je done_rotate
inc byte ptr exponent ;decrement exponent with
;each shift
| oop rotate result_right
rotate result left:
shi word ptr result[2],1
rel word ptr result[4],1
rcl ax, 1
rcl bx, |
rel dx, |
test dx, 80h
jne done rotate
dec byte ptr exponent ;decrement exponent with
;each shift
| oop rotate result left
done_rotate:
and dx, 7fh ;clear sign bit
shl dx, 1
or dh, byte ptr exponent ;insert exponent
shr dx, 1
nmov cl,byte ptr sign ;set sign of float based on
;sign flag
or cl,cl
je fix-sign
or dx, 8000h
fix_sign:
nmov di,word ptr rptr ;wite to the output
nmov word ptr [di], ax
nmov word ptr [di][2],bx
nmov word ptr [di][4],dx

150

FLOATING-POINT ARITHMETIC

sub ax, ax

nov word ptr [di][6],ax
fp_mul ex:

popf

ret

return infinite

sub ax, ax

nov bx, ax

not ax

nov dx, ax

and dx, 0f 80h vinfinity

jmp short fix_sign
make_zero:

xor ax, ax
finish_error:

nmov di,word ptr rptr

add di, 6

mv cx, 4
rep stos word ptr [di]

inp short fp_mul ex
flmul endp

The multiplication in this routine was performed by the fixed-point routine

mul64a. This is a specialy-written form of mul64 which appears in FXMATH.ASM
on the included disk. It takes as operands, 5-byte integers, the size of the mantissa
plus extended hits in this format, and returns a 10-byte result. Knowing the size of
the operands, means the routine can be sized exactly for that result, making it faster
and smaller.

mul64a: Algorithm

1.
2.

Use DI to hold the address of the result, a quadword.

Move the nost significant word of the nmultiplicand into AX and multiply
by the nost significant word of the multiplier. The product of this
nmultiplication is witten to the nost significant word result.

The nost significant word of the multiplicand is returned to AX and
multiplied by the second nost significant word of the multiplier. The
| east significant word of the product is MMed to the second nost
significant word of result, the nost significant word of the product is

151

NUMERICAL METHODS

ADDed to the nmpost significant word of result.

The nost significant word of the nultiplicand is returned to AX and
nultiplied by the least significant word of the multiplier. The |east
significant word of this product is MMed to the third most significant
word of result, the most significant word of the product is ADDed to the
second nost significant word of result, any carries are propagated
through with an ADC instruction.

The second nost significant word of the nultiplicand is MMed to AX and
mul tiplied by the most significant word of the nultiplier. The |ower word
of the product is ADDed to the second nost significant word of result
and the upper word is added-with-carry (ADC) to the second nost
significant word of result.

The second nost significant word of the nultiplicand is again MWVed to
AX and multiplied by the secondrmost significant word of the nultiplier.
The |ower word of the product is ADDed to the third nost significant word
of result and the upper word is added-with-carry (ADC) to the secondnost
significant word of result with any carries propagated to the MSWwith
an ADC.

The second nost significant word of the nultiplicand is again MWVed to
AX and multiplied by the least significant word of the nmultiplier. The
| ower word of the product is MMed to the fourth nmost significant word
of result and the upper word is added-with-carry (AX) to the thirdnost
significant word of result with any carries propagated through to the
MSWw th an ADC.

The | east significant word of the multiplicand is MOWed into AX and
nultiplied by the MSWof the nultiplier. The |east significant word of
this product is ADDed to the third most significant word of result, the
MW of the product is ADCed to the second nost significant word of result,
and any carry is propagated into the nost significant word of result with
an ADC.

mul64a: Listing

vokkkkk
'

;* mul6da - Miltiplies two unsigned 5-byte integers. The

;* procedure allows for a product of twice the length of the nultipliers,
;* thus preventing overflows.

mul64a proc uses ax dx,

152

mul tiplicand: gword, nmultiplier:qword, result:word

nmv di,word ptr result
sub CX, CX

nov
nul

nov
mul

nov
add

mul

nov
add
adc

nov
mul

add
adc

nov
mul

add
adc
adc

add
adc
adc

nov
mul

add
adc
adc

ax, word
word ptr
word ptr

ax, word
word ptr

word ptr
word ptr

ax, word

word ptr

FLOATING-POINT ARITHMETIC

ptr mul tiplicand|4]
multiplier [4]
[di][8], ax

ptr mul tiplicand|4]
miltiplier [2]

[di][6], ax
[di][8], dx

ptr mul tiplicand|4]

multiplier [0]

word ptr [di] [4], ax

word ptr
word ptr

ax, word
word ptr
word ptr
word ptr

ax, word
word ptr
word ptr
word ptr
word ptr

ax, word
word ptr
word ptr

word ptr
word ptr
word ptr

ax, word
word ptr
word ptr
word ptr

[di][6], dx
[di][8], cx

ptr mul tiplicand|2]

multiplier [4]
[di][6], ax
[di][8], dx

ptr nultiplicand]2]
mul tiplier[2]

[di][4], ax
[di][6], dx
[di][8], cx
ptr mul tiplicand|2]
mul tiplier[0]
[di][2], ax
[di][4], dx
[di][6], cx
[di][8], cx
ptr multiplicand]0]
mul tiplier[4]
[di][4], ax
[di][6], dx

word ptr [di] [8], cx

ax, word

ptr mul tiplicand|0]

;multiply multiplicand high
;word by multiplier high word

;multiply multiplicand high

;word by second MSW
;of multiplier

;multiply multiplicand high

;word by third MSW
;of multiplier

;propagate carry

;multiply second NMSW
;of multiplicand by MSW

;of multiplier

;multiply second MSW of

;multiplicand by second MW

;of multiplier

;add any remmant carry

;multiply second MSW of
;multiplicand by |east

;significant word of
;mul tiplier

;add any remmant carry

;multiply multiplicand |ow
;word by MSW of multiplier

;add any remmant carry

;multiply multiplicand |ow

153

NUMERICAL METHODS

ml word ptr nultiplier[2] ;word by second MW of
;mul tiplier
add word ptr [di][2], ax
adc word ptr [di][4], dx
adc word ptr [di][6], cx ;add any remant carry
adc word ptr [di][8], cx ;add any remmant carry
nov ax, word ptr multiplicand]0] ;multiply nmultiplicand |ow
ml word ptr multiplier[0] ;word by rmultiplier low word
nmv word ptr [di][0], ax
add word ptr [di][2], dx
adc word ptr [di][4], cx ;add any remant carry
adc word ptr [di][61, cx ;add any remant carry
adc word ptr [di][8], cx ;add any remant carry
ret
mul64a endp
FLDIV

The divide is similar to the multiply except that the exponents are subtracted
instead of added and the alignment is adjusted just before the fixed-point divide. This
adjustment prevents an overflow in the divide that could cause the most significant
word to contain a one. If we divide by two and increment the exponent, dive4 returns
a quotient that is properly aigned for the renormalization process that follows.

The division could have been left as it was and the renormalization changed, but
since it made little difference in code size or speed, it was left. This extra division
does not change the result.

fldiv: Algorithm

1. Check the operands for zero and infinity.
If one is found to be infinite, exit through step 11.
If one is found to be zero, exit through step 12.

2. Test the divisor and dividend to see whether they are equal. If they are,
exit nowwith a floating-point 1.0 as the result.

3. Get the exponents, find the difference and subtract 77H (119D). This is
the approxi mate exponent of the result.

154

FLOATING-POINT ARITHMETIC

4. Check the signs of the operands and set the sign variable accordingly.
5. Restore the hidden bit.

6. Check the dividend to see if the nost significant word is less than the
divisor to align the quotient. If it's greater, divide it by two and
increnent the difference between the exponents by one

7. Use div64 to perform the division

8. Check for a zero result upon return and exit with a floating-point 0.0
if so.

9. Renornalize the result

10. Insert the exponent and sign and exit
11. Infinite exit.

12. Zero exit.

fldiv: Listing
; *kkkk
fldiv proc C uses bx cx dx si di
fp0:gword, fpl:qgword, rptr:word
| ocal gtnt:qgword, sign:byte, exponent:byte, rmdr:gword
pushf
std
xor ax, ax
nmov byte ptr sign, al ;begin error and situation
; checki ng
lea si,word ptr fp0 ;name a pointer to each fp
| ea bx, word ptr fpl
nmv ax,word ptr [si][4]
shl ax, 1
and ax, 0f f 00h ; check for zero
jne chk_b
j np return infinite dinfinity
chk_b:
nmv dx,word ptr [bx][4]
shl a, 1
and dx, 0f f 00h
jne b_not z

155

NUMERICAL METHODS

jmp di vi de- by-zero vinfinity, divide by zero
;i's undefined
b_not z:
cnp dx, 0f f 00h
jne check_identity
jmp make_zero ;divisor is infinite
check_identity:
mv di, bx
add di, 4 ;will decrenent selves
add si, 4
mv cX, 3
repe Cnpsw
jne not sane ;these guys are the sane
nov ax,word ptr dgt[8] ;return a one
nov bx,word ptr dgt[10]
nov dx,word ptr dgt[12]
nov di,word ptr rptr
nmv word ptr [di],ax
nov word ptr [di][2],bx
nmov word ptr [di][4],dx
sub ax, ax
nov word ptr [di][6],ax
jnp fldivex
not sane: ;get exponents
lea si,word ptr fp0 ;reset pointers
lea bx, word ptr fpl
sub ah, dh subtract exponents
add ah, 77h ;subtract bias minus two
digits
nmv byte ptr exponent,ah ;save exponent
nov dx, word ptr [si][4] ; check sign
or h, dx
jns a_plus
not byte ptr sign
a_pl us:
nmv dx,word ptr [bx][4]
or dx, dx
jns restore_m ssing_bit
not byte ptr sign
restore_mssing_hit: ;line up operands for division

156

and
or

nmov
and
or
cm
ja
inc
shl
rcl
rcl
store_dvsr:
nov

di vi de:
i nvoke

nov
nov
mv
sub
cnp
jne
cnp
jne
cnp
jne
jmp

not_zero:

nov
cnp
je
cnp
jne
test
je

Jnp
rotate_result_right:

shr

rer

rer

test

je

FLOATING-POINT ARITHMETIC

word ptr fpO[4], 7fh
word ptr fpO[4], 80h

dx, word ptr fpl[4]
dx, 7fh

dx, 80h

dx,word ptr fpO[4]
store dvsr

byte ptr exponent
word ptr fpl[Q], 1
word ptr fpl[2], 1
dx, 1

word ptr fpl[4l, dx

divoul, fp0, fpl, addr fpO

dx,word ptr fpO[4]
bx,word ptr fpO[2]
ax,word ptr fp0[0]
CX, ©X

ax, cx

not zero

bx, cx

not zero

dx, cx

not zero
fix-sign

cX, 64

dx, Oh
rotate_result _left
dh, 00h
rotate_result_right
d1, 80h
rotate_result _left
short done_rotate

dx, 1

bx, 1

ax, 1

dx, 0f f 00h
done_rotate

;see if divisor is greater than
;dividend then divide by 2

;performfixed point division

;check for zeros on return

;exit with a zero
;should never go to zero

;realign float

157

NUMERICAL METHODS

inc

| oop
rotate_result_left:
shl
rel
rel
rel
test
jne
dec

| oop
done rotate:

and

shl

or

shr

nov

or

je

or
fix_sign:

fldivex:

popf
ret

return infinite:
sub
nmov
not
nmov
and
jm
di vide_by_zero:

sub
not

158

byte ptr exponent
rotate result right

word ptr qtnt,|
ax, 1

bx, |

dx, |

dx, 80h
done_rotate

byte ptr exponent

rotate result_left

dx, 7fh

dx, 1

dh, byte ptr exponent
dx, 1

cl,byte ptr sign

cl,cl
fix_sign
dx, 8000h

di,word ptr rptr
word ptr [di],ax
word ptr [di][2],bx
word ptr [di][4],dx
ax, ax

word ptr [di][6l,ax

ax, ax

bx, ax

ax

dx, ax

dx, 0f80h
short fix_sign

ax, ax
ax

;decrement exponent with
;each shift

;decrement exponent with
;each shift

;insert exponent

;set sign flag according
;to variable

pinfinity

FLOATING-POINT ARITHMETIC

i short finish error
make_zero:
xor ax, ax ;positive zero
finish_error:
nmov di,word ptr rptr
add di, 6
nmv cx, 4
rep stos word ptr [di]
jim short fldivex
fldiv endp

In order to produce the accuracy required for this floating-point routine with the
greatest speed, use dive4 from Chapter 2. This routine was specifically written to
perform the fixed-point divide.

Rounding

Rounding is included in this discussion on floating point because it's used in the
external routines.

IEEE 754 says that the default rounding shall “round to nearest,” with the option
to choose one of three other forms. round toward positive infinity, round to zero, and
round toward negative infinity. Several methods are available in the rounding
routine, as you'll see in the comments of this routine.

The default method in round is “round to nearest.” This involves checking the
extended bits of the floating-point number. If they’re less than half the LSB of the
actual float, clear them and exit. If the extended bits are greater than half the LSB,
add a oneto the least significant word and propagate the carries through to the most
significant word. If the extended bits are equal to exactly one-half the LSB, then
round toward the nearest zero. If either of the last two cases results in an overflow,
increment the exponent. Clear AX (the extended bits) and exit round. If a fault
occurs, AX contains -1 on exit.

round: Algorithm

1. Load the conplete float, including extended bits, into the nicroprocessor's

159

NUMERICAL METHODS

registers.

Compare the least significant word with one-half (8000H).

If the extended bits are less than one-half, exit through step 5.
If the extended bits aren't equal to one-half, continue with step 3.

If the extended bits are equal to one-half, test the LSB of the
representable portion of the float.

If it's zero, exit through step 5.
If it's one, continue with step 3.

Strip the sign and exponent from the most significant word of the float
and add one to the least significant word. Propagate the carry by adding

zero to the upper word and test what mght have been the hidden bit for
a one.

A zero indicates that no overflow occurred; continue with step 4.

A one indicates overflow fromthe addition. Get the mpst significant word
of the float, extract the sign and exponent, and add one to the exponent.

If this addition resulted in an overflow, exit through step 5.
Insert the new exponent into the float and exit through step 5.

Load the MBWof the float. Get the exponent and sign and insert
them into the rounded fixed-point nunber; exit through step 5.

Clear AX to indicate success and wite the rounded float to the output.

Return a -1 in AX to indicate failure. Make the float a Quiet NAN (positive
overflow) and exit through step 5.

Round: Listing

vokkkkk
'

round proto flpO:qword, rptr:word

round proc wuses bx dx di, fp:qword, rptr:word

160

nmv ax,word ptr fp[0]

nmv bx,word ptr fp[2]

nmv dx,word ptr fp[4]

cnp ax,8000h

ib round ex ;less than hal f

jne needs_roundi ng

test bx, | ;put your rounding scheme
;here, as in the

je round_ex ; comrent ed-out code bel ow

/-
needs rounding:
and
add
adc
test
je
nmov
and
and
add
jo
or
jmp
renorm
nmov
and
or
round_ex:
sub
round_ex| :

nov
sub
nov
ret

over flow
xor
nmov
not
nov
xor

jmp
round endp

short needs rounding
X, 1

bx, 1
round_ex

dx, 7fh

bx, 1h

dx, 0

dx, 80h

renorm

ax,word ptr fp[4]
dx, 7fh
ax, 0f f 80h

ax, 80h

over flow
dx, ax

short round_ex

ax,word ptr fp[4]
ax, 0f f 80h
dx, ax

ax, ax

di,word ptr rptr
word ptr [di][0],ax
word ptr [di][Z],bx
word ptr [di][4],dx
ax, ax

word ptr [di][6],ax

ax, ax
bx, ax
ax

dx, ax
dx, 7f H

short round exl

FLOATING-POINT ARITHMETIC

cround to even if odd

;and odd if even

;round down if odd and up if
veven (jam

;if this is a one, there wll
:be an overflow

;get exponent and sign
kick it up one

;get exponent and sign

cindicate overflow with an
;infinity

161

NUMERICAL METHODS

162

Ochs, Tom. “A Rotten Foundation,” Computer Language 8/2: Page 107.
Feb. 1991.

Knuth, D. E. Seminumerical Algorithms. Reading, MA: Addison-Wesley Pub-
lishing Co., 1981, Pages 213-223.

|EEE Standard for Binary Floating-Point Arithmetic (ANSI/IEEE
Std 754, 1985).

Plauger, P.J. “Floating-Point Arithmetic,” Embedded Systems Program-
ming 4/8: Pages 95-100. Aug. 1991.

CHAPTER 5

Input, Output,
and Conversion

To be useful, an embedded system must communicate with the outside world.
How that communication proceeds can strongly influence the system’s speed and
efficiency.

Often, the nature of the system and the applications program that drives it defines
the form of the commands that flow between an embedded system and the hogt. If
it's a graphics card or servo controller embedded in a PC, the fastest way to
communicate is pure binary for both commands and data. Depending on the
availability of a math chip, the numerics are in either fixed or floating-point notation.

Even so, it's quite common to find such systems using ASCII strings and decimal
arithmetic to interface with the user. That's because binary communication can be
fast, even though it has its problems. The General Purpose Interface Bus (GPIB) has
some of the advantages and speed of the hardware interface, but the binary command
and data set can sometimes imitate its own bus-control commands and cause trouble.
Binary information on RS232, perhaps the most commonly used interface, has
similar problems with binary data aliasing commands and delimiters. Packet-based
communications schemes are available, however, they can be dow and clumsy. Any
problem can be solved on closed systems under controlled circumstances, but
rigorous, smple communication schemes often default to ASCII or EBCDIC for
ease of debugging and user familiarity.

Whatever choices you make for your system, it will amost dways have to
communicate with the outside world. This often means accepting and working with
formats that are quite foreign to the binary on the microprocessor bus. What's more,
the numerics will most likely be decimal and not binary or hex, since that's how most
of us view the world.

163

NUMERICAL METHODS

Decimal Arithmetic

If your system does very little calculation or just drives a display, it may not be
worth converting the incoming decimal data to another format. The Z80, 8085, and
8051 alow limited addition and subtraction in the form of the DAA or DA instruction.
On the Intel parts, this instruction really only helps during addition; the Z80 can
handle decimal correction in both addition and subtraction. The 80x86 family offers
instructions aimed at packing and unpacking decimal data, dong with adjustments
for alimited set of basic arithmetic operations. The data type is no greater than a byte,
however, making the operation long and cumbersome to implement. The 8096
family lacks any form of decimal instructions such as the DAA or auxiliary carry flag.

Binary-based microprocessors do not work easily with decimal numbers be-
cause base 2, which is one hit per digit, and even base 16, which is four bits per digit,
are incompatible with base 10; they have a different modulus. The DAA instruction
corrects for this by adding six to any result greater than nine (or on an auxiliary carry),
thereby producing a proper carry out to the next digit.

A few other instructions are available on the 80x86 for performing decimal
arithmetic and converting to and from ASCII:

« AAA gtands for ASCII Adjust After Addition. Add two unpacked (one decimal
digit per byte) 8-bit decimal values and put the sumin AL. If the sumis greater
than nine, this instruction will add six but propagate the carry into AH. That
leaves you with an unpacked decimal value perfectly suited for conversion to
ASCII.

« AAD stands for ASCII Adjust before Division, takes an unpacked value in AX
and performs an automatic conversion to binary, placing the resulting value in
AL. Thisinstruction can help convert ASCIl BCD to binary by handling part of
the process for you.

« The AAM instruction, which stands for ASCII Adjust After Multiply, unpacks
an 8-hit binary number less than 100 into AL, placing the most significant digit
in AH and the least significant in AL. This instruction alows for a fast, easy
conversion back to ASCII after a multiplication or division operation.

- AAS stands for ASCII Adjust After Subtraction, corrects radix misalignment

164

INPUT, OUTPUT, AND CONVERSION

after a subtraction. If the result of the subtraction, which must be in AL, is greater
than nine, AH is decremented and six is subtracted from AL. If AH is zero, it
becomes -1 (OffH).

The purpose of these functionsisto alow a small amount of decimal arithmetic
in ASCII form for 1/0. They may be sufficient to drive displays and do simple string
or keyboard handling, but if your application does enough number crunching-and
it doesn't take much-you'll probably want to do it in binary; it's much faster and
easier to work with.

Radix Conversions

In his book Seminumerical Algorithms, Donald Knuth writes about a number of
methods for radix conversion®. Four of these involve fundamental principles and are
well worth examining.

These methods are divided into two groups. one for integers and one for
fractions. Note: properly implemented, the fractional conversions will work with
integers and the integer conversions with the fractions. In the descriptions that
follow, we'll convert between base 10 and base 2. Base A will be the base we're
converting from, and base B will be the base we're converting to. The code in this
section uses binary arithmetic, often with hexadecimal notation, because that's the
native radix of most computers and microprocessors. In addition, all conversions are
between ASCII BCD and binary, but you can use these algorithms with any radix.

Integer Conversion by Division

In this case, base A (2) is converted to base B (10) by division using binary
arithmetic. We divide the number to be converted by the base we're converting to and
placeit in avariable. Thisis a modular operation, and the remainder of the division
is the converted digit. The numbers are converted least significant digit first.

If we were to convert OffH (255D) to decimal, for example, we would first divide
by OaH (10D). This operation would produce a quotient of 19H and a remainder of
5H (the 5 is our first converted digit). We would then divide 19H by OaH, for a
resulting quotient of 2H and a remainder of 5H (the next converted digit). Finally,

165

NUMERICAL METHODS

we would divide 2H by OaH, with a OH result and a 2H remainder (the fina digit).
Briefly, this method works as follows:

1. Shift the bits of the variable decimal_accumulator right four bits to make room
for the next digit.

Load an accumulator with the value to be converted and divide by OaH (10D).

3. OR the least significant nibble of decimal_accumulator with the four-bit
remainder just produced.

4. Check the quotient to see that there is something left to divide.
If so, continue with step 1 above.
If not, return decimal_ accumulator as the result.

The routine bn_dnt converts a 32-bit binary number to an ASCII string. The
routine expects no more than eight digits of decima data (you can change this, of
COUrse).

This routine loads the number to be converted into AX, checks it for zero, and
if possible dividesit by 10. Because the remainder from the first division is already
in DX, we don't have to move it to prepare for the second division (on the LSW). The
remainder generated by these divisions is ORed with zero, resulting in an ASCII
character that’s placed in a string. The conversion is unsigned (we'll see examples
of signed conversions later in this chapter).

bn_dnt: Algorithm

1. Point to the binary value, binary, to be converted and to the output
string, decptr. Load the |oop counter for naximm string size.

2. Get the MBWof binary and check for zero.
If it's zero, continue with step 6.
If not, divide by 10.
Return the quotient to the MSW of binary.
Check the renminder for zero.
If it's zero, continue with step 6.
If not, go on to step 3.

3. Get the LSWof binary and check for zero.

166

INPUT, OUTPUT, AND CONVERSION

If it's zero, check the remainder fromthe last division. If it's also
zero, continue with step 5.

Qtherwi se, continue with step 4.
4, Divide by 10 and return the quotient to the LSWof binary.

5. Make the result ASCIlI by ORing zero (30H). Wite it to the string,
increnment the pointer,and decrenent the |oop pointer,

If the loop counter isn't zero, continue with step 2.
Ot herwise, exit with an error.
6. Test the upper word of binary for zero.
If it's not zero, go to step 3.
If it's,check the LSWof the binary variable.
If it's not zero, go to step 4.
If it's, we're done; go to step 7.
7. Realign the string and return with the carry clear.

bn-dnt: Listing
I-*****
. bn_dnt - a routine that converts binary data to deci mal

;A doubleword is converted. Up to eight decinal digits are
;placed in the array pointed to by decptr. If more are required to
;convert this number, the attenpt is aborted and an error flagged.

Bn_dnt proc uses bx cx dx si di, binary:dword, decptr: word

| ea si,word ptr binary ;get pointer to MSB of
;decimal val ue

nov di,word ptr decptr ;string of decimal ASCI digits

nov cX, 9

add di, cx ;point to end of string
;this is for correct ordering

sub bx, bx

nov dx, bx

nov byte ptr [di],bl ;see that string is zero-
;termnated

dec di

bi nary_conversi on:
sub dx, dx
nov ax,word ptr [si][2] ;get upper word

167

NUMERICAL METHODS

or ax, ax ;see if it is zero
je chk_enpty ;if so, check enmpty
div iten ;divide by 10
nmv word ptr [si][2],ax
or dx, dx
je chk_enpty ;check for zeros
di vi de_| ower:
mv ax, word ptr [si] ;always checking the |east
;significant word
or ax, ax ;of the binary accumul ator
for zero
jne not _zero
or dx, ax
je put _zero
not _zero:
div iten ;divide lower word
put _zero:
nmov word ptr [si],ax ;save quotient
or dl,'o ;make the reminder an ASCI|
pdigit
nmov bytr, [di], dl ;wite it to a string
dec di
I oop bi nary_conversion
00ps: ;too many characters; just |eave
nmv ax,-1
stc
ret
chk_enpty:
or dx, ax ;We are done if the variable
s enpty
je still_nothing
jmp short divide_l over
still _nothing
nmov ax, word ptr [si] ;check least significant word of
bi nary
or ax, ax ;variable for zero
je empty
jm short not_zero
enpty:
inc di ;realign string
nmv si, di ;trade pointers

168

INPUT, OUTPUT, AND CONVERSION

nmv di, word ptr decptr
nmv cx, 9
rep nmovsw

fini shed:
sub ax, ax ;success

cle ;N0 carry = success!
ret
bn_dnt endp

Integer Conversion by Multiplication

In this case, base A (10) is converted to base B (2) by multiplication using binary
arithmetic. We convert the number by multiplying the result variable, called
binary-accumulator, by base A (10), before adding each new decimal digit.

To see how thisis done, we can reverse the conversion we just completed. This
time, we wish to convert 255D to binary. First we create an accumulator, binvar, to
hold the result (which isinitialy set to 0) and a source variable, decvar, to hold the
decimal value. We then add decimal digits to binvar one at a time from decvar which
is set to 255D. The first iteration places 2D in binvar; we multiply this by OaH (10D)
to make room for the next addition. (Recall that the arithmetic is binary.) Binvar is
now 14H. The next step isto add 5D. The result, 19H, is then multiplied by OaH to
equal OfaH. To this value we add the final digit, 5D, to arrive at the result OffH
(255D). Thisisthe last digit, so no further multiplications are necessary.

Assume a word variable, decvar, holds four packed decimal digits. The
following pseudocode illustrates how these digits are converted to binary and the
result placed in another word variable, binvar.

1. Assume binvar and decvar are word variables |ocated somewhere in RAM.
2. Multiply binvar by base A (10), the routine is converting from base A to base B.
3. Shift adigit (starting with the most significant) from decvar into binvar.
4. Test decvar to see whether it is zero yet.
If it is, we are done and write binvar to memory or return it as the result.
If not, continue from step 2.

169

NUMERICAL METHODS

In the following code, a pointer to a string of ASCII decimal digitsis passed to

a subroutine that, in turn, returns a pointer to a doubleword containing the binary
conversion. The routine checks each digit for integrity before processing it. If it
encounters a nondecimal character, it assumes that it has reached the end of the
string. Multiplication by 10 is performed in-line to save time.

dnt_bn: Algorithm

1

Point at the base of the BCD ASCI| string (the mpst significant decimal
digit), clear the binary accumulator, and |oad the |oop counter with the
maxi mum string |ength.

CGet the ASCII digit and test to see whether it is between 0 and 9,
If not, we are done; exit through step 4.

If so, call step 5 to nultiply the binary accumulator by 10. Coerce the
ASCIl digit to binary, add that digit to the binary accumul ator,
increnent the string pointer, and decrenent the |oop counter.

If the loop counter is zero, go to step 3.

If not, continue with step 2

Exit with error.

Wite the binary accunulator to output and |eave with the carry clear.
Execute in-line code to multiply DX BX by 10.

dnt_bn: Listing

vokkkkk
[

; dnt_bn - decimal integer to hinary conversion routine
;unsi gned

it

is expected that decptr points at a string of ASCII decimal digits.

:Each digit is taken in turn and converted until eight have been converted

,or
: Thi
: Ret

dnt

170

until a nondeci mal nunmber is encountered.
s might be used to pull a nunber froma comunications buffer.
urns with no carry if successful and carry set if not.

bn proc uses bx cx dx si di, decptr:word, binary:word
nmv si,word ptr decptr ;get pointer to beginning of
;BCD ASCI| string
sub ax, ax ;Clear sone registers
nmov bx, ax

mv
mv

deci mal _conversion
nov
cnp
ib
cnp
ja
call
xor
add
adc
inc
| oop

0ops:
stc
ret

wor k_done

cle
r et

times_ten
push

push
shl

rcl
mv

mv

shl
rcl

shl
rel

INPUT, OUTPUT, AND CONVERSION

dx, bx
cx, 9

al,byte ptr [si]
al,'o

wor k_done

al, 'y

wor k_done

near ptr tines_ten
al,'o

bx, ax

dx, 0

Si

deci mal _conversion

di, word ptr binary
word ptr [di],bx
word ptr [dil[2],dx

ax

cX
bx, |

dx, 1
ax, bx

cx, dx

bx, |
dx, |

bx, |
dx, |

;check for decimal digit

;if it gets past here, it
;must be K

;in-line mltiply
;convert to number

;add next digit
;propagate any carries

;more than eight digits

;store result
; success

;save these, they contain
;information

;10 = three left shifts and
;an add

;this is the miltiply by two
keep it

171

NUMERICAL METHODS

add ;this is the multiply by eight
;add the multiply by two to
adc dx, cx ;get 10
pop cX ;get it back
pop ax
retn
dnt_bn endp

Fraction Conversion by Multiplication

The next algorithm converts a fraction in base A (2) to base B (10) by successive
multiplications of the number to be converted by the base to which we're converting.

First, let's ook at a smple example. Assume we need to convert 8cH to a decimal
fraction. The converted digit is produced as the overflow from the data type, in this
case a byte. We multiply 8cH by 0aH, again using binary arithmetic, to get 578H (the
fiveisthe overflow). This conversion may actually occur between the low byte and
high byte of a word register, such as the AX register in the 8086. We remove the first
digit, 5, from the calculation and place it in an accumulator as the most significant
digit. Next, we multiply 78H by OaH, for aresult of 4b0H. Before placing this digit
in the accumulator, we shift the accumulator four bits to make room for it. This
procedure continues until the required precision is reached or until the initial binary
value is exhausted.

Round with care and only if you must. There are two ways to round a number.
One isto truncate the conversion at the desired precision plus one digit, n,,;- where
n is a converted digit and k is positional notation. A one is then added to the least
significant digit plus one, n,, if the least significant digit n,,,, is greater than one-
half of n,. This propagates any carries that might occur in the conversion. The other
method involves rounding the fraction in the source base and then converting, but
this can lead to error if the original fraction cannot be represented exactly.

To use this procedure, we must create certain registers or variables. First, we
create the working variable bfrac to hold the binary fraction to be converted. Because
multiplication requires a result register as wide as the sum of the hits of the
multiplicand and multiplier, we need a variable as wide as the original fraction plus
four bits. If the original fraction is a byte, as above, a word variable or register is more
than sufficient. Next, we create dfrac to accumulate the result starting with the most

172

INPUT, OUTPUT, AND CONVERSION

significant decimal digit (the one closest to the radix point). This variable needs to
be as large as the desired precision.

Clear dfrac and load bfrac with the binary fraction we're converting.

Check bfrac to seeiif it's exhausted or if we've reached our desired precision.
If either is true, we're done.

Multiply bfrac by the base to which we're converting (in this case, OaH).

Take the upper byte of bfrac as the result of the conversion and place it in
dfrac as the next less significant digit. Zero the upper byte of bfrac.

Continue from step 2.

The following routine accepts a pointer to a 32-bit binary fraction and a pointer

to a string. The converted decimal numbers will be placed in that string as ASCI|
characters.

bfc_dc: Algorithm

1

Point to the output string, load the binary fraction in DX BX, set the
| oop counter to eight (the maximum length of the string), and initialize
the string with a period.

Check the binary fraction for zero.
If it's zero, exit through step 3.

If not, clear AXto receive the overflow. Miltiply the binary fraction
by 10, using AX for overflow Coerce AX to ASCIl and wite it to the
string. Decrenent the |oop counter.

If the counter is zero, |eave through step 3.
QO herwise, clear the overflow variable and continue with step 2.

Exit with the carry clear.

bfc-dc: Listing

v o kkkkk
’

bfc_dc - a conversion routine that converts a binary fraction
(doubl eword) to decimal ASCI| representation pointed to by the string

173

NUMERICAL METHODS

;pointer decptr. Set for eight digits, but it could be |onger.

bfc dc proc uses bx cx dx si di bp, fraction:dword, decptr:word
[ocal sva:word, svb:word, svd:word
mov di,word ptr decptr ;point to ASCII output string
mv bx,word ptr fraction
mv dx,word ptr fraction[2] ;get fractional part
nov cx, 8 ;digit counter
sub ax, ax
mov byte ptr [di], "." ;to begin the ASCII fraction
inc di

deci mal conversion:

or ax, dx ;check for zero operand

or ax, bx ;check for zero operand

iz wor k done

sub ax, ax

shl bx, 1 ;muiltiply fraction by 10

rel dx, 1

rel ax, 1 ;times 2 multiple

mv word ptr svb, bx

myv word ptr svd, dx

mv word ptr sva, ax

shl bx, 1

rel dx, 1

rel ax, 1

shl bx, 1

rel dx, 1

rcl ax, 1

add bx,word ptr svb

adc dx,word ptr svd ;multiply by 10

adc ax,word ptr sva ;the converted value is
;placed in AL

174

INPUT, OUTPUT, AND CONVERSION

or al,'0 ‘this result is ASCIized and
nov byte ptr [di],al ;placed in a string
inc di
sub ax, ax
[oop deci mal conversion
work done:
nov byte ptr [di],al ;end string with a null
cle
ret
bfc_dc endp

Fraction Conversion by Division

Like conversion of integers by multiplication, this procedure is performed as a
polynomial evaluation. With this method, base A (10) is converted to base B (2) by
successively dividing of the accumulated value by base A using the arithmetic of
base B. This is the reverse of the procedure we just discussed.

For example, lets convert .66D to binary. We use a word variable to perform the
conversion and place the decimal value into the upper byte, one digit at a time,
starting with the least significant. We then divide by the base from which we're
converting. Starting with the least significant decimal digit, we divide 6.00H (the
radix point defines the division between the upper and lower bytes) by OaH to get
.99H. This fraction is concatenated with the next most significant decimal digit,
yielding 6.99H. We divide this number by OaH, for a result of .a8H. Both divisions
in this example resulted in remainders; the first was less than one-half the LSB and
could be forgotten, but the second was more than one-half the LSB and could have
been used for rounding.

Create afixed-point representation large enough to contain the fraction, with an
integer portion large enough to hold a decimal digit. In the previous example, a byte
was large enough to contain the result of the conversion (log,, 256 is approximately
2.4) with four hits for each decimal digit. Based on that, the variable bfrac should be
at least 12 hits wide. Next, a byte variable dfrac is necessary to hold the two decimal
digits. Finally, a counter (dcntr) is set to the number of decimal digits to be converted.

175

NUMERICAL METHODS

Clear bfrac and load dentr with the number of digits to be converted.

Check to see that dentr is not yet zero and that there are digits yet to convert.
If not, the conversion is done.

Shift the least significant digit of dfrac into the position of the least
significant integer in the fixed-point fraction bfrac.

Divide bfrac by OaH, clear the integer portion to zero, and continue with step 2.

The following example takes a string of ASCII decimal characters and converts

them to an equivalent binary fraction. An invisible radix point is assumed to exist
immediately preceding the start of the string.

Dfc_bn: Algorithm

L.

176

Find |east significant ASCII BCD digit. Point to the binary fraction
variable and clear it. Clear DX to act as the MSWof the dividend and
set the loop counter to eight (the maxi num nunber of characters to
convert).

Put the MSWof the binary result variable in AX and the |east significant
ASCI| BCD digit in DL. Check to see if the latter is a decimal digit.

If not, exit through step 6.

If so, force it to binary. Decrenent the string pointer and check the
dividend (32-bit) for zero.

If it's zero, go to step 3.
Ot herwi se, divide DX AX by 10.

Put AX in the MSWof the binary result variable and get the LSW Check
DX: AX for zero.

If it's zero, go to step 4.
Ot herwi se, divide DX AX by 10.

Put AX in the LSWof the binary result variable. Cear DX for the next
conversion. Decrenent the |oop variable and check for zero.

If it's zero, go to step 5.

Ot herwi se, continue with step 2.
Exit with the carry clear.

Exit with the carry set.

Dfc-bn: Listing

ckkkkk
1

; dfc_bn -

;to binary representation
;converted. The conversion will

INPUT, OUTPUT, AND CONVERSION

A conversion routine that converts an ASCII decimal fraction
decptr points to the decimal string to be
produce a doubleword result. The

;fraction is expected to be padded to the right if it does not fill eight

digits

dfc_bn proc uses bx cx dx s

pushf
cld

nov
sub
nov
repne
dec
dec

sub

bi nary_conversion
nmov

nmv

cnP
ib
cnp
ja

xor

di, word ptr decptr
ax, ax

cx, 9

scash

di

di

si, di

di, word ptr fraction
word ptr [di], ax
word ptr [di][2], ax

cx, 8

dx, dx

a

>

, word ptr [di][2]
dl, byte ptr [si]

d, o

oops

d, ¢

oops

da, o

di, decptr:word, fraction:word

;point to decimal string

;find end of string

;point to least significant
;byte

;point of binary fraction

maxi num nunber of
;characters

;get high word of result
;variabl e

;concatenate ASCI| input
;With binary fraction
;check for decimal digit

;if it gets past here
;it nust be K
; deASCl 1i ze

177

NUMERICAL METHODS

dec si
sub bx, bx
or bx, dx
or bx, ax
iz no_di v0 ;prevent a divide by zero
div iten ;divide by 10
no_di vo:
nov word ptr [di][2],ax
nov ax,word ptr [di]
sub bx, bx
or bx, dx
or bx, ax
iz no_divl ;prevent a divide by zero
div iten
no_divl:
nov word ptr [di],ax
sub dx, dx
[oop bi nary- conversi on ;loop will terninate
;automatically
wor k_done:
sub ax, ax
cle ;no carry =success!
ret
00ps:
mv ax,-1 :bad character
stc
ret
dfc_bn endp

As you may have noticed from the fractional conversion techniques, truncating
or rounding your results may introduce errors. You can, however, continue the
conversion as long as you like. Given athird argument representing allowable error,
you could write an agorithm that would produce the exact number of digits required
to represent your fraction to within that error margin. This facility may or may not
be necessary in your application.

178

INPUT, OUTPUT, AND CONVERSION

Table-Driven Conversions

Tables are often used to convert from one type to another because they often offer
better speed and code size over computational methods. This chapter covers the
simpler lookup table conversions used to move between bases and formats, such as
ASCII to binary. These techniques are used for other conversions as well, such as
converting between English and metric units or between system-dependent factors
such as revolutions and frequency. Tables are also used for such things as facilitating
decimal arithmetic, multiplication, and division; on a binary machine, these opera-
tions suffer increased code size but make up for that in speed.

For al their positive attributes, table-driven conversions have a major drawback:
atable is finite and therefore has a finite resolution. Y our results depend upon the
resolution of the table alone. For example, if you have a table-driven routine for
converting days to seconds using a table that has a resolution of one second, an input
argument such as 16.1795 days, which yields 1,397,908.8 seconds will only result
in only 1,397,908 seconds. In this case, your result is amost a full second off the
actua value.

Such problems can be overcome with a knowledge of what input the routine will
receive and a suitable resolution. Another solution, discussed in the next chapter, is
linear interpolation; however, even this won't correct inexactitudes in the tables
themselves. Just as fractions that are rational in one base can be irrational in another,
any trandation may involve inexact approximations that can compound the error in
whatever arithmetic the routine performs upon the table entry. The lesson is to
construct your tables with enough resolution to supply the accuracy you need with
the precision required.

The following covers conversion from hex to ASCII, decima to binary, and
binary to decima using tables.

Hex to ASCII

The first routine, hexasc, is a very simple example of a table-driven conversion:
from hex to ASCII.

The procedure is ssimple and straightforward. The table, hextab, contains the
ASCII representations of each of the hex digits from O through f in order. Thisisan

179

NUMERICAL METHODS

improvement over the ASCII convention, where the numbers and alphabet are not
contiguous. In the order we' re using, the hex number itself can be used as an index
to select the appropriate ASCII representation.

Because it uses XLAT, an 8086-specific instruction, this version of the routine
isn't very portable, though it could conceivably be replaced with a move involving
an index register and an offset (the index itself). Before executing XLAT, the user
places the address of the table in BX and an index in AL. After XLAT is executed,
AL contains the item from the table pointed to by the index. This instruction is useful
but limited. In the radix conversion examples that follow, other ways of indexing
tables will be presented.

Hexasc takes the following steps to convert a binary quadword to ASCII hex.

hexasc: Algorithm

1. Sl points to the nost significant byte of the binary quadword, D points
to the output string, BX points to the base of hextab, and CX holds the
nunber of bytes to be converted.

2. The byte indicated by SI is pulled into AL and copied to AH

3. Since each nibble contains a hex digit, AHis shifted right four times
to obtain the upper nibble. Mask AL to recover the |ower nibble.

4. Exchange AH and AL so that the nore significant digit is translated first.

5. Execute XLAT. AL now contains the ASCI| equival ent of whatever hex digit
was in AL

6. Wite the ASCI| character to the string and increment Di.

7. Exchange AH and AL again and execute XLAT.

8. Wite the new character in AL to the string and increnent DI.

9. Decrenment SI to point to the next |esser significant byte of the hex

nunber.

10. Execute the loop. When CX is 0, it will automatically exit and return.

hexascs Listing

CokkkkkR
’

; hex-to-ASCI | conversion using xlat

; sinple and common table-driven routine to convert from hexadeci mal
; notation to ASCl |

; quadword argunent is passed on the stack, with the result returned

180

INPUT, OUTPUT, AND CONVERSION

; in astring pointed to by sptr

.data

hextab byte

. code

hexasc proc

lea

make ascii
nmov
nmov
shr
shr
shr
shr
and
xchg

x| at
nmov
inc
xchg
x| at
nmov
inc
dec
| oop

sub
nmov

"t table of ASOI

;characters

uses bx cx dx si di, hexval:qword, sptr:word

si, byte ptr hexval [7]

di, word ptr sptr

bx, offset byte ptr hextab
cx, 8

al, byte ptr [si]
ah, al

ah, 1

ah, 1

ah, 1

ah, 1

al, 0fh

al, ah

byte ptr [di],al
di
al, ah

byte ptr [di],al
di

si

make asci

al, a
byte ptr [di],al

;point to MSB of hex value
;point to ASCII string
;offset of table

;nunber of bytes to be
;converted

;get hex byte
;copy to ah to unpack
;shift out |ower nibble

;strip higher nibble

;high nibble first

;wite ASCII byte to string
;now the lower nibble
;wite to string

;increment string pointer
;decrement hex byte pointer

:NULL at the end of the
;string

181

NUMERICAL METHODS

ret

hexasc endp

Decimal to Binary

Clearly, the table is important in any table-driven routine. The next two
conversion routines use the same resource: a table of binary equivalents to the powers
of 10, from 10° to 10™. The problem with table-driven radix conversion routines,
especially when they involve fractions, is that they can be inaccurate. Many of the
negative powers of base 10 are irrational in base 2 and make any attempt at
conversion merely an approximation. Nevertheless, tables are commonly used for
such conversions because they allow a direct trandation without requiring the
processor to have a great deal of computational power.

The first example, tb_dcbn, uses the tables int_tab and frac_tab to convert an
input ASCII string to a quadword fixed-point number. It uses the string’ s positional
daterthe length of the integer portion, for instance— to create a pointer to the correct
power of 10 in the table. After the integer is converted to binary, it is multiplied by
the appropriate power of 10. The product of this multiplication is added to a
guadword accumulator. When the integer is processed, the product is added to the
most significant doubleword; when the fraction is processed, the product is added to
the least significant doubleword (the radix point is between the doublewords).

Before the actua conversion can begin, the routine must determine the power of
10 occupied by the most significant decimal digit. It does this by testing each digit
in turn and counting it until it finds a decimal point or the end of the string. It uses
the number of characters it counted to point to the correct power in the table. After
determining the pointer’'s initial position, the routine can safely increment it in the
rest of the table by multiplying consecutive numbers by consecutive powers of 10.

tb-dcbn: Algorithm

1. Forma pointer to the fixed-point result (the ASCII string) and to the
base address of the integer portion of the table. Cear the variable to
hold the fixed-point result and the sign flag. Set the maxi mum number
of integers to nine.

2. Examine the first character.

182

INPUT, OUTPUT, AND CONVERSION

If it's a hyphen, set the sign flag, increment the string pointer past
that point, and reset the pointer to this value. Get the next character
and continue with step 3.

If it's a "+ " increment the string pointer past that point and reset

the pointer to this value. Cet the next character and continue with step
3.

If it's a period save the current integer count, set a new count for the
fractional portion, and continue with step 2.

If it's the end of the string, continue with step 5.

If it's not a nunber, exit through step 10.

if it's a nunber, increment the number counter.

Test the counter to see how many integers have been processed.
If we have exceeded the maximum exit through step 12.

If the count is equal to or less than the maxi mum increment the string
pointer, get a new character and test to see whether we are counting
integers or fractions,

If we are counting integers, continue with step 3.
If we are counting fractional numbers, continue with step 4.

Cet the integer count, convert it to hex, and multiply it by four (each
entry is four bytes long) to index into the table.

CGet a character.
If it's a period continue with step 8.
If it's the end of the string, continue with step 10.

If it's a nunber, deASCilize it, multiply it by the four-byte table entry,
and add the result to the integer portion of the fixed-point result
variable. Increment the string pointer and increnent the table pointer
by the size of the data type.Continue with step 7.

Increment the string pointer past the period.
CGet the next character.
If it's the end of the string, continue with step 10.

If not, deASCllize it and multiply it by the next table entry, adding
the result to the fixed-point variable. Increnent the string pointer and
increment the table pointer by the size of the data type. Continue with
step 9.

183

NUMERICAL METHODS

10. Check the sign flag.

If it's set, two' s-conplement the fixed-point result and exit with
success.

If it's clear, exit with success.
11. Not a nunber: set AXto -1 and continue with step 12.
12. Too big. Set the carry and exit.

tb-dcbn: Listing

: tabl e-conversion routines

.data

int tab dword 3b9acal0h, 05f5e100h, 00989680h, 000f 4240h
000186a0h, 00002710h, 000003e8h, 00000064h
0000000ah, 0000000 h

frac_tab dwor d 1999999ah, 028f5c29h, 00418937h, 00068dboh
0000a7c5h, 0000l Oc6h, 00000 adh, 0000002ah
00000004h

tab_end dwor d 00000000h

.code
. converts ASCII decimal to fixed-point binary

{b_dcbn proc uses bx cx dx si di.

sptr:word, fxptr:word
| ocal sign:byte
nov di, word ptr sptr ;point to result
nov si, word ptr fxptr ;point to ascii string
| ea bx, word ptr frac_tab ;point into table
mv cx, 4 ;clear the target variable
sub ax, ax
sub dx, dx
rep stosw
nmov di, word ptr sptr ;point to result

184

cnp
je
chk_frac:
cnp
je
cnp
ib
cnp
ja
cnt nu:
inc
cnp
ja
inc
nov
or

jne

/P
fnd_dot:

nmov

inc

nmov

xchg

negative:
not

posi tive:
inc
mov
mov

INPUT, OUTPUT, AND CONVERSION

cl, al
ch, 9h
byte ptr sign, al

al, byte ptr [si]
al -

negative

al, '+

positive

al : 1 . 1
fnd_dot

al,0

got nurber
al,'0'

not _a_number
al,'9'

not _a_number

cl

cl,ch

too_big

Si

al, byte ptr [si]
dh, dh

chk_frac
short count

dh, cl

dh

d1, 13h

ch, dl

short cntnu

sign
Si

word ptr fxptr,si
al, byte ptr [si]

;to count integers
;max int digits
;assume positive
;get character
;check for sign

:count :

;count the nunber of
;characters in the string

;end of string?

(is it a number then?

;count
:check size

;next character

;get character

;are we counting int

cor frac?

