MYcsvtu Notes

Introduction
e The boundary layer of a flowing fluid is the thin layer close to the wall
¢ Inaflow field, viscous stresses are very prominent within this layer.
e Although the layer is thin, it is very important to know the details of flow within it.

e The main-flow velocity within this layer tends to zero while approaching the wall (no-slip
condition).

e Also the gradient of this velocity component in a direction normal to the surface is large as
compared to the gradient in the streamwise direction.

Boundary Layer Equations

e In 1904, Ludwig Prandtl, the well known German scientist, introduced the concept of boundary
layer and derived the equations for boundary layer flow by correct reduction of Navier-Stokes
equations.

e He hypothesized that for fluids having relatively small viscosity, the effect of internal friction in
the fluid is significant only in a narrow region surrounding solid boundaries or bodies over
which the fluid flows.

e Thus, close to the body is the boundary layer where shear stresses exert an increasingly larger
effect on the fluid as one moves from free stream towards the solid boundary.

e However, outside the boundary layer where the effect of the shear stresses on the flow is

[y

small compared to values inside the boundary layer (since the velocity gradient is

negligible),---------
1. the fluid particles experience no vorticity and therefore,
2. the flow is similar to a potential flow.

e Hence, the surface at the boundary layer interface is a rather fictitious one, that divides
rotational and irrotational flow. Fig 28.1 shows Prandtl's model regarding boundary layer flow.

e Hence with the exception of the immediate vicinity of the surface, the flow is frictionless
(inviscid) and the velocity is U (the potential velocity).

e Inthe region, very near to the surface (in the thin layer), there is friction in the flow which
signifies that the fluid is retarded until it adheres to the surface (no-slip condition).

e The transition of the mainstream velocity from zero at the surface (with respect to the surface)
to full magnitude takes place across the boundary layer.

www.mycsvtunotes.in



MYcsvtu Notes

About the boundary layer

e Boundary layer thickness is & which is a function of the coordinate direction x .

e The thickness is considered to be very small compared to the characteristic length L of the
domain.

e Inthe normal direction, within this thin layer, the gradient Oul &y is very large compared to

the gradient in the flow direction ouf o

Now we take up the Navier-Stokes equations for : steady, two dimensional, laminar,
incompressible flows.

Considering the Navier-Stokes equations together with the equation of continuity, the following
dimensional form is obtained.
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Fig 28.1 Boundary layer and Free Stream for Flow Over a flat plate
= u-velocity component along x direction.
= v -velocity component along y direction

= p-static pressure
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= p-density.

* W -dynamic viscosity of the fluid

e The equations are now non-dimensionalised

e The length and the velocity scales are chosen as L and Umrespectively.

e The non-dimensional variables are:

i
u*z—,v*z—,p =
o, o, ot
* _ x :\k_-y
_—,}.? = —
L L

where Umis the dimensional free stream velocity and the pressure is non-dimensionalised by

twice the dynamic pressure

pg=(1/2)pU]

Using these non-dimensional variables, the Eqs (28.1) to (28.3) become

* * * %
u*au +v*8u =_8p +L o
A * ¥ x* Rel| dx¥
* * * 3., %
u*av +v*av :—&) +i oy
¥ d*  Gx* Re|&:¥
dhy* e
—t—2=10
¥ Qp*

Ay *

Tt
4 click for details
Ay, *

+ @}*2

(28.4)

(28.5)

(28.6)
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where the Reynolds number,

Order of Magnitude Analysis

e Let us examine what happens to the u velocity as we go across the boundary layer.
At the wall the u velocity is zero [ with respect to the wall and absolute zero for a stationary wall
(which is normally implied if not stated otherwise)].
The value of u on the inviscid side, that is on the free stream side beyond the boundary layer is
u.

For the case of external flow over a flat plate, this U is equal to Um.

e Based on the above, we can identify the following scales for the boundary layer variables:

Variable |Dimensional scale Non-dimensional scale
i & 1

x I 1

¥ ) =411

The symbol £ describes a value much smaller than 1.

¢ Now we analyse equations 28.4 - 28.6, and look at the order of magnitude of each individual
term

Eq 28.6 - the continuity equation

One general rule of incompressible fluid mechanics is that we are not allowed to drop any term from
the continuity equation.

e From the scales of boundary layer variables, the derivative O */ dx* is of the order 1.

. - N, L
e The second term in the continuity equation should also be of the order 1.The reason

being ¥ has to be of the order =because Y becomes E(=4/L) at its maximum.

Eq 28.4 - x direction momentum equation
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. Inertia terms are of the order 1.

2 2
. "%/ 9% s of the order 1

B i By (1/ g%

. is of the order

However after multiplication with 1/Re, the sum of the two second order derivatives should produce at
least one term which is of the same order of = magnitude as the inertia terms. This is possible only if

2
the Reynolds number (Re) is of the order of (17e%) .

_ * *
e It follows from that O™/ ox will not exceed the order of 1 so as to be in balance with the

remaining term.

e Finally, Egs (28.4), (28.5) and (28.6) can be rewritten as

B * Bu* G 1{3%* E}gu*j|
ar* v * gx* ERe|dx™* gu¥
(0 n o, 1

(Da (E)E—(D (& )[(l) +(EQJ
B FE G 1[3%* Ezv*:|
dx*  *  8x* Re|dx¥®
(&) (&) a[(8) &

{1}6 (5}5_ M (e }[ ) + (E:‘j:|

a* *

QJr@:g (28.6)

0 @
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2 el
As a consequence of the order of magnitude analysis, &/ can be dropped from the x direction

momentum equation, because on multiplication with lxﬁﬁ‘it assumes the smallest order of magnitude.
Eq 28.5 - y direction momentum equation.

e All the terms of this equation are of a smaller magnitude than those of Eq. (28.4).

* *
e This equation can only be balanced if iy is of the same order of magnitude as other

terms.

e Thus they momentum equation reduces to

—* = (&) (28.7)
By *

e This means that the pressure across the boundary layer does not change. The pressure is
impressed on the boundary layer, and its value is determined by hydrodynamic considerations.

e This also implies that the pressure p is only a function of x. The pressure forces on a body are
solely determined by the inviscid flow outside the boundary layer.

e The application of Eq. (28.4) at the outer edge of boundary layer gives

H*E‘H*_—@

- = (28.8a)
¥ & *

In dimensional form, this can be written as
v—=-—- (28.8b)

On integrating Eq ( 28.8b) the well known Bernoulli's equation is obtained

p Ll = (28.9)
2 a constant

e Finally, it can be said that by the order of magnitude analysis, the Navier-Stokes equations are
simplified into equations given below.
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LOuE Lo gp* 1 & *
¥ ¥ k¥ Re dp¥

=
&;:D
a};*
e ®* e
MLV g
Fx*  Fp*

e These are known as Prandtl's boundary-layer equations.
The available boundary conditions are:
Solid surface  af y*=0, u*=0=v*

or at y=0u=0=vw

Outer edge of boundary-layer

il
af v¥=(g1=—, u*=1
y*=1(z) 7

or aiy=4du=0Ux)

(28.10)

(28.11)

(28.12)

(28.13)

(28.14)

e The unknown pressure p in the x-momentum equation can be determined from Bernoulli's Eq.

(28.9), if the inviscid velocity distribution U(x) is also known.

* *
We solve the Prandtl boundary layer equations for u*(x,y) and ¥ (x.5) with U obtained from the

outer inviscid flow analysis. The equations are solved by commencing at the leading edge of the body

and moving downstream to the desired location

e itallows the no-slip boundary condition to be satisfied which constitutes a significant

improvement over the potential flow analysis while solving real fluid flow problems.
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e The Prandtl boundary layer equations are thus a simplification of the Navier-Stokes equations.
Boundary Layer Coordinates
e The boundary layer equations derived are in Cartesian coordinates.
e The Velocity components u and v represent x and y direction velocities respectively.
e For objects with small curvature, these equations can be used with -
»= x coordinate : streamwise direction
»= ycoordinate : normal component

e They are called Boundary Layer Coordinates.

Application of Boundary Layer Theory
e The Boundary-Layer Theory is not valid beyond the point of separation.

e At the point of separation, boundary layer thickness becomes quite large for the thin layer
approximation to be valid.

e |tisimportant to note that boundary layer theory can be used to locate the point of seperation
itself.

e Inapplying the boundary layer theory although U is the free-stream velocity at the outer edge of
the boundary layer, it is interpreted as the fluid velocity at the wall calculated from inviscid flow
considerations ( known as Potential Wall Velocity)

e Mathematically, application of the boundary - layer theory converts the character of governing
Navier-Stroke equations from elliptic to parabolic

e This allows the marching in flow direction, as the solution at any location is independent of the
conditions farther downstream.

Blasius Flow Over A Flat Plate
e The classical problem considered by H. Blasius was

1. Two-dimensional, steady, incompressible flow over a flat plate at zero angle of

incidence with respect to the uniform stream of velocity Ve .
2. The fluid extends to infinity in all directions from the plate.

The physical problem is already illustrated in Fig. 28.1
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e Blasius wanted to determine
(a) the velocity field solely within the boundary layer,

(b) the boundary layer thickness [5),
(c) the shear stress distribution on the plate, and
(d) the drag force on the plate.

e The Prandtl boundary layer equations in the case under consideration are

2
H%H%: Fu (28.15)
R U Y
V=l
dx v

The boundary conditions are

at y=0, u=v=10 (28.16)

af y=cod, u=10Lf

1 dp
e Note that the substitution of the term < dx in the original boundary layer momentum
i
& =
equation in terms of the free stream velocity produces dX  which is equal to zero.

e Hence the governing Eq. (28.15) does not contain any pressure-gradient term.

e However, the characteristic parameters of this problem are Uouvex,y that is,
y=ulll_,v,x,y)

e This relation has five variables o, v, KLY,
e Itinvolves two dimensions, length and time.

e Thus it can be reduced to a dimensionless relation in terms of (5-2) =3 quantities ( Buckingham
Pi Theorem)

e Thus a similarity variables can be used to find the solution
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e Such flow fields are called self-similar flow field .

Law of Similarity for Boundary Layer Flows

i

It states that the u component of velocity with two velocity profiles of u(x,y) at
different x locations differ only by scale factorsinuand y .

Therefore, the velocity profiles u(x,y) at all values of x can be made congruent if they
are plotted in coordinates which have been made dimensionless with reference to
the scale factors.

The local free stream velocity U(x) at section x is an obvious scale factor for u,
because the dimensionless u(x) varies between zero and unity with y at all sections.

The scale factor for y , denoted by g(x), is proportional to the local boundary layer
thickness so that y itself varies between zero and unity.

Velocity at two arbitrary x locations, namely x; and x, should satisfy the equation

[xls{yfg[xlj}] ”[xzs{yfglixzj}]

£

U[xlj } U[xz) (28.17)

Now, for Blasius flow, it is possible to identify g(x) with the boundary layers thickness

6 we know
_d 1
L jRe,

Thus in terms of x we get
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2ol = Flp) (28.18)
Yoo | Jx
Uu:-
2 G 12t
where § and Y

or more precisely,

n=—2
vE (28.19)
UED

3 VI

y=u 72
vx

v = |—df

Iy 7 7

B

The stream function can now be obtained in terms of the velocity components as

w=[udy = [U, 7 () |7=dn = JUvz] Ply)an

or
w= .U _vxfln)+ D (28.20)
Flnldn =
where D is a constant. Also -[ [??:] 7 f[??) and the constant of integration is zero if the

stream function at the solid surface is set equal to zero.

Now, the velocity components and their derivatives are:

n=—"="2 1 #(n) (28.21a)
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__ 8w ol L 1Y 1
v = U 5 = )+l s [??){ N XH
or
1 U
v=g v; [ () - 7l )] (28.21b)
Y an N 1 y o1
il RAla | - -
o= Uad [??)ax o [ﬂ)[ 5 mx}
&__Uu? o,
= 'x'f (1) (28.21¢)
Y an 1
il A
dy - [??)ay ") ,xvfoJ
Y i
Koy jHe 21d
> Uoyf 727 () (28.21d)
Fu 7 1
YR | Hwom
: " vxf [??){,Il'vxIUm}
Pu_ U_if-'-[ﬂ) (28.21e)
a wx

Substituting (28.2) into (28.15), we have

LT ) Bl ) )l ) =22 )
_ETj [??)f”[??l'=U—Sf )
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or,

27" )+ Al ) =0
(28.22)

where

flm)=[Flplan+C

U,
This is known as Blasius Equation .

Contd. from Previous Slide

e The boundary conditions as in Eg. (28.16), in combination with Eg. (28.21a) and
(28.21b) become

oy =0u=0 n=0:fp)=07"{p)=0

, therefore

Ly =ou=U p=c: Fly)=flr)=1 (28.23)

= therefore

Equation (28.22) is a third order nonlinear differential equation .

e Blasius obtained the solution of this equation in the form of series expansion through

analytical techniques

e We shall not discuss this technique. However, we shall discuss a numerical technique
to solve the aforesaid equation which can be understood rather easily.

e Note that the equation for J does not contain * .
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. = =0 . -
e Boundary conditions at * = 0 and ¥ merge into the condition

7o oull, =f'=1 . This is the key feature of similarity solution.

e We can rewrite Eq. (28.22) as three first order differential equations in the following

way
F'=F (28.24a)
F=H (28.24b)
e —%fH (28.24¢)

e Let us next consider the boundary conditions.

1. The condition Jy=0 remains valid.

Y =10 G(0)=0

2. The condition S0 means that

' o) = o0 =
3. The condition S o) 1gives us oo =1 .
Note that the equations for f and G have initial values. However, the value for H(0) is not
known. Hence, we do not have a usual initial-value problem.

Shooting Technique

We handle this problem as an initial-value problem by choosing values of A0 and solving

by numerical methods f[??)’ G[??), and Hl[??)

&

In general, the condition Gioo) =1 will not be satisfied for the function - arising from the

numerical solution.

H(0)

We then choose other initial values of ¥ so that eventually we find an which results in

Geg) =1

This method is called the shooting technique .

e InEq. (28.24), the primes refer to differentiation wrt. the similarity variable 7 The
integration steps following Runge-Kutta method are given below.

Foi = Fo +%[k1 + 2k, + 2k, +k, ) (28.25a)
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X

3, = & +%[.31 + 20+ 205 +1,) (28.25b)

Hm+1=Hm+é[m1+2mg+2m3 +m4) (28.25¢)

=n, tk

« One moves from 7 #to Frl . A fourth order accuracy is preserved if h is

constant along the integration path, that is, Tan ~ T =4 for all values of n . The
values of k, | and m are as follows.

e For generality let the system of governing equations be
f=R.GHNG=FK(/,CH&H= F(f,GH.n)
k= kFl(fmesHm:??x)

Iy = hif (fmeHms??x)

ml ='£2F3|:fx=Gx=Hx’???e)

1 1 1 k

ky = ’EgFl{[(fx +§'£:1)=(G?¢ +5£1)=(H:¢ +§ml)=(?}1x +§)]}
1 1 1 i

Iy = ki, {((fx +§k1:|=(l::¥x +5£1):(H;¢ +5m1)=(?}1?¢ +53‘]}

1 1 1 b
By = th{(Un +§k1j=(Gx +5£1j=(H?¢ +Eml)=(?.?:u +5)]}

In a similar way K3, |3, m; and k,, |, m, mare calculated following standard formulae for the
Runge-Kutta integration. For example, K; is given by

1 1 1 h
ks = kFl{((fx +Ek2:'='ig:u +532)=(H:¢ +5m2}={??:u +5]‘]}
The functions F;, F,and F5 are

G, H,-fH/2respectively. Then at a distance A from the wall, we have

Flag)= F0)+ 30y (28.26a)
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Glan)= G0+ H(0)Ay (28.26b)
Hihp)= H0)+H'(0An (28.26¢)
H'lAn)= —lzf[& 7IH () (28.26d)

e As it has been mentioned earlier S [D) - H[Dj =4 is unknown. It must be

determined such that the condition J [o::) = G[m) =1 is satisfied.

