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Forces on Fluid Elements 

Fluid Elements - Definition:  

Fluid element can be defined as an infinitesimal region of the fluid continuum in isolation from its 

surroundings. 

     Two types of forces exist on fluid elements  

 Body Force: distributed over the entire mass or volume of the element. It is usually expressed 

per unit mass of the element or medium upon which the forces act. 

Example: Gravitational Force, Electromagnetic force fields etc.  

 Surface Force: Forces exerted on the fluid element by its surroundings through direct contact at 

the surface. 

    Surface force has two components:  

 Normal Force: along the normal to the area 

 Shear Force: along the plane of the area. 

The ratios of these forces and the elemental area in the limit of the area tending to zero are called the 

normal and shear stresses respectively.  

The shear force is zero for any fluid element at rest and hence the only surface force on a fluid element is 

the normal component. 

Normal Stress in a Stationary Fluid  

Consider a stationary fluid element of tetrahedral shape with three of its faces coinciding with the 

coordinate planes x, y and z. 
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Fig 3.1   State of Stress in a Fluid Element at Rest  

Since a fluid element at rest can develop neither shear stress nor tensile stress, the normal stresses 

acting on different faces are compressive in nature.  

Suppose, ΣFx, ΣFy and ΣFz  are the net forces acting on the fluid element in positive x,y and z directions 

respectively. The direction cosines of the normal to the inclined plane of an area ΔA are cos α, cos β and 

cos g .Considering gravity as the only source of external body force, acting in the -ve z direction, the 

equations of static equlibrium for the tetrahedronal fluid element can be written as 

 

(3.1) 

 

(3.2) 

 

(3.3) 

where  = Volume of tetrahedral fluid element  
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Pascal's Law of Hydrostatics 

Pascal's Law  

The normal stresses at any point in a fluid element at rest are directed towards the point from all 

directions and they are of the equal magnitude.  

 

Fig 3.2     State of normal stress at a point in a fluid body at rest  

Derivation:  

The inclined plane area is related to the fluid elements (refer to Fig 3.1) as follows 

 

    (3.4) 

 

    (3.5) 

 

    (3.6) 

Substituting above values in equation 3.1- 3.3 we get  

 

(3.7) 

  

Conclusion: 

The state of normal stress at any point in a fluid element at rest is same and directed towards the point 

from all directions. These stresses are denoted by a scalar quantity p defined as the hydrostatic or 

thermodynamic pressure.  

Using "+" sign for the tensile stress the above equation can be written in terms of pressure as 
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(3.8) 

  

Fundamental Equation of Fluid Statics 

The fundamental equation of fluid statics describes the spatial variation of hydrostatic pressure p in the 

continuous mass of a fluid. 

Derivation: 

Consider a fluid element at rest of given mass with volume V and bounded by the surface S. 

 

Fig 3.3 External Forces on a Fluid Element at Rest  

The fluid element stays at equilibrium under the action of the following two forces 

 The Resultant Body Force 

 

(3.9) 

                              

 

: element of volume  

 

: mass of the element 

 

: body Force per unit  

  mass acting on 

the   elementary volume 
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 The Resultant Surface Force 

    

 

(3.10) 

                              

dA : area of an element of surface 

  : the unit vector normal to  

     the elemental surface,taken      positive when directed 

outwards  

 

Using Gauss divergence theorem, Eq (3.10) can be written as  

 

  

 

 

(3.11) 

  Click here to see the derivation  

 

For the fluid element to be in equilibrium , we have  

      
(3.12) 

The equation is valid for any volume of the fluid element, no matter how small, thus we get 

 

  

 

(3.13) 

  

This is the fundamental equation of fluid statics.  

