
Chapter 2
Instruction Set

M
Y

c
s
v
tu

 N
o
te

s

w
w

w
.m

y
c
s
v
tu

n
o

te
s
.i
n

Instruction Set Architecture

• Does not include information as to how
microprocessor is designed or implemented

• Includes microprocessor instruction set, which
would be the set of all assembly languages
instructions.

• Also includes the complete set of accessible
registers.

M
Y

c
s
v
tu

 N
o
te

s

w
w

w
.m

y
c
s
v
tu

n
o

te
s
.i
n

 Levels of Programming
Languages

• Programming languages are divided into three categories.

• High level languages hide the details of the computer and
operating system.

• Are also referred to as platform-independent.

• Examples include C++, Java, and Fortran

M
Y

c
s
v
tu

 N
o
te

s

w
w

w
.m

y
c
s
v
tu

n
o

te
s
.i
n

Levels of Programming
Languages

• Assembly language is an example of a lower level language.

• Each microprocessor has its own assembly language

• A program written in the assembly language of one
microprocessor cannot be run on a different microprocessor M

Y
c
s
v
tu

 N
o
te

s

w
w

w
.m

y
c
s
v
tu

n
o

te
s
.i
n

Levels of Programming Languages

• Backward compatibility used in order to have old programs
that ran on a old microprocessor, can run on a newer model.

• Assembly language can manipulate the data stored in a
microprocessor.

• Assembly language are not platform independent

M
Y

c
s
v
tu

 N
o
te

s

w
w

w
.m

y
c
s
v
tu

n
o

te
s
.i
n

Assemblers

• Every statement in assembly language however corresponds
to one unique machine code instruction.

• The assembler converts source code to object code, and then
the linking, and the loading of procedures occur.

M
Y

c
s
v
tu

 N
o
te

s

w
w

w
.m

y
c
s
v
tu

n
o

te
s
.i
n

VARIOUS GROUPS OF INSTRUCTIONS

• DATA TRANSFER

• ARITHMATIC

• LOGICAL

• STACK

• BRANCHING

• MACHINE CONTROL

• INPUT-OUTPUT INSTRUCTION

M
Y

c
s
v
tu

 N
o
te

s

w
w

w
.m

y
c
s
v
tu

n
o

te
s
.i
n

3.2.4 Instruction Formats

1 BYTE

opcode

1 BYTE

Operand #1

1 BYTE

Operand #2

1 BYTE

opcode

1 BYTE

Operand

1 BYTE

OPCODE

TRIPPLE BYTE

DOUBLE BYTE

SINGLE BYTE

M
Y

c
s
v
tu

 N
o
te

s

w
w

w
.m

y
c
s
v
tu

n
o

te
s
.i
n

Addressing Modes

• Microprocessor needs
memory address to
access data from the
memory.

• Assembly language may
use several addressing
modes to accomplish
this task.

M
Y

c
s
v
tu

 N
o
te

s

w
w

w
.m

y
c
s
v
tu

n
o

te
s
.i
n

Addressing Modes (contd)

1 Direct Mode

• Instruction includes memory access.

• CPU accesses that location in memory.

Example:

LDA 5000

Reads the data from memory location 5000, and stores the data
in the CPU’s accumulator.

M
Y

c
s
v
tu

 N
o
te

s

w
w

w
.m

y
c
s
v
tu

n
o

te
s
.i
n

Addressing Modes (contd)

 2 Register Indirect add Mode

• Address specified in instruction contains address where the
operand resides.

 Example:

 MOV M,A

M
Y

c
s
v
tu

 N
o
te

s

w
w

w
.m

y
c
s
v
tu

n
o

te
s
.i
n

Addressing Modes (contd)

3 Register Direct addressing Modes

• Does not specify a memory address. Instead
specifies a register.

 Example:

 MOV B,C

M
Y

c
s
v
tu

 N
o
te

s

w
w

w
.m

y
c
s
v
tu

n
o

te
s
.i
n

Addressing Modes (contd)

 4 Immediate Mode

• The operand specified in this mode is the actual data it self.