The condition at infinity is usually approximated at a finite value of 7 (around 7=10 ). The

A

procedure described below.

process of obtaining -* accurately involves iteration and may be calculated using the

e For this purpose, consider Fig. 28.2(a) where the solutions of 5 versus 4 for two

different values of H210)
(F{0o)

are plotted.
O

The values of are estimated from the ' curves and are plotted in Fig. 28.2(b).

H{) Hi

e The value of now can be calculated by finding the value at which the line

ooy =1

1-2 crosses the line By using similar triangles, it can be said that

HO)-H(0), _ HO), -H(0),
1-Glea), oo, — Gleo),

H '

. By solving this, we get

e Next we repeat the same calculation as above by using H(0) and the better of the

two initial values of #(0) . Thus we get another improved value #(0) . This process

Ao HO

may continue, that is, we use

H ()

as a pair of values to find more

improved values for , and so forth. The better guess for H (0) can also be

obtained by using the Newton Raphson Method. It should be always kept in mind that
H{0) () 7

for each value of

Gies)

, the curve versus * is to be examined to get the proper

value of

e The functions f[??)’f [??) - Gand J [??) =# are plotted in Fig. 28.3.The velocity
components, u and v inside the boundary layer can be computed from Egs (28.21a)
and (28.21b) respectively.

e Asample computer program in FORTRAN follows in order to explain the solution
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procedure in greater detail. The program uses Runge Kutta integration together with
the Newton Raphson method

Download the program

1 /

G Initial Value H(0),

Initial Value H(0),
n
a
Gl (a)
o s frereseiaig 2
G(,,,)1 it
5 ,# __Fo
: Y
H(O), H(O), H(O)

(b)
Fig 28.2 Correcting the initial guess for H(O)
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16
/ﬂlnl

1.4 /

1.2 f o

1.0 /“f o

0.8 ,/f

0.6

=P

0.2 I

/ T — )

0 1 2 3 4 5 68 7
N—-=m

Fig 28.3 f, G and H distribution in the boundary layer

e Measurements to test the accuracy of theoretical results were carried out by many
scientists. In his experiments, J. Nikuradse, found excellent agreement with the

theoretical results with respect to velocity distribution I[u fU“) within the boundary

layer of a stream of air on a flat plate.

e Inthe next slide we'll see some values of the velocity profile shape

So)=uwil, =G, )=H

Values of the velocity profile shape

in tabular format.

f'li;rg):ufUm =T and f”[??):H

Table 28.1 The Blasius Velocity Profile G=ullU, f and H

|y s; H
0 0 0 0.33206
0.2 0.00664 0.006641 0.33199
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0.4

0.8

1.2

1.6

2.0

2.4

2.8

3.2

3.6

4.0

4.4

4.8

5.0

8.8

Wall Shear Stress

0.02656

0.10611

0.23795

0.42032

0.65003

0.92230

1.23099

1.56911

1.92954

2.30576

2.69238

3.08534

3.28329

7.07923

0.13277

0.26471

0.39378

0.51676

0.62977

0.72899

0.81152

0.87609

0.92333

0.95552

0.97587

0.98779

0.99155

1.00000

0.33147

0.32739

0.31659

0.29667

0.26675

0.22809

0.18401

0.13913

0.09809

0.06424

0.03897

0.02187

0.01591

0.00000

e With the profile known, wall shear can be evaluated as
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ki . J
Now, —=1U0T_7F [?}‘)—??
ey ey
VO
T, = {0, =
|0
or
Y ek
gl
1
or Tﬂ = {{-{Um Y 03326}(
v )T
L{“I:D) = 0'3326] from Table 28.1
0352007
Re, (Wall Shear Stress)

T

[~

C,o=—=
2ot

and the local skin friction coefficient is

e Substituting from (29.1a) we get

0.664

Ty =
Ee
¥ (Skin Friction Coefficient)

L
F=[r,dx
1}

ID 3320072 .:fx

SO

www.mycsvtunotes.in

Total frictional force per unit width for the plate of length L is

(29.1a)

(29.1b)

In 1951, Liepmann and Dhawan , measured the shearing stress on a flat plate directly.
Their results showed a striking confirmation of Eq. (29.1).
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or

I
033200, x"
U v V2|

or

14
F=0664x% 007 lIU_ (29.2)

and the average skin friction coefficient is

=__ F 132
T igpull) fRe, (293)
where, Re,=U,Llv .

For a flat plate of length L in the streamwise direction and width w perpendicular to the flow,
the Drag D would be

142 1r2
U3
D= F(2wl) = 0.664(2wL) o’ {;—LJ - 1.328w5{“q{f£—m} (29.4)

m

Boundary Layer Thickness

wll —=09% gz y—o )

e Since , it is customary to select the boundary layer thickness = as

that point where ulth, approaches 0.99.

X
r’j/ [—J g 50
e From Table 28.1, uf U‘I‘ reaches 0.99 at n= 5.0 and we can write -

Ee (29.5)

¥

w:J 5 0x
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e However, the aforesaid definition of boundary layer thickness is somewhat arbitrary, a
physically more meaningful measure of boundary layer estimation is expressed through
displacement thickness .

U
0.99Uc
s \ 0.99U,
I
u : ok
: ! l 8'~0.135
L | 8'=0.345 u 4
1 2
oY
O 2 5 G B X, S 5 T 87 S A 5 A S 7 5 S AT A S 5 4 WA
(a) Velocity deficit (b)

Fig. 29.1 (Displacement thickness) (b) Momentum thickness

e Displacement thickness (5 ): It is defined as the distance by which the external potential flow
is displaced outwards due to the decrease in velocity in the boundary layer.

ooa =T[Um — 14 )y
i]

bl
[1— U—Jﬂ?y (29.6)

Therefore,

dv=dn = |—dn

e Substituting the values of ull, and 7 from Eqgs (28.21a) and (28.19) into Eq.(29.6), we obtain

5 :EI[I—J{')&H: U—iy}m[?ﬁ—f@)]

5 _1700g VX _ 17208z

P (29.7)
or, U“‘ “-'RE"
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Following the analogy of the displacement thickness, a momentum thickness may be defined.

Momentum thickness ( g ): It is defined as the loss of momentum in the boundary layer as compared
with that of potential flow. Thus

. T i i
a =!U—{1—U—de (29.8)

FT)

With the substitution of I[u and 7 from Eg. (28.21a) and (28.19), we can evaluate numerically the

value of g for a flat plate as

" 7
g = U—If'[l—f')d??
w0
or & =0.664 e = @ (29.9)
&, Ee,
8,8 andd”

The relationships between have been shown in Fig. 29.1.

Momentum-Integral Equations For The Boundary Layer

e To employ boundary layer concepts in real engineering designs, we need approximate methods
that would quickly lead to an answer even if the accuracy is somewhat less.

e Karman and Pohlhausen devised a simplified method by satisfying only the boundary
conditions of the boundary layer flow rather than satisfying Prandtl's differential equations for
each and every particle within the boundary layer. We shall discuss this method herein.

e Consider the case of steady, two-dimensional and incompressible flow, i.e. we shall refer to Eqgs
(28.10) to (28.14). Upon integrating the dimensional form of Eq. (28.10) with respectto y =0
(wall) to y = 6 (where 6 signifies the interface of the free stream and the boundary layer), we

obtain

o & A o1 &
I[u—+v—]dy:.|-{——@+v—?}dy
nh O e ph oo h
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T P T 13 3w
w—dv+|v—dv=|—-——dv+|v—dv 29.10
| el i 12930

e The second term of the left hand side can be expanded as

3 &
e e
Iv—dy = [vu]g - Iu —dy
1] %} i} ay
T A T Ay T
J-v—cx’y—Um J-uady[sm ce—:——J
or, U & 0 i & by continuity equation
& aﬂ F&‘: ' aﬂ
—dy = | —dv+ |u—d
_ !V@; 3% m! P _!H Py (29.11)

e Substituting Eg. (29.11) in Eq. (29.10) we obtain

& &
!EH%y—UmJ;—ajdy: I —dy v— (29.12)

b 2 0% gy

p=il

P

e Substituting the relation between 92 and the free stream velocity Ve for the inviscid zone in
Eq. (29.12) we get

B
T By T f dU ﬂg_u
[ou—ay-U, [—av- U, —=dy = 4
n ox o o 2 dx o
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which is reduced to

T3 40 % T
IB_ = I[Um—ﬁ)d.}f=—w
o 6% dx o

e Since the integrals vanish outside the boundary layer, we are allowed to increase the integration

limit to infinity (i.e § = 00.)

407 %

T a T

< o [{7 —uldy="2

'!E?x . ![ o~ u)dy p
2ty -y + 22 [, iy = 2

e Substituting Eqg. (29.6) and (29.7) in Eq. (29.13) we obtain

d o o dU
Llra vy, Ee v (29.14)
dx dx o

is the displacement thickness

is momentum thickness

Equation (29.14) is known as momentum integral equation for two dimensional incompressible
laminar boundary layer. The same remains valid for turbulent boundary layers as well.

Needless to say, the wall shear stress [T"’) will be different for laminar and turbulent flows.

AU,

U

o

e Theterm dx signifies space-wise acceleration of the free stream. Existence of this term
means that free stream pressure gradient is present in the flow direction.
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L7
& =
o Forexample, we get finite value of dX  outside the boundary layer in the entrance region
g

U\D
of a pipe or a channel. For external flows, the existence of dx depends on the shape of

the body.

al
L = =10

e During the flow over a flat plate, dx and the momentum integral equation is reduced

to

d 2] T
E[U“'ﬁ ]_E (29.15)

Seperation of Boundary Layer

e It has been observed that the flow is reversed at the vicinity of the wall under certain
conditions.

e The phenomenon is termed as separation of boundary layer.

e Separation takes place due to excessive momentum loss near the wall in a boundary layer
e
_p =0
trying to move downstream against increasing pressure, i.e., dx , Which is called adverse
pressure gradient.

e Figure 29.2 shows the flow past a circular cylinder, in an infinite medium.

1. Upto g =30° , the flow area is like a constricted passage and the flow behaviour is like
that of a nozzle.

2. Beyond g =30 the flow area is diverged, therefore, the flow behaviour is much similar
to a diffuser

This dictates the inviscid pressure distribution on the cylinder which is shown by a firm line in Fig. 29.2.

Here
Fu . pressure in the free stream

= : velocity in the free stream and

Je.

:is the local pressure on the cylinder.
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Fig. 29.2 Flow separation and formation of wake behind a circular cylinder

Consider the forces in the flow field.

[ )
In the inviscid region,
1. Until =50 the pressure force and the force due to streamwise acceleration i.e.

inertia forces are acting in the same direction (pressure gradient being

negative/favourable)
2. Beyond g =30 , the pressure gradient is positive or adverse. Due to the adverse
pressure gradient the pressure force and the force due to acceleration will be opposing

each other in the in viscid zone of this part.

)
So long as no viscous effect is considered, the situation does not cause any sensation.

In the viscid region (near the solid boundary),
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1. Upto 8 =30 , the viscous force opposes the combined pressure force and the force
due to acceleration. Fluid particles overcome this viscous resistance due to continuous
conversion of pressure force into kinetic energy.

2. Beyond d= 1530 , Within the viscous zone, the flow structure becomes different. It is
seen that the force due to acceleration is opposed by both the viscous force and

pressure force.

e Depending upon the magnitude of adverse pressure gradient, somewhere around g =590 , the
fluid particles, in the boundary layer are separated from the wall and driven in the upstream
direction. However, the far field external stream pushes back these separated layers together
with it and develops a broad pulsating wake behind the cylinder.

e The mathematical explanation of flow-separation : The point of separation may be defined as
the limit between forward and reverse flow in the layer very close to the wall, i.e., at the point
of separation

[%J =10 (29.16)
/0

This means that the shear stress at the wall, T, =0 . But at this point, the adverse pressure continues to
exist and at the downstream of this point the flow acts in a reverse direction resulting in a back flow.

e We can also explain flow separation using the argument about the second derivative of velocity
u at the wall. From the dimensional form of the momentum at the wall, where u =v =0, we can

write
3%y 1d
(_EJ _ % (29.17)
) sdx
&
& o
e Consider the situation due to a favourable pressure gradient where dx we have,

2 2
1. (071 8* ) <0 . (From Eq. (29.17))

2. As we proceed towards the free stream, the velocity v approaches Ve asymptotically,

oy f . . . .
o) ¥ decreases at a continuously lesser rate in y direction.
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2 2
3. This means that Ouldy remains less than zero near the edge of the boundary layer.

2 2
4. The curvature of a velocity profile Buldy is always negative as shown in (Fig. 29.3a)

. Consider the case of adverse pressure gradient, apldx >0

By i dx >0

1. Atthe boundary, the curvature of the profile must be positive (since

).

2. Near the interface of boundary layer and free stream the previous argument regarding

2 2
Bufy and Ouldy still holds good and the curvature is negative.

3. Thus we observe that for an adverse pressure gradient, there must exist a point for

Puidy®=0

which . This point is known as point of inflection of the velocity profile in
the boundary layer as shown in Fig. 29.3b

4. However, point of separation means Guldy=0 at the wall.
2 2

Ouidy” >0 at the wall since separation can only occur due to adverse pressure

gradient. But we have already seen that at the edge of the boundary layer,

2 2
Ouidy” <0 . It is therefore, clear that if there is a point of separation, there must
exist a point of inflection in the velocity profile.
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Fig. 29.3 Velocity distribution within a boundary layer

(a) Favourable pressure gradient, dx
)
2.0

(b) adverse pressure gradient, dx

1. Let usreconsider the flow past a circular cylinder and continue our discussion on the wake
behind a cylinder. The pressure distribution which was shown by the firm line in Fig. 21.5 is

obtained from the potential flow theory. However. somewhere near g=50 (in experiments it

has been observed to be at g=18l ) . the boundary layer detaches itself from the wall.
2. Meanwhile, pressure in the wake remains close to separation-point-pressure since the eddies
(formed as a consequence of the retarded layers being carried together with the upper layer

through the action of shear) cannot convert rotational kinetic energy into pressure head. The
actual pressure distribution is shown by the dotted line in Fig. 29.3.
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3. Since the wake zone pressure is less than that of the forward stagnation point (pressure at
point A in Fig. 29.3), the cylinder experiences a drag force which is basically attributed to the
pressure difference.

The drag force, brought about by the pressure difference is known as form drag whereas the shear
stress at the wall gives rise to skin friction drag. Generally, these two drag forces together are
responsible for resultant drag on a body

Seperation of Boundary Layer

e It has been observed that the flow is reversed at the vicinity of the wall under certain
conditions.

e The phenomenon is termed as separation of boundary layer.

e Separation takes place due to excessive momentum loss near the wall in a boundary layer
e
_p =0
trying to move downstream against increasing pressure, i.e., dx , Which is called adverse
pressure gradient.

e Figure 29.2 shows the flow past a circular cylinder, in an infinite medium.

1. Upto g = 30" , the flow area is like a constricted passage and the flow behaviour is like
that of a nozzle.

2. Beyond g =580 the flow area is diverged, therefore, the flow behaviour is much similar
to a diffuser

This dictates the inviscid pressure distribution on the cylinder which is shown by a firm line in Fig. 29.2.

Here

Pu . pressure in the free stream

Ve : velocity in the free stream and

Je.