Fundamental Fluid Static Equations in Scalar Form  

Considering gravity as the only external body force acting on the fluid element, Eq. (3.13) can be 

expressed in its scalar components with respect to a cartesian coordinate system (see Fig. 3.3) as  

       (in x direction)                           (3.13a) 

Xz: the external body force per 

unit mass in the positive 

direction of z (vertically upward), 

http://nptel.iitm.ac.in/courses/Webcourse-contents/IIT-KANPUR/FLUID-MECHANICS/lecture-3/hyperlink/derivation.html
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        (in y direction)                          (3.13b) 

equals to the negative value of g 

(the acceleration due to gravity).  

    ( in z direction)           (3.13c) 

From Eqs (3.13a)-(3.13c), it can be concluded that the pressure p is a function of z only.  

Thus, Eq. (3.13c) can be re-written as,  

                                              (3.14)  

  

Constant and Variable Density Solution 

Constant Density Solution  

The explicit functional relationship of hydrostatic pressure p with z can be obtained by integrating the 

Eq. (3.14).  

For an incompressible fluid, the density r is constant throughout. Hence the Eq. (3.14) can be integrated 

and expressed  

as  

 

(3.15) 

where C is the integration constant.  

 

If we consider an expanse of fluid with a free surface, where the pressure is defined as p = p0 ,which is 

equal to atmospheric pressure. 
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Fig 3.4 Pressure Variation in an Incompressible Fluid at rest with a Free Surface  

Eq. (3.15) can be written as,  

 

(3.16a) 

Therefore, Eq. (3.16a) gives the expression of hydrostatic pressure p at a point whose vertical 

depression from the free surface is h.  

Similarly, 

 

(3.16b) 

Thus, the difference in pressure between two points in an incompressible fluid at rest can be expressed 

in terms of the vertical distance between the points. This result is known as Torricelli's principle, which 

is the basis for differential pressure measuring` devices. The pressure p0 at free surface is the local 

atmospheric pressure.  

Therefore, it can be stated from Eq. (3.16a), that the pressure at any point in an expanse of a fluid at 

rest, with a free surface exceeds that  of the local atmosphere by an amount rgh, where h is the vertical 

depth of the point from the free surface. 

Variable Density Solution: As a more generalised case, for compressible fluids at rest, the pressure 

variation at rest depends on how the fluid density changes with height z and pressure p. For example 

this can be done for special cases of "isothermal and non-isothermal fluids" 

 Units and scales of Pressure Measurement  

Pascal (N/m2) is the unit of pressure .  

http://nptel.iitm.ac.in/courses/Webcourse-contents/IIT-KANPUR/FLUID-MECHANICS/lecture-3/hyperlink/3-8_const_temp_sol.htm
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Pressure is usually expressed with reference to either absolute zero pressure (a complete vacuum)or 

local atmospheric pressure.  

 The absolute pressure: It is the difference between the value of the pressure and the absolute 

zero pressure. 

                             

 Gauge pressure: It is the diference between the value of the pressure and the local atmospheric 

pressure(patm) 

                               

 Vacuum Pressure: If p<patm then the gauge pressure becomes negative and is called 

the vacuum pressure.But one should always remember that hydrostatic pressure is always 

compressive in nature  

 

 

Fig 4.1 The Scale of Pressure  

At sea-level, the international standard atmosphere has been chosen as Patm = 101.32 kN/m2  

 

 Piezometer Tube  

The direct proportional relation between gauge pressure and the height h for a fluid of constant density 

enables the pressure to be simply visualized in terms of the vertical height, .  

 

The height h is termed as pressure head corresponding to pressure p. For a liquid without a free surface 

in a closed pipe, the pressure head at a point corresponds to the vertical height above the point 
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to which a free surface would rise, if a small tube of sufficient length and open to atmosphere is 

connected to the pipe  

 

Fig 4.2 A piezometer Tube  

Such a tube is called a piezometer tube, and the height h is the measure of the gauge pressure of the 

fluid in the pipe. If such a piezometer tube of sufficient length were closed at the top and the space 

above the liquid surface were a perfect vacuum, the height of the column would then correspond to the 

absolute pressure of the liquid at the base. This principle is used in the well known mercury barometer 

to determine the local atmospheric pressure.  

