Introduction to
Automata Theory,

Languages, and Computation

,: - :_..) MR PR T —
\ ’_, .
_ o 16— w
| i‘

Theory of Computation

Introduction to
Automata Theory,
Languages, and Computation

It has been more than jo years since John Hoperoft and Jeffrey Ullman first

published this classic book on formal languages, automata theory, and

computational complexity. With this long-awaited revision, the authors

continue 10 present the material in a concise and straightforward manner,
now with an eye out for the practical applications along with the mathematics.

This edition has been revised 1o make it more accessible 1o today's students, includ-
ing the addition of more material on writing proofs. more figures and pictures o con-
vey ideas, sidebars to highlight related material. and a less formal writing style. It
includes many new exercises in each chapter to help readers confirm and enhance

their understanding of the material

FEATURES
- Completely rewritten to be less formal, providing more accessibility
to undergraduate students
- Emphasizes modern applications of the theory
© Uses numerous figures 10 help convey ideas
© Provides more detail and imtuition for defininions and proofs
 Includes special sidebars 1o present supplemental material that may be
of interest 1o readers
- Challenges readers with extensive exercises of wide ranging difficulty levels
* Presents a graphical notation for PDA’s and Turing machines

John £ Hoparoft is the jJoseph Silbert Dean of Engineering at Cornell University, and
winner of the 1986 A. M. Turing Award

Rajeev Morwan! is Associate Professor and Director of Graduate Studies for
Computer Science at Stanford University.

jeffrey D Ullman is the Stanford W. Ascherman Professor of Computer Science at
Stanford University.

I i

Education 46
ISBN D-20)-44124-1)

Executive Marketing Manager Michael Hirsch
Cover Design Leslie Hatmes
Art Direction Regina Hagen

Prepress and Manufacturing Cavroline Fell

Access the latest information about Addison-Wesley titles from our World Wide
Web site: htip:/Avww.awl.com

The programs and applications presented in this book have been included for
iheir insiructional vaiue. They have been tested with care, but are noi guaran-
teed for any particular purpose. The publisher does not offer any warranties or
representations, not does it accept any liabilities with respect to the programs
or applications.

Library of Congress Cataloging-in-Publication Data

Hopcroft, John E., 1939-
Introduction to automata theory, languages, and computation / John E.
Hoperoft, Rajeev Motwani, Jeffrey D. Ullman.—2nd ed.
D. om.
ISBN 0-201-44124-1
1. Machine theory. 2. Formal languages. 3. Computational complexity.
[. Motwani, Rajeev. 1. Ullman, Jeffrey D., 1942-.

QA267 .I156 2001
511.3—dc21 (0-064608

Gopyright @ 2001 by Addison-Wesley

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the pricr written
permission of the publisher. Printed in the United States of America.

345678910-MA-04030201

In the preface from the 1979 predecessor to this book, Hopcroft and Ullman
marveled at the fact that the subject of automata had exploded, compared with
its state at the time they wrote their first book, in 1969. Truly, the 1979 book

contained many topics not found in the earlier work and was about twice its
size. If you compare this book with the 1979 book, you will find that, like the

sadii. Al WRen AR Lila LAM3h 1L11 LI 139 R, ¥ viil 2RI RllAf, RIRGT LAA

automobiles of the 1970's, this book is “larger on the outside, but smaller on
the inside.” That sounds like a retrograde step, but we are happy with the
changes for several reasons.

First, in 1979, automata and language theory was still an area of active
research. A purpose of that book was to encourage mathematically inclined
students to make new contributions to the field. Today, there is little direct
research in automata theory (as opposed to its applications), and thus little
motivation for us to retain the succinct, highly mathematical tone of the 1979
book.

Second, the role of automata and language theory has changed over the
past two decades. In 1979, automata was largely a graduate-level subject, and
we imagined our reader was an advanced graduate student, especially those
using the later chapters of the book. Today, the subject is a staple of the
undergraduate curriculum. As such, the content of the book must assume less
in the way of prerequisites from the student, and therefore must provide more
of the background and details of arguments than did the earlier book.

A third change in the environment is that Computer Science has grown to
an almost unimaginable degree in the past two decades. While in 1979 it was
often a challenge to fill up a curriculum with material that we felt would survive
the next wave of technology, today very many subdisciplines compete for the
limited amount of space in the undergraduate curriculum.

Fourthly, CS has become a more vocational subject, and there is a severe
pragmatism among many of its students. We continue to believe that aspects
of automata theory are essential tools in a variety of new disciplines, and we
believe that the theoretical, mind-expanding exercises embodied in the typical
automata course retain their value, no matter how much the student prefers to
learn only the most immediately monetizable technology. However, to assure
a continued place for the subject on the menu of topics available to the com-
puter sciénce student, we believe it is necessary to emphasize the applications

1l p

iv PREFACE

along with the mathematics. Thus, we have replaced a number of the more
abstruse topics in the earlier book with examples of how the ideas are used
today. While applications of automata and language theory to compilers are
now 80 well understood that they are normally covered in a compiler course,
there are a variety of more recent uses, including model-checking algorithms

rlm Fiomn | +ha+ 44
to verify protocols and document-description languages that are patterned on

J..

context-free grammars.

R (¥ R

n ull.d.L U)LpldlldblOIl LUI I;l’.l'.'.' FITNUUTANSOUS BIUWEH dIl(_l ermmge UI Dﬂe DUUK
is that we were today able to take advantage of the TEX and WTEX typesetting
systems developed by Don Knuth and Les Lamport. The latter, especially,
encourages the “open” style of typesetting that makes books larger, but easier
to read. We appreciate the efforts of both men.

Use of the Book

This book is suitable for a quarter or semester course at the Junior level or
above. At Stanford, we have used the notes in CS154, the course in automata
and language theory. It is a one-quarter course, which both Rajeev and Jeff have
taught. Because of the limited time available, Chapter 11 is not covered, and
some of the later material, such as the more difficult polynomial-time reductions
in Section 10.4 are omitted as well. The book’s Web site (see below) includes
notes and syllabi for several offerings of CS154.

Some years ago, we found that many graduate students came to Stanford
with a course in automata theory that did not include the theory of intractabil-
ity. As the Stanford faculty believes that these ideas are essential for every
computer scientist to0 know at more than the level of “NP-complete means it
takes too long,” there is another course, C5154N, that students may take to
cover only Chapters 8, 9, and 10. They actually participate in roughly the last
third of CS154 to fulfill the CS154N requirement. Even today, we find several
students each quarter availing themselves of this option. Since it requires little
extra effort, we recommend the approach.

Prerequisites

To make best use of this book, students should have taken previously a course
covering discrete mathematics, e.g., graphs, trees, logic, and proof techniques.

o A
‘We assume also that they have had several courses in programming, and are

familiar with common data structures, recursion, and the role of major system
components such as compilers. These prerequisites should be obtained in 3

LT A B snouy g Bl 3 S d }

typical freshman-sophomore CS program.

Exercises

The book containg extensive exercises, with some for almost every section. We
indicate harder exercises or parts of exercises with an exclamation point. The
hardest exercises have a double exclamation point.

Some of the exercises or parts are marked with a star. For these exercises,
we shall endeavor to maintain solutions accessible through the book’s Web page.
These solutions are publicly available and should be used for seli-testing. Note
that in a few cases, one exercise B asks for modification or adaptation of your
solution to another exercise A. If certain parts of A have solutions, then you
should expect the corresponding parts of B to have solutions as well.

Support on the World Wide Web

The book’s home page is
http://www-db.stanford.edn/ ullman/ialc.himl

Here are solutions to starred exercises, errata as we learn of them, and backup
materials. We hope to make available the notes for each offering of CS154 as
we teach it, including homeworks, solutions, and exams.