:is the local pressure on the cylinder.
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Fig. 29.2 Flow separation and formation of wake behind a circular cylinder

Consider the forces in the flow field.

[ )
In the inviscid region,
1. Until =50 the pressure force and the force due to streamwise acceleration i.e.

inertia forces are acting in the same direction (pressure gradient being

negative/favourable)
2. Beyond g =30 , the pressure gradient is positive or adverse. Due to the adverse
pressure gradient the pressure force and the force due to acceleration will be opposing

each other in the in viscid zone of this part.

)
So long as no viscous effect is considered, the situation does not cause any sensation.

In the viscid region (near the solid boundary),
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1. Upto 8 =30 , the viscous force opposes the combined pressure force and the force
due to acceleration. Fluid particles overcome this viscous resistance due to continuous
conversion of pressure force into kinetic energy.

2. Beyond d= 1530 , Within the viscous zone, the flow structure becomes different. It is
seen that the force due to acceleration is opposed by both the viscous force and

pressure force.

e Depending upon the magnitude of adverse pressure gradient, somewhere around g =590 , the
fluid particles, in the boundary layer are separated from the wall and driven in the upstream
direction. However, the far field external stream pushes back these separated layers together
with it and develops a broad pulsating wake behind the cylinder.

e The mathematical explanation of flow-separation : The point of separation may be defined as
the limit between forward and reverse flow in the layer very close to the wall, i.e., at the point
of separation

[%J =10 (29.16)
/0

This means that the shear stress at the wall, T, =0 . But at this point, the adverse pressure continues to
exist and at the downstream of this point the flow acts in a reverse direction resulting in a back flow.

e We can also explain flow separation using the argument about the second derivative of velocity
u at the wall. From the dimensional form of the momentum at the wall, where u =v =0, we can

write
3%y 1d
(_EJ _ % (29.17)
) sdx
&
& o
e Consider the situation due to a favourable pressure gradient where dx we have,

2 2
1. (071 8* ) <0 . (From Eq. (29.17))

2. As we proceed towards the free stream, the velocity v approaches Ve asymptotically,

oy f . . . .
o) ¥ decreases at a continuously lesser rate in y direction.
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2 2
3. This means that Ouldy remains less than zero near the edge of the boundary layer.

2 2
4. The curvature of a velocity profile Buldy is always negative as shown in (Fig. 29.3a)

. Consider the case of adverse pressure gradient, apldx >0

By i dx >0

1. Atthe boundary, the curvature of the profile must be positive (since

).

2. Near the interface of boundary layer and free stream the previous argument regarding

2 2
Bufy and Ouldy still holds good and the curvature is negative.

3. Thus we observe that for an adverse pressure gradient, there must exist a point for

Puidy®=0

which . This point is known as point of inflection of the velocity profile in
the boundary layer as shown in Fig. 29.3b

4. However, point of separation means Guldy=0 at the wall.
2 2

Ouidy” >0 at the wall since separation can only occur due to adverse pressure

gradient. But we have already seen that at the edge of the boundary layer,

2 2
Ouidy” <0 . It is therefore, clear that if there is a point of separation, there must
exist a point of inflection in the velocity profile.
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Fig. 29.3 Velocity distribution within a boundary layer

(a) Favourable pressure gradient, dx
)
2.0

(b) adverse pressure gradient, dx

1. Let usreconsider the flow past a circular cylinder and continue our discussion on the wake
behind a cylinder. The pressure distribution which was shown by the firm line in Fig. 21.5 is

obtained from the potential flow theory. However. somewhere near g=50 (in experiments it

has been observed to be at g=18l ) . the boundary layer detaches itself from the wall.
2. Meanwhile, pressure in the wake remains close to separation-point-pressure since the eddies
(formed as a consequence of the retarded layers being carried together with the upper layer

through the action of shear) cannot convert rotational kinetic energy into pressure head. The
actual pressure distribution is shown by the dotted line in Fig. 29.3.
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3. Since the wake zone pressure is less than that of the forward stagnation point (pressure at
point A in Fig. 29.3), the cylinder experiences a drag force which is basically attributed to the
pressure difference.

The drag force, brought about by the pressure difference is known as form drag whereas the shear
stress at the wall gives rise to skin friction drag. Generally, these two drag forces together are
responsible for resultant drag on a body

Karman-Pohlhausen Approximate Method For Solution Of Momentum Integral Equation Over A Flat
Plate

e The basic equation for this method is obtained by integrating the x direction momentum
equation (boundary layer momentum equation) with respect to y from the wall (aty=0) to a

distance a(x) which is assumed to be outside the boundary layer. Using this notation, we can
rewrite the Karman momentum integral equation as

i £+[25" +5' 1, Wy T (30.1)
dx dx o
e The effect of pressure gradient is described by the second term on the left hand side. For
pressure gradient surfaces in external flow or for the developing sections in internal flow, this
term contributes to the pressure gradient.

e We assume a velocity profile which is a polynomial of n=yid R being a form of similarity
variable , implies that with the growth of boundary layer as distance x varies from the leading

edge, the velocity profile [u IU“) remains geometrically similar.
e We choose a velocity profile in the form

E}i =ay +a +ta’ +an’ (30.2)

L=

n-thaty

) @ and o . .
In order to determine the constants 3 we shall prescribe the following

boundary conditions

at y=0,u=0 ar czf?}‘:[:l,ﬁi:{:l (30.3a)

] 2
at y=02%20 or arp=0"_(iv,)=0 (30.3b)
g a7

e at
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at y=du=U_ or af?}‘:l,ﬁizl (30.3¢)

L)

(30.3d)

ap =0, =0, +a; =1 and a;+3, =0

e These requirements will yield respectively

Finally, we obtain the following values for the coefficients in Eq. (30.2),

g =Ua =3/2a; =0 and +a,=-1/2 and the velocity profile becomes

Ll (30.4)
o A0
& _ 0, hence U = =10
e For flow over a flat plate, dx dx and the governing Eq. (30.1) reduces
to
i (30.5)
&l

e Again from Eq. (29.8), the momentum thickness is

A g

R " i I

ht a =]—]1-—|d
oy .IIU ( U J L}F

n 0w w

1
. 301, 3 1,
g =l 2n—2n? 1= 2p+2p |2
or DI(E?? 7 ][ X 2??]??
ar 5“:35
230

The wall shear stress is given by

T, = id—

¥,
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er T, = ﬁ{i{ym(iﬂ_ l??3}}:|
oy c\20 2 )],

3ult
24

or T, =

= Substituting the values of g and B in Eq. (30.5) we get,

39 483U,
280 dx 248007

or [&i5 =[@idx+cl
13 ol
P, 08
2 130,
where C, is any arbitrary unknown constant.
« The condition at the leading edge (% * = 0,5=0 ) yields G =0
Finally we obtain,
52 o 280 1 (30.7)
13 U,
or & =464 |22
U\D
I (30.8)

JEE,
e This is the value of boundary layer thickness on a flat plate. Although, the method is an
approximate one, the result is found to be reasonably accurate. The value is slightly lower than

the exact solution of laminar flow over a flat plate . As such, the accuracy depends on the order
of the velocity profile. We could have have used a fourth order polynomial instead --

K 2 3 4
7 =dp Tl ta,nt tasl” ta,d (30.9)

w

e In addition to the boundary conditions in Eq. (30.3), we shall require another boundary
condition at
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2
a_z[:l @raﬁﬂ:l’w

2
- Te=0
v a0

y=4,

a, =0 =20, =-2 and a, =1

e This yields the constants as . Finally the velocity profile will

be

i z 4
—=Zn-nT +
7 f = T8

w

Subsequently, for a fourth order profile the growth of boundary layer is given by

Ee

¥

Integral Method For Non-Zero Pressure Gradient Flows

e A wide variety of "integral methods" in this category have been discussed by Rosenhead . The
Thwaites method is found to be a very elegant method, which is an extension of the method
due to Holstein and Bohlen . We shall discuss the Holstein-Bohlen method in this section.

e This is an approximate method for solving boundary layer equations for two-dimensional
generalized flow. The integrated Eq. (29.14) for laminar flow with pressure gradient can be

written as
E[UE 5**]+ sudY_Te
dx dx g
or
*k
. dj s (25** N 5*) ci_U=r_m (30.11)
X F

e The velocity profile at the boundary layer is considered to be a fourth-order polynomial in

terms of the dimensionless distance "7 ‘P’FE , and is expressed as

wfU = Q‘?j‘+f:'?j'2 +C‘?j‘3 + ﬂ??j'd
The boundary conditions are
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A 1 d 207
1 i p——U

g=0u=0v=0

52 aqt pdx  dx
2
n=lu=U @=n,_a§=n
2L T

e A dimensionless quantity, known as shape factor is introduced as

y)
1 ra
v dx

e The following relations are obtained

a=2+£,b=—

A
fi 27

¢ Now, the velocity profile can be expressed as

[

where

Al -

Tg = ﬁ[&"f@})}r=0

Flgd= 29+ 27 + %, cl) =

O | —

e The shear stress is given by

@:hﬂ
Wb

e We use the following dimensionless parameters,

HJ*M**

e The integrated momentum Eq. (30.10) reduces to

ok
cfr:? " 5**[2+H:|d—U= ¥

dx dx 5

o
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(30.18)

- g
el -':H

The parameter L is related to the skin friction

The parameter K is linked to the pressure gradient.

If we take K as the independent variable . L and H can be shown to be the functions of K since

+ 1
F _l= Flei— _3_ A (30.19)
5—![1 Fln)- Ac{n)ldn = - -
5
5 - [ (#l)+ ac(2)) (1~ # (i)~ AG{m) M

1]
374 A (30.20)
315 945 9072

[5%*12 [37 FREPT T (30.21)
K= A=al2i-L 4

52 315 %45 9072

Therefore,
AT S Ay srooa a2
L=lz+ 2|2+ 2| 2o - - 2 |- ALk
i) & 6 315 945 9072

5" _ |[3,r"1|:|j— [A,:"IED) = £ [k)

S (37/315)- (a/945)- A2 /o072

e The right-hand side of Eq. (30.18) is thus a function of K alone. Walz pointed out that this
function can be approximated with a good degree of accuracy by a linear function of K so that

E[L - K[H - 2)]= a-bhE [W.:;rfz 's approximat :'on] [Walz's approximation]

e Equation (30.18) can now be written as

d [ U]s**)2 U182 1 dU
E[T]“"E"”TEE

+ 2
Solution of this differential equation for the dependent variable ug ] XV subject to the boundary

condition U=0whenx =0, gives
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Vv

U™’ __a oty
]

With a = 0.47 and b = 6. the approximation is particularly close between the stagnation point
and the point of maximum velocity.

Finally the value of the dependent variable is

ey (30.22)

By taking the limit of Eq. (30.22), according to L'Hopital's rule, it can be shown that

[ | o0 = 047 w6l (D)

This corresponds to K = 0.0783.

Note that is not equal to zero at the stagnation point. If is determined from Eq.
(30.22), K(x) can be obtained from Eq. (30.16).

Table 30.1 gives the necessary parameters for obtaining results, such as velocity profile and

shear stress " ® The approximate method can be applied successfully to a wide range of
problems.

Table 30.1 Auxiliary functions after Holstein and Bohlen

A K fl[K:I Ja '[K)
12 0.0948 2.250 0.356
10 0.0919 2.260 0.351
8 0.0831 2.289 0.340
7.6 0.0807 2.297 0.337
7.2 0.0781 2.305 0.333
7.0 0.0767 2.309 0.331
6.6 0.0737 2.318 0.328
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6.2 0.0706
5.0 0.0599
3.0 0.0385
1.0 0.0135
0 0
-1 -0.0140
-3 -0.0429
-5 -0.0720
-7 -0.0999
-9 -0.1254
-11 -0.1474
-12 -0.1567

A

0

0.2

0.4

0.8

1.2

1.6
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0.00664

0.02656

0.10611

0.23795

0.42032

AIK)

0.006641
0.13277
0.26471
0.39378

0.51676

2.328

2.361

2.427

2.508

2.554

2.604

2.716

2.847

2.999

3.176

3.383

3.500

AlL)

0.006641

0.13277

0.26471

0.39378

0.51676

0.324

0.310

0.283

0.252

0.235

0.217

0.179

0.140

0.100

0.059

0.019
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2.0 0.65003 0.62977 0.62977
2.4 0.92230 0.72899 0.72899
2.8 1.23099 0.81152 0.81152
3.2 1.56911 0.87609 0.87609
3.6 1.92954 0.92333 0.92333
4.0 2.30576 0.95552 0.95552
4.4 2.69238 0.97587 0.97587
4.8 3.08534 0.98779 0.98779
5.0 3.28329 0.99155 0.99155
8.8 7.07923 1.00000 1.00000

e As mentioned earlier, K and 4 are related to the pressure gradient and the shape factor.

e Introduction of K and 4 in the integral analysis enables extension of Karman-Pohlhausen

method for solving flows over curved geometry. However, the analysis is not valid for the

geometries, where A <=12gpg 4 > +12

Point of Seperation

For point of seperation, @ = 0
8] A
Nl
O 6
2+=—=10
or, i
A=-11

or,

Entry Flow In A Duct -
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e Growth of boundary layer has a remarkable influence on flow through a constant area duct or
pipe.
Consider a flow entering a pipe with uniform velocity.

1. The boundary layer starts growing on the wall at the entrance of the pipe.
2. Gradually it becomes thicker in the downstream.

3. The flow becomes fully developed when the boundary layers from the wall meet at the
axis of the pipe.

e The velocity profile is nearly rectangular at the entrance and it gradually changes to a parabolic
profile at the fully developed region.

e Before the boundary layers from the periphery meet at the axis, there prevails a core region
which is uninfluenced by viscosity.

e Since the volume-flow must be same for every section and the boundary-layer thickness
increases in the flow direction, the inviscid core accelerates, and there is a corresponding fall in
pressure.

e Entrance length : It can be shown that for laminar incompressible flows, the velocity profile
approaches the parabolic profile through a distance L, from the entry of the pipe. This is known
as entrance length and is given by

o on
%393 005, where Be=—2

v

For a Reynolds number of 2000, this distance, the entrance length is about 100 pipe-diameters. For
turbulent flows, the entrance region is shorter, since the turbulent boundary layer grows faster.

e At the entrance region,

1. The velocity gradient is steeper at the wall, causing a higher value of shear stress as compared
to a developed flow.

2. Momentum flux across any section is higher than that typically at the inlet due to the change in
shape of the velocity profile.

3. Arising out of these, an additional pressure drop is brought about at the entrance region as
compared to the pressure drop in the fully developed region.
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Fig. 31.1 Development of boundary layer in the entrance region of a duct
Control Of Boundary Layer Separation -

e The total drag on a body is attributed to form drag and skin friction drag. In some flow
configurations, the contribution of form drag becomes significant.

e In order to reduce the form drag, the boundary layer separation should be prevented or
delayed so that better pressure recovery takes place and the form drag is reduced
considerably. There are some popular methods for this purpose which are stated as follows.

i By giving the profile of the body a streamlined shape( as shown in Fig. 31.2).

1. This has an elongated shape in the rear part to reduce the magnitude of the
pressure gradient.

2. The optimum contour for a streamlined body is the one for which the wake
zone is very narrow and the form drag is minimum.