The Barometer 

Barometer is used to determine the local atmospheric pressure. Mercury is employed in the barometer 

because its density is sufficiently high for a relative short column to be obtained. and also because it has 

very small vapour pressure at normal temperature. High density scales down the pressure head(h) to 

repesent same magnitude of pressure in a tube of smaller height.  
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Fig 4.3   A Simple Barometer 

Even if the air is completely absent, a perfect vacuum at the top of the tube is never possible. The space 

would be occupied by the mercury vapour and the pressure would equal to the vapour pressure of 

mercury at its existing temperature. This almost vacuum condition above the mercury in the barometer 

is known as Torricellian vacuum. 

 

The pressure at A equal to that at B (Fig. 4.3) which is the atmospheric pressure patm since A and B lie on 

the same horizontal plane. Therefore, we can write  

 

(4.1) 

The vapour pressure of mercury pv, can normally be neglected in comparison to patm. 

At 200C,Pv is only 0.16 patm, where patm =1.0132 X105 Pa at sea level. Then we get from Eq. (4.1)  

 

  

For accuracy, small corrections are necessary to allow for the variation of r with temperature, the 

thermal expansion of the scale (usually made of brass). and surface tension effects. If water was used 

instead of mercury, the corresponding height of the column would be about 10.4 m provided that a 

perfect vacuum could be achieved above the water. However, the vapour pressure of water at ordinary 

temperature is appreciable and so the actual height at, say, 15°C would be about 180 mm less than this 

value. Moreover. with a tube smaller in diameter than about 15 mm, surface tension effects become 

significant.  

 Manometers for measuring Gauge and Vacuum Pressure 
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Manometers are devices in which columns of a suitable liquid are used to measure the difference in 

pressure between two points or between a certain point and the atmosphere. 

Manometer is needed for measuring large gauge pressures. It is basically the modified form of the 

piezometric tube. A common type manometer is like a transparent "U-tube" as shown in Fig. 4.4.  

 

 

Fig 4.4 A simple manometer to measure gauge 

pressure 

Fig 4.5 A simple manometer to measure vacuum 

pressure 

One of the ends is connected to a pipe or a container having a fluid (A) whose pressure is to be 

measured while the other end is open to atmosphere. The lower part of the U-tube contains a liquid 

immiscible with the fluid A and is of greater density than that of A. This fluid is called the manometric 

fluid.  

 

The pressures at two points P and Q (Fig. 4.4) in a horizontal plane within the continuous expanse of 

same fluid (the liquid B in this case) must be equal. Then equating the pressures at P and Q in terms of 

the heights of the fluids above those points, with the aid of the fundamental equation of hydrostatics 

(Eq 3.16), we have  

 

  

Hence, 

 

  

 

where p1 is the absolute pressure of the fluid A in the pipe or container at its centre line, and patm is the 

local atmospheric pressure. When the pressure of the fluid in the container is lower than the 

atmospheric pressure, the liquid levels in the manometer would be adjusted as shown in Fig. 4.5. Hence 

it becomes,  
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(4.2) 

 

Manometers to measure Pressure Difference  

A manometer is also frequently used to measure the pressure difference, in course of flow, across a 

restriction in a horizontal pipe. 

 

Fig 4.6     Manometer measuring pressure difference  

The axis of each connecting tube at A and B should be perpendicular to the direction of flow and also for 

the edges of the connections to be smooth. Applying the principle of hydrostatics at P and Q we have, 

 

  

 

(4.3) 

where, ρ m is the density of manometric fluid and ρw is the density of the working fluid flowing through 

the pipe.  

 

We can express the difference of pressure in terms of the difference of heads (height of the working 

fluid at equilibrium). 