;count characters in int
;switch to counting fractions

;can't be zero
;includes decimal point

;make it negative

;get a character

185

NUMERICAL METHODS

j m

got nunber:

sub
xchg
dec
shl
shl
sub
sub

mv

cnvrt_int

handl e_fraction

nov
cnp
je
cnp
je
sub
nov
m

add
adc
nov
m

add
adc
add
inc
jm

inc

cnvrt_frac:

186

nov
cnp
je

sub
nov

m

short count

ch, ch

cl,dh

cl

word ptr cx,
word ptr cx,
bx, cx

X, CX

si,word ptr fxptr

cl,byte ptr [si]
cl,'.'

handl e_fraction
cl,0

do_sign

c, o

ax,word ptr [bx][2]
X

word ptr [di][4],ax
wor d

ax,word ptr [bx]

CX

word ptr [dil[4],ax
word ptr [di][6],dx
bx, 4

si

short cnvrt_int

S

cl,byte ptr [si]
cl,0

do_sign

c,'0

ax,word ptr [bx][2]

CX

;get int count

;multiply by four

cindex into table

;don't need integer count
;anynor e

;point at string again
;get first character

;go do fraction, if any
;end of string

;multiply by deASClIized
-i nput

;multiply by deASCIized
i nput

;drop table pointer

;skip decimal point
;get first character
;end of string

;FMs can never result
;ina carry

;multiply by deASClIized
;1 nput

INPUT, OUTPUT, AND CONVERSION

add word ptr [di][2],ax
nov ax,word ptr [bx]
ml cX ;multiply by deASCIized
;i nput
add word ptr [di][0],ax
adc word ptr [di][2],dx
add bx, 4 ;drop table pointer
inc Si
jmp short cnvrt_frac
do_si gn:
nov al,byte ptr sign ; check sign
or al, al
je exit ;it is positive
not word ptr [di][6]
not word ptr [di][4]
not word ptr [di][2]
neg word ptr [di]
jc exit
add word ptr [di] [2],1
adc word ptr [di] [4],0
adc word ptr [di] [61,0
exit:
ret
not _a_nunber
sub ax, ax
not ax -1
too_big:
stc ;failure
inp short exit
tb_dcbn endp

Binary to Decimal

The binary-to-decimal conversion, tb_bndc, could have been written in the same
manner as tb_dcbn—using a separate table with decima equivaents to hex pos-
tional data. That would have required long and awkward decima additions, how-
ever, and would hardly have been worth the effort.

The ideais to divide the input argument by successively smaller powers of 10,
converting the quotient of every division to ASCII and writing it to astring. Thisis

187

NUMERICAL METHODS

done until the routine reaches the end of the table. To use the same table and keep
the arithmetic binary, take the integer portion of the binary part of the fixed-point
variable to be converted and, beginning at the top of the table, compare each entry
until you find one that’ s less than the integer you' re trying to convert. Thisis where
you start. Successively subtract that entry from the integer, counting as you go until
you get an underflow indicating you' ve gone too far. Y ou then add the table entry
back into the number and decrease the counter. Thisis caled restoring division; it
was chosen over other forms because some of the divisors would be two words long.
That would mean using a division routine that would take more time than the simple
subtraction here. The number of times the table entry could divide the input variable
is forced to ASCII and written to the next location in the string.
Thb-bndc is an example of how this might be done.

tb_bndc: Algorithm

1. Point to the fixed-point variable, the output ASCIl string, and the top
of the table. Cear the |eading-zeros flag.

2. Test the MSB of the fixed-point variable for sign. If it's negative, set
the sign flag and two's-conplenent the fixed-point variable.

3. Cet the integer portion of the fixed-point variable. Conpare the integer
portion to that of the current table entry.

If the integer is larger than the table entry, continue with step 5.
If the integer is less than the table entry, check the |eading-zeros flag.
If it's nonzero, output a zero to the string and continue with step 4.
If it's zero, continue with step 4.

4. Increnent the string pointer, increnent the table pointer by the size
of the data type, and conpare the table pointer with the offset of
fractab, 10°

If the table pointer is greater than or equal to the offset of fractab,
continue with step 3.

If the table pointer is less than the offset of fractab, continue with
step 6.

5. Increnent the |eading-zeros flag, call step 10, and continue with step

188

INPUT, OUTPUT, AND CONVERSION

4 upon return.

6. If the leading-zeros flag is clear, wite a zero to the string, increnment
the string pointer, issue a period, increment the string pointer again,
and get the fractional portion of the fixed-point variable.

7. Load the fractional portion into the DX AX registers.
7a. Conpare the current table entry with DX AX
If the MSWof the fractional portion is greater, continue with step 9.
If the MSW of the fractional portion is less, continue with step 8.
8. Wite a zero to the string.
8a. Increment the string and table pointers and test for the end of the table.
If it's the end, continue with step 11.
If it's not the end, continue with step 7a.
9. Call step 10 and continue with step 8a.

10. Subtract the table entry fromthe remaining fraction, counting each
subtraction. Wien an underflow occurs, add the table entry back in and
decrenent the count. Convert the count to an ASCI| character and wite
it to the string. Return to the caller.

11. Wite a NULL to the next location in the string and exit.

tb_bndc: Listing

; converts binary to ASCI| decinal

tb_bndc proc uses bx cx dx si di
sptr:word, fxptr:word

[ocal leading_zeros: byte

nmv si, word ptr fxptr ;point to input fixed-point
; ar gunent

nmv di, word ptr sptr ;point to ASCII string

| ea bx, word ptr int tab ;point into table

sub ax, ax

nmov byte ptr |eading_zeros, al ;assume positive

nmov ax, word ptr [si][6] ;test for sign

or ax, ax

ins positive

189

NUMERICAL METHODS

inc
not
not
not
neg
jc

add
adc
adc

posi tive:
mov
mov
sub

wal k_t ab:

chp

ja
ib
cnp
jae
pushptr:
cnp

je
nov

cnt nu:
inc

skip_zero:
inc
inc
inc
inc
cnp
jae
jm

got nunber:
sub
inc

190

byte ptr [di],'-'

di

word ptr [si][6]
word ptr [si][4l
word ptr [si] [2]
word ptr [si][0]
positive

word ptr [si] [2],1
word ptr [si][4],0
word ptr [si][6],0

dx, word ptr [si][6]
ax, word ptr [si][4]
CX, CX

dx, word ptr [bx] [2]

got nurber
pushpt r

ax, word ptr [bx]
got nurber

byte ptr cl, |eading_zeros
skip_zero

word ptr count: [di],'O

di

bx

bx

bx
bx

;wite hyphen to output
;string

;two's conpl ement

;get integer portion

;find table entry smaller
;than integer

;entry smaller

;integer smaller

chave we witten a nunber
yet?

;wite a '0'" to the string

;next character

;next table entry

bx, offset word ptr frac_tab ;done with integers?

handl e-fraction
short wal k_tab

CX, CX
| eading zeros

;yes, do fractions

;shut off leading zeros bypass

cnvrt_int:
call

jmp
handl e_fraction:
cnp
jne
nov
inc
do_frac:
nmov
inc
get _frac:
nmov

sub
wal k_tabl :
cnp
ja
ib
cnp
jae
pushptrl:
nmov
skip_zerol:
inc
inc
inc
inc
inc
cnp
jae
jmp
smal | _enuf:
sub
smal | _enufl:
call

j m

exit:

INPUT, OUTPUT, AND CONVERSION

near ptr index
short cntnu

byte ptr |eading_zeros,0
do frac

byte ptr [di],'O

di

word ptr [di],'.'
di

dx, word ptr [si][2]
ax, word ptr [si][Q
CX, CX

dx, word ptr [bx] [2]
smal | _enuf

pushptrl

ax, word ptr [bx]
smal | _enuf

byte ptr [di],"'0

di

bx

bx

bx

bx

bx, offset word ptr tab_end
exit

short wal k_tabl

CX, CX
near ptr index

short skip_zerol

di

;calculate and wite to string

;witten anything yet?

;put decimal point

;move fraction to registers

;find suitable table entry

‘wite "0

;next character
;next entry

;calculate and wite

NUMERICAL METHODS

sub cl,cl ;put NULL at
nov byte ptr [si],cl ;end of string
ret
i ndex:
inc CX ;count subtractions
sub ax, word ptr [bx]
shb dx, word ptr [bx] [2]
jnc i ndex ;subtract until a carry
dec X
add ax, word ptr [bx] ;put it back
adc dx, word ptr [bx][2]
or cl,'0' ;nake it ascii
nov byte ptr [di],cl ;wite to string
retn
tb_bndc endp

Floating-Point Conversions

This next group of conversion routines involves converting ASCII and fixed
point to floating point and back again. These are specialized routines, but you'll
notice that they employ many of the same techniques just covered, both table-driven
and computational.

The conversions discussed in this section are ASCII to single-precision float,
single-precision float to ASCII, fixed point to single-precision floating point, and
single-precision floating point to fixed point.

You can convert ASCIl numbers to single-precision floating point by first
converting from ASCII to a fixed-point value, normalizing that number, and
computing the shifts for the exponent, or you can do the conversion in floating point.
This section gives examples of both; the next routine uses floating point to do the
conversion.

ASCII to Single-Precision Float

Simply put, each ASCII character is converted to hex and used as a pointer to a
table of extended-precision floating-point equivalents for the decima digits O
through 10. As each equivalent is retrieved, a floating point accumulator is multi-
plied by 10, and the equivalent is added, similar to the process described earlier for
integer conversion by multiplication.

192

INPUT, OUTPUT, AND CONVERSION

The core of the conversion is simple. We need three things: a place to put our

result flaccum, a flag indicating that we have passed a decimal point dpflag, and a
counter for the number of decimal places encountered dpcentr.

atf:

Cear flaccum and dpcntr.

Multiply flaccum by 10.0.

Fetch the next character.

If it's a decimal point, set dpflag and continue with step 3.
If dpflag is set, increment dpcntr.

If it's a nunmber, convert it to binary and use it as an index into
a table of extended floats to get its appropriate equivalent.

Add the nunmber retrieved fromthe table to flaccum

See if any digits remain to be converted. If so, continue fromstep 2.
If dpflag is set, divide flaccum by 10.0 dpcntr tinmes.

Exit with the result in flaccum

The routine atf perfornms the conversion described in the pseudocode. It
will convert signed numbers conplete with signed exponents.

Algorithm

Clear the floating-point variable, point to the input ASCI1 string, clear
local variables associated with the conversion, and set the digit counter
to 8.

Get a character fromthe string and check for a hyphen.

If the character is a hyphen, conplenment nunsin and get the next
character. Go to step 3.

If not, see if the character is "+."

If not, go to step 3.

If so, get the next character and go to step 3.

See if the next character is "."

If so, test dp, the decimal-point flag.

If it's negative, we have gone beyond the end; go to step 7.

If not, invert dp, get the next character, and go to to step 4.
If not, go to step 4.

193

NUMERICAL METHODS

8.

194

See if the character is an ASCI| decimal digit.
If it isn't, we may be done; go to step 5.

If it is, multiply the floating-point accumulator by 10 to make room for
the new digit.

Force the digit to binary.

Miltiply the result by eight to forma pointer into a table of extended
floats.

Add this new floating-point digit to the accumul ator.

Check dp_flag to determ ne whether we have passed a decimal point and
shoul d be decrenenting dp to count the fractional digits. If so,
decrenent dp.

Decrement the digit counter, digits.

Get the next character.

Return to the beginning of step 3.

Get the next character and force it to |owercase.
Check to see whether it's an "e"; if not, go to step 7.

O herwise, get the next character and check it to see whether it's a
hyphen.

If so, conplenent expsin, the exponent sign, and go to step 6.
G herwi se, check for a "+."
If it's not a "+ " go to step 6a.
If it is, goto step 6.
Get the next character.
6a. See if the character is a decimal digit.
If not, go to step 7.
QG herwise, multiply the exponent by 10 and save the result.

Subtract 30H from the character to force it to binary and OR it
with the exponent.

Continue with step 6.
See if expsin is negative.

If it is, subtract exponent fromdp and |eave the result in the CL
register.

If not, add exponent to dp and |eave the result in CL.

If the sign of the nunber, nunsin, is negative, force the extended fl oat

10.

11.

atf:

INPUT, OUTPUT, AND CONVERSION

to negative.

If the sign of the nunber in CL is positive, go to step 10.
QO herwi se, two's-conplement CL and go to step 9.

Test CL for zero.

If it's zero, go to step 11.

If not, increment a |oop counter. Test CL to see whether its LSB has a
Zero.

If so, nultiply the value of the |oop counter by eight to point to the
proper power of 10. Divide the floating-point accunulator by that power
of 10 and shift CL right once. Continue with the beginning of step 9.
(These powers of 10 are located in a table |abeled 10. For this schene
to work, these powers of 10 follow the binary order 1, 2, 4, 8, as shown
in the table inmediately preceding the code.)

If not, shift CL right once for next power of two and continue at the
begi nning of step 9.

Test CL for zero.

If it's zero, go to step 11.

If not, increment a |oop counter and test CL to see whether its LSBis
a zero.

If so, nultiply the value of the |oop counter by eight to point to the
properpower of 10. Miltiply the floating-point accumulator by that power
of 10, shift CL right once, and continue with the beginning of step 10.
(These powers of 10 are located in a table |abeled '10'. Again, for this
scheme to work, these powers of 10 nust follow the binary order 1, 2,
4, 8, as shown in the table inmediately preceding the code.)

If not, shift CL to the right once and continue with the beginning of
step 10.

Round the new float, wite it to the output, and |eave.

ckk kKK
'

dst

one
ten

Listing
.data
qword 000000000000h, 3f 8000000000h, 400000000000h, 404000000000h,
408000000000h, 40a000000000h, 40c000000000h, 40e000000000h,
410000000000h, 411000000000h
qwor d 3f8000000000h
qword 412000000000h, 42¢800000000h,

195

NUMERICAL METHODS

. code

461¢40000000h
4cbebc200000h, 5a0el bc9bf 00h

749dc5ada82bh

;unsigned conversion from ASCII string to short rea
di, string:word, rptr:word ;one word for near pointer

atf proc uses Si

| ocal exponent:byte, fp:qword, numsin:byte, expsin:byte
dp_flag:byte, digits:byte, dp:byte

pushf
std
xor
lea

rep stosw

do_num
nov
cnp
jne
not
inc
nov
jmp

not _m nus
cnp

196

ax, ax

di,word ptr fp[6]

cx, 8
word ptr

si,string

byte ptr
byte ptr
byte ptr
byte ptr
byte ptr
byte ptr

bl, [si]
bl,"-

not ninus
[nunsin]
Si
bl,es:[si]
not sign

bl,'+

[di]

[exponent], a
dp_flag, a
nunsi n, al
expsin, a
dp, a
digits, 8h

;clear the floating
;variabl e

;pointer to string

cinitialize variables

;count of total digits rounding
;digit is eight

;begin by checking for a
;sign, a nunber, or a

; period

;get next char

;it is a negative number
;set negative flag

;get next char

;s it plus?

jne
inc
nov

not _sign
cnp
jne
test
jne
not
inc
nmov

not _dot
cnp
ib
cnp
ja
i nvoke
nov
sub
sub
shl

shl
shl
i nvoke

test
je
dec
no_dot _yet
inc
dec
jc
nov
jm
not _a_num
nov
or
cnp
je

INPUT, OUTPUT, AND CONVERSION

not _sign
Si
al, [si]

bl,".

not _dot

byte ptr [dp], 80h
end_o_cnvt
dp_flag

si

bl, [si]

bl,"0

not _a_num

bl,"9

not _a_num

flmul, fp, ten, addr fp
b, [si]

bl, 30h

bh, bh

bx, 1

bx, 1
bx, 1
fladd, fp, dgt[bx], addr fp

byte ptr [dp_flag],Offh
no_dot _yet

[dp]

si

byte ptr digits
not _a_num
bl,es:[si]

not _sign

bl, [si]
bl, | ower _case
bl,'e'
chk_exp

;get next char

; check for decimal point

;negative?
;end of conversion
;set decimal point flag

;get next char

;get legitimte nunber

;muiltiply floating-point
;accunul ator by 10.0
;make it hex

;clear upper byte
;multiply index for
;proper of fset

;add to floating-point
;accurul at or

;have we encountered a
;decimal point yet?
;count fractional digits

;increment pointer
;one less digit
cat our limt?
;next char

;next char

; check for exponent

;looks |ike we may have
;an exponent

197

NUMERICAL METHODS

chk_epr
inc
nov
cnp
jne
not

chk_pl usJ:
cnp
jne

chk_expl :
inc
nov

chk_exp2:
cnp
b
cnp
ja
sub
nov
ml

mv

nov
sub
or

jmp
end_o_cnvt:
sub
nmov
nmov
or
jns
sub

jm
pas_exp:
add

chk_nunsi n:
cnp

198

end_o_cnvt

Si

b, [si]
bl,'-'
chk_pl us

[expsin]

short chk_expl

bl,'+
short chk_exp2

Si

bl, [si]
bl,"'0'
end_o_cnvt
bl,"9
end_o_cnvt
ax, ax

al, byte ptr [exponent]
iten

byte ptr [exponent],al

bl, [si]

b, 30h

byte ptr [exponent], bl
short chk_expl

cX, X
al,byte ptr [expsin]
cl,byte ptr [dp]

al, al

Pos_exp

cl,byte ptr [exponent]

short chk_nunsin

cl,byte ptr [exponent]

word ptr nunsin,Offh

;next char
;negative exponent

;set exponent sign

;mybe a plus?

;next char

;do conversion of
;exponent as in
;integer conversion
;by multiplication
;next char

;make hex

;or into accunul ator

;calcul ate exponent

;1S exponent negative?

; subtract exponent from
;fractional count
*exponent to fractional

; count

test sign

jne
or
chk_expsi n:
xor
or
jns
neg
do_negpow.
or
je
inc
test
je
mov
push
shl
shl
shl
i nvoke

pop
do_negpowa

shr
i
do_pospow.
or
je
inc
test
je
nov
push
shl
shl
shl
i nvoke

pop
do_pospowa

shr

jmp
atf_ex:

i nvoke

INPUT, OUTPUT, AND CONVERSION

chk_expsin
word ptr fp[4],8000h

ax, ax
cl,cl
do_pospow
cl

cl,cl
atf_ex

ax

cx, 1h
do_negpowa
bx, ax

ax

bx, 1

bx, 1

bx, 1

fldiv, fp, powers[hbx]

ax

cx, 1
short do_negpow

cl,cl

atf ex

ax

cx, lh
do_pospowa
bx, ax

ax

bx, |

bx, |

bx, |

flml, fp, powers[bx],

ax

cx, 1
short do_pospow

round, fp, addr fp

;i1f exponent negative
;S0 is number

;make exponent positive

;1S exponent zero yet?

:check for one in LSB

; mke pointer

addr fp
;divide by power of 10

;1S exponent zero yet?

:check for one in LSB

; mke pointer
addr fp
;multiply by power often

;round the new float

199

NUMERICAL METHODS

nmv di,word ptr rptr ;wite it out
nmov ax,word ptr fp
nmov bx,word ptr fp[2]
nmov dx,word ptr fp[4]
nmov word ptr [di], bx
nmv word ptr [di][2],dx
popf
ret
atf endp

Single-Precision Float to ASCII

This function is usually handled in C with fcvt() plus some ancillary routines that
format the resulting string. The function presented here goes a hit further; its purpose
is to convert the float from binary to an ASCII string expressed in decimal scientific
format.

Scientific notation requires its own form of normalization: a single leading
integer digit between 1.0 and 10.0. The float is compared to 1.0 and 10.0 upon entry
to the routine and successively multiplied by 10.0 or divided by 10.0 to bring it into
the proper range. Each time it is multiplied or divided, the exponent is adjusted to
reflect the correct value.

When this normalization is complete, the float is disassembled and converted to
fixed point. The sign, which was determined earlier in the algorithm, is positioned
asthefirst character in the string and is either a hyphen or a space. Each byte of the
fixed-point number is then converted to an ASCII character and placed in the string.
After converting the significand, the routine writes the vaue of the exponent to the
string.

In pseudocode, the procedure might look like this.

fta: Algorithm

1. Cear a variable, fixptr, large enough to hold the fixed-point
conversion. Allocate and clear a sign flag, sinptr. Do the same for a
flag to suppress |eading zeros (leading zeros), a byte to hold the
exponent, and a byte to count the nunber of nultiplies or divides it takes
to nornalize the nunber, ndg.

2. Test the sign bit of the input float. If it's negative, set sinptr and
nmeke the float positive.

200

10.
11.

12.

13.
14.

INPUT, OUTPUT, AND CONVERSION

Compare the input float to 1.0.

If it's greater, go to step 4.

If it's less, multiply it by 10.0. Decrenent ndg and check for underflow.
| f underflow occurred, go to step 18.

If not, return to the beginning of step 3.

Compare the float resulting fromstep 3 to 10.0.

If it's less, go to step 5.

If it's greater, divide by 10.0. Increnent ndg and check for overflow.
I f overflow occurred, go to step 17.

If not, return to the beginning of step 4.

Round the result.

Extract the exponent, subtract the bias, and check for zero. If we
underflow here, we have an infinite result; go to step 17.

Restore the hidden bit. Using the value resulting fromstep 6, align the
significand and store it in the fixed-point field pointed to by fixptr.
W shoul d now have a fixed-point value with the radi x point aligned
correctly for scientific notation.

Start the process of witing out the ASCII string by checking the sign
and printing hyphen if sinptr is -1 and a space otherw se.

Convert the fixed-point value to ASCII with the help of AAM and call step
19 to wite out the integer.

Wite the radix point.

Wite each decimal digit as it's converted fromthe binary fractional
portion of the fixed-point number until eight characters have been
printed.

Check ndg to see whether any nultiplications or divisions were necessary
to force the number into scientific format.

If ndg is zero, we're done; ternmnate the string and exit through step
16.

If ndg is not zero, continue with step 13.
Print the "e."

Exam ne the exponent for the appropriate sign. If it's negative, print
hyphen and two's-conpl enent ndg.

201

NUMERICAL METHODS

15. Convert the exponent to ASCII format, witing each digit to the output.
16. Put a NULL at the end of the string and exit.
17. Print "infinite" to the string and return with failure, AX = -1.
18. Print "zero" to the string and return with failure, AX = -1.
19. Test to see whether or not any zero is |eading.
If so, don't print-just return.
If not, wite it to the string.

Fta: Listing

vokkkkk
[

; conversion of floating point to ASCI

fta proc uses bx cx dx si di, fp:gword, sptr:word
| ocal sinptr:byte, fixptr:qword, exponent:byte.
| eadi ng_zeros: byte, ndg: byte

pushf
std
xor ax, ax ;clear fixed-point
cvariabl e
lea di,word ptr fixptr[6]
myv cx, 4
rep st osw
nov byte ptr [sinptr],al ;clear the sign
nov byte ptr [leadin_zeros],al ;and other variables
nov byte ptr [ndg],al
nov byte ptr [exponent],al
ck_neg:
test word ptr fp[4],8000h ;get the sign
je gtr_0
xor word ptr fp[4],8000h ;make float positive
not byte ptr [sinptr] ;set sign
;negative
gtr_0O: ;conpare input with 1.0
i nvoke flconp, fp, one ;still another kind of

202

cnp
je

dec
cnp

il
i nvoke
jm
| ess_than ten
i nvoke
cnp
je
inc
cnp
i
i nvoke
jm
Rnd:
i nvoke

normfix

nov
nov
nov
shl

get_exp
nov
sub

nov
sub
is

| ea
do_shift:
stc
rer
sub

INPUT, OUTPUT, AND CONVERSION

ax, 1h

| ess_than_ten

byte ptr [ndg]

byte ptr [ndg],-37

zero_result
flmul, fp, ten, addr fp
short gtr_0

flconp, fp, ten
ax, -1

norm fix

byte ptr [ndg]
byte ptr [ndg], 37

infinite result
fldiv, fp, ten, addr fp
short less_than ten

round, fp, addr fp

ax,word ptr fp[0]
bx,word ptr fp[2]
dx,word ptr fp[4]
dx, 1

byte ptr exponent, dh
byte ptr exponent, 7fh
cx, sh

cl,byte ptr exponent
infinite result

di,word ptr fixptr

dl, 1
cx, 1

:normal i zation
;argument reduction

;deci ml count er
;range of single-
;precision float

;multiply by 10.0

;conpare with 10.0

;deci ml counter
;orange of single-
;precision float

;divide by 10.0

;fixup for translation
;this is for ASC |

;conversion
;dunp the sign bit

;remove bias

;could cone out zero
cbut this is as far as
;can go

;restore hidden bit

203

NUMERICAL METHODS

je put _upper
shift_fraction:
shr dl, 1
rer bx, 1
rer ax, 1
[oop shift fraction
put _upper:
nmv word ptr [di], ax
nmv word ptr [di][2],bx
nmv al, dl
nmv byte ptr fixptr{4],d
xchg ah, al
sub dx, dx
nov di,word ptr sptr
cld
inc dx
mv al,' '
cnp byte ptr sinptr,0ffh
jne put _sign
mv al,'-'
put _si gn:
stosh
| ea si, byte ptr fixptr[3]
write_integer:
xchg ah, al
aam
xchg al, ah
or al,'o'
cal | near ptr str wt
xchg al, ah
or al,'0'
cal | near ptr str_wt
inc dx
dec Si
do_deci mal :

204

;shift significand into
;fractional part

;wite to fixed-point
;variabl e

;wite integer portion

;reverse direction of
‘Wwite

dis it a mnus?

;AL contains integer
;portion

;use AAM to convert to
; deci mal

;then ASCI

;then wite to string
;and repeat

;max char count

nov
stosb
do_deci mal |
i nvoke
or
call
inc
cnp

je
jw
do_exp
sub
cnp
jne
jmp
write_exponent
nov
stosh
nov
or
jns
xchg
nm
stosh
neg
xchg
sub
finiish exponent
chw
aam
xchg
or
stosh
xchg
or
stosh
last _byte
sub

stosb

popf
fta_ex

INPUT, OUTPUT, AND CONVERSION

al,'.'

milten, addr fixptr

al,'0

near ptr str wt

dx
dx, maxchar

do_exp

short do_decimal 1

ax, ax

al,byte ptr ndg
wite exponent
short |ast_byte

al,'e'

al,byte ptr ndg
al,a
finish_exponent
al, ah

val,'-'

ah

al , ah
ah, ah

ah, a
al,'0

ah, a

al,'0'

al,a

; deci mal point

;convert binary fraction
;to decimal fraction
;wite to string

;have we witten our
: maxi nun®

;is there an exponent?

;put the 'e
;with ndg calculate

; exponent

*negative exponent

;sign extension

; cheap conversion

;make ASCl |

cwite NULL to the end
;of the string

205

NUMERICAL METHODS

ret

infinite_result:

nmov di,word ptr sptr ;actually wites
ptinfinite!
nmov si,offset inf
nmv cx, 9
rep movsh
nmv ax, -1
jm short fta_ex
zero_result:
nmov di,word ptr sptr ;actually wites 'zero'
nmov si,offset zro
nmv cx, 9
rep mvsh
nmov ax, -1
jmp short fta_ex
str_wt: ;subroutine for witing
;Characters to output
cnp al,' 0 ;string
jne putt ; check whether | eading
;Zero or not
test byte ptr |eading_zeros,-1 ;don"t want any |eading
; Zeros
je nope
putt:
test byte ptr |eading_zeros,-1
jne pr nt
not | eadi ng_zer os
prnt:
stosh
nope:
retn
fta endp

Fixed Point to Single-Precision Floating Point
For this conversion, assume a fixed-point format with a 32-bit integer and a 32-

206

INPUT, OUTPUT, AND CONVERSION

bit fraction. This alows the conversion of longs and ints as well as purely fractiona
vaues; the number to be converted need only be aligned within the fixed-point field.

The extended-precision format these routines use requires three words for the

significand, exponent, and sign; therefore, if we shift the fixed-point number so that
its topmost oneisin bit 7 of the fourth byte, we' re amost there. We simply need to
count the shifts, adding in an appropriate offset and sign. Here's the procedure.

ftf:

1

Algorithm

The fixed-point value (binary) is on the stack along with a pointer (rptr)
to the float to be created. Flags for the exponent (exponent) and sign
(nnsin) are cleared.

Check the fixed-point nunmber for sign. If it's negative, two's-
conpl ement it.

Scan the fixed-point nunber to find out which byte contains the nost
significant nonzero bit.

If the number is all zeros, return the appropriate float at step 9.
If the byte found is greater than the fourth, continue with step 5.
If the byte is the fourth, continue with step 6.

If the byte is less than the fourth, continue with step 4.

The nost significant non zero bit is in the first, second, or third byte.

Subtract our current position within the nunber from four to find out
how many bytes away from the fourth we are.

Miultiply this nunber by eight to get the number of bits in the shift and
put this value in the exponent.

Move as many bytes as are available up to the fourth position, zeroing
those |ower values that have been noved and not replaced.

Continue with step 6.

The nost significant nonzero bit is located in a byte position greater
than four.

Subtract four from our current position within the number to find how
many bytes away fromthe fourth we are.

Miltiply this nunber by eight to get the number of bits in the shift and
put this value in the exponent.

Move these bytes back so that the npost significant nonzero byte is in
the fourth position.

207

NUMERICAL METHODS

ftf

)
;

Continue with step 6.
Test the byte in the fourth position to see whether bit 7 contains a one.
If so, continue with step 7.

If not, shift the first three words left one bit and decrenent the
exponent; continue at the start of step 6.

Clear bit 7 of the byte in the fourth position (this is the hidden bit).

Add 86H to exponent to get the correct offset for the nunber; place this
in byte 5.

Test nunmsin to see whether the nunber is positive or negative.

If it's positive, shift a zero into bit 7 of byte 5 and continue with
step 8.

If it's negative, shift a one into bit 7 of byte 5 and continue with
step 8.

Place bytes 4 and 5 in the floating-point variable, round it, and exit.
Wite zeros to every word and exit.

; Listing

(23331

;unsi gned conversion from quadword fixed point to short real
;The intention is to accommodate long and int conversions as well.
;Binary is passed on the stack and rptr is a pointer to the result.

ftf

proc uses si di, binary:qword, rptr:word ;one word for near
; poi nter

| ocal exponent:byte, numsin:byte

pushf
xor ax, ax
nov di, word ptr rptr ;point at future float
add di, 6
| ea si, byte ptr binary[0] ;point to quadword
mv bx, 7 i ndex
do_nunbers:
nmov byte ptr [exponent], al ;clear flags

208

do_num

ins
not
not
not
not
neg
jc

add
adc
adc

find_top
cnp
je
nov
or
jne
dec
jw

found_it
nov
cnp
ja
je

shift_left
std
nov
sub
shl
shl
shl
neg
nmov

| ea
| ea

INPUT, OUTPUT, AND CONVERSION

byte ptr nurnsin, a
dx, ax

al, byte ptr [si] [bx]
al, a

find top

byte ptr numsin
word ptr binary[6
word ptr binary[4
word ptr binary[2
word ptr binary[0
find_top

word ptr binary[2], 1
word ptr binary[4], O
word ptr binary[6], O

bl, dl
make zero

al, byte ptr [si][bx]
al,a

found it

bx

short find_top

dl, 80h

bl, 4

shift right
final right

CX,
CX,
CX,
CX,
CX,
cX
byte ptr [exponent], cl

NNl

di, byte ptr binary[4]
si, byte ptr binary

;record sign

;this one is negative

;compare index with 0
;we traversed the entire
; number

;get next byte

;anything there?

;nove index

;test for MSB
;radi x point

; above

;equa

;or bel ow?
;points to MSB
;target

tines 8

;calculate exponent

209

NUMERICAL METHODS

add

nov

inc
rep movsh

nov
sub
sub

rep stosh

jmp

shift_right:
cld
nmov
sub
| ea
nov
sub

shl
shl
shl
nov

nmov
sub
inc

rep nmovsh
sub
nov
sub
sub
| ea

rep stosh

final _right:
lea

final _rightl:
nov
test
jne
dec

210

Si,
CX,
CX

CX,
CX,
ax,

bx
bx

;move nunber for nonalization

4
bx
ax
;clear unused bytes

short final _right

cX, bx ;points to MSB

cx, 4 ;target

si, byte ptr binary[4]

di, si

di, cx

c, 1

c, 1

c, 1 ;times 8

byte ptr [exponent], cl ;calculate exponent

cX, bx

cx, 4

CcX

bx, 4

cx, 4

cx, bx

ax, ax

di, word ptr binary
;clear bytes

si, byte ptr binary[4] ;get nost significant one into
; MSB

al, byte ptr [si]

al, dl ;are we there yet?

al i gned

byte ptr exponent

I NPUT, QUTPUT, AND CONVERSI ON

shl word ptr binary[0], 1
rel word ptr binary[2], 1
rel word ptr binary[4l, 1
i short final _rightl
al i gned:
shl al, 1 ;clear bit
nov ah, 86h ;offset so that exponent will be
;right after addition
add ah, byte ptr exponent
cnp nunsin, dh
je positive
stc
jmp short get_ready_to_go
posi tive:
cle
get _ready_to_go: ;shift carry into MSB
rer ax, 1 ;put it all back the way it
; shoul d be
nov word ptr binary[4], ax
ftf_ex:
invoke round, binary, rptr ;round the float
exit:
popf
ret
meke_zer o: ;nothing but zeros
std
sub ax, ax ;zero it all out
mv cx, 4
rep stosw
jmp short exit
ftf endp

Single-Precision Floating Point to Fixed Point
Ftfx simply extracts the fixed-point number from the |EEE 754 floating-point

211

NUMERICAL METHODS

format and places it, if possible, in a fixed-point field composed of a 32-bit integer
and a 32-bit fraction. The only problem is that the exponent might put the significand
outside our fixed-point field. Of course, the field can always be changed; for this
routine, it's the quadword format with the radix point between the doublewords.

fttx Algorithm

Clear the sign flag, sinptr, and the fixed-point field it points to.
Round the inconing floating-point nunber.

Set the sign flag through sinptr by testing the MSB of the float.
Extract the exponent and subtract the bias. Restore the hidden bit.
Test the exponent to see whether it's positive or negative.

If it's negative, two's conplement the exponent and test the range to
see if it's within 28H

If it's greater, go to step 9.

If it's not greater, continue with step 7.

If positive, test the range to see if it's within 18H

If it's less, go to step 10.

If not, continue with step 6.
6. Shift the integer into position and go to step 8.
7. Shift the fraction into position and continue with step 8.
8. See if the sign flag is set.

If not, exit with success.

If it is, two' s-conplenent the fixed-point nunber and exit.
9. Error. Wite zeros to all words and exit.
10. Wite a OffH to the exponent and exit.

fftx: Listing

ok kkk ok

; conversion of floating point to fixed point

; Float enters as quadword.

; Pointer, sptr, points to result.

: This could use an external routine as well. VWhen the float
; enters here, it is in extended format.

212

ftfx proc uses bx cx dx si

I ocal

pushf
std

Ckkk
’

do_rnd:
i nvoke

set _sign:

or
ins
not

get _exponent:
sub
shl
sub
nov
nov
and
stc
rer

whi ch_way:

or

ins

neg
shift_right:

cnp

ja
make_fraction.:

INPUT, OUTPUT, AND CONVERSION

sinptr:byte, exponent:byte

ax, ax

byte ptr [sinptr],al
byte ptr [exponent],al
di,word ptr sptr

round, fp, addr fp

ax,word ptr fp[0]
bx,word ptr fp[2]
dx,word ptr fp[4l
dx, dx

get _exponent
byte ptr [sinptr]

CX, CX

dx, 1

dh, 86h

byte ptr exponent, dh
cl,dh

dx, 0ffh

dl, |
cl,cl

shift_left
cl

cl, 28h
meke_zero

di, fp:gword, sptr:word

;clear the sign

;point to result

fixup for translation

;get float

;test exponent for sign

;it s negative

;dump sign

;remove bias from exponent
;store exponent

;save number portion

;restore hidden hit

;test for sign of exponent

;two's conplement if negative

;range of fixed-point number
;no significance too small

213

NUMERICAL METHODS

fixed

i np
shift_left:
cnP

ja
make_i nt eger

shr

rer

rer

| oop

print_result

test
ie
not
not
not
neg
ic
add
adc
adc

exit:

popf
ret

make_zero:
sub
nov

rep st osw

i np

214

dx, 1

bx, 1

ax, 1

make fraction

word ptr [di] [0],ax
word ptr [di] [2],bx
word ptr [di][4],dx
short print_result

cl, 18h
make_nmax

bx, 1

dx, 1

ax, 1

make_i nt eger

word ptr [di][6],ax
word ptr [di][4],dx
word ptr [di][2],bx

byte ptr [sinptr],
exit

word ptr [di] [6]
word ptr [di][4]
word ptr [di] [2]
word ptr [di] [0]
exit

word ptr [di] [2],1
word ptr [di] [4],0
word ptr [di] [6],0

ax, ax
cx, 4

short exit

0ffh

;shift fraction into position in
;point variable

cand wite result

;range of fixed point
;(with significand)
;failed significance too hig

;shift into position

‘wite out

;check for proper sign

;two's conpl enent

cerror make zero

meke_nmax:

rep

ftfx

sub

stosw
not
stosw
and
not
st osw

j m

endp

INPUT, OUTPUT, AND CONVERSION

ax, ax
cX, 2

ax

word ptr [di][4], 7f80h
ax

short exit

;error too bhig

cinfinite

215

NUMERICAL METHODS

1 Knuth, D. E. Seminumerical Algorithms. Reading, MA: Addison-
Wesley Publishing Co., 1981, Pages 300-312.

216

CHAPTER 6

The Elementary Functions

According to the American Heritage Dictionary, e ementary means essential,
fundamental, or irreducible, but not necessarily simple. The elementary functions
comprise algebraic, trigonometric, and transcendental functions basic to many
embedded applications. This chapter will focus on three ways of dealing with these
functions: simple table-driven techniques that use linear interpolation; computa-
tional fixed-point, including the use of tables, CORDIC functions, and the Taylor
Series, and finaly floating-point approximations. We'll cover sines and cosines
along with higher arithmetic processes, such as logarithms and powers.

We'll begin with a fundamental technique of fixed-point arithmetic—table
lookup—and examine different computational methods, ending with the more
complex floating-point approximations of the elementary functions.

Fixed Point Algorithms
Lookup Tables and Linear Interpolation

In one way or another, many of the techniques in this chapter employ tables. The
algorithms in this section derive their results aimost exclusively through table
lookup. In fact, you could rewrite these routines to do only table lookup, if that is all
you require.

Some of the fastest techniques for deriving values involve look-up tables. As
mentioned in Chapter 5, the main disadvantage to table-driven routines is that the
tables are finite. Therefore, the results of any table-driven routine depends upon the
table's resolution. The routines in this section involve an additional step to help
aleviate these problems: linear interpolation.

The idea behind interpolation is to approximate unknown data points based upon
information provided by known data points. Linear interpolation attempts to do this

217

NUMERICAL METHODS

by bridging two known points with astraight line as shown in Figure 6-1. Using this
technique, we replace the actua value with the function y=f(x), where y = yy+(x-
Xo)(Y1-Yo)/(X1-Xo). This formula represents the slope of the line between the two
known data points, with [f(x,)-f(X)]/(X1-Xo) representing an approximation of the
first derivative (the finite divided difference approximation). As you can see from
Figure 6-1, a straight line is not likely to represent the shape of a function well and
can result in a very loose approximation if too great a distance lies between each point
of known data.

y Actual = 0.3463 . . .

04771212547 =y; b - - - oo -

Interpolated value = yo + (X - Xo) (Y1 -Yo)/(X1-Xo)
=0.3397...

0.3010299957=yg |------

X X X1
Log (2) Log (3)

Figure 6-1. Linear interpolation produces an approximate value based on a straight line
drawn between known data. The closer the data points, the better the approximation.

Consider the problem of estimating log,(2.22) based on a table of common logs
for integers only. The table indicates that 10g,o(2) = 0.3010299957 and log,(3) =
0.4771212547. Plugging these values into the formula above, we get:

y=0. 3010299957+(2. 22- 2. 0) (0. 4771212547-0. 3010299957) | (3-2
y=0.3010299957 + (.22) (0.1760182552)/(1)
y=0. 3397540118.

218

THE ELEMENTARY FUNCTIONS

The true vaue is 0.3463529745, and the error is amost 2%. For more accuracy,
we would need more data points on a finer grid.

An example of this type of table-driven approximation using linear interpolation
is the function 1g10, presented later in this section.” The derivation of the table used
in this routine was suggested by Ira Harden. This function produces log,o(X) of a
value based on a table of common logarithms for X/128 and a table of common
logarithms for the powers of two. Before looking the numbers up in the table, it
normalizes each input argument (in other words, shifts it left until the most
significant one of the number is the MSB of the most significant word) to calculate
which power of two the number represents. The MSB is then shifted off, leaving an
index that is then used to point into the table.

If any fraction bits need to be resolved, linear interpolation is used to calculate
a closer approximation of our target value. The log of the power of two is then added
in, and the process is complete.

The function Ig10 approximates log,o(X) using a logarithm table and fixed-point
arithmetic, as shown in the following pseudocode:

[g10: Algorithm
1. dear the output variable. Check the input argument for O.
If zero, exit
If not, check for a negative argunent.
If so, exit
If all OK continue with step 2.

2. Deternmine the nunmber of shifts required to normalize the input
argument, that is so that the MSB is a one. Performthat shift first
by noves and then individual shifts.

3. Performlinear interpolation.

First get the nonminal value for the function according to the table.
This is the f(x,) fromthe equation above. It nust be guaranteed to
be equal to or less than the val ue sought.

CGet the next greater value from the table, f(x,). This isguaranteed
to be greater than the desired point.

Now multiply by the fraction bits associated with the number we using
to point into the table. These fraction bits represent the difference

219

NUMERICAL METHODS

between the noninal data point, X, and the desired point.

Add the interpolated value to the nomnal value and continue with
step 4.

4. Point into another table containing powers of |ogarithnms using the
number of shifts required to normalize the number in step 2. Add the
| ogarithm of the power of two required to nornalize the nunber.

5. Exit with the result in quadword fixed-point format.

1g10: Listing

Cokkkkk
'

.data

; log (x/128) ;To create binary tables from decimal, nultiply the decinal
;value you wish to use by one in the data type of your
;fixed-point system For example, we are using a 64-bit fixed
;point format, a 32-bit fraction and a 32-bit integer. In
‘this system one is 2% or 4294967296 (decinal), convert
;the result of that multiplication to hexadecimal and you are
;done. To convert p to our format we would nultiply 3.14 by
; 4294967296 with the result 13493037704 (decimal), which we
;then convert to the hexadeci mal val ue 3243f 6a89H.

l0g10 tbl word 00000h, 000ddh, 001b9h, 00293h,
0036bh, 00442h, 00517h, 005ebh, 00Gbdh, 0078eh,
0085dh, 0092ah, 009f6h, 00aclh, 00b8ah, 00c51h,
00d18h, 00dddh, 00eaOh, 00f63h, 01024h, Ol Oe3h,
011a2h, 0125fh, 0131bh, 013dSh, 0148fh, 01547h,
015feh, 016b4h, 01769h, 0181ch, 018cfh, 01980h

wor d 01a30h, 0ladfh, 01b8dh, 01c3ah, 0lceCh, 01dglh,
0le3bh, O0leedh, 01f8ch, 02033h, 020d9h, 0217eh,
02222h, 022c5h, 02367h, 02409h, 024a9h, 02548h,
025e7h, 02685h, 02721h, 027bdh, 02858h, 028f3h

wor d 0298ch, 02a25h, 02abdh, 02b54h, 02beah, 02c7fh,
02d14h, 02da8h, 02e3bh, 02ecdh, 02f5fh, 02ffO0h,
03080h, 0310fh, 0319eh, 0322ch, 032b9h, 03345h,
033d1h, 0345ch, 034e7h, 03571h, 035fah, 03682h,
0370ah, 03792h, 03818h, 0389eh, 03923h, 039a8h

word 03a2ch, 03abCh, 03b32h, 03bb5h, 03c36h, 03ch7h,
03d38h, 03db8h, 03e37h, 03eb6h, 03f34h, 03fb2h,

220

wor d

»1og(2**x)
[0g10_power dword 000000h, 004d1Ch, 009a20h, 00e730h, 013441h, 018151h,

Olce6lh, 021b72h, 026882h, 02b592h, 0302a3h, 034fb3h,
039cc3h, 03e9d3h, 0436edh, 0483f4h, 04d104h, 051elbh,
056b25h, 05b835h, 060546h, 065256h, 069f66h, 06ec76h,
073987h, 078697h, 07d3a7h, 0820b8h, 086dc8h. 08bad8h,
0907e9h, 0954f9h

. code

0402f h, 040ach, 04128h,
04312h, 0438ch, 04405h,
045e3h, 04659h, 046¢fh,
048a2h, 04915h, 04988h,
04b50h, 04bcOh, 04c31h,

THE ELEMENTARY FUNCTIONS

041a3h, 0421eh,
0447dh, 044f 5h,
04744h, 047h9h,
049f bh, 04a6dh,
04ca0h. 04d10h

;Logarithnms using a table and linear interpolation.
;Logarithms of negative numbers require immginary nunbers.
;Natural logarithnms can be derived by multiplying result by 2.3025.

;Logarithms to any other base are obtained by dividing (or multiplying by the

yinverse of) the logy,. of the argunent by the [og,, of the target base.

Igl0 proc uses bx cx si di, argument:word, Zlogptr:word

rep

I ocal

pushf
std

sub

powers_of _two: byte

ax,
CX,
di,
di,

Si,

Si,
di,
di,
ax,
ax,

exit

ax,

ax
4
word ptr |ogptr
6

word ptr |ogptr

6

word ptr argunent
6

word ptr [di]

ax

ax

;increment down for zero

04298h,
0456¢h,
0482eh
04adeh,

:check to come

;clear log output

;point at output which is

1 Zero

;most significant word

;point at input

;most significant word

;we don't do negatives

221

NUMERICAL METHODS

mov
repe cnpsw

je

reposition_argument:
nmov
add
nmov
inc
nov
sub

shl

sub

shl

shl

shl

nmv
rep Mmvsw

mv

nov
keep_shifting:

or

is

shl

rcl

rel

rel

inc

jm
done_with_shift

nov

nov

sub

nov

shl

add

222

cx, 4

exit

si, word ptr argument
si, 6

di, si

cX

ax, 4

ax, cx

ax, 1
si, ax
ax, 1
ax, 1
ax, 1
bl, al

si, word ptr argunment
ax, word ptr [si][6]

ax, ax
done_wi th_shift

word ptr [si][0], 1
word ptr [si][2], 1
word ptr [si][4], 1
ax, 1

bl

short keep_shifting

word ptr [si][6],ax

byte ptr powers_of _two, bl

bx, bx
bl, ah
bl, 1

bx, offset word ptr |0gl0_tbl

;find the first nonzero,
;or return
Zero

;shift so MSBis a one
;point at input

;most significant word
;shift the one eight times
;make this a one

; det er mi nenunber of

; enpt ywor ds

;words to bytes

;point to first nonnero word

;multiply by eight

;shift

;shift until MSB is a one

;count shifts as powers
;of two
;normalize

;ax will be a pointer

;Will point into 127-entry
table

;get rid of top bit to form
;actual pointer

THE ELEMENTARY FUNCTIONS

mov ax, word ptr [bx]
inc bx
inc bx
nmv bx, word ptr [bx]
sub bx, ax
xchg ax, bx
mul byte ptr [si][6]
mov al, ah
Sub ah, ah
add ax, bx
get _power:
nmov bl, 31
sub bl, byte ptr powers_of _two
sub bh, bh
shl bx, 1
shl bx, 1
| ea si, word ptr |0gl0_power
add si, bx
sub dx, dx
add ax, word ptr [si]
adc dx, word ptr [si][2]
nov di, word ptr |ogptr
nov word ptr [di] [2],ax
nov word ptr [di][4],dx
sub CX, CX
nov word ptr [di],cx
nov word ptr [di] [6],cx
exit:
popf
ret
1 g10 endp

;linear interpolation
;get first approximtion
; (floor)

;and following approximtion
i (ceil)
find difference

;mul tiply by fraction bits
;drop fractional places

;add interpolated value to
;origi nal

;need to correct for power

;of two

;point into this table

;add log of power

;wite result to quword
; fixed point

An example of linear interpolation appears in the TRANSAASM module

caled sqgrtt.

223

NUMERICAL METHODS

Another example using a table and linear interpolation involves sines and
cosines. Here we have a table that describes a quarter of a circle, or 90 degrees, which
the routine uses to find both sines and cosines. Since the only difference is that one
is 90 degrees out of phase with the other, we can define one in terms of the other (see
Figure 6-2). Using the logic illustrated by thisfigure, it is possible to calculate sines
and cosines using a table for a single quadrant.

To use this method, however, we must have a way to differentiate between the
values sought, sine or cosine. We aso need a way to determine the quadrant the
function isin that fixes the sign (see Figure 6-3).

Dcsin will produce either a sine or cosine depending upon a switch, cs flag.

Dcsin: Algorithm

1. Cear sign, clear the output variable, and check the input argument
for zero.

COS|

360°

90° T 270° 2n

Figure 6-2. Sine and cosine are the same function 90 degrees out of phase.

224

If it is zero,

THE ELEMENTARY FUNCTIONS

Qherwi se, continue with step 2.

2. Reduce the input argument by dividing by 360 (we are dealing in
degrees) and take the renainder

If the result

3. Save a copy of the angle in a register,
90 to identify which quadrant

remains in AX

4. Check cs-flag to see whether a sine or cosine is desired.
AOh requests sine;
Anything el se neans a cosine;

is negative,

5. Conpare AX with zero.

If greater, go to step 6.

as our angle.

continue with step 9.

Qtherwi se, continue with step 13.

6. Conpare AX with one.

set the output to O for sines and 1 for cosines.

add 360 to make it positive.

divide the original
it is in. The quotient of

continue with step 5.

again by
this division

T 180°

2

+y
90°

sin + = + Cos sin + = + sin
cos - =-sin COS + = + COS
tan - tan +
m v
sin-=-sin sin - = - cos
coS - = - COS €OS + = + Sin
tan + tan -

270°

32n

+x 21

Figure 6-3. Quadrants for sine/cosine approximations.

225

NUMERICAL METHODS

10.

11

12.

13.

If greater, go to step 7.

O herw se,

set sign.

Two's conpl ement the angle.

Add 180 t

o neke it positive again.

Continue with step 14.

Conpare AX with two.

If greater, go to step 8.

O herw se,
Subt r act

set sign.

180 fromthe angle to bring it back within 90 degrees.

Continue with step 13.

Two' s conpl enent the angle.

Add 360 t

o point it back into the table.

Continue with step 14.