(a) (b)
Co =1.2 Cp =0.07
10° <Re<10° 10° <Re<10’

Fig. 31.2 Reduction of drag coefficient (Cp) by giving the profile a streamlined shape

ii.  The injection of fluid through porous wall can also control the boundary layer
separation. This is generally accomplished by blowing high energy fluid particles
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tangentially from the location where separation would have taken place otherwise. This
is shown in Fig. 31.3.
1. The injection of fluid promotes turbulence

2. This increases skin friction. But the form drag is reduced considerably due to
suppression of flow separation

3. The reduction in form drag is quite significant and increase in skin friction drag
can be ignored.

>
Fig. 31.3 Boundary layer control by blowing

Mechanisms of Boundary Layer Transition

e One of the interesting problems in fluid mechanics is the physical mechanism of transition from
laminar to turbulent flow. The problem evolves about the generation of both steady and
unsteady vorticity near a body, its subsequent molecular diffusion, its kinematic and dynamic
convection and redistribution downstream, and the resulting feedback on the velocity and
pressure fields near the body. We can perhaps realise the complexity of the transition problem
by examining the behaviour of a real flow past a cylinder.

Figure 31.4 (a) shows the flow past a cylinder for a very low Reynolds number (N l). The flow
smoothly divides and reunites around the cylinder.

e At a Reynolds number of about 4, the flow (boundary layer) separates in the downstream and
the wake is formed by two symmetric eddies . The eddies remain steady and symmetrical but
grow in size up to a Reynolds number of about 40 as shown in Fig. 31.4(b).

e At a Reynolds number above 40, oscillation in the wake induces asymmetry and finally the
wake starts shedding vortices into the stream. This situation is termed as onset of periodicity as
shown in Fig. 31.4(c) and the wake keeps on undulating up to a Reynolds number of 90 .
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¢ At a Reynolds number above 90, the eddies are shed alternately from a top and bottom of the
cylinder and the regular pattern of alternately shed clockwise and counterclockwise vortices
form Von Karman vortex street as in Fig. 31.4(d).

e Periodicity is eventually induced in the flow field with the vortex-shedding phenomenon.

e The periodicity is characterised by the frequency of vortex shedding JF

¢ In non-dimensional form, the vortex shedding frequency is expressed as fD/Urcfknown as
the Strouhal number named after V. Strouhal, a German physicist who experimented with wires
singing in the wind. The Strouhal number shows a slight but continuous variation with Reynolds
number around a value of 0.21. The boundary layer on the cylinder surface remains laminar and
separation takes placeat about 81°from the forward stagnation point.

e At about Re =500, multiple frequencies start showing up and the wake tends to become
Chaotic.

e As the Reynolds number becomes higher, the boundary layer around the cylinder tends to
become turbulent. The wake, of course, shows fully turbulent characters (Fig31.4 (e)).

e For larger Reynolds numbers, the boundary layer becomes turbulent. A turbulent boundary
layer offers greater resistance to seperation than a laminar boundary layer. As a consequence
the seperation point moves downstream and the seperation angle is delayed to 110° from the
forward stagnation point (Fig 31.4 (f) ).
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Fig. 31.4 Influence of Reynolds number on wake-zone aerodynamics

e Experimental flow visualizations past a circular cylinder are shown in Figure 31.5 (a) and (b)
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Fig 31.5 (b) Flow Past a Cylinder at Re=10000 [Photograph courtesy Thomas Corke and Hasan Najib
(lllinais Institute of Technology, Chicago)]

e Averyinteresting sequence of events begins to develop when the Reynolds number is increased
beyond 40, at which point the wake behind the cylinder becomes unstable. Photographs show
that the wake develops a slow oscillation in which the velocity is periodic in time and
downstream distance. The amplitude of the oscillation increases downstream. The oscillating
wake rolls up into two staggered rows of vortices with opposite sense of rotation.

e Karman investigated the phenomenon and concluded that a nonstaggered row of vortices is
unstable, and a staggered row is stable only if the ratio of lateral distance between the vortices
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to their longitudinal distance is 0.28. Because of the similarity of the wake with footprints in a
street, the staggered row of vortices behind a blue body is called a Karman Vortex Street . The
vortices move downstream at a speed smaller than the upstream velocity U.

e Intherange 40 < Re < 80, the vortex street does not interact with the pair of attached vortices.
As Re is increased beyond 80 the vortex street forms closer to the cylinder, and the attached
eddies themselves begin to oscillate. Finally the attached eddies periodically break off
alternately from the two sides of the cylinder.

e While an eddy on one side is shed, that on the other side forms, resulting in an unsteady flow
near the cylinder. As vortices of opposite circulations are shed off alternately from the two
sides, the circulation around the cylinder changes sign, resulting in an oscillating "lift" or lateral
force. If the frequency of vortex shedding is close to the natural frequency of some mode of
vibration of the cylinder body, then an appreciable lateral vibration culminates.

e Numerical flow visualizations for the flow past a circular cylinder can be observed in Fig 31.6 and
31.7

Fig 31.6 Numerical flow visualization (LES results) for a low reynolds number flow past a Circular Cylinder
[Animation by Dr.-Ing M. Breuer, LSTM, Univ Erlangen-Nuremberg ]
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Fig 31.7 Numerical flow visualization (LES results) for a moderately high reynolds number flow past a
Circular Cylinder
[Animation by Dr.-Ing M. Breuer, LSTM, Univ Erlangen-Nuremberg ]

e Anunderstanding of the transitional flow processes will help in practical problems either by
improving procedures for predicting positions or for determining methods of advancing or
retarding the transition position.

Re o = 2300 . The actual value

depends upon the disturbance in flow. Some experiments have shown the critical Reynolds

e The critical value at which the transition occurs in pipe flow is

number to reach as high as 10,000. The precise upper bound is not known, but the lower bound

Re_, = 2300

appears to be . Below this value, the flow remains laminar even when subjected

to strong disturbances.

2300 =ERe, = 2600

e Inthe case of flow through a channel, , the flow alternates randomly

between laminar and partially turbulent. Near the centerline, the flow is more laminar than
turbulent, whereas near the wall, the flow is more turbulent than laminar. For flow over a flat

plate, turbulent regime is observed between Reynolds numbers U /v of 3.5 x 10° and 10°.
Several Events Of Transition -

Transitional flow consists of several events as shown in Fig. 31.8. Let us consider the events one after
another.

1. Region of instability of small wavy disturbances-
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Consider a laminar flow over a flat plate aligned with the flow direction (Fig. 31.8).

e Inthe presence of an adverse pressure gradient, at a high Reynolds number (water velocity
approximately 9-cm/sec), two-dimensional waves appear.

e These waves are called Tollmien-Schlichting wave( In 1929, Tollmien and Schlichting predicted
that the waves would form and grow in the boundary layer).

e These waves can be made visible by a method known as tellurium method.
2. Three-dimensional waves and vortex formation-

e Disturbances in the free stream or oscillations in the upstream boundary layer can generate
wave growth, which has a variation in the span wise direction.

e This leads an initially two-dimensional wave to a three-dimensional form.

¢ In many such transitional flows, periodicity is observed in the span wise direction.

e Thisis accompanied by the appearance of vortices whose axes lie in the direction of flow.
3. Peak-Valley development with streamwise vortices-

e As the three-dimensional wave propagates downstream, the boundary layer flow develops into

a complex stream wise vortex system.
e  Within this vortex system, at some spanwise location, the velocities fluctuate violently .

e These locations are called peaks and the neighbouring locations of the peaks are valleys (Fig.
31.9).

4. Vorticity concentration and shear layer development-

At the spanwise locations corresponding to the peak, the instantaneous streamwise velocity profiles
demonstrate the following

e Often, an inflexion is observed on the velocity profile.
e The inflectional profile appears and disappears once after each cycle of the basic wave.

5. Breakdown-

The instantaneous velocity profiles produce high shear in the outer region of the boundary layer.

e The velocity fluctuations develop from the shear layer at a higher frequency than that of the
basic wave.
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e These velocity fluctuations have a strong ability to amplify any slight three-dimensionality,
which is already present in the flow field.

e Asaresult, a staggered vortex pattern evolves with the streamwise wavelength twice the
wavelength of Tollmien-Schlichting wavelength .

¢ The span wise wavelength of these structures is about one-half of the stream wise value.
e The high frequency fluctuations are referred as hairpin eddies.

This is known as breakdown.

6. Turbulent-spot development-
e The hairpin-eddies travel at a speed grater than that of the basic (primary) waves.
e Asthey travel downstream, eddies spread in the spanwise direction and towards the wall.
e The vortices begin a cascading breakdown into smaller vortices.

e Insuch a fluctuating state, intense local changes occur at random locations in the shear layer
near the wall in the form of turbulent spots.

e Each spot grows almost linearly with the downstream distance.

The creation of spots is considered as the main event of transition .

Boundary Layer

. *

@ @ G TN

R R RN T S S S S R S B T SR A G Y S L S S S S N

Streamiine

Fig. 31.8 Sequence of event involved in transition

Peak

Peak Peak

S (R A N R S S A G SR AR e A AT S S NS AT S S G B A

Fig. 31.9 Cross-stream view of the streamwise vortex system
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Exercise Problems - Chapter 9

1.Two students are asked to solve the Blasius flow over a flat plate to determine the variation of
boundary layer thickness as a function of the Reynolds number. One student solves the problem by

g 30

x  JRe
similarity method and arrives at the result ¥ . The other student chooses to solve the problem
& 4.4

. . . X L [fRe
by using the momentum-integer equation and Karman-Pohlhausen method and funds that L
Which of the two results is expected to be closer to the experimental results and why?

2. A scientist claims that a highly viscous flow around a body can generate the same flow patterns as the
flow of an inviscid and incompressible fluid around that body. According to our understanding, the
Reynolds number for the first flow is very small, while the Reynolds number for the second flow can be
taken to be ®? (infinity). Do you think it is possible to get the same flow patterns for the two extreme
values of Reynolds number? Please use mathematical analysis to prove or disprove the scientist's claim.

3. In boundary layer theory, a boundary layer can be characterized by any of the following quantities (i)
Boundary layer thickness (ii) Displacement thickness (iii) Momentum thickness.

How do these quantities differ in their physical as well as mathematical definitions? For the flow over a
flat plate, which of these is expected to have the highest value at a given location on the wall, and which
the lowest?

4. What do you mean by the "point of separation" of a boundary layer? How will the velocity gradient
B Fu

. 5.3

b and the second gradient & .Vary within the boundary layer at the point of separation? Please

show the variation graphically. Here u is the velocity along the wall and y is the co-ordinate

perpendicular to the wall.

5. Reduce the Prandtl's boundary layer equations to a simpler form than that given by equations (28.10)
- (28.12) for -

(a) Flow over a flat plate.

(b) The case Tpr =G (a constant)

(c) The case where velocity (v) is directly proportional to kinematic viscosity ( )

&

(d) Also solve the Prandtl's boundary layer equations for v = ¥ assuming pressure gradient ax =0,

6. Water of kinematic viscosity ( ) equal to 9.29x10 7 m? /s is flowing steadily over a smooth flat plate
at zero angle of incidence, with a velocity of 1.524 m/s. The length of the plate is 0.3048 m. Calculate-

(a) The thickness of the boundary layer at 0.1524 m from the leading edge.
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(b) Boundary layer rate of growth at 0.1524 m from the leading edge.
(c) Total drag coefficient on the plate.

7. Use the Prandtl's boundary layer equations and show that the velocity profile for a laminar flow past
a flat plate has an infinite radius of curvature on the surface of the plate.

8. Air is flowing over a smooth flat plate at a velocity of 4.39 m/s. The density of air is 1.031 Kg/m? and
the kinematic viscosity is 1.34x10®° m* /s. The length of the plate is 12.2 m in the direction of the flow.
Find-

(a) The boundary layer thickness at 15.24 cm from the leading edge.
(b) The drag coefficient (Cps ).

9. Show that the shape factor (H) has the value ¥ 2.6 for the boundary layer flow over a flat plate. Also
calculate the position where the flow is critical for flow velocity of 3.048 m/s and kinematic viscosity
9.29x10 " m? /s.

Given that at the critical location Reynold's Number (based on distance from the leading edge surface) is
related to shape factor (H) by-

log(R critical ) =H.

10. Determine the distance downstream from the bow of a ship moving at 3.9 m/s relative to still water
at which the boundary layer will become turbulent. Also find the boundary layer thickness and total
friction drag coefficient for this portion of the surface of the ship. Given the kinematic viscosity =
1.124x10° m* /s.

Turbulent Flow

Introduction
e The turbulent motion is an irregular motion.

e Turbulent fluid motion can be considered as an irregular condition of flow in which various
quantities (such as velocity components and pressure) show a random variation with time and
space in such a way that the statistical average of those quantities can be quantitatively
expressed.

e Itis postulated that the fluctuations inherently come from disturbances (such as roughness of a
solid surface) and they may be either dampened out due to viscous damping or may grow by
drawing energy from the free stream.
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¢ At a Reynolds number less than the critical, the kinetic energy of flow is not enough to sustain
the random fluctuations against the viscous damping and in such cases laminar flow continues
to exist.

e At somewhat higher Reynolds number than the critical Reynolds number, the kinetic energy of
flow supports the growth of fluctuations and transition to turbulence takes place.

Characteristics Of Turbulent Flow

e The most important characteristic of turbulent motion is the fact that velocity and pressure at a
point fluctuate with time in a random manner.

u U

P »

Laminar Turbulent

(b) ‘

(a)
Fig. 32.1 Variation of horizontal components of velocity for laminar and turbulent flows at a point P

e The mixing in turbulent flow is more due to these fluctuations. As a result we can see more
uniform velocity distributions in turbulent pipe flows as compared to the laminar flows .

Laminar

P S E LT T AL o /// /.

Turbuient

Ly

7

O 411

i 1 ’r’

P

___________

Fig. 32.2 Comparison of velocity profiles in a pipe for (a) laminar and (b) turbulent flows

e Turbulence can be generated by -

1. frictional forces at the confining solid walls

2. the flow of layers of fluids with different velocities over one another

The turbulence generated in these two ways are considered to be different.
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Turbulence generated and continuously affected by fixed walls is designated as wall turbulence , and
turbulence generated by two adjacent layers of fluid in absence of walls is termed as free turbulence .
One of the effects of viscosity on turbulence is to make the flow more homogeneous and less
dependent on direction.

e Turbulence can be categorised as below -

¢ Homogeneous Turbulence: Turbulence has the same structure quantitatively in all parts of the
flow field.

e Isotropic Turbulence: The statistical features have no directional preference and perfect
disorder persists.

e Anisotropic Turbulence: The statistical features have directional preference and the mean
velocity has a gradient.

¢ Homogeneous Turbulence : The term homogeneous turbulence implies that the velocity
fluctuations in the system are random but the average turbulent characteristics are independent
of the position in the fluid, i.e., invariant to axis translation.

Consider the root mean square velocity fluctuations
n'=Ju? V=t ow= g

In homogeneous turbulence, the rms values of u’, v’ and w' can all be different, but each value must be
constant over the entire turbulent field. Note that even if the rms fluctuation of any component, say u's
are constant over the entire field the instantaneous values of u necessarily differ from point to point at
any instant.

e Isotropic Turbulence: The velocity fluctuations are independent of the axis of reference, i.e.
invariant to axis rotation and reflection. Isotropic turbulence is by its definition always

homogeneous . In such a situation, the gradient of the mean velocity does not exist, the mean
velocity is either zero or constant throughout.

In isotropic turbulence fluctuations are independent of the direction of reference and

N T - R I R
who_wvT oWt o uw'=vi=w

It is re-emphasised that even if the rms fluctuations at any point are same, their instantaneous values
necessarily differ from each other at any instant.

e Turbulent flow is diffusive and dissipative . In general, turbulence brings about better mixing of
a fluid and produces an additional diffusive effect. Such a diffusion is termed as "Eddy-diffusion

www.mycsvtunotes.in



MYcsvtu Notes

".( Note that this is different from molecular diffusion)

At a large Reynolds number there exists a continuous transport of energy from the free stream
to the large eddies. Then, from the large eddies smaller eddies are continuously formed. Near
the wall smallest eddies destroy themselves in dissipating energy, i.e., converting kinetic energy
of the eddies into intermolecular energy.