 Example:

 MVI A, 34H

M
Y

c
s
v
tu

 N
o
te

s

w
w

w
.m

y
c
s
v
tu

n
o

te
s
.i
n

Addressing Modes (contd)

 5 Implicit Mode

• Does not exactly specify an operand. Instruction implicitly specifies
the operand because it always applies to a specific register.

 Example:

 DAA, HLT

M
Y

c
s
v
tu

 N
o
te

s

w
w

w
.m

y
c
s
v
tu

n
o

te
s
.i
n

3.3 Instruction Set Architecture
Design
To design a optimal microprocessor, the following questions and issues have to

be addressed in order to come up with an optimized instruction set
architecture for the CPU:

1. Completeness; does the instruction set have all of the instructions a
program needs to perform its required task.

2. Issue of orthogonality, the concept of two instructions not overlapping,
and thus not performing the same function.

3. The amount of registers to be added. More registers enables a CPU to
run faster, since it can access and store data on registers, instead of the
memory, which in turn enables a CPU to run faster. Having too many
registers adds unnecessary hardware.

4. Does this processor have to be backward compatible with other
microprocessors.

5. What types and sizes of data will the microprocessor deal with?

6. Are interrupts needed?

7. Are conditional instructions needed?

M
Y

c
s
v
tu

 N
o
te

s

w
w

w
.m

y
c
s
v
tu

n
o

te
s
.i
n

3.4 Creating a simple
Instruction Set
Designing a simple microprocessor fit for

maybe a microwave will involve integrating

the following models:

1. Memory model

2. Register model

3. Instruction set

M
Y

c
s
v
tu

 N
o
te

s

w
w

w
.m

y
c
s
v
tu

n
o

te
s
.i
n

3.4.1 Memory Model

• Microprocessor can access 64 K or 2^16 byes of memory

• Each byte has 8 bits or 64K x 8 of memory.

• I/O is treated as memory access, thus requires same
instruction to access I/O as it does to access memory

M
Y

c
s
v
tu

 N
o
te

s

w
w

w
.m

y
c
s
v
tu

n
o

te
s
.i
n

3.4.2 Registers

• Three registers in this microprocessor
• First register is 8-bit accumulator where the

result is stored. Also provides one of the
operands for instructions requiring two
operands.

• Second register R is a 8-bit register that provides
the second operands, and also stores in result
so that the accumulator can gain access to it.

• Third register is a Z register which is 1 bit. It is
either 0 or 1. If a result of a instruction is 0 then
the register is set to 1 otherwise it is set to 0.

M
Y

c
s
v
tu

 N
o
te

s

w
w

w
.m

y
c
s
v
tu

n
o

te
s
.i
n

3.4.3 Instruction Set
Instruction Instruction Code Operation

NOP 0000 0000 No Operation

LDAC 0000 0001 AC = M[]

STAC 0000 0010 M[] = AC

MVAC 0000 0011 R = AC

MOVR 0000 0100 AC = R

JUMP 0000 0101 GOTO

JMPZ 0000 0110 IF (Z = 1) THEN GOTO

JPNZ 0000 0111 IF (Z = 0) THEN GOTO

ADD 0000 1000 AC=AC+R,If (AC+R=0) Then Z=1 Else Z

= 0

SUB 0000 1001 AC-AC-R,If(AC-R=0) Then Z=1 Else Z = 0

INAC 0000 1010 AC=AC+1,If(AC+1=0) Then Z=1 Else Z =

0

CLAC 0000 1011 AC = 0, Z =1

AND 0000 1100 AC=ACR, If(AC R=0) Then Z=1 Else

Z=0

OR 0000 1101 AC=ACR, If(ACR=0) Then Z=1 Else

Z=0

XOR 0000 1110 AC=ACR,If(ACR=0) Then Z=1 Else

Z=0

NOT 0000 1111 AC=AC’,If(AC’=0) Then Z=1 Else Z=0

M
Y

c
s
v
tu

 N
o
te

s

w
w

w
.m

y
c
s
v
tu

n
o

te
s
.i
n

3.4.3 Instruction Set (contd)

Note: LDAC uses direct addressing mode. MOVR uses the
implicit addressing mode. JUMP uses immediate addressing
mode.