Conpare AX with zero.

If greater, go to step 10.

O herw se,
Add 90 to

2's conplenent the angle.
point it into the table.

Continue with step 14.

Conpare AX with one.

If greate

O herw se,
tabl e.

r, go to step II.

subtract 90 fromthe angle to bring it back onto the

Continue with step 13.

Conpare AX with two.

If greate

r, go to step 12.

QO herwise, two's conplenent the angle,

Add 270,
Set sign.

so that the angle points at table.

Continue with step 14.

Set sign.
Subt r act

270 from the angle.

Use the angle to point into the table.

226

14.

15.

THE ELEMENTARY FUNCTIONS

CGet f(xg)fromthe table in the form of the nomnal estimtion of the
si ne.

Check to see if any fraction bits require linear interpolation.
If not, continue with step 15.

Get f(x,) fromthe table in the form of the next greater approxim-
tion.

Subtract f(x,) fromf(x,) and multiply by the fraction bits.
Add the result of this multiplication to f(Xg).

Continue with step 15.

Use the angle to point into the table.

CGet f(xg) fromthe table in the form of the nonminal estimation of the
si ne.

Check to see if any fraction bits requiring linear interpolation.
If not, continue with step 15.

Get f(x,) fromthe table in the form of the next snaller approxim-
tion.

Subtract f(xy) fromf(x;) and nultiply by the fraction bits.
Add the result of this multiplication to f(xg).

Continue with step 15.

Wite the data to the output and check sign.

If it's set, two's conplenent the output and exit.

O herwi se, exit.

Dcsin: Listing

vokkkkk
[

.data

; si nes(degrees)
sine_thlword Offffh, Offféh, Offd8h, Offa6h, Off60h, Off06h,

0f e98h, 0fel7h, 0fd82h, Ofcdgh, Ofclch, Ofb4bh,
0f a67h, 0f970h, 0f 865h, O0f 746h, 0f 615h, Of 4dOh,
0f 378h, 0f20dh, 0f08fh, Oeeffh, Oed5bh, Oeba6h,
Oegdeh, 0e803h, 0e617h, 0e419h, 0e208h, 0dfe7h,
0ddb3h, 0db6fh, 0d919h, 0d6b3h, 0d43bh, 0d1lb3h,
Ocf 1bh, 0Occ73h, Ocgbbh, 0c6f3h, Oc4l bh, 0c134h,
Obe3eh, 0bb39h, 0b826h, 0b504h, Obl d5h, 0ae73h

227

NUMERICAL METHODS

wor d Oab4ch, 0a7f3h, 0a48dh, 0allbh, 09d9bh, 09al0h
09679h, 092d5h, 08f27h, 08b6dh, 087a8h, 083ddh
08000h, 07clch, 0782fh, 07438h, 07039%h, 06c30h
0681fh, 06406h, 05fe6h, 05bbeh, 0578eh, 05358h
04f 1 bh, 04ad8h, 04690h, 04241h, 03deeh, 03996h
03539h, 030d8h, 02c74h, 0280ch, 023aCh, 01f32h
0lac2h, 0164fh, 011dbh, 00d65h, 008efh, 00477h
(o4

. code

;sines and cosines using a table and |inear interpolation
; (degr ees)

dscin proc uses bx cx si di, argunent:word, cs_ptr:word, cs_flag:byte

[ocal powers_of two:byte, sign:byte

pushf

std ;increment down

sub ax, ax

nmv byte ptr sign, al ;clear sign flag

mv cx, 4

nov di, wordptr cs_ptr ;clear sin/fcos output
add di, 6

rep st osw
;first check arguments

for zero
add di, 8 ;reset pointer
nmov si, d
nov di, word ptr argunent
add di, 6
mv cx, 4
repe cnpsw :find the first nonzero,or
;retum
je zero_exit
jm prepar e_ar gument s
zero_exit
cnp byte ptr cs_flag, al ;ax is zero
jne cos_0 ;sin(0) =0
i exit

cos_0:

228

inc
inc
add

dec
mv

jm
prepar e-argunent s

nmov
nov

sub
mv
idiv
or
ins
add

quadrant :

div

swi tch:
cnp

je

CO0S_range
cnp
ig
jm

ax

ax

Si, ax

ax

word ptr [si][4],ax
exit

THE ELEMENTARY FUNCTIONS

;point di at base of

; out put

;make ax a one
;cos(0)= 1
;one

si, word ptr argunent

ax, word ptr [si][4]

dx, dx
cx, 360
cX

dx, dx
quadr ant
dx, 360
bx, dx
ax, dx
dx, dx
cx, 90
CX

byte ptr cs_flag, 0

do_sin

ax, 0
cchk_| 80
wal k_up

;get integerportion
;of angle

;modul ararithmeticto
; reduceangl e
;we want the renainder

;angle has to be
;positive for this
;1o work

;we will use this to
;compute the value
;of the function
;put angle in ax

;and this to conpute
;the sign ax hol ds

;an index to the quadrant

;what do we want?
;a zero=sine
;anyt hi ng el se=cosi ne

;use incrementing method

229

NUMERICAL METHODS

cchk_180:
cnp
ig
not
neg
add
jmp

cchk_270
cnp
ig
not
sub
jm

clast_90
neg
add
jm

do_sin:

cnp
ig
neg
add
inp
schk_180:
cnp
19
sub
jm
schk_270
cnp
ig
not
neg
add
jm

230

ax, 1
cchk_270

byte ptr sign
bx

bx, 180

wal k_back

ax, 2
clast_90

byte ptr sign
bx, 180

wal k_up

bx
bx, 360
wal k_back

ax, 0
schk_180
bx

bx, 90
wal k_back

ax, 1
schk_270
bx, 90
wal k_up

ax, 2
slast_90

byte ptr sign
bx

bx, 270

wal k_back

;set sign flag

;use decrementing nethod

;set sign flag

;find the range of the
; argunent

;use decrementing nethod

;use incrementing nethod

;set sign flag

sl ast _90:
not
sub

jm

\,I\B.l k_up:
shl

inc
inc
nov
mv
sub
jnc
neg
mul
not
neg
jc
inc
j m
pos_resO:
mul
| eave_wal k_up:
add

jnp

wal k_back:
shl
add
nov
nmov
or

THE ELEMENTARY FUNCTIONS

byte ptr sign

bx, 270
wal k_up
bx, 1

bx, offset word ptr sine_thl
dx, word ptr [bx]

ax, word ptr [si][2]

ax, ax

wite result

bx

bx

cx, dx

ax, word ptr [bx]
ax, dx
pos_res0

ax

word ptr [si][2]
dx

ax

| eave_wal k_up
dx

| eave_wal k_up

word ptr [si] [2]

dx, cx

wite-result

bx, 1

bx, offset word ptr sine_thl
dx, word ptr [bx]

ax, word ptr [si][2]
ax, ax

;set sign flag

;use angle to point into
;the table

;get cos/sine of angle
;get fraction bits

;linear interpolation
;get next approximation

;find difference

;multiply by fractionbits

;multiply by fraction bits
;and add in angle

;point into table

;get cos/sine of angle
;get fraction bits

231

NUMERICAL METHODS

neg
jc

inc
jmp

pos_resl:

| eave_wal k_back:

wite result:

exit:

nul

add

cmp
je
not
not
not
neg
jc
add
adc
adc

popf
ret

dcsin endp

232

wite result

bx

bx

cx, dx

ax, word ptr [bx]

ax, dx
pas_resl
ax

word ptr [si][2]
dx
ax
| eave_wal k_back
dx
| eave_wal k_back

word ptr [si][2]

dx, cx

di, word ptr cs_ptr
word ptr [di], ax
word ptr [di][2], dx

ax, ax

word ptr [di][4], ax
word ptr [di][6], ax
byte ptr sign, al
exit

word ptr [di] [6]
word ptr [di][4]
word ptr [di][2]
word ptr [di][0]
exit

word ptr [di][2],1
word ptr [di][4],ax
word ptr [di][6],ax

;get next increnental
: c0s/ si ne
;get difference

;multiply by fraction bits

;multiply by fraction bits

;multiply by fraction bits
;and add in angle

;stuff result into variable
;setup output for qword
;fixed point

;radix point between the
:doubl e words

THE ELEMENTARY FUNCTIONS

Computing With Tables

Algebra is one of a series of fascinating lectures by the physicist Richard
Feynmar?. In it, he discusses the development of algebra and its connection to
geometry. He also develops the basis for a number of very interesting and useful
algorithms for logarithms and powers, as well as the algebraic basis for sines and
cosines using imaginary numbers.

In algebra, Feynman describes a method of calculating logarithms, and therefore
powers, based on 10 successive square roots of 10. The square root of 10 (10°) is
3.16228, which is the same as saying 10g,,(3.16228) = .5. Since log,,(a*c) = log,,(a)
+ log,e(C), we can approximate any power by adding the appropriate logarithms, or
multiplying by the powers they represent. For example, 105 = 10(*+%*1% =
3.16228 * 1.77828 * 1.33352 = 7.49894207613.

As shown in Table 6-1, that taking successive roots of any number is the same
as taking that number through successively more negative powers of two.

The following algorithm is based on these ideas and was suggested by Donald
Knuth®. The purpose of pwrb is to raise a given base to a power x, 0 < x < 1. This
is accomplished in a manner similar to division. We do this by testing the input
argument against successively more negative powers of b, and subtracting those that
do not drive the input argument negative. Each power whose logarithm is less than
the input is added to the output multiplied by that power. If alogarithm of a certain
power can not be subtracted, the power is increased and the agorithm continues. The
process continues until x = 0.

233

NUMERICAL METHODS

number power of 10 power of 2
10.0 1 2°
3.16228 1/2 2"
1.77828 /4 272
1.33352 118 273
1.15478 1116 2"
1.074607 /32 2°°
1.036633 /64 2°°
1.018152 11128 277
1.0090350 /256 28
1.0045073 /512 2°°
1.0022511 1/1024 270

Table 6-1. Computing with Tables

In pseudocode:
Pwrb: Algorithm
1. Set the output, y, equal to 1, clear the exponent counter, K
2. Test our argument, x, to see if it is zero.

If so, continue at step 6.

If not, go to step 3.

3. Use k to point into a table of logarithms of the chosen base to
successively more negative powers of tw. Test x < Iogb(1+2'k).

If so, continue with step 5.
El se, go to step 4.
4. Subtract the value pointed to in the table from x.

Multiply a copy of the output by the current negative power of two
through a series of right shifts.

Add the result to the output.
Go to step 2.

234

Bunp our exponent counter

Go to step 2.

There is nothing left to do

Exit.

Pwrb: Listing

vokk
[

*kk

.data

power 10

. code

1
vokkkkkk

gwor d

;pwb - power to base 2
;input argunment nust be be 1 <= x < 2
pwr b proc

rep

x0:

| oca

nov
sub
nov
st osw
inc
st osw
dec
stosw

uses bx cx dx

k

THE ELEMENTARY FUNCTIONS

by one,

the output is our result,

4d104d42h, 2d145116h, 18cf1838h, 0d1854ebh
6bd7e4bh, 36bd211h, 1b9476ah

0dd7eadh, 6ef67ah, 378915h, 1bc802h, 0de4dfh
6f 2a7h, 37961h, 1bcb4h, 0de5bh

6f 2eh, 3797h, 1bcbh, 0de6h, 6f3h, 379h, 1bdh
Odeh, 6fh, 38h, 1ch, Oeh, 7h, 3h, 2h, 1h

di si, argument:qword, result:word

k:byte, z:qword

di, word ptr result DY

ax, ax

cX, 2

;mke y = 1

ax

ax

byte ptr k, al ‘make k = 0

ax, word ptr argunent
cx ptr argunent [2]
dx ptr argunent ;argunent 0 <= x < 1

bx, bx

235

NUMERICAL METHODS

not _done_yet

reduce

236

cnp
j ne
cnp
j ne
cnp
j ne

jnp

sub
nmov
cmp
ja
shl

sh
sh

lea

cnp
ib
ja
cnp
ib
ja
cnp
ib

sub

ax, bx
not _done_yet
cx, bx
not _doneyet
dx, bx
not _doneyet

pwrb_exi t

bx, bx

bl, byte ptr k
bl, 20h

pw b_exi t

bx, 1
bx, 1
bx, 1

si, word ptr power2
dx, word ptr [si] [bx] [4]

i ncrease

reduce

cx, word ptr [si][bx][2]
i ncrease

reduce

ax, word ptr [si] [bx]

i ncrease

ax, word ptr [si] [bx]
cx, word ptr [si] [bx] [2]
dx, word ptr [si][bx][4]
word ptr argunent, ax
word ptr argunent [2], cx
word ptr argunent[4], dx

CX, CX
cl, byte ptr k

si, word ptr result
ax, word ptr [si]

;test for 0.0

;our pointer and exponent
;are we done?

;point in to table of quords

;is this log greater than
;equal or less than
T X7?

I X<-X-2

THE ELEMENTARY FUNCTI ONS

mv bx, word ptr [si][2]
nmov dx, word ptr [si][4]
cnp c, 0 ;is this shfit necessary?
je no_shiftk
shiftk:
shr dx, 1
rcr bx, 1
rcr ax, 1
| oop shiftk
no_shiftk:
add word ptr [si], ax ; Z<-ar gument >>k
adc word ptr [si] [2], bx
adc word ptr [si][4], dx
jp x0
i ncrease:
inc byte ptr k ; bump the counter to the
;next |evel
jnp x0 ;and continue
pwb_exit:
ret
pw b endp

There is another, similar, routine in the TRANS.ASM module dealing with
logarithms.

CORDIC Algorithms

Cordic is an acronym meaning COordinate, Rotation Digital Qomputer“. It was
devised as away to derive transcendenta functions for real-time airborne navigation
and has since been used in Intel math coprocessors and Hewlett-Packard calculators.
The CORDIC functions are a group of agorithms capable of computing high—
quality approximations of the transcendental functions and require very little
arithmetic power from the processor. Any functions listed in Table 6-2 can be
calculated using only shifts, adds, and subtractions. These functions make very good
candidates for the core of a floating-point library for processors with or without
hardware multiplication and division.

237

NUMERICAL METHODS

input: output:

comments:

circular functions

X = X rectangular units I/k(xcos(2)-ysin(z)) in genera case

y =y rectangular units I/k(ycos(2)+xsin(z))

z=zangle 0

x=1 cos(a) multiplier to compute

y=0 0 the constant

z=0 0 circulark

X = circulark(constant) cos(a) obtain sine

y=0 sin(a) and cosine of

z=a 0 a

inverse circular functions

X = X rectangular units /k(+(C+y?) in general case

y =y rectangular units 0

z=7 angle z+atan™(y/x)

hyperbolic functions

X=X rectangular units I/k(xcosh(z)+ysinh(z))
in genera case

y=y rectangular units I/k(ycosh(z)+xsinh(z))

z2=2 angle 0

inverse hyperbolic functions

X=X rectangular units
y=y rectangular units
z=2 angle

k(= (C+y)
in general case
0

z+tanh ™ (y/x)

Table 6-2. CORDIC Functions

238

THE ELEMENTARY FUNCTIONS

The CORDIC functions makeup a unified core that can derive many other
functions, including circular and hyperbolic, as well as powers and roots (see Table
6-2). This discussion will focus on the circular functions; routines for the hyperbolic
functions and inverses for both circular and hyperbolic are in the module
TRANSASM.

Before getting into the specifics of the routine, let’s take some time to understand
how the CORDIC functions work. Notice that this algorithm has some things in
common with the circle algorithm presented earlier in a Chapter 3. That routine used
a modified rotation matrix:

Rixy = [cos(a)-sin(a),sin(a)+cos(a)]

and very small values for sine and cosine to draw a circle with only shifts, additions,
and subtractions. A similar ideais at work here, but it goes a step farther.

See why the rotation matrix might help derive the functions listed above, ook
at Figure 6-4. In a Cartesian coordinate system (x,y), you can specify a point on a
plane by measuring its position relative to the (x,y) axis. In the figure, point Pis at
x=20, y=10. If you draw aline from the origin of the axis to that point, it will form
avector of acertain length offset from the x axis by an angle a. To move this vector
about the origin by some amount, in this case p/10 radians, you can use the rotation
matrix as shown in Figure 6-4. First solving for x = x*cos(a)-y*sin(a), theny =
x*sin(a)+y*cos(a), you will develop a new set of coordinates for point P. In this
way, you can move around the origin simply by supplying an angle of rotation and
the current coordinates. With afew small changes, this same mechanism can deliver
the sine and cosine of a desired angle and a number of other functions as well.

To make this work, x and y are needed plus a new argument, z, which will
represent the angle or rotation. Next, simplify the equation by factoring out the cosine
using the fundamental identity tan(a) = sin(a)/cos(a). This leaves

R=.x,y] =cos(a)[l-tan(a), tan(a)+1]

239

NUMERICAL METHODS

Writing this out long hand, you have

x=cos(a@)[x-x(tan(a))]
and

y=cos(a)[y(tan(a)) +y]

One more step can ease the computing burden even more: replacing the two
multiplications, y(tan(a)) and x(tan(a)), with right shifts if ais made the sum of a
series of smaller a’s and each tan(a) is chosen to be a negative power of two. If every
tan(a) is to become a negative power of two, then the small piece of the angle each
represents becomes atan(2"). This means that we will be breaking the input angle, a,

+y

10 + , P (20,10)

4
e
=+ A
7
! i 4 } I Il 1 ! 1 1
| I

Orgin

Rotation Matrix

Figure 6-4. Rotation Matrix

240

THE ELEMENTARY FUNCTIONS

into smaller angles equal to atan(2") and subtracting each atan(2") from the input a
after each evaluation of the rotation matrix in an effort to close on zero. This
subtraction may involve positive and negative signs depending upon the quadrant we
are in as we hover around zero; as the tangent changes sign, so then must the atan.

See Figure 6-3 in the previous section for the progression of signs. Now, the formulae
become

x = cos (A) [x-x (2]
and
y =cos (@) [y(2')+y]

The cos(a) remains, but it is a constant (circulark) that has been precomputed
and is factored in when needed. Because we are using negative powers of two, each
iteration of the algorithm is responsible for a power of two; the result is 32 iterations
for 32 fraction bits.

For the routine, circular, the table of arctangents was precomputed and stored
in the table atan_array, as was the constant cos(a), circulark. The same was done
for the hyperbolic functions with the table atanh_array and the constant hyperk. To
solve for particular functions, see Table 6-2 for the correct inputs and the expected
outputs.

Aswith so many of the functions covered in this chapter, the input argument for
the angle must be confined to the first quadrant. Circular will solve for both sine and
cosing, given X = circulark (the constant), Y =0, and Z = g, if 0 <a< p/2. Reducing
the argument for these routines can be done in the same manner as in the table driven
routine, dcsin in an earlier section. Divide the input angle by 2p, to remove unwanted
components of p, then divide by p/2. Take the remainder as your input argument and
the quotient as an index to the quadrant the angleisin. See Figure 6-3 for the logic.

241

NUMERICAL METHODS

Circular: Algorithm

1. The variables X, Y, and Z serve as both input and output variabl es.
Load x, y, and z into local variables smal Ix, smal |y, and smal |z.
Set the exponent counter, i, to O.

2. Miultiply x and y by 2" and store in smal |x and smal ly,
respectively. (The multiplication is acconplished by shifting (arith-
metically) x and y to the right by the current count in i.)

Load z with table entry pointed at by atan_array+i.
3. Test z< 0.
If true, go to step 5.
El se, continue with step 4.
4, Add smal |y to x.
Subtract smal Ix fromy.
Add smal [z to z.
Continue with step 6.
5. Subtract smal ly from x.
Add smal Ix toy.
Subtract smal |z from z.
Continuewith step 6.
6. Bunp the exponent counter, i.
Test i 2> 32.
If yes, got to step 7.
Qherwise, go to step 2.

7. Since we have been using the output variables for intermediate
storage of our results, the output is current and we may exit.

Circular: Listing

Cokkkkkk
'

.data
atan_array dwor d 0c90f daa2h, 76b19c16h, 3eb6ebf2h, 1fd5hadbh,

Of faaddch, 7ff556fh, 3ffeaabh, 1fffd55h,
Of fffabh, 800000h, 3fffffh, 200000h, 100000h,
80000h, 40000h, 20000h, |0000h, 8000h, 4000h,
2000h, 1000h, 800h, 400h, 200h, 100h, 80h,
40h, 20h, 10h, 8h, 4h, 2h, 1h

.code

242

THE ELEMENTARY FUNCTIONS

;circular-inplementation of the circular routine, a subset of the CORD C devices

circul ar proc uses bx cx dx di si, x:word, y:word, z:word

| ocal smal | x: gword, smally:qgword, smallz:qgword, i:byte,
shifter:word

| ea di, word ptr snallx ;load input x, y, and z
nov si, word ptr X
mv CX, 4

rep MOVSW

|l ea di, word ptr smally
nov si, word ptr y
nov cx, 4

rep MOVSW

| ea di, word ptr smallz
nov si, word ptr z
mov cx, 4

rep novsw

sub ax, ax
mov byte ptr i, al ;1=0
mv bx, ax
mov cX, ax
twist:
sub ax, ax
mov al, i
mov word ptr shifter, ax
mov si, word ptr x ;multiply by 2°-i
mov ax, word ptr [si]
nmv bx, word ptr [si][2]
nmv cx, word ptr [si][4]
nmv dx, word ptr [si][6]
¢ mp word ptr shifter, 0
je | oad_smal | x

243

NUMERICAL METHODS

shiftx:
sar
rer
rcr

rcr
dec
jnz

| oad_smal | x:

cnp
je
shifty:
sar
rcr
rcr
rcr
dec
jnz
| oad_snal ly:

get _atan
sub
mov
shl
shl

244

dx, 1

cx, 1

bx, 1

ax, 1

word ptr shifter
shiftx

word ptr smallx, ax

word ptr smallx [2], bx
word ptr smallx [4], cx
word ptr smallx [6], dx

ax, ax
al, i

word ptr shifter, ax
si, word ptry

ax, word ptr [si]
bx, word ptr [si][2]
cx, word ptr [si][4]
dx, word ptr [si][6]

word ptr shifter, 0
| oad_snal |y

dx,
CX,
bx,
ax,
word ptr shifter
shifty

N

word ptr smally, ax

word ptr smally[2], bx
word ptr smally[4], cx
word ptr smally[6], dx

bx, bx
bl, i

bx, 1
bx, 1

;note the arithmetic shift
;for sign extension
;negative powers of two
;require right shifts

;return x to smallx

Jget y

smultiply by 27-

;note the arithnetic shift
;for sign extension
;take to a negative power

;return to smally

;have to point into a dword
;table

test_zZ:

or
jns

negative:

THE ELEMENTARY FUNCTIONS

si, word ptr atan_array

ax, word
dx, word

word ptr

ptr [si] [bx]
ptr [si] [bx][2]

smallz, ax

word ptr smallz [2], dXx

ax, ax
word ptr
word ptr

si, word
ax, word

ax, ax
positive

ax, word
bx, word
cx, word
dx, word

di, word
word ptr
word ptr
word ptr
word ptr

ax, word
bx, word
cx, word
dx, word

di, word
word ptr
word ptr
word ptr
word ptr

smallz [4], ax
smallz [6], ax

ptr z
ptr [si][6]

ptr smally

ptr smally[2]
ptr smally[4]
ptr smally[6]

ptr x

[di], ax
[di][2], bx
[di][41, cx
[di][6], dx

ptr smallx

ptr smal | x[2]
ptr smal | x[4]
ptr smallx[6]

ptry
[di], ax
[di][2], bx
[di][4], cx
[di][6], dx

ax, word ptr small Z

bx, word ptr small

7[2]

;use the negative power
;of two as a pointer
;to get proper atan

;z=atan[i]

;the sign of z determnes
;whet her the arguments
;are summed or subtracted

;smally is added x

;smal | x is added toy

245

NUMERICAL METHODS

nov cx, word ptr smallz [4]

mv dx, word ptr smallz [6]

mv di, word ptr z

add word ptr [di], ax

adc word ptr [di][2], bx

adc word ptr [di][4], cx

adc word ptr [di][6], dx ;and smallz is added to z

jnp for_next

positive:

nov ax, word ptr smally ;Z was positive, so

nov bx, word ptr smally[2]

nmv cx, word ptr smally[4]

nov dx, word ptr smally[6]

nov di, word ptr x

sub word ptr [di], ax ;smally is subtracted
;fromy

shb word ptr [di][2], bx

sbb word ptr [di][4], cx

sbb word ptr [di][6], dx

nov ax, word ptr smallx

nov bx, word ptr smallx[2]

mv cx, word ptr smallx[4]

nmv dx, word ptr small x| 6] ;smallx is added to y

nov di, word ptry

add word ptr [di], ax

adc word ptr [di] [2], bx

adc word ptr [di][4], cx

adc word ptr [di][6], dx

nov ax, word ptr smallz

nov bx, word ptr smallz[2]

nov cx, word ptr smallz[4]

nov dx, word ptr smallz[6]

nov di, word ptr z ;and smallz is subtracted
;frone

sub word ptr [di], ax

sbb word ptr [di][2], bx

sbb word ptr [di][4], cx

246

THE ELEMENTARY FUNCTIONS

sbb word ptr [di][6], dx
for_next:
inc byte ptr i ;bunp exponent on each pass
cnp byte ptr i, 32
ja circul ar_exit
i nmp tw st

circular_exit:

ret
circul ar endp

Polynomial Evaluations

One of the most popular and most accurate ways to devel op the transcendentals
is evaluation of a power series. These series are often expressed in the following
forms:”

sin X = X - X¥31+ x5! - X7+ X590 . .. +(-)™ Y (2n-)!
cos x= 1 - x¥2! + xY41 - x%6! + x¥8! . . . +(-1)""%*?/(2n-2)!
tan X = x +x/3+2x°/15+ 17x'/315 + . . .

E=1+x=x72+. .. +X"nl +. ..

IN(L+X) =x-x72+xY3-. ..+)™ 4x"n+. ..

A power-series polynomial of infinite degree could theoretically accommodate
every wrinkle in the shape of a given function within a given domain. But it isn't
reasonable to attempt a calculation of a series of infinite degree; instead, some
method is used to determine when to truncate the series. Usually thisis at the point

in the series where the terms fail to contribute significantly to the result. Your
application may only require accuracy to 16 bits, such as might be needed for

247

NUMERICAL METHODS

graphics. It may be error limited, which means that the result is calculated using
enough precision and to a great enough degree to account for any spikes that might
occasiondly occur in the more distant terms.

Since the power series are computed in truncated form, they are prone to an error
from that truncation as well as any introduced by the arithmetic. A great deal of effort
has gone into finding the source of those errors and limiting it.® For most embedded
applications (such as graphics subsystems, digital filtering and feedback control
loops), the truncated Taylor Series provides adequate results.

The quadword fixed-point format used in this section has 32 fraction bits to work
with. The terms contributing to bits outside that range (aside from guard digits, if you
wish) are not computed even if an occasiona spike might influence the rest of the
computation. The 13" term of the sine expansion above rounds up to set the least
significant of our fraction bits.

An dternative to the doubleword integer and doubleword fraction format could
be implemented for each of the functions. At most, sine and cosine functions need
al-bit integer, leaving 63 bits for at least 18 decimal digits. On the other hand, the
exponential, €, will quickly lose any mantissa bits unless x is less than one. You
could rewrite these routines to maximize the precision of the data types you're using
and provide greater accuracy; the results could be rounded and realigned for the rest
of the fixed-point routines. You can do this without disturbing any de facto format
you may have in place by doing the conversions and alignment within the calling
function, as taylorsin below. Such handling is often the case anyway, since a
particular series may require the arguments in a certain format to guarantee
convergence. The sine and cosine functions presented here are examples of this:
Their arguments should be constrained to p/2 for the series to function most
efficiently and accurately.

Power-series computations are not necessarily table driven, but the execution
time of the evaluation is so much faster when you precompute the coefficients that
you need a good reason not to. If you wish to compute the coefficients at runtime,
it's most efficient if you maintain a copy of the previous powers and factorials and
compute each new one based upon that.

Homer's Rule’ alows us to evauate an N-degree polynomia with only N-I
multiplications and N additions. To use it, we store the coefficients of the polynomia

248

THE ELEMENTARY FUNCTIONS

in an array. If a degree or series of degrees is missing from the polynomias, their
coefficients automatically become zero. To illustrate, assume a polynomia such as

f(x) = 5x* +3x%- 4ax> + 2x + 1
We put the coefficients in an array:
Pol y_array wor d 1, 2, -4, 3, 5

In the following pseudocode, as in the example, the coefficients of the series (or
polynomial) are assumed to be computed in advance, incorporating the sign of the
term with the value. They're stored in a table in reverse order of the polynomial
expression; that is, the first element in the array is the degree zero term. Evaluation
is then simply a matter of processing the polynomia. Upon entry to the agorithm,
we make the result variable equal to the coefficient of the highest power (here it's 5).
We take a pointer into the array, which is the degree of the polynomial, and useit to
select each succeeding coefficient to add to the result variable after multiplying it by
the value of x.

taylorsin: Algorithm
1. Set an index to the degree of the polynomal (in this case 4).

Use this to retrieve the coefficient of the highest power and set the
result variable equal to that.

2. Miltiply the value of x by the result variable,
Decrenent the index.
If it goes negative, exit through step 3
Retrieve the next coefficient and add it to the result variable,
Continue at the beginning of step 2.
3. Horner's Method is conplete. Exit.

In taylorsin, the sine approximation given above truncated at the 11" degree for our
example:

249

NUMERICAL METHODS

sin x = x - x¥3 + x¥5 - XU o+ x%or - xMy11

To process this expansion with Homer's Rule, we need a table of coefficients
with 11 terms in it and zeros for those powers not represented in the expansion
indecimal:

1, 0, -.16666667, 0, .00833333, 0, -.00019841, 0, .00000275, O,
-. 00000003

Even this can be avoided if we evaluate the expression x%/3! + x°/5! - xI7! + X7/
o - x!/11! separately with x? instead of x. This eliminates the necessity of processing
all the zero coefficients.

With these terms stored in a table, the only thing left to do is evauate the
polynomid.

Actually, two routines are involved: polyeval can be made to work with any
polynomial, while taylorsin is only an entry point. It tells the subroutine polyeval
which table to use depending on the function to evaluate, the degree of the
polynomial, and where to put the results and passes the argument. Each function
requiring polynomial evaluation will require a routine such as taylorsin; this is where
any other fixed-point manipulation-such as scaling, altering the placement of the
radix point, or rounding-would be done.

taylorsin: Listing

ckkkkk
’

;taylorsin - Derives a sin by using a infinite series. This is in radians.
; Expects argument in quadword format; expects to returnthe sane.
;Input nust be <m./2.

tayl orsin proc uses bx cx dx di si, argunent:qword, sine:word
i nvoke pol yeval, argunment, sine, addr polysin, 10
ret

taylorsin endp

Polyeval does the work and can be made to evaluate any polynomial, given the
proper coefficients. Here is how it works:

250

THE ELEMENTARY FUNCTIONS

Polyeval: Algorithm

1. Cear an accunulator and see that the output is clear.
Set an index equal to the degree of the pol ynonial.

2. Using the index, point into the table of coefficients
Add the value pointed at to the accumul ator.

3. Multiply the accumul ator by the argunent, x.

4. Decrenment the table pointer
If it goes negative, exit through step 5.
Ot herwi se, continue with step 2.

5. Wite the accunulator to the output and |eave

Polyeval: Listing

vokkkkk
1

.data
pol ysin qword 100000000h, 0, Offffffffd5555555h, 0, 2222222h, O,
offfffffffff2ff30h, 0, 2e3ch, 0, Offffffffffffffo4h

. code

!
vokkk kK
1

;pol yeval - Eval uates polynomials according to Horner's rule
; Expects to be passed a pointer to a table of coefficients
;a nunber to evaluate, and the degree of the polynonial

; The argunent conforns to the quadword fixed-point formnat

pol yeval procuses bx cx dx di si, argument:qword, output:word
coeff:word, n:byte

| ocal cf:qword, result[8]:word
pushf
cld
sub ax, ax
mv byte ptr sign, a
nmov cx, 4
| ea di, word ptr cf
rep st osw ;clear the accunul ator

251

NUMERICAL METHODS

|l ea
rep st osw

eval :
nov
sub

shl
shl
shl

| ea
add
adc

adc
adc

x_by_y:
i nvoke

| ea

| ea

nmov
rep movsw

chk_done:
dec
j ns

pol yeval _exit:

mov

| ea

mo v
rep nmovsw

252

di,
CcX,

si,
bx,
bl,

bx,
bx,
bx,

si,
ax,
bx,
CcX,
dx,
di,
wor d
wor d

wor d
wor d

smul

si, word ptr result [4]

word ptr result
8

word ptr coeff
bx
byte ptr n

1
1
1

bx

word ptr [si]
word ptr [si] [2]
word ptr [si] [4]
word ptr [si] [6]
word ptr cf

ptr [di], ax
ptr [di] [2], bx

ptr [di] [4], cx
ptr [di] [6], dx

64, argunent, cf,

di, word ptr cf

cx, 4

byte ptr n

eval

di, word ptr output
si, word ptr cf

cx, 4

;point at table

;point at coefficient of
; n-degree

;this is the beginning of
;our approxi mation

;multiply by eight for the
; quadwor d

;add new coefficient to
;accunul at or

;performa signed multiply
result

; decrenent pointer

;wite to the output

THE ELEMENTARY FUNCTIONS

popf
ret

pol yeval endp

Calculating Fixed-Point Square Roots

Finding square roots can be an art. This section presents two techniques. The
first, and perhaps the most traditional, is Newton's Method. The other is the
technique you learned in school adapted, to binary arithmetic. In this section, we'll
examine the sguare-root approximation in its simplest and most elementa form.
Later, in the floating-point section, we'll combine these with other techniques to
improve the first estimate and speed the overall convergence of the algorithm. There
is no reason those techniques couldn’t also be made to fit a fixed-point application.

Newton’s Method for finding square roots is a favorite among programmers
because of its speed. It's given by the equation r'= (x/r +r)/2, with x being our
radicand and r the estimate. If you are interested, cube roots may be calculated r'=
(r +(3*x)/2)/(r *r +x/(2 *1))/2. It is an iterative approach that eventually finds the
root. There is no guarantee how many iterations it might take-that depends upon
the qudity of the initial guess—but it should about double the number of correct bits
on each iteration.

Formulating that initial best guess is the problem. Resolving the routine can
require an inordinate number of iterations if the first estimate is very far off. This
routine is simple; it only knows that it has a 32-bit input and that the greatest possible
root of such an input is 16 bits. To improve first estimate, therefore, the routine shifts
the radicand right until it fits within a 16-bit word. Still, there is no way of telling how
many iterations will be required. A loop counter with a large enough count would
suffice but could easily require more iterations than would otherwise be necessary.
Instead, a copy of the last estimate is saved and compared with the current estimate
after each iteration. If everything proceeds smoothly, the routine exits when the
estimates stop changing.

In some circumstances, however, the routine will hang, toggling between two
possible roots. Another escape is provided for that contingency. A counter, cntr, is
loaded with the maximum number of iterations. If that number is exceeded, the
routine leaves with the last best estimate, which is probably close enough. An

253

NUMERICAL METHODS

alternative would be to use ancther variable to define an error band and compare it
with the difference between each new estimate and the last; exiting when the
difference is less than the error (this-estimate -last_estimate<error).

fx_sqr: Algorithm

1. Establish a linmton the number of iterations possible in cntr.
Check for negative or zero input.
If true, exit through step 3.

| eave radicand in the register to be justified and nmake our first
esti mate.

2. Decrenment the limt counter, cntr.

If there is a carry, exit with current estimate and the carry set
through step 3.

If there is no carry, continue.
Test the estinate to see that it fits within sixteen bits.
If not, shift right until it does.
Store the estinate.
Divide the radicand by the estimate.
Add the result to the estimate.
Divide that by two.
Conpare | ast estimate with current estinate.
If is different continue with the beginning of step 2.
QO herwise, go to step 3.
3. Wite the result to the output and |eave.

fx_sqr: Listing
*kkkk
; accepts integers
; Renenber that the powers follow the powers of two (the root of a double word
; is awrd, the root of a word is a byte, the root of a byte is a nibble, etc.).

; newestimate = (radicand/last_estimate+l ast_estimate)/2, |ast-estimte=
new esti mat e.

fx_sqr proc uses bx cx dx di si, radicand:dword, root:word

254

THE ELEMENTARY FUNCTIONS

| ocal estimate:word, cntr:byte
nmov byte ptr cntr, 16
sub bx, bx ;to test radicand
mov ax, word ptr radicand
movV dx, word ptr radicand [2]
or dx, dx
is sign_exit
je zero_exit
jmp find_root ;not zero
zero_exit:
or ax, ax ;N0 negatives or zeros
j ne find_root
sigr_exit: ;indicate error in the
;operation
stc
sub ax, ax
mv dx, ax
j mp root_exit
find_root:
sub byte ptr cntr, 1
jc root_exit yWill exit with carry
;set and an approximate
; root
find_root1:
or dx, dx ;must be zero
je fits ;some kind of estimte
shr dx, 1
rer ax, 1
jmp find_rootl ;cannot have a root
;greater than 16 bits
;for a 32-bit radicand!
fits:
nmov word ptr estinmate, ax ;store first estimate of root
sub dx, dx
mov ax, word ptr radicand [2]
div word ptr estinate
nov bx, ax ;save quotient from division
; of upper word
nmov ax, word ptr radicand
div word ptr estimte ;divide |ower word
mo v dx, bx ;concatenate quotients

255

NUMERICAL METHODS

add ax, word ptr estimate
adc dx, 0
shr dx, 1
rcr ax, 1
or dx, dx
jne find_root
cnp ax, word ptr estimate
j ne find_root
cle

root_exit:
nmov di, word ptr root
nmov word ptr [di], ax
nmov word ptr [di][2], dx
ret

fx_sqr endp

; (radicand/estimate +
;estimate)/ 2

;to prevent any nodul ar aliasing
;is the estimate still changing?

;clear the carry to indicate
; success

The next approach is based on the technique taught in school for doing square
roots by hand. This method turns out to be much simpler in binary than in decimal
because of its modulus of 2.%it may not be faster than Newton's Method, but it's a
good aternative for those processors without hardware division instructions.

school_sqgr: Algorithm

1

Determine that the radicand is positive and not zero

If so, continue with step 2.

If not, signal the error and exit through step 5

Set bit counter for 16.

Set buffer to hold radicand and allow for shifts

O ear space for root
Shift buffer left tw ce.
Shift root left once

Subtract 2*root+l from root

If there is an underfl ow,

restore the subtraction by neans of
addition and continue with step 4

O herwise, increment the root and continue with step 4

256

THE

4. Decrenent bit counter.

| f zero,
O herw se,

exit through step 5.
continue with step 3.

5. Wite root to output and |eave.

school_sqr:
ookkkkkk

; school _sqr
;accepts integers
school _sqr

| ocal

or
js
je
j
zero_exit:
or
j ne
sign_exit:

sub

stc
j

set up:

findroot:

Listing

proc uses bx cx dx di si,

estimte:quword, bits:byte

bx, bx

ax, word ptr radicand
dx, word ptr radicand [2]
dx, dx

sign-exit

zero-exit

set up

ax, ax
setup
ax, ax

root _exit

bits, 16
estimte, ax
estimte [2], dx

byte ptr
word ptr
word ptr
ax, ax
word ptr
word ptr
bx, ax
cX, ax
dx, ax

estimate [4], ax
estimate [6], ax

ELEMENTARY FUNCTIONS

radi cand: dword, root: word

:not zero

;N0 negatives or zeros
;indicate error in the
;operation; can't do

;negatives
;zero for fail

:root

cinternediate

257

NUMERICAL METHODS

shl word ptr estimate, 1

rel word ptr estimate[2], 1

rel word ptr estimte[4], 1

rcl word ptr estimate[6], 1

shl word ptr estimate, 1

rcl word ptr estimate[2], 1

rcl word ptr estimate[4], 1

rcl word ptr estimate[6], 1 ; doubl e-shift radicand

shl ax, 1

rcl bx, 1 ;shift root

nmov cX, ax

mov dx, bx

shl cx, 1

rcl dx, 1 ;root*2

add cx, 1

adc dx, O ;o
subtract_root:

sub word ptr estimte[4], cx ;accunul at or- 2*r oot +

sbb word ptr estimate[6], dx

j nc r_plus_one

add word ptr estimate[4], cx

adc word ptr estimate[6], dx

j o conti nue_| oop
r_pl us_one:

add ax, 1

adc bx, O cr 4=
continue_| oop:

dec byte ptr bits

j ne findroot

clc
root-exit:

nmov di, word ptr root

mov word ptr [di], ax

mov word ptr [di][2], bx

ret

school _sqr endp

258

THE ELEMENTARY FUNCTIONS

Floating-Point Approximations

All the techniques explored so far in fixed point apply to floating-point
arithmetic as well. Floating-point arithmetic is similar to fixed point except that it
deals with real numbers with far greater range. And because of its extensive use in
scientific and engineering applications, greater emphasis is placed on its ability to
approximate the real world.

This section presents some concepts that can also be used in fixed-point routines,
but they’ re most valuable in floating point because of its attention to accuracy. Two
approximations will also be described- a sine function and square root-based on
materials from Software Manual for the Elementary Functions by William J. Cody,
Jr. and William Waite, published by Prentice-Hall, Inc. This small book is full of
valuable information for those writing numerical software. The sine/cosine approxi-
mation uses a minimax polynomia approximation, and the sguare root uses
Newton’s Method with a much improved initial estimate.

Floating-Point Utilities

The functions in this section use similar techniques to the fixed-point routines;
that is, they use tables or arrays of coefficients and Homer's rule for evauating
polynomial approximations to the functions. The floating-point format also has
some new tools and requires some new handling.

Many of the manipulations require argument reduction, which takes the floating
point word apart and puts it back together again in a different fashion. Some new
functions will be presented here for doing that. One is frxp, which, when passed a
float (X) returns its exponent (n) and the float (f) constrained to a value between .5
< f< 1, wheref* 2"= x. Because it is the power to which the fixed-point mantissa must
be raised to represent that number, the exponent is useful in finding the square root
of anumber, asyou'll seein flsgr.

frxp: Algorithm
1. Point to the variable for the exponent.
2. Test the nunber to see if it's zero.
If so, return zero as both the exponent and the mantissa.

259

NUMERICAL METHODS

If not, continue with step 3.

3. Discard the sign bit and subtract 126D to get the exponent, wite it

to exptr, and replace the exponent in the nunber with 126D.
4. Realign the float and wite it to fraction.
5. Return.

frxp: Listing

Cokkkkk
'

; Frxp perforns an operation simlar to the C function frexp. Used
;for floating-point math routines.

;Returns the exponent-bias of a floating-point nunber.

;does not convert to floating point first, but expects a single
;preci sion nunber on the stack.

1

1

frxp proc uses di, float:qgword, fraction:word, exptr:word
pushf
cld
nmov di, word ptr exptr ;assign pointer to exponent
mov ax, word ptr float[4] ;get upper word of float
mov dx, word ptr float[2]
sub CX, CX
or cX, ax
or cx, dx
je make it _zero
shl ax, 1 ;the sign neans zero
sub ah, 7eh ;subtract bias to place
;float . 5<=x<l
mv byte ptr [di], ah
mv ah, 7eh
shr ax, 1 ;replace sign
mov word ptr float[4], ax
mo v di, word ptr fraction
| ea si, word ptr float wite out new float
mov cx, 4
rep mMoVvVsw
frxp_exit:
popf
ret
make it _zero
sub ax, ax

260

THE ELEMENTARY FUNCTIONS

mv byte ptr [di], al
nmov di, word ptr fraction
rep stosw
j np frxp_exit
frxp endp

Ldxp performs essentially the inverse of frxp. This routine takes a floating-point
number as an argument and replaces the exponent, that is, it raises the mantissato a
new power. It computes input_float * 2™ **™" |ts operation is smple:

ldxp: Algorithm
1. Test the input floating point argunent for zero.

If it's zero, exit with zero as the result through step 6.
2. Save the sign and replace the current exponent with 126D.

3. Add the new exponent and test for overflow
If there is an overflow, exit through the overflow error exit, step 7.
4. shift the sign back into place along with the exponent.
5. Wite the new float to the output and |eave.
6. Zero error exit; wite zero out.
7. Overflowerror exit; wite infinite out.
ldxp: Listing

vokkkkk
1

;Ldxp is simlar to ldexp in C it is used for math functions.
; Takes fromthe stack passed with it an input float (extended) and returns a
;pointer to a value to the power of two.

ldxp proc uses di, float:qword, power:word, exp:byte
nov ax, word ptr float [4] ;get upper word of float
nmov dx, word ptr float [2] ;extended bits are not
; checked
sub CX, CX

261

NUMERICAL METHODS

or CX, ax
or cx, dx
je return_zero
shl ax, 1 ;save the sign
rcl cl, 1
nov ah, 7eh
add ah, byte ptr exp ;add new exponent
jc I d_overflow
shr cl, 1 ;return the sign
rer word ptr ax, 1 ; posi tion exponent
nmv word ptr float[4], ax
| dxp_exit:
nmov cx, 4
nov di, word ptr power ;wite the result out
| ea si, word ptr float
rep novsw
ret
I d_overflow
nmv word ptr float[4], 7f80h
sub ax, ax
mv word ptr float[2], ax
nmv word ptr float[0], ax
jw | dxp_exi t

return_zero:

sub ax, ax
mv di, word ptr power
nmv cx, 4
rep st osw
j np | dxp_exit
I dxp endp

The next three functions are al related. The first, flr, implements the C function
floor() and returns the largest floating-point mathematical integer not greater than
the input.

262

THE ELEMENTARY FUNCTIONS

flr: Algorithm
1. Get the float, extract the exponent, and subtract 126D.

If there is an underflow, the nunber nust be less than .5; exit
through step 5.

2. Subtract the reduced exponent from 40D. This the mantissa portion
pl us extendedpreci sion.

If the result is less than the reduced exponent, we already have the
floor (it's all integer); exit through step 3.

O herwi se, save the nunber of shifts in shift.

Shift the float right, shifting off the fraction bits, until the
exponent is exhausted. \Wat remains are integer bits.

3. CGet the exponent back from shift.

Shift the float back into its proper position, this tinme wthout the
fractionbits. This is the floor of the argument.

4. Leave, witing the result to the output.
Exit with a result of zero.

flr: Listing

Cokkkkkk
1

;floor greatest integer less than or equal to x
;single precision

flr proc uses bx dx di si, fp:gword, rptr:word

| ocal shift :byte

nmv di, word ptr rptr

mv bx, word ptr fp[0] ;get float with extended
; precision

nmov ax, word ptr fp[2]

nmov dx, word ptr fp[4]

nmov cx, dx

and cx, 7f80h ;get rid of sign and
;mantissa portion

shl cx, 1

nmov cl, ch

sub ch, ch

sub cl, 7eh ;subtract bias (-1)from

; exponent

263

NUMERICAL METHODS

j be
nov
sub

ib

nov
nov
sub
fix:
shr

rcr
rcr
| oop

nmov
re_position:
shl
rcl
rcl
| oop

al ready-fl oor:
nmov
nmov
nmov
sub
nov

flr_exit:
ret
| eave_wi t h_one:
| ea
mov
mov
rep nMovsw

j mp

| eave_wi th_zero:
sub
nmov

264

| eave_with_zero
ch, 40
ch, cl

al ready_f1 oor

byte ptr shift, ch
cl, ch

ch, ch
dx, 1

ax, 1

bx, 1

fix

cl, byte ptr shift

bx, 1
ax, 1
dx, 1
reposition

word ptr [di][4], dx
word ptr [di][2], ax
word ptr [di][0], bx
ax, ax

wordptr [di][6], ax

si, word ptr one
di, word ptr rptr
Ccx, 4

flr_exit
ax, ax
cx, 4

;is it greater than the
;mantissa portion?
;there is no fractional
;part

;shift the nunber the
;nunber of times indicated
;in the exponent

;position as fixed point

;realign float

;Write to output

; fl oating-point one

-floating-point zero

rep

THE ELEMENTARY FUNCTIONS

mv di, word ptr rptr
st osw

jm short flr_exit
endp

The complement to flr is flceil. This routine is similar to the C function ceil() that

returns the smallest floating-point mathematical integer not less than the input
argument.

flceil: Algorithm

1.

CGet the float and check for zero.
If the input argument is zero, exit through step 6.
If the input is not zero, continue.

Extract the exponent and subtract 126D. If there is anunderflow,
then the nunmber must be less than .5; exit through step 5.

Subtract the reduced exponent from 40D. This is the nantissa portion
plus extended precision.

If the result is less than the reduced exponent, we already have the
ceiling (it's all integer); exit through step 3.

O herwi se, save the nunber of shifts in shift.

Shift the float right, shifting the fractionbits into the MSWof the
floating-point data type until the exponent is exhausted. Wat
remains are integer bits.

Test the MBW of the floating-point data type.
If it's zero, go to step 3.

If it's anything else, round the integer portion up and
continue with step 3.

Get the exponent back from shift.

Shift the float back into its proper position, this tinme wthout the
fraction bits. This is the floor of the argument.

Leave, witing the result to the output.
Exit with a result of one.
Exit with a result of zero.