Laminar-Turbulent Transition

e For aturbulent flow over a flat plate,

Boundary layer starts as  subsequently
laminar flow at leading >
edge

Flow turns into shortly _ turns into
fransition flow thereafter ~ turbulent flow

e The turbulent boundary layer continues to grow in thickness, with a small region below it called
a viscous sublayer. In this sub layer, the flow is well behaved,just as the laminar boundary layer

(Fig. 32.3)
Laminar | | | .
\ -
\ <—— Turbulent
am®® - *- ’
—— ) * ---------
/ /" '] f’r i J'r r.'" “.' -'7r ’ ;f /’ { _~" I( *\-"’ / /
P
Laminar
Transitional sublayer

Fig. 32.3 Laminar - turbulent transition
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lllustration

e Observe that at a certain axial location, the laminar boundary layer tends to become unstable.
Physically this means that the disturbances in the flow grow in amplitude at this location.

Free stream turbulence, wall roughness and acoustic signals may be among the sources of such
disturbances. Transition to turbulent flow is thus initiated with the instability in laminar flow

e The possibility of instability in boundary layer was felt by Prandtl as early as 1912.The
theoretical analysis of Tollmien and Schlichting showed that unstable waves could exist if the
Reynolds number was 575.

The Reynolds number was defined as
Re=0_d"fv

where U, is the free stream velocity, 3 s the displacement thickness and ¥ is the kinematic viscosity .

e Taylor developed an alternate theory, which assumed that the transition is caused by a
momentary separation at the boundary layer associated with the free stream turbulence.

U.Dfv

In a pipe flow the initiation of turbulence is usually observed at Reynolds numbers (
the range of 2000 to 2700.

)in
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The development starts with a laminar profile, undergoes a transition, changes over to turbulent profile
and then stays turbulent thereafter (Fig. 32.4). The length of development is of the order of 25 to 40
diameters of the pipe.

Developing
;,___,__ region } _» Fully developed
"~ turbulent flow
U.. ,ff//f/ ////,/ ,,//// ///////,,,,///////x,/x/,
u_
//,,// 7 TITT 7
;,’//;///ff/"’f'a,//// //' ;"///,/f/l// (////////!'
- =|
> X
Fig. 32.4 Development of turbulent flow in a circular duct
Correlation Functions
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Fig 32.5 Velocity Correlation

e Astatistical correlation can be applied to fluctuating velocity terms in turbulence. Turbulent
motion is by definition eddying motion. Not withstanding the circulation strength of the
individual eddies, a high degree of correlation exists between the velocities at two points in
space, if the distance between the points is smaller than the diameter of the eddy. Conversely, if
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the points are so far apart that the space, in between, corresponds to many eddy diameters
(Figure 32.5), little correlation can be expected.

e Consider a statistical property of a random variable (velocity) at two points separated by a
distance r. An Eulerian correlation tensor (nine terms) at the two points can be defined by

O =ufxjuix+r)

In other words, the dependence between the two velocities at two points is measured by the
correlations, i.e. the time averages of the products of the quantities measured at two points. The
correlation of the & ‘components of the turbulent velocity of these two points is defined as

iy x4r)

It is conventional to work with the non-dimensional form of the correlation, such as

wx k' x4r)

Rir)= s
(u’zfx)zF(x+r))

A value of R(r) of unity signifies a perfect correlation of the two quantities involved and their motion is
in phase. Negative value of the correlation function implies that the time averages of the velocities in
the two correlated points have different signs. Figure 32.6 shows typical variations of the correlation R
with increasing separationr .

The positive correlation indicates that the fluid can be modelled as travelling in lumps. Since swirling
motion is an essential feature of turbulent motion, these lumps are viewed as eddies of various sizes.
The correlation R(r) is a measure of the strength of the eddies of size larger than r. Essentially the
velocities at two points are correlated if they are located on the same eddy

e To describe the evolution of a fluctuating function u'(t), we need to know the manner in which
the value of u' at different times are related. For this purpose the correlation function

_ 2"t + 1)

R[r) 9y =

between the values of u’ at different times is chosen and is called autocorrelation function.

e The correlation studies reveal that the turbulent motion is composed of eddies which are
convected by the mean motion . The eddies have a wide range variation in their size. The size of
the large eddies is comparable with the dimensions of the neighbouring objects or the
dimensions of the flow passage.
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The size of the smallest eddies can be of the order of 1 mm or less. However, the smallest eddies are
much larger than the molecular mean free paths and the turbulent motion does obey the principles of
continuum mechanics.

Fig 32.6 Variation of R with the distance of separation, r
Reynolds decomposition of turbulent flow :

e The Experiment: In 1883, O. Reynolds conducted experiments with pipe flow by feeding into the
stream a thin thread of liquid dye. For low Reynolds numbers, the dye traced a straight line and
did not disperse. With increasing velocity, the dye thread got mixed in all directions and the
flowing fluid appeared to be uniformly colored in the downstream flow.

The Inference: It was conjectured that on the main motion in the direction of the pipe axis, there existed
a superimposed motion all along the main motion at right angles to it. The superimposed motion causes
exchange of momentum in transverse direction and the velocity distribution over the cross-section is
more uniform than in laminar flow. This description of turbulent flow which consists of superimposed
streaming and fluctuating (eddying) motion is well known as Reynolds decomposition of turbulent flow.

e Here, we shall discuss different descriptions of mean motion. Generally, for Eulerian velocity u,
the following two methods of averaging could be obtained.

(i) Time average for a stationary turbulence:

g
2 (x )= fim —— [ul, ¢\

f—m 2;1 5

(ii) Space average for a homogeneous turbulence:

2 () = lim - [ulr.t, i

K=k x
=%

For a stationary and homogeneous turbulence, it is assumed that the two averages lead to the same

result: @F = @° and the assumption is known as the ergodic hypothesis.
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In our analysis, average of any quantity will be evaluated as a time average . Take a finite time
interval t;. This interval must be larger than the time scale of turbulence. Needless to say that it

must be small compared with the period t, of any slow variation (such as periodicity of the mean

flow) in the flow field that we do not consider to be chaotic or turbulent .

Thus, for a parallel flow, it can be written that the axial velocity component is

uly,t)=uly)+a'(l,¢)

As such, the time mean component 7(y) determines whether the turbulent motion is steady or not. The

symbol [ signifies any of the space variables.

While the motion described by Fig.32.6(a) is for a turbulent flow with steady mean velocity the
Fig.32.6(b) shows an example of turbulent flow with unsteady mean velocity. The time period of

the high frequency fluctuating component is t; whereas the time period for the unsteady mean
motion is t, and for obvious reason t,>>t;. Even if the bulk motion is parallel, the fluctuation u'

being random varies in all directions.

e The continuity equation, gives us

Invoking Eq.(32.1) in the above expression, we get

Bu ou' v ow

LV g
gx dxr dv &k
— ’ -— ’
T W=+ T W=u+u
_ _
A oy
> = ke 1A ,/‘,/{T\‘Et“ &1
2 2 B N A 1 &\") u
o <o ! Y o i o
§ _8 ; W ™ 4 o’
= =11 | ety ‘l i
L -
{ "1 u
b

Timg ——= Timg ———=

Fig 32.6 Steady and unsteady mean motions in a turbulent flow
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%iﬂ

Since X , Eq.(32.2) depicts that y and z components of velocity exist even for the parallel flow if
the flow is turbulent. We have-

ufy.t)=ufy)+u'(ii)
v=04+vTE) (32.3)
w=0+wfl )

Contd. from Previous slide

e However, the fluctuating components do not bring about the bulk displacement of a fluid

r
element. The instantaneous displacement is ¥ it , and that is not responsible for the bulk
motion. We can conclude from the above

r
[utde=0 ¢<T <t
-r

Due to the interaction of fluctuating components, macroscopic momentum transport takes place.
Therefore, interaction effect between two fluctuating components over a long period is non-zero and
this can be expressed as

T
Iu'v'dﬁ;ﬁﬂ
r

Taking time average of these two integrals and write

- 1 F
w'=— [u'de=0 (32.4a)
27 %
and
—— 17 32.4b
u’v’:—Iu’v’dﬁiﬂ (32.4b)
2T ¢
¢ Now, we can make a general statement with any two fluctuating parameters, say, with f' and g'
as
A 32.5a
F=g=0 52.52)

www.mycsvtunotes.in



MYcsvtu Notes

jTg' =0 (32.5b)

The time averages of the spatial gradients of the fluctuating components also follow the same laws, and
they can be written as

As? (32.6)

¢ The intensity of turbulence or degree of turbulence in a flow is described by the relative
magnitude of the root mean square value of the fluctuating components with respect to the
time averaged main velocity. The mathematical expression is given by

e 5270
73

The degree of turbulence in a wind tunnel can be brought down by introducing screens of fine mesh at
the bell mouth entry. In general, at a certain distance from the screens, the turbulence in a wind tunnel
becomes isotropic, i.e. the mean oscillation in the three components are equal,

ulﬂ — vl2 — le

In this case, it is sufficient to consider the oscillation u' in the direction of flow and to put

Tue UL Jj (32.7b)

This simpler definition of turbulence intensity is often used in practice even in cases when turbulence is
not isotropic.

Following Reynolds decomposition, it is suggested to separate the motion into a mean motion and a
fluctuating or eddying motion. Denoting the time average of the 1 component of velocity by it and

fluctuating component as ’LL’, we can write down the following,

p=utu, v=v+v, w=wt+w,p=p+p
By definition, the time averages of all quantities describing fluctuations are equal to zero.

z:lzl:l,;I= |:|, ;IZO,EIZ 0 (328)
The fluctuations u’, v', and w' influence the mean motion ¥, ¥and " in such a way that the mean
motion exhibits an apparent increase in the resistance to deformation. In other words, the effect of

fluctuations is an apparent increase in viscosity or macroscopic momentum diffusivity .
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¢ Rules of mean time - averages

If fand g are two dependent variables and if s denotes anyone of the independent variables x, y

Intermittency

e Consider a turbulent flow confined to a limited region. To be specific we shall consider the
example of a wake (Figure 33.1a), but our discussion also applies to a jet (Figure 33.1b), a shear
layer (Figure 33.1c), or the outer part of a boundary layer on a wall.

e The fluid outside the turbulent region is either in irrotational motion (as in the case of a wake or
a boundary layer), or nearly static (as in the case of a jet). Observations show that the
instantaneous interface between the turbulent and nonturbulent fluid is very sharp.

e The thickness of the interface must equal the size of the smallest scales in the flow, namely the
Kolmogorov microscale.
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U N [=0
Irrotational s P Q;/""
turbulent U, 1=l
v: Fav N
(a)
interface
y
X
(b)
U1 ‘J/\f
/—’\/\A/V\

Figure 33.1 Three types of free turbulent flows; (a) wake (b) jet and (c) shear layer [after P.K. Kundu
and I.M. Cohen, Fluid Mechanics, Academic Press, 2002]

e Measurement at a point in the outer part of the turbulent region (say at point P in Figure 33.1a)
shows periods of high-frequency fluctuations as the point P moves into the turbulent flow and
low-frequency periods as the point moves out of the turbulent region. Intermittency | is defined

as the fraction of time the flow at a point is turbulent.
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e The variation of | across a wake is sketched in Figure 33.1a, showing that | =1 near the center
where the flow is always turbulent, and | = 0 at the outer edge of the flow domain.

Derivation of Governing Equations for Turbulent Flow

e For incompressible flows, the Navier-Stokes equations can be rearranged in the form

(33.1a)
(33.1b)

(33.1¢)
and
(33.2)
e Express the velocity components and pressure in terms of time-mean values and

corresponding fluctuations. In continuity equation, this substitution and subsequent
time averaging will lead to

B v Bw| (o ' Bw
—t—F+—|[+|—+—+— =0
{ ¥ EZJ [ J

or, % dx  dv e
'
Since, ca % oz
B Ay L 5332
- T T _—= 33.3a
We can write ox &

From Eqgs (33.3a) and (33.2), we obtain
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L (33.3b)
& & &

e Itis evident that the time-averaged velocity components and the fluctuating velocity
components, each satisfy the continuity equation for incompressible flow.

¢ Imagine a two-dimensional flow in which the turbulent components are independent
of the z -direction. Eventually, Eq.(33.3b) tends to
cu' e
&x the
On the basis of condition (33.4), it is postulated that if at an instant there is an increase in u'in
the x -direction, it will be followed by an increase in v'in the negative y -direction. In other

(33.4)

words, u'v’is non-zero and negative. (see Figure 33.2)

‘- "A

Fig 33.2 Each dot represents uv pair at an instant

e Invoking the concepts of eqn. (32.8) into the equations of motion eqn (33.1 3, b, ¢),
we obtain expressions in terms of mean and fluctuating components. Now, forming
time averages and considering the rules of averaging we discern the following. The

ke R
2
terms which are linear, such as % and 2%° vanish when they are averaged [from

(32.6)]. The same is true for the mixed terms like T ,or R , but the quadratic
terms in the fluctuating components remain in the equations. After averaging, they

2 ——t
form ¥ | ¥ Vetc,
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o If we perform the aforesaid exercise on the x-momentum equation, we obtain

using rules of time averages,

' _ o _ o B _ @ Fw
& T a & At &t
We obtain
—_ a —2 - = - - —_
i (u ) a(”"’) a(”'w) dp 2= d—=3, 840 08—
29—+ + + =——+ iV u— | —u" +—uv'+—u'w
54 &% & ds ax ox =Y

e Introducing simplifications arising out of continuity Eq. (33.3a), we shall obtain.
B -Bu -du —du

= 88— & —
O i — VW b ==+ gVt — | — " —u Y+ —
x ax a &| e &

e Performing a similar treatment on y and z momentum equations, finally we obtain the
momentum equations in the form.

In x direction,
31: —311 —aI: —E}z: a; 2= & 2 i A ad [
Al —FE—tVr—tw—p=——+ gV u—p a—u +—uv+§uw (33.5a)
%

Iny direction,
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¢ Comments on the governing equation :

1. The left hand side of Egs (33.5a)-(33.5c) are essentially similar to the steady-state
Navier-Stokes equations if the velocity components u, v and w are replaced by 1, ¥
and 0.

2. The same argument holds good for the first two terms on the right hand side of Eqgs
(33.5a)-(33.5¢).

3. However, the equations contain some additional terms which depend on turbulent
fluctuations of the stream. These additional terms can be interpreted as components
of a stress tensor.

e Now, the resultant surface force per unit area due to these terms may be considered as

In x direction,

&t ox v & x g M &
Iny direction,
v —fv -dv —dv 3p - 3 3 .
Ay —t—F+v—Fw—f=——+ Vv —1'  +—F +—T (33.6b)
&t & dy 2t v Togy WMok
In z direction,
fw —dw -fw —ow 3p — [ 8 3 . 3
Pyt —+tv—+w— =+ w1+ —T +—F | (33.60)
¥ ox & tz 1324 ox B &

e Comparing Egs (33.5) and (33.6), we can write
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T Th T N WY LW

— _2 —
T -:‘_T;D, T =8 'y v v (33.7)
T T o v v'w ow

e It can be said that the mean velocity components of turbulent flow satisfy the same Navier-
Stokes equations of laminar flow. However, for the turbulent flow, the laminar stresses must be
increased by additional stresses which are given by the stress tensor (33.7). These additional
stresses are known as apparent stresses of turbulent flow or Reynolds stresses . Since
turbulence is considered as eddying motion and the aforesaid additional stresses are added to
the viscous stresses due to mean motion in order to explain the complete stress field, it is often
said that the apparent stresses are caused by eddy viscosity . The total stresses are now

(33.8)

and so on. The apparent stresses are much larger than the viscous components, and the viscous stresses

can even be dropped in many actual calculations .