 

(4.4) 

  

 Inclined Tube Manometer  



MYcsvtu Notes 

www.mycsvtunotes.in 

 For accurate measurement of small pressure differences by an ordinary u-tube manometer, it is 

essential that the ratio rm/rw should be close to unity. This is not possible if the working fluid is a 

gas; also having a manometric liquid of density very close to that of the working liquid and giving 

at the same time a well defined meniscus at the interface is not always possible. For this 

purpose, an inclined tube manometer is used.  

 If the transparent tube of a manometer, instead of being vertical, is set at an angle θ to the 

horizontal (Fig. 4.7), then a pressure difference corresponding to a vertical difference of levels x 

gives a movement of the meniscus s = x/sinq along the slope.  

 

Fig 4.7   An Inclined Tube Manometer  

 If θ is small, a considerable mangnification of the movement of the meniscus may be achieved. 

 Angles less than 50 are not usually satisfactory, because it becomes difficult to determine the 

exact position of the meniscus. 

 One limb is usually made very much greater in cross-section than the other. When a pressure 

difference is applied across the manometer, the movement of the liquid surface in the wider 

limb is practically negligible compared to that occurring in the narrower limb. If the level of the 

surface in the wider limb is assumed constant, the displacement of the meniscus in the 

narrower limb needs only to be measured, and therefore only this limb is required to be 

transparent.  

 Inverted Tube Manometer  

For the measurement of small pressure differences in liquids, an inverted U-tube manometer is used.  
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Fig 4.8 An Inverted Tube Manometer 

Here and the line PQ is taken at the level of the higher meniscus to equate the pressures at P 

and Q from the principle of hydrostatics. It may be written that  

 

  

where represents the piezometric pressure, (z being the vertical height of the point 

concerned from any reference datum). In case of a horizontal pipe (z1= z2) the difference in piezometric 

pressure becomes equal to the difference in the static pressure. If is sufficiently small, a 

large value of x may be obtained for a small value of . Air is used as the manometric fluid. 

Therefore, is negligible compared with and hence,  

 

(4.5) 

 

Air may be pumped through a valve V at the top of the manometer until the liquid menisci are at a 

suitable level.  

Micromanometer 

When an additional gauge liquid is used in a U-tube manometer, a large difference in meniscus levels 

may be obtained for a very small pressure difference.  
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Fig 4.9     A Micromanometer  

The equation of hydrostatic equilibrium at PQ can be written as 

 

where and are the densities of working fluid, gauge liquid and manometric liquid 

respectively.  

From continuity of gauge liquid,  

 

(4.6) 

 

 

(4.7) 

If a is very small compared to A 

 

(4.8) 
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With a suitable choice for the manometric and gauge liquids so that their densities are close 

a reasonable value of y may be achieved for a small pressure difference.  

 

 Hydrostatic Thrusts on Submerged Plane Surface 

Due to the existence of hydrostatic pressure in a fluid mass, a normal force is exerted on any part of a 

solid surface which is in contact with a fluid. The individual forces distributed over an area give rise to a 

resultant force.  

Plane Surfaces  

Consider a plane surface of arbitrary shape wholly submerged in a liquid so that the plane of the surface 

makes an angle θ with the free surface of the liquid. We will assume the case where the surface shown 

in the figure below is subjected to hydrostatic pressure on one side and atmospheric pressure on the 

other side. 

 

Fig 5.1   Hydrostatic Thrust on Submerged Inclined Plane Surface 

Let p denotes the gauge pressure on an elemental area dA. The resultant force F on the area A is 

therefore  
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(5.1) 

According to Eq (3.16a) Eq (5.1) reduces to  

 

(5.2) 

Where h is the vertical depth of the elemental area dA from the free surface and the distance y is 

measured from the x-axis, the line of intersection between the extension of the inclined plane and the 

free surface (Fig. 5.1). The ordinate of the centre of area of the plane surface A is defined as  

  

 

(5.3) 

   

Hence from Eqs (5.2) and (5.3), we get  

 

(5.4) 

where is the vertical depth (from free surface) of centre c of area . 