265

NUMERICAL METHODS

flceil: Listing
Cokkkkk

;flceil least integer greater than or equal to x
;single precision

flceil proc uses bx dx di si, fp:qword, rptr:word

| ocal shift:byte

nov di, word ptr rptr

nov bx, word ptr fp[0] ;get float with extended
; precision

nov ax, word ptr fp[2]

mv dx, word ptr fp[4]

sub CX, CX

or cx, bx

or CX, ax

or cx, dx

je | eave_wi th_zero ;this is a zero

nov cx, dx

and cx, 7f80h ;get rid of sign and
;mantissa portion

shi cx, 1

nov cl, ch

sub ch, ch

sub cl, 7eh ;subtract bias (-1) from
; exponent

ib | eave-wi t h-one

nmv ch, 40

sub ch, cl ;is it greater than the
;mantissa portion?

jb al ready_cei ;there is no fractional
;part

nov byte ptr shift, ch

nov cl, ch

sub ch, ch

fix:

shr dx, 1 ;shift the nunber the
;nunber of tines indicated
;in the exponent

rcr ax, 1

rcr bx, 1

rer word ptr [di] [6], 1 ;put guard digits in MSW of

;data type

266

| oop

cnp
je

add
adc
adc

not _qui t e_enough
nmov
reposition:
shl
rcl
rcl
| oop

al ready_cei |
mov
nov
nov
sub
nov

ceil-exit:
ret

| eave-wi t h-one
| ea
mov
mov

rep movsw

i

| eave_wi th_zero
sub
mov
nov

rep st osw
jmp

flceil endp

fix

THE ELEMENTARY FUNCTIONS

word ptr [di][6],0h

not _qui t e_enough
bx, 1

ax, 0
dx, 0
cl, byte ptr shift
bx, 1
ax, 1
dx, 1

re_position

word ptr [di][4]
word ptr [di][2]
word ptr [di][0]
ax, ax

word ptr [di][6],

si, word ptr one
di, word ptr rptr
cx, 4

ceil-exit
ax, ax
cx, 4

di, word ptr rptr

short ceil _exit

ax
bx

;position as fixed point

; roundup

;realign float

;wite to output

;a floating-point one

;a floating-point zero

267

NUMERICAL METHODS

Finaly, intrnd rounds the input argument to its closest integer. As used by Cody
and Waite,? this function returns an integer representing the mathematical integer
closest to the input float. It employs no rounding logic; if the mantissa portion of the
input float is greater than .5, the next higher whole integer is returned. In this
implementation, however, it returns a floating-point number representing the math-
ematical integer closest to the input. It was written that way to accommodate other
routines in the floating-point package.

intrnd: Algorithm

1. Subtract the value returned by flr fromthe input and take the
absol ute value of the result.

2. Compare the result with .5.
If it's greater, get the flceil of the input.
If it's equal to or less than, go to step 3.
3. Wite the result to the output and return.

intrnd: Listing

; *kkkkkk

;intrnd is useful for the transcendental functions

;it rounds to the nearest integer according to the logic
pintrnd(x) =if((x-floor(x)) <.5) floor(x);

: else ceil (x);

intrnd proc uses bx dx di si, fp:qword, rptr:word

| ocal tenpO:gword, tenpl:gword,

pushf
cld
sub ax, ax
nmov cx, 4
| ea di, word ptr tenpO ;prepare internediate
;registers
rep st osw
nmv cx, 4
| ea di, word ptr tenpl
rep stosw
nmv di, word ptr rptr ;clear the output

268

THE ELEMENTARY FUNCTIONS

rep st osw

i nvoke flr, fp, addr tenpO
i nvoke flsub, fp, tenpo, addr tenpl
and word ptr tenpl[4], 7fffh ; cheap fabs
i nvoke flconp, tenpl, one-half
cnp ax, 1 ;greater than .57
jne intrnd_exit
do_ceil:
i nvoke flceil, p, addr tenpO ;get the ceiling of the
sinput
intrnd_exit:
mv ax, word ptr tenpO[2]
nmv dx, word ptr tenpO[4]
nmv di, word ptr rptr
nmv word ptr [di][2], ax
nmv word ptr [di][4], dx
popf
ret
intnd endp

Dedling with rea numbers in a finite machine means we must dea with
limitations. Two such limitations are Ymax and Eps. Ymax is the maximum allowable
argument for the function that will produce accurate results with minimum error, and
Eps is the smallest allowable argument. The values for these are chosen based on the
size of the data types and the functions being approximated. They’re important in the
calculation of a number of elementary functions, notably flsin (discussed later).

Square Roots

The first function presented here, flsgr, computes the square roots of floating-
point numbers. Simply, this function finds the square root of the mantissa portion of
the float and then the root of 2™ It then reconstructs the float and returns.

To begin with, the function frxp is called to constrain the radicand to a small,
relatively linear region, .5 < x < 1 (this represents an exponent of -1). Within this

269

NUMERICAL METHODS

region, al sguare roots adhere to the relationship, nput_raidcand < root < 1,
precisely, al roots must exist from about .7071067 to 1.0. This makes it much easier
to come up with an initial estimate that is very close. Just taking the mid-range value
for the first estimate would improve it considerably. Recall that Newton's Method
delivers about about twice the number of accurate bits for each iteration; that is, if
the initial estimate is accurate to x bits, after the first iteration, will have about 2*x +1
accurate bits. But even this can reguire an unknown number of iterations to converge,
S0 the estimate must be improved.

The most popular solution is the formula for a straight line, y = m*x+b.
Calculating the values for mand b that provide the best fit to the square-root curve
yields dightly different values depending on the approach you take. Cody and Waite
use the values .59016 for m and .41731 for b, which will ways produce an initia
estimate that's less than one percent in error. Solving for y in the equation for a
straight line yields the first estimate, and only two passes through Newton's Method
produces a result for a 24-bit mantissa.

Finding the root of 2°™™" is simple if the exponent is even: divide by 2, just as
with logarithms. If the exponent is odd, however, it cannot be divided evenly by two,
s0 it must first be incremented by one. To compensate for this adjustment, we divide
the root of the input mantissa by sgrt(2). In other words, the exponent represents log,
of the input number; to find its root, simply divide by two. If the exponent must be
incremented before the division, the root of that additional power must be removed
from the mantissa to keep the result correct.

It's then a simple matter of reassembling the float using the new mantissa and
exponent.

Flsqr: Algorithm
1. Test input to see whether it is greater than zero.

If it's equal to zero, or less, exit with error through step 7.
2. Use frxp to get the exponent fromthe input float, and to set its

exponent to zero, constraining it to .5 < * < 1. Mltiply this
number, f, by .59016 and add .41731 for our first approximation.

3. Make two passes through r=(x/r+r)/2.

270

4. Inspect the exponent

| f
square root of

n

it's odd, nultiply our best

.5 and increnent

Even or odd, divide n by two.

THE ELEMENTARY FUNCTIONS

derived earlier with frxp

estimate from Heron's formula by the

n by 1.

5. Add n back into the exponent of the float

6. Wite the root
7. Leave

Flsqr: Listing

vokkkkkk
1

; flsqr

flsqr proc

| ocal

pushf
cld

| ea
sub
nov
rep st osw

i nvoke

cnp
je
cnmp
je
nov
sub
nov
st osw
not
and
nmov
jmp
got-result

rep

to the output

uses bx cx dx s

resul t:qword, tenpO:qword, tenpl:qgword

xn:qword, f:qword,

di, word ptr xn

ax, ax
cx, 4

flconp, fp0, zero
ax, 1

ok

ax, 0

got-result

di, word ptr fp
ax, ax

cx, 4

ax

ax, 7f80h

word ptr result[4]

flsqr_exit

di,

fp0: qword, fpl:word

y0: qwor d, m byte

;error
;large

ax cmake it

exp: byte

entry value too

plus infinity

271

NUMERICAL METHODS

nmov di, word ptr fpl
sub ax, ax
mv cx, 4
rep stosw
j mp flsqr_exit
ok:
i nvoke frxp, fp0, addr f, addr exp
i nvoke flmul, f, yOb, addr tenp0
i nvoke fladd, tenpO, yOa, addr yO
heron:
i nvoke fldiv, f, y0, addr tenpO
i nvoke fladd, y0, tenpO, addr tenpO
nov ax, word ptr tenpO[4]
shl ax, 1
sub ah, 1
shr ax, 1
mv word ptr tempO[4], ax
i nvoke fldiv, f, tenp0, addr tenpl
i nvoke fladd, tenp0O, tenpl, addr tenpO
nmov ax, word ptr tenpO[4]
shl ax, 1
sub ah, 1
shr ax, 1
nmv word ptr yO[4], ax
nmv ax, word ptr tenpO[2]
nmov word ptr yo0[2], ax
nmov ax, word ptr tenpO
mv word ptr y0, ax
sub ax, ax
nmv word ptr yO0[6], ax
chk_n:
nmv al, byte ptr exp
nov cl, al
sar al, 1
jnc evn

272

;arithnmetic shift,

; get exponent

;two passes through
p(xlr4r)/2 is all we need

;should always be safe

;subtracts one half
; by decrenenting the
; exponent one

;should always be safe

;subtracts one hal f
;by decrementing the
; exponent one

pl ease

THE ELEMENTARY FUNCTIONS

odd:
i nvoke flmul, yo0, sgrt_half, addr y0 ;adj ustment for uneven
; exponent
nmv al, cl
inc al ; bunp exponent on odd
sar al, 1 ;divide by two
evn:
nmov cl, al in/2->m
power :
nmv ax, word ptr y0[4]
shl ax, 1
add ah, cl

wite_result:

shr ax, 1

nmov word ptr y0[4], ax
| ea si, word ptr yo0
nmov di, word ptr fpl
nmv cx, 4

rep novsw

flsqr_exit:
popf
ret

flsqr endp

Sines and Cosines

The final routine implements the sine function using a minimax polynomial
approximation. A minimax approximation seeks to minimize the maximum error
instead of the average square of the error, which can allow isolated error spikes. The
minimax method keeps the extreme errors low but can result in a higher average
sguare error. Ultimately, what this means is that the function is resolved using a
power series whose coefficients have been specialy derived to keep the maximum
error to a minimum value.

This routine defines the input argument as some integer times p plus a fraction
equal to or less than p/2. It expects to reduce the argument to the fraction f, by
removing any multiplies of p It then approximates the sine (f) based on the

273

NUMERICAL METHODS

evaluation of a small interval symmetric about the origin, f, and puts the number
back together as our result. It solves for the cosine by adding p/2 to the argument and
proceeds as with the sine (see Figure 6-3).

In this function we again encounter Ymax and Eps. These limitations depend on
the precision available to the arithmetic in the particular machine and help guarantee
the accuracy of your results. According to Cody and Waite, Ymax should be no
greater than p*2? and Eps, no less than 22, where t is the number of hits available
to present the significand®. In this example, t is 11 bits, but that doesn’t take the
extended precision into account.

The algorithm is afairly straightforward implementation. If the input argument
is in range, this function initialy reduced it to xn initially by multiplying by I/p
(floating-point multiplication is generally faster than division) and calling intrnd to
get the closest integer. Multiplying xn by p and subtracting the result from the
absolute value of the input argument extracts a fraction, f, which is the actual angle
to be evaluated with Cody and Waite's minimax approximation.

The polynomial R(g) is evaluated using a table of precomputed coefficients and
Horner’srule, except that in this implementation, the usua loop (see Polyeval in the
last section) was unrolled.

Rig) = (((rd*g+r3)*g+r2)*g+rl)*g

where g = f*f. The values r4 through r1 are coefficients stored in the table sincos.

After the evaluation, R(g) is multiplied by f and f is added to it. The only thing
left to do is adjust the sign of the result according to the quadrant. The pseudocode
for this implementation of flsin is as follows.

flsin: Algorithm

1. See that the input argument is no greater than Ymax.
If it is, exit with error through step 8.

2. Take the absolute value of the input argument.
Miltiply by 1/pto remve multiple conmponents of p
Use intrnd to round to the closest integer, xn.

274

THE ELEMENTARY FUNCTIONS

Test xn to see whether it's odd or even. If it's odd, there is a sign
reversal; conplenment sign.

3. Reduce the argunent to f through (|x|-xn*cl)-xn*c2 (in other words
subtract the rounded value xn multiplied by p fromthe input argu-
ment) .

4. Conpare f with Eps
If it is less, we have our result, exit through step 8.

5. Square f, (f*f->g) and evaluate r(g)

6. Miltiply f by R(g), then add f.

7. Correct for sign; if sign is set, negate result.

8. Wite the result to the output and |eave

Flsin: Listing

.data
sincos qword 404900000000h, 3a7daa20968bh, Obe2aaaa8f dbeh, 3c088739ch85h
0b94f b2227f 1ah, 362e9c5a91d8h
. code
. flsin
flsin proc uses bx cx dx si di, fp0:qword, fpl:word, sign:byte
| ocal resul t:qword, tenpO:qword, tenpl:qword,
y:qword, u:qword
pushf
cld
i nvoke flconp, fp0, ymax ;error, entry value too
;large
cnp ax, 1
il absx
error-exit:

275

NUMERICAL METHODS

| ea di, word ptr result
sub ax, ax
nmov cx, 4

rep stosw
jnp wri teout

absx :
nmv ax, word ptr fpO[4]
or ax, ax
jns deconst ruct _exponent
and ax, T7fffh
nmv word ptr fpO[4], ax

deconst ruct _exponent :

i nvoke flml, fp0, one_over_pi,

i nvoke intrnd, result, addr

nmv ax, word ptr tenpO[2]

mov dx, word ptr tenpO[4]

mov cx, dx

and cx, 7f80h

shl cx, 1

nmv cl, ch

sub ch, ch

sub cl, 7fh
exponent

is not - odd

inc cl

or cl, cl

je not - odd
extract _int:

shl ax, 1

rcl dx, 1

rcl word ptr bx, 1

| oop extract _int

test dh, 1

je not _odd

not byte ptr sign
not _odd:

276

;make absol ute

resul t

» (x/pi)

pintrnd(x/pi)

;deternmine if integer
has odd or even
;nunber of bits

;get rid of sign and
;mantissa portion

;subtract

bias (-1) from

;position as fixed point

Xpi :
i nvoke
i nvoke
i nvoke
i nvoke
chk_eps:
i nvoke
i nvoke
or
jns
| ea
sub

nmov
rep st osw

jmp
r_g

i nvoke
i nvoke
i nvoke

i nvoke
i nvoke

i nvoke
i nvoke

i nvoke

THE ELEMENTARY FUNCTIONS

; ext ended- preci si on
;multiply by pi

flmul, sincos[8*0], tenpO, addr result
vintrnd(x/pi)*cl
flsub, fp0, result, addr result
v X] =i ntrnd(x/ pi)
flmul, tenpO, sincos[8*1], addr tenpl
pintrnd(x/pi)*c2
flsub, result, tenpl, addr y
Y
flabs, y, addr tenpO ;is the argument |ess
;than eps?
flcomp, tenpO, eps
ax, ax
r_g
di, word ptr result
ax, ax
cx, 4
writeout
flmul, vy, y, addr u
;evaluate r(g)
P ((rdxg+r3)*gtr2)*g+rl)*g
flmul, u, sincos[8*5], addr result
fladd, sincos[8*4], result, addr result
flmul, u, result, addr result
fladd, sincos[8*3], result, addr result
flml, u, result, addr result
fladd, sincos[8*2], result, addr result
flml, u, result, addr result

277

NUMERICAL METHODS

cresult== z

fxr:
i nvoke flmul, result, y, addr result

i nvoke fladd, result, y, addr result
crr+f

handl e_si gn:

cmp byte ptr sign, -1

jne writ eout

xor word ptr result[4], 8000h

;result * sign

writeout:

nmv di, word ptr fpl

| ea si, word ptr result

mo v cx, 4

rep nmovsw

flsin_ exit:

popf
ret
flsin endp

Deriving the dlementary functions is both a science and an art. The techniques
are given in books, but the art comes from experience with the arithmetic itself.
Combining knowledge of how it behaves with science produces the best results.

278

THE ELEMENTARY FUNCTIONS

Horden, Ira. An FFT Algorithm For MCS-96 Products Including Supporting
Routines and Examples. Mt. Prospect, IL:Intel Corp., 1991, AP-275.

Feynman, Richard P. The Feynman Lectures On Physics. Reading, MA:
Addison-Wesley Publishing Co., 1963, Volume |, Chapter 22.

Knuth, D. E. Fundamental Algorithms. Reading, MA: Addison-Wesley Pub-
lishing Co., 1973, Page 26, Exercise 28.

Jarvis, Pitts. Implementing CORDIC Algorithms. Dr. Dobb’s Journal, October
1990, Pages 152-156.

Nielsen, Kg L. Modern Trigonometry. New York, NY: Barnes & Noble, 1966,
Page 169

Acton, Forman S. Numerical Methods That Usually Work. Washington D.C.:
Mathematical Association of America, 1990.

Hamming, R. W. Numerical Methods for Scientists and Engineers. New Y ork,
NY: Dover Publications, 1973.

Sedgewick, Robert. Algorithms in C. New York, NY: Addison-Weldey Publish-
ing Co., 1990, Page 525.

Crenshaw, Jack W. Sguare Roots are Smple? Embedded Systems Program-
ming, Nov. 1991, 4/11, Pages 30-52.

Cody, William J. and William Waite. Software Manual for the Elementary
Functions. Englewood, NJ: Prentice-Hall, Inc., 1980.

279

280

APPENDIX A

A Pseudo-Random
Number Generator

To test the floating-point routines in this book, | needed something that would
generate an unpredictable and fairly uniform series of numbers. These routines are
complex enough that a forgotten carry, incorrect two's complement, or occasional
overflow could easily hide from an ordinary “peek and poke” test. Even with a
random number generator, it took many hours and tests with a number of data ranges
to find some of the ugliest bugs.

Of course, the standard C library has a random number generator, rand(), but the
code for it was unavailable and there were no guarantees as to how it worked. Some
random number generators have such a high seria correlation (sequential depen-
dence) that if a sequence of numbers was mapped to x/y locations on a monitor,
patterns would appear. With others, users were warned that although each number
generated was guaranteed to be random individually, no sequence was guaranteed
to be random.

Generating random numbersisn’t as easy as it might sound. Random numbers
and arbitrary numbers are very different; if you asked afriend for arandom number,
you would really receive an arbitrarily chosen number. To be truly random, a number
must have an equal chance of being chosen out of some known range and precision.

Games of dice, cards, and the lottery al depend on a sequence of random
numbers, and most use a means other than computers to generate them. People don’t
trust machines to generate random numbers because machines can become predict-
able and repetitive. But with the kind of simulations and testing needed to test the
floating-point routines in this book, drawing each number from a pot would take far
too long. Some other method had to be devised.

281

NUMERICAL METHODS

One of the first techniques for generating random numbers was originated by
John Von Neumann and called the middle-square method. * It consisted of taking the
seed, or previous random number, squaring it, and taking the middle digits.
Unfortunately, this method had serious disadvantages that prevented it from being
widely used. It didn’t take much for it to get into arut; if a zero found its way into
these middle digits, for instance, there it would stay.

A number of pseudo-random number generators are in general use, though not
all of them are well tested and not all of them are good. A good random number
generator is difficult to define exactly. The one quality that these generators must
possess is randomness. An instance of thisis given in the chi-sgquare test, presented
later. Given a uniformly distributed, pseudo-random sequence of a certain length, n,
of numbers, al between 0 and some limit, |, divided among | bins, an equal number
of numbers in each bin would be highly suspicious.

The most popular pseudo-random number generator in use, and the one chosen
for this book, is the multiplicative congruential method. This technique was first
proposed by D. H. Lehmer' in 1949. It is based on the formula

X = (a% + ¢) nod m

Each new number is produced from a number, X, which is either the seed or the
previous number, through multiplication and modular division. It requires a multi-
plier, a, that must be equal to or greater than zero and less than the modulus, an
additive or increment, c, that must also be equal to or greater than zero and less than
the modulus, and a modulus, m, that is greater than zero. Simply supplying numbers
for these variables won't result in a good random number generator; the two “bad”
generators described earlier were linear congruential generators.

Here are a few guiddines, summarized from the materias of Donald Knuth:

« The seed, X, may be arbitrary and may, in fact, be the previoudy generated
number in a pseudo-random sequence. Irandom, the pseudo-random number
generator created for this book expects a double as the seed; in the demonstration
routine spectral.c, the DOS timer tick is used.

282

A PSEUDO-RANDOM NUMBER GENERATOR

The modulus, m, should be at least 2°. Very often it is the word size (or a multiple
thereof) of the computer, making division and extraction of the remainder trivial.
The subroutine that actually produces the random number uses a modulus of 2%.
This means that after the seed is multiplied by a, the least significant doubleword
is the new random number. The result would be the same if the product of a* X
were divided by 100000000H.

If you intend to run the random number generator on a binary computer, the
multiplier, a, should be chosen; a mod 8=5. If the target machine is decimal, then
amod 200 = 21. The multiplier and increment determine the period, or the length
of the sequence before it starts again, and potency, or randomness, of the random
number generator. The multiplier, a, in irandom (presented later in this chapter)
is 69069D, which is congruent to 5 mod 8.

The multiplier should be between .0lm and .99m and should not involve a regular
pattern. The multiplier in irand is actually less than .0lm, but so was the
multiplier in the original psuedo-random number generator proposed by Lehmer.
In truth, it was chosen partly because of its size; the arithmetic was easier and
faster. In tests described later in this appendix, this multiplier performed as well
as those of two other generators.

If you have a good multiplier, the value of ¢, the increment, is not important. It
may be equal to one or even a. In irandom, ¢ = 0.

Beware of the least significant digits. They are not very random and should not
be used for decisions. Avoid methods of scaling random numbers that involve
modular operations, such as those found in the Microsoft C getrandom macro; the
modular function will return the least random part of the number. Instead, treat
the value returned by the random number generator as a fraction and use it to scale
a user-determined maximum.

The technique chosen for the random number generator here is a combination of

linear congruential and shuffling. In this sense, shuffling means that the random
numbers are somehow moved around, or shuffled, before they're generated. This
breaks up any seria correlation the sequence might have and provides a much longer,
possibly infinite, period.

283

NUMERICAL METHODS

The pseudo-random number generator here comprises three routines. The first
is an initialization, rinit, in which an array of 256 doublewords is filled with numbers
created using the routine congruent and a seed value.

The actual generation is done by irand. First, this routine creates a new random
number based on the current seed, which is nothing more than the last number
generated. It then uses the lower byte of the upper word of this new random number
as an index into the array of 256 numbers created at initialization. A new random
number is created to replace the one selected and the routine exits, returning the
number from the array. The initialization routine, rinit, must be called before
irandom if the user wishes to select their own seeds; otherwise, the value 1 is chosen.
Pseudocode for each of the routines is as follows

rinit: Algorithm
1. Point to the double word array in RAM This will be the initial list of
random nunbers.

2. Place the input seed in the seed variable. In these routines, the timer
tick is used as the seed.

3. Call the routine congruent 256 times to fill the array.
4., Exit.
;rinit - initializes random number generator based upon input seed
.data
a dwor d 69069
I MAX equ 32767
rantop word I MAX
ranl dword 256 dup (0)
xsubi dwor d I'h ;global iterative seed for

; random nunber generator, change
;this value to change defaul t

284

A PSEUDO-RANDOM NUMBER GENERATOR

init byte Oh ; gl obal variable signaling
;whet her the generator has been
cinitialized or not
. code

rinit proc uses bx cx dx si di, seed:dword

| ea di, word ptr ranl
nmov ax, word ptr seed[?]
nov word ptr xsubi[2], ax ;put in seed variable
mv ax, word ptr seed ;get seed
mv word ptr xsubi, ax
mv cx, 256
fill_array:
i nvoke congr uent
nmv word ptr [di], ax
nmv word ptr [di][2], dx
add di, 4
| oop fill_array
rinit_exit
sub ax, ax
not ax
nmov byte ptr init, a
ret
rinit endp

congruent: Algorithm

1. Mve the lower word of the seed, xsubi, into AX and nultiply by the |ower
word of the nmultiplier, a. This will produce a result in DX AX, with the
upperword of the product in DX (This routine performs a multiple-
precisionnultiply. This is a standard polynonmial mltiply; it is a bit
sinpler and more direct because the nultiplier is known.)

2. Save the lower word of this product in BX and the upper word in CX

285

NUMERICAL METHODS

3. Place the upper word of the seed, xsubi, in AX and nultiply by the | ower
word of the nultiplier, a.

4. Add the lower word of the product of this last multiplication to the upper
word of the product fromthe first multiplication, and propagate any
carries.

5. Add to AX the lower word of xsubi, and to DX the upper word of xsubi.
The multiplier used in this routine is 69069D, or 10dcdH. The
mul tiplications performed prior to this step all involved the |ower word,
OdcdH. To multiply by 10000H you need only shift the multiplicand 16
places to the left and add it to the previous subproduct.

6. Replace DX with BX, the LSWof the nultiple-precision product. The MSW
is discarded because it is purely overflow from any carries that have
propagated forward. Instead, the lesser words are used. They m ght be
regarded as the fractional extension of any integer in the MSW

7. Wite BX to the LSWof the seed and AX to the MSW

8. Return.

vokkkkkk

;congruent -perforns sinple congruential algorithm

congruent proc uses bx cx

nmov ax, word ptr xsubi ;a*seed (npd2" 32)

mul word ptr a

nmov bx, ax ;lower word of result

nmov cx, dx ; upper word

mov ax, word ptr xsubi[2]

mul word ptr a

add ax, cx

adc dx, 0

add ax, word ptr xsubi ;a multiplication by one is just
;an add, right?

adc dx, word ptr xsubi [2]

nmov dx, bx

nmov word ptr xsubi, bx

286

A PSEUDO-RANDOM NUMBER GENERATOR

mov word ptr xsubi [2], ax
ret

congruent endp

irandom: Algorithm

—~N oo ol B W N

Point to the array of random nunbers.

Call congruent for a new nunber based upon the last seed.

Use the lower byte of the MSWof that number as an index into that array.
Cet a new random nunber.

Replace the previously selected number with this new nunber.

Replace the seed with the previously selected nunber.

Scal e the random nunber with rantop, a variable defining the maxi num
random nunber output by the routine.

vokkkkkk
'

;irandom generates random floats using the linear congruential method

i random proc uses bx cx dx si di
| ea si, word ptr ranl
nmov al, byte ptr init ;check for initialization
or al, al
j ne already_initialized
i nvoke rinit, xsubi ;default to 1
already_initialized:
i nvoke congruent ;get a random nunber
and ax, Offh ;every fourth byte, right?
shl ax, 1
shl ax, 1 ynultiply by four
add si, ax ypoint to nunber in array
mv di, si ;SO We can put one there too
i nvoke congr uent
mv bx, word ptr [si]

287

NUMERICAL METHODS

ret
i random

The danger with a pseudo-random number generator is that it will look quite
acceptable on paper but may fail to produce good numbers. Spectral.c provides two
ways to test irandom or any pseudo-random number generator. One is quite smple,
allowing examination of the output in graphic format so that the numbers produced
by irandom can be checked visualy for any patterns or concentrations. Any serid
correlations that might arise can be detected using this method, but it is no proof of
k-space, or multidimensional, randomness.

The other test is the traditional Chi-square statistic. The output of this formula
can give a probabilistic indication as to whether your random number generator is
truly random. The actual formula is stated:

but for the purposes of this agorithm is stated:

288

cx, word ptr [si][2]
word ptr [di], ax
word ptr [di] [2], dx
word ptr xsubi, bx
word ptr xsubi[2], cx

ax, bx

word ptr rantop

ax, dx

endp

;get nunber from array
;replace it with another

;seed for next random

;scale output by rantop, the
; maxi mum si ze of the

; random nunber

;if rantop were made OffffH,
;the value could be used
;directly as a fraction

v= X (Y.-nps)2/nps

1<s<Ik

v= 1/n2 (yiszlps)-n

1<s<k

A PSEUDO-RANDOM NUMBER GENERATOR

This formula merely evaluates a sequence and produces a value indicating how
much the sequence diverged from a probable or expected distribution.

Say you generate 1,000 numbers, a, all of them less than 100, b. You then divide
a among 100 bins, ¢, based on the value of the number; in other words, a random
number of 55 would go into bin 55, and a number such as 32 would go in bin 32. You
would probably expect 10 numbers in each bin. Of course, a random number
generator will seldom have an absolutely even distribution; it wouldn't be random
if it did.

In fact, this statistic is only an indicator and can vary from sampling to sampling
on the same generator. Tables can be used to interpret the numbers output by this
formula. A good rule of thumb is that the statistic should be close, but not too close,
to the number of bins-probably within 2+V(b) .2

This statistic can vary. While you could roll 10 sevensin arow, it simply won't
happen very often. A statistic that varies widely from 2+V(b), consistently produces
the same value, or is extremely close to b might be suspect. | tested Irandom—al ong
with rand(), a “portable’ pseudo-random number generator written in C and a third-
party routine found little difference in this statistic. It always remained relatively
close to b, only occasionally straying outside 2+/(b).

Both the visual and the Chi-sguare test are incorporated into a program called
spectral.c (no relation to Knuth’s spectral test; it is so called merely because of its
visual aspect). The program is simple: Pairs of random numbers are scaled and used
as x and y coordinates for pixels on a graphics screen; 10,000 pixels are generated
this way. Serial correlations can show up as a sawtooth pattern or other concentra-
tions in the display. Otherwise, the display should show a fairly uniform array of
white dots similar to a starry night.

After painting the screen, program retrieves the seed to generate a sequence of
numbers for the Chi-square statistic. The result is then displayed.

spectral: Algorithm

1. Prepare the screen, turn the cursor off, put the video in EGA graphics

node, and retrieve a structure containing the current video configura-
tion.

289

NUMERICAL METHODS

2. a) Use the timer tick as a seed and generate 20,000 pseudo-random numbers,
using pairs as x/y locations on the graphics screen to turn pixels on.
b) Use the same seed to generate the sequence for Chi-square analysis;
output the result to the screen.
c¢) Print a nessage asking for a keystroke to continue, "g" to quit.

3. Return the screen to its previous state and exit to DCS.

#i ncl ude<coni o. h>
#i ncl ude<st di 0. h>
#i ncl ude<gr aph. h>
#i ncl ude<stdlib. h>
#i ncl ude<ti ne. h>

short nodes[] = { _TEXTBWMO, _TBXTC40, _TEXTBWBO0,
_TBXTC80, _MRBSACOLCR,
_MRESNOCOLGR,
_HRESBW _TEXTMONG, _HERCMONOG,
_MRES16COLOR, _HRESI GCOLOR,
_ERESNOCOLOR,
_ERESCOLOR, _VRES2COLCR,
_VRES16COLCR,
_MRES256C0LOR, _ORESCOLOR
¥

extern int irandom (void);
extern void rinit (int);
extern uraninit (long);
extern double urand (void);

/*this routine scales a random number to a maxi num without using a nodul ar
operation*/
int get random (int nmex)
{
unsigned long a, b;

a=i random() ;

b = max*a;
return(b/32768);

290

A PSEUDO-RANDOM NUMBER GENERATOR

void main ()

short |, ch, X, v, row, num = sizeof (nodes) /

size of (nodes[0]);
unsigned int i, e
long g, c:
doubl e rnum
double result;
int n = 20000;
int r = 100;
insigned int f[1000];
unsigned int a, b, d;
int seed;
float chi;
float pi=22.0/7.0;
struct videoconfig vc;

_di spl aycur sor (_GCURSOROFF) ;

_setvi deomode(_ERESNOCOLOR) ;

_getvideoconfig(&vc);
do{

do{

seed=(unsi gned) ti me(NULL);

rinit(seed);

_cl earscreen(_GCLEARSCREEN) ;

for(i=0;i<l0000;i++)

x=get randon{ vc. nunxpi xel s);
y=get random(vc. nunypi xel s);

_setpixel (x,y);

{

[*set up screen*/
/*EGA mode; change this
i f you have sonething

el se. The table is above*/

/*get the video configuration*/

/*use the timer tick as the
seed*/

/*draw a starry
night on the screen*/

291

NUMERICAL METHODS

rinit(seed); /*cal cul ate x-square based
upon sane seed as display*/
for (a=0; a<r; att) f[a] =0;
for (a=0; a<n; att) {
f[getrandon(r)] ++;

for (a=0,¢c=0; a<r; atd)

¢ += f[a] * f[a];

chi= ((float)r * (float)c/(float)n)-(float)n;

printf("\n(irandom) chi-square statistic for this set of
of random nunbers is %", chi);

printf("\npress a key to continue...");

)whi | e((ch=getch()) !'= 'q');

twhile(ch 1= "q");

_di spl aycur sor (_GCURSORON) ;
_setvi deonode(_DEFAULTMODE) ;

292

A PSEUDO-RANDOM NUMBER GENERATOR

| Knuth, D. E. Seminumerical Algorithms. Reading, MA: Addison-Wesley Pub-
lishing Co., 1981, Pages 1-178.

2 Sedgewick, Robert. Algorithms in C. Reading, MA: Addison-Wesley Publish-
ing Co., 1990, Page 517.

293

294

APPENDIX B

Tables and Equates

Extended Precision Values Used in Elementary Functions

zero
one_hal f
one_over _p
two_over_s
hal f _pi
one_over | n2
I n2

sqrt _hal f
expeps

eps

ymax

bi g- x
littlex
Y0a

Y0b
quarter

Constants for
circulark
hyper k

Common Values Written for Quadword Fixed Point
0. 318309886 =

1Up =

©
1l

gword
gword
gword
gword
gword
gword
gword
gword
gword
gword
gword
gword
gword
gword
gword
gword

000000000000h
3f 0000000000h
3ea2f 9836e4eh
3f 22f 9836e4eh
3f ¢90f daa221h
3f b8aa3h295ch
3f317217f 7dl h
3f 3504f 30000h
338000000001h
39f ffff70000h
45¢90f db0000h
42a000000000h
0c2a000000000h
3ed5a9%a80000h
3f 1714ba0000h
3e8000000000h

Cordic Functions
gword 9b74eda7h

gword

1351e8755h

9. 869604401
1.772453851
2.718281828
0. 367879441

517cclb7h
9de9e64df h
1c5bf 891bh
2b7€15163h
5e2d58d9h

295

NUMERICAL METHODS

e2 = 7.389056099 = 763992e35h
pl 180 = 0.017453293 = 477dl adh

+2 = 1.414213562 = 16a09e668h
I'n(p) = 1.144729886 = 1250d048eh
3 = 1.732050808 = |bb67ae86h
D = 3.141592654 = 3243f6a8%h

Negative Powers of Two in Decimal
2"t = 5D
2 = 25D
3 = 125D
4 = 0625D
5 = .03125D
"% = 015625D
7 = .0078125D
8 = . 00390625D
Y = .001953125D
= . 0009765625D
= .00048828125D
= .000244140625D

= o

N NDNNODNDNDNDNMNNDNDDN

Negative Powers of Ten in 32 bit Hex Format

10" = .1999999aH
10°2 = . 028f5c29H
103 = . 00418037H
10"* = . 00068db9H

10°® = .0000a7c5H
10°® = . 000010c6H
10°7 = . 00000l adH
10°® = .0000002aH
10" = .00000004H

296

APPENDIX C

FXMATH.ASM

. dosseg
.model small, c, os-dos

include math.inc

. code

vokkkk kK

; add64 -Adds two fixed-point nunbers. The radix point |ies between
;word 2 and word 3

;the arguments are passed on the stack along with a pointer to

;storage for the result

add64 proc uses ax dx es di, addendO:qword, addendl:qword, result:word

nmov di,word ptr result
nov ax, word ptr addend0[0] ;ax = low word, addend0
nov dx, word ptr addend0[2] ;dx = highword, addend0
add ax, word ptr addendl] 0] ;add |ow word, addendl
adc dx, word ptr addendl[2] ;add high word, addendl
nmov word ptr [di], ax
nmov word ptr [di][2], dx
nov ax, word ptr addendQ[4] ;ax = |l ow word, addend0
nov dx, word ptr addendO[6] ;dx = high word, addend0
adc ax, word ptr addendl]4] ;add |ow word, addendl
adc dx, word ptr addendl] 6] ;add high word, addendl
nov word ptr [di][4], ax
nov word ptr [di][6], dx
ret
add64 endp

297

NUMERICAL METHODS

1% sub64
;arguments passed on the stack; pointer returned to result
sub64 proc uses dx es di,

sub0: gword, subl:qgword, result:word

nmv di,word ptr result
nov ax, word ptr sub0 [0] ;ax = low word, subO
nov dx, word ptr subO [2] ;dx = high word, subO
sub ax, word ptr subl [0] ;subtract low word, ;subl
sbb dx, word ptr subl [2] ;subtract high word, ;subl
nov word ptr [di][0], ax
nmov word ptr [di] [2],dx
nmv ax, word ptr subO [4] ;ax = low word, subO
nmv dx, word ptr subO [6] ;dx = high word, sub0
shb ax, word ptr subl [4] ;subtract |ow word, ; subl
sbhb dx, word ptr subl [6] ;subtract high word, subl
nov word ptr [di][4],ax
nov word ptr [di][6],dx
nov a, 0
jnc no-flag
not ax
no-flag:
ret ;result returned as dx:ax
sub64 endp
i+ subl28

;argunents passed on the stack; pointer returned to result
sub128 proc uses ax dx es di,
sub0: word, subl:word, result:word

nmv di,word ptr subO

nmv si,word ptr subl

nmv ax, word ptr [di] [0] ;ax = low word, [di]
nmv dx, word ptr [di][2] ;dx = high word, [di]
sub ax, word ptr [si] [0] ;subtract low word, [si]

298

shb

rep novsw
ret
sub128 endp

dx, word ptr [si][2]
word ptr [di],ax
word ptr [di][2], dx

ax, word ptr [di][4]
dx, word ptr [di][6]
ax, word ptr [si][4]
dx, word ptr [si] [6]
word ptr [di][4],ax
word ptr [di][6],dx

ax, word ptr [di][8]
dx, word ptr [di][10]
ax, word ptr [si][8]
dx, word ptr [si] [10]
word ptr [di][8],ax
word ptr [di][10],dx

ax, word ptr [di][12]
dx, word ptr [di][14]
ax, word ptr [si][12]
dx, word ptr [si][14]
word ptr [di] [12],ax
word ptr [di][14],dx

si, di
di,word ptr result
cX, 8

FXMATH.ASM

;subtract high word, [si]

;ax = low word, [di]

;dx = high word, [di]
;subtract low word, [si]
;subtract high word, [si]

;ax = low word, [di]
;dx = high word, [di]
;subtract low word, [si]
;subtract high word, [si]

;ax = low word, [di]

;dx = high word, [di]
;subtract low word, [si]
;subtract high word, [si]

;result returned as dx:ax

;*mullong - Miltiplies two unsigned fixed point values. The
;argunents and a pointer to the result are passed on the stack
mul long proc uses ax dx es di

nmv

snul tiplicand: dwor d

di,word ptr result

ax, word ptr smultiplicand]2]

snul tiplier:dword, result:word

;smal | nodel pointer is
; near

;multiply multiplicand
;high word

299

NUMERICAL METHODS

mul word ptr snultiplier[2]

nov word ptr [di][4], ax

nov word ptr [di] [6], dx

nov ax, word ptr smultiplicand]2]
mul word ptr smultiplier[0]

nov word ptr [dil[2], ax

add word ptr [di][4], dx

adc word ptr [di][6], O

nmv ax, word ptr smultiplicand]0]
mul word ptr snultiplier[2]

add word ptr [di][2], ax

adc word ptr [di][4], dx

adc word ptr [di][6], O

nmv ax, word ptr smultiplicand]0]
mul word ptr smultiplier[0]

nov word ptr [di][0], ax

add word ptr [di][2], dx

adc word ptr [di][4], O

adc word ptr [di][6], O

ret

mul | ong endp

Cokkkkkk

Sk MI64 -

Miul tiplies two unsigned quadword integers.

;by multiplier high word

;mul tiply nultiplicand
;high word
;by multiplier [ow word

;add any remant carry
;mul tiply nmultiplicand
;1 ow word

;by multiplier high word
;add any remant carry
;mul tiply nultiplicand

;1 ow word
;by multiplier [ow word

;add any remmant carry

The

;* procedure allows for a product of twice the length of the multipliers,

;* thus preventing overflows.
mul64 proc uses ax dx,

mul tiplicand: gword, multiplier:qword, result:word

nmv di,word ptr result
nov ax, word ptr multiplicand]6]
mul word ptr multiplier[6]

300

;multiply multiplicand
; hi ghword
;by multiplier

hi gh word

mov
mov

mo v

mov
add
adc

mo v

mov
mov
add
adc
adc

mov

mov
mov
add
j nc
adc
adc
adc

mo v

mul

add
adc
adc

mov

mu |
add
adc
adc

word ptr [di][12], ax
word ptr [di][14], dx

ax, word ptr nultiplicand [6]

word ptr nultiplier[4]
word ptr [di] [10], ax
word ptr [di][12], dx
word ptr [di][14], O

ax, word ptr nultiplicand]6]

word ptr nultiplier[2]
word ptr [di][8], ax
word ptr [di][10], dx
word ptr [di][12], O
word ptr [di] [14], O

ax, word ptr nultiplicand]6]

word ptr nultiplier[O0]
word ptr [di][6], ax
word ptr [di][8], dx
@

word ptr [di][10], O
word ptr [di][12], O
word ptr [di][14], O

ax, word ptr nultiplicand|4]

word ptr nultiplier[6]
word ptr [di][10], ax
word ptr [di][12], dx
word ptr [di][14], O

ax, word ptr nultiplicand[4]

word ptr multiplier[4]
word ptr [di][8], ax
word ptr [di] [10], dx
word ptr [di] [12], O

FXMATH.ASM

;mul tiply multiplicand
; hi gh word
;by multiplier | ow word

;add any remant carry

;mul tiply multiplicand
;1 ow word
; by multiplier high word

;add any remant carry
;add any remmant carry

;mul tiply multiplicand
;1 ow word
;by multiplier high word

;add any remant carry

;mul tiply nultiplicand
;1 ow word
;by multiplier low word

;mul tiply multiplicand
;high word
;by multiplier high word

301

NUMERICAL METHODS

302

adc

mul

add
adc
jnc
adc
adc
adc

mul
nov
add
j nc
adc
adc
adc
adc

mul
add
adc
adc
adc

mo v

add
adc
j nc
adc
adc
adc

word ptr [di] [14], O
ax, word ptr nultiplicand[4]

word ptr multiplier[2]
word ptr [di][6], ax
word ptr [di][8], dx
a

word ptr [di][10], O
word ptr [di][12], O
word ptr [di][14], O

ax, word ptr nultiplicand[4]

word ptr nultiplier[OQ]
word ptr [di][4], ax
word ptr [di][6], dx
@

word ptr [di][8],
word ptr [di][10],
word ptr [di][12],
word ptr [di][14],

o ooo

ax, word ptr nmultiplicand]?2]

word ptr nultiplier[6]
word ptr [di][8], ax
word ptr [di][10], dx
word ptr [di][12], O
word ptr [di][14], O

ax, word ptr multiplicand]?2]

word ptr nultiplier[4]
word ptr [di][6], ax
word ptr [di][8], dx
@]

word ptr [di][10], O
word ptr [di][12], O
word ptr [di][14], O

;multiply multiplicand
; high word
;by nultiplier |ow word

;add any remant carry

;multiply nultiplicand
; hi gh word
;by nultiplier |ow word

;add any remant carry

;multiply nultiplicand
:low word
;by nultiplier high word

;add any remmant carry
;add any remant carry

;multiply multiplicand
;1 ow word
;by multiplier |ow word

;add any remant carry
;add any remmant carry
;add any remant carry

mul
add
adc
jnc
adc
adc
adc
adc

nul

nmov
add
jnc
adc
adc
adc
adc
adc

nul

add
adc
jnc
adc
adc
adc

mul

add
adc
jnc
adc

ax, word ptr multiplicand]2]

word ptr multiplier[2]
word ptr [di][4], ax
word ptr [di][6], dx
@

word ptr [di][8], O
word ptr [di][10], O
word ptr [di][12], O
word ptr [di][14], O

ax, word ptr nultiplicand[2]

word ptr multiplier[0]
word ptr [di][2], ax
word ptr [di][4], dx
@

word ptr [di][6], O
word ptr [di][8], O
word ptr [di][10], O
word ptr [di][12], O
word ptr [di][14], O

ax, word ptr nultiplicand[Q]

word ptr nmultiplier[6]
word ptr [di][6], ax
word ptr [di][8], dx
@

word ptr [di][10], O
word ptr [di] [12], O
word ptr [di] [14], O

ax, word ptr nmultiplicand[0]

word ptr nmultiplier[4]
word ptr [di][4], ax
word ptr [di][6], dx
@

word ptr [di][8], O

FXMATH.ASM

;multiply multiplicand
; ow word
;by multiplier high word

;add any remant carry
;add any remant carry
;add any remant carry
;add any remant carry

;mul tiply multiplicand
; ow word
; by multiplier |ow word

;add any remant carry
;add any remant carry
;add any remant carry
;add any remmant carry
;add any remant carry

;mul tiply multiplicand
;low word
;by multiplier high word

;add any remant carry
;add any remant carry
;add any remant carry

;mul tiply nultiplicand
; [ow word
; by multiplier |ow word

;add any remmant carry

303

NUMERICAL METHODS

adc word ptr [di][10], O
adc word ptr [di][12], O
adc word ptr [di][l4], O
@
mov ax, word ptr nmultiplicand[0];
mu | word ptr multiplier[2]
add word ptr [di][2], ax
adc word ptr [di][4], dx
jnc @jf
adc word ptr [di][6], O
adc word ptr [di][8], O
adc word ptr [di][10], O
adc word ptr [di][12], O
adc word ptr [di][14], O
@
nmov ax, word ptr
mul word ptr nmultiplier[0]
mov word ptr [di][0], ax
add word ptr [di][2], dx
j nc @
adc word ptr [di][4], O
adc word ptr [di][6], O
adc word ptr [di][8], O
adc word ptr [di][10], O
adc word ptr [di][12], O
adc word ptr [di][14], O
@
ret
mul64 endp

ckkkkkk
1

rclassic nultiply

crul
pr oduct : word

| ocal

304

proc uses bx cx dx si di

mul tiplicand[Q] ;
;low word
;by multiplier |ow word

nunbi ts: byte, m t pcnd: gword

;add any remant
;add any remant
;add any remmant
;add any remant
;add any remmant

;add any remmant
;add any remmant
;add any remant
;add any remant
;add any remmant
;add any remmant

;add any remmant carry
;add any remmant

carry

;add any remant carry

mul tiply multiplicand

;low word
;by multiplier

hi gh word

carry
carry
carry
carry
carry

multiply multiplicand

carry
carry
carry
carry
carry
carry

mul tiplicand: dword, multiplier:dword,

rep

test_multiplier:

shr
rcr

jnc

add
adc
adc
adc

FXMATH.ASM

ax, ax
si, word ptr multiplicand
di, word ptr mtpcnd

cx, 2
; cl ear upper words
bx, ax
cX, ax
dx, ax

byte ptr numbits, 32

word ptr multiplier[2], 1
word ptr multiplier,1

decrement _count er

ax, word ptr nmtpcnd

bx, word ptr nitpcnd[2]
cx, word ptr mtpcnd[4]
dx, word ptr mtpcnd[6]

decrenment _counter:

exit:

crul

shl
rcl
rcl
rcl

dec
jnz

popf
ret
endp

word ptr mtpcnd, 1

word ptr mtpend[2], 1
word ptr mtpend[4], 1
word ptr mtpend[6],1

byte ptr nunbits
test_multiplier

di, word ptr product
word ptr [di], ax
word ptr [di][2], bx
word ptr [di][4], cXx
word ptr [di][6], dx

305

NUMERICAL METHODS

Cokkkkkk
’

; classic multiply (slightly faster)
; one quad word by another, passed on the stack, pointers returned
; to the results.
conposed of shift and add instructions
fast_cnul proc uses bx cx dx si di, multiplicand: quord,
mul tiplier:qword, product:word

I ocal nunbits: byte
pushf
cld
sub ax, ax
nov di, word ptr product
| ea si, word ptr multiplicand
nmov cx, 4
rep novsw ;clear the product
sub di, 8 ;point to base of product
| ea si, word ptr nmultiplier ;nunber of bits
nov byte ptr nunbits, 40h
sub ax, ax
mov bx, ax
nov cX, ax
nmov dx. ax

test _for_zero:

test word ptr [di], 1

j ne add-mul tiplier

j mp short shift
add_mul tiplier:

add ax, word ptr [si]

adc bx, word ptr [si][2]

adc cx, word ptr [si][4]

adc dx, word ptr [si][6]
shift:

shr dx, 1

rer cx, 1

rer bx, 1

rer ax, 1

306

rcr
rcr
rcr
rcr

dec
jz
jm

exit:

popf
ret
fast_cnul endp

© kkkkkk
’

boot h

FXMATH.ASM

word ptr [di][6], 1
word ptr [di][4], 1
word ptr [di][2], 1
word ptr [di] [0], 1

byte ptr nunbits
exit
short test_for_zero

word ptr [di][8], ax
word ptr [di][10], bx
word ptr [di][12], cx
word ptr [di][14], dx

unsigned nultiplication technique based upon the booth nethod

Eooth proc
product : wor d

| ocal

pushf
cld

sub

| ea

| ea

nmov
rep nMovVsw

st osw

st osw

uses bx cx dx, multiplicand:dword, nultiplier:dword
m t pcnd: gwor d
ax, ax

si, word ptr nultiplicand
di, word ptr ntpcnd

cx, 2
;clear upper words
bx, ax
cX, ax
dx, ax

307

NUMERICAL METHODS

check_carry:

jc carry_set
t est word ptr nultiplier, 1 ;test bit O
iz shift_mul tiplicand

sub_mul ti plicand:

sub ax, word ptr nitpcnd
sbb bx, word ptr nitpcnd[2]
sbb cx, word ptr nitpcnd[4]
sbb dx, word ptr mtpcnd]6]
shift_multiplicand:
shl word ptr mtpend, 1
rcl word ptr mtpend[(2], 1
rcl word ptr nitpcnd[4], 1
rcl word ptr mtpend[(6], 1
or word ptr multiplier[2], O ;early-out mechani sm
jnz shift_multiplier
or word ptr nultiplier, O
jnz shift_multiplier
i mp short exit
shift_multiplier
shr word ptr multiplier[2], 1
rcr word ptr multiplier, 1
j mp short check_carry
exit:
nmov di, word ptr product
nmov word ptr [di], ax
mov word ptr [di][2], bx
mov word ptr [di][4], cx
movV word ptr [di][6], dx
popf
ret
carry_set:
t est word ptr nultiplier, 1 ;test bit 0
jnz shift-nultiplicand

add_mul tiplicand:

308

add
adc
adc
adc

jnp

boot h endp

Cokkkxkk
1

FXMATH.ASM

ax, word ptr mtpcnd

bx, word ptr nltpcnd[2]
cx, word ptr nltpcend[4]
dx, word ptr mnltpcnd[6]
short shift-multiplicand

; bit pair encoding
; unsigned corollary to the booth nethod

bit_pair proc
product : word

| ocal

pushf
cld

sub

| ea

| ea

mov
rep nmovsw

stosw

st osw

clc

check_carry:
jc
t est
jz
t est
jnz
jm

uses bx cx dx, nmultiplicand:dword, nultiplier:dword,

m t pcnd: qword

ax, ax

si, word ptr nultiplicand
di, word ptr mtpcnd

cx, 2

; cl ear upper words
bx, ax
cx, ax
dx, ax
carry_set ctest bit n-1
word ptr nultiplier, 1 ;test bit O

shiftorsub
word ptr nultiplier, 2 ;test bit 1

sub_mul tiplicand
add_nul tiplicand

309

NUMERICAL METHODS

shi ftorsub:
test word ptr nmultiplier, 2 ;test bit 1
jz shift_multiplicand
subx2_mul tiplicand: ; cheap-inline multiply
sub ax, word ptr ntpcnd
shb bx, word ptr mtpcnd|2]
shb cx, word ptr mtpcnd[4]
shb dx, word ptr mtpcnd|6]
sub_mul tiplicand:
sub ax, word ptr nltpcnd
shb bx, word ptr mtpcnd|2]
shb cx, word ptr mtpend[4]
shb dx, word ptr mtpcnd|6]
shift_multiplicand:
shl word ptr nmitpend, 1
rel word ptr mtpend[2],1
rel word ptr mtpend[4], 1
rel word ptr mtpend[6], 1
shl word ptr nmitpend, 1
rel word ptr mtpend[2], 1
rel word ptr mtpend[4], 1
rel word ptr mtpend[6], 1
or word ptr multiplier[2], O
jnz shift_multiplier
or word ptr multiplier, 0
jnz shift_multiplier
jmp short exit
shift_multiplier:
shr word ptr multiplier[2], 1
rer word ptr multiplier, 1
shr word ptr multiplier[2],1
rer word ptr multiplier, 1
jmp short check_carry
exit:
nov di, word ptr product
mov wordptr [di], ax

310

FXMATH.ASM

nov word ptr [di][2], bx
nov word ptr [di][4], cx
nov word ptr [di][6], dx
popf
ret
carry_set
test word ptr multiplier, 1
jnz addor subx2
jm short addor subxl
addx2_mul tiplicand
add ax, word ptr nltpcnd ;cheap in_line multiply
adc bx, word ptr mtpcnd]2]
adc cx, word ptr nltpend[4]
adc dx, word ptr mtpcnd[6]
add_nul tiplicand
add ax, word ptr nltpcnd
adc bx, word ptr nltpcnd[2]
adc cx, word ptr ntpend[4]
adc dx, word ptr ntpcnd]6]
imp short shift_multiplicand
addor subx2
test word ptr multiplier, 2 ;test hit 1
jnz shift_multiplicand
im short addx2_mul tiplicand
addor subx1
test word ptr multiplier, 2 ;test hit 1
jnz sub_mul tiplicand
jm short add_mul tiplicand
bit_pair endp

vokkkkkk
[

; classic divide

; One quadword by another, passed on the stack, pointers returned

; to the results

; Composed of shift and sub instructions

; Returns all zeros in remainder and quotient if attenpt is made to divide
; zero. Returns all ff's inquotient and dividend in renainder if divide by

311

NUMERICAL METHODS

;zero is attenpted.
cdiv proc uses bx cx dx si di, dvdnd:qword, dvsr:qword
gtnt:word, rmndr:word

pushf
cld
sub ax, ax
nmv di, word ptr qgtnt
nov cx, 4
rep st osw ;clear the quotient
mv cx, 4
| ea si, word ptr dvdnd
nov di, word ptr gtnt
rep Movsw ;dvdnd and qtnt share sane
; Memory space
sub di, 8
nov si, 64 ;nunber of bits
sub ax, ax
nmv bx, ax
nmov CX, ax
nmv dx, ax
shift:
shl word ptr [di], 1
rel word ptr [di][2], 1
rel word ptr [di][4], 1
rel word ptr [di][6], 1 ;shift dividend into
:the remainder
rcl ax, 1
rel bx, 1
rel cx, 1
rcl dx, 1
conpar e:
cnp dx, word ptr dvsr[6]
ib test_for_end
cnp cx, word ptr dvsr[4]
ib test_for_end
cnp bx, word ptr dvsr[2]
ib test_for_end
cnp ax, word ptr dvsr{0]
ib test_for_end

312

FXMATH.ASM

sub ax, word ptr dvsr
shb bx, word ptr dvsr[2]
shb cx, word ptr dvsr[4]
shb dx, word ptr dvsr6]
add word ptr [di], 1
adc word ptr [di][2], O
adc word ptr [di][4], O
adc word ptr [di][6], O
test for_end:
dec Si
jnz shift
myv di, word ptr rmdr
nov word ptr [di], ax
nmv word ptr [di][2], bx
nmv word ptr [di][4], cx
nov word ptr [di][6], dx
exit:
popf
r et
cdiv endp
;******
cdiv32

;32 by 32 bit divide
;argunents are passed on the stack along with pointers to the
;quotient and remai nder

div32 proc uses ax dx di si,
dvdnd: dword, dvsr:dword, qtnt:word, rmdr:word

| ocal wor kspace[8] : word

sub ax, ax

mv dx, ax

mv cX, 2

| ea si, word ptr dvdnd

| ea di, word ptr workspace
rep mvsw

mv cX, 2

313

NUMERICAL METHODS

rep

lea
lea
movsw
mv

cnp
jne
cnp
jne
jm

do_di vide

shift:

di vi de:

314

cnp
jne
cnp
je

rer
shr
rer

cnp
jne

si, word ptr dvsr

di, word ptr workspace[4]

di, word ptr qtnt

word ptr dvdnd, ax
do_divi de

word ptr dvdnd[2], ax
do_divi de

zero_div

word ptr dvsr[2], ax
shift

word ptr dvsr, ax
div_by_zero

bx, word ptr rmdr
ax, word ptr dvdnd[2]

word ptr dvsr

word ptr [di][2],ax
ax, word ptr dvdnd
word ptr dvsr

word ptr [di],ax
word ptr [bx],dx
ax, ax

word ptr [bx] [2],ax
exit

word ptr dvdnd[2], 1
word ptr dvdnd[0], 1
word ptr dvsr[2], 1

word ptr dvsr[0], 1

word ptr dvsr[2], ax

shift

ax, word ptr dvdnd

dx, word ptr dvdnd] 2]

;zero dividend

;see if it is small enough
; check for divide by zero

;as long as dx is zero
;there is

;no overflow possible in
;this division

;normalize both dvsr and
: dvdnd

;since MSB of dvsr is a
;one, there
;is no overflow possible

here
div
mv

get _remai nder:
nov
lea

reconstruct:

nmov
nul

nmov
nmv
mv
mul

add

nov
sub
shb

jnc

nov
sub
shb

jm
div_ex:

exit:
ret

div_by_zero:

word ptr dvsr
word ptr [di] [0], ax

bx, di
di, word ptr workspace[8]

ax, word ptr workspace[4]
word ptr [bx]

word ptr [di][0], ax
word ptr [di][2], dx

ax, word ptr workspace[6]
word ptr [bx]

word ptr [di][2], ax

ax, word ptr workspace[0]
dx, word ptr workspace[2]
ax, word ptr [di] [0]
dx, word ptr [di] [2]

di v_ex

ax, word ptr [bx]
dx, word ptr [bx][2]
word ptr [bx], 1
word ptr [bx][2], O
short reconstruct

di, word ptr rmndr

word ptr [di], ax
word ptr [di][2], dx

FXMATH.ASM

;approximte quotient

; quot i ent

;test first approximation
;of quotient by multiplying
;muiltiplying it by the dvsr
;and comparing it with the
; dvdnd

;low word of nmultiplicand
;by lTow word of nultiplier

;high word of multiplicand
by

;good or overflows
;overflow, decrenent approx
; quot i ent

;the result is a good
;quotient and renai nder

315

NUMERICAL METHODS

stc
j
zero_div
nov
nov
stc

j m
div32 endp

vokkkkkk
[

ax
word ptr [di][0], ax
word ptr [di][2], ax
exit

word ptr [di][0], ax
word ptr [di][2], ax

exit

; The dividend and divisor are passed on the stack;the doubl eword fixed-
;point result is returned in DX AX. DX contains the integer portion, AX the
;fractional portion

.data
roundup
. code

new proc uses Si

| oca

normal i ze
or
is
shl
inc
cnp
ig

jmp

316

db 3fH OfH 1H 0, 0, 0, 0, 0,0, 0,0 00,0

di
di vi dend: word, di visor:word

shifted_bits:byte, pass_count:byte

ax, ax
byte ptr shifted bits, a
byte ptr pass_count, 4

CX, ax
ax, word ptr divisor

ax, ax

top_end

ax, 1

cl

cl, Ofh

di vide_by_zero ;the divisor nust be
;Zero

short normalize

shift_right:

jz
| p

shr
test
je
jmp

shift-left:

divisor_justified:

pass

test
jne
shl
je
jmp

nov
sub
nov
nov
div
sub
nov
div
nov
sub
div
nov
nov
nov

nm
nov

byte ptr shifted bits, cl
es, ax

ax, word ptr divisor
ax, 0fgh

shift_right

al, 7h

divide_by zero

short shift |eft

word ptr ax, 1
ax, 0f8h
divisor-justified
short shift_right

ax, 4h
divisor_justified
word ptr ax, 1
divisor_justified
short shift |eft

si, offset roundup
bx, bx
cX, ax
ax, 32
c

ah, ah
cl, 4
c

ch, al
al, a
c

ah, ch
CX, €s
bx, ax

ax
al, ah

FXMATH.ASM

;store normalized
-divisor

,save z

;Z squared
;adjust for 16-hit
;fixed point

317

NUMERICAL METHODS

mv ah, dl

ml cX i vkz2

mv ax, dx ;adjust again
shl bx, 1 2%z

sub bx, ax ;22 - vkz2
add bl, byte ptr [si] ;add rounding bits
adc bh, 0

nmv ax, bx ;save z

inc Si

dec byte ptr pass_count

jnz pass

prepare_shift:

nmv ax, word ptr dividend
ml bx
sub CX, CX
nmov cl, byte ptr shifted_bits
sub cl, 8
ins adj ust _| eft
neg cl
adj ust _right:
shr dx, 1
rer ax, 1
| oop adj ust _ri ght
jmp short exit
adj ust _left:
shl ax, 1
rel dx, 1
| oop adj ust _| eft
exit:
ret
0ops:

divide_by_zero:

318

sub
not

j m
new endp

vokkkk kK
1

ax,
ax

ax

short exit

FXMATH.ASM

cerror of some sort

circle proc uses bx cx dx si di, x-coordinate:dword, y-coordinate:dword,

i ncrenent : word

| ocal

get _num poi nts:
shl
rel
| oop
nov

set_point:
nmov
nmov
add
jnc

x: dword, y:dword,

ax,
dx,

word ptr x-coordinate
word ptr x_coordinate[2]

word ptr x, ax
word ptr x[2], dx

ax,
dx,

word ptr y-coordinate
word ptr y-coordinate[2]

word ptr y, ax
word ptr y[2], dx

ax,

ax

X_point, ax
y_point, ax

ax,
dx,
cX,

ax,
dx,

4876h
6h
word ptr increment

1
1

get _num points
count, dx

ax,
dx,
ax,

word ptr x
word ptr x[2]
8000h

store_x

X_point:word, y_point:word, count

:load |ocal variables

X coordinate
;y coordinate

L 2% pi
;make this a negative
; pover of two

;2*pi radians

; divide by 10000h

;add .5 to round up
;to integers

319

NUMERICAL METHODS

adc dx, 0Oh
store_x:
nov X_poi nt, dx
nov ax, word ptr y
nov dx, word ptr y[2]
add ax, 8000h ;add. 5
jnc store_y
adc dx, Oh
store_y:
nov y_point, dx
;your routine for witing
;to the screen goes here
;and uses x_point and
;y_point as screen coordi
;nates
nov ax, word ptr y
nmov dx, word ptr y [2]
nmov cx, word ptr increnent
updat e_x:
sar dx, 1
rer ax, 1 ;please note the arithmetic
;shifts
| oop updat e_x ;to preserve the correct
; quadr ant
sub word ptr x, ax ;new x equals x - y *
;increnent
shb word ptr x [2], dx
nmov ax, word ptr x
nov dx, word ptr x [2]
nov cx, word ptr increnent
update_y:
sar dx, 1
rer ax, 1
| oop updat e_y
add word ptr y, ax ;newy equals y + x *
;increnent
adc word ptry [2], dx
dec count
jnz set _poi nt

320

ret
circle endp

©okkkkkk
1

line proc

I ocal

direction:
nov
sub
jns

neg
nov
j m

large_x:
nmov

store xdif:

FXMATH.ASM

uses bx cx dx si di, xstart:word, ystart:word, xend:word,
yend: wor d

x:word, y:word, decision:word, x_dif:word, y_dif:word,
xst ep_di ag: wor d,

ystep_diag: word, xstep:word, ystep:word, diag_incr:word,
i ncr:word

ax, word ptr xstart

word ptr x, ax cinitialize local variables
ax, word ptr ystart

word ptry, ax

ax, word ptr xend

ax, word ptr xstart ;total x distance

large_x ;which direction are we
; drawi ng?

ax ;went negative

word ptr xstep_diag, -1
short store xdif

word ptr xstep_diag, 1

x_dif, ax

ax, word ptr yend ;y distance

ax, word ptr ystart

large_y ;which direction?
ax

word ptr ystep diag, -1

321

NUMERICAL METHODS

jm short store_ydif
large_y:
nov word ptr ystep_diag, 1
store_ydif:
mv word ptr y_ dif, ax ;direction is determnedby
si gns
octant:
nmov ax, word ptr x_dif ;the axis with greater
;difference
nov bx, word ptr y_dif ; becomes our reference
cnp ax, bx
ig bi gger _x
nov y_dif, ax ;we have a bigger y nmove
;than x
mv x_dif, bx ;X won't change on
; nondi agonal st eps,
sub ax, ax ;y changes every step
nmv word ptr xstep, ax
nov ax, word ptr ystep_diag
nov word ptr ystep, ax
i setup_inc
bi gger _x:
nov ax, word ptr xstep_diag ;X changes every step, y
; changes only
nov word ptr xstep, ax ;on diagonal steps
sub ax, ax
nov word ptr ystep, ax
setup_inc:
nov ax, word ptr y dif ;cal culate decision
;variabl e
shl ax, 1
myv word ptr incr, ax
sub ax, word ptr x_dif
nov word ptr decision, ax
sub ax, word ptr x-dif
nov word ptr diag_incr, ax
nmov ax, word ptr decision ;we will doit all inthe
;registers
nov bx, word ptr x
nmv cx, word ptr x_dif

322

nmv dx, word ptr y

l'ine_l oop:

FXMATH.ASM

;Put your routine for turning pixels on here. Be sure to push ax, cx, dx, and bx
;before destroying them they are used here. The value for the x coordinate is in

;bx and the value for they coordinate is in dx

or ax, ax
jns dpositive
add bx, word ptr xstep
add dx, word ptr ystep
add ax, incr
jm short chk_| oop
dposi tive
add bx, word ptr xstep_diag
add dx, word ptr ystep_diag
add ax, word ptr diag_incr
chk_| oop
| oop l'ine_| oop
r et

line endp

1

1
vokkkk kK
1

; smul 64- signed nul 64

;calculate new position and
;update the decision

smul 64 proc uses bx cx dx di si, operand0:qword, operandl:qword, result:word

| ocal sign:byte

sub ax, ax

nmv byte ptr sign, a

nov ax, word ptr operand0[6]
or ax, ax

jns chk_second

not byte ptr sign

323

NUMERICAL METHODS

not
not
not
neg
jc

add
adc
adc

chk_second
nov
or
ins
not
not
not
not
neg
jc
add
adc
adc

mul tiply_already
i nvoke

test
je
mv
not
not
not
not
not
not
not
neg
jc
add
adc
adc
adc

324

word ptr operand0[6
word ptr operand0[4
word ptr operandQ[2
word ptr operand0[0
chk_second

word ptr operand0[2], 1
word ptr operandO[4], O
word ptr operandO[6], O

ax, word ptr operandl] 6]
ax, ax

mul tiply_al ready
byte ptr sign

word ptr operandl] 6
word ptr operandl[4
word ptr operandl]2
word ptr operandl[0
chk_second

word ptr operandl] 2]
word ptr operandl[4],0
word ptr operandl[6],0

mul64, operand0, operandl, result

byte ptr sign, -1
| eave- al ready

di, word ptr result
word ptr [di][14]
word ptr [di][12]
word ptr [di][10]
word ptr [di][8]
word ptr [di][6]
word ptr [di][4]
word ptr [di][2]
word ptr [di][0]
| eave_al ready
word ptr [di][2]
word ptr [di][4],
word ptr [di][6],
word ptr [di][8],

O O O

adc word ptr
adc word ptr
adc word ptr

| eave_al ready:
ret
smul 64 endp

|
vokkkkkk
'

;divmul - division by iterative multiplication
;Underflow and overflow are determned by shifting.
;out on any attenpt to nornalize then we have 'flowed'

;direction it shifted out.

divmul procuses bx cx dx di

[di][10], O
[di][12], O
[di][14], O

FXMATH.ASM

the dividend shifts
in which ever

si, dividend: gword, divisor:qgword, quotient:word

| ocal tenp[8]:word, dvdnd:qword, dvsr:qword, delta:qword,
di vsb: byte, | p:byte,

cld ;upward

sub CX, CX

nmov byte ptr Ip, 6 ;should only take six

; passes

| ea di, word ptr dvdnd

nmv ax, word ptr dividend[0]

nmv dx, word ptr dividend[?2]

or cX, ax

or cx, dx

nmov word ptr [di][0], ax

mv word ptr [di][2], dx

nmov ax, word ptr dividend[4]

mv dx, word ptr dividend] 6]

mov word ptr [di][4], ax

nmov word ptr [di][6], dx

or cX, ax

or cx, dx

je ovrflw ;zero dividend

sub CX, CX

| ea di, word ptr dvsr

325

NUMERICAL METHODS

or
je

sub
nov

find_msb

dec
dec

cnp
je

nov
sub
cnp
ib

ja

test
jne

shift_left

shift_right

326

dec
shl
test
jne
jmp

inc
shr
or
je
i m

ax, word ptr divisor[0]
dx, word ptr divisor[2]
CX, ax

cx, dx

word ptr [di][0], ax
word ptr [di][2], dx
ax, word ptr divisor[4]
dx, word ptr divisor]6]
word ptr [di][4], ax
word ptr [di][6], dx
CX, ax

cx, dx

ovrflw

ax, ax
bx, 8

bx

bx

word ptr [di][bx], ax
find_nsb

ax, word ptr [di][bx]
CX, CX

bx, 2h
shift_left
shift_right

word ptr. [di][bx], 8000h
nor m dvsr

cX
ax, 1

ah, 80h
nor m dvsr
shift-left

X
ax, 1

ax, ax
nor m dvsr
shift-right

:zero divisor

;1 ook for MSB of divisor

;di is pointing at dvsr

;get MBW
;save shifts here
;see if already nornmalized

;normal i zed?
;its already there

ccount the number of shifts
:to normalize

ccount the number of shifts

norm dvsr:
test
jne
shl
rcl
rcl
rel

j m
nor m dvdnd:

cm
j be
add
jm
chk_2:
cnp
jae
sub
of shift

ready_dvdnd:

| ea
or
je
or
ins
neg
sub

jmp

do_dvdnd_right:

shr
rer

rcr
rcr

| oop

sub
or
or

word ptr [di][6],

word ptr [di
word ptr [di
word ptr [di
word ptr [di

R

di, word ptr dvdnd

do_dvdnd_ri ght

do_dvdnd_| eft

[EEN

word ptr [di]
word ptr [di]

[EEN

[EEN

word ptr [di][2],
word ptr [di][O],
do_dvdnd_ri ght

[EEN

word ptr [di][6]
word ptr [di][4]

FXMATH.ASM

;to normalize

;we want to keep

;the divisor

;truly normalized

;for maxi mum

; precision

;this should normalize dvsr

;bx still contains pointer
;to dvsr

;adjust for word

;adjusting again for size

;no adj ust ment necessary

;no error on underflow

;unless it becones zero,
;there may still be some
;usabl e infonnation

;this should normalize dvsr

327

NUMERICAL METHODS

rep stosw
jmp

do_dvdnd_l ef t
shl
rcl
rcl
rcl
jc

| oop

set up:

rep movsw

makedel t a:

lea

lea

nmv
rep mvsw

not
not
not
neg
jc
add

adc
adc

ni oop:

328

ax, word ptr [di][2]
ax, word ptr [di][0]

setup

di, word ptr quotient

cx, 4

di viul _exi t ;if it is nowa zero, that
;is the result

word ptr [di][0], 1

word ptr [di][2], 1

word ptr [di][4], 1

word ptr [di][6], 1

ovrflw ;significant bits shifted
;out, data unusable

do_dvdnd_l ef t ;this should normalize dvsr

si, di

di, word ptr quotient

cx, 4

;put shifted dividend into
; quot i ent

;this could be done with
;a table

si, word ptr dvsr

di, word ptr delta

cx, 4
;move normalized dvsr
cinto delta

word ptr delta[6]

word ptr delta[4]

word ptr delta[2]

word ptr delta ;attenpt to develop with
;2's conp

n oop

word ptr delta[2], 1
word ptr delta[4], O
word ptr delta[6], O

i nvoke

| ea

| ea

nmv
rep Mmvsw

i nvoke

| ea
mv
nmv
rep mvsw
i nvoke

sub
cnp
ib

add
adc
adc
adc

no_round

| ea

| ea

nmv
rep Mmvsw

i nvoke

dec

je

jm
ovrflw

sub

not

nov

mv
rep stosw

jmp

divmul _exit

FXMATH.ASM

mul 64, delta, dvsr, addr tenp

si, word ptr tenp[8]
di, word ptr tnp
cx, 4

add64, tnp, dvsr, addr dvsr

di, word ptr divisor
si, word ptr quotient
cx, 4

mul 64, delta, divisor,

ax, ax
word ptr tenp[6], 8000h

no_round

word ptr tenp[8], 1
word ptr tenp[10], ax
word ptr temp[12], ax
word ptr tenp[l14], ax

si, word ptr tenp[8]
di, word ptr tnp
cx, 4

addr tenp

;an attenpt to round
; pl ease bear with me
;.5 or above rounds up

; doubl e duty

add64, divisor, tnp, quotient

byte ptr Ip
divmul _exit
makedel ta

ax, ax
ax

cx, 4

di, word ptr quotient

diviul _exit

;Six passes for 64 bits

;make infinite answer

329

NUMERICAL METHODS

popf
ret
divmul endp

vokkkkkk

;divnewt- division by raphson-newton zero's approximtion

di vnewt
quot i ent: word

I ocal

cld

or
je

sub
nov
find_nsb
| ea
dec
dec
cnp
je

330

proc uses bx cx dx di si, dividend:qword, divisor:qword

tenp[8] :word, proportion:qword
| p:byte, tnp:gword, unity:qword

CX, CX
byte ptr Ip, 3

gt nt _adj ust, cl

cx, word ptr dividend[0
cx, word ptr dividend[2
cx, word ptr dividend]4
cx, word ptr dividend]6
ovrflw

CX, CX
cx, word ptr divisor[0
cx, word ptr divisor [2
cx, word ptr divisor[4
cx, word ptr divisor[6
ovrflw

ax, ax
bx, 8

di, word ptr divisor
bx

bx

word ptr [di][bx], ax
find_msb

shift:byte, qtnt_adjust:byte

;upward

;should only take three
; passes

;zero dividend

;zero divisor

;1 ook for MSB of divisor

;di s pointing at divisor

nmov
nov
sub
cnp
ib
ja
test
jne

shift_left
dec
shl
test
jne
jmp

shift_right

inc
shr
or
je
j m

save_shift:
nov
sub
shi ft_back

cnp

je

shr
rer
rer
rer

jm
norm dvsr:
test
jne
shl
rel

FXMATH.ASM

byte ptr qtnt_adjust, b

ax, word ptr [di][bx]

CX, CX
bx, 2h
shift_left
shift_right

word ptr [di][bx],

nor m dvsr

X
ax, 1

ah, 80h
save_shi ft
shift_left

X

ax, 1

ax, ax
save_shift
shift_right

byte ptr shift, cl

ax, ax
word ptr [di][6],

nor m dvsr

word ptr [di][6],
word ptr [di][4],
word ptr [di][2],
word ptr [di][0],
shift_back

word ptr [di][4]
make_first

word ptr [di][0],
word ptr [di][2],

;get MSW
;save shifts here
;see if already normalized

8000h :nornal i zed?
;it's already there

;count the number of shifts
:to normalize

;count the number of shifts
:to normalize

ax ;we will put radix point at
;word three

1

1

1

1

8000h

1 ;the divisor

1 ;truly normalized

331

NUMERICAL METHODS

rel word ptr [di][4], 1 ;for maxi mum
i nor m dvsr ;this should normalize
; divi sor
meke_first:
nov dx, 1000h
sub ax, ax
nmv bx, word ptr [di][4] ;first approximation;
;could come froma table
div bx
sub dx, dx ;keep only the four
least bits
mv cx, 4
correct _dvsr:
shl ax, 1 ;don't want to waste time
;with a big shift when a
(little one will suffice
rcl dx, 1
[oop correct _dvsr
nov word ptr divisor[4], ax
nov word ptr divisor[6], dx
sub CX, CX
nmv word ptr divisor[2], cx
nmv word ptr divisor[0], cx
shr dx, 1 ;don't want to waste time
;with a big shift when a
(little one will suffice
rer ax, 1
mul bx ;reconstruct for first
;attenmpt
shl ax, 1 ;don't want to waste time
;with a big shift when a
(little one will suffice
rcl dx, 1
nmv word ptr unity[4], dx
sub CX, CX
nmv word ptr unity[6], cx
nmv word ptr unity[2], cx
nmv word ptr unity, cx
makeproporti on: ;this coud be done with
;a table
nmv word ptr proportion[4], dx
sub ax, ax

332

i nvert_proportion

nl oop

ovrflw

not
not
not
neg

jc

add
adc
adc

and
i nvoke

lea
lea
mv
movsw

i nvoke

lea
lea
mov
movsw
lea
lea
nmov
movsw

dec
je
jmp
sub
not

wor d
wor d
wor d

wor d
wor d
wor d
wor d

m oo
wor d
wor d
wor d

wor d
mul 6

ptr proportion[6], ax
ptr proportion[2], ax

ptr proportion, ax

ptr proportion] 6]
ptr proportion[4]
ptr proportion[2]

ptr proportion
p
ptr proportion[2], 1
ptr proportion[4], 0
ptr proportion[6], O
ptr proportion[6], 1
4, proportion, divisor

si, word ptr tenp[6]

di, word ptr divisor

cx, 4

mul 64, proportion, unity

si, word ptr tenp[6]

di, word ptr unity

cx, 4

si, word ptr tenp[6]

di, word ptr proportion
cx, 4

byte ptr Ip

div_newt _shift

invert_proportion

ax,
ax
CX,

ax

FXMATH.ASM

;attenpt to develop with
;two's conpl enent

addr tenp

;Six passes for 64 hits

333

NUMERICAL METHODS

nmv di, word ptr quotient
rep stosw
jmp di vnewt _exi t
di vnewt _shift:
| ea di, word ptr divisor
nov cl, byte ptr shift
or cl, cl
is gtnt_left
gtnt_right:
mv ch, 10h
sub ch, ¢
mv cl, ch
sub ch, ch
jm qtlft
gtnt_left:
neg cl
sub ch, ch
add cl, 10h
qtlft:
shl word ptr [di][0], 1
rel word ptr [di][2], 1
rel word ptr [di][4], 1
rel word ptr [di][6], 1
[oop qtlft
divnewt _mult:
times dividend
sub ax, ax
mv cx, 8
| ea di, word ptr tenp

rep stosw

i nvoke mul 64, dividend, divisor, addrtenp
nmv bx, 4

add bl, byte ptr gtnt_adjust

mv di, word ptr quotient

lea si, word ptr tenp

add si, bx

334

;make infinite answer

;get shift count

;positive, shift left

;we want to take it to
:the nmsb

;mul tiply reciprocal

;see that tenp is clear

;adjust for magnitude of
;result

cnp
jae
nmov

rep mvsw
j m

wite_zero:
nmov

rep MovVsw
sub
stosw

di vnewt _exi t:
popf
ret

di vnewt

end

bl, Oah
wite_zero
cx, 4
divnewt _exit
cx, 3

ax, ax
endp

FXMATH.ASM

335

336

APPENDIX D

FPMATH.ASM

. DOSSEG
. MODEL small, c¢, os_dos

include math.inc
.data

. code

vokkkkkk
1

;does a single-precision fabs

fp_intrnd proc uses si di, fp0:dword, fpl:word

| ocal flp0:qword, result:qgword
pushf

cld

xor ax, ax

| ea di,word ptr flp0

nov cx, 4

rep st osw

| ea si,word ptr fp0
| ea di,word ptr flpO[2]
nmov cX, 2

rep nmovsw
i nvoke intrnd, flp0, addr result

mv ax, word ptr result[2]

NUMERICAL METHODS

mv dx, word ptr result[4]
mv di, word ptr fpl

mv word ptr [di], ax
mv word ptr [di][2], dx
popf

ret

fp_intrnd endp

vokkkkkk

cintrnd is useful for the transcendental functions

; it rounds to the nearest integer according to the follow ng Iogic:
;ointrnd(x) = if((x-floor(x)) <.5) floor(x);

: el se ceil(x);

intrnd proc uses bx dx di si, fp:qword, rptr:word
| ocal tenpO: gword, tenpl:qword, sign:byte
pushf
cld
sub ax, ax
mv cx, 4
| ea di, word ptr tenp0
rep st osw
mv cx, 4
| ea di, word ptr tenpl
rep st osw
mv di, word ptr rptr
mv cx, 4

rep st osw

i nvoke flr, fp, addr tenp0
i nvoke flsub, fp, tenp0, addr tenpl
and word ptr tenpl[4], 7fffh;cheap fabs
i nvoke flconp, tenpl, one_half
cnp ax, 1
j ne intrnd_exit
do_ceil:
i nvoke flceil, fp, addr tenpO

338

intrnd_exit:

popf
ret

intrnd endp

sk kK ok ok Kk
7

;inplenments floor
yby calling flr

fp_floor proc
I ocal

pushf
cld
xor
| ea
mv
rep st osw
| ea
| ea
mv
rep novsw

i nvoke

popf
ret

FPMATH.ASM

ax, word ptr tenp0[2]

dx, word ptr tenpO[4]

di, word ptr rptr

word ptr [di][2], ax

word ptr [di][4], dx

function

uses si di, fp0:dword, fpl:word
flp0: gword, result:qword

ax, ax

di,word ptr flp0O

cx, 4

si,word ptr fp0
di,word ptr flpO[2]

cx, 2

flr, fIPO, addr result
ax, word ptr result[2]
dx, word ptr result[4]
di, word ptr fpl

word ptr [di], ax
word ptr [di][2], dx

339

NUMERICAL METHODS

fp_floor endp

vokkkkkk
’

;i nplenents ceil

by calling flcei

fp_ceil proc
| oca

pushf

cld

xor

| ea

mv
rep st osw

| ea

| ea

nov
rep novVsSw

i nvoke

popf
ret

fp_ceil endp

|
vokkkkkk
’

; floor greatest

function

uses si di, fp0:dword, fpl:word
flp0:gword, result:qword

ax, ax

di,word ptr flp0

cX, 4

si,word ptr fpO
di,word ptr flpO[2]
CcX, 2

flceil, flp0, addr result

ax, word ptr result[2]
dx, word ptr result[4]
di, word ptr fpl

word ptr [di], ax
word ptr [di][2], dx

integer less than or equal to x

;single precision

flr proc

340

uses bx dx di si, fp:gword, rptr:word

shl

mv
sub
sub

j be
mv
sub

b

mv
sub
fix:

rer
rcr
| oop

mv
re_position:
shl
rel
rel
| oop

al ready_floor:
mv
mv
mv
sub

shift:byte

di, word ptr rptr
bx, wordptr fp[0]

ax, word ptr fp[2]
dx, word ptr fp[4]
cx, dx

cx, 7f80h

cx, 1

cl, ch
ch, ch
cl, T7eh

| eave_with_zero
ch, 40
ch, cl

al ready-fl oor

byte ptr shift, ch
cl, ch

ch, ch

dx, 1

ax, 1
bx, 1
fix

cl, byte ptr shift

bx, 1
ax, 1
dx, 1
re_position

word ptr [di][4],
word ptr [di][2],
word ptr [di][O0],
ax, ax

FPMATH.ASM

;get float with extended
; preci sion

;get rid of sign and mantissa
;portion

;subtract bias (-1) from
; exponent

;is it greater than the
;mantissa portion?
;there is no fractional part

;shift the nunber the anount
;of tines
;indicated in the exponent

;position as fixed point

341

NUMERICAL METHODS

nmov word ptr [di][6], ax

fir_exit:
ret
| eave_wi th_one

| ea si, word ptr one
mv di, word ptr rptr
nmv cx, 4
rep novsw
im fir_exit
| eave_with_zero
sub ax, ax
nov cx, 4
mv di, word ptr rptr
rep st osw
i short fir_exit
flr endp

!
o kkkkkk
1

;flceil least integer greater than or equal to x
;single precision

%Iceil proc uses bx dx di si, fp:qword, rptr:word

I ocal shift:byte

mv di, word ptr rptr

nmov bx, word ptr fp[0] ;get float with extended
; precision

mv ax, word ptr fp[2]

mv dx, word ptr fp[4]

sub CX, CX

or cx, bx

or cX, ax

or cx, dx

je | eave_with_zero;this is a zero

mv cx, dx

and cx, 7f80hq ;get rid of sign and mantissa
;portion

shl cx, 1

nov cl, ch

342

sub
sub

j be
mv
sub

b

mv
sub
fix:

rcr
rcr
rcr

| oop
cnp
je
add
adc
adc

not _qui t e_enough:
mv
re_position:
shi
rel
rel
| oop

already_ceil:
mv
mv
mv
sub
mv

ceil-exit:
ret

ch, ch
cl, 7eh

| eave_wi t h_one
ch, 40
ch, cl

al ready_ceil

byte ptr shift, ch
cl, ch

ch, ch

dx, 1

ax, 1
bx, 1
word ptr [di][6], 1

fix

word ptr [di][6],0h
not _qui te_enough

bx, 1

ax, 0

dx, 0

cl, byte ptr shift

bx, 1
ax, 1
dx, 1
re_position

word ptr [di][4], dx
word ptr [di][2], ax
word ptr [di][0], bx
ax, ax

word ptr [di][6], ax

FPMATH.ASM

;subtract bias (-1) from
; exponent

;is it greater than the
;mantissa portion?

;there is no fractional part

:shift the nunber the anount

;of times indicated in the
; exponent

;put guard digits in MBW of

;data type
;position as fixedpoint

; roundup

343

NUMERICAL METHODS

ret

| eave_with_one
| ea
nmv
nmv

rep mvsw

jnp

| eave_with_zero
sub
nmov

nmv
rep st osw

jmp

vokkkkkk
’

round proc

xor

or

Jmp
needs_roundi ng

and

add

adc

test

je
nov

344

si, word ptr one
di, word ptr rptr
cx, 4

ceil _exit

ax, ax
cx, 4
di, word ptr rptr

short ceil _exit

uses bx dx di, fp:gword, rptr:word

ax,word ptr fp[O0]

bx,word ptr fp[2]

dx,word ptr fp[4]

ax, 8000h

round_ex ;less than hal f
needs_roundi ng

bx, |

round_ex

short needs_rounding

bx, | ;round to even if odd
;and odd if even

bx, | ;round down if odd and up if
;even

round_ex

dx, 7fh

bx, I h

dx, 0

dx, 80h ;if this is a one, there wll
:be an

renorm ;overflow

ax, word ptr fp[4]

and
add
jo
or
jmp
renorm
mv
and
of
round_ex
sub
round_ex|

mv
sub
mv
ret

over _flow
xor
nmov

not
mv
xor
jmp
round endp

’
vokkkkkk
1

FPMATH.ASM

ax, 0f f 80h ; get exponent and sign
ax, 80h ;kick it up one

over _flow

dx, ax

short round_ex

ax,word ptr fp[4]
ax, 0f f 80h ;get exponent and sign
dx, ax

ax, ax

di,word ptr rptr
word ptr [di][0],ax
word ptr [di][2],bx
word ptr [di][4],dx
ax, ax

word ptr [di][6], ax

ax, ax

bx, ax yreturn a quiet NAN if
;overflow

ax

dx, ax

dx, 7fH

short round_ex

;does a single-precision fabs

fp_abs proc uses si di, fp0:dword, fpl:word

| oca

Xor

| ea

nmov
rep stosw

f1p0:gqword, result:qword
ax, ax

di,word ptr flp0
cx, 4

345

NUMERICAL METHODS

| ea si,word ptr
| ea di,word ptr
nmov cx, 2

rep nmovsw

fp0
flpo[2]

i nvoke flabs, flp0, addr result
mv ax, word ptr result[2]
mv dx, word ptr result[4]
nmv di, word ptr fpl
nmov word ptr [di], ax
nmov word ptr [di][2], dx
ret

f p_absendp

Cokkkkkk
1

. extended-precision absolute value (fabs)

flabs proc uses bx cx dx si

di, fp0:qgword, result:word

mv di, word ptr result
mv ax, word ptr fp0
mv word ptr [di], ax
nmov ax, word ptr fp0[2]
mv word ptr [di][2], ax
nmov ax, word ptr fpO[4]
and ax, 7fffh ;strip sign, make positive
mv word ptr [di] [4] , ax
ret
flabs endp

kkkkkx

;does a floating-point conpare

creturns with answer in ax
fp_conp proc uses

| ocal f1p0: quor d,

346

sidi,
fp0: dword, fpl:dword

flpl: quord

xor
| ea
mv

rep stosw

| ea
mv
rep stosw

| ea

| ea

mv
rep novsw

| ea

| ea

mv
rep mvsw

i nvoke

ret
fp_canmp

1L

ax, ax
di,word ptr flp0
cx, 4

di,word ptr flpl
cx, 4

si,word ptr fp0
di,word ptr flp0[2]
cX, 2

si,word ptr fpl
di,word ptr flpl]2]
cX, 2

flcomp, flp0, flpl

endp

FPMATH.ASM

;internal routine for comparison of floating-point values

flcomp proc uses c¢x si di

pushf
std

| ea
[ea
test
je
test
je

xchg

fp0: quor d,

si,word ptr fpO[4]
di,word ptr fpl[4]
word ptr fpO[4],8000h
plus_

word ptr fpl[4],8000h
second_gtr

di, si

fpl:qword

;is the first positive
1yes

;second not negative, there
fore greater

347

NUMERICAL METHODS

conpar e:

nmv cx, 3
repe cnpsw

ja first_gtr

ib second_gtr

i short bot h-sane
plus_I:

test word ptr fpl[4],8000h

je conpar e

jm first_gtr
second_gtr:

nov ax, -1

jmp short fpcnp_ex
first_gtr

nov ax, 1

jmp short fpcnp_ex
bot h- sane:

sub ax, ax
f pcrp_ex

popf

ret
f1 compendp

I
Cokkkkkk

%p_sub proc uses si di
fp0: dword, fpl:dword, rptr:word

| ocal flp0:qword, flpl:qword, result:qword
pushf

cld

xor ax, ax

| ea di,word ptr result

nmv cx, 4

rep st osw
| ea di,word ptr flp0O

nmv cx, 4
rep st osw

348

lea
rep stosw

| ea

| ea

mv
rep novsw

| ea

lea

mv
rep novsw

i nvoke

i nvoke

| ea
mv
mv
novsw

popf
ret

fp_sub endp

*xk
'

cinterna
flsub proc

xor
i nvoke

ret
flsub endp

di,word ptr flpl
cx, 4

si,word ptr fp0
di,word ptr flp0O[2]
cx, 2

si,word ptr fpl
di,wordptr flpl[2]
cx, 2

flsub, flp0, flpl, addr

round, result, addr result
si,word ptr result[2]

di,rptr
cx, 2

uses bx cx dx si di,
f p0: qwor d,

word ptr fpl[4],8000h

fladd, fp0, fpl, rptr

FPMATH.ASM

resul t

;pass pointer to called
;routine

fpl:gqword, rptr:word
;conpl enent sign bit

;pass pointer to called
;routine

349

NUMERICAL METHODS

'
ckkkkkk
1

fp_add proc uses bx cx dx si di
fp0: dword, fpl:dword, rptr:word

| ocal flp0:qword, flpl:qgword, result:qword
pushf
cld
xor ax, ax
| ea di,word ptr result
mv cx, 4

rep stosw
| ea di,word ptr flp0
nov cx, 4

rep stosw
| ea di,word ptr flpl
nmov cx, 4

rep stosw
| ea si,word ptr fpO
| ea di,word ptr flp0[2]
nmv CcX, 2

rep nmovsw
| ea si,word ptr fpl
| ea di,word ptr flpl[2]
nmv CcX, 2
rep nmovsw
i nvoke fladd, flp0, flpl, addr result
i nvoke round, result, addr result
| ea si,word ptr result [2]
mv di,rptr
nmv cX, 2
nmovsw
popf
ret
f p_addendp

350

Lkkk

FPMATH.ASM

internal
fladd proc uses bx cx dx si di,
fp0: qword, fpl:gword, rptr:word
I ocal opa: qword, opb:qword, signa:byte,
signb: byte, exponent:hbyte, sign:byte,
flag: byte, diff:byte, signO:byte, signl:byte,
exp0: byte, expl:byte
pushf
std
: decr enent
xor ax, ax
;clear appropriate variables
| ea di,word ptr opa[6] ;larger operand
mv cx, 4
rep st osw word ptr [di]
| ea di,word ptr opb[6] ;smaller operand
nmov cX, 4
rep st osw word ptr [di]
mv byte ptr sign0, al
mv byte ptr signi, al
mv byte ptr flag,al
nov byte ptr sign,al ;clear sign
chk_f p0:
sub bx, bx :check for zero
nov ax, word ptr fpO[4]
and ax, 7fffh
cnp ax, bx
j ne chk_fpl
mv ax, word ptr fpO[2}
cnp ax, bx
jne chk_fpl
mv ax, word ptr fp0
cnp ax, bx
jne chk_fpl

351

NUMERICAL METHODS

lea si,word ptr fpl[6] ;return other addend
i short |eave_with_other
chk_fpl:
nmv ax, word ptr fpl[4] ;check for zero
and ax, Tfffh
cnp ax, bx
j ne do_add
mv ax, word ptr fpl[2]
cnp ax, bx
j ne do_add
mv ax, word ptr fpl
cnp ax, bx
j ne do_add
lea si,word ptr fpO[6] ;return other addend

IR RS EEEEEEEEEEESESES]
’

| eave_wi th_ot her:

mv di,word ptr rptr;one of the operands was zero

add di, 6 ;the other operand is the
;only

nov cx, 4 ; answer

rep nmvsw
f p_addex

. *****J* kkkkkkkkkkk
’

do_add:
| ea si,word ptr fpO
| ea bx,word ptr fpl
nmov ax,word ptr [si][4] ; fp0
shl ax, : ;dunp the sign
rel byte ptr sign0, 1 ;collect the sign
nmv byte ptr exp0, ah ;get the exponent
nov dx,word ptr [bx][4] (fPl
shl dx, 1 ;get sign
rel byte ptr signi, 1
nov byte ptr expl, dh ;and the exponent
sub ah, dh
nov byte ptr diff, ah ;and now the difference
restore-mssing-hit: ;set up operands

352

and

find_largest:

cnp

je

test

je

jmp
cnp_rest:

cnp

ja

ib

cm
ja
ib

cm
ib
nunb_bi gger:
sub
mv
neg
mov

cnp
jna

word ptr fpO[4], 7fh
word ptr fpO[4], 80h

ax, word ptr fpl
bx, word ptr fpl[2]
dx, word ptr fpl[4]
dx, 7fh

dx, 80h

word ptr fpl[4], dx

byte ptr diff,0

cnp_rest

byte ptr diff,80h
numa_bi gger

short nunb_bi gger

dx, word ptr fpO[4]
nunb_bi gger
nuna_bi gger

bx, word ptr fpO[2]
nunb_bi gger
nuna_bi gger

ax, word ptr fpO[0]
nuna_bi gger

ax, ax

al,byte ptr diff
al

byte ptr diff,al
al, 40

in_range

ckkkkkkkkkkkkkkkkk k%
'

| ea
| eave-with-largest:
nov
add
nov

si, word ptr fpl[6]

di, word ptr rptr
di, 6
cX, 4

FPMATH.ASM

;test fornegative

;save difference
;do range test

;this is a range error
;operands will not line up
;for a valid addition
;leave with |argest operand
;that is where the signifi

353

NUMERICAL METHODS

rep Movsw

i fp_addex
range_errora:

| ea si,word ptr fpO[6]

jmp short |eave_w th_|argest
i n_range:

mv al,byte ptr expl

nmv byte ptr exponent, al

nmv al, byte ptr signo

mv byte ptr signb, al

mv al, byte ptr signl

nmv signa, al

lea si, word ptr fpl[6]

| ea di, word, ptr opa [6]

nmov cx, 4

rep nmovsw

signb_posi tive:

| ea si, word ptr fpO[4]

jm shift_into_position
nuna_bi gger:

sub ax, ax

mv al,byte ptr diff

cnp al, 40

jae range_errora

nmov al,byte ptr exp0

mv byte ptr exponent,al

mov al, byte ptr signl

mv byte ptr signb, al

mv al, byte ptr sign0

mv byte ptr signa, al

lea si, word ptr fpO[6]

354

; cance
;1S anyway

; save exponent of |argest
;val ue

;load opa with |argest
; oper and

;set to load opb

;do range test

; save exponent of |argest
;val ue

;load opa with largest

FPMATH.ASM

; oper and
lea di, word ptr opa[6]
mv cx, 4
rep nmvsw
| ea si, word ptr fpl[4] ;set to load opb
shift_into_position: ;align operands
xor ax, ax
nov bx, 4
mv cl,3
mv ah,byte ptr diff
shr ax, cl ;ah contains # of bytes, al #
;of hits
nmov cx, 5h
shr al, cl
sub bl , ah ;reset pointer below initial
; Zeros
| ea di,byte ptr opb
add di, bx
mv cX, bx
inc CX
| oad_oper and:
movsh
| oop | oad_oper and
mv cl,al
xor ch, ch
or CX, CX
je end_shi ft
shi ft_operand:
shr word ptr opb[6],1
rcr word ptr opb[4],1
rcr word ptr opb[2],1
rer word ptr opb[O0],]
| oop shift_operand
end_shift:
mv al, byte ptr signa
cnp al, byte ptr signb
je just_add

355

NUMERICAL METHODS

opb_negati ve:

not
not
not
neg
jc
add
adc
adc

jnp

just _add:
i nvoke

handl e_si gn:

norm
sub
cnp
jne
cnp
jne
cnp
jne
jm

not_zero:
mv
cnp
je
cnp
j ne
t est
je

Jnp]
rotate_result _right:

356

word ptr opb[6];do2's conplenent

word ptr opb[4]
word ptr opb[2]
word ptr opb[0]

j ust _add

word ptr opb[2],1
word ptr opb[4],0
word ptr opb[6],0
j ust _add

add64, opa, opb, rptr

si, word ptr rptr

dx, word ptr [si][4]
bx, word ptr [si][2]
ax, word ptr [si][O]

CX, CX
ax, cx

not _zero
bx, cx
not - zero
dx, cx

not _zero
wite result

cX, 64

dx, Oh
rotate_result_|eft
dh, 00h
rotate_result_right
dl, 80h
rotate_result_|eft
short done_rotate