Turbulent Boundary Layer Equations

e For atwo-dimensional flow (w = O)over a flat plate, the thickness of turbulent boundary layer is
assumed to be much smaller than the axial length and the order of magnitude analysis may be
applied. As a consequence, the following inferences are drawn:

% _,
@) &

% _ar
[&') ar  dx
) &t Bt
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(d) g(‘ _2) << % (‘ m"")'

e The turbulent boundary layer equation together with the equation of continuity becomes

Bu v _ g (33.9)
dx i

% - 1 & a{ Bhe T}

H—+v—=—— —+—q——u'v (33.10)
gy 2 dx | &y

e A comparison of Eg. (33.10) with laminar boundary layer Eq. (23.10) depicts that: u, vand p are

replaced by the time average values 1 Yand P ,and laminar viscous force per unit volume

;) 3 o

ay _[TE+T2) Ty = M S 't
is replaced by where ¥ is the laminar shear stress and “* 2

is the turbulent shear stress.

Boundary Conditions

e All the components of apparent stresses vanish at the solid walls and only stresses which act
near the wall are the viscous stresses of laminar flow. The boundary conditions, to be satisfied
by the mean velocity components, are similar to laminar flow.

e Avery thin layer next to the wall behaves like a near wall region of the laminar flow. This layer is
known as laminar sublayer and its velocities are such that the viscous forces dominate over the
inertia forces. No turbulence exists in it (see Fig. 33.3).

e For adeveloped turbulent flow over a flat plate, in the near wall region, inertial effects are

insignificant, and we can write from Eq.33.10,

ou_duv)_,
Yy
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1
Turbulent shear
Turbulent _— sglresses
shear
| n
.",
Buffer A
layer ¥
:—”‘"‘- B - - e
- & waio "~ Laminar
' I Try sublayer
Laminar _ 5
£

sublayer
Fig 33.3 Different zones of a turbulent flow past a wall

W ——
— 'V
which can be integrated as, v =constant

e We know that the fluctuating components, do not exist near the wall, the shear stress on the

wall is purely viscous and it follows

However, the wall shear stress in the vicinity ofthe laminar sublayer is estimated as

Y, -0 Y. (33.11a)
= = —_— . a
5 0|7

5

where U; is the fluid velocity at the edge of the sublayer. The flow in the sublayer is specified by a

velocity scale (characteristic of this region).

e We define the friction velocity,

£

o =

1
Fw Tﬁ (33.11b)

as our velocity scale. Once Uis specified, the structure of the sub layer is specified. It has been
confirmed experimentally that the turbulent intensity distributions are scaled with t+. For example,
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— 2
maximum value of the u'? is always about Sur. The relationship between Urand the Uscan be

determined from Eqgs (33.11a) and (33.11b) as

U, =CU, .
Let us assume . Now we can write

U\D

2 =
uy =Cv—= _ (33.12a)
: whereC' isa proportionality constant
or
.84 —| 7
LA C[—‘”} (33.12b)
v &
T
= N}ﬂf
Hence, a non-dimensional coordinate may be defined as, Y which will help us estimating
different zones in a turbulent flow. The thickness of laminar sublayer or viscous sublayer is considered
tobe 7 ¥ 5 .

S <0

Turbulent effect starts in the zone of 77 >3 and in a zone of , laminar and turbulent motions

coexist. This domain is termed as buffer zone. Turbulent effects far outweight the laminar effect in the

zone beyond =70 and this regime is termed as turbulent core .

foqf

pu'n

e For flow over a flat plate, the turbulent shear stress ( ) is constant throughout in the y

direction and this becomes equal to Twat the wall. In the event of flow through a channel, the
-

'y

turbulent shear stress ( ) varies with y and it is possible to write

2= (33.12¢)

where the channel is assumed to have a height 2h and Cis the distance measured from the centreline of

the channel |[= - yjl . Figure 33.1 explains such variation of turbulent stress.

Shear Stress Models
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¢ In analogy with the coefficient of viscosity for laminar flow, J. Boussinesq introduced a mixing
coefficient +for the Reynolds stress term, defined as

T, =—pou'v=gu %
= =My
)y

e Using Hrthe shearing stresses can be written as

B D
lemgrft:ﬂtgz.m};

such that the equation

kS

{[v+v )é} (33.13)
t @} :

The term v; is known as eddy viscosity and the model is known as eddy viscosity model .

Unfortunately the value of v, is not known. The term v is a property of the fluid whereas v; is
attributed to random fluctuations and is not a property of the fluid. However, it is necessary to
find out empirical relations between v,, and the mean velocity. The following section discusses
relation between the aforesaid apparent or eddy viscosity and the mean velocity components

Prandtl’'s Mixing Length Hypothesis

e Consider a fully developed turbulent boundary layer . The stream wise mean velocity varies only
from streamline to streamline. The main flow direction is assumed parallel to the x-axis (Fig.
33.4).

e The time average components of velocity are given by u=ulylv=0w=0 . The fluctuating

component of transverse velocity v'transports mass and momentum across a plane at y; from

the wall. The shear stress due to the fluctuation is given by
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o (33.14)

T :—,.::'z‘!:'_v':,.:,.f:ra

Fluid, which comes to the layer y; from a layer (y;- /) has a positive value of v'. If the lump of
fluid retains its original momentum then its velocity at its current location y; is smaller than the

velocity prevailing there. The difference in velocities is then

(33.15)

faty = 2y )=l — 1) ;%J

v A
.‘
Proportional tou” ‘;" u(y)
_; |
, : ti(y, + ) >
- AL )
x ! u(y,) h N
Ly u(y.-1) /)
Vi .
il

Fig. 33.4 One-dimensional parallel flow and Prandtl's mixing length hypothesis

The above expression is obtained by expanding the function u[yl B ) in a Taylor series and neglecting
all higher order terms and higher order derivatives. | is a small length scale known as Prandtl's mixing
length . Prandtl proposed that the transverse displacement of any fluid particle is, on an average, 'l'.

continued..

e Consider another lump of fluid with a negative value of v’ Thisis arriving at Y1from (yl + E)
If this lump retains its original momentum, its mean velocity at the current lamina Y1will be
somewhat more than the original mean velocity of ¥1. This difference is given by
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Atay = 5l +0)— 7o) m{%} (33.16)

»rl

e The velocity differences caused by the transverse motion can be regarded as the turbulent
velocity components at Y1,

e We calculate the time average of the absolute value of this fluctuation as

®

e Suppose these two lumps of fluid meet at a layer Y1The lumps will collide with a velocity 2u’

b= %(Iﬂu1|+ e )= (33.17)

rl

and diverge. This proposes the possible existence of transverse velocity component in both
directions with respect to the layer at ¥1. Now, suppose that the two lumps move away in a

reverse order from the layer Y1with a velocity 2u’  The empty space will be filled from the
surrounding fluid creating transverse velocity components which will again collide at Y1.
Keeping in mind this argument and the physical explanation accompanying Egs (33.4), we may
state that

M-l

|17| = (cc:'?zsz]m = (const)i

5]

along with the condition that the moment at which u'is positive, v’ is more likely to be negative and

or,

conversely when u'is negative. Possibly, we can write at this stage

7 -

— Bt
u'v' = =0, [5} (33.18)

where C; and C, are different proportionality constants. However, the constant C, can now be included
in still unknown mixing length and Eg. (33.18) may be rewritten as
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e For the expression of turbulent shearing stress 7twe may write

pe = ol

5
By (33.19)

e After comparing this expression with the eddy viscosity Eg. (33.14), we may arrive at a more

precise definition,

T, = " o

{B_QJ =i % (33.20a)
&) Tty '

where the apparent viscosity may be expressed as

27
2
£ = .-d g (33.20b)
and the apparent kinematic viscosity is given by
Bu
v == (33.20¢)

e The decision of expressing one of the velocity gradients of Eq. (33.19) in terms of its modulus as

B

dy

i

was made in order to assign a sign to Ttaccording to the sign of & .

e Note that the apparent viscosity and consequently,the mixing length are not properties of fluid.
They are dependent on turbulent fluctuation.

o But how to determine the value of " I the mixing length? Several correlations, using

experimental results for Tthave been proposed to determine [
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However, so far the most widely used value of mixing length in the regime of isotropic
turbulence is given by

i= 7y (33.21)

(= 04)

where Yis the distance from the wall and Xis known as von Karman constant

Universal Velocity Distribution Law And Friction Factor In Duct Flows For Very  Large Reynolds
Numbers

e For flows in a rectangular channel at very large Reynolds numbers the laminar
sublayer can practically be ignored. The channel may be assumed to have a width 2h
and the x axis will be placed along the bottom wall of the channel.

e Consider a turbulent stream along a smooth flat wall in such a duct and denote the
distance from the bottom wall by y, while u(y) will signify the velocity. In the
neighbourhood of the wall, we shall apply

I=3y

e According to Prandtl's assumption, the turbulent shearing stress will be

—.1
T, = Pf}f{%} (34.1)

At this point, Prandtl introduced an additional assumption which like a plane Couette flow
takes a constant shearing stress throughout, i.e

— (34.2)

W

where fwdenotes the shearing stress at the wall.
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: 1/ 2
HT = |:i:|
e Invoking once more the friction velocity 2 , we obtain
A 2
”12 = 1’2}’2 [—J (34.3)
Ay
o _ur (34.4)
W
On integrating we find
- ug
="t y+C (34.5)
¥

e Despite the fact that Eq. (34.5) is derived on the basis of the friction velocity in the
neighbourhood of the wall because of the assumption that Tee = T#= constant, we
shall use it for the entire region. At y = h (at the horizontal mid plane of the channel),

we have & = Usaz. The constant of integration is eliminated by considering

U = Elnh+C
¥
C=Upy —Eln k

¥

Substituting C in Eq. (34.5), we get

Vo —8 _ l]n[ﬁ] (34.6)
“r o\

Equation (34.6) is known as universal velocity defect law of Prandtl and its distribution has

been shown in Fig. 34.1
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2.8

(u./%

1.2 \

N

N\
N

0 04 o 0.8 1.0

Fig 34.1 Distibution of universal velocity defect law of Prandtl in a turbulent channel flow

0

Here, we have seen that the friction velocity Y=is a reference parameter for velocity.Equation
(34.5) can be rewritten as

%y e

i
where z

e The no-slip condition at the wall cannot be satisfied with a finite constant of integration. This is
expected that the appropriate condition for the present problem should be that Y ata very

small distance” ~ %0 from the wall. Hence, Eq. (34.5) becomes
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w1
uf;E(]ny—]nyu) (34.7)

o The distance 27 is of the order of magnitude of the thickness of the viscous layer. Now we can
write Eq. (34.7) as

i:l(}n y X ﬁ]

Yr ¥ v

”

o= A7+ D (34.8)

where 4 = '[” 2’), the unknown ﬁis included in Dl.

Equation (34.8) is generally known as the universal velocity profile because of the fact that it is
applicable from moderate to a very large Reynolds number.

However, the constants 4 and Dlhave to be found out from experiments. The aforesaid profile is not
only valid for channel (rectangular) flows, it retains the same functional relationship for circular pipes as
well . It may be mentioned that even without the assumption of having a constant shear stress
throughout, the universal velocity profile can be derived.

e Experiments, performed by J. Nikuradse, showed that Eq. (34.8) is in good agreement with
experimental results. Based on Nikuradse's and Reichardt's experimental data, the empirical
constants of Eq. (34.8) can be determined for a smooth pipe as

2 =25mp+55 (34.9)
Yr

This velocity distribution has been shown through curve (b) in Fig. 34.2
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Fig 34.2 The universal velocity distribution law for smooth pipes

e However, the corresponding friction factor concerning Eq. (34.9) is

= 2 0log o [Re /7 - 0.8

1
NG

(34.10)

the universal velocity profile does not match very close to the wall where the viscous shear

predominates the flow.

e Von Karman suggested a modification for the laminar sublayer and the buffer zone which are

i=;';a = @f‘or n =50
By %
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Y 11.510g =2 —3.0f0r 5 <5 <60 (34.12)
L!:-E_- "

Equation (34.11) has been shown through curve(a) in Fig. 34.2.

e It may be worthwhile to mention here that a surface is said to be hydraulically smooth so long

Epliy

0= =5 (34.13)

w

£
where ¥ is the average height of the protrusions inside the pipe.

Physically, the above expression means that for smooth pipes protrusions will not be extended outside
the laminar sublayer. If protrusions exceed the thickness of laminar sublayer, it is conjectured (also
justified though experimental verification) that some additional frictional resistance will contribute to
pipe friction due to the form drag experienced by the protrusions in the boundary layer.

e Inrough pipes experiments indicate that the velocity profile may be expressed as:

2 _osm Y 485 (34.14)

i
T EP

At the centre-line, the maximum velocity is expressed as

o
mr _ 55 £ 453 (34.15)

i
T £z

Note that ¥ no longer appears with R and e . This means that for completely rough zone of turbulent
flow, the profile is independent of Reynolds number and a strong function of pipe roughness .

e However, for pipe roughness of varying degrees, the recommendation due to Colebrook and
White works well. Their formula is

L=1.?4—2.Dloglul%+ﬂ} (34.16)

,.\E ke ﬁ
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where & is the pipe radius

For £p =0 , this equation produces the result of the smooth pipes (Eq.(34.10)). For Ee —o0 , it gives
the expression for friction factor for a completely rough pipe at a very high Reynolds number which is

given by

f:

{EIOg E +1.74
£p

2
J (34.17)

Turbulent flow through pipes has been investigated by many researchers because of its enormous
practical importance.

Fully Developed Turbulent Flow In A Pipe For Moderate Reynolds Numbers

e The entry length of a turbulent flow is much shorter than that of a laminar flow, J. Nikuradse
determined that a fully developed profile for turbulent flow can be observed after an entry
length of 25 to 40 diameters. We shall focus to fully developed turbulent flow in this section.

e Considering a fully developed turbulent pipe flow (Fig. 34.3) we can write

e
2R T, = —[—p}raqf‘ (34.18)
ax
or
2
_dp_chy (34.19)
ax o
L d
\ i
—_ > — —— T —— et |
>
—»
Tw
X »>

Fig. 34.3 Fully developed turbulent pipe flow
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It can be said that in a fully developed flow, the pressure gradient balances the wall shear stress only
and has a constant value at any I . However, the friction factor ( Darcy friction factor ) is defined in a
fully developed flow as

]
_ (jﬁ] _ @;E av (34.20)
X

Comparing Eqg.(34.19) with Eq.(34.20), we can write

T, = % ot (34.21)

H. Blasius conducted a critical survey of available experimental results and established the empirical
correlation for the above equation as

F =03164Fe Fe = pU, D/ u (34.22)

where

e Itis found that the Blasius's formula is valid in the range of Reynolds number of Re <10°. At the
time when Blasius compiled the experimental data, results for higher Reynolds numbers were
not available. However, later on, J. Nikuradse carried out experiments with the laws of friction in
a very wide range of Reynolds numbers, 4 x 10° < Re < 3.2 x 10°. The velocity profile in this range

follows:
" Lin
g F} (34.23)
i

where 1l is the time mean velocity at the pipe centre and Yis the distance from the wall . The exponent
n varies slightly with Reynolds number. In the range of Re ~ 10°, n is 7.