Acknowledgements

A handout on “how to do proofs” by Craig Silverstein infinenced some of the
material in Chapter 1. Comments and errata on drafts of this hook were re-
ceived from: Zoe Abrams, George Candea, Haowen Chen, Byong-Gun Chun,
Jeffrey Shallit, Bret Taylor, Jason Townsend, and Erik Uzureau. They are
gratefully acknowledged. Remaining errors are ours, of course.

J.E. H.

R. M.

J.D. U,

Tthaca NY and Stanford CA
September, 2000

Table of Contents

1 Automata: The Methods and the Madness

1.1 Why Study Automata Theory?
1.1.1 Introduction to Finite Automata
1.1.2 Structural Representations
1.1.3 Automata and Complexity

1.2 Introduction to Formal Proof
1.21 Deductive Proofs o
1.2.2 Reduction to Definitions
1.2.3 Other Theorem Forms -
1.2.4 Theorems That Appear Not to Be If-Then Statements . .

1.3 Additional Formsof Proof
1.3.1 Proving Equivalences About Sets
1.3.2 The Contrapositive
1.3.3 Proof by Contradiction-
1.34 Counterexamples oo e e

1.4 Inductive Proofs o o
1.41 InductionsonIntegers
1.4.2 More General Forms of Integer Inductions . .,
1.43 Structural Inductions 0 e e
144 Mutual Inductions o oo

1.5 The Central Concepts of Automata Theory
1.5.1 Alphabets o o e
152 Strings. e e
1.5.3 Languages o .o e i e e
1.54 Problemso e

1.6 Summary of Chapter 1.

1.7 Referencesfor Chapter 1-

2 ¥Finite Automata

2.1 An Informal Picture of Finite Automata
211 TheGroundRules
212 TheProtocol . . . -«

2.1.3 Enabling the Automata to Ignore Actions

viii TABLE OF CONTENTS
2.1.4 The Entire System as an Automaton 43
2.1.5 Using the Product Automaton to Validate the Protocol . 45

2.2 Deterministic Finite Automata 45
2.2.1 Definition of a Deterministic Finite Automaton 46
2.2.2 How a DFA Processes Strings 46
2.2.3 Simpler Notations for DFA’'s 48
2.2.4 Extendmg the Transition Function to Strings 49
2.2.5 The Languageofa DFA 52
926 FExercisesfor Section 2.2 53

2.3 Nondeterministic Finite Automata 55
2.3.1 An Informal View of Nondeterministic Finite Automata . 56
2.3.2 Definition of Nondeterministic Finite Automata 57
9.3.3 The Extended Trapsition Function 58
2.34 The Languageofan NFA 59
2.3.5 FEquivalence of Deterministic and Nondeterministic Finite

Automata . . . v v e e e e e e e e e e e e e e e 60
2.36 A Bad Case for the Subset Construction 65
2.3.7 Exercises for Section 2.3 . . . - o 66

2.4 An Application: Text Search ., 68
2.4.1 Finding Stringsin Text 68
2.4.2 Nondeterministic Finite Automata for Text Search 69
2.4.3 A DFA to Recognize a Set of Keywords 70
244 ExercisesforSection2.4 72

2.5 Finite Automata With Epsilon-Transitions. 72
251 UsesofeTransitions« . . . v v v i v v v v v v v o - 72
2.5.2 The Formal Notation foraneNFA 74
2.5.3 Epsilon-Closures 75
2.5.4 Extended Transitions and Languages for eeNFA’s 76
2.5.5 FEliminating e-Transitions 77
256 FExercisesforSection?25 80

26 Summaryof Chapter 2. 80

2.7 References for Chapter 2 81

8 Regular Expressions and Languages 83

3.1 Regular Expressions0 83
3.1.1 The Operators of Regular Expressions 84
3.1.2 Building Regular Expressions 85
3.1.3 Precedence of Regular-Expression Operators 88
3.1.4 Exercises for Section 3.1 &9

3.2 Finite Automata and Regular Expressions 90
3.2.1 From DFA’s to Regular Expressions 91
3.2.2 Converting DFA’s to Regular Expressions by Eliminating

SHALES + v v v v e a e e e e e e e e e e e e 96

kI
hiland Ccﬂ'v’eﬂh ig

TABLE OF CONTENTS X

3.3 Applications of Regular Expressions 108
3.3.1 Regular Expressionsin UNIX 108
332 Lexical Analysisot 109
333 Finding Patternsin Text 111
334 Exercisesfor Section3.3 113

3.4 Algebraic Laws for Regular Expressions14
3.4.1 Associativity and Commutativity 114
3.4.2 Identities and Annihilators oo 0oL 115
343 Distributive Laws. 0oL 115
3.44 TheldempotentLaw 116
345 LawsInvolving Closures 117
3.4.8 Discovering Laws for Regular Expressions 117
3.4.7 The Test for a Regular-Expression Algebraic Law 119
3.4.8 Exercisesfor Section 3.4 120

3.5 Summaryof Chapter 3. 122

36 Referencesfor Chapter3 122

4 Properties of Regular Languages 125

4.1 Proving Languagesnot tobe Regular. 126
4.1.1 The Pumping Lemma, for Regular Languages 126
4.1.2 Applications of the Pumping Lemma 127
4.1.3 Exercisesfor Section4.1 129

4.2 Closure Properties of Regular Languages 131
4.2.1 Closure of Regular Languages Under Boolean Operations 131
422 Reversalo 137
423 Homomorphisms 139
4.2.4 TInverse Homomorphisms« 0 140
425 Exercises for Section4.2 o 145

4.3 Decision Properties of Regular Languages 149
43.1 Converting Among Representations 149
4.3.2 Testing Emptiness of Regular Languages 151
4.3.3 Testing Membership in a Regular Language 153
4.3.4 Exercisesfor Section4.3 153

4.4 Equivalence and Minimization of Automata 154
4.4.1 Testing Equivalence of States 154
4.4.2 Testing Equivalence of Regular Languages 157
44,3 Minimizationof DFA’s oo 159
444 Why the Minimized DFA Can’t Be Beaten 162
4.4.5 Exercisesfor Section4.4 164

45 Summaryof Chapter4. 163

46 Referencesifor Chapter4 166

5 Context-Free Grammars and Languages
5.1 Context-Free Grammars
5.1.1 An Informal Example,....
5.1.2 Definition of Context-Free Grammars
5.1.3 Derivations Using a Grammar
5.1.4 Leftmost and Rightmost Derivations
5.1.5 The Language of a Grammar
5.18 Sentential Forms, .
5.1.7 Exercises for Section 5.1
5.2 ParseTrees o e e e
5.2.1 Constructing Parse Trees

522 The Yield of aParse Tree

5.2.3 Inference, Derivations, and Parse Trees, ...
5.2.4 From Imferencesto Trees.,
5.2.5 From Trees to Derivations
5.2.6 Trom Derivations to Recursive Inferences
5.2.7 Exercisesfor Section 5.2
5.3 Applications of Context-Free Grammars, ...
5.3.1 Parsers . . - . . e e e e e e
5.3.2 The YACC Parser-Generator
5.3.3 MarkupLanguages
5.3.4 XML and Document-Type Definitions, ..
5.3.5 Exercisesfor Section 53
3.4 Ambiguity in Grammars and Languages
54.1 Ambiguous Grammars
5.4.2 Removing Ambiguity From Grammars
543 Leftmost Derivations as a. Way to Express Ambiguity .
544 Inherent Ambiguity
5.4.5 Exercises for Section 54
5.5 Summary of Chapter5.
56 Referencesfor Chapter 5.
6 Pushdown Automata
6.1 Definiticn of the Pushdown Automaton
6.1.1 Informal Introduction
6.1.2 The Formal Definition of Pushdown Automata
6.1.3 A Graphical Notation for PDA’s,
6.1.4 Instantaneous Descriptionsof a PDA
6.1.5 Exercises for Section 6.1
6.2 The Languagesofa PDA
6.21 Acceptance by Final State,
6.2.2 Acceptance by Biopiy Stack
6.2.3 From Empty Stack to Final State.
6.2.4 TFrom Final Stateto Empty Stack