Equation (5.4) implies that the hydrostatic thrust on an inclined plane is equal to the pressure at its 

centroid times the total area of the surface, i.e., the force that would have been experienced by the 

surface if placed horizontally at a depth hc from the free surface (Fig. 5.2).  
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Fig 5.2   Hydrostatic Thrust on Submerged Horizontal Plane Surface 

The point of action of the resultant force on the plane surface is called the centre of pressure . Let 

and be the distances of the centre of pressure from the y and x axes respectively. Equating the 

moment of the resultant force about the x axis to the summation of the moments of the component 

forces, we have  

 

(5.5) 

Solving for yp from Eq. (5.5) and replacing F from Eq. (5.2), we can write  

 

(5.6) 

In the same manner, the x coordinate of the centre of pressure can be obtained by taking moment 

about the y-axis. Therefore,  

 

  

From which, 

 

(5.7) 

The two double integrals in the numerators of Eqs (5.6) and (5.7) are the moment of inertia about the x-

axis Ixxand the product of inertia  Ixy about x and y axis of the plane area respectively. By applying the 

theorem of parallel axis 

 

(5.8) 

 

(5.9) 

where, and are the moment of inertia and the product of inertia of the surface about the 

centroidal axes , and are the coordinates of the center c of the area with respect to x-y 

axes. 

With the help of Eqs (5.8), (5.9) and (5.3), Eqs (5.6) and (5.7) can be written as  
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(5.10a) 

 

(5.10b) 

The first term on the right hand side of the Eq. (5.10a) is always positive. Hence, the centre of pressure is 

always at a higher depth from the free surface than that at which the centre of area lies. This is obvious 

because of the typical variation of hydrostatic pressure with the depth from the free surface. When the 

plane area is symmetrical about the y' axis, , and . 

Hydrostatic Thrusts on Submerged Curved Surfaces  

On a curved surface, the direction of the normal changes from point to point, and hence the pressure 

forces on individual elemental surfaces differ in their directions. Therefore, a scalar summation of them 

cannot be made. Instead, the resultant thrusts in certain directions are to be determined and these 

forces may then be combined vectorially. An arbitrary submerged curved surface is shown in Fig. 5.3. A 

rectangular Cartesian coordinate system is introduced whose xy plane coincides with the free surface of 

the liquid and z-axis is directed downward below the x - y plane.  

 

Fig 5.3   Hydrostatic thrust on a Submerged Curved Surface 
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Consider an elemental area dA at a depth z from the surface of the liquid. The hydrostatic force on the 

elemental area dA is  

 

(5.11) 

and the force acts in a direction normal to the area dA. The components of the force dF in x, y and z 

directions are  

 

(5.12a) 

 

(5.12b) 

 

(5.13c) 

Where l, m and n are the direction cosines of the normal to dA. The components of the surface element 

dA projected on yz, xz and xy planes are, respectively  

 

(5.13a) 

 

(5.13b) 

 

(5.13c) 

  

Substituting Eqs (5.13a-5.13c) into (5.12) we can write  

 

(5.14a) 

 

(5.14b) 

 

(5.14c) 

Therefore, the components of the total hydrostatic force along the coordinate axes are  

 

(5.15a) 

 

(5.15b) 

 

(5.15c) 

where zc is the z coordinate of the centroid of area Ax and Ay (the projected areas of curved surface on yz 

and xz plane respectively). If zp and yp are taken to be the coordinates of the point of action of Fx on the 

projected area Ax on yz plane, , we can write  
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(5.16a) 

 

(5.16b) 

where Iyy is the moment of inertia of area Ax about y-axis and Iyz is the product of inertia of Ax with 

respect to axes y and z. In the similar fashion, zp
' and x p

' the coordinates of the point of action of the 

force Fy on area Ay, can be written as 

 

(5.17a) 

 

(5.17b) 

where Ixx is the moment of inertia of area Ay about x axis and Ixz is the product of inertia of Ay about the 

axes x and z.  