;signs alike

;signs disagree

cexit with a zero

FPMATH.ASM

shr ax |
rcr bx, |
rer ax, 1
inc byte ptr exponent ; decrement exponent with each
;shift
test dx, 0f f 00h
je done_rotate
| oop rotate_result_right
rotate_result _left:
shl ax, 1
rcl bx, |
rcl ax, |
dec byte ptr exponent ; decrenent exponent with each
;shift
test dx, 80h
j ne done_rotate
| oop rotate_result_|eft
done_rotate:
and dx, 7fh
shl dx, 1
or dh, byte ptr exponent ;insert exponent
shr dx, 1
mv cl, byte ptr sign ;sign of the result of the
;operation
or cl, cl
je fix_sign
or dx, 8000h
fix_sign:
mv cl,byte ptr signa ;sign of the larger operand
or cl, cl
je wite-result
or dx, 8000h ;negative
wite result:
nmov di,word ptr rptr
nmov word ptr [di],ax
nov word ptr [di][2],bx
nov word ptr [di][4],dx
sub ax, ax
mv word ptr [di][6],ax
f p_addex:
popf
ret
fladd endp

357

NUMERICAL METHODS

ckkkkkk
1

%p_div proc ¢ wuses si di
fp0: dword, fpl:dword, rptr:word

| ocal flp0:gword, flpl:gword, result:qword
pushf
cld
xor ax, ax
| ea di,word ptr result
nov cx, 4
rep stosw
| ea di,word ptr flp0
nmov cx, 4
rep stosw
| ea di,word ptr flpl
nmov cXx, 4
rep stosw
| ea si,word ptr fpO
| ea di,word ptr flpO[2]
nmv CcX, 2
rep nmovsw
| ea si,word ptr fpl
| ea di,word ptr flpl[2]
nmv CcX, 2
rep novsw
i nvoke fldiv, flp0, flpl, addr result ;pass pointer to called
;routine
i nvoke round, result, addr result
| ea si,word ptr result[2]
nov di,rptr
nmov cX, 2
nmovsw

358

popf
ret

fp_div endp

%Idiv proc

| oca

pushf
std
xor

mv

lea
lea

nov
shl
and
jne
jmp
chk_b:
nmov
shl
and
j ne
jmp
b_not z:
cnp
jne
jmp
check-identity
mv
add

C uses bx cx dx si di

fpQ qwor d,

gtnt:qword, sign:byte

ax, ax
byte ptr sign, a

si,word ptr fp0
bx, word ptr fpl

ax,word ptr [si][4]

ax, 1

ax, 0f f 00h

chk_b
return_infinite;infinity

dx,word ptr [bx][4]
dx, |

dx, 0f f 00h

b_not z
divide_b_zero

dx, 0f f 00h
check_identity
make_zero

di, bx
di,4

FPMATH.ASM

fpl:qword, rptr:word

exponent: byte, rmdr: qword

;begin error and situation
; checking
;name a pointer to each fp

:check for zero

;infinity, divide by zero is
:undefi ned

cdivisor is infinite

:will decrenent selves

359

NUMERICAL METHODS

add si, 4
nov cx, 3
repe cnpsw
jne not - same ;these guys are the same
nov ax,word ptr dgt[8];return a one
mv bx,word ptr dgt[10]
mv dx,word ptr dgt[12]
mv di,word ptr rptr
mv word ptr [di],ax
mv word ptr [di][2],bx
mv word ptr [di][4],dx
sub ax, ax
mv word ptr [di][6],ax
i f1divex
not _sane: ;get exponents
lea si,word ptr fp0 ;reset pointers
lea bx, word ptr fpl
sub ah, dh ;add exponents
add ah, 77h ;subtract bias minus two
;digits
nmov byte ptr exponent,ah ;save exponent
nov dx, word ptr [si][4] ; check sign
or dx, dx
jns a_plus
not byte ptr sign
a_plus:
mv dx,word ptr [bx][4]
or dx, dx
jns restore_missing_bit
not byte ptr sign
restore-mssing-bit: ;line up operands for divi
sion
and word ptr fpO[4], 7fh
or word ptr fpO[4], 80h
mv dx, word ptr fpl[4]
and dx, 7fh
or dx, 80h
cnp dx, word ptr fp0[4] ;see if divisor is greater
than
ja store_dvsr
inc byte ptr exponent
shr word ptr fpO[4], 1

360

rer
rer

store_dvsr
mv

di vi de:
i nvoke
mv
mv
sub

sub
cnp
j ne
cnp
j ne
cnp
j ne
j m
not _zero

mv
cnp
je

cnp
jne
test
je

Jp)
rotate_result_right:

word ptr fpO[2], 1
word ptr fpO[0], 1

word ptr fpl[4], dx

dive4, fp0, fpl, addr fpO

dx, word ptr fpO[2]
bx, word ptr fpO[O0]
ax, ax

CX, CX
ax, cx
not _zero
bx, cx
not - zero
dx, cx
not _zero
fix_sign

cx, 64
dx, Oh
rotate_result_left
dh, 00h
rotate_result_right
dl, 80h
rotate_result_left
short done_rotate

shr dx, |

rer bx, |

rcr ax, 1

test dx, 0f f 00h

je done_rotate

inc byte ptr exponent

[oop rotate_result_right
rotate_result_left:

shl word ptr qtnt,1

rcl ax, 1

rcl bx, |

rcl dx, |

test dx, 80h

FPMATH.ASM

cexit with a zero

;decrenent exponent with each
;shift

361

NUMERICAL

jne
dec

| oop
done_rotate:
and
shl
or
shr
mov
or
je
or
fix-sign:

mv

sub

mv
fldivex:

popf
ret

return_infinite:
sub
mv
not
mv
and

|

di vi de_by_zero:
sub
not

jmp
make_zer o:
xor

finish-error:
mv
add
mv

rep st os

362

METHODS

done_rotate

byte ptr exponent ; decr ement
;shift
rotate_result_|eft

dx, 7f h

dx, 1

dh, byte ptr exponent
dx, 1

cl,byte ptr sign
cl,cl

fix_sign

dx, 8000h

;insert exponent

di,word ptr rptr
word ptr [di],ax
word ptr [di][2],bx
word ptr [di][4],dx
ax, ax

word ptr [di][6],ax

ax, ax

bx, ax

ax

dx, ax

dx, 0f80h
short fix_sign

cinfinity

ax, ax
ax

short finish-error

ax, ax
;positive zero

di,word ptr rptr
di,6

cx, 4

word ptr [di]

exponent

with each

j m
fldiv endp

vokkkkkk
’

fp_nu

rep
rep

rep

rep

rep

proc ¢

| ocal

pushf
cld
xor
| ea
mv
st osw

| ea
mv
st osw

| ea
mv
st osw

| ea
| ea
nov
novsw

| ea
| ea
nmv
novsw

i nvoke

i nvoke

| ea

short fldivex

uses si

di

f1 p0: qword,

ax
, wor d
CX,

d

di

CX,

d
cX,

S
d
CX,

S
d

flmul, flpo,

ax

wor d

, wor d

, wor d
, wor d

, wor d
, wor d
cX

round

ptr

ptr

ptr

ptr
ptr

ptr
ptr

FPMATH.ASM

fp0: dword, fpl:dword, rptr:word

flpl:gword, result:qword

resul t

f1po

flpl

fp0
f1po[2]

fpl
flpl[2]

flpl, addr result ;pass pointer to called
;routine

result, addr result

si,word ptr result [2]

di

rptr

363

NUMERICAL METHODS

rep MmOVSW

popf
ret

fp_mul endp

** Kk

flmul proc

| oca

pushf
std
sub

rep st osw

| ea
| ea
mv
shl
and
jne
jm
is_ainf
cnp
jne
jm
is_b_zero
nov
shl
and
jnz
jmp
is_b_inf
cnp
jne

364

cX, 2

C wuses bx cx dx si di,
f p0: gwor d

resul t[6] :word, sign: byte

ax, ax

byte ptr sign,a
di,word ptr result[10]
cX, 6

si,word ptr fp0
bx,word ptr fpl
ax,word ptr [si][4]
ax, 1

ax, 0f f 00h

is_ainf

meke_zero

ax, 0f f 00h
is_b _zero
return_infinite

dx,word ptr [bx][4]
ax, |

dx, 0f f 00h

is_b_inf

meke_zero

dx, 0f f 00h
get _exp

fpl:gword, rptr:word

exponent : byte

;name a pointer to each fp

;check for zero

;Zero exponent

;multiplicand is infinite

;check for zero

;Zero exponent

return-infinite

jm
get _exp:
sub ah, 77h
add ah, dh
nmv byte ptr exponent,ah
mv dx,word ptr [si][4]
or dx, dx
jns a_plus
not byte ptr sign
a_plus:
nmov dx,word ptr [bx][4]

or dx, dx
jns restore_nissing_bit
not byte ptr sign

restore_nissing_bit:

FPMATH.ASM

;multiplicand is infinite

;add exponents
;save exponent

and word ptr fpO[4], 7fh ;renove the sign and exponent

or word ptr fpO[4], 80h ;and restore the hidden bit

and word ptr fpl[4], 7fh

or word ptr fpl[4], 80h

i nvoke mul6da, fp0, fpl, addr result ;multiply

nov dx,word ptr result [10]

nmov bx,word ptr result[8]

mv ax,word ptr result[6]

sub CX, CX

cnp word ptr result[4], cx

jne not _zero

cnp ax, X

jne not _zero

cnp bx, cx

j ne not _zero

cne dx, cx

j ne not _zero

jm fix_sign ;exit with a zero
not _zero

nmov cX, 64

cnp dx, Oh

je rotate_result_left

cnp dh, 00h

365

NUMERICAL METHODS

jne rotate result_right
test dl, 80h
je rotate_result_left

i short done_rotate
rotate_result_right:

shr dx, |

rer bx, |

rcr ax, 1

test dx, 0f f 00h

je done_rotate

inc byte ptr exponent

| oop rotate result_right
rotate_result_left:

shl word ptr result[2],

rel word ptr result[4],

rel ax, 1

rel bx, |

rel dx, |

test dx, 80h

jne done_rotate

dec byte ptr exponent

| oop rotate result_left
done_rotate:

and dx, 7f h

shl dx, 1

or dh, byte ptr exponent

shr dx, 1

mv cl,byte ptr sign

or cl,cl

je fix_sign

or dx, 8000h
fix_sign:

nmov di,word ptr rptr

mv word ptr [di], ax

mv word ptr [di][2],

mv word ptr [di][4],

sub ax, ax

mv word ptr [di][6],
fp_mul ex:

popf

ret

366

1
1

; decrenent exponent with each
;shift

; decrenment exponent with each
i shift

;insert exponent

FPMATH.ASM

return_infinite

sub ax, ax

nmov bx, ax

not ax

nmov dx, ax

and fix, 0f 80h cinfinity

jm short fix_sign
make_zero

xor ax, ax
finish_error:

nmov di, word ptr rptr

add di, 6

nov cx, 4
rep st os word ptr [di]

jmp short fp_nmul ex
flmul endp

ckkkkkk
'

ccylinder- finds the volume of a cylinder using the floatingpoint rou-
;tines in this nmodul e
; volume = pi *r *r h
.data
pi qwor d 404956¢10000H
.code

éylinder proc uses bx cx dx si di
radi us: dword, height:dword, area:word

| ocal result:qword, r:qgword, h:qword

sub ax, ax ;clear space for internmediate
;variabl es

nmv cx, 4

| ea di,word ptr r

rep st osw

nmov cx, 4

| ea di, word ptr h
rep st osw

nov ax, word ptr radius[0] ;nove | EEE format to extended
; format

367

NUMERICAL METHODS

i nvoke

i nvoke

i nvoke

i nvoke

ret
cyl i nder

ookkkkkk
1

fixed-point support for floating-point

©okkkxkk
1

endp

dx, word ptr radius[2]
word ptr r[2], ax
word ptr r[4], dx

ax, word ptr height[0]
dx, word ptr height[2]
word ptr h[2], ax
word ptr h[4], dx

flmul, r, r, addr result
flmul, pi, result, addr result
flmul, h, result, addr result
round, result, addr result

di, word ptr area

ax, word ptr result[2]

dx, word ptr result[4]

word ptr [di], ax
word ptr [di][2],dx

;do r squared
;multiply result by pi
;multiply by height
cround the result

;move result back to | EEE
:format

routines

;Miltiplies operands by ten, returning result in multiplicand
;and overflow byte in ax. Used for binary-to-decimal conversions
;multiplicand is a pointer to a double

mul ten

sub

shl
rcl

368

di,word ptr nultiplicand
dx,word ptr [di]

cx,word ptr [di][2]

ax, ax

proc uses bx cx dx di si, nultiplicand:word

;miltiply by two

FPMATH.ASM

rel ax, 1
nmov word ptr [di],dx ;save result
nmv word ptr [di][2],cx
mv word ptr [di][4],ax
shl dx, | ymultiply by four
rel cx, 1
rel ax, 1
shl ax, | ;now make it eight
rel cx, 1
rel ax, 1
add dx,word ptr [di] ;add back the two to make ten
adc cx,word ptr [di][2]
adc ax,word ptr [di][4]
nmov word ptr [di],dx;go hone
nmov word ptr [di][2],cx
ret
mul ten endp

; *kkkkkk
; dived
;Wi ll divide a quadword operand by adivisor using linear interpolation.
; dividend occupies upper three words of a 6-word array
;divisor occupies |ower three words of a 6-word array
;used by floating-point division only
divé4 proc uses es ds,
dvdnd: gqword, dvsr:qgword, gtnt:word

| ocal result:tbyte, tnp0:qgword,
tnpl: qword, opa:qword, opb:gword

pushf

cld

sub ax, ax

| ea di, word ptr result
nmov cx, 4

369

NUMERICAL METHODS

rep stosw
| ea di, word ptr tnpO;quotient
nov cx, 4

rep st osw

set up:
mv bx, word ptr dvsr[3]
conti nue_setup:
| ea si, word ptr dvdnd ;divisor no higher than
| ea di, word ptr tnpo ;receives stuff for quotient
sub dx, dx
mv ax, word ptr [si][3]
div bx
nmv word ptr [di][4], ax ;result goes into quotient
nmov ax, word ptr [si][l]
div bx
nov word ptr [di][2], ax ;result goes into quotient
sub ax, ax
mv ah, byte ptr [si]
div bx
nmv word ptr [di][0], ax ;result goes into quotient

chk_estimate:

i nvoke mul64a, tnpO, dvsr, addr result

| ea di, word ptr tnpO

mv ax, word ptr result[7]

cnp ax, word ptr dvdnd[3]

jle div_exit

sub ax, ax

sub word ptr [di], 1

shb word ptr [di][2],ax

sbb word ptr [di][4],ax

nmov word ptr [di][6],ax ;don't need a remainder for

;this divide

div_exit:

nmov si, di

mv di, word ptr gtnt

inc di

inc di

nov cx, 4

370

rep movsw
popf

ret

di v64 endp

vokkkkkk

FPMATH.ASM

;*Mul6d4a -Mil tiplies two unsigned 5-byte integers. The

;* procedure allows for a product of twice the length of the multipliers,
;* thus preventing overflows.
muléda proc uses ax dx,

mul tiplicand: qword, multiplier:qword, result:word

mv
sub

nov
nul

mv
nul

nmov
add

mul

mv
add
adc

nov
mul

add
adc

nov
mul

add
adc

di,word ptr result
CX, CX

ax, word ptr rmultiplicand[4]
word ptr multiplier[4]
word ptr [dil[8], ax

ax, word ptr rmultiplicand[4]
word ptr multiplier[2]
word ptr [di][6], ax
word ptr [di][8], dx

ax, word ptr nultiplicand[4]

word ptr multiplier[0]
word ptr [di][4], ax
word ptr [di][6], dx
word ptr [di][8], cx

ax, word ptr rmultiplicand[2]
word ptr multiplier[4]
word ptr [di][6], ax
word ptr [di][8], dx

ax, word ptr rmultiplicand]2]
word ptr multiplier[2]
word ptr [di][4], ax
word ptr [di][6], dx

;multiply nmultiplicand MSW
;by multiplier high word

;multiply nmultiplicand MSW
; by second MBW
;of multiplier

;multiply multiplicand high
;word

;by third MW

;of multiplier

;propagate carry
;multiply second MSW

;of multiplicand by MSW
;of nultiplier

;multiply second MSW of
;multiplicand by second MSW
;of multiplier

371

NUMERICAL METHODS

mul 64a endp

372

adc

mv
mmul

nov
add
adc
adc

mv
mmul

add
adc
adc

mv
mmul
add
adc
adc
adc

mv
mmul

nov
add
adc
adc
adc

ret

word ptr [di][8], cx

ax, word ptr multiplicand[?2]
word ptr multiplier[0]
word ptr [di][2], ax
word ptr [di][4], dx
word ptr [di][6], cx
word ptr [di][8], cx

ax, word ptr multiplicand[0]
word ptr multiplier[4]
word ptr [di][4], ax
word ptr [di][6], dx
word ptr [di][8], cx

ax, word ptr multiplicand[0]
word ptr multiplier[2]
word ptr [di][2], ax
word ptr [di][4], dx
word ptr [di][6], cx
word ptr [di][8], cx

ax, word ptr nultiplicand[0]
word ptr multiplier[0]
word ptr [di][0], ax
word ptr [di][2], dx
word ptr [di][4], cx
word ptr [di][6], cx
word ptr [di][8], cx

;add any remnant carry

;multiply second MSW
;of multiplicand by LSW
;of multiplier

;add any remant carry
;multiply multiplicand LSW
;by MBW of nultiplier

;add any remant carry
;multiply multiplicand LSW
by second MSW

;of multiplier

;add any remant carry
;add any remant carry

;multiply multiplicand LSW
;by multiplier |ow word

;add any remant carry
;add any remnant carry
;add any remant carry

APPENDIX E

|O.ASM

. dosseg
.nmodel small, ¢, os_dos
include math.inc

.data
i nf byte "infinite", 0
zZro bhyte "00,0
hundred byte 64h
iten word 0ah
povers equ one
maxchar equ 8
. code
; dect ohex

;pointer to a packed BCD is used to convert to binary

dectohex proc uses ax bx cx si di, dntgr:word

| ocal doubl e: dwor d
Xor ax, ax
nov si,word ptr dntgr
nmv cX, 4

cnvt _int
nmov al,byte ptr [si]
aam

;expand to unpacked form

373

NUMERICAL METHODS

push
xchg
sub
add

call

pop
sub

add
call

| oop
r et

add

adc

retn
dect ohex

Cokkkkkk
'

;converts single-precision floating point to an ASCI| string

; caller is responsible for array bounds of ASCII string
; callable from C
ftoasc proc uses s

| ocal

cld
xor

374

ax
ah, a

ah, ah
bx, ax

near ptr nten
ax

ah, ah

bx, ax

near ptr nten

cnvt _int

bx, 1
dx, 1

word ptr doubl e, bx
word ptr doubl e[2], dx

bx, |
ax, |
bx, |
ax, |

bx, word ptr double
dx,word ptr doubl e[2]

endp

di, fp:dword, rptr:word

flp:quord

ax, ax

;get high nibble

;multiply by ten

;multiply by ten

lea di,word ptr flp
mv cx, 4
rep stosw

| ea si,word ptr fp
lea di,word ptr flp[2]
mv cX, 2

rep nmvsw
i nvoke fta, flp, rptr

ret
ftoasc endp

[2 31
'

; conversion of floating point to ASC I

fta proc uses bx cx dx si di, fp:qword, sptr:word

| ocal sinptr:byte, fixptr:qword, exponent:byte,

| eadi ng_zeros: byte,

pushf
std
xor ax, ax
| ea di,wordptr fixptr[6]
mov cx, 4
rep stosw
nmv byte ptr [sinptr],al
nov byteptr [Ieading_zeros], al
mv byte ptr [ndg], al
nmv byte ptr [exponent],al
ck_neg:
test word ptr fp[4],8000h
je gtr_0
xor word ptr fp[4],8000h
not byte ptr [sinptr]

IO.ASM

;clear the sign

:get the sign

;mke positive
;it is negative

375

NUMERICAL METHODS

gtr_0:

i nvoke flconp, fp, one ;another kind of normalization
cnp ax, 1h

je | ess_than_ten

dec byte ptr [ndg]

cnp byte ptr [ndg],-37

il zero_resul t

i nvoke flmul, fp, ten, addr fp

i short gtr_0

| ess_than_ten

i nvoke flcomp, fp, ten
cnp ax, -1
je normfix
inc byte ptr [ndg]
cnp byte ptr [ndg], 37
53 infinite_result
i nvoke fldiv, fp, ten, addr fp
i short less_than_ten
Rnd:
i nvoke round, fp, addr fp ;fixup for translation
normfix: ;this is for ASCII conversion
nov ax,word ptr fp[0] ;dunp the sign bit
nmv bx,word ptr fp[2]
nmv dx,word ptr fp[4]
shi dx, |
get _exp:
nmov byte ptr exponent, dh
sub byte ptr exponent, 7fh ;remve bias
nmov cx, 8h
sub cl,byte ptr exponent
is infinite_result ;could come out zero
;but this is as far as |
lea di,word ptr fixptr
do_shift: ;can go

376

IO.ASM

stc ;restore hidden bit
rer dl, 1
sub cx, 1
je put _upper
shift_fraction:
shr d,1 ;shift significand into
rer bx, 1 ;fractional part
rer ax, 1
| oop shift_fraction
put - upper:
nmov word ptr [di], ax
nmov word ptr [di][2], bx
nmov al, dl
mv byte ptr fixptr[4],d ;Wite integer portion
xchg ah, al
sub dx, dx
nmv di,word ptr sptr
cld ;reverse direction of wite
inc dx
nmov al,' !
cnp byte ptr sinptr,0ffh ;is it a mnus?
jne put _sign
nmov al,'-'
put _si gn:
stosh
| ea si, byte ptr fixptr[3]

write_integer:

xchg ah, al ;al contains integer
;portion

aam

xchg al, ah

or al,'0

call near ptr str_wt

xchg al, ah

or al,'o

call near ptr str_wt

377

NUMERICAL METHODS

inc dx ;max char count
dec si
do_deci mal
mv al,'.
stosh
do_deci mal 1
i nvoke mul ten, addr fixptr ;convert binary fraction
or al,'o ;to decimal fraction
cal | nearptr str_wt
inc dx
cnp dx, maxchar
je do_em
jnp short do_deci mal 1
do_exp
sub ax, ax
cnp al,byte ptr ndg
jne wri t e_exponent
jm short last_byte

write_exponent

nov al,'e'
stosh
nov al,byte ptr ndg
or al,a
jns fini sh_exponent
xchg al , ah
mv al,'-'
stosh
neg ah
xchg al , ah
sub ah, ah
fini sh_exponent
chw
aam ; cheap conversion
xchg ah, a
or al,'o
stosh
xchg ah, a

378

or
stosh
| ast _byte
sub
stosh
popf
fta_ex
r et

infinite_result

rep movsh
jm

zero_resul t

rep movsh

strwt:
cnp
jne
test
je
putt:
test
jne
not
pnt:
stosh
nope:
retn
fta endp

al,'0

al,a

di,word ptr sptr
si,of fset inf
cx, 9

ax, -1
short fta_ex

di,word ptr sptr
si,offset zro
cx, 9

ax, -1
short fta_ex

al,'0

putt

byte ptr |eading_zeros,-1
nope

byte ptr |eading_zeros,-1
pnt
| eadi ng_zeros

IO.ASM

379

NUMERICAL METHODS

,
Lkkkkkk
’

; Unsi gned conversion from floating-point notation to integer (Iong)
;This is in fixed-point format; the upper two words are the integer
;and the lower two are the fraction

ftofx proc uses si di, fp:dword, fixptr:word

[ocal flp:quord
cld
xor ax, ax
| ea di,word ptr flp
mv cx, 4
rep stosw
| ea si,word ptr fp
| ea di,word ptr flp[2]
nmv cX, 2

rep novVsSw
i nvoke ftfx, flp, fixptr

r et
ftofx endp

ekkhkkkk
’

;unsigned conversion fromascii string to short rea
atf proc uses si di, string:word, rptr:word ;one word for near pointer

local exponent:byte, fp:qword, nunsin:byte, expsin:byte,
dp_flag:byte, digits:byte, dp:byte

pushf

std

xor ax, ax

| ea di,word ptr fp[6] ;clear the floating

;variabl e

380

;begin by checking for a

do_num
nmov
cnp
jne
not
inc
nmov
j m

not _m nus
cnp
jne
inc
nmov

not _sign
cnp
jne
test
jne
not
inc
nov

cx, 8
word ptr

si,string

byte ptr
byte ptr
byte ptr
byte ptr
byte ptr
byte ptr

bl, [si]
bl,"-
not _m nus
[nunsi n]
Si
bl,es:[si]
not _sign
bl, "+

not _sign
Si

al, [si]
bl,"."
not _dot
byte ptr
end_o_cnv
dp_flag
si

bl [si]

[di]

[exponent], a
dp_flag, a
nunsi n, a
expsin, al
dp, a
digits, 8h

sign or a nunber or a '.'

[dp], 80h
t

I0.ASM

;count of total digits
;rounding digit is eight

;it is a negative nunber

; check for decimal point

381

NUMERICAL METHODS

not _dot

cnp
ib
cnp
ja
i nvoke
nov
sub
sub
shl

shl

shl

i nvoke
test

je
dec

no_dot _yet

inc
dec
jc

nov
jmp

not _a_num

nov
or
cnp
je

jmp

chk_exp

382

inc

cnp
jne

bl," O

not _a_num

bl,"9

not _a_num

flmul, fp, ten, addr fp
bl, [si]

bl', 30h

bh, bh

bx, |

bx, 1
bx, 1

fladd, fp, dgt[bx], addr fp

byte ptr [dp_flag],Offh

no_dot _yet
[dp]

si

byte ptr digits
not _a_num
bl,es:[si]
not - si gn

bl, [si]

bl, | ower _case
bl,'e

chk_exp

end_o_cnvt

Si

bl, [si]
bl,"-
chk_pl us

;get legitimte nunber

;multiply floating point
;accunul ator by 10.0

;clear upper byte
;multiply index for proper
; of f set

;have we encountered a
;decimal point yet?

; check for decimal point
;looks Iike we may have an
; exponent

not
j m
chk_pl us:
cnp
jne
chk_expl:
inc
nov
chk_exp2:
cnp
jb
cnp
ja
sub
nmov
mul
nov
nmov
sub
or

j m
end_o_cnvt:
sub
mv
mv
or
jns
sub
jmp
pos_exp:
add

chk_nunsi n:
cnp
j ne
or

chk_expsi n:

xor
or

IO.ASM

[expsin]
short chk_expl

bl, "+
short chk_exp2

si
bl, [si]

bl, "0’

end_o_cnvt

bl, "9

end_o_cnvt

ax, ax

al, byte ptr [exponent]
iten

byte ptr [exponent],al
bl, [si]

bl', 30h

byte ptr [exponent], bl
short chk_expl

CX, CX
al,byte ptr [expsin]
cl,byte ptr [dp]

al, al

pos_exp
cl,byte ptr [exponent]
short chk_numsin

cl,byte ptr [exponent] ; exponent

word ptr nunsin, Offh

chk_expsin
word ptr fp[4],8000h ;if exponent negative,
;S0 is nunber
ax, ax
cl,cl

383

NUMERICAL METHODS

ins do_pospow
neg cl
do_negpow:
or cl,cl
je atf_ex
inc ax
test cx, 1h
je do_negpowa
nmv bx, ax
push ax
shl bx, 1
shl bx, 1
shl bx, 1
i nvoke fldiv, fp, powers[bx], addr fp
pop ax
do_negpowa:
shr cx, 1
jm short do_negpow
do_pospow:
or cl,cl
je atf_ex
inc ax
test cx, I'h
je do_pospowa
nmv bx, ax
push ax
shl bx, 1
shl bx, 1
i nvoke flmul, fp, powers[bx], addr fp
pop ax
do_pospowa:
shr cx, 1
jm short do_pospow
atf_ex:
i nvoke round, fp, addr fp
nmov di,word ptr rptr
nmov ax,word ptr fp

384

; make exponent positive

;i's exponent zero yet?

;check for one in Ish

;divide by power of two

;i's exponent zero yet?

;check for one in Ish

;mul tiply by power of two

IO.ASM

nmv bx,word ptr fp[2]
mov dx,word ptr fp[4]
mov word ptr [di],bx
mov word ptr [di][2],dx
popf
ret

atf endp

okkkRkR
l

;Unsigned conversion from quadword fixed-point to short real.
;The intention is to acconmodate long and int conversions as well.
;Binary is passed on the stack and rptr is a pointer

;to the result.

ftf proc uses si di, binary:qword, rptr:word ;one word for near
; poi nter

local exponent:byte, nunsin:byte

pushf
xor ax, ax
nmov di, word ptr rptr ;point at future float
add di, 6
| ea si, byte ptr binary[Q] ;point to quadword
oV bx, 7 ;1 ndex
do_nunbers:
mv byte ptr [exponent], al
mov byte ptr nunsin, al
mov dx, ax
do_num
mov al, byte ptr [si][bx]
or al, a
;record sign
jns find_top
not byte ptr nunsin ;this one is negative
not word ptr binary[6]

385

NUMERICAL METHODS

not word ptr binary[4]
not word ptr binary[2]
neg word ptr binary[0]
jc find_top
add word ptr binary[2], 1
adc word ptr binary[4], 0
adc word ptr binary[6], O
find_top:
cnp bl, dl
je meke_zero ;we traversed the entire
; nunber
mv al, byte ptr [si][bx]
or al, al
jne found_it
dec bx ;move i ndex
im short find_top
found_it:
nmv dl, 80h ;test for MSB
cnp bl, 4
cnp shift _right
je final _right
shift_|eft
std
mv cx, 4 ;points to MSB
sub cx, bx s target
shl cx, 1
shl cx, 1
shl cx, 1 ;tines 8
neg CX
mv byte ptr [exponent], cl
| ea di, byte ptr binary[4]
| ea si, byte ptr binary
add si, bx
nmov cx, bx
inc cX

386

rep movsh

mv
sub
sub

rep stosh
j m

shift_right:
cld
nmv
sub
| ea

nov
sub

shl
shl
shl

v

nov
sub
inc

rep movsh
sub
nov
sub
sub
| ea

rep stosb

final _right:
lea

final _rightl:
nov
test
jne
dec

cx, 4
cx, bx
ax, ax

short final _right

cX, bx ;points to MSB
cx, 4 ;target
si, byte ptr binary[4]
di, si
di, cx
cl, 1
cl, 1
cl, 1
;times 8

byte ptr [exponent], cl

cx, bx
cx, 4
cX

bx, 4
cx, 4
cX, bx
ax, ax

di, word ptr binary

si, byte ptr binary[4]

al, byte ptr [si]
al, dl

al i gned

byte ptr exponent

I0O.ASM

387

NUMERICAL METHODS

shl word ptr binary[0], 1
rel word ptr binary[2], 1
rel word ptr binary[4], 1
i short final _rightl
al i gned:
shl al, 1
;clearbit
nmv ah, 86h
add ah, byte ptr exponent
cmp nunsi n, dh
je positive
stc
jm short get_ready_to_go
posi tive:
cle
get-ready_to_go:
rer ax, 1 ;put it all back the way it
; shoul d be
nmv word ptr binary[4], ax
ftf_ex:
i nvoke round, binary, rptr
exit:
popf
ret
make_zero:
std
sub ax, ax ;zero it all out
nmov cx, 4
rep stosw
jm short exit
ftf endp

IO.ASM

; Conversion of floating point to fixed point
;float enters as quadword

;pointer, sptr,

points to result

:This could use an external routine as well. Wen the float

;enters here,

is in extended format

ftfx proc uses bx cx dx si di, fp:qword, sptr:word

| ocal

pushf
std

CokkE
'

do_rnd:
i nvoke

set_sign:

get _exponent :
sub
shl

sinptr:byte, exponent:byte

ax, ax
byte ptr [sinptr],al ;clear the sign

byte ptr [exponent],al

di,word ptr sptr ;point to result
round, fp, addr fp ;fixup for translation

ax,word ptr fp[0]

bx,word ptr fp[2]

dx,word ptr fp[4]

dx, dx

get _exponent

byte ptr [sinptr] ;it s negative

X, CX
dx, |

dh, 86h ;renmove bias from exponent
byte ptr exponent, dh

cl,dh

dx, 0f fh ;save number portion

d,1 ;restore hidden bit

389

NUMERICAL METHODS

whi ch_way:

or cl,cl

ins shift_left

neg cl
shift _right:

¢ mp cl, 28h

ja make_zero ;no significance, too small
make_fraction:

shr dx, 1

rer bx, 1

rer ax, 1

| oop meke_fraction

mv word ptr [di][0],ax

mov word ptr [di][2], bx

mv word ptr [di][4],dx

jm short print_result
shift_left:

cnp cl, 18h

ja make_nmax ;failed significance, too
bi g
meke_integer:

shl bx, 1

rel dx, 1

rel ax, 1

| oop meke_i nt eger

mv word ptr [di][6],ax

nmov word ptr [di][4],dx

mv word ptr [di][2], bx
print_result:

test byte ptr [sinptr], Offh

je exit

not word ptr [di][6] ;two's conpl enent

not word ptr [di][4]

not word ptr [di][2]

neg word ptr [di][0]

jc exit

390

IO.ASM

add word ptr [di][2],1
adc word ptr [di][4],0
adc word ptr [di][6],0
exit:
popf
ret
make_zero
sub ax, ax
mv cX, 4
rep stosw
i short exit
make_max:
sub ax, ax
nmv cX, 2
rep st osw
not ax
stosw
and word ptr [di][4], 7f80h
not ax
stosw
jm short exit

ftfx endp

|
ckkkkkkkkkhkkkhkkkkkkkkhkkhkkhhkkhkkhkhkhhkkhhkkhkhhhkkhkkhkkhkkk
;

; dnt_bn - decimal integer to binary conversion routine

; unsi gned

71t is expected that decptr points at a string of ASCI| decimal digits
;Each digit is taken in turn and converted until eight have been converted
;or until a nondeci mal nunber is encountered

; This might be used to pull a nunber froma communications buffer

;Returns with no carry if successful and carry set if not

dnt _bn proc uses bx cx dx si di, decptr:word, binary:word

391

NUMERICAL METHODS

deci mal _conversion
nmov
cnp
ib
cnp
ja

call
xor
add
adc
inc
| oop
0ops:
stc

ret

wor k- done

cle
ret

times_ten
push
push
shl
rel

mv

392

si,word ptr decptr

ax, ax
bx, ax
dx, bx
cx, 9

al,byte ptr [si]
al,'o

wor k_done

al,"9

wor k_done

near ptr times-ten
al,'o

bx, ax

dx, 0

Si

deci mal _conversion

di, word ptr binary
word ptr [di],bx
word ptr [di][2],dx

ax
cX
bx, |
dx, |

ax, bx

;get pointer to the MSB of the
; deci ma
;val ue

; check for decimal digit

;if it gets past here, it must
be K

;convert to nunber

;propagate any carries

;nore than eight digits or
; somet hi ng

;store result

IO.ASM

mv cX, dx
shl bx,
rel dx,
shl bx,
rel dx,
add bx, ax
adc dx, cx ;multiply by ten
pop Cx
pop ax
retn

dnt_bn endp

ok kkk k%

;bn-dnt - a conversion routine that converts binary data to decina

;A double word is converted. Up to eight decimal digits are

;placed in the array pointed at by decptr. If more are required to adequately
;convert this nunmber, the attenpt is aborted and an error flagged

bn_dnt proc uses bx cx dx si di, binary:dword, decptr:word

lea si,word ptr binary ;get pointer to the MSBb of
;the decinma
;val ue

nov di,word ptr decptr ;string of decimal ASCII
;digits

nmv cx, 9

add di, cx ;point to the end of the
;string
;this is for correct
ordering

sub bx, bx

nmov dx, bx

nov byte ptr [di],bl ;see that string is

;zero-term nated
dec di

393

NUMERICAL METHODS

bi nary_conversion
sub
nov
or
je
div
nov
or
je

divi de_| ower:
nov
or
jne
or
je

not _zero
div

put _zero
nov
or
nov
dec
| oop

00ps:
mov
stc
ret

chk_enpty
or
je
j
still_nothing
nmov
or
je
jm

394

dx, dx

ax,word ptr [si][2]
ax, ax

chk_empty

iten

word ptr [si][2],ax
dx, dx

chk_empty

ax, word ptr [si]
ax, ax

not _zero

dx, ax

put _zero

iten

word ptr [si],ax
d,'o

byte ptr [di],dl
di

bi nary_conversion

ax,-1

dx, dx
still_nothing
short divide_| ower

ax,word ptr [si]
ax, ax

empty
short not_zero

;divide by ten

I0.ASM

enpty:
inc di
mv si, di
nov di, word ptr decptr
nmov cx, 9

rep nmvsw

fini shed:
sub ax, ax
cle
ret

bn_dnt endp

rhkkkkkkkkhkkhkkkkkkhkkhkkhkkhhkkhkhkhkkhkkhhkhhkhkhkkhhkkx
)

;bfc_dc -A conversion routine that converts a binary fraction (doubl eword)
; To decimal ASCI| representation pointed to by the string pointer, decptr.
;Set for eight digits; it could be |onger.

bfc_dc proc uses bx cx dx si di bp, fraction:dword, decptr:word

| ocal sva:word, svbh:word, svd:word

nov di,word ptr decptr ;point to ASCI| out put
;string

nov bx,word ptr fraction

nov dx,word ptr fraction[2] ;get fractional part

nov cx, 8 ;digit counter

sub ax, ax

nov byte ptr [di],"." ;to begin the ASCI
;fraction

inc di

deci mal _conversi on:

or ax, dx ; check for zero operand
or ax, bx ; check for zero operand
jz wor k_done

395

NUMERICAL METHODS

sub ax, ax
shl bx, 1 ;multiply fraction by ten
rel dx, 1
rel ax, 1
;times 2 mltiple
nmv word ptr svb, bx
nmv word ptr svd, dx
mv word ptr sva, ax
shl bx, 1
rel dx, 1
rel ax, 1
shl bx, 1
rel dx, 1
rel ax, 1
add bx,word ptr svb
adc dx,word ptr svd ;miltiply by ten
adc ax,word ptr sva
or al,'o
mv byte ptr [di],al
inc di
sub ax, ax
| oop deci mal _conversion
wor k_done:
nmv byte ptr [di],al ;end string with a null
cle
ret

bfc_dc endp

’

’
IEEEEEEEEEEEEEERREEEEEREERREEREEREEREEREERREREEEREEEEESES
)

;dfc_bn - A conversion routine that converts an ASCI| decimal fraction
;to binary representation. Decptr points to the decimal string to be converted.
; The conversion will produce a double word result.

396

IO.ASM

; The fraction is expected to be padded to the right if it does not

;fill eight digits.

df cbn proc

pushf
cld

nov
sub
nov

repne scasb
dec
dec

sub

bi nary_conversion
nov

cnp
ib
cnp
ja
xor

dec

sub

uses bx cx dx si di

di, word ptr decptr
ax, ax

cx, 9
d
d
si, di

di, word ptr fraction
word ptr [di],ax
word ptr [di][2], ax

cX, 8

dx, dx

ax, word ptr [di][2]

dl, byte ptr [si]
dr, 'o

oops

dr, '9

oops

dr, ‘o

Si

decptr:word, fraction:word

;point to |least
;significant byte

;get high word of result
;variabl e

; check for decimal digit

;if it gets past here, it

;nust be o.Kk.

;deASCl |i ze

397

NUMERICAL METHODS

or bx, dx
or bx, ax
jz no_di v0
div iten
no_di vo:
nmv word ptr [di][2],ax
nmv ax,word ptr [di]
sub bx, bx
or bx, dx
or bx, ax
jz no_divl
div iten
no_divl:
mv word ptr [di],ax
sub dx, dx
| oop bi nary_conversion
wor k_done:
popf
sub ax, ax
cle
ret
0ops:
popf
nmov ax, -1
stc
ret

dfc_bn endp

1
Cokkkk kK
’

;table conversion routines

398

;prevent a divide by zero
;divide by ten

;prevent a divide by zero

.data
int_tab dword
frac_tab dwor d
tab_end dwor d

.code

;convert ASCI| deci

tb_dcbn

rep stosw

3b9acal0h, 05f 5e100h,
000186a0h, 00002710h,
0000000ah, 00000001h
1999999ah, 028f 5¢29h,
0000a7c5h, 000010c6h,
00000004h

00000000h

mal to fixed-point binary

proc uses bx cx dx si di,

IO.ASM

00989680h, 000f 4240h,
000003e8h, 00000064h,

00418937h, 00068dh9nh,
000001adh, 0000002ah,

sptr:word, fxptr:word

sign: byte

di, word ptr sptr
si, word ptr fxptr
bx, word ptr frac_tab

cX, 4
ax, ax
dx, dx

di, word ptr sptr

cl, al
ch, 9h
byte ptr sign, a

al, byte ptr [si]
al,'-'

negative

al, '+

positive

;point to result
;point to ASCII string
;point into table

;clear the target variable

;point to result
;to count integers
;max int digits

;assume positive

;get character
; check for sign

399

NUMERICAL METHODS

count
cnp
je
chk_frac
cnp
je
cnmp
ib
cmp
ja
cntnu:
inc
cnmp
ja
inc
nov
or
jne
j m
fnd_dot
nov
inc
nov
xchg
L
negative
not
posi tive:
inc
nov
nov

jmp
got nunber :

sub

xchg

dec
shl

400

al,'.
fnd_dot

al,0

got nunber
al,'o

not _a_number
al,'9

not _a_number

cl

cl,ch

too_big

Si

al, byte ptr [si]
dh, dh

chk_frac

short count

dh, cl

dh

dl, 13h

ch, dl

short cntnu

sign

Si

word ptr fxptr,s
al, byte ptr [si]
short count

ch, ch

cl, dh

cl

word ptr cx, 1

;end of string?

;is it a nunmber then?

;count
:check size

;next character
;get character
cint or frac

;count characters in int

;can't be zero

;includes deci mal point

;get int count

;multiply by four

shl
sub
sub
nov
cnvrt_int
nov
cnp
je
cnp
je
sub
nmov
m
add
adc
nov
m
add
adc
add
inc
j m
handl e_fraction
inc
cnvrt_frac:
nov
cnp
je
sub
nov

m

add
nov
ml

add
adc
add
inc

word ptr cx,|
bx, cx

CX, CX

si,word ptr fxptr

cl,byte ptr [si]
cl,".

handl e_fraction
cl,0

do_sign

c,'0

ax,word ptr [bx][2]
X

word ptr [di][4l,ax
word ptr [di][6],dx
ax,word ptr [bx]

X

word ptr [di][4],ax
word ptr [di][6],dx
bx, 4

Si

short cnvrt_int

si

cl,byte ptr [si]
cl,0

do_sign

cl,'0

ax,word ptr [bx][2]

CX

word ptr [di][2],ax
ax,word ptr [bx]

CX

word ptr [di][0],ax
word ptr [di][2],dx
bx, 4

Si

IO.ASM

;index into able
;point at string again
;get first character
;go do fraction, if any

;end of string

;drop table pointer

;skip decimal point
;get first character
;end of string

:this can never result in
;a carry

;drop table pointer

401

NUMERICAL METHODS

do_sign

not
not
not
neg
jc
add
adc
adc
exit:
ret

not _a_nunber:

sub
not
too_big:
stc
j m
tb_dcbn

short cnvrt_frac

al,byte ptr sign
al,a

exit

word ptr [di][6]
word ptr [dil[4]
word ptr [di][2]
word ptr [di]

exit

word ptr [di][2],1
word ptr [di][4],0
word ptr [di][6],0

ax, ax

ax

short exit
endp

;converts binary to ASCII decinma

tb_bndc

402

proc uses bx cx dx si di,
sptr:word, fxptr:word

| eadi ng_zeros: byte
si, word ptr fxptr
di, word ptr sptr

bx, word ptr int_tab

ax, ax
byte ptr |eading_zeros, a

;it is positive

;point to input fix point
;point to ascii string
;point into table

;assume positive

nov
or
jns
nmov
inc
not
not
not
neg
jc
add
adc
adc

posi tive:
nov
nov
sub

wal k_t ab:
cnp
ja
jb
cnp
jae

pushptr:
cnp
je
nmov

cntnu:
inc

ski p_zero:
inc
inc
inc
inc
cnp
jae
j m

IO.ASM

ax, word ptr [si][6]
ax, ax

positive

byte ptr [di],"'-'

di

word ptr [si][6] ; conpl ement
word ptr [si][4]
word ptr [si][2]
word ptr [si][0]
positive

word ptr [si][2],1
word ptr [si][4],0
word ptr [si][6],0

dx, word ptr [si][6]
ax, word ptr [si][4] ;get integerportion
CX, CX

dx, word ptr [bx][2]
got nunber

pushpt r

ax, word ptr [bx]
got nunber

byte ptr cl, |eading_zeros
skip_zero
word ptr [di],'0

di

bx

bx

bx

bx

bx, offset word ptr frac_tab
handl e_fraction

shortwal k_t ab

403

NUMERICAL METHODS

got nunber :
sub
inc

cnvrt_int:
call
j m

handl e_fraction:
cnp
jne
nov
inc
do_frac:
nov
inc
get_frac:
nov
nov
sub
wal k_tabl :
cnp
ja
ib
cnp
jae
pushptr1:
nov
skip_zerol:
inc
inc
inc
inc
inc
cnp
jae
j m

smal | _enuf:
sub
smal | _enuf 1:

404

CX, CX
| eadi ng_zeros

near ptr index
short cntnu

byte ptr |eading_zeros,0
do_frac

byte ptr [di], "0

di

word ptr [di],"."
di

dx, word ptr [si][2]
ax, word ptr [si][0]
CX, CX

dx, word ptr [bx][2]
smal | _enuf

pushptrl

ax, word ptr [bx]
smal | _enuf

byte ptr [di],"'0

di

bx

bx

bx

bx

bx, offset word ptr tab_end
exit

short wal k_t abl

CX, CX

 put

deci nal

poi nt

IO.ASM

call near ptr index
jm short skip_zerol
exit:
inc di
sub cl,cl
nmv byte ptr [si],cl ;end of string
ret
i ndex:
inc CcX
sub ax, word ptr [bx]
shb dx, word ptr [bx][2]
jnc i ndex ;subtract until a carry
dec cX
add ax, word ptr [bx] ;put it back
adc dx, word ptr [bx][2]
or cl,'0 ;make it ASCI
mv byte ptr [di],cl
retn
tb_bndc endp

vokkkkkk
'

;hex to ascii conversion using xlat

;sinmple and common table driven routine to convert from hexideci ma
;notation to ascii

;quadword argument is passed on the stack, with the result returned
;in astring pointed to by sptr

.data
hextab byte ‘o, "1, "2, "3, "4, "5, e, T, '8, 9, ta,
b, tet, td, e, Cf
. code
hexasc proc uses bx cx dx si di, hexval:qgword, sptr:word

405

NUMERICAL METHODS

| ea si, byte ptr hexval[7]

nmov di, word ptr sptr

mv bx, offset byte ptr hextab

nmov cx, 8 ;nunber of bytes to be

;converted

make_ascii:

mv al, byte ptr [si]

nmov ah, al

shr ah, 1

shr ah, 1

shr ah, 1

shr ah, 1

and al, Ofh ;unpack byte

xchg al, ah ;high nibble first

xl at

mv byte ptr[di],al

inc di

xchg al , ah ;now the |ower nibble

x| at

mv byte ptr [di],al

inc di

dec Si

| oop make_asci i

sub al, al

nmov byte ptr [di],al

ret

hexasc endp

end

406

APPENDIX F

TRANS.ASM
and TABLE.ASM

TRANS.ASM
.model small, ¢, os_dos

include math.inc

.data
i nf byte "infinite", 0
zro byte "0.0",0
zero qwor d 000000000000h
one_over _pi qwor d 3ea2f 9836e4eh
two_over _pi qwor d 3f 22f 9836e4eh
hal f_pi qwor d 3f c90f daa221h
one_over _| n2 qwor d 3f b8aa3b295ch
I n2 qwor d 3f317217f 7d1h
sqrt_hal f quor d 3f 3504f 30000h
expeps quor d 338000000001h
eps quor d 39ff fff70000h
ymax quor d 45c90f db0000h
bi g_x quor d 42a000000000h
littlex quor d 0c2a000000000h
y0a qwor d 3ed5a9%a80000h
y0b qwor d 3f 1714ba0000h
quarter qwor d 3e8000000000h
circulark qwor d 9b74edath
hyperk qwor d 1351e8755h

407

NUMERICAL METHODS

pl us gqwor d 3f 800000000h
m nus qwor d 0bf 800000000h
hundr ed byte 64h
iten wor d 0ah
maxchar equ 8

.code

. hkkkk

;taylorsin - derives a sin by using a infinite series. this is in radians
;expects argunent in quadword format, expects to return the same

;input nust be x"2<1

taylorsin proc uses bx cx dx di si, argunent:qword, sine:word

i nvoke polyeval, argument, sine, addr polysin, 10

ret
taylorsin endp

vokkkkkk
1

; pol yeval - eval uates polynom als according to Horner's rule
;expects to be passed a pointer to a table of coefficients
;a nunber to evaluate, and the degree of the pol ynonia