6.2.5 Exercises for Section 6.2

TABLE OF CONTENTS

169
169
170
171
173

175
177

17Q
1{Q

179
181
181
183

. 184

185
187
190
191
191
192
194
196
198
204
205
205
207

. 211

212
214
215
216

219
219
219
221
223
224
228
229
229

314 Tal

adu

231

924

- X

TABLE OF CONTENTS
6.3 Equivalence of PDA’sand CFG's
6.3.1 From Grammars to Pushdown Automata
832 FromPDAstoGrammars.« v o v v v v v v .
6.3.3 Exercisesfor Section 6.3o L.
6.4 Deterministic Pushdown Automata
6.4.1 Definition of a Deterministic PDA
6.4.2 Regular Languages and Deterministic PDA's
6.4.3 DPDA’s and Context-Free Languages
6.4.4 DPDA’s and Ambiguous Grammars
6.4.5 ExercisesforSection 6.4
6.5 Summary of Chapter6
6.6 References for Chapter 6

7 Properties of Context-Free Languages

7.1 Normal Forms for Context-Free Grammars
7.1.1 Eliminating Useless Symbols
7.1.2 Computing the Generating and Reachable Symbols
7.1.3 Eliminating e-Productions
7.1.4 Elminating Unit Productions
7.1.3 Chomsky Normal Form
7.16 Exercisesfor Section 7.1

7.2 The Pumping Lemma for Context-Free Languages
721 TheSize of Parse Trees-
7.2.2 Statement of the Pumping Lemma
7.2.3 Applications of the Pumping Lemma for CFL's
7.2.4 Exercises for Section 7.2o o0

7.3 Closure Properties of Context-I'ree Languages
7.3.1 Substitutions e
7.3.2 Applications of the Substitution Theorem
733 Reversal
7.3.4 Intersection With a Regular Language
7.3.5 Inverse Homomorphism
7.36 Exercisesfor Section 7.3o

7.4 Decision Propertiesof CFLs
7.4,1 Complexity of Converting Among CFG’s and PDA’s . .
7.4.2 Running Time of Conversion to Chomsky Normal Form .
7.4.3 Testing Emptiness of CFL’s
7.4.4 Testing Membershipina CFL
7.4.5 Preview of Undecidable CFL Problems.
7.4.6 FExercises for Section 74

75 Suommary of Chapter 7. o oo

76 Referencesfor Chapter 7. - - . o o v o o oo

237
237
241
245
246
247
247
249
249
251
252
253

TABLE OF CONTENTS

xii

8 Introduction to Turing Machines 307
8.1 Problems That Computers Cannot Solve 307
8.1.1 Programs that Print “Hello, World” 308
8.1.2 The Hypothetical “Hello, World” Tester 310
8.1.3 Reducing One Problem to Another 313
8.14 Excrcises for Section 81 316
8.2 The Turing Machineo oo oo 316
£2.1 The Quest to Decide All Mathematical Questions. 317
822 Notation for the Turing Machine 318
8.2.3 Instantaneous Descriptions for Turing Machines 320
8.2.4 Transition Diagrams for Turing Machines 323
8.2.5 The Language of a Turing Machine 326
826 Turing Machines and Halting 327
8.2.7 Exercises for Section 8.2 L. 328
8.3 Programming Techniques for Turing Machines. 329
8.3.1 StorageintheState, . 330
8.3.2 Multiple Tracks 331
83.3 Subroutines o ..o 0o e e 333
834 PExercisesfor Section 83 334
8.4 Extensions to the Basic Turing Machine 336
8.4.1 Multitape Turing Machines 336
8.4.2 Equivalence of One-Tape and Multitape TM’s . . . 337
8.4.3 Running Time and the Many-Tapes-to-Une Constructton 339
8.4.4 Nondeterministic Turing Machines 340
8.4.3 Excrcises for Section 84 oL 342
8.5 Restricted Turing Machines o 0 345
8.5.1 Turing Machines With Semi-infinite Tapes. 345
8.5.2 Multistack Machines oo o o 348
8.5.3 Counter Machines 351
8.5.4 The Power of Counter Machines 352
R.5.5 FExercisesfor Section 8.5 L. 354
8.6 Turing Machines and Computers 355
8.6.1 Simulating a Turing Machine by Computer 353
86.2 Sinulating a Computer by a Turing Machine 356

8.6.3 Comparing the Running Times of Computers and Turing
Machineso 361
8.7 Summaryof Chapter 8 363
8.8 Referencesfor Chapter 8 365
9 Undecidability 367
9.1 A Language That Is Not Recursively Enuraerable 368
1.1 Enumerating the Binary Strings 369
9.1.2 Codes for Turing Machines _ 369
9.1.3 The T)mc‘m'lallzatlm'r L Aanguage . .- .- - ..o L 370

9.1.4 Proof that Lg is not Recursively Enumerable 372

TABLE OF CONTENTS

9.1.5

@
e

9.2.1

Lo A

9.2.5

A TToncdan! o Prablam H
Afl Uuuu\,ldablu Plubl\‘jul Thau 15

Exercises for Section 9.1

Recursive Languages-
Complements of Recursive and RE languages
The Umversal Language
Undecidability of the Universal Language

Exercises for Section 9.2o o

9.3 Undecidable Problems About Turing Machines

9.3.1
9.3.2
033
9.34
9.3.5

Reductions v o v v i e e e e e e s
Turing Machines That Accept the Empty Language .
Rice’s Theorem and Properties of the RE Languages . .
Problems about Turing-Machine Specifications
Exercises for Section 9.3« oo o

9.4 Post’s Correspondence Problem

9.4.1
04.2
9.4.3
9.44

Definition of Post’s Correspondence Problem
The “Modified” PCP. v o o v v
Completion of the Proof of PCP Undecidability
Exercises for Section 9.4o

9.5 Other Undecidable Problems

9.5.1
9.5.2
9.5.3
0.5.4

Problemns About Programs
Undecidability of Ambiguity for CFG’s
The Complement of a List Language
Exercises for Section 9.5o

906 Summaryof Chapter 9.o oL
0.7 References for Chapter 9o

10 Intractable Problems
10.1 The Classes P and NP o o i i i i i i e e e e e s

10.1.1
10.1.2
10.1.3
10.1.4
10.1.5
10.1.6
10.1.7

Problems Solvable in Polynomial Time
An Example: Kruskal’s Algorithm
Nondeterministic Polynomial Time
An AP Example: The Traveling Salesman Problem . . .
Polynomial-Time Reductions
NP-Complete Problems
Exercises for Section 10.1

10.2 An NP-Complete Problem

10.2.1
10.2.2
10.2.3
10.2.4

The Satisfiability Problem-

Representing SAT Instances« o oo
NP-Completeness of the SAT Problem
Exercises for Section 10,2

10.3 A Restricted Satisfiability Problem

10.3.1
10.3.2
10.3.3

1U.0.9

10.3.5

Normal Forms for Boolean Expressions. - -

Converting Expressions to CNF :

NP- Completoness of CSAT e e v o i

l‘“.' \JUIIIE}IEM I U'l JD.ﬁ.J.
Exercises for Section 10.3« .« .. oo

5T

1y

Xiv TABLE OF CONTENTS

10.4 Additional NP-Complete Problems 447
10.4.1 Describing NP-complete Problems 447
10.4.2 The Problem of Independent Sets 448
10.4.3 The Node-Cover Problem . . e e4b2
10.4.4 The Directed Ha.m1lt0n—Clrcu1t Problem 453
10.4.5 Undireeted Hamilton Circuits and the TSP 460
10.4.6 Summary of NP-Complete Problems, . 461
10.4.7 Exercises for Section 104 L. 462