We can conclude from Eqs (5.15), (5.16) and (5.17) that for a curved surface, the component of 

hydrostatic force in a horizontal direction is equal to the hydrostatic force on the projected plane 

surface perpendicular to that direction and acts through the centre of pressure of the projected area. 

From Eq. (5.15c), the vertical component of the hydrostatic force on the curved surface can be written 

as  

 

(5.18) 

  

where is the volume of the body of liquid within the region extending vertically above the submerged 

surface to the free surfgace of the liquid. Therefore, the vertical component of hydrostatic force on a 

submerged curved surface is equal to the weight of the liquid volume vertically above the solid surface 

of the liquid and acts through the center of gravity of the liquid in that volume. 

Buoyancy 

 When a body is either wholly or partially immersed in a fluid, a lift is generated due to the net 

vertical component of hydrostatic pressure forces experienced by the body. 

 This lift is called the buoyant force and the phenomenon is called buoyancy 

 Consider a solid body of arbitrary shape completely submerged in a homogeneous liquid as 

shown in Fig. 5.4. Hydrostatic pressure forces act on the entire surface of the body.  
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Fig 5.4     Buoyant Force on a Submerged Body 
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To calculate the vertical component of the resultant hydrostatic force, the body is considered to be 

divided into a number of elementary vertical prisms. The vertical forces acting on the two ends of such a 

prism of cross-section dAz (Fig. 5.4) are respectively  

 

(5.19a) 

 

(5.19b) 

Therefore, the buoyant force (the net vertically upward force) acting on the elemental prism of volume 

is - 

 

(5.19c) 

Hence the buoyant force FB on the entire submerged body is obtained as 

 

(5.20) 

Where is the total volume of the submerged body. The line of action of the force FB can be found by 

taking moment of the force with respect to z-axis. Thus  

 

(5.21) 

Substituting for dFB and FB from Eqs (5.19c) and (5.20) respectively into Eq. (5.21), the x coordinate of 

the center of the buoyancy is obtained as   

 

(5.22) 

which is the centroid of the displaced volume. It is found from Eq. (5.20) that the buoyant force FB 

equals to the weight of liquid displaced by the submerged body of volume . This phenomenon was 

discovered by Archimedes and is known as the Archimedes principle.  

ARCHIMEDES   PRINCIPLE 

The buoyant force on a submerged body 

 The Archimedes principle states that the buoyant force on a submerged body is equal to the 

weight of liquid displaced by the body, and acts vertically upward through the centroid of the 

displaced volume.  

 Thus the net weight of the submerged body, (the net vertical downward force experienced by it) 

is reduced from its actual weight by an amount that equals the buoyant force. 

The buoyant force on a partially immersed body  
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 According to Archimedes principle, the buoyant force of a partially immersed body is equal to 

the weight of the displaced liquid.  

 Therefore the buoyant force depends upon the density of the fluid and the submerged volume 

of the body. 

  For a floating body in static equilibrium and in the absence of any other external force, the 

buoyant force must balance the weight of the body.  

Stability of Unconstrained Submerged Bodies in Fluid  

 The equilibrium of a body submerged in a liquid requires that the weight of the body acting 

through its cetre of gravity should be colinear with an equal hydrostatic lift acting through the 

centre of buoyancy. 

  In general, if the body is not homogeneous in its distribution of mass over the entire volume, 

the location of centre of gravity G does not coincide with the centre of volume, i.e., the centre 

of buoyancy B.  

 Depending upon the relative locations of G and B, a floating or submerged body attains three 

different states of equilibrium- 

Let us suppose that a body is given a small angular displacement and then released. Then it will be said 

to be in  

 Stable Equilibrium: If the body  returns to its original position by retaining the originally vertical 

axis as vertical.  

 Unstable Equilibrium: If the body does not return to its original position but moves further 

from it. 

 Neutral Equilibrium: If the body  neither returns to its original position nor increases its 

displacement further, it will simply adopt its new position.  