Fully Developed Turbulent Flow In A Pipe For Moderate Reynolds Numbers

e The ratio of &zand Yy for the aforesaid profile is found out by considering the volume flow rate
Qas

R
0 = nR*U,, = [ 2nrudr
a

r=R-y
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A S S L L S

S S S S S S S
From equation (34.23)

B

AR U, = 278] (R = 7)1 B (=)

a¥

or
o 2oy oz 1Y]E
RAT,, = 27t Reyr |- * R
> n+1[ d J 2?3+1[y JD
or
- # b
AR, = 2| RE - R
n+l Zr+1
or
a
AR, = 2R ———————
(m+N(2n+1)
or
I o0’
av _ # (34.24a)
i (m+T(2u+T1)

e Now, for different values of n (for different Reynolds numbers) we shall obtain different values
of Va1t from Eq.(34.24a). On substitution of Blasius resistance formula (34.22) in Eq.(34.21),
the following expression for the shear stress at the wall can be obtained.

e
outting Fe=poU, 2R u
and where v=pip

www.mycsvtunotes.in



MYcsvtu Notes

174
T, =0.03955 0072 | 2
2R,

or

154
T, = 0.03325007 [%]

or

T T Y 174
Tw:D.DBBESp( J @) [—]
, =

U, fu=08

0 fu . .
e Forn=7, % becomes equal to 0.8. substituting in the above equation, we get

T, =0.033250(0.8 ) (vs R}

Finally it produces

7, =0.022500)  (viR)" (34.24b)

or

v 14
w2 p= 00225 p()’ 4 [E]

1 52 L4 714
where "7 is friction velocity. However, “* may be spitted into ™ and ™  and we obtain

or

_ 2y
%:3_?4(3‘“ ] (34.25a)

e Now we can assume that the above equation is not only valid at the pipe axis (y = R) but also
at any distance from the wall y and a general form is proposed as
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_ 17
X _ 3_:#4(”*} (34.25b)
u.&- v

e Concluding Remarks :

1. It can be said that (1/7)th power velocity distribution law (24.38b) can be derived from Blasius's
resistance formula (34.22) .

2. Equation (34.24b) gives the shear stress relationship in pipe flow at a moderate Reynolds

5
number, i.e Ee =107 ynlike very high Reynolds number flow, here laminar effect cannot be
neglected and the laminar sub layer brings about remarkable influence on the outer zones.

3. The friction factor for pipe ﬂows,f , defined by Eq. (34.22) is valid for a specific range of
Reynolds number and for a particular surface condition.

Skin Friction Coefficient For Boundary Layers On A Flat Plate

e Calculations of skin friction drag on lifting surface and on aerodynamic bodies are somewhat
similar to the analyses of skin friction on a flat plate. Because of zero pressure gradient, the flat
plate at zero incidence is easy to consider. In some of the applications cited above, the pressure
gradient will differ from zero but the skin friction will not be dramatically different so long there
is no separation.

e We begin with the momentum integral equation for flat plate boundary layer which is valid for
both laminar and turbulent flow.

i(yj 5")= Ty (34.26a)
odx o
T
S J
J 2
e Invoking the definition of Cﬁ { edl, , Eq.(34.26a) can be written as
Cﬁ _ 5 dd (34.26b)
ax

e Due to the similarity in the laws of wall, correlations of previous section may be applied to the

flat plate by substituting & for R and Voo for the time mean velocity at the pipe centre.The
rationale for using the turbulent pipe flow results in the situation of a turbulent flow over a flat
plate is to consider that the time mean velocity, at the centre of the pipe is analogous to the
free stream velocity, both the velocities being defined at the edge of boundary layer thickness.

Finally, the velocity profile will be [following Eq. (34.24)]
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" ~ ¥ 157
7 |3| forRe=10° (34.27)

Evaluating momentum thickness with this profile, we shall obtain

5 y 17 y 17 -
g == [1-]= =— 4 34.28
![5] [ [5] }y 72 (3428

3
Consequently, the law of shear stress (in range of Ee =10 ) for the flat plate is found out by making
use of the pipe flow expression of Eq. (34.24b) as

1:4
7, =00225005) (%]

Substituting Voo for @and © for R in the above expression, we get

1/ 4
=1 0225[ :| (34.29)
P@J U,

Once again substituting Eqs (34.28) and (34.29) in Eq.(34.26), we obtain

7 ds v
29 g 0225{ }
ét}irm

?2 dx

X

45 14
s 2 = 0.2314{%}
(34.30)

1i4
53 = D.EBQE;{%J +C
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e For simplicity, if we assume that the turbulent boundary layer grows from the leading edge of
the plate we shall be able to apply the boundary conditions x = 0, 6 = 0 which will yield C=0,
and Eq. (34.30) will become From Eqs (34.26b), (34.28) and (34.31), it is possible to calculate the
average skin friction coefficient on a flat plate as

54 L4
[E] :0.2392[ v }
x xli

5 115
2. 0_3?[ v }
x =ir

w

or,
4] _ 145
—=0.37Re, ) (34.31)
or, &
Where Eer = (Lox)v

From Eqgs (34.26b), (34.28) and (34.31), it is possible to calculate the average skin friction coefficient on
a flat plate as

Tr=0072(Re )" (34.32)

It can be shown that Eq. (34.32) predicts the average skin friction coefficient correctly in the regime of
Reynolds number below 2 X 10°.

e This result is found to be in good agreement with the experimental results in the range of

Reynolds number between 5 % 10%and 107 which is given by

Cs=0074(Re, " (34.33)

Equation (34.33) is a widely accepted correlation for the average value of turbulent skin friction
coefficient on a flat plate.

o With the help of Nikuradse's experiments, Schlichting obtained the semi empirical equation for
the average skin friction coefficient as

Ef _ 0.455 (34.34)
Elog R@zjs
Equation (34.34) was derived asssuming the flat plate to be completely turbulent over its entire length .
In reality, a portion of it is laminar from the leading edge to some downstream position. For this
purpose, it was suggested to use
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5,04 4 (34.35a)
[:1c::-g Ee )253 Ee
where A has various values depending on the value of Reynolds number at which the transition takes
place.

e If the trasition is assumed to take place around a Reynolds number of & X lUE‘, the average
skin friction correlation of Schlichling can be written as

(log Re)m e

All that we have presented so far, are valid for a smooth plate.

e Schlichting used a logarithmic expression for turbulent flow over a rough surface and derived

25
o :[1.89+1.6210g i] (34.36)
£

7
Exercise Problems - Chapter 10

1.Estimate the power required to move a flat plate, 15 m. long and 4 m. wide, in oil
(p=800kg/m* v=10"m* fzec)

at 4m/sec, under the following cases:

a) The boundary layer is assumed laminar over the entire surface of the plate. (Ans. 1665.5 N-m/sec)

_ 5
b) Transition to turbulence occurs at Fe=3x10 and plate is smooth.(Ans. 9486 N-m/sec)
c) The boundary layer is turbulent over the entire plate which is smooth.(Ans. 10023.94 N-m/sec)

e JT:
d) The boundary layer is turbulent over the entire rough plate with ¥ .(Ans. 17200 N-m/sec)

2. Water (P =1000kg/ m* v = 2x10"m?/ sec)

long, with a maximum velocity of 3m/sec. If the Reynolds number is, find the diameter of the pipe (with

is transported through a horizontal pipeline, 800 m.

and without the use of Moody Diagram ).

Also calculate the thickness of laminar sub-layer and the buffer layer, and find the power required to

" 00

maintain the flow. Calculate your results for a fully rough pipe with *

(Ans. Diameter of the pipe 0.8 m., laminar sub-layer thickness 0.1 mm, buffer layer thickness 1.3 mm,
power required 50250 W)
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3. Find the frictional drag on the top and sides of a box-shaped moving van 2.4 m wide, 3.0 m high, and

_ -5
10.5 m long traveling at 100km/h through air ( ¥ = 1.4%10 ). Assume that the vehicle has a rounded
nose so that the flow does not seperate from the top and side. also assume that a turbulent boundary
layer starts immediately at the leading edge.

Also, find the thickness of the boundary layer and the shear stress at the trailing edge.

(Ans. Drag = 105.9 N, B.L. = 0.136m, Shear stress = 0.904 Pa)

Applications of Viscous Flows Through Pipes

Introduction

= A complete analytical solution for the equation of motion in the case of a laminar flow is
available, even the advanced theories in the analysis of turbulent flow depend at some point on
experimentally derived information. Flow through pipes is usually turbulent in practice.

=  One of the most important items of information that an hydraulic engineer needs is the power
required to force fluid at a certain steady rate through a pipe or pipe network system. This
information is furnished in practice through some routine solution of pipe flow problems with
the help of available empirical and theoretical information.

»= This lecture deals with the typical approaches to the solution of pipe flow problems in practice.

Concept of Friction Factor in a pipe flow:
e The friction factor in the case of a pipe flow was already mentioned in lecture 26.
e We will elaborate further on friction factor or friction coefficient in this section.
e  Skin friction coefficient for a fully developed flow through a closed duct is defined as

Ty

W
4 (1/2) g™ (35-1)

=0/ 4

where, Vis the average velocity of flow given by , Qand A are the volume flow rate through

the duct and the cross-sectional area of the duct respectively.

From a force balance of a typical fluid element (Fig. 35.1) in course of its flow through a duct of constant
cross-sectional area, we can write
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fp 4 (35.2)

Ty

(LT

TT777 777777777777 777777

FIG 35.1 Force Balance of a fluid element in the course of flow through a duct

+
where, " ¥ is the shear stress at the wall and ap is the piezometric pressure drop over a length of L. A
and S are respectively the cross-sectional area and wetted perimeter of the duct.
Substituting the expression (35.2) in Eqg. (35.1), we have,

oy t2 4 L B (35.3)

S et 4 Lo gt

Dy =44/5

where, and is known as the hydraulic diameter .

In case of a circular pipe, D,=D, the diameter of the pipe. The coefficient C;defined by Eqgs (35.1) or
(35.3) is known as Fanning's friction factor .

e To do away with the factor 1/4 in the Eq. (35.3), Darcy defined a friction factor f (Darcy's friction

factor) as
D *
= _"”L (35.4)
2
Loaingr

5

e Comparison of Egs (35.3) and (35.4) gives =4Cy . Equation (35.4) can be written for a pipe

flow as
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*

f= Dh bp

e Equation (35.5) is written in a different fashion for its use in the solution of pipe flow problems
in practice as

* L g3
- F. 2 35.6
bp = f Dy 2 (35.6a)
or in terms of head loss (energy loss per unit weight)
* 2
hy = by _ AV (35.6b)

g 2gly
where, hsrepresents the loss of head due to friction over the length L of the pipe.
e Equation (35.6b) is frequently used in practice to determine h;

e Inorder to evaluate h;, we require to know the value of f. The value of f can be determined from
Moody's Chart.

Variation of Friction Factor

In case of a laminar fully developed flow through pipes, the friction factor, f is found from the
exact solution of the Navier-Stokes equation as discussed in lecture 26. It is given by

64
f== (35.7)

¢ Inthe case of a turbulent flow, friction factor depends on both the Reynolds number and the
roughness of pipe surface.

e Sir Thomas E. Stanton (1865-1931) first started conducting experiments on a number of pipes of
various diameters and materials and with various fluids. Afterwards, a German engineer
Nikuradse carried out experiments on flows through pipes in a very wide range of Reynolds
number.

e A comprehensive documentation of the experimental and theoretical investigations on the laws
of friction in pipe flows has been presented in the form of a diagram, as shown in Fig. 35.2, by
L.F. Moody to show the variation of friction factor, f with the pertinent governing parameters,

E/Dof the pipe. This diagram

is known as Moody's Chart which is employed till today as the best means for predicting the

namely, the Reynolds number of flow and the relative roughness

values of f .
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Fig. 35.2 Friction Factors for pipes (adapted from Trans. ASME, 66,672, 1944)

Figure 35.2 depicts that

The friction factor f at a given Reynolds number, in the turbulent region, depends on the relative
roughness, defined as the ratio of average roughness to the diameter of the pipe, rather than

the absolute roughness.

For moderate degree of roughness, a pipe acts as a smooth pipe up to a value of Re where the
curve of f vs Re for the pipe coincides with that of a smooth pipe. This zone is known as the

smooth zone of flow .

The region where f vs Re curves (Fig. 35.2) become horizontal showing that f is independent of
Re, is known as the rough zone and the intermediate region between the smooth and rough

zone is known as the transition zone.

The position and extent of all these zones depend on the relative roughness of the pipe. In the
smooth zone of flow, the laminar sublayer becomes thick, and hence, it covers appreciably the
irregular surface protrusions. Therefore all the curves for smooth flow coincide.

With increasing Reynolds number, the thickness of sublayer decreases and hence the surface
bumps protrude through it. The higher is the roughness of the pipe, the lower is the value of Re
at which the curve of f vs Re branches off from smooth pipe curve (Fig. 35.2).
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e Inthe rough zone of flow, the flow resistance is mainly due to the form drag of those
protrusions. The pressure drop in this region is approximately proportional to the square of the
average velocity of flow. Thus f becomes independent of Re in this region.

In practice, there are three distinct classes of problems relating to flow through a single pipe line as

follows:

1. The flow rate and pipe diameter are given. One has to determine the loss of head over a given
length of pipe and the corresponding power required to maintain the flow over that length.

2. The loss of head over a given length of a pipe of known diameter is given. One has to find out
the flow rate and the transmission of power accordingly.

3. The flow rate through a pipe and the corresponding loss of head over a part of its length are
given. One has to find out the diameter of the pipe.

In the first category of problems, the friction factor f is found out explicitly from the given values of flow
rate and pipe diameter. Therefore, the loss of head h; and the power required, P can be calculated by
the straightforward application of Eq.(35.6b).

(contd from previous...) Concept of Flow Potential and Flow Resistance

The velocity Vin the above equation is usually substituted in terms of flow rate Q, since, under steady
state, the flow rate remains constant throughout the pipe even if its diameter changes. Therefore,

V = 4Q /D>

replacing Vin Eq. (35.11) as we finally get

L 1 )
O

2
or, hy = RQ (35.12)

8 L
R=[—[1.5+f—]:| (35.13)
24 o :
where w'D'g

The term R is defined as the flow resistance .

In a situation where f becomes independent of Re, the flow resistance expressed by Eg. (35.13) becomes
simply a function of the pipe geometry. With the help of Eq. (35.10), Eq. (35.12) can be written as

AF = RO4 (35.14)

e &7 in Eq. (35.14) is the head causing the flow and is defined as the difference in flow potentials
between A and B.
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This equation is comparable to the voltage-current relationship in a purely resistive electrical

circuit. In a purely resistive electrical circuit, AV = RI , Where AF is the voltage or electrical
potential difference across a resistor whose resistance is R and the electrical current flowing

through itis /.

e The difference however is that while the voltage drop in an electrical circuit is linearly
proportional to current, the difference in the flow potential in a fluid circuit is proportional to
the square of the flow rate.

e Therefore, the fluid flow system as shown in Fig. 35.3 and described by Eq. (35.14) can be
expressed by an equivalent electrical network system as shown in Fig. 35.4.

NV >

'-_2
Q R

|1,
* || | 4
AH

Fig 35.4 Equivalent electrical network system for a simple pipe flow problem shown in Fig.35.3

Flow Through Branched Pipes

In several practical situations, flow takes place under a given head through different pipes jointed
together either in series or in parallel or in a combination of both of them.