10.5 Summary of Chapter 10 o 466

10,6 Referencesfor Chapter 10 467

11 Additional Classes of Problems 469

11.1 Complements of Languagesin NP 470
11.1.1 The Class of Languages Co-ANP 470
11.1.2 NP-Complete Problems and CoNP 471
11.1.3 Exercises for Section 11.1 472

11.2 Problems Solvable in Polynomial Space 473
11.2.1 Polynomial-Space Turing Machines 473

11.2.2 Relationship of PS and APS to Previously Defined Classes474
11.2.3 Deterministic and Nondeterministic Polynomial Space . . 476

11.3 A Problem That Is Completefor S 478
11.3.1 PS-Completeness . - 478
11.3.2 Quantified Boolean Formulas 479
11.3.3 Evaluating Quantified Boolean Formulas 480
11.3.4 PS-Completeness of the QBF Problem 482
11.3.5 Exercises for Section 11.3 487

114 Language Classes Based on Randomization 487
11.4.1 Quicksort: an Example of a Randomized Algorithm . . . 488
11.4.2 A Turing-Machine Model Using Randomization 489
11.4.3 The Language of a Randomized Turing Machine 490
1144 The Class RP« oo o it in 492
11.4.5 Recognizing Languagesin RP 494
1146 The Class ZPP i 495
11.4.7 Relationship Between RP and ZPP 496
11.4.8 Relationships to the Classes Pand NP 497

11.5 The Complexity of Primality Testing 498
i1.5.1 The Importance of Testing Primality 499
11.5.2 Introduction to Modular Arithmetic 501
11.5.3 The Complexity of Modular-Arithmetic Computations . . 503
11.5.4 Random-Polynomial Primality Testing 304
11.5.5 Nondeterministic Primality Tests 506
11.5.6 Exercises for Section 11.5 508

11.6 Summary of Chapter 11, 508

11.7 References for Chapter 11 510

Index 513

Automata theory is the study of abstract computing devices, or “machines.”
Before there were computers, in the 1930°s, A. Turing studied an abstract ma-
chine that had all the capabilities of today’s computers, at least as far as in
what they could compute. Turing’s goal was to describe precisely the boundary
between what a computing machine could do and what it could not do; his
conclusions apply not only to his abstract Turing machines, but to today’s real
machines.

In the 1940°s and 1950’s, simpler kinds of machines, which we today call
“finite autnmata,” were studied by a number of researchers. These automata,
originally proposed to model brain function, turned out to be extremely useful
for a variety of other purposes, which we shall mention in Section 1.1. Also in
the late 1950%, the linguist N. Chomsky began the study of formal “grammars.”
While not strictly machines, these grammars have close relationships to abstract
automata and serve today as the basis of some important software components,
including parts of compilers.

In 1969, S. Cook extended Turing’s study of what could and what could
not be computed. Cook was able to separate those problems that can be solved
efficiently by computer from those problems that can in principle be solved, but
in practice take so much time that computers are useless for all but very small
instances of the problemn. The latter class of problems is called “intractable,”
or “NP-hard.” It is highly unlikely that even the exponential improvement in
computing speed that computer hardware has been following (“Moore’s Law™)
will have significant immpact on our ability to solve large instances of intractable
problems.

All of these theoretical developments bear directly on what computer sclen-
tists do today. Some of the concepts, like finite automata and certain kinds of
formal grammars, are used in the design and construction of important kinds
of software. Other concepts, like the Turing machine, help us understand what

2 CHAPTER 1. AUTOMATA: THE METHODS AND THE MADNESS

we can expect from our software. Especially, the theory of iniractable problems
lets us deduce whether we are likely to be able to meet a problem “head-on”
and write a pmgram to solve it (because it is not in the intractable class), or
whether wo have to find some way to work around the intraciable problem:
find an approximation, use a heuristic, or use some other method to limit the

nA | B +h Ll
m will SRENG SQIvVIILE IOC Droein.

ol ra
In this introductory chapter, we begin with a very high-level view of what
automata theory is about, a..d what 168 uses are. Much of the chaptor is de-

oted to a survey of proof techniques and tricks for discovering proofs. We cover
deductivc proofs, reformulating statements, proofs by contradiction, proofs by
induction, and other important concepts. A final section introduces the con-

cepts that pervade automata theory: alphabets, strings, and languages.

t of +ime tha ny

T ™ Iom
LLT) b‘lll\- AL WRRILS - LAV pAL Ub

oo

1.1 Why Study Automata Theory?

There arc several reasons why the study of automata and complexity is an
important part of the core of Computer Science. This scetion serves to introduce
the reader to the principal motivation and also outlines the major topics covered
in this book.

1.1.1 Introduction to Finite Automata

Finite automata are a uscful model for many important kinds of hardware and
software. We shall see, starting in Chapter 2, examples of Lhow the concepts are
used. For the moment, let us just list some of the most important kinds:

1. Software for designing and checking the behavior of digital circuits.

2. The “lexical analyzer” of a typical compiler, that is, the compiler com-
ponent that breaks the input text into logical units, such as identifiers,
keywords, and punctuation.

3. Software for scanning large bodies of text, such as collections of Web
pages, to find occurrences of words, phrases, or other patterns.

4. Software for verifying systems of all types that have a finite number of
distinct states, such ag communications protocels or protocols for secure
exchange of information.

While we shall soon meet a precise definition of automata of various types,
let us begin our informal introduction with a sketch of what a finite automaton
is and cdoes. There are many systems or components, such as those enumerated

t mav ha riewod se 1-\n

o one T
itiay U vinwtal Ao Diciily

at "]l times in on ar o finite Ilu,l..u.ulr'l.

LiliiC.

ey

of “states.” The purpose of a state is to remember the re leva.nt. portion of the
system’s history. Since there are only a finite number of states, the entire history

et A

genera.lly cannot be remembered, so the system must be designed carefully, to

1.1, WHY STUDY AUTOMATA THEORY? 3

remember what is important and forget what is not. The advantage of having
only a finite number of states is that we can implement the system with a fixed
set of resources. For exampie, we could 1mp1ement it in hardware as a circuit, or
as a slmple I()I'Tl.'l OI prugrd.m EII.d.'D can md;.lili (ll.,l.,.'lt‘il.Ullb 1UUI\.H.I.5 Uuly at a }.luuu'.:u
amount of data or using the position in the code itself to make the decision.

Exarnple 1.1: Perhaps the simpiest nontrivial finite automaton is an on/off
switch. The device remembers whether it is in the “on” state or the “off” state,
and it allows the user to press a button whose effect is different, depending on
the state of the switch. That is, if the switch is in the off state, then pressing
the button changes it to the on state, and if the switch is in the on state, then
pressing the same button turns it to the off state.

Push

e ()

Push
Figure 1.1: A finite automaton modeling an on/off switch

The finite-automaton model for the switch is shown in Fig. 1.1. As for all
finite automata, the states are represented by circles; in this example, we have
named the states on and off. Arcs between states are labeled by “inputs,” which
represent external influences on the system. Here, both arcs are labeled by the
input Push, which represents a user pushing the button. The intent of the two
arcs is that whichever state the system is in, when the Push input is received
it goes to the other state.

One of the states is designated the “start state,” the state in which the
system is placed initially. In our example, the start state is off, and we conven-
tionally indicate the start state by the word Start and an arrow leading to that
state.