Stable Equilibrium  

Consider a submerged body in equilibrium whose centre of gravity is located below the centre of 

buoyancy (Fig. 5.5a). If the body is tilted slightly in any direction, the buoyant force and the weight 

always produce a restoring couple trying to return the body to its original position (Fig. 5.5b, 5.5c).  
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Fig 5.5    A Submerged body in Stable Equilibrium  

Unstable Equilibrium 

On the other hand, if point G is above point B (Fig. 5.6a), any disturbance from the equilibrium position 

will create a destroying couple which will turn the body away from its original position (5.6b, 5.6c).  

 

 

Fig 5.6    A Submerged body in Unstable Equilibrium  

Neutral Equilibrium 

When the centre of gravity G and centre of buoyancy B coincides, the body will always assume the same 

position in which it is placed (Fig 5.7) and hence it is in neutral equilibrium.  

http://nptel.iitm.ac.in/courses/Webcourse-contents/IIT-KANPUR/FLUID-MECHANICS/lecture-5/animation/demonstration_stable.htm
http://nptel.iitm.ac.in/courses/Webcourse-contents/IIT-KANPUR/FLUID-MECHANICS/lecture-5/animation/demonstration_unstable.htm
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Fig 5.7    A Submerged body in Neutral Equilibrium  

Therefore, it can be concluded that a submerged body will be in stable, unstable or neutral equilibrium 

if its centre of gravity is below, above or coincident with the center of buoyancy respectively (Fig. 5.8).  

 

Fig 5.8   States of Equilibrium of a Submerged Body  

(a) STABLE EQUILIBRIUM    (B) UNSTABLE EQUILIBRIUM      (C) NEUTRAL EQUILIBRIUM 

Stability of Floating Bodies in Fluid  

 When the body undergoes an angular displacement about a horizontal axis, the shape of the 

immersed volume changes and so the centre of buoyancy moves relative to the body. 

  As a result of above observation stable equlibrium can be achieved, under certain condition, 

even when G is above B.  

Figure 5.9a illustrates a floating body -a boat, for example, in its equilibrium position. 

http://nptel.iitm.ac.in/courses/Webcourse-contents/IIT-KANPUR/FLUID-MECHANICS/lecture-5/animation/demonstration_neutral.htm
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Fig 5.9     A Floating body in Stable equilibrium  

Important points to note here are 

a. The force of buoyancy FB is equal to the weight of the body W 

b. Centre of gravity G is above the centre of buoyancy in the same vertical line. 

c. Figure 5.9b shows the situation after the body has undergone a small angular displacement q 

with respect to the vertical axis. 

d. The centre of gravity G remains unchanged relative to the body (This is not always true for ships 

where some of the cargo may shift during an angular displacement). 

e. During the movement, the volume immersed on the right hand side increases while that on the 

left hand side decreases. Therefore the centre of buoyancy moves towards the right to its new 

position B'. 

Let the new line of action of the buoyant force (which is always vertical) through B' intersects the axis 

BG (the old vertical line containing the centre of gravity G and the old centre of buoyancy B) at M. For 

small values of q the point M is practically constant in position and is known as metacentre. For the 

body shown in Fig. 5.9, M is above G, and the couple acting on the body in its displaced position is a 

restoring couple which tends to turn the body to its original position. If M were below G, the couple 

would be an overturning couple and the original equilibrium would have been unstable. When M 

coincides with G, the body will assume its new position without any further movement and thus will be 

in neutral equilibrium. Therefore, for a floating body, the stability is determined not simply by the 

relative position of B and G, rather by the relative position of M and G. The distance of metacentre 

above G along the line BG is known as metacentric height GM which can be written as  

GM = BM -BG  

Hence the condition of stable equilibrium for a floating body can be expressed in terms of metacentric 

height as follows:  

 

GM > 0 (M is above G)                                      Stable equilibrium  

http://nptel.iitm.ac.in/courses/Webcourse-contents/IIT-KANPUR/FLUID-MECHANICS/lecture-5/5-8_stability_floating_examp.htm
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GM = 0 (M coinciding with G)                          Neutral equilibrium  

GM < 0 (M is below G)                                      Unstable equilibrium  

The angular displacement of a boat or ship about its longitudinal axis is known as 'rolling' while that 

about its transverse axis is known as "pitching".  