Pipes in Series

e If a pipeline is joined to one or more pipelines in continuation, these are said to constitute pipes
in series. A typical example of pipes in series is shown in Fig. 36.1. Here three pipes A, Band C
are joined in series.

l.ﬂ. | E | Cl
T

Q Q v,
= = = =P P = = = = = = -pf’--Dﬂ----—-f-m-C--Dc-z
A" Ve
Hy T | l | H,
le " |t ol
L, Ly I L. T

Fig 36.1 Pipes in series

In this case, rate of flow Q remains same in each pipe. Hence,
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Ja=Up=Upr =0

e If the total head available at Sec. 1 (at the inlet to pipe A) is lehich is greater than 4 the
total head at Sec. 2 (at the exit of pipe C), then the flow takes place from 1 to 2 through the

system of pipelines in series.

e Application of Bernoulli's equation between Secs.1 and 2 gives

M-y =hy

where, hfis the loss of head due to the flow from 1 to 2. Recognizing the minor and major losses

associated with the flow, hfcan be written as

2 " 2
LAV Wa-Ve) gV (1 Ve LC Vi
by = fa A AL TATED BB | Cafp o E
Ly ig ig Lp ig \Cr ig Lo ig
Loss due (36.1)
o Loss due to o to abrupt o )
Friction loss Friction loss ) Friction loss in
o enlargementat | | contraction
in pipe A . in pipe B pipe C
entry to pipe B at entry
to pipe C

The subscripts A, B and C refer to the quantities in pipe A, B and C respectively. C. is the coefficient of

contraction.

e The flow rate Q satisfies the equation

(36.2)

Velocities V,a, Vg and V¢ in Eq. (36.1) are substituted from Eq. (36.2), and we get
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25 :
By = Ezf*‘lL?Jr 82 L= _24 14
S 7 g ey gm Dy | oy
(R (RZ) y (36.3)
8 FA 8 1 1 8 L
* 2f3§+ z[c _1] r zﬂ“ggz
g DB ET ¢ DC‘ ZT DC‘
(RS (R4 ey
ke = Ry
R=R +Ry+Ry+Ry+Rs (36.4)

Equation (36.4) states that the total flow resistance is equal to the sum of the different resistance

components. Therefore, the above problem can be described by an equivalent electrical network system
as shown in Fig. 36.2.

RT RE Rg Rﬂ- R‘S

= H,

H,
Fig 36.2 Equivalent electrical network system for through pipes in series

Pipes In Parallel

e When two or more pipes are connected, as shown in Fig. 36.3, so that the flow divides and

subsequently comes together again, the pipes are said to be in parallel.

e In this case (Fig. 36.3), equation of continuity gives

{=0q+0E (36.5)

where, Q is the total flow rate and ey and 25 are the flow rates through pipes A and B respectively.

e Loss of head between the locations 1 and 2 can be expressed by applying Bernoulli's equation

either through the path 1-A-2 or 1-B-2.

e Therefore, we can write
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Q—A

Q —» H,1

Q, —»B

2 H,—>Q

Fig 36.3 Pipes in Parallel

2
Hy—Hy=fa7—-=—=—5JFala

and

Equating the above two expressions, we get -

R
Q?A =R—BQ%
A
wl 4
R4 =Wfﬂ
where, [t
Bl
Rp=—"—fr
" DBE

Equations (36.5) and (36.6) give -

Fd 1
Qfl:mQ,QB:mQ
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where, L=.RplRy (36.8)

e The flow system can be described by an equivalent electrical circuit as shown in Fig. 36.4.

?_H, =

Fig 36.4 Equivalent electrical network system for flow through pipes in parallel

From the above discussion on flow through branched pipes (pipes in series or in parallel, or in
combination of both), the following principles can be summarized:

1. The friction equation must be satisfied for each pipe.
2. There can be only one value of head at any point.

3. Algebraic sum of the flow rates at any junction must be zero. i.e., the total mass flow rate
towards the junction must be equal to the total mass flow rate away from it.

4. Algebraic sum of the products of the flux (Q?) and the flow resistance (the sense being
determined by the direction of flow) must be zero in any closed hydraulic circuit.

The principles 3 and 4 can be written analytically as

nE=0

at a node (Junction) (36.9)

ZRICIZ=0 " oop (36.10)

While Eq. (36.9) implies the principle of continuity in a hydraulic circuit, Eq. (36.10) is referred to as
pressure equation of the circuit.

Pipe Network: Solution by Hardy Cross Method

e The distribution of water supply in practice is often made through a pipe network comprising a
combination of pipes in series and parallel. The flow distribution in a pipe network is determined
from Eqs(36.9) and (36.10).
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e The solution of Egs (36.9) and (36.10) for the purpose is based on an iterative technique with an
initial guess in Q
e The method was proposed by Hardy-Cross and is described below:

e The flow rates in each pipe are assumed so that the continuity (Eq. 36.9) at each node is
satisfied. Usually the flow rate is assumed more for smaller values of resistance R and
vice versa.

e If the assumed values of flow rates are not correct, the pressure equation Eq. (36.10)
will not be satisfied. The flow rate is then altered based on the error in satisfying the Eq.
(36.10).

e Let Qg be the correct flow in a path whereas the assumed flow be Q. The error dQ in flow is then

defined as
&=y +dd (36.11)
et #=RICIE (36.12a)
and 2= &G0 [0 (36.12b)

Then according to Eq. (36.10)

ZA=0 jn3100p (36.13a)

and  2%=¢ inaloop (36.13b)

Where ‘e'is defined to be the error in pressure equation for a loop with the assumed values of flow rate
in each path.
From Eqgs (36.13a) and (36.13b) we have

L(h-k)=e

or, Ldh =g (36.14)

Where dh (= h - h') is the error in pressure equation for a path. Again from Eq. (36.12a), we can write

i
—— =28

i)
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dh=2R|Q]dQ (36.15)

or
Substituting the value of dh from Eq. (36.15) in Eq. (36.14) we have

L2R|Q|dQ=e

Considering the error dQ to be the same for all hydraulic paths in a loop, we can write

=
d} = ——— 36.16
T2R| Q] (36.16)
The Eq. (36.16) can be written with the help of Eqgs (36.12a) and (36.12b) as
LE|O|P
di} = ———— 36.17
T2R| Q| (3617

The error in flow rate dQ is determined from Eq. (36.17) and the flow rate in each path of a loop is then
altered according to Eq. (36.11).

The Hardy-Cross method can also be applied to a hydraulic circuit containing a pump or a turbine. The
pressure equation (Eq. (36.10)) is only modified in consideration of a head source (pump) or a head sink
(turbine) as

—AA+ER|LE=0 (36.18)
where &7 is the head delivered by a source in the circuit. Therefore, the value of AH to be substituted
in Eq. (36.18) will be positive for a pump and negative for a turbine.
Flow Through Pipes With Side Tappings

e In course of flow through a pipe, a fluid may be withdrawn from the side tappings along the
length of the pipe as shown in Fig. 37.1

e If the side tappings are very closely spaced, the loss of head over a given length of pipe can be
obtained as follows:

www.mycsvtunotes.in



MYcsvtu Notes

VL

Fig. 37.1 Flow through pipes with side tappings

where,

The rate of flow through the pipe, under this situation, decreases in the direction of flow due to
side tappings. Therefore, the average flow velocity at any section of the pipe is not constant.

- bl . . .
The frictional head loss ¥ over a small length dx of the pipe at any section can be written as

dx Vi
dhe = £202 2 37.1
5 K4 D Ig ( )

Vs is the average flow velocity at that section.

If the side tappings are very close together, Eq. (37.1) can be integrated to determine the loss of

head due to friction over a given length L of the pipe, provided, Vs can be replaced in terms of
the length of the pipe.

Let us consider, for this purpose, a Section 1-1 at the upstream just after which the side tappings
are provided. If the tappings are uniformly and closely spaced, so that the fluid is removed at a
uniform rate g per unit length of the pipe, then the volume flow rate Q, at a distance x from the
inlet Section 1-1 can be written as

Q;x':QI]_gx

where, Ch is the volume flow rate at Sec.1-1.

Hence,

40 4Ch &
V= = [1-=— 37.2
w0 D [ Ch -’f] ( )

Substituting Vi from Eq. (37.2) into Eq. (37.1), we have,

www.mycsvtunotes.in



MYcsvtu Notes

2 2
dizg = 16 7 [l—ixJ dx (37.3)
th

F - E,TEng

Therefore, the loss of head due to friction over a length L is given by

20° F L
G 7 -2 5482 ;2 (37.4a)

L
he = [diy =
fgfgzaﬁg a3y

e Here, the friction factor f has been assumed to be constant over the length L of the pipe. If the

entire flow at Sec.1-1 is drained off over the length L, then,

1

o
-gf=0 aor =—=_
th —g 51

Equation (37.4a), under this situation, becomes
peo80 2t Lelpa 1 (37.4b)
S ol :

e where, V;is the average velocity of flow at the inlet Section 1-1.

Equation (37.4b) indicates that the loss of head due to friction over a length L of a pipe, where
the entire flow is drained off uniformly from the side tappings, becomes one third of that in a
pipe of same length and diameter, but without side tappings.

Losses In Pipe Bends

e Bends are provided in pipes to change the direction of flow through it. An additional loss of
head, apart from that due to fluid friction, takes place in the course of flow through pipe
bend.

e The fluid takes a curved path while flowing through a pipe bend as shown in Fig. 37.2.
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Fig. 37.2 Flow through pipe bend

Whenever a fluid flows in a curved path, there must be a force acting radially inwards on the fluid to
provide the inward acceleration, known as centripetal acceleration .

This results in an increase in pressure near the outer wall of the bend, starting at some point A (Fig.
37.2) and rising to a maximum at some point B . There is also a reduction of pressure near the inner wall
giving a minimum pressure at C and a subsequent rise from C to D . Therefore between A and B and
between C and D the fluid experiences an adverse pressure gradient (the pressure increases in the
direction of flow).

Fluid particles in this region, because of their close proximity to the wall, have low velocities and cannot
overcome the adverse pressure gradient and this leads to a separation of flow from the boundary and
consequent losses of energy in generating local eddies. Losses also take place due to a secondary flow
in the radial plane of the pipe because of a change in pressure in the radial depth of the pipe.

This flow, in conjunction with the main flow, produces a typical spiral motion of the fluid which persists
even for a downstream distance of fifty times the pipe diameter from the central plane of the bend. This
spiral motion of the fluid increases the local flow velocity and the velocity gradient at the pipe wall, and
therefore results in a greater frictional loss of head than that which occurs for the same rate of flow in a
straight pipe of the same length and diameter.

The additional loss of head (apart from that due to usual friction) in flow through pipe bends is known as

EViizg
bend loss and is usually expressed as a fraction of the velocity head as , Where Vis the
average velocity of flow through the pipe. The value of K depends on the total length of the bend and

the ratio of radius of curvature of the bend and pipe diameter R/D. The radius of curvature R is usually
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taken as the radius of curvature of the centre line of the bend. The factor K varies slightly with Reynolds
number Re in the typical range of Re encountered in practice, but increases with surface roughness.

Losses In Pipe Fittings

e An additional loss of head takes place in the course of flow through pipe fittings like valves,
couplings and so on. In-general, more restricted the passage is, greater is the loss of head.

e For turbulent flow, the losses are proportional to the square of the average flow velocity and are

EViiig

usually expressed by , Where V is the average velocity of flow. The value of K depends

on the exact shape of the flow passages. Typical values of K are

Approximate Loss Coefficients, K for Commercial Pipe Fittings .

Type and position of fittings Values of K
Globe valve,wide open 10

Gate valve, wide open 0.2

Gate valve, three-quarters open 1.15

Gate valve, half open 5.6

Gate valve, quarter open 24

Pump foot valve 1.5
90°elbow(threaded) 0.9
45°elbow(threaded) 0.4

Side outlet of T junction 1.8

e Since the eddies generated by fittings persist for some distance downstream, the total loss of
head caused by two fittings close together is not necessarily the same as the sum of the losses
which,each alone would cause.

These losses are sometimes expressed in terms of an equivalent length of an unobstructed
straight pipe in which an equal loss would occur for the same average flow velocity. That is
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(37.5)

where, L represents the equivalent length which is usually expressed in terms of the pipe diameter as

given by Eq. (37.5). Thus L /D depends upon the friction factor f, and therefore on the Reynolds

number and roughness of the pipe.
Power Transmission By A Pipeline

e In certain occasions, hydraulic power is transmitted by conveying fluid through a pipeline. For
example, water from a reservoir at a high altitude is often conveyed by a pipeline to an impulse
hydraulic turbine in an hydroelectric power station. The hydrostatic head of water is thus
transmitted by a pipeline. Let us analyse the efficiency of power transmission under this
situation.

Reservoir

Pipeline

Turbine

Fig. 37.3 Transmission of hydraulic power by a pipeline to a turbine

The potential head of water in the reservoir = H ( the difference in the water level in the reservoir and
the turbine center)

The head available at the pipe exit (or at the turbine entry) =Hp=H- ;gf

Where ;gf is the loss of head in the pipeline due to friction.

e Assuming that the friction coefficient and other loss coefficients are constant, we can write

hy = RO
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Where Q is the volume flow rate and R is the hydraulic resistance of the pipeline. Therefore, the power
available P at the exit of the pipeline becomes

P= g20Hg = peQlH - RQ%)

For P to be maximum, for a given head H, dP/dQ should be zero. This gives

H-3R0O* =10 (37.6)

2
[ PMQ2 ] is always negative which shows that P has only a maximum value (not a minimum) with Q.

e From Eq. (37.6), we can say that maximum power is obtained when one third of the head
available at the source (reservoir) is lost due to friction in the flow.

e The efficiency of power transmission P is defined as

p = M= 1_%92 (37.7)

Fr5i@)rd

1. The efficiency Tp equals to unity for the trivial case of Q = 0.

2. For flow to commence and hence ¥ is a monotonically decreasing function of Q from a
maximum value of unity to zero.

2 'y
3. The zero value of 2 corresponds to the situation given by fr=4H (Dr . Q= H’;R)

when the head H available at the reservoir is totally lost to overcome friction in the flow
through the pipe.

e The efficiency of transmission at the condition of maximum power delivered is obtained by
substituting RQ” from Eq. (37.6) in Eq. (37.7) as

Hi3

—1-21
H

La | e

Tat P=B o
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Therefore the maximum power transmission efficiency through a pipeline is 67%.
Exercise Problems - Chapter 11

3
1. Calculate the force F required on the piston to discharge 500 mem Xs
Fig. 37.4), taking into account the frictional loss in the syringe needle only. Assume fully developed

=107 Ns/m?

of water through a syringe (see

laminar flow in the syringe needle. Take the dynamic viscosity of water H

[ f 50
F—o | 10¢ S

T (r

— 4() mm

<

—| -

Figure 37.4

2. A hydrocarbon oil (viscosity 0.025 pa-s and density 900 kg/m? ) is transported using a 0.6 m diameter,
10 km long pipe. The maximum allowable pressure drop across the pipe length is 1 MPa. Due to a
maintenance schedule on this pipeline, it is required to use a 0.4 m diameter, 10 km long pipe to pump
the oil at the same volumetric flow rate as in the earlier case. Estimate the pressure drop for the 0.4 m
diameter pipe. Assume both pipes to be hydrodynamically smooth and in the range of operating
conditions, the Fanning friction factor is given by:

F=0.079 B0

3. Two reservoirs 1 and 2 are connected as shown in the Fig 37.5 through a turbine T. Given the friction
factor relation

1
.—f OEID( m'f)

ETE
for the connecting pipes, the turbine characteristics A =1070m of water [ Q in m?/s] and an ideal
draft tube at the discharge end, find (a) the volume flow rate between the two reservoirs and (b) the

power developed by the turbine. Note:
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Be = plidfu

o = 1000kg/m’
_ =5

i = B0x107" pas

Use an initial guess for power developed by the turbine as 1 MW. Show only two iterations . Also H is
head available at the turbine.

T

@ N L=320 m, d=20cm

figure 37.5
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