 M
Y

c
s
v
tu

 N
o
te

s

w
w

w
.m

y
c
s
v
tu

n
o

te
s
.i
n

3.4.4 Implementation

1 + 2 + … + n, or

Total = 0

For I = 1 TO N do (Total = Total + I);

Break Down:

1: Total = 0, I = 0

2: I = I + 1

3: Total = Total + I

4: If I n THEN GOTO 2

M
Y

c
s
v
tu

 N
o
te

s

w
w

w
.m

y
c
s
v
tu

n
o

te
s
.i
n

3.4.4 Implementation (contd)
 CLAC Clear Accumulator
 STAC total Store value 0 to address total
 STAC i Store value 0 to address i
Loop: LDAC i Load contents of address i into accumulator
 INAC Add 1 to the accumulator
 STAC i Store result from accumulator back to address i
 MVAC Move result from accumulator into Register R
 LDAC total Load Total into accumulator
 ADD Add contents of Register R and accumulator

 and store it in accumulator
 STAC total Store Total back to address total
 LDAC n Load n into accumulator
 SUB Subtract R (R = i) from AC (AC = n)
 JPNZ Loop If result is not zero then jump back to loop:

M
Y

c
s
v
tu

 N
o
te

s

w
w

w
.m

y
c
s
v
tu

n
o

te
s
.i
n

3.4.4 Implementation (contd)

Instruction 1st Loop 2nd Loop 3rd Loop 4th Loop 5th Loop

CLAC AC = 0

STAC total Total = 0

STAC I I = 0

LDAC I AC = 0 AC = 1 AC = 2 AC = 3 AC = 4

INAC AC = 1 AC = 2 AC = 3 AC = 4 AC = 5

STAC I I = 1 I = 2 I = 3 I = 4 I = 5

MVAC R = 1 R = 2 R = 3 R = 4 R = 5

LDAC total AC = 0 AC = 1 AC = 3 AC = 6 AC = 10

ADD AC = 1 AC = 3 AC = 6 AC = 10 AC = 15

STAC total Total = 1 Total = 3 Total = 6 Total = 10 Total = 15

LDAC n AC = 5 AC = 5 AC = 5 AC = 5 AC = 5

SUB AC = 4, Z = 0 AC = 3, Z = 0 AC = 2, Z = 0 AC = 1, Z = 0 AC = 0, Z = 1

JPNZ Loop JUMP JUMP JUMP JUMP NO JUMP

M
Y

c
s
v
tu

 N
o
te

s

w
w

w
.m

y
c
s
v
tu

n
o

te
s
.i
n

3.4.5 Analysis of Instruction
Set, and Implementation
• Cannot have value greater then 255, therefore n

has to be less then or equal to 22

• Is it complete? For simple hardware, maybe.
Not enough to be implemented in a PC.

• Fairly orthogonal; however by eliminating OR
and implementing by AND and NOT, we can
reduce the amount of hardware used.

• Not enough registers.

M
Y

c
s
v
tu

 N
o
te

s

w
w

w
.m

y
c
s
v
tu

n
o

te
s
.i
n

3.5 8085 Microprocessor
Instruction Set Archtecture
• Processor has practical applications. Examples

include the Sojourner robot.

• Contains several registers including the
accumulator register, A.

• Other registers include B,C,D,E,H,L.

• Some are accessed as pairs. Pairs are not
arbitrary. B and C, D and E, H and L.

• SP is a 16 bit stack pointer register pointing to
the top of the stack.

M
Y

c
s
v
tu

 N
o
te

s

w
w

w
.m

y
c
s
v
tu

n
o

te
s
.i
n

3.5 8085 Microprocessor
Instruction Set Archtecture
Contains five flags known as flag registers:

• Sign flag, S indicates sign of a value

• Zero flag, Z, tells if a arithmetic or logical instruction produced
0 for a result.

• Parity flag, P, is set to 1 if result contains even number of 1’s

• Carry flag, CY, is set when an arithmetic operation generates a
carry out.