It is often necessary to indicate one or more states as “final” or “accepting”
states. Entering one of these states after a sequence of inputs indicates that
the input sequence is good in some way. For instance, we could have regarded
the state on in Fig. 1.1 as accepting, because in that state, the device being
controlled by the switch will operate. It is conventional to designate accepting
states by a double circle, although we have not made any such designation in
Fig. 1.1. O

Example 1.2: Sometimes, what is remembered by a state can be much more
complex than an on/off choice. Fi gure 1.2 shows another finite antomaton that

WAL L yaLiv daf hfan Raiil . A& SIIRAWY S AN LLAV

could be part of a lexical a,naly?er. The job of this automaton is to recognize

4 CHAPTER 1. AUTOMATA: THE METHODS AND THE MADNESS

the keyword then. It thus needs five states. each of which represents a different
position in the word then that has been reached so far. These positions corre-
spond to the prefixes of the word, ranging from the empty string (i.e., nothing
of the word has heen seen so far) o the complete word.

S{arr o~ o i F=1 ﬂ y /':-:-:\

Figure 1.2: A finite automaton modeling recognition of then

In Fig. 1.2, the five states are named by the prefix of then secn so far. Inputs
correspond to letters. We may umnagine that the lexical analyzer examines one
character of the program that it is compiling at a time, and the next character
to be cxamined is the input to the automaton. The start state corresponds to
the emipty string, and each state has a transition on the next letter of then to
the state that corresponds to the next-larger prefix. The state named then is
entered when the input has spelled the word then. Since it is the job of this
automaton to recognize when then has been seen, we could consider that state
the lone accepting state. O

1.1.2 Structural Representations

There are two important notations that are not automaton-like, but play an
important role in the study of automata and their applications.

1. (Grammaers are useful models when designing software that proce%w data
with a recursive structure. The best-known example is a “parser,” the
component of a compiler that deals with the recursively nested features
of the typical programming language, such as expressions — arithmetic,
conditional, and so on. For instance, a grammatical ryle like E = E+ E
states that an expression can be formed by taking any two expressions
and connecting them by a plus sign; this rule is typical of how expressions
of real prograinming languages are formed. We introduce context-free
grammars, as they are usually called, in Chapter 5.

2. Reqular Ezpressions also denote the structure of data, especially text
strings. As we shall see in Chapter 3, the patterns of strings they describe
are exactly the same as what can be described by finite automata. The
style of these expressions differs significantly from that of grammars, and
we shall content ourselves with a simple example here. The UNIX-style
regnlar expression ’ FA-Z] [a-z]*[1[A-Z] [A-Z]’ represents capitalized

v] Fmllacea] har o gniann ansd = Anmital latdnes Mhic aeomaont o wn

\'UULll."I H i o ll. lli L o preadla. il l..-i\lJ Lapiinal ILLein. J.l.ll."'l CXPITAHI0N lc.'“
jJ

resents patterns in text that could be a city and state, e.g., Ithaca NY.
It misses mmltiword r'rhr namns, such as Palo Alto CA. which could he

adnay 22233 %0 Tlateas S ey T dadieas Whriaala Ly

captured by the more (..omplex exXpression

1.2. INTRODUCTION TO FORMAL PROOF 3
*([A-Z] [a-z]=[])=[I[A-Z]1[A-Z]°

When interpreting such expressions, we only need to know that [A-Z]
represents a range of characters from capital “A” to capital “Z” (i.e., any
capital letter), and [] is used to represent the blank character alone.
Also, the symbol * represents “any number of” the preceding expression.
Parentheses are used to group components of the expression; they do not
represent characters of the text described.

1.1.3 Automata and Complexity

e R

HU'IJOIIld'[.d are EbbBIllel IOI E.I]‘.t' bLU.U}" UI. l.-llB lirmits Ul. LUIII]JUdeluu A‘S wC
mentioned in the introduction to the chapter, there are two important issues:

1. What can a computer do at all? This study is called “decidability,” and
the problems that can be solved by computer are called “decidable.” This
topic is addressed in Chapter 9.

2. What can a computer do efficiently? This study is called “intractabil-
ity,” and the problems that can be solved by a computer using no more
time than some slowly growing function of the size of the input are called
“tractable.” Often, we take all polynomial functions to be “slowly grow-
ing,” while functions that grow faster than any polynomial are deemed to
grow oo fast. The subject is studied in Chapter 10.

1.2 Introduction to Formal Proof

If you studied plane geometry in high school any time before the 1990, you
most likely had to do some detailed “deductive proofs,” where you showed
the truth of a statement by a detailed sequence of steps and reasons. While
geometry has its practical side {e.g., you need to know the rule for computing
the area of a rectangle if you need to buy the correct amount of carpet for a
room), the study of formal proof methodologies was at least as important a
reason for covering this branch of mathematics in high school.

In the USA of the 1990°s it became popular to teach proof as a matter
of personal feelings about the statement. While it i3 good to feel the truth
of a statement you need t0 use, important techniques of proof are no longer
mastered in high school. Yet proof is something that every computer scientist
needs to understand. Some computer scientists take the extreme view that a
formal proof of the correctness of a program should go hand-in-hand with the

i F the
Wl.lhlllg ol the Program Ltﬁﬂlf We douht t-hclt deﬂlg so is prOduLt" e, On the

other hand, there are those who say that proof has no place in the discipline of
programming. The slogan “if yOu are not sure your program is correct, Tun it

A s Lo = a2y L il

and see” is commonly offered by this camp.

6 CHAPTER 1. AUTOMATA: THE METHODS AND THE MADNESS

QOur position is between these two extremes. Testing programs is surely
essential. However, testing goes only so far, since you cannot try your program
on every input. More imporrantly if your program is Complex -— 53y a tricky
recursion or iteration — then if you don't understand what is going on as you
go around a loop or call a function recurmvelv it is unhkel th t. you will erte

iy eene le corrocily. When vour tes
LI (odie COTECOLYY. Wl YOUur uesy

need to get it right.

To make your iteration or recursion COrrect, you nee ed to set up an inductive
hypothesis, and it is helpful to reasen, fOrdev or informally, that the hypoth-
esis is consistent with the itcration or recursion. This process of understanding
the workings of a correct program is essentially the same as the process of prov-
ing theorems by induction. Thus, in addition to giving you models that are
useful for certain types of software, it has become traditional for a course on
automata theory Lo cover methodologies of formal proof. Perhaps more than
other core subjects of computer science, automata theory lends itself to natural
and interesting proofs, both of the deductive kind (a sequence of justified steps)
and the inductise kind (recursive proofs of a parameterized statement that use
the statement itself with “lower” values of the parameter).

1.2.1 Deductive Proofs

As mentioned above, a deductive proof consists of a sequence of statements
whose truth leads us fromn some initial statement, called the hypothesis or the
given statement(s), to a conclusion statement. Each step in the proof must
follow, by some accepted logical principle, from either the given facts, or some
of the previous statements in the deductive proof, or a combination of these.

The hypothesis may be true or false, typically depending on values of its
parameters, Often, the hypothesis consists of several independent statements
connected by a logical AND. In those cases, we talk of each of these statements
as a hypothesis, or as a given statement.

The theorem that is proved when we go from a hypothesis H to a conclusion
C'is the statement “if H then C.” We say that C is deduced from H. An example
theorem of the form “if H then C7 will illustrate these points.