;the argunment conforms to the quadword fixedpoint format

pol yeval proc uses bx cx dx di si, argument:qword, output :word
coeff:word, n:byte

| ocal cf:qword, result[8]:word
pushf

cld

sub ax, ax

408

rep

rep

eval

rep

lea
st osw
lea

stosw

shl
shl
shl

adc
adc

i nvoke

| ea
| ea
nov
MmovVsw

dec
jns

CX,
di,

di,

4
wor d

wor d

cX, 8

Si,
bx,
bl,

bx,
bx,
bx,

si
ax,
bx,
CcX
dx,
di,

wor d
bx
byte

bx

wor d
wor d
word
wor d
wor d

word ptr
word ptr

word ptr
word ptr [di][6], dx

TRANS.ASM AND TABLE.ASM

ptr cf
;clear the accunul ator

ptr result

ptr coeff ;point at table

ptr n ;point at coefficient of n-
; degree
;this is the beginning of our
; approxi mation
;multiply by eight for the
; quadwor d

ptr [si]

ptr [si][2]

ptr [si][4]

ptr [si][6]

ptr cf

[di], ax

[di][2], bx ;add new coefficient to
;accunul at or

[di][4], cx

smul 64, argunment, cf, addr result

si, word ptr result [4]
di, word ptr cf
cXx, 4

byte ptr n ; decrenment pointer

eval

409

NUMERICAL METHODS

pol yeval _exit

nov di, word ptr output
| ea si, word ptr cf
mv cX, 4
rep moVSwW ;wite to the output
popf
ret

pol yeval endp

;log using a table and linear interpolation
;logarithms of negative nunbers require imaginary numbers
;natural logs can be derived by multiplying result by 2.3025

lgl0 proc uses bx cx si di, argument:word, |ogptr:word

| ocal povers_of _two: byte
pushf
std yincrenent down for zero check
;to come
sub ax, ax
mv cx, 4
nov di, word ptr logptr ;clear log output
add di, 6
rep stosw
nov si, word ptr logptr ;point at output which is zero
add si, 6 ;nost significant word
nov di, word ptr argunent ;point at input
add di, 6 ;nost significant word
nov ax, word ptr [di]
or ax, ax
is exit ;we don't do negatives
sub ax, ax
mv cx, 4
repe cnpsw ;find the first nonzero, or
;return

410

je

reposition_argument:

rep

keep_shifting:

or

is

shl

rcl

rel

rcl
inc
jmp

done_wi th_shift
nov
nmov
sub
nov
shl

add

TRANS.ASM AND TABLE.ASM

exit

si, word ptr argument
si, 6
di, si
cX

ax, 4
ax, cx
ax, 1
Ssi, ax
ax, 1
ax, 1
ax, 1
bl, al

Si,
ax,

word ptr argunment
word ptr [si][6]

ax, ax

done_wi th_shift

word ptr [si][0], 1
word ptr [si][2], 1
word ptr [si][4], 1
ax, 1

bl

short keep-shifting

word ptr [si][6],ax
byte ptr powers_of two, bl

bx, bx
bl, ah
bl, 1

bx, offset word ptr 1ogl0_thl

ax, word ptr [bx]

; determine nunber
;words to bytes
;point to first nonzero word

,Z€ero

;shift so nsb is a one
;point at
;most significant word
;shift the one eight times
;make this a one

i nput

of enptywords

;multiply by eight

;shift

;shift until msb is a one

;count shifts as powers of two
;normalize

;ax will be a pointer

;Will point into 127 entry table
;get rid of top bit to form
;actual pointer

;linear interpolation
;get first approximtion (floor)

411

NUMERICAL METHODS

inc bx
inc bx
nmv bx, word ptr [bx]
sub bx, ax
xchg ax, bx
mul byte ptr [si][6]
mv al, ah
sub ah, ah
add ax, bx
get _powver :
mv bl, 31
sub bl, byte ptr powers_of two
sub bh, bh
shl bx, 1
shl bx, 1
| ea si, word ptr |ogl0_power
add si, bx
sub dx, dx
add ax, word ptr [si]
adc dx, word ptr [si][2]
nov di, word ptr logptr
nov word ptr [di][2],ax
nov word ptr [di][4],dx
sub CX, CX
nov word ptr [di],cx
nov word ptr [di][6],cx
exit:
popf
r et
lgl0 endp

412

;and fol | owi ng approximation
i (ceil)
find difference

;multiply by fraction bits
;drop fractional places
;add interpolated value to

;origina

;need to correct for power
cof two

;point into this table

;add log of power

;wite result to gword fixed
; poi nt

;sqrt using a table and linear interpolation

TRANS.ASM AND TABLE.ASM

;this nethod has real problens as the powers increase
sqrtt proc uses bx cx si di, argument:word, sqrptr:word

I ocal

pushf
std

sub
nmv
nmv
add
rep stosw

repe cnpsw

je

reposition_argument:

pover s-of _two: byte

ax, ax
cx, 4
di, word ptr sqrptr
di, 6

si, word ptr sqrptr
si, 6

di, word ptr argunent
di, 6

ax, word ptr [di]

ax, ax

exit

ax, ax
cx, 4

exit

si, word ptr argument
si, 6

di, si

CX

ax, 4

ax, cx

ax, 1

si, ax

ax, 1

;increment up

;clear sqrt output

;clear sgrt output

;pointer to input

;we don't do negatives

:find the first nonzero, or

‘return
1 Zero

;shift the one eight tines

;this was a zero

;determne nunber of enptywords

;bytes to words

;point to first nonzero word

413

NUMERICAL METHODS

rep

keep_shifting:

done_wi th_shift

414

or
is
shl
rel
rel
rcl
inc
jm

nmv
nov
sub
nmv
shl

add

inc
inc

sub
xchg

mmul

sub
add

sub
shl

ax, 1
ax, 1
bl, al

si, word ptr argunent
ax, word ptr [si][6]

ax, ax

done_wi th_shift

word ptr [si][0], 1
word ptr [si][2], 1
word ptr [si][4], 1
ax, 1

bl

short keep_shifting

word ptr [si][6],ax

byte ptr powers_of two, bl
bx, bx

bl, ah

bl, 1

bx, offset word ptr sqr_thl

ax, word ptr [bx]

bx

bx

bx, word ptr [bx]
bx, ax

ax, bx

byte ptr [si][6]

al, ah
ah, ah
ax, bx

bl, byte ptr powers_of two
bh, bh
bx, 1

;multiply by eight

;shift

;normalize

l'inear interpolation

;multiply by fraction bits
;factor out fractional places

;add interpolated value to
;original

exit:

add

popf
ret

sqrtt endp

TRANS.ASM AND TABLE.ASM

si, word ptr sqr_power

si, bx
dx, dx
word ptr [si] ;multiply by inverse of root

di, word ptr sqrptr
word ptr [di][2],ax
word ptr [di][4],dx
CX, CX

word ptr [di],cx
word ptr [di][6],cx

;sines and cosines using a table and |inear interpolation
; (degrees)

dcsin proc uses bx cx si di, argument:word, cs_ptr:word, cs_flag:byte

rep

I ocal

pushf
std

powers_of _two: byte, sign:byte

cincrement down

ax, ax
byte ptr sign, al ;clear sign flag
cX, 4
di, word ptr cs_ptr ;clear sin/cos output
di, 6
;first check arguments for zero
di, 8 ;reset pointer
si, di
di, word ptr argunent
di, 6
cx, 4

415

NUMERICAL METHODS

repe cnpsw

je
j m
zero_exit
cnp
jne
j m
cos_0:
inc
inc
add
dec
nov

jmp
prepar e_ar gument s

nov

nov

sub

mv
idiv

or
jns
add

quadr ant
mov

nov
sub
nov
div

switch:
cnp

416

:find the first nonzero, or

creturn

zero-exit

prepar e- ar gument s

byte ptr cs_flag, al ;ax is zero

cos_0 ;sin(0) =0

exit

ax

ax ;point di at base of output

Si, ax ;nake ax a one

ax ;cos(0) =1

word ptr [si][4],ax ;one

exit

si, word ptr argument

ax, word ptr [si][4] ;get integer portion of angle

dx, dx

cx, 360

X ;modul ar arithmetic to reduce
;angle

dx, dx ;we want the remainder

quadr ant

dx, 360 ;angle has gotta be positive for
this
;to work

bx, dx ;we will use this to compute the
;value of the function

ax, dx ;put angle in ax

dx, dx

cx, 90

X ;and this to conpute the sign
;ax holds an index to the
; quadr ant

byte ptr cs_flag, 0 ;what do we want

c0S_range
cnp
i9
j m
cchk_180:
cnp
i9
not
neg
add
j m
cchk_270
cnp
i9
not
sub
jm
clast 90
neg
add
j m

do_sin:
cnp
i9
neg
add

j m
schk_180:

cnp
i9

do-sin

ax, 0
cchk_180
wal k_up

ax, 1
cchk_270

byte ptr sign
bx

bx, 180

wal k_back

ax, 2

clast 90

byte ptr sign
bx, 180
wal k- up

bx
bx, 360
wal k_back

ax, 0
schk_180
bx

bx, 90
wal k_back

ax, 1
schk_270

TRANS. ASM AND

TABLE. ASM

;use increnenting nethod

;set sign flag

;use decrenenting nethod

;set sign flag

;find the range of the argunent

;use decrenenting nethod

417

NUMERICAL METHODS

sub bx, 90
i wal k_up
schk_270
cp ax, 2
ig slast_90
not byte ptr sign
neg bx
add bx, 270
i wal k_back
slast_90
not byte ptr sign
sub bx, 270
i wal k_up
wal k_up
shl bx, 1
add bx, offset word ptr sine_tb
nov dx, word ptr [bx]
nov ax, word ptr [si][2]
or ax, ax
je wite_result
inc bx
inc bx
mv cx, dx
nov ax, word ptr [bx]
sub ax, dx
jnc pos_res0
neg ax
ml word ptr [si][2]
not dx
neg ax
jc | eave_wal k_up
inc dx

418

;use increnenting nethod

;set sign flag

;set sign flag

;use angle to point into the
;table

;get cos/sine of angle

;get fraction hits

;linear interpolation
;get next approximation

;find difference

;multiply by fraction hits

j m
pos_res0:
ml
| eave_wal k_up:
add

j mp

wal k_back:
shl

neg
jc
inc
j

pos_resl:
ml

| eave wal k_back:

add

wite result:

TRANS.ASM AND TABLE.ASM

| eave-wal k- up

word ptr [si][2]

dx, cx ;by fraction bits and addin
;angle

wite result

bx, 1 ;point into table

bx, offset word ptr sine_thl

dx, word ptr [bx] ;get cos/sine of angle

ax, word ptr [si][2] ;get fraction hits

ax, ax

wite result

bx

bx

cx, dx

ax, word ptr [bx] ;get next increnental cos/sine

ax, dx ;get difference

pos_resl

ax

word ptr [si][2] ;multiply by fraction bits

dx

ax

| eave- wal k- back

dx

| eave- wal k- back

word ptr [si][2] ;multiply by fraction bits
dx, cx ;by fraction bits and add in
;angle

di, word ptr cs_ptr

word ptr [di], ax ;stuff result into variable
word ptr [di][2], dx ;setup output for qword fixed
; poi nt

419

NUMERICAL METHODS

sub ax, ax ;radix point between the double
; wor ds
nmov word ptr [di][4], ax
nmv word ptr [di][6], ax
cnp byte ptr sign, a
je exit
not word ptr [di][6]
not word ptr [di][4]
not word ptr [di][2]
neg word ptr [di][0]
jc exit
add word ptr [di][2],1
adc word ptr [di][4],ax
adc word ptr [di][6],ax
exit:
popf
r et
dcsin endp

|
vokkkkkk
'

;gets exponent of floating point word

fr_xp proc uses si di, fp0:dword, fpl:word, exptr:word
| ocal f1p0:qword, flpl:quord
pushf
cld
xor ax, ax
lea di,word ptr flp0
mv cx, 4

rep stosw

| ea si,word ptr fp0O

420

TRANS.ASM AND TABLE.ASM

| ea di,word ptr flpO[2]
mv CX, 2
rep mvsw

i nvoke frxp, flp0, addr flpl, exptr
| ea si,word ptr flpl[2]

nov di,word ptr fpl

nov CX, 2

rep mvsw

popf
ret

fr_xp endp

;frxp perforns an operation simlar to the ¢ function frexp. used
;for floating point math routines

;returns the exponent -bias of a floating point nunber.

;it does not convert to floating point first, but expects a single
; preci sion number on the stack

frxp proc uses di, float:qword, fraction:word, exptr:word
pushf
cld
nmv di, word ptr exptr ;assign pointer to exponent
mv ax, word ptr float[4] ;get upper word of float
nmov dx, word ptr float[2]
sub CX, CX
or CX, ax
or cx, dx
je make it_zero ;it is a zero
shl ax, 1
rel c, 1 ;save the sign
sub ah, 7eh ;subtract bias to place float
;. 5<=x<l
nov byte ptr [di],ah

421

NUMERICAL METHODS

nov ah, 7eh
shr c, 1 ;replace the sign
rer ax, 1
mov word ptr float[4], ax
mov di, word ptr fraction
| ea si, word ptr float
nov cx, 4
rep mvsw
frxp_exit:
popf
ret
make_it_zero
sub ax, ax
mv byte ptr [di], a
nmov di, word ptr fraction
rep stosw
jm frxp_exit
frxp endp

Kkkkkk
'

;creates float from fraction and exponent

[d_xp proc uses si di, fpO:dword, power:word, exp:byte
| ocal fIp0:gword, result:guord
pushf
cld
xor ax, ax
| ea di,word ptr flp0
nmov cx, 4

rep St osw
| ea si,word ptr fpo0
| ea di,word ptr flp0[2]
nmov CX, 2

rep mvsw

422

TRANS.ASM AND TABLE.ASM

i nvoke [dxp, flp0, addr result, exp
| ea si,word ptr result[2]

mv di,word ptr power

nmov cX, 2

rep nmvsw

popf
ret
I d_xp endp

;ldxp is simlar to ldexp inc, it is used for math functions

;takes fromthe stack, an input float(extended and returns a pointer to
;a value to

;the power of two

;passed with it.

| dxp proc uses di, float:qword, power:word, exp:byte
nmv ax, word ptr float[4] ;get upper word of float
nov dx, word ptr float[2] ;extended bits are not checked
sub CX, CX
or CX, ax
or cx, dx
je return_zero
shl ax, 1 ;save the sign
rel c, 1
nmov ah, 7eh
add ah, byte ptr exp
jc I d_overflow
shr c, 1 ;return the sign
rer word ptr ax, 1 ;position exponent
nov word ptr float[4], ax
| dxp_exit:

423

NUMERICAL METHODS

mv cx, 4
nov di, word ptr pover
| ea si, word ptr float
rep nmvsw
ret
ret
I d_overflow
nov word ptr float[4], 7f80h
sub ax, ax
nmv word ptr float[2], ax
nmv word ptr float[0], ax
i | dxp_exit
return_zero:
sub ax, ax
nmv di, word ptr power
mv cx, 4
rep stosw
i | dxp_exit
ldxp endp
; FXCSR

;accepts integers.

; Remenber that the powers follow the powers of two, i.e., the root of a double
wor d

;is awrd, the root of a word is a byte, the root of a byte is a nibble, etc.
;new estimate = (radicand/last_estimate+l ast_estinmate)/2,|ast_estinate=
new_estimate.

fx_sqr proc uses bx cx dx di si, radicand:dword, root:word
| ocal estimate:word, cntr:byte

byte ptr cntr, 16
bx, bx ;to test radicand

424

nov
nov
or
js
je
i
zero_exit:
or
jne
sign_exit
stc
sub
nov

jm
find_root

sub
jc

find_root1:

or
je

shr
rer

jmp

fits:

TRANS.ASM AND TABLE.ASM

ax, word ptr radicand

dx, word ptr radicand[2]

dx, dx

sign_exit

zero_exit

find_root ;not zero

ax, ax ;N0 negatives or zeros
find_root
;indicate error in the operation

ax, ax
dx, ax
root _exit

byte ptr cntr, 1
root-exit ;will exit with carry set and an
; approximte root

dx, dx ;must be zero

fits ;sone kind of estimte

dx, 1

ax, 1

find_rootl ;cannot have a root greater

:than 16 bits foe
;a 32 bit radicand!

word ptr estimate, ax ;store first estimte of root
dx, dx

ax, word ptr radicand[2]

word ptr estimte

bx, ax ;save quotient from division of
; upper word

ax, word ptr radicand

word ptr estimate ;divide |ower word

dx, bx ;concatenate quotients

ax, word ptr estimte ; (radi cand/ esti mat e+esti mate)/
i

425

NUMERICAL METHODS

adc
rer

or
jne
cnp
jne
cle

root_exit

ret
fx_sqr endp

Cokkkkkk
1

school _sqr

;accepts integers
school _sqr

I ocal

or
js
je
jm

zero_exit
or
jne

sign_exit
sub

426

dx, 0

dx, 1

ax, 1

dx, dx ;to prevent any nodul ar aliasing
find_root

ax, word ptr estimte ;is the estimate still changing?
find_root

;clear the carry to indicate
; success

di, word ptr root
word ptr [di], ax
word ptr [di][2], dx

proc uses bx cx dx di si, radicand:dword, root:word
estimate:qword, bits:byte
bx, bx

ax, word ptr radicand
dx, word ptr radicand[2]

dx, dx
sign_exit
zero exit
setup ;not zero
ax, ax ;N0 negatives or zeros
setup
;indicate error in the operation
ax, ax ;can't do negatives

TRANS.ASM AND TABLE.ASM

nmov dx, ax ;zero for fail

stc

i root_exit
set up:

mv byte ptr bits, 16

nmv word ptr estimate, ax

nmv word ptr estimate[2], dx

sub ax, ax

nmv word ptr estimate[4], ax

mv word ptr estimte[6], ax

nmov bx, ax ; root

nov cX, ax

nmov dx, ax vinternmediate
findroot:

shl word ptr estimate, 1

rel word ptr estimate[2], 1

rel word ptr estimate[4], 1

rel word ptr estimate[6], 1

shl word ptr estimate, 1

rcl word ptr estimate[2], 1

rel word ptr estimate[4], 1

rel word ptr estimate[6], 1 ;doubl e shift radicand

shl ax, 1

rel bx, 1 ;shift root

nov cX, ax

nmv dx, bx

shl cx, 1

rel dx, 1 yroot*2

add cx, 1

adc dx, 0 4
subtract_root:

sub word ptr estimte[4], cx ;accumul at or - 2*r oot +

shb word ptr estimte[6], dx

jnc r_plus_one

427

NUMERICAL METHODS

add word ptr estimate[4], cx
adc word ptr estimate[6], dx
i continue_| oop
r-plus-one
add ax, 1
adc bx, 0 HES
continue_| oop
dec byte ptr hits
jne findroot
cle
root_exit
nov di, word ptr root
nmv word ptr [di], ax
nov word ptr [di][2], bx
ret

school _sqr endp

vokkkkkk
1

; fp-cos

fp_cos proc uses si di, fp0:dword, fpl:word

| ocal fIp0:quord, result:qword, sign:byte
pushf
cld
xor ax, ax
lea di,word ptr flp0
mv cx, 4

rep stosw
| ea si,word ptr fp0
| ea di,word ptr flp0[2]
nmv cX, 2

rep novsw

428

TRANS.ASM AND TABLE.ASM

sub al, a
nmov byte ptr sign, a
i nvoke fladd, flp0, half_pi, addr flp0
nmv ax, word ptr flpO[4]
or ax, ax
jns positive
not byte ptr sign ;is it less than zero?
; posi tive
i nvoke flsin, flp0, addr result, sign
nmov ax, word ptr result[2]
nmov dx, word ptr result[4]
nov di, word ptr fpl
nmov word ptr [di], ax
nov word ptr [di][2], dx
popf
ret
fp_cos endp
‘; kkkk k%

;fp_sin

fp_sin proc uses si di, fp0:dword, fpl:word

| ocal flp0:qword, result:qword, sign:byte
pushf
cld
xor ax, ax
| ea di,word ptr flp0O
mv cx, 4
rep stosw

429

NUMERICAL METHODS

| ea si,word ptr fp0
lea di,word ptr flp0[2]
mov cX, 2
rep movsw
sub al, a
nov byte ptr sign, a
mv ax, word ptr flpO[4]
or ax, ax
jins positive
not byte ptr sign ;is it less than zero?
; positive
i nvoke flsin, flp0, addr result, sign
i nvoke round, result, addr result
nmov ax, word ptr result[2]
nmov dx, word ptr result[4]
nov di, word ptr fpl
mv word ptr [di], ax
nmov word ptr [di][2], dx
popf
ret
f p_si nendp
‘; kkkk k%
;flsin
flsin proc uses bx cx dx si di, fp0:qword, fpl:word, sign:byte
| ocal result:qword, tenpO:qword, tenpl:qword,

y:qword, u:qword

pushf
cld

430

TRANS.ASM AND TABLE.ASM

i nvoke flconmp, fp0, ymax ;error, entry value too
;large
cnp ax, 1
jl absx
error_exit:
| ea di, word ptr result
sub ax, ax
mv cx, 4
rep stosw
jm wri teout
absx:
nov ax, word ptr fp0[4] ;make absol ute
or ax, ax
jns deconst ruct _exponent
and ax, 7fffh
nmv word ptr fpO[4], ax

deconstruct _exponent :
i nvoke flmul, fp0, one_over_pi, addr result
X/ pi

i nvoke intrnd, result, addr tenpO
;intrnd(x/ pi)

mv ax, word ptr tenpO[2] ;determine if integerhas
;odd or even

nov dx,word ptr tenpO[4] ;nunber of bits

nmv cx, dx

and cx, 7f80h ;get rid of sign and
;mantissa portion

shl cx, 1

nov cl, ch

sub ch, ch

sub cl, 7fh ;subtract bias (-1) from
; exponent

is not - odd

431

NUMERICAL METHODS

inc cl
or cl, cl
je Xpi
extract_int:
shl ax, 1
rel dx, 1
rel word ptr bx, 1
| oop extract _int ;position as fixedpoint
test dh, 1
je Xpi
not byte ptr sign
not _odd:
Xpi:
;extended precision multiply
1y pi
i nvoke flmul, sincos[8*0], tenpO, addr result
pintrnd(x/pi)*cl
i nvoke flsub, fp0, result, addr result
| x| -intrnd(x/ pi)
i nvoke flmul, tenpO, sincos[8*1], addr tenpl
vintrnd(x/pi)*c2
i nvoke flsub, result, tenmpl, addry
Y
chk_eps:
i nvoke flabs, y, addr tenpO ;is the argument |ess than eps?
i nvoke flconp, tenpO, eps
or ax, ax
jns rg
| ea di, word ptr result
sub ax, ax
nmov cx, 4
rep stosw
i writeout

432

i nvoke

i nvoke
i nvoke

i nvoke
i nvoke

i nvoke
i nvoke

i nvoke

fxr:
i nvoke

i nvoke

handl e_si gn
cnp
jne
xor

writeout:
mv
| ea
nmv
rep Mmvsw

flsin_exit:

popf
ret

flsin endp

flml,

flml,

fladd,

flml,
fladd,

flml,
fladd,

flml,

flml,

fladd,

byte ptr sign, -1

TRANS.ASM AND TABLE.ASM

y, Yy, addr u

u, sincos[8*5], addr result

;eval uater(g)

s ((rdxg+r3)*g+r2)*g+rl)*g

sincos[8%4], result, addr result

, result,

f=

addr result

sincos[8*3], result, addr result

, result,

f=

addr result

sincos[8%2], result, addr result

, result,

f=

result, v,

result, v,

wri teout
word ptr result[4], 8000h

di, word ptr fpl
si, word ptr result

cx, 4

addr result

addr result

addr result

cresult ==

crxr+f

;result * sign

433

NUMERICAL METHODS

'
Cokkkkkk
1

fp_tan

ﬁ)m proc uses si di, fp0:dword, fpl:word
[ocal flp0:gquord, result:quord
pushf
cld
xor ax, ax
| ea di,word ptr flpo
nov cx, 4

rep St osw
| ea si,word ptr fpo
| ea di,word ptr flpo[2]
nov cx, 2

rep mvsw
i nvoke fltancot, flp0, addr result
mov ax, word ptr result[2]
mov dx, word ptr result[4]
mv di, word ptr fpl
mov word ptr [di], ax
mv word ptr [di][2], dx
popf
ret

fp_tanendp

; fltancot

434

fltancot proc

I ocal

pushf
cld

sub

rep stosw

| ea

rep stosw

shl
rcl
shr

i nvoke

cmp

il

| ea

sub

mv
rep stosw

jm
continue
shl

shr
rer

TRANS.ASM AND TABLE.ASM

uses bx cx dx si di, fp0:qword, fpl:word

flp0: qword, result:qword, tenpO:qword, tenpl:qword
sign:byte, xnumqword, xden:qword, xn:qword, f:qword
g:qword, fxpg:qword, qg:qword

ax, ax
byte ptr sign, al ;clear the sign flag

di, word ptr g

cx, 4
;place input argunent in
cvariabl e

di, word ptr f

cx, 4
;place input argument in
cvariabl e

word ptr fpO[4], 1
byte ptr sign, 1
word ptr fpO[4], 1 ;absol ute val ue for conparison

flconp, fp0, ymax ;error,entry value too |arge
ax, 1

continue

di, word ptr result

ax, ax

cx, 4

fltancot _exit

word ptr fpO[4], 1
byte ptr sign, 1
word ptr fpO[4], 1 ;restore sign

435

NUMERICAL METHODS

i nvoke

i nvoke

mov

js
inc
or
je
and
or
extract _int
shi
rel
rel
| oop
t est
je
nov
not _odd:

i nvoke
i nvoke

i nvoke

436

flmul, fp0, two-over-pi, addr result

intrnd, result, addr xn

ax,

dx,
CcX
cX,

CX,
cl
ch,
cl

not -

cl,

not -

c
cl

not -

dx
dx

ax,
dx,

word ptr xn[2]

word ptr xn[4]
dx
7f 80h

ch
ch
c
odd
7fh

odd

c

odd
7fh
80h

1
1

word ptr bx, 1
extract _int

dh,

not _

1
odd

byte ptr sign, -1

s X¥2/ pi

vintmd(x*2/ pi)
;determine if integer has odd
;or even

cnunber of bits

;get rid of sign and
;mantissa portion

;subtract bias (-1) from

; exponent

;restore hidden bit

;position as fixedpoint

flmul, xn, tancot[8*0], addr tenpO

flsub, fp0, tenpO, addr tenp0
i (x-xn*cl)

flmul, xn, tancot[8*1], addr tenpl

TRANS.ASM AND TABLE.ASM

. Xn*c2
i nvoke flsub, temp0, tenpl, addr f
; (X-xn*cl)-xn*c2
i nvoke flabs, f, addr tenpl ;| f| <eps?
i nvoke flconp, tenmpl, eps
or ax, ax
jins conpute
| ea si, word ptr f ;f->xnum
| ea di, word ptr xnum
nmv cx, 4
rep nmvsw
lea si, word ptr one ; 1. 0->xden
| ea di, word ptr xden
mv cx, 4
rep nmvsw
i conput e-resul t
conput e:
i nvoke flmul, f, f, addr g (frf->g
i nvoke flmul, g, tancot[8*3], addr tenpO
i nvoke flmul, f, tenp0, addr tenpO
i nvoke fladd, tenp0, f, addr fxpg
s fxpg=(p2*g+pl)*g*f
o f
i nvoke flmul, g, tancot[8*6], addr tenpO
i nvoke fladd, tenpO, tancot[8*5], addr tenp0
i nvoke flmul, g, tenp0, addr tenp0
i nvoke fladd, tenp0, tancot[8*4], addr qg
;g9 = (92 * g +ql) * g +q0
lea si, word ptr fxpg
lea di, word ptr xnum
mv cx, 4
rep nmvsw
lea si, word ptr qg

437

NUMERICAL METHODS

lea
mv
rep mvsw

conpute_result

nov

or

je

xor

jm
xden_xnum

i nvoke

jm
xnum xden

i nvoke

fltancot _exit:

popf
ret

fltancot endp

1
s kkkkkk
’

s fp_sar

fp_sqr proc
| ocal
pushf
cld

xor
lea

438

di, word ptr xden
cx, 4

al, byte ptr sign

al, al

xnum xden

word ptr xnuni4], 8000h
short xden_xnum

fldiv, xden, xnum fpl
fltancot _exit

fldiv, xnum xden, fp

;even or odd

;nmake it

uses si di, fp0:dword, fpl:word

f1p0: qword, result:qword

ax, ax
di,word ptr flp0

negative

stosw

lea
lea

nmvsw

i nvoke

i nvoke

popf
ret
fp_sqr endp

Cokkkkkk
’

; flsar

flsqr proc

| oca

pushf
cld

lea

TRANS. ASM AND TABLE. ASM

cx, 4

si,word ptr fp0
di,word ptr flp0[2]
X, 2

flsqr, flp0, addr result
round, result, addr result
ax, word ptr result[2]

dx, word ptr result[4]

di, word ptr fpl

word ptr [di], ax
word ptr [di][2], dx

uses bx cx dx si di, fp0:qword, fpl:word

result:qword, tenpO:qword, tenpl:gword, exp:byte,
xn:qword, f:qword, yO qword, mbyte

di, word ptr xn

439

NUMERICAL METHODS

sub ax, ax
mv cx, 4
rep stosw
i nvoke flconmp, fp0, zero
cnp ax, 1
je ok
cnp ax, 0
je got-result
nmv di, word ptr fpl
sub ax, ax
mv cx, 4
rep stosw
not ax
and ax, 7f80h
nmov word ptr result[4],ax
i flsqr_exit
got _result
nmov di, word ptr fpl
sub ax, ax
mv cx, 4
rep stosw
jm flsqr_exit
ok:
i nvoke frxp, fp0, addr f, addr exp
i nvoke flmul, f, yOb, addr tenpO
i nvoke fladd, tempO, yOa, addry
heron:
i nvoke fldiv, f, y0, addr tenmp0
i nvoke fladd, y0, tenpO, addr tenpO
mv ax, word ptr tenpO[4]
shl ax, 1
sub ah, 1
shr ax, 1
nmv word ptr tenmpO[4], ax

440

;error, entry value too large

;make it plus infinity

; get exponent

;two passes through
;(x/r+r)/2 is all we need

; shoul d al ways be safe

;subtracts one half by

TRANS.ASM AND TABLE.ASM

; decrenenting the exponent

;one
i nvoke fldiv, f, tenp0, addr tenpl
i nvoke fladd, tenpO, tenpl, addr tenp0
mv ax, word ptr tenpO[4]
shl ax, 1
sub ah, 1 ;shoul d al ways be safe
shr ax, 1
nmov word ptr yO[4], ax ;subtracts one hal f by
nmov ax, word ptr tenpO[2] ; decrenenting the exponent
;one
nmov word ptr yo0[2], ax
mv ax, word ptr tenpO
mv word ptr y0, ax
sub ax, ax
mv word ptr yO[6], ax
chk_n:
mv al, byte ptr exp
nmov cl, al
sar al, 1 ;arithmetic shift
jnc evn
odd:
i nvoke flmul, y0, sgrt_half, addr y0 ;adj ustment for uneven
; exponent
nmov al, cl
inc al
sar al, 1
evn:
nmv cl, al ;nl2->m
povier :
nmov ax, word ptr y0[4]
shl ax, 1
add ah, cl
wite result:
shr ax, 1
mv word ptr yO[4], ax

441

NUMERICAL METHODS

| ea si, word ptr yo0
mv di, word ptr fpl
nmov cx, 4

rep mvsw

flsqr_exit:

popf
ret

flsqr endp

’
ckkkkkk
’

;lgb - log to base 2

;input argument must be be <= x <2

;multiply the result by .301029995664 (4d104d42h) to convert to base 10

; higher powers of 2 can be derivedby counting the number of shifts required
;to bring the nunber between 1 and 2, calculating that [gb then adding, as the
;integer portion, the nunber of shifts as that is the power of the nunber.

I gb proc uses bx cx dx di si, argunent:qword, result:word
local k:byte, z:qword
nmov di,word ptr result
sub ax, ax
nmv cx, 4
rep stosw ,make y zero
inc al
nmv byte ptr k, al ;mke k ==
nov ax, word ptr argunent
mv bx, word ptr argunent|?2]
mv dx, word ptr argunent]4]
shr dx, 1 ; Z=ar gunent/ 2
rer bx, 1
rer ax, 1 ;scale argunent for z

442

Xl

sub
cnp
jne
cnp
jne
inc
cnp
jne

jmp

not _done_yet:
sub
shb

jc

reduce:

shiftk:
shr
rer
rer
| oop

di, word ptr z

word ptr [di], ax
word ptr [di][2], bx
word ptr [di][4], dx

ax, word ptr argunent

bx, word ptr argunent|2]
dx, word ptr argunent [4]

CX, CX
ax, cx

not _done_yet
bx, ax

not _done_yet
X

dx, ax

not _done_yet

[ogb_exit

ax, word ptr z
bx, word ptr z[2]
shift

word ptr argument, ax
word ptr argument[2],
word ptr argument[4],

CX, CX
cl, byte ptr k

dx, 1
bx, 1
ax, 1
shiftk
word ptr z, ax

TRANS.ASM AND TABLE.ASM

;argunment between 1.0 and 2.0

ctest for 1.0

i X-2<1?

IX<-X-Z

; Z<-argunent <<k

443

NUMERICAL METHODS

nmov word ptr z[2], bx
nmov word ptr z[4], dx
sub bx, bx
nov bl, byte ptr k
cnp bl, 20
ja | ogh_exit
dec bl
shl bx, 1
shl bx, 1
shl bx, 1 ;point into table of qwords
| ea si, word ptr log2
nmov ax, word ptr [si][bx]
nmov cx, word ptr [si][bx][2]
nmov dx, word ptr [si][bx][4] ;get log of power
nmov di, word ptr result
add word ptr [di], ax
adc word ptr [di][2], cx
adc word ptr [di][4], dx
jm s
shift:
shr word ptr z[4], 1
rer word ptr z[2], 1
rer word ptr z, 1
inc byte ptr k
jm X
| ogh_exit:
ret
I gh endp
;pwb - base 10 to power

444

TRANS.ASM AND TABLE.ASM

;input argunment nust be be | <= x <2
uses bx cx dx di si, argunent:qword, result:word

pwb proc

| ocal

rep stosw

x0:

sub
cnp
jne
cnp
jne
cnp
jne

jmp

not _done_yet
sub
nov
cnp
ja

shl
shl
shl

| ea

k:byte, z:qword

di, word ptr result
ax, ax

cx, 2

ax

ax

byte ptr k, al

ax, word ptr argunent
cx, word ptr argument[2]
dx, word ptr argunent]4]
bx, bx

ax, bx

not _done_yet

cx, bx

not _done_yet

dx, bx

not _done_yet
pwrb_exit

bx, bx

bl, byte ptr k

bl, 20h

pwrb_exit

bx,

bx, 1

bx,

si, word ptr power10

Y
;make y one
;mke k = 0

yargument 0<= x <1

;testfor 0.0

;point into table of qwords

445

NUMERICAL METHODS

reduce

shiftk:

rer
rer
| oop
no_shiftk:
add
adc
adc

jmp

i ncrease

446

dx, word
i ncrease
reduce

cx, word
i ncrease
reduce

ax, word
i ncrease

ax, word
cx, word
dx, word
word ptr
word ptr
word ptr

CX, CX
cl, byte

si, word
ax, word
bx, word
dx, word
cl, 0

no_shiftk

dx, 1
bx, 1
ax, 1
shiftk

word ptr
word ptr

word ptr

x0

ptr [si][bx][4]

ptr [si][bx][2]

ptr [si][bx]

ptr [si][bx]
ptr [si][bx][2]
ptr [si][bx][4]
argunent, ax
argunent[2], cx
argument[4], dx

ptr k

ptr result
ptr [si]

ptr [si][2]
ptr [si][4]

[si], ax
[si][2], bx
[si][4], dx

s X<-X-Z

; z<-ar gunent <<k

inc

j
pwrb_exit:

r et
pwb endp

ckkkkkk
1

TRANS. ASM AND TABLE. ASM

byte ptr k
x0

;circular- inplenmentation of the circular routine, a subset of the CORDI C devices

circul ar

| ocal

rep mvsw

rep mvsw

rep mvsw

proc uses bx cx dx di si, x:word, y:word, z:word

smal | x: qword, smally: qword,
shifter:word

di, word ptr smallx
si, word ptr x
cx, 4

di, word ptr smally
si, word ptry
cx, 4

di, word ptr smallz
si, word ptr z

cx, 4
ax, ax
byte ptr i, al

smal | z: quor d,

i byte,

447

NUMERICAL METHODS

twst:

shiftx:

| oad_smal | x:

448

cnp
je

sar
rer
rer
rer
dec
jnz

bx, ax
cX, ax

ax, ax
al, i
word ptr shifter, ax

si, word ptr x

ax, word ptr [si]
bx, word ptr [si][2]
cx, word ptr [si][4]
dx, word ptr [si][6]

word ptr shifter, 0
| oad_smal | x

dx, 1
cx, 1
bx, 1
ax, 1
word ptr shifter
shiftx

word ptr smallx, ax

word ptr smallx[2], bx
word ptr smallx[4], cx
word ptr smallx[6], dx

ax, ax
al, i
word ptr shifter, ax

si, word ptr vy

ax, word ptr [si]
bx, word ptr [si][2]
cx, word ptr [si][4]
dx, word ptr [si][6]

word ptr shifter, 0

;mltiply by 2°-

;note the arithnetic shift
;for sign extension

CX=X>D

;mltiply by 2°-

je
shifty:

sar
rer
rer
rer
dec
jnz

| oad_smal | y:

get _atan:
sub
nmv
shl

test_Z

or
jns

negative:

TRANS. ASM AND TABLE. ASM

| oad_smal Iy

dx, 1 ;note the arithnetic shift
cx, 1 ;for sign extension

bx, 1

ax, 1

word ptr shifter

shifty

word ptr smally, ax

word ptr smally[2], bx

word ptr smally[4], cx

word ptr smally[6], dx FY=Y>>

bx, bx

bl, i

bx, 1

bx, 1 ;got to point into a dword table
si, word ptr atan_array

ax, word ptr [si][bx]
dx, word ptr [si][bx] [2]

word ptr
word ptr

ax,

ax

word ptr
word ptr

Si,
ax,
ax,

wor d
wor d
ax

positive

ax,
bx,
cX,
dx,

wor d
wor d
wor d
wor d

smallz, ax
small z[2], dx ;z=atan[i]
smal | z[4], ax

smal | z[6], ax

ptr z
ptr [si][6]

ptr smally

ptr smally[2]
ptr smally[4]
ptr smally[6]

449

NUMERICAL METHODS

add
adc
adc
adc

posi tive:

450

di,

wor d

word ptr
word ptr
word ptr
word ptr

ax,
bx,
CX,
dx,

di,

wor d
wor d
wor d
wor d

wor d

word ptr
word ptr
word ptr
word ptr

ax,
bx,
CX,
dx,

di,

wor d
wor d
wor d
wor d

wor d

word ptr
word ptr
word ptr
word ptr

for_next

ax,
bx,
CX,
dx,
di,

wor d

ptr x

[di], ax
[di][2], bx
[di][4], cx
[di][6], dx

ptr smallx

ptr smallx[2]
ptr smal | x[4]
ptr smal | x| 6]

ptry
[di], ax
[di][2], bx
[di][4], cx
[di][6], dx

ptr smallz

ptr smallz[2]
ptr smallz[4]
ptr smallz[6]

ptr z

[di], ax
[di][2], bx
[di][4], cx
[di][6], dx

ptr smally

word ptr smally [2]

wor d
wor d
wor d

ptr smally[4]
ptr smally[6]
ptr x

word ptr [di], ax
word ptr [di][2], bx

X 4=y

X 4=y

shb
shb

for_next
inc
cnp
ja
j m

circular-exit

ret
circul ar

'
ckkkkkk
1

word ptr [di][4], cx
word ptr [di][6], dx

ax
bx
cX
dx
di

wor d
wor d
wor d
wor d
wor d

word ptr
word ptr
word ptr
word ptr

ax
bx
CX,
dx
di

wor d
wor d
wor d
wor d
wor d

word ptr
word ptr
word ptr
word ptr [di][6], dx

ptr smallx
ptr smallx[2]
ptr smal | x[4]
ptr small x| 6]
ptry

[di], ax
[di][2], bx
[di][4], cx
[dil[6], dx
ptr smallz
ptr smallz[2]
ptr smallz[4]
ptr smallz[6]
ptr z

[di], ax
[di][2], bx
[di][4], cx

byte ptr i
byte ptr i, 32
circul ar-exit
twi st

endp

TRANS.ASM AND TABLE.ASM

(X ==y
(Y += X
(X ==y

; bunp exponent

jicirc- inplenmentation of the inverse circular routine, a subset of the cordic

:devi ces

451

NUMERICAL METHODS

’
’

icirc proc uses bx cx dx di si, x:word, y:word, z:word

| ocal smal | x: qword, smally:qword, smallz:qword, i:byte,
shifter:word

| ea di, word ptr smallx
myv si, word ptr x
nmov cx, 4

rep nmvsw

| ea di, word ptr smally
nmv si, word ptry
mv cx, 4

rep mvsw

| ea di, word ptr smallz
mv si, word ptr z
nmov cx, 4

rep mvsw

sub ax, ax
mv byte ptr i, al ;i=0
mv bx, ax
nov CX, ax

twst:
sub ax, ax
mv al, i
mv word ptr shifter, ax
nmv si, word ptr x ymultiply by2"-i
nmv ax, word ptr [si]
nmv bx, word ptr [si][2]
nmv cx, word ptr [si][4]
nov dx, word ptr [si][6]
cmp word ptr shifter, 0

452

je
shiftx:
sar
rer
rer
rer
dec
jnz
| oad_smal | x:

cnp
je
shifty:
sar
rer
rer
rer
dec
jnz
| oad_smal | y:

get_atan:

TRANS.ASM AND TABLE.ASM

| oad_smal | x

dx, 1

cx, 1

bx, 1

ax, 1

word ptr shifter
shiftx

word ptr smallx, ax
word ptr smallx[2], bx
word ptr smallx[4], cx
word ptr smallx[6], dx ; X=X>
ax, ax

al, i

word ptr shifter, ax

si, word ptry
ax, word ptr [si]

bx, word ptr [si][2]
cx, word ptr [si][4]
dx, word ptr [si][6]

word ptr shifter, 0

| oad_smal Iy

dx, 1

cx, 1

bx, 1

ax, 1

word ptr shifter
shifty

word ptr smally, ax
word ptr smally[2], bx
word ptr smally[4], cx
word ptr smally[6], dx ;Y=Y

453

NUMERICAL METHODS

sub bx, bx
mv bl, i
shl bx, 1
shl bx, 1 ;got to point into a dword table
| ea si, word ptr atan_array
nmv ax, word ptr [si][bx]
nmv dx, word ptr [si][bx][2]
mv word ptr smallz, ax
nmov word ptr smallz[2], dx yz=atan[i]
sub ax, ax
nmv word ptr smallz[4], ax
nov word ptr smallz[6], ax
test V.
nov si, word ptr y
nmv ax, word ptr [si][6]
or ax, ax
is positive
negative:
nmv ax, word ptr smally
nov bx, word ptr smally[2]
nmv cx, word ptr smally[4]
nov dx, word ptr smally[6]
mv di, word ptr x
add word ptr [di], ax
adc word ptr [di][2], bx
adc word ptr [di][4], cx
adc word ptr [di][6], dx X =y
nov ax, word ptr smallx
nmv bx, word ptr smallx[2]
nov cx, word ptr smallx[4]
nmv dx, word ptr smallx[6]
nmv di, word ptr y
sub word ptr [di], ax
shb word ptr [di][2], bx

454

shb
shb

posi tive:

word ptr
word ptr

ax,
bx,
CX,
dx,

di,

wor d
wor d
wor d
wor d

wor d

word ptr
word ptr
word ptr
word ptr

for_next

ax,
bx,
CX,
dx,
di,

wor d
wor d
wor d
wor d
wor d

word ptr
word ptr
word ptr
word ptr

ax,
bx,
CX,
dx,
di,

wor d
wor d
wor d
wor d
wor d

word ptr
word ptr
word ptr
word ptr

ax, word

bx,

wor d

TRANS.ASM AND TABLE.ASM

[di][4], cx
[di][6], dx 7Y ==X

ptr smallz

ptr smallz[2]
ptr smallz[4]
ptr smallz[6]

ptr z

[di], ax

[di][2], bx

[di][4], cx

[di][6], dx -X 4=y

ptr smally

ptr smally[2]

ptr smally[4]

ptr smally[6]

ptr x

[di], ax

[dil[2], bx

[di][4], cx

[di][6], dx Xz

ptr smallx

ptr smallx[2]

ptr smallx[4]

ptr small x[6]

ptry

[di], ax

[di][2], bx

[di][4], cx

[di][6], dx VY 4= X

ptr smallz
ptr smallz[2]

455

NUMERICAL METHODS

mv cx, word ptr smallz[4]

mv dx, word ptr smallz[6]

nmv di, word ptr z

sub word ptr [di], ax

shh word ptr [di][2], bx

shb word ptr [di][4], cx

sbhb word ptr [di][6], dx X ==y
for_next:

inc byte ptr i

cmp byte ptr i, 32

ja icircular_exit

i twi st

icircular_exit:
ret
icirc endp

vokkkkkk
'

;hyper- inplementation of the hyperbolic routine, a subset of the cordic devices

hyper proc uses bx cx dx di si, x:word, y:word, z:word

[ocal smal I x: gword, smally:qword, smallz:gword, i:byte,
shifter:word

| ea di, word ptr smallx
mv si, word ptr x
mv cx, 4

rep Mmvsw

| ea di, word ptr smally
mv si, word ptr y
nmv cx, 4

456

TRANS.ASM AND TABLE.ASM

rep nmvsw

| ea di, word ptr smallz
mv si, word ptr z
nmov cx, 4

rep nmvsw

sub al, al

inc al

mv byte ptr i, al ;i=1
twister:

cal | near ptr twist
for_next:

cnp byte ptr i, 4

jne chk_13

cal | near ptr twist
chk_13:

cnp byte ptr i, 13

jne chk_max ;add in repeating term

cal | near ptr twist
chk_max:

inc byte ptr i

cnp byte ptr i, 32

ja hyper _exit

jnp twister
hyper _exit:

ret
twist:

sub ax, ax

mv al, i

mv word ptr shifter, ax

mv si, word ptr x

nmv ax, word ptr [si]

nmv bx, word ptr [si][2]

457

NUMERICAL METHODS

shiftx:

nov
nmov

sar
rer
rer
rer
dec
jnz

| oad_smal | x:

shifty:

sar
rer
rer
rer
dec
jnz

| oad_smal | y:

get_atan:

458

cx, word
dx, word

dx,
CX,
bx,
ax,
word ptr
shiftx

= = -

word ptr
word ptr
word ptr
word ptr

ax, ax
al, i
word ptr

ptr [si][4]
ptr [si][6]

shifter

smal | x, ax

smal | x[2], bx
smal | x[4], cx
smal | x[6], dx

shifter, ax

si, word ptry

ax, word
bx, word
cx, word
dx, word
dx, 1
cx, 1
bx, 1
ax, 1
word ptr
shifty
word ptr
word ptr
word ptr
word ptr

ptr [si]

ptr [si][2]
ptr [si][4]
ptr [si][6]

shifter

smally, ax

smal ly[2], bx
smal ly[4], cx
smal | y[6], dx

CXEXOI

YEY>>

test _Z

or
jns

negative:

bx, bx
bl, i
bx, 1
bx, 1
si, word
ax, word
dx, word

word ptr
word ptr
ax, ax

word ptr
word ptr

si, word
ax, word
ax, ax
positive

ax, word
bx, word
cx, word
dx, word

di, word
word ptr
word ptr
word ptr
word ptr

ax, word
bx, word
cx, word
dx, word

di, word
word ptr
word ptr
word ptr

TRANS.ASM AND TABLE.ASM

ptr atanh_array

ptr [si][bx]
ptr [si][bx][2]

smallz, ax
smallz[2], dx

smal | z[4], ax
smal | z[6], ax

ptr z
ptr [si][6]

ptr smally

ptr smally[2]
ptr smally[4]
ptr smally[6]

ptr x
[di], ax
[di][2], bx
[di][4], cx
[di][6], dx

ptr smallx

ptr smallx[2]
ptr smallx[4]
ptr smal | x| 6]

ptry
[di], ax
[di][2], bx
[di][4], cx

;got to point into a dword table

;z=atanh[i]

459

NUMERICAL METHODS

shb

jmp

positive:

460

word ptr [di][6], dx

ax, word ptr smallz

bx, word ptr smallz[?2]
cx, word ptr smallz[4]
dx, word ptr small z[6]

di, word ptr z
word ptr [di], ax

word ptr [di][2], bx
word ptr [di][4], cx
word ptr [di][6], dx

twist_exit

ax, word ptr smally
bx, word ptr smally[2]
cx, word ptr smally[4]
dx, word ptr smally[6]
di, word ptr x

word ptr [di], ax

word ptr [di][2], bx
word ptr [di][4], cx
word ptr [di][6], dx

ax, word ptr smallx
bx, word ptr smallx [2]
cx, word ptr smallx [4]
dx, word ptr smallx [6]
di, word ptry

word ptr [di], ax

word ptr [di][2], bx
word ptr [di][4], cx
word ptr [di][6], dx

ax, word ptr smallz
bx, word ptr smallz[2]
cx, word ptr smallz[4]
dx, word ptr smallz[6]
di, wordptr z

VX t=y

VX =y

(Y += X

sub
shb
shb
shb

twist exit:

retn

hyper endp

'
ckkkkkk

;i hyper -
: CORDI C devi ces.