M
Y

c
s
v
tu

 N
o
te

s

w
w

w
.m

y
c
s
v
tu

n
o

te
s
.i
n

3.5 8085 Microprocessor
Instruction Set Archtecture
• Auxiliary carry flag, generates a carry out from a lower half of

a result to a upper half.

 Example:

 0000 1111 + 0000 1000 = 0001 0111

• IM register used for enable and disable interrupts, and to
check pending interrupts.

M
Y

c
s
v
tu

 N
o
te

s

w
w

w
.m

y
c
s
v
tu

n
o

te
s
.i
n

3.5.2 8085 Microprocessor Instruction Set
Contains a total of 74 instructions.

R, R1,

R2

8 bit registers representing A, B, C, D, E, H or L

M Indicates memory location

RP Indicates register pair such as BC, DE, HL, SP

 16 bit address representing address or data value.

n 8-bit address or data value stored in memory immediately

after the opcode

Cond Condition for conditional instructions. NZ (Z = 0), Z (Z =

1),P (S = 0), N (S = 1), PO (P = 0), PE (P = 1), NC (CY

= 0), C (CY=1)

M
Y

c
s
v
tu

 N
o
te

s

w
w

w
.m

y
c
s
v
tu

n
o

te
s
.i
n

3.5.2 Data movemement instruction for the 80855 microprocessor

Instruction Operation

NOP No operation

MOV r1, r2 r1 = r2

MOV r, M r1 = M[HL]

MOV M, r M[HL] = r

MVI r, n r = n

MVI M, n M[HL] = n

LXI rp, rp =

LDA A = M[]

STA M[] = A

LHLD HL = M[], M[+ 1]

SHLD M[], M[+ 1] = HL

LDAX rp A = M[rp] (rp = BC, DE)

STAX rp M[rp] = A (rp = BC, DE)

XCHG DE HL

PUSH rp Stack = rp (rp SP)

PUSH PSW Stack = A, flag register

POP rp rp = Stack (rp SP)

POP PSW A, flag register = Stack

XTHL HL Stack

SPHL SP = HL

IN n A = input port n

OUT n Output port n = A

M
Y

c
s
v
tu

 N
o
te

s

w
w

w
.m

y
c
s
v
tu

n
o

te
s
.i
n

3.5.2 Data operation instruction for the 80855 microprocessor

Instruction Operation Flags

ADD r A = A + r All

ADD M A = A + M[HL] All

ADI n A = A + n All

ADC r A = A + r + CY All

ADC M A = A + M[HL] + CY All

ACI n A = A + n + CY All

SUB r A = A - r All

SUB M A = A - M[HL] All

SUI n A = A - n All

SBB r A = A - r - CY All

SBB M A = A - M[HL] - CY All

SBI n A = A - n - CY All

INR r r = r + 1 Not CY

INR M M[HL] = M[HL] + 1 Not CY

DCR r r = r - 1 Not CY

DCR M M[HL] = M[HL] - 1 Not CY

INX rp rp = rp + 1 None

DCX rp rp = rp - 1 None

DAD rp HL = HL + rp CY

DAA Decimal adjust All

ANA r A = A r All

ANA M A = A M[HL] All

M
Y

c
s
v
tu

 N
o
te

s

w
w

w
.m

y
c
s
v
tu

n
o

te
s
.i
n

3.5.2 Data operation instruction for the 80855 microprocessor

 Instruction Operation Flags

ANI n A = A n All

ORA r A = A r All

ORA M A = A M[HL] All

ORI n A = A n All

XRA r A = A r All

XRA M A = A M[HL] All

XRI n A = A n All

CMP r Compare A and r All

CMP M Compare A and M[HL] All

CPI n Compare A and n All

RLC CY = A7, A = A(6-0), A7 CY

RRC CY = A0, A = A0, A(7-1) CY

RAL CY, A = A, CY CY

RAR A, CY = CY, A CY

CMA A = A’ None

CMC CY = CY’ CY

STC CY = 1 CY

M
Y

c
s
v
tu

 N
o
te

s

w
w

w
.m

y
c
s
v
tu

n
o

te
s
.i
n

3.5.2 Program control instruction

Instruction Operation

JUMP GOTO

J cond If condition is true then GOTO

PCHL GOTO address HL

CALL Call subroutine at

C cond If condition is true then call subroutine

at

RET Return from subroutine

R cond If condition is true then return from

subroutine

RST n Call subroutine at 8*n (n = 5.5, 6.5, 7.5)