Theorem 1.3: If 7 > 4, then 2* > z*. O

It is not hard to convince ourselves informally that Theorem 1.3 is true,
although a formal proof requires induction and will be left for Example 1.17.
First, notice that the hypothesis H is “z > 4. This hypothesis has 4 parameter,
z, and thus is neither true nor false. Rather, its truth depends on the value of
the parameter z; e.g., H is true for £ = 6 and false for z = 2,

Likewise, the conelusion C is “2® > z2.” This statement also uses parameter

frite drae nactain wmalnoee f o+ and nar athoese Bor awvamnld 1o Falen Ffrn

A3
i J I’_I.\.llll lL‘) LL UL iirF] LTL I.(.LI.J.L \Qlll‘.D 1L W LL1IAE IlU LrLiIci O. L UL CACLI.I.I.!J’LC«’ LSO 1010T ALFL

= 3, since 2% = 8, which is not as large as 3% = 9. On the other hand, C is
| true for » = 4, sinee 2% = 42 = 16. For # = 5, the statement is also true, since

2% = 32 is at least as large as 5% = 25.

1.2. INTRODUCTION TO FORMAL PROOKF 7

Perhaps you can see the intuitive argument that tells us the conclusion
2% > z? will be true whenever x > 4. We already saw that it is true for z = 4.
As z grows larger than 4, the left side, 2° doubles each time z increases by
1. However, the right side, z2, grows by the raiio (%‘—')z If + > 4, then
(z + 1}/ cannot be greater than 1.25, and therefore (%’—1)? cannot. be bigpger
than 1.5625. Since 1.5625 < 2, each time z increases above 4 the left side 27
grows more than the right side 2°. Thus, as long as we start from a value like
z = 4 where the inequality 2% > #? is aiready satisfied, we can increase w as
much as we like, and the inequality will still be satisfied.

We have now completed an informal but accurate proof of Theorem 1.3. We
shall return to the proof and make it more precise in Example 1.17, after we

. i » .
introduce “inductive” proofs.

Theorem 1.3, like all interesting theorems, involves an infinite number of
related facts, in this case the statement “if 2 > 4 then 2° > &7 for all integers
z. In fact, we do not need to assume z is an integer, but the proof talked about
repeatedly increasing x by 1. starting at & = 4, so we really addressed only the
situation where « is an integer.

Theorem 1.3 can be used to help deduce other theorems. In the next ex-
ample, we consider a complete deductive proof of a simple theorem that uses
Theorem 1.3.

Theorem 1.4: If z is the sum of the squares of four positive integers, then
27 > g2

PROOF: The intuitive idea of the proof is that if the hypothesis is true for z,
that is, « is the sum of the squares of four positive intcgers, then must be at
least 4. Thercfore, the hypothesis of Theorem 1.3 holds, and since we beliove
that theorem, we may state that its conclusion is also true for . The reasoning
can be expressed as a sequence of steps. Each step is either the hypothesis of
the theorem to be proved, part of that hypothesis, or a statement. that follows
from one or more previous statements.

By “follows” we mean that if the hypothesis of some theorem is a previous
statement, then the conclusion of that theorem is true, and cun be written down
as a statement of our proof. This logical rule is often called modus ponens; ie.,
if we know H is true, and we know “if H then €7 is true, we may conclade
that €' is true. We also allow certain other logical steps to be used in creating
a statement that follows from one or more previous statements. For instance,
if A and B are two previous statements, then we can deduce and write down
the statement “4 and B.”

Figure 1.3 shows the sequence of statements we need to prove Thecrem 1.4.
While we shall not generally prove theorems in stich a stylized form, it helps to
think of proofs as very explicit lists of statements, each with a precise justifica-

tion. In step (1), we have repeated one of the given statements of the theorem:

that z is the sum of the squares of four integers. It often helps in proofs if we
name guantitics that are referred to but not named, and we have done so here,

giving the four integers the names a. b, ¢, and d.

8 CHAPTER 1. AUTOMATA: THE METHODS AND THE MADNESS

| | Statement | Justification |
‘1 z=a"+b + +d° Given
2 lazlib>Le2l;d2> 1 Given
! . 1a* > L8> 17 2 1;d° > 1 | (2) and properties of arithmetic
4, | >4 (1), (3), and properties of arithmetic
‘ h. | 27 > z* (4) and Theorem 1.3

Figure 1.3: A formal proof of Theorem 1.4

In step l'2) we nut down the other part of the hyp he31 of fhp theorem:

Iepxesents four distinct statements, one for each Of the four mtegers involved.
Then, in step (3) we observe that if & number is at least 1, then its square is
also at least 1. We use as a justification the fact that statement (2) holds, and
“properties of arithmetic.” That is, we assume the reader knows, or can prove
slmpl(, statement% about how inequalities work, such as the statement “if y > 1,
then y2 > 1.7

Step (4) uses statements (1) and (3). The first statement tells us that z is
the sum of the four squares in question, and statement (3) tells us that each of
the squares is at least 1. Again using well-known properties of arithmetic, we
conclude that # is at least 1+ 1+ 1+ 1, or 4.

At the final step (3), we use staternent (4), which is the hypothesis of Theo-
rem 1.3, The theorem itself is the justification for writing down its conclusion,
since its hypothesis Is a previous statement. Since the statement (5) that is
the conclusion of Theorem 1.3 is also the conclusion of Theorem 1.4, we have
now proved Theorem 1.4. That is, we have started with the hypothesis of that
theorern, and have managed to deduce its conclusion. 0O

1.2.2 Reduction to Definitions

In the previous iwo theorems, the hypotheses used terms that should have
been familiar: integers, addition, and multiplication, for instance. In many
other theorems, including many from automata theory, the terms used in the
statement may have implications that are less obvious. A usefal way to proceed
in many proofs is:

¢ If you arc not sure how to start a proof, convert all terms in the hypothesis
to their definitions.

Here is an example of a theorem that is simple to prove ance we have ex-
pressed its statement in elementary terms. Tt uses the following two definitions:

1. A set S is finite if there exists an integer n such that S has ¢
elements. We write [|S|| = n, where ||S|| is used to denote the number

xactly n

1.2, INTRODUCTION TO FORMAL PROOF 9

of elements in a set S. If the set S is not finite, we say S is infinile.
Intuitively, an infinite set is a set that contains more than any integer
number of clements.

2. If § and T are both subséts of some set {7, then T is the comnplement of 5
{(with respect to U) if SUT = U and SN T = 0. That is, each element
of U is in exactly one of $ and T'; put ancther way, T consists of exactly
those elements of U that are not in S.

Theorem 1.5: Let S be a finite subset of some infinite set I7. Let T be the
complement of 9 with respect to I/. Then T is infinite.

PROOF: Intuitively, this theorem says that if you have an infinite supply of
something ({7), and you take a finite amount away (.5), then you still have an
infinitc amount left. Let us begin by restating the facts of the theorem as in
Fig. 1.4.

| Original Statement New Statemeni |
S is finite There is a integer n
such that || S| =n
U is infinite For no integer p
s IUIl=p
T is the complement of S | SUT =U and SNT =08

Figure 1.4: Restating the givens of Theorem 1.5

We are still stuck, so we need to usc a common proof technigue called “proof
by contradiction.” In this proof method, to be discussed further in Section 1.3.3,
we assume that the conclusion is false. We then use that assumption, together
with parts of the hypothesis, to prove the opposite of onc of the given statements
of the hypothesis. We have then shown that it is impossible for all parts of the
hypothesis to be true and for the conclusion to be false at the same time.
The only possibility that remains is for the conclusion to be true whenever the
hypothesis is true. That is, the theorem is true.

In the case of Theorem 1.5, the contradiction of the conclusion is “T is
finite.” Let us assume T is finite, along with the statement of the hypothesis
that says S is finite; i.e., ||S]| = n for some integer n. Similarly, we can restate
the assumption that T is finite as ||T|| = m for some integer .

