Experiment no. 7 Flashover Experiment

Objective

Flashover study of Disc Insulators and determination of string efficiency. Under a) dry condition and b) wet condition

Circuit diagram

Procedure

- 1. Place the test frame (or stand) at suitable position.
- 2. Hang the disc with frame hanger as shown in circuit.
- Clamping the GI ware clip at bottom of disc properly.
- Complete the connection from HV transformer to ball pin of the disc insulator and earthed the frame properly with earth pit.
- First, test the insulator at dry conditions (including correction factors) but at wet condition water arrangement should be checked as it works fine.
- Close the Circuit Breaker S1.
- 7. Slowly raise the voltage till faint hissing sound is audible. This is the beginning of corona.
- Slowly raise the voltage till such time that flashover at dry state is occurred.
 Reduce the voltage completely and open the CB.
- 9. Repeat the step 6 to 8 by increase the number of disc insulator.
- Similarly, for wet test, first start the water shower at disc insulator(s) through nozzles. Then repeat the step from 6 to 9 and observed the values.

Record of Flashover

Sl. No.	No. of Disc	Atmospheric condition	Voltage at Hissing sound (kV)		Flashover Voltage (kV)		Remarks
			Dry	Wet	Dry	Wet	
1			E E				
2							
3							
4	5/		f5 - 1-		6		-3
5	3): 2 :				3
6							

Disc specifications

Product Specification 11 KV Disc Insulators (B&S type or T & C type) Standard Particulars

	9 kV	
8	255 mm	
	145 mm	
	320 mm	
	70 KN	
Dry	65 kV	
Wet	45 kV	
+ ve	110 kV _p	
- ve	120 kV _p	
Dry	50 kV	
Wet	35 kV	
+ve	75 kV _p	
-ve	80 kV _p	
	105 kV	
	5.0 Kgs.	
	Wet + ve - ve Dry Wet +ve	

Discussion

- 1) How does rating of a disc insulator define?
- 2) Will greasing help to increase the flashover voltage during wet condition, if yes, how?
- 3) Why electro-mechanical strength is important rather than mechanical strength for a disc insulator?