RIM A = IM

SIM IM = A

DI Disable interrupts

EI Enable interrupts

HLT Halt the CPU

M
Y

c
s
v
tu

 N
o
te

s

w
w

w
.m

y
c
s
v
tu

n
o

te
s
.i
n

3.5.3. A Simple 8085 Program

1: i = n, sum = 0

2: sum = sum + i, i = i - 1

3: IF i 0 then GOTO 2

4: total = sum

M
Y

c
s
v
tu

 N
o
te

s

w
w

w
.m

y
c
s
v
tu

n
o

te
s
.i
n

3.5.3 A Simple 8085 Program (contd)

 LDA n

 MOV B, A

 XRA A

Loop: ADD B

 DCR B

 JNZ Loop

 STA total

i = n

sum = A A = 0

sum = sum + i

i = i - 1

 IF i 0 THEN GOTO Loop

 total = sum

M
Y

c
s
v
tu

 N
o
te

s

w
w

w
.m

y
c
s
v
tu

n
o

te
s
.i
n

3.5.3 Execution trace

Instruction 1st Loop 2nd Loop 3rd Loop 4th Loop 5th Loop

LDA n

MOV B, A

B = 5

XRA A A = 0

ADD B A = 5 A = 9 A = 12 A = 14 A = 15

DCR B B = 4,

Z = 0

B = 3,

Z = 0

B = 2,

Z = 0

B = 1,

Z = 0

B = 0,

Z = 1

JNZ Loop JUMP JUMP JUMP JUMP NO JUMP

STA total total = 15

M
Y

c
s
v
tu

 N
o
te

s

w
w

w
.m

y
c
s
v
tu

n
o

te
s
.i
n

3.5.4 Analyzing the 8085 ISA

• Instruction set more complete then the simple CPU, however
not sufficient enough for a PC.

• Able to use subroutines, and interrupts

• It is fairly orthogonal.

• Has sufficient number of registers

M
Y

c
s
v
tu

 N
o
te

s

w
w

w
.m

y
c
s
v
tu

n
o

te
s
.i
n

8085 ASSEMBLER DIRECTIVES

Assembler directives are instructions to the assembler concerning the program being

assembled. They are not translated into machine code or assigned any memory

locations in the object file.

Assembler

Directive Example Description

ORG

(origin)

org 20 The next block of instructions or data

should be stored in memory locations

starting at 2010. Either hex or decimal

numbers are acceptable.

END end start End of assembly. A HLT instruction

may suggest the end of a program, but

does not necessarily mean it is the end

of assembly. "start" is the label at the

beginning of the program*.

M
Y

c
s
v
tu

 N
o
te

s

w
w

w
.m

y
c
s
v
tu

n
o

te
s
.i
n

• EQU
• (equate)
• lookup equ 2 The value of the term, lookup, is equal
• to 2. lookup's value may be referred
• by name in the program. Similar to a
• constant statement.
• inbuf equ 2099 The value of the term, inbuf, is 2099.
• This may be the memory location used
• as an input buffer.
• DB
• (define byte)
• data: db 34
• or
• data: db 34
• db A2
• db 93
• Initialises an area byte by byte.
• Assembled bytes of data are stored in
• successive memory locations until all
• values are stored. The label is
• optional and may be used as the
• memory location of the beginning of
• the data.

M
Y

c
s
v
tu

 N
o
te

s

w
w

w
.m

y
c
s
v
tu

n
o

te
s
.i
n

• DW

• (define word)

• long: dw 2050 Initialises an area two bytes at a time.

• DS

• (define storage)

• table: ds 10 Reserves a specified number of

• memory locations. In this example,

• 10 memory locations are reserved for

• "table". The label may be used as the

• memory location of the beginning of

• the block of memory.

M
Y

c
s
v
tu

 N
o
te

s

w
w

w
.m

y
c
s
v
tu

n
o

te
s
.i
n