Now one of the given statements tells us that SUT = U, and SN T = 0.
That is, the elements of U are exactly the elements of S and T. Thus, there
must be 7 + m elements of 7. Since n + m is an integer, and we have shown
WU = n+m, it follows that U is finite. More precisely, we showed the number

of elements in U is some integer, which is the definition of “finite.” But the
atatamant that I7 g finite contradicts the n-n en statement that 7 is infinite. We

UL AL LILERL W Akt JAAEA e i A RLL GRSk R vt v AN CAE L Vs Laaflt 4= 2l L

have thus used the contradiction of cur concluslon to prove the contradiction

10 CHAPTER 1. AUTOMATA: THE METHODS AND THE MADNESS

of one of the given statements of the hypothesis, and by the principle of “proof
by contradiction” we may conclude the theorem is trze. D

o ol de innid by b b e wpremmcder Ilasriv o onnes +hn 1daae halhicod dhoa wmannd
4 100D WU LI LLaYs WU LDIC oW WOLULY, 11AVIILE OUCIT LG JUCds PULLIIIN WIS PHJUL,
let us reprove the theorem in a few lines.

PROOF: (of Theorem 1.5) We know that SUT = U and S and T are disjoint,
so [|S|+ 12 = IV Since & is finite, ||S]| = n for some integer 1, and since U
is infinite, there is no integer p such that j|{7j| = p. So assume that T is finite;
that is, {|T)| = m for some integer m. Then |U| = ||S|| + |T|| = » + m, which
coutradicts the given statement that there is no integer p equal to ||I/]|. O

1.2.3 Other Theorem Forms
The “if-then” form of theorem is most common in typical areas of mathematics.
However, we see other kinds of statements proved as thecrems also. In this

section, we shall examine the most common forms of statement and what we
usually need to do to prove them.

Ways of Saying “If-Then”

First, there are a number of kinds of theorem statements that look different
from a simple “if H then C” form, but are in fact saying the same thing: if
hypothesis H is true for a given value of the parameter(s), then the conclusion
C i8 true for the same value. Here are some of the other ways in which “if H
then € might appear.

1. H implies C.

o]

. Honlyif C.
3. Cif 4.
4, Whenever H holds, € follows.

We also see many variants of form (4), such as “if H holds, then C follows,” or
“whenever H holds, C' holds.”

Example 1.6: The statement of Theorem 1.3 would appear in these four forms
as:

1. 2 > 4 implies 2% > z°,
2. z > 4 only if 2% > 22.
3. 22> % ifx > 4.

4. Whenever ¢ > 4, 2% > 22 follows.

1.2. INTRODUCTION TO FORMAL PROOF 11

b

Statements With Quantifiers

“there exists,” ar similar variations, such as “for every” instead of “for all.”
The order in which these quantifiers appear affects what the statement
means. [t is often helpful to see statements with more than one quantifier
as a “game” between two players — for-all and there-exists — who take
turns specifying values for the parameters mentioned in the theorem. “For-
all” must consider all possible choices, so for-all’s choices arc generally left
as variables. However, “there-exists” only has to pick one value, which
may depend on the values picked by the players previously. The order in
which the quantifiers appear in the statement determines who gocs first.
If the last player to make a choice can always find some allowable value,
then the statement is true.

For example, consider an alternative definition of “infinite set™: set S
is infinite if and only if for all integers n, there exists a subset T of S with
exactly n members. Here, “for-all” precedes “there-exists,” so we must
consider an arbitrary integer n. Now, “there-exists™ gets Lo pick a subsct
T, and may use the knowledge of n to do so. For instance, if § were the
set of integers, “therc-exists” could pick the subset T = {1,2,....n} and
thereby succeed regardless of n. That is a proof that the set of integers is
infinite.

The following statement looks like the definition of “infinite,” but is
incorrect because it reverses the order of the quantifiers: “there exists a
subset T of set S such that for all n, set T has exactly n members.” Now,
given a set S such as the integers, player “there-exists” can pick any set
T; say {1,2,5} is picked. For this choice, player “for-all” must show that
T has n members for every possible n. However, “for-all” cannot do so.
For instance, it is false for n = 4, or in fact for any n # 3.

In addition, in formal logic one often sees the operator — in place of “if-
then.” That is, the statement “if H then C” could appear as H — ' in some
mathematical literature; we shall not use it here.

If- And-Only-If Statements

Sometimes, we find a staternent of the form *A if and ouly if B.” Other forms
of this staternent are “A iffi B,”! “4 is equivalent to B,” or “4 exactly when
B.” This statement is actually two if-then statements: “if A then B, and *if
B then A.” We prove “4 if and only if B” by proving these two statements:

T, short for “if and only if,” i3 a non-word that is used in some mathematical treaiises
for succinctness.

12 CHAPTER 1. AUTOMATA: THE METHODS AND THE MADNESS

—
)
k]
33
-s
o
=}
q
=
o
2
7

415 [
ebe tig L ; 4: 2iRa%T

a T r t egar
is that thmr purpose is to convince someone, whether it is a g;ra.der Of your
classwork or yourself, about the correctness of a strategy you are using in
vour code. If it is convincing, then it is enough; if it f.uls to convince the
“consunier” of the proof, then the proof has left out too much.

Part of the uncertainty regarding proofs comes from the different
knowledge that the consumer may have. Thus, in Theorem 1.4, we as-
sumed you knew all about arithmetic, and would belicve a statement like
“if y > 1 then ° > 1.7 If vou were not familiar with arithmetic, we would
have to prove that statement by some steps in our dednctive proof.

However, there are certain things that are required in proofs, and
omitting them surcly makes the proof inadequate. For instance, any de-
ductive proof that nses statements which are not justified by the given or
previous statemcnts, cannot be adequate. When doing a proof of an “if
and only if” statement, we must surely have one proof for the “if” part and
another proof for the “only-if” part. As an additional example, inductive
proofs (discussed in Scetion 1.4) reguire proofs of the basis and induction

parts.

1. The if purt: *if B then A,” and

2. The only-if part: “if 4 then B, which is often stated in the equivalent
form “4 only if B.”

The proofs ¢an be presented in either order. In many theorems, one part is
decidedly easier than the other, and it is customary to present the easy direction
first and get it out of the way.

In formal logic, onc may see the operator ¢ or = to denote an “if-and-only-
if” staternent. That is, 4 = B and A + B mean the same as “A if and only if
B.!!

When proving an if-and-only-if statement, it is important to remember that
you must prove both the “if* and “only-if” parts. Sometimes, you will find it
helpful to break an if-and-only-if into a succession of several cquivalences. That
is, to prove *4 if and only if B,” you might first prove “4 if and only if C,” and
then prove “C if and only if B." That method works , 45 long as you remember
that cach if-and-only-if step must be proved in both directions. Proving any
one step in only one of the directions invalidates the entire proof.

The following is an example of a simple if-and-only-if proof. It uses the
nolations:

1.3. ADDITIONAL FORMS OF PROOF 13

2. [z], the ceiling of real number z, is the least integer equal to or greater

than z.

m L 1 T

1 HNCOICIIL 1.4 »
integer.

PROQOF: (Only-if part) In this part, we assume |z| = [2] and try to prove z is
an integer. Using the definitions of the floor and ceiling, we notice that |x] < «,
and [z] > =. However, we are given that |z] = [z]. Thus, we may substitute
the floor for the ceiling in the first inequality to conclude [z] < z. Since
both [z] < z and [xz] > z hold, we may conclude by properties of arithmetic
inequalities that [z] = z. Since [z] is always an integer, must also be an
integer in this case.