Floating Bodies Containing Liquid 

If a floating body carrying liquid with a free surface undergoes an angular displacement, the liquid will 

also move to keep its free surface horizontal. Thus not only does the centre of buoyancy B move, but 

also the centre of gravity G of the floating body and its contents move  in the same direction as the 

movement of B. Hence the stability of the body is reduced. For this reason, liquid which has to be 

carried in a  ship is put into a number of separate compartments so as to minimize its movement within 

the ship.  

Period of Oscillation  

The restoring couple caused by the buoyant force and gravity force acting on a floating body displaced 

from its equilibrium placed from its equilibrium position is (Fig. 5.9 ). Since the torque 

equals to mass moment of inertia (i.e., second moment of mass) multiplied by angular acceleration, it 

can be written 

 

(5.23) 

Where IM represents the mass moment of inertia of the body about its axis of rotation. The minus sign in 

the RHS of Eq. (5.23) arises since the torque is a retarding one and decreases the angular acceleration. If 

θ is small, sin θ=θ and hence Eq. (5.23) can be written as 

  

 

(5.24) 

 

Equation (5.24) represents a simple harmonic motion. The time period (i.e., the time of a complete 

oscillation from one side to the other and back again) equals to . The oscillation of 

the body results in a flow of the liquid around it and this flow has been disregarded here. In practice, of 

course, viscosity in the liquid introduces a damping action which quickly suppresses the oscillation 

unless further disturbances such as waves cause new angular displacements. 

Exercise Problems - Chapter 2  
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1. For the system shown in Fig 5.10,determine the air pressure pA which will make the pressure at N one 

fourth of that at M.  

  

 

Fig 5.10  

2. Consider the pipe and manometer system as shown in Fig 5.11. The pipe contains water. Find the 

value of manometer reading h, and the difference in pressure between A and B if there is no flow. If 

there is a flow from A towards B and the manometer reading is h = 60 mm, then determine the static 

pressure difference pA - pB  

  

  [3.33 kPa]    

  [0, 2.94 kPa; 3.53 kPa]    
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Fig 5.11  

  

3. Determine the air pressure above the water surface in the tank if a force of 8 kN is required to hold 

the hinged door in position as 

shown in Fig 5.12.  

  

  [10.76 kPa]    
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Fig 5.12  

  

4. The profile of the inner face of a dam takes the form of a parabola with the equation 18y = x2 , where 

y is the height above the base and x is the horizontal distance of the face from the vertical reference 

line. The water level is 27m above the base. Determine the thrust on the dam (per meter with) due to 

the water pressure, its inclination to the vertical and the point where the line of action of this force 

intersects the free water surface  

   

 

5. A solid uniform cylinder of length 150 mm and diameter 75 mm is to float upright in water. Determine 

the limits within which its mass should lie.  

  

  
[ 5.28 MN/m, 42o 33', 30.29 m from face 

]   

  [ 0.641 kg and 0.663 kg]  



MYcsvtu Notes 

www.mycsvtunotes.in 

6. A long prism, the cross-section of which is an equilateral traingle of side a, floats in water with one 

side horizontal and submerged to a depth h. Find 

      (a) h/a as a function of the specific gravity, S of the prism. 

      (b) The metacentric height in terms of side a, for small angle of rotation if specific gravity, S=0.8.  

7.  A metal sphere of volume , specific gravity and fully immersed in water is 

attached by a flexible wire to a buoy of volume and specific gravity . Calculate the 

tension T in the wire and volume of the buoy that is submerged. Refer to Fig 5.13.  

 

Fig 5.13  

 