TRANS.ASM AND TABLE.ASM

word ptr [di], ax

word ptr [di][2], bx

word ptr [di][4], cx

word ptr [di][6], dx X ==y

inpl ementation of the inverse hyperbolic routine, a subset

i hyper proc uses bx cx dx di si, x:word, y:word, z:word

rep

rep

rep

| ocal

sub
inc

smal | x: qword, smally:qword, smallz:qword, i:byte,
shifter:word

di, word ptr smallx
si, word ptr x
cx, 4

di, word ptr smally
si, word ptr vy
cx, 4

di, word ptr smallz
si, word ptr z

cx, 4
al, al
al

of

t he

461

NUMERICAL METHODS

twister:
cal l

for_next:
cmp
jne
call
chk_13:
cnp
jne
call
chk_max:
inc
cnmp
ja
jmp

i hyper _exit:
ret

shiftx:
sar
rcr
rcr
rcr
dec
jnz

462

byte ptr i, al ;i=0

near ptr twist

~

byte ptr i
chk_13
near ptr twist

byte ptr i, 13
chk_max
near ptr twist

byte ptr i
byte ptr i, 32
i hyper _exit
twister

ax, ax
al, i
word ptr shifter, ax

si, word ptr x

ax, word ptr [si]
bx, word ptr [si][2]
cx, word ptr [si][4]
dx, word ptr [si][6]

dx,
cX,
bx,
ax,
word ptr shifter
shiftx

e e S

;add in repeating term

| oad_smal | x:

shifty:

rer
rer
rer
dec
jnz

| oad_smal | y:

sub

word ptr
word ptr
word ptr
word ptr
ax, ax
al, i
word ptr
si, word
ax, word
bx, word
cx, word
dx, word
dx, 1
cx, 1
bx, 1
ax, 1
word ptr
shifty
word ptr
word ptr
word ptr
word ptr
bx, bx
bl, i
bx, 1
bx, 1
si, word
ax, word
dx, word
word ptr
word ptr

TRANS.ASM AND TABLE.ASM

smal | x, ax

smal | x[2], bx
smal | x[4], cx
smal | x[6], dx

shifter, ax

ptry

ptr [si]
ptr [si][2]
ptr [si][4]
ptr [si][6]

shifter

smally, ax

smally[2], bx
smally[4], cx
smal ly[6], dx

ptr atanh_array
ptr [si][bx]
ptr [si][bx][2]

smallz, ax
smallz[2], dx

;X=X

FY=Y>>i

;got to point into a dword table

;z=atanh[i]

463

NUMERICAL METHODS

test_Y:

or
is

negative:

464

ax, ax
word ptr
word ptr

si, word
ax, word
ax, ax

positive

ax, word
bx, word
cx, word
dx, word

di, word
word ptr
word ptr
word ptr
word ptr

ax, word
bx, word
cx, word
dx, word

di, word
word ptr
word ptr
word ptr
word ptr

ax, word
bx, word
cx, word
dx, word

di, word
word ptr

smal | z[4], ax
smal | z[6], ax

ptr y
ptr [si][6]

ptr smally

ptr smally[2]
ptr smal | y[4]
ptr smally[6]

ptr x
[di], ax
[di][2], bx
[di][4], cx
[di][6], dx

ptr smallx

ptr smallx[2]
ptr smallx[4]
ptr smal | X[6]

ptry
[di], ax
[di][2], bx
[di][4], cx
[di][6], dx

ptr smallz

ptr smallz[2]
ptr smallz[4]
ptr smallz[6]

ptr z
[di], ax

1}
>

jmp

posi tive:

sub
shb
shb
shb

twist exit:
retn
i hyper endp

word ptr [di][2], bx
word ptr [di][4], cx
word ptr [di][6], dx
tw st-exit

ax,
bx,
CX,
dx,
di,

wor d
wor d
wor d
wor d
wor d

word ptr
word ptr
word ptr
word ptr

ax,
bx,
CX,
dx,
di,

wor d
wor d
wor d
wor d
wor d

word ptr
word ptr
word ptr
word ptr

ax,
bx,
CX,
dx,
di,

wor d
wor d
wor d
wor d
wor d

word ptr
word ptr
word ptr
word ptr

ptr smally
ptr smally[2]
ptr smally[4]
ptr smally[6]
ptr x

[di], ax
[di][2], bx
[di][4], cx
[di][6], dx

ptr smallx
ptr smallx[2]
ptr smallx[4]
ptr small x| 6]
ptry

[di], ax
[di][2], bx
[di][4], cx
[di][6], dx

ptr smallz
ptr smallz[2]
ptr smallz[4]
ptr smallz[6]
ptr z

[di], ax
[di][2], bx
[di][4], cx
[di][6], dx

TRANS.ASM AND TABLE.ASM

Z 4= 2

A=y

(Y += X

465

NUMERICAL METHODS

vokkkkkk
[

;rinit - initializes random number generator based uponinput seed
.data
a dwor d 69069
| MAX equ 32767
rantop word | MAX
ranl dword 256 dup (0)
xsubi dword I'h ;global iterative seed for

init byte

. code

rinit proc uses bx

fill-array:
i nvoke
nov
nov
add
| oop

rinit_exit

466

Oh

cx dx si di

di, word ptr ranl

ax, word ptr seed[2]
word ptr xsubi[2], ax
ax, word ptr seed
word ptr xsubi, ax

cx, 256

congr uent

word ptr [di], ax
word ptr [di][2], dx

di, 4
fill-array

; random nunber generator, change
;this value to change default
;global variable signalling
;whet her the generator has be
cinitialized or not

;put in seed variable
;get seed

TRANS.ASM AND TABLE.ASM

sub ax, ax
not ax
nmov byte ptr init, al
ret
rinit endp

'
Cokkkkkk
3

;congruent -performs sinple congruential algorithm

congruent proc uses bx cx

mv ax, word ptr xsubi ;a*seed (mpd2732)

mul word ptr a

nmv bx, ax :lower word of result

nov cx, dx ; upper word

nmv ax, word ptr xsubi[2]

mul word ptr a

add ax, cx

adc dx, 0

add ax, word ptr xsubi ;a multiplication by one is just
;an add, right?

adc dx, word ptr xsubi[2]

mv dx, bx

mv word ptr xsubi, bx

nmv word ptr xsubi[2], ax

ret

congruent endp

ckkkkkk

;irandom generates random floats using the linear congruential nethod

i random proc uses bx cx dx si di

467

NUMERICAL METHODS

| ea si, word ptr ranl

mv al, byte ptr init ;check for initialization

or al, al

jne already-initialized

i nvoke rinit, xsubi ;default to 1

already_initialized:

i nvoke congr uent ;get a random nunber

and ax, Offh ;every fourth byte, right?

shl ax, 1

shl ax, 1 ;mul tiply by four

add Si, ax ;point to nunber in array

nmov di, si ;SO We can put one there too

i nvoke congr uent

nmov bx, word ptr [si]

mv cx, word ptr [si][2] ;get nunber from array

mv word ptr [di], ax

mv word ptr [di][2], dx ;replace it with another

mv word ptr xsubi, bx

mv word ptr xsubi[2], cx ;seed for next random

nmv ax, bx

mul word ptr rantop ;scale output by rantop, the
; maxi mum si ze of the random

mov ax, dx ;nunber if rantop were made
;OffffH the value could be used
;directly as a fraction

ret

i random endp
end

468

TRANS.ASM AND TABLE.ASM

TABLE.ASM

. dosseg
.nmodel small, ¢, os_dos

include math.inc

.data

; i nes(degrees)

sine_tbl word offffh, Offféh, Offd8h, 0ffa6h, O0ff60h, Off06h
0fe98h, O0fel7h, 0fd82h, Ofcdgh, Ofclch, 0f b4bh
0f a67h, 0f970h, 0f 865h, 0f 746h, 0f 615h, Of 4dCh,
0f 378h, 0f 20dh, 0f08fh, Oeeffh, Oed5bh, Oebabh
Oegdeh, 0e803h, 0e617h, 0e419h, 0e208h, 0dfe7h
0ddb3h, 0db6fh, 0d919h, 0d6b3h, 0d43bh, 0d1lb3h
Ocf 1bh, 0Occ73h, Ocgbbh, 0c6f3h, Oc4lbh, 0c134h
Obe3eh, 0bb39h, 0b826h, 0b504h, O0bld5h, 0ae73h

wor d Oab4ch, 0a7f3h, 0a48dh, 0all bh, 09d9bh, 09alOh
09679h, 092d5h, 08f27h, 08b6dh, 087a8h, 083d9h
08000h, 07clch, 0782fh, 07438h, 07039h, 06c30h
0681fh, 06406h, 05fe6h, 05bbeh, 0578eh, 05358h
04f 1bh, 04ad8h, 04690h, 04241h, 03deeh, 03996h
03539h, 030d8h, 02c74h, 0280ch, 023aCh, 01f32h
Olacah, 0164fh, 011ldbh, 00d65h, 008efh, 00477h
th

;1 og(x/128)

[0g10_thl word 00000h, 000ddh, 001b9h, 00293h
0036bh, 00442h, 00517h, 005ebh, 006bdh, 0078eh
0085dh, 0092ah, 009f6h, 00aclh, 00b8ah, 00c51h
00d18h, 00dddh, 00eaOh, 00f63h, 01024h, 010e3h
011a2h, 0125fh, 0131bh, 013d5h, 0148fh, 01547h
015feh, 016b4h, 01769h, 0181ch, 018cfh, 01980h

wor d 01a30h, Oladfh, 01b8dh, 01c3ah, 0lce6h, 01ldglh

469

NUMERICAL METHODS

01e3bh, Oleedh, 01f8ch, 02033h, 020d9h, 0217eh
02222h, 022c5h, 02367h, 02409h, 024a%h, 02548h
025e7h, 02685h, 02721h, 027bdh, 02858h, 028f 3h

wor d 0298ch, 02a25h, 02abdh, 02b54h, 02beah, 02c7fh
02d14h, 02da8h, 02e3bh, 02ecdh, 02f5fh, 02ff0h
03080h, 0310fh, 0319eh, 0322ch, 032b9h, 03345h
033d1h, 0345ch, 034e7h, 03571h, 035fah, 03682h
0370ah, 03792h, 03818h, 0389eh, 03923h, 039a8h

wor d 03a2ch, 03abOh, 03b32h, 03bb5h, 03c36h, 03ch7h
03d38h, 03db8h, 03e37h, 03eb6h, 03f34h, 03fb2h
0402f h, 040ach, 04128h, 041a3h, 0421eh, 04298h
04312h, 0438ch, 04405h, 0447dh, 044f5h, 0456ch
045e3h, 04659h, 046¢cfh, 04744h, 047b9h, 0482eh

wor d 048a2h, 04915h, 04988h, 049fbh, 04a6dh, 04adeh
04b50h, 04bcOh, 04c31h, 04caOh, 04d10h

+1og(2*x)

| 0g10_power dword 000000h, 004d10h, 009a20h, 00e730h, 013441h, 018151h
Olce6lh, 021b72h, 026882h, 02b592h, 0302a3h, 034fb3h
039cc3h, 03e9d3h, 0436edh, 0483f4h, 04d104h, 051el5h
056b25h, 05b835h, 060546h, 065256h, 069f66h, 06ec76h
073987h, 078697h, 07d3a7h, 0820b8h, 086dc8h, 08bad8h
0907e9h, 0954f9h

;sqrt(x+128)*2**24
;these are terribly rough, perhaps combined with Euclid s nethod
;they woul d produce high quality nunbers

sqr_thl wor dOb504h, 0b5b9h, 0b66dh, 0b720h, 0b7d3h, 0b885h
0b936h, 0b9e7h, 0ba97h, Obb46h, ObbfSh, Obca3h
0bd50h, Obdfdh, Obeagh, Obf55h, 0c000h, OcOaah
0c154h, Oclfdh, Oc2a5h, 0c34eh, 0c3f5h, 0c49ch
0c542h, 0c5e8h, 0c68eh, 0c732h, 0c7d7h, 0c87ah

wor d Ocgldh, 0c9cOh, 0Oca62h, 0cb04h, Ocba5h, Occ46h
Occe6h, 0cd86h, 0ce25h, Ocec3h, Ocf62h, 0d000h

470

TRANS.ASM AND TABLE.ASM

0d09dh, 0d13ah. 0dldéh, 0d272h, 0d30dh, 0d3a8h
0d443h, 0d4ddh, 0d577h, 0d610h, 0d6adh, 0d742h
0d7dah, 0d871h, 0d908h, 0d99fh, 0da35h, Odacbh

wor d 0dbGLh, 0dbf6h, 0dc8bh, 0ddifh, 0ddb3h, 0de47h
Odedah, 0df 6dh, 0e000h, 0e092h, 0el23h, 0elb5h
0e246h, 0e2d6h, 0e367h, 0e3f7h, 0e486h, 0e515h
Oe5a4h, 0e633h, 0Oe6bclh, 0e74fh, 0e7dch, 0e869h
0e8f 6h, 0e983h, 0eaOfh, Oeagbh, 0eb26h, 0Oebblh

wor d Oec3ch, 0Oecc7h, 0Oed51h, Oeddbh, Oee65h, Oeeeeh
Oef 77h, 0f000h, 0f088h, 0f 11Ch, 0f 198h, 0f 21fh
0f 2a6h, 0f 32dh, 0f 3b4h, 0f 43ah, 0f 4cCh, 0f 546h
0f 5¢cbh, 0f651h, 0f 6d6h, 0f 75ah, 0f 7deh, 0f 863h
0f 8e6h, 0f 96ah, O0f gedh, 0fa7Ch, Of af 3h, 0f b75h

wor d Of bf 7h, 0fc79h, Ofcfbh, 0fd7ch, 0fdfdh, Ofe7eh
Ofeffh, Off7fh, 00000h

;sqr(2+*x)

sqr_power word 00ffffh, 00b504h, 008000h, 005a82h, 004000h, 002d41h
002000h, 0016aCh, 001000h, 000b50h, 000800h, 0005a8h
000400h, 0002d4h, 000200h, 00016ah, 000100h, 0000b5h
000080h, 00005ah, 000040h, 00002dh, 000020h, 000016h
000010h, 00000bh, 000008h, 000006h, 000004h, 000002h
000002h, 000001h, 000001h

atanh_array dwor d Oh, 8c9f53d5h, 4162bbeah, 202b1239h, 1005588ah
800aac4h, 4001556h, 20002aah, 1000055h
80000ah, 400001h, 200000h, 100000h, 80000h, 40000h
20000h, 10000h, 8000h, 3fffh, 1fffh
offfh, 7ffh, 3ffh, 1ffh, offh, 7fh, 3fh, 1fh, 0fh, 7h,
3h, 1h, Oh

471

NUMERICAL METHODS

atan_array dwor d
power 2 qwor d
l 0g2 qwor d
power 10 qwor d
al g gqword
Xp qwor d
si ncos qwor d
tancot qwor d

472

0c90f daa2h, 76b19c16h, 3eb6ebf2h, 1fd5badbh, Of faaddch
7f£556fh, 3ffeaabh, 1fffds55h

Offffabh, 7ffff5h, 3fffffh, 200000h, 100000h, 80000h
40000h, 20000h, 10000h, 8000h

4000h, 2000h, 1000h, 800h, 400h, 200h, 100h, 80h, 40h
20h, 10h, 8h, 4h, 2h, 1h

100000000h, 95c0la3ah, 5269el2fh, 2bh803473h, 1663f 6fah
0b5d69bah, 5hb9e5alh, 2dfcal6h, 1709c46h

5c60aah, 2e2d71h, 171600h, Ob8adlh, 5c55dh, 2e2abh
17155h, Ob8aah, 5c55h, 2e2ah, 1715h, 0b8ah

5c5h, 2e2h, 171h, 0b8h, 5ch, 2eh, 17h, 0Obh, 5h, 2h, 1h

100000000h, 6a3fe5c6h, 31513015h, 17d60496h, Obb9cabdh
5d0f balh, 2e58f74h, 1720d9ch, 0b8d875h

5c60aah, 2e2d71h, 171600h, Ob8adlh, 5c55dh, 2e2abh
17155h, Ob8aah, 5c55h, 2e2ah, 1715h, O0b8ah

5c5h, 2e2h, 171h, 0b8h, 5ch, 2eh, 17h, Obh, 5h, 2h, 1h

4d104d42h, 2d145116h, 18cf1838h, 0d1854ebh, 6bd7edbh
36bd211h, 1b9476ah

Odd7eadh, 6ef67ah, 378915h, 1bc802h, O0deddfh, 6f2a7h
37961h, 1bcbh4h, 0deSbh

6f 2eh, 3797h, 1bcbh, 0de6h, 6f3h, 379h, 1bdh, Odeh, 6fh,
38h, 1ch, Oeh, 7h, 3h, 2h, 1h

3f 3180000000h, 0b95e8082e308h, 3ede5hd8a937h
Obeee08307e16h, 3c5ed689e495h, 0c0b286223e39h
3f 8000000000h

3f 3000000000h, 3bb90bf be8efh, 3e8000000000h
3b885307cc09h, 3f 0000000000
3d4cbf 5b2122h

404900000000h, 3a7daa20968bh, Obe2aaaa8f dbeh
3c088739ch85h, 0b94f b2227f 1ah
362e9c5a91d8h

3f ¢900000000h, 39f daa22168ch, 3f 8000000000h

TRANS.ASM AND TABLE.ASM

Obdc433b8376bh, 3f8000000000h, Obedbb7af 3f 84h
3c1f 33753551h

pol ytan qwor d 100000000h, 0, Oaaaaaaabh, 0, 33333333h, 0, 0db6db6dbh
0, 1c71c71lch, 0, 0Oe8ha2e8ch, 0, 13bl3blsh, O,
Oeeeeeeefh, 0, 0f0f0fOfh, 0, 0f286bca2h, 0, 0c30c30ch
0, 0f4de9bd3h, 0, 0a3d70as4h, 0, 0f684bdalh, 0, 8d3dcblh
0, Of 7bdef7ch, 0

pol ysin qwor d 100000000h, 0, Offffffffd5555555h, 0, 222222221, O,
offfffffffff2ff30h, 0, 2e3ch, 0, Offffffffffffff9sh

dgt qwor d 000000000000h, 3f 8000000000h, 400000000000h
404000000000h, 408000000000h, 40a000000000h
40c000000000h, ~ 40e000000000h, 410000000000h

411000000000h

one qwor d 3f 8000000000h

ten gwor d 412000000000h, 42¢800000000h, 461c40000000h
4chebc200000h, 5a0elbc9bf 00h, 749dc5ada82bh

one- hal f qwor d 3f0000000000h

end

473

474

APPENDIX G

Math.C

#i ncl ude<i 0. h>
#i ncl ude<coni 0. h>
#i ncl ude<st di 0. h>

#include <fentl.h> [* O_constant definitions */
#i ncl ude<sys\types. h>
#include <sys\stat.h> /* S constant definitions */

#i ncl ude<nal | oc. h>
#i ncl ude<errno. h>
#i ncl ude<mat h. h>

#i ncl ude<f | oat . h>
#i ncl ude<stdlib. h>
#i ncl ude<ti me. h>

#incl ude<string. h>

#define TRUE 1
#define FALSE 0

uni on{
float real small
doubl e real big;
int smllint;
long bigint;
char bytes[16]
int words[8];
long dwords[4];

}oper and0

uni on{
float real small
double realbig
int smallint;

475

NUMERICAL METHODS

l'ong bigint;

char bytes[16];

int words[8];

long dwords[4];
}operandl;

uni on{
float realsmll;
doubl e real big;
int smallint;
l'ong bigint;
char bytes[16];
int words[8];
long dwords[4];

} operand2;

uni on{
float realsmll;
doubl e realbig;
int smallint;
l'ong bigint;
char bytes[16];
int words[8];
long dwords[4];

}answer 0;

uni on{
float realsmll;
doubl e real big;
int smallint;
l'ong bigint;
char bytes[16];
int words[8];
long dwords[4];

}answer 1;

/*doubl es are used to indicate to Cto push a quadword parameter, please see*/
/*the unions above for nore information on how to manipul ate these paraneters*/
extern void Igb(union answ, double *);

extern void pwb(double, double *);

476

extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern

extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern

extern
extern
extern
extern
extern
extern
extern

int irandomvoid);
void rinit(int);
voi d divnew (double, double, double*);
void divnul (doubl e, double, double*);

void ftf(double, double*);

void ftfx(double, double*);

void taylorsin(double, double*);

voi d ihyper(double *, double *, double *);
voi d hyper(double *, double *, double *);
void icirc(double *, double *, double *);
void circul ar(double *, double *, double *);
void fp_sqgr(float, float*);

void fp_tan(float, float*)
void fp_cos(float, float*);
void fp_sin(float, float*)

void fp_mul (float, float, float *
void fp_div(float, float, float *);
void fp_add(float, float, float
void fp_sub(float, float, float *
void fp_abs(float, float*);
void 1g1l0(double *, double *);
void sqrtt(double *, double *);
voi d dcsin(double *, double *, unsigned char);
atf(char*string, float *asmval);

ftof x(float, long*);
ftoasc(float, char*);
fr_xp(float, float *, char *);
Id_xp(float, float*, char);

*

fx_sqr(long, 1ong*);

school _sqr(long, 1ong*);
dnt_bn(char *, int *);

dfc_bn(char *, int *);

bn_dnt (unsigned long int, char *);
bfc_dc(unsigned long int, char *);
fp_intrnd(float, float*);
fp_ceil(float, float*);
fp_floor(float, float*);

MATH.C

477

NUMERICAL METHODS

int binary_integer;

char decimal _string0[20];
char decimal _stringl[20];
char string0[25], stringl[25];
long radicand;

long root;

char exponent;

float tenp;

float val ue;

float mantissa;

float asmval 0, asmyvall;
float floor test;

float ceil test;

float intrnd_test;

float asmml;

float tst_asmml;

float asmdiv;

float asm add;

float asm sub;

float mul tst;

float asmnul tst;

float div_tst;

float add_tst;

float sub_tst;

float fpsin;

float fpsqr;

float fplog;

float fploglo;

/*this routine scales a random nunber to a naxi num wit hout
operation*/

i{nt get random(int max)

unsigned long a, b;

a = irandom();
b = max*a;
return(b/32768);

478

using a nodul ar

MATH.C

mai n()

float fp_nung;

float fp_nunb;

float fp_nunt;

float fp_nund;

ong numa, nunb, nunt, nund,
doubl e dwrd;

doubl e test;

float nt;

char *buf;

int ad_buf, ch, j;

doubl e error;

unsi gned | ong tenporary;

unsi gned count = 0x1000, cnt = 0, errcnt,
passes, maxpass, cycle_cnt;

dwr d=4294967296. 0; [*2132%]
nt = 65536; [*2n16%/

ad_buf = open("tstdata", OTEXT | O WRONLY | O CREAT |
OTRUNC, SIREAD | SIWRITE);

if(ad_buf ==-1) {
perror("\nopen failed");
exit(-1);
}

/* allocate a file buffer.*/

If((buf = (char*)malloc((size_t)count)) ==NULL) {
perror("\nnot enuf nenory");

exit(-1);

cycle_cnt = 0;

dof
rinit((unsigned int)time(NULL));

479

NUMERICAL METHODS

maxpass=1000;
error= 0.00001; /*a zero error can result in errors of +0.0 or -0.0
reported*/

errcnt = 0; /*smaller errors sonetines exceedthe
precisionof a single real*/

passes = 0;

do{

get randon(irandon());

whi | e((nunma=get randon(irandon())) == 0);

if((irandom() * .001) >15) fp_numa = (float)numa * -1.0;
else fp_numa = (float)nung,;

whil e((nunb = getrandon{irandon({))) == 0);

if((irandond * .001) >15) fp_numb = (float)nunb * -1.0;
else fp_nunb = (float)nunb;

while((nunt = irandom()) == 0);
fp_sqr((float)nunt, & p_nunt);
fp_numa *= fp_nunt;
while((nund = irandon()) == 0);
fp_sqar((float)numd, & p_nund);
fp_nunb *= fp_nund;

sprintf(buf,"\ntwo random floats are fp_numa % and
fp_nunb %", fp_numa, fp_nunb);

if(count = wite(ad_buf, buf, strlen(buf)) == - 1)
perror(“"couldn't wite");

t est =(doubl e) f p_nunsg;

gevt ((doubl e)fp_numa, 8, string0); /*needed to test asm

conversi ons*/

gevt ((doubl e)fp_nunb, 8, stringl);

sprintf(buf,"\nstring0 (fp_numa): 9%, stringl (fp_nunb): 9%",
string0, stringl);

if(count = wite(ad_buf, buf, strlen(buf)) == - 1)
perror(“"couldn't wite");

atf(string0, &smvall); /*convert string to float*/

480

atf(stringl, &smvall);

MATH.C

sprintf(buf, "\ nasmval O(string0): % andasm val 1(stringl): %",

fp_numa, fp_nunb);
if(count = wite(ad_buf, buf, strlien(buf)) == - 1)
perror(“"couldn't wite");

mul _t st =f p_numa*f p_nunb;
asmnul _tst = asmval 0*asmval 1;
div_tst = fp_nuna/fp_nunb;
add_tst = fp_numa+f p_nunb;
sub_tst = fp_numa-fp_nunb;

fp_mul (asmval 0, asmvail, &smmul);
fp_mul (fp3uma, fp_nunb, & st_asmmul);
fp_div(asmval 0, asmvall, &smdiv);
fp_add(asmval 0, asmvall, &asm add);
fp_sub(asmval 0, asmvall, &asmsub);

sprintf(buf,"\nfp_numa*fp_nunb, nsc = %, asm = 9%,
difference = %", mul _tst, asmmul, mul_tst-asmnul);
if(count = wite(ad_buf, buf, strlien(buf)) == - 1)
perror(“"couldn't wite");
sprintf(buf,"\nfp_numa/fp_nunb, nsc = %, asm= 9%,
difference = %", div_tst, asmdiv, div_tst-asmdiv);
if(count = wite(ad_buf, buf, strlien(buf)) == - 1)
perror(“couldn't wite");
sprintf(buf,"\nfp_numa+fp_nunb, nsc = %, asm = 9%,
difference = %", add_tst, asmadd, add_tst-asmadd);
if(count = wite(ad_buf, buf, strlien(buf)) == - 1)
perror("couldn't wite");
sprintf(buf,"\nfp_numa-fp_nunb, nsc = %, asm= 9%,
difference = %", sub_tst, asmsub, sub_tst-asmsub);
if(count = wite(ad_buf, buf, strlen(buf)) == - 1)
perror("couldn't wite");

tenp = (float)getrandon(100);

fp_sqr(temp, & psqr);

sprintf(buf,"\nsqrt(%),mc = %, asm= %", tenp,
(float)sqgrt((double)tenp),fpsqr)

481

NUMERICAL METHODS

if(count=write(ad_buf, buf, strlen(buf)) == - 1)
perror(“couldn't wite");

fp_sin(temp, &fpsin);

sprintf(buf,"\nfp_sin(%), msc = %, asm= %", tenp,
(float)sin((double)tenp), fpsin);

if(count = wite(ad_buf, buf, strlen(buf) 1 ==- 1)
perror(“couldn't wite");

[*error reporting*/

482

sprintf(buf,"\niteration: 9%", cnt++);
if(count = wite(ad_buf, buf, strlen(buf) 1 ==- 1)
perror(“couldn't wite");

sprintf(buf,"\nfp-numais % and fp_nunb is %", fp_numa, fp_nunb);
if(count = wite(ad_buf, buf, strlen(buf) 1 ==- 1)
perror(“couldn't wite");

sprintf(buf,"\nstring0 is % and stringl is %", string0, stringl);

if(count = wite(ad_buf, buf, strlen(buf)) == - 1)
perror(“"couldn't wite");

i f((fabs((double)nmul _tst-(double)asmmul)) >error) {

errcnt ++

sprintf(buf,"\nmsc nultiplication says %, | say %, error= %",
mul _tst, asmml, mul _tst-asmmull;

if(count = wite(ad_buf, buf, strlen(buf)) == - 1)

perror(“couldn't wite");

i f((fabs((double)div_tst-(double)asmdiv)) >error) {

errcnt ++

sprintf(buf,"\nnmsc division says %, | say %, error= %",
div_tst, asmdiv, div_tst-asmdiv);

if(count = wite(ad_buf, buf, strlen(buf)) == - 1)

perror(“couldn't wite");

i f((fabs((double)sub_tst-(double)asmsub)) >error) {
errcnt ++;

sprintf(buf,"\nnsc subtraction says %, | say %, error= %",

sub_tst, asmsub, sub_tst-asmsub);
if(count = wite(ad_buf, buf, strlen(buf)) ==- 1)
perror("couldn't wite");

i f((fabs((double)add_tst-(double)asmadd)) >error) {
errcnt ++;

sprintf(buf,"\nnsc addition says %, | say %, error= %",

add_tst, asmadd, add_tst-asm add);
if(count = wite(ad_buf, buf, strien(buf)) ==- 1
perror("couldn't wite");

printf(".");
sprintf(buf,"\n");
if(count = wite(ad_buf, buf, strlen(buf)) == -1

perror(“couldn't wite");
passes++;

twhile(lkbhit() & ! (passes == maxpass));
cycle_cnt ++;
Iwhile(lerrcnt & 'kbhit());

printf("\nerrors: % cycles: %l pass: %", errcnt, cycle_cnt,
passes);

close(ad_buf);

free(buf);

MATH.C

483

484

Glossary

abscissa
On the Cartesian Axes, it is the distance
from a point to the y axis.

accumulator

A general purpose register on many
microprocessors. It may be the target or
destination operand for an instruction,
and will often have specific instruc-
tions that affect it only.

accuracy
The degree of correctness of a quantity
or expression.

add-with-carry
To add a value to a destination variable
with the current state of the carry flag.

addend
A number or quantity added to another.

addition
The process of incrementing by a vaue,
or joining one set with ancther.

additional numbering systems
Numbering systems in which the sym-
bols combine to form the next higher
group. An example of this is the Roman
system. See Chapter 1.

algorithm
A set of guidelines or rules for solving
aproblem in afinite number of steps.

align
To arrange in memory or aregister to
produce a proper relationship.

arithmetic

Operations involving addition, subtrac-
tion, multiplication, division, powers
and roots.

ASCII

The American Standard Code for In-
formation Interchange. A seven bit code
used for the interpretation of a byte of
data as a character.

associative law

An arithmetic law which states that the
order of combination or operation of
the operands has no influence on the
result. The associative law of multipli-

cation is (a*b)*c=a*(b*c).

atan
Arctangent. This is the angle for which
we have the tangent.

atanh
The Inverse Hyperbolic Tangent. This

485

NUMERICAL METHODS

is the angle for which we have the
hyperbolic tangent.

augend
A number or quantity to which another
is added.

base

A grouping of counting units that is
raised to various powers to produce the
principal counting units of a number-
ing system.

binary
A system of numeration using base 2.
bit—Binary digl T.

Boolean

A form of algebra proposed by George
Boole in 1847. Thisis a combinatorial
system allowing the processing of op-
erands with operators such as AND,
OR, NOT, IF, THEN, and EXCEPT.

byte

A grouping of bits the computer or CPU
operates upon as a unit. Generadly, a
byte comprises 8 hits.

cardinal
A counting number, or natural number
indicating quantity but not order.

carry flag

A bit in the status register of many
microprocessors and micro controllers
indicating whether the result of an op-
eration was to large for the destination
data type. An overflow from an un-

486

signed addition or a borrow from an
unsigned subtraction might cause a carry.

ceil
The least integer greater than or equal
to avaue.

coefficient

A numerical factor, such as5in 5x.
complement- Aninversion or akind of
negation. A one's complement results
in each zero of an operand becoming a
one and each one becoming a zero. To
perform a two’'s complement, first one's
complement the operand, then incre-
ment by one.

commutative law

An arithmetic law which states that the
order of the operands has no influence
on the result of the operation. The com-
mutative law of addtition is

a+b=b+a.

congruence

Two numbers or quantities are congru-
ent, if, after division by the same value,
their remainders are equal.

coordinates

A set of two or more numbers determin-
ing the position of a point in a space of
a given dimension.

CORDIC

COrdinate Rotation Digital Compuiter.
The CORDIC functions are a group of
algorithms that are capable of comput-
ing high quality approximations of the

transcendental functions and require
very little in the way of arithmetic power
from the processor.

cosine
In the triangle, the ratio x/r is afunction

of the angle g known as the cosine.

Y

Figure 1. A Right Triangle.

decimal
having to do with base 10.

decimal-point
Radix point for base 10.

denominator
The divisor in a fraction.

denormal
A fraction with a minimum exponent
and leading bit of the significand zero.

derivative
The instantaneous rate of change of a
function with respect to a variable.

GLOSSARY

distributive law

An arithmetic law that describes
a connection between operations.
This distributive law is as follows:
a*(b+c)=a*b+a*c. Note that
the multiplication is distributed over
the addition.

dividend

The number to be divided.

division

Iterative subtraction of one operand
from another.

divisor
The number used to divide another,
such as the dividend.

double-precision

For |EEE floating point numbers, it is
twice the single precision format length
or 64 bits.

doubleword (dword)
Twice the number of bitsin a word. On
the 8086, it is 32 hits.

exception

In |EEE floating point specification,

an exception is a specia case that

may require attention. There are five
exceptions and each has a trap that
may be enabled or disabled. The ex-
ceptions are:

. Invalid operation, including addi-
tion or subtraction witheoas an
operand, multiplication usingee :as
an operand, oo/ oo or 0/0, division

487

NUMERICAL METHODS

with invaid operands, a remainder
operation where the divisor is zero
or unnormalized or the dividend is
infinite.

« Division by zero.

» Overflow. The rounded result pro-
duced alegal number but an expo-
nent too large for the floating point
format.

+ Underflow. The result is too small

for the floating point format.

Inexact result without an invalid opera-

tion exception. The rounded result is

not exact.

far

A function or pointer is defined as far if
it employs more than a word to identify
it. This usually means that it is not
within the same 64K segment with the
function or routine referencing it.

fixed-point
A form of arithmetic in which the radix
point is always assumed to be in the
same place.

floating-point

A method of numerical expression, in
which the number is represented by a
fraction, a scaling factor (exponent),
and asign.

floor
The greatest integer less than or equal
to avalue.

488

fraction
The symbolic (or otherwise) quotient
of two quantities.

guard digits

Digits to the right of the significand or
significant bits to provide added
precision to the results of arithmetic
computations.

hidden bit

The most significant bit of the floating
point significand. It exists, but is not
represented, just to the left of the radix
point and is always a one (except in the
case of the denormal).

integer (int)
A whole number. A word on a persona
computer, 16 hits.

interpolate
To determine a value between two
known values.

irrational number
A number that can not be represented
exactly in aparticular base.

K-space
K-spaces are multi-dimensiona or k-
dimensional where K is an integer.

linear congruential
A method of producing pseudo-ran-
dom numbers using modular arithmetic.

linear interpolation
The process of approximating f(x) by
fitting a straight line to a function at the

desired point and using proportion to
estimate theposition of the unknown on
that line. See Chapter 6.

logarithm (log)

In any base, x, where X" = b, n is the
logarithm of b to the base x. Another
notationisn=10g,, b .

long
A double word. On a personal com-
puter, 32 bits.

long real

The long real is defined by |IEEE 754 as
a double precision floating-point hum-
ber.

LSB
Least Significant Bit.

LSW
Least Significant Word.

mantissa

The fractional part of a floating point
number.

minimax

A mathematical technique that produces
a polynomial approximation optimized
for the least maximum error.

minuend
The number you are subtracting from.

modulus

The range of values of a particular sys-
tern. Thisisthe basis of modular arith-
metic, such as used in telling time. For

GLOSSARY

example, 4 A.M. plus 16 hoursis 8 P.M.
((4 + 16) mod 12 = 8).

MPU
Micro-Processor- Unit.

MSB
Most Significant Bit.

MSW
Most significant Word.

multiplicand
The number you are multiplying.

multiplication
Iterative addition of one operand with
another.

multiplier
The number you are multiplying by.

multiprecision

Methods of performing arithmetic that
use a greater number of bits that pro-
vided in the word size of the computer.

NAN

These can be either Signaling or Quiet
according to the IEEE 754 specifica
tion. A NAN (Not A Number) is the
result of an operation that has not math-

ematical interpretation, such as 0 + 0.
natural numbers

All positive integers beginning with
zero.

near
A function or pointer is defined as near
if it iswithin a 64K segment with the

489

NUMERICAL METHODS

function or routine referencing it. Thus,
it requires only a single 16 bit word to
identify it.

negative

A negative quantity, minus. Beginning
at zero, the number line stretches in two
directions. In one direction, there are
the natural numbers, which are positive
integers. In the other direction, there
are the negative numbers. The opposite
of a positive number.

nibble
Half a byte, typicaly four bits.

normalization

The process of producing a number
whose left most significant digit is a
one.

number ray

An illustration of the basic concepts
associated with natural numbers. Any
two natura numbers may have only
one of the following relationships: n; <
n,n; = ny n; > n, See Chapter 1.
numeration

System for counting or numbering.

numerator

. The dividend in a fraction.
. Octd

. Base 8.

. On€' s-complement

. A hit by bit inversion of a number.
All ones are made zeros and zeros
are made ones.

490

operand
A number or value with which or upon
which an operation is performed.

ordinal

A number that indicates position, such
asfirst or second.

ordinate
On the Cartesian Axes, it is the distance
from a point to the x axis.

overflow

When a number grows to great through
rounding or another arithmetic process
for its data type, it overflows.

packed decimal

Method for storage of decima numbers
in which each of the two nibbles in a
hexadecimal byte are used to hold deci-
mal digits.

polynomial

An algebraic function of summed
terms, where each term consists of a
constant multiplier (factor) and at
least one variable raised to an integer
power. It is of the form:

f(X) =a X" +a, X" .. +ax+a,
positional numbering systems
A numbering system in which the value
of a number is based upon its position,
the value of any position is equal to the
number multiplied by the base of the

system taken to the power of the posi-
tion. See Chapter 1.

positive

Plus. Those numbers to the right of zero
on the number line. The opposite of a
negative number.

power

Multiplying avalue, X, by itself n num-
ber of times raises it the the power n.
The notation is x".

precision
Number of digits used to represent
avaue.

product
The result of a multiplication.

quadword (gqword)
Four words. On an 8086, this would be
64 hits.

quotient
The result of adivision.

radicand
The quantity under the radical. Three is

the radicand in the expression V3,
which represents the square root of
three.

radix
The base of a numbering system.

radix point

The division in a number between
its integer portion and fractional por-
tion. In the decima system, it is the
decimal point.

GLOSSARY

rational number

A number capable of being represented
exactly in aparticular base.

real number
A number possessing a fractional ex-
tension.

remainder

The difference between the dividend
and the product of the divisor and the
quotient.

resolution

The congtituent parts of a system. This
has to do with the precision the arith-
metic uses to represent values, the greater
the precision, the more resolution.

restoring division

A form of division in which the divisor
is subtracted from the dividend until an
underflow occurs. At this point, the
divisor is added back into the dividend.
The number of times the divisor could
be subtracted without underflow is re-
turned as the quotient and the last minu-
end is returned as the remainder.

root
The nth root of a number, x, (written:

a =4/ x isthat number when raised to
the nth power is equa to the origina

number (x = a").

491

NUMERICAL METHODS

rounding

A specified method of reducing the num-
ber of digitsin a number while adjusting
the remaining digits accordingly.

scaling

A technique that brings anumber within
certain bounds by multiplication or divi-
sion by afactor. In afloating point num-
ber, the significand is aways between
1.0 and 2.0 and the exponent is the scal-
ing factor.

seed
The initial input to the linear congruential
psuedo-random number generator.

short real
The short real is defined by |IEEE 754 as
asingle precision floating point number.

sign-extension

The sign of the number-one for nega-
tive, zero for positive-fills any unused
bits from the MSB of the actual number
to the MSB of the data type. For ex-
ample, -9H, in two's complement nota-
tion is f7H expressed in eight bits and
fff7H in sixteen. Note that the sign bit
fills out the data type to the MSB.

significant digits
The principa digits in a number.

significand

In afloating point number, it is the lead-
ing bit (implicit or explicit) to the imme-
diate left of the radix point and the fraction
to the right.

492

sine
In Figure one, it isthe ratio y/r.
single-precision

In accordance with the IEEE format, it is
a floating point comprising 32 bits, with
a 24 bit significand, eight bit exponent,
and sign bit.

subtraction
The process opposite to addition. Deduc-
tion or taking away.

subtrahend
A number you subtract from another.

sum
The result of an addition.

tangent (tan)
In figure one, the ratio y/x denotes the

tangent.

two’s complement
A one's complement plus one.

under flowv

This occurs when the result of an opera-
tion requires a borrow.

whole number
An integer.

word
The basic precision offered by a com-
puter. On an 8086, it is 16 hits.

| ndex

Symbols

32-bit operands 49
3x256 + 14x16 + 7x1 11
4-bit quantities 46

A

accuracy 88, 124

add64 36

addition 21, 33, 136, 164
additional system 8

arbitrary numbers 281

ASCIl 164, 179, 182, 187, 192, 200
ASCII Adjust 30

ASCIl Adjust After Addition 164
ASCIl Adjust After Multiply 164
ASCIl Adjust After Subtraction 164
ASCIl Adjust before Divison 164
ASCIl to Single-Precison Float 192
associative laws 126

atf 195, 193

auxiliary carry 25, 40

auxiliary carry flag 42, 164

B
base 10, 85, 88
bfc_dc 173

binary arithmetic 12
binary byte 51

binary division 63
binary multiplication 46
binary-to-decimal 187
bit pair encoding 56
bit-pair 57, 58
bn_dnt 166

Booth 54, 55
branching 26
Bresenham 100

C

C 200

carry 24

cary flag 34, 92

Cartesian coordinate system 239

cdiv 67

ceil 265

Chi-square 288

chop 90

circle 95

circle: 98

circular 239, 242

circular functions 239

close 289

cmul 49

cmul2 51

coefficients 9

congruence 16

congruent 284, 285

conversion 163

CORDIC 237

core routines 134

errors

multiplication 135
subtraction 135
addition 135
division 135

cosine 16, 89, 96, 125, 224, 241, 274

D

daa 164

dcsin 225

decimal 164

decimal addition and subtraction 40
decimal adjust 42

decima and ASCII ingtructions 30
decima arithmetic 164

decima integers 85

denormal arithmetic 124
denormals 125

dfc_bn 176

diminished-radix complement 18
div32 74

dive4 78, 80

divide 154

division 21, 63, 114, 165, 175, 43, 85, 147

493

NUMERICAL METHODS

divison by inverson 105
divison by multiplication 114
divisor 108

divmul 116, 117

divnewt 108, 109

dnt_bn 170

drawing circles 95

E

elementary functions 217
error 88, 89, 94, 178
error checking 63, 147
errors 64

exponent 129

extended precison 131
external routines 132

F

faster shift and add 50

finite divided difference approximation 218
fixed point 15, 17, 33, 86, 206
floating point 8, 15, 17, 86, 206
FLADD 136

FLADD Routine 140

FLADD: The Epilogue 144
FLADD: The Prologue 138
flceil 265

FLDIV 154

FLMUL 147

floating-point arithmetic 123
floating-point conversions 192
floating point divide 79

floor 262

flr 263

flsin 274

flsqr 270

four-bit multiply 47

fp_add 132

fraction 95

fractional arithmetic 15, 33, 87, 88
fractional conversions 165
fractional multiply 80

frxp 259

Fta 202

fta 200

ftf 207

494

ftfx 212
fx_sqr 254

G

General Purpose Interface Bus 163
guard bits 92
guard digits 89, 248

H

hardware divison 69
hardware multiply 61

hex 179

hexasc: 180

hidden bit 124, 125
Homers rule 248, 259, 274
hyperbolic functions 239

IEEE754 17, 19, 87, 123, 127, 129, 131,
137, 159, 211
IEEE 854 125
input 163
Instructions 26
addition 26
add 26
add-with-carry 27
division 28
divide 28
modulus 28
signed divide 28
signed modulus 28
multiplication 27
multiply 27
signed multiply 27
negation and signs 28
one's complement 28
sign extension 29
two's complement 28
shifts, rotates and normalization 29
arithmetic shift. 29
normalization 29
rotate 29
rotate-through-carry 29
subtraction 27
compare 27
subtract 27

subtract-with-carry 27
integer conversions 165
integers 33
ints 206
irand 284
irandom 287
irrational 12

J
jamming 90

K
k-space 288

L

laccum 193

Least Significant Bit 12, 26
ldxp 261

Iglo 219

line 101

line-Drawing 100

linear congruential method 16
linear interpolation 77, 217, 224
logarithm 21

logarithms 219

Long rea 17

long real 86

longs 206

look-up tables 217

loop counter 48

M

mantissa 129
memory location 51
Microprocesors 22
Buswidth 22
Data type 24
flags 24
auxiliary carry 25
carry 24
overflow 24
overflow trap 25
Parity 25
sign 24
sticky bit 25

INDEX

zero 24
middle-square method 282
minimax 274
minimax polynomial 259
modular 85
modular arithmetic 16
modularity 125
Most Significant Bit (MSB) 18
mul32 62, 63
mul6da 151
multiplication 21, 27, 43, 61, 147, 169, 172
multiplication and divison 42
multiprecision arithmetic 35
multiprecision divison 71
multiprecision subtraction 37
multiword division 73

N

natural numbers 7, 8
negation and signs 28
Newton-Raphson Iteration 105
Newton's Method 253, 270
normdlization 72, 147, 200
normalize 114, 128
normalizing 192

Not a Number 129

number line 7, 9, 18
number ray 7

numeration 7

0

One's complement 19, 20, 28
origind dividend 73

origina divisor 72

output 163

overflow 24, 39, 64, 65, 95
overflow flag 39

overflow trap 25

P
packed binary 40
Polyeval 251

Polynomial 247
polynomia 131, 175, 248
polynomia interpretation 50

495

NUMERICAL METHODS

polynomials 9, 46

positional arithmetic 34
positional notation 50
positional number theory 47
positiona numbering system 85
positional representation 8
potency 283

power 21

power series 247, 274

powers 9, 12, 13, 233, 239
proportion 108
Pseudo-Random Number Generator 281
Pwrb 234

Q

quantities 33
quotient 67

R

radix complement 18, 19
radix conversions 165
radix point 12

irrational 12
random numbers 281
range 86
real number 85
resolution 179
restoring division 188
rinit 284
root 21, 239
rotation matrix 239
round 160, 172
round to nearest 91, 159
rounding 25, 89, 90, 159

S

scaling 93

school_sgr 256

seed 282

shift-and-add algorithm 47

shifts, rotates and normalization 29
short real 17, 86

shuffling 283

sign 18, 24

sign digit 21

sign-magnitude 18, 21, 32

496

signed 20, 44

signed addition and subtraction 38
signed arithmetic 28, 38

signed magnitude 129

signed numbers 43
signed-operation 44

significant bits 87

sine 89, 241, 259

sines 16, 96, 125, 224, 273
single-precision 206
single-precision float to ASCIlI 200
skipping ones and zeros 53
software divison 65

spectral 289

spectral.c 282, 288, 289

square root 131, 233, 253, 259, 269
sticky bit 25

sub64 37

subtraction 21, 34, 125, 136, 137, 164
Sutherland, Ivan 95

symbolic fraction 85

T

table-driven conversions 179
tables 179, 233

tan 239, 240

taylorsin 249

tb_bndc 188

tb_dcbn 182

The Radix Point 89

the sticky hit 92
time-critical code 53
truncation 90

two's complement 19, 27, 28

V
Von Neumann, John 282

W
whole numbers 86

Z
zero 24

Numerica Methods

Numerical Methods brings together
in one source, the mathematical techniques
professonal assembly-language programmers

need to write arithmetic
routines for real-time embed-
ded systems.

This book presents
a broad approach to micropro-
cessor arithmetic, covering
everything from data on the
positiond number system to
dgorithms for developing
elementary functions. Fixed
point and floating point
routines are developed and
thoroughly discussed, teaching
you how to customize the rou-
tines or write your own, even
if you are using a compiler.

Many of the explanations in this
book are complemented with interesting

Other topicsinclude:
« Positional number theory, bases,

and signed arithmetic.

« Algorithms for performing integer

arithmetic.

« Fixed point and floating point

mathematical techniques without
a COprocessor.

« Taylor expansions, Homers

Method, and pseudo-random
numbers.

« Input, Output, and Conversion

methods.

« Elementary functions including

fixed-point agorithms, computing
with tables, cordic agorithms, and
polynomia evaluations.

techniques and useful 8086 and pseudo-code
examples. These include agorithms for
drawing circles and lines without resorting to

trigonometry or floating point,
making the agorithms very fagt
and efficient, In addition,
there are examples highlighting
various techniques for perform-
ing division on large operands
such as linear interpolation,
the Newton-Raphson iteration,
and iterative multiplication.

The companion disk
(in MS/PC-DOS format)
contains the routines presented
in the book plus a simple C
shell that can be used to
exercise them.

Don Morgan is a professional programmer

Why this book is for you—See page 1

M&T 32

= o
(=]
=
E]
en

M&T Books
411 Borel Avenue
San Mate., CA 94402

LEVEL ADVANCED

TOPIC PROGRAMMING/NUMERICS
NN ASSEMBLY LANGUAGE
HARDWARE]38

and consultant with more than 20 years of programming
experience. He is also a contributor to Dr. Dobb's Journal
and resides in Simi Valley, CA.

m 53695
9 1781558"512320 “ ‘}
| SB

N _1-55851-232-2
>$36. 95

	Contents
	Why This Book Is For You
	Numbers
	Integers
	Real Numbers
	Floating- Point Arithmetic
	Input, Output, and Conversion
	The Elementary Functions
	Appendixes
	A Pseudo- Random Number Generator
	Tables and Equates
	FXMATH. ASM
	FPMATH. ASM
	IO. ASM
	TRANS. ASM and TABLE. ASM
	Math. C

	Glossary
	important.pdf
	Local Disk
	articlopedia.gigcities.com

	1.pdf
	Local Disk
	All the helpful information you will need is here!