(If part) Now, we assume z is an integer and try to prove |z| = [x]. This part
is easy. By the definitions of floor and ceiling, when « is an integer. both |z]
and {z] are equal to =, and therefore equal to each other. O

1.2.4 Theorems That Appear Not to Be If-Then
Statements

Sometimes, we encounter a theorem that appears not to have a hypothesis. An
example is the well-known fact from trigonometry:

Theorem 1.8: sin®8 +cos?f=1. 0O

Actually, this statement does have a hypothesis, and the hypothesis consists
of all the statements you need to know to interpret the statement. In particular,
the hidden hypothesis is that 8 is an angle, and therefore the functjons sine
and cosine have their usual meaning for angles. From the definitions of these
terms, and the Pythagorean Theorem {in a right triangle, the square of the
hypotenuse equals the sum of the squares of the other two sides), you could
prove the theorem. In essence, the if-then form of the theorem is really: “if 8
is an angle, then sin? @ + cos®# = 1.7

1.3 Additional Forms of Proof

In this section, we take up several additional topics concerning how to construct
proofs:

1. Proofs about sets.

2. Proofs by contradiction.

3. Proofs by counterexample.

14 CHAPTER 1. AUTOMATA: THE METHODS AND THE MADNESS

1.3.1 Proving Equivalences About Sets

In automata theory, we are frequently asked to prove a theorem which says that
the sets constructed in two different ways are the same sets. Often, these sets
are sets of character strings, and the sets are called “languages,” but in this
section the nature of the sets is unimportant. If £ and F are two expressions
representing sets, the statement £ = F means that the two sefs represented
are the same. More precisely, every element in the set represented by E is in
the set represented by F', and every element in the set represented by F is in
the set represented by E.

Example 1.9: The commutative law of union says that we can take the union
of two sets R and § in either order. That is, R U S = S U R. In this case, F is
the expression £ U .S and F' is the expression § U R. The commutative law of
union says that £ =#F. O

We can write a set-equality £ = F'as an if-and-only-if statement: an element
r is in £ if and only if & is in F'. As a conscquence, we see the outline of a
proof of any statcment that asscrts the equality of two sets F = F; it follows
the form of any if-and-only-if proof:

1. Proof that if = is in &, then z is in F.
2. Prove that if & is in F, then & is in F.

As an example of this proof process, let us prove the distributive low of
unIOn over interseclion:

Theoremn 1.10: RU{(SNT)={(RUS)N(RUT).
PROOF: The two set-expressions involved are E=RU (SN T) and
F={(RUSN{RUT)

We shall prove the two parts of the theorem in turn. In the “if” pari we assume
clement x is in £ and show it is in F', This part, summarized in Fig, 1.5, uses
the definitions of union and intersection, with which we assume vou are familiar.

Then, we must prove the “only-if” part of the theorem. Here, we assume
15 in F and show it is in E. Thoe steps are summarized in Fig. 1.6. Since we
have now proved both parts of the if-and-only-if statement, the distributive law
of union over intersection is proved. O

1.3.2 The Contrapositive

Every if-then statement has an equivalent form that in some circumstances is
easler to prove. The contrapoesitive of the statement “if H then C” is “if not ¢

then not H." A statement and its contrapositive are either both true or both

false, so we can prove either to prove the other.

T " iz n
T{) e ‘nrh}; lf H then C and]fnnf {7 then not H are]

SETOW a4 waatdd LAWY W LrddNVAL &

first observe that there are four cases to consider:

1.3. ADDITIONAL FORMS OF PROOF

| | Statement | Justification |
1. |zisin RU(SNT) Given
2. |zisin Rorzisin SNT | (1) and definition of union
d. | zisin Rorxisin (2) and definition of intersection
both § and T
4. | zisin KU S {(3) and definition of union
5. [zisin RUT (3) and definition of union
6. | zisin (RUS)N(RUT) | {4), (5}, and definition
of intersection
Figure 1.5: Sieps in the “if” part of Theorem 1.10
| | Statement | Justification
l. | zisin (RUSYN(RUT) | Given
2.|zisin RUS (1) and definition of intersection
3 |zisin RUT (1) and definition of intersection
4. | zisin Ror 7 isin (2), (3), and reasoning
both § and T about unions
5. |zisin Rorzisin SNT | (4) and definition of intersection
6. |zisin RUSNT) (5) and definition of union

Figure 1.6: Steps in the “only-if” part of Theorem 1.10

1. H and C both true.
2. H true and ' false.
3. ' true and H false.

4. H and € both false.

There is only one way to make an if-then statement false; the hypothesis must
be true and the conclusion false, as in case (2). For the other three cuses,
including case (4} where the conclusion is false, the if-then statement itself is
true.

Now, consider for which cases the contrapositive “if not C then not H" is
false. In order for this statement to be false, its hypothesis (which is “not C7)
must be true, and its conclusion (which is “not H™) must be false. But “not

Fas)
L

These two conditions are again case (2), which shows that in cach of the four
cases, the original statement and its contrapositive are either both true or both

a3, L0 LA iniRial 8Lt 2l LI 4 A

false; i.¢., they are logically equivalent.

o +rnp pwantilt whon (7 ic falen and Ynat H? ic falgo D\'B."fl
W L1 lod

e M -y
L LLLUE CAGLLLY WL L 1o Jolob, el LS (=8 Telo) _-n.wvua.“f— w }” 11 H 1= !..!. ue,

j 5Ll 0y

16 CHAPTER 1. AUTOMATA: THE METHODS AND THE MADNESS

. CLETE A 1 ™1 TrY o Fn Ay
oaying Tll-And-unly-11— 10T Dets
a um mnntianacd +l1nh1—ame that gtate nhﬁhrnlnnrnq af avmraascionas ahant
P~} ¥¥ L LRLL ll.l,llul.lcu’ WAALASL WrldA VWAACALY JUER WY, %uxwm\.ua__.u AL MJ\IILUUUIUJAU RRLILALE
sets are if-and-only f statements. Thus, Theorem 1.10 could have been
stated: an element r isin RU (SN T) if and only if z is in

(RUSYN{RUT)

Another common expression of a set-equivalence is with the locution
“all-and-only.” For instance, Theorem 1.10 could as well have been stated
“the elements of R U (S N T) are all and only the elements of

(RUS)N(RUT)

The Converse

Do not confuse the terms “contrapositive” and “converse.” The converse
of an if-then statement is the “other direction”; that is, the converse of “if
H then €% is “if C' then H.” Unlike the contrapositive, which is logically
equivalent to the original, the converse is not equivalent to the original
statement. In fact, the two parts of an if-and-only-if proof are always
some statement and its converse.

Example 1.11: Recall Theorem 1.3, whose statement was: “if £ > 4, then
2¢ > z2.” The contrapositive of this statement is “if not 2 > 2 then not
z > 4. In more colloquial terms, making use of the fact that “not a > b” is
the same as a < b, the contrapositive is “if 2° < z® then z < 4.” O

When we are asked to prove an if-and-only-if theorem, the use of the con-
trapositive in one of the parts allows us several options. For instance, suppose
we want to prove the set equivalence E = F'. Instead of proving “if z is in £
then z is in F and if z is in F then z is in &,” we could also put one direction
in the contrapositive. One equivalent proof form is:

o If zisin F then z ts in F', and if z is not in E then z is not in F.

We could also interchange E and F' in the statement above.

1.3.3 Proof by Contradiction

Annthor wov tn nrow
- RALVSWELLE TFLa LILV tfﬁ

statement

1.3. ADDITIONAL FORMS OF PROOF 17

o “H and not C implies falsehood.”

That is, start by assuming both the hypothesis H and the negation of the
conclusion C. Cuaupu—tr the pTOOf bf Shnv.ing that 50'1'1851““3 known to be

false follows logically from H and not C. This form of proof is called proof by

contradiction.

B R R GRS F

Example 1.12: Recall Theorem 1.3, where we proved the if-then statement
with hypothesis H = “U is an infinite set, S is a finite subset of U, and 7' is
the complement of § with respect to U.” The conclusion €' was “T' is infinite.”
We proceeded to prove this theorem by contradiction. We assumed “not C7;
that 18, we assumed T was finite.

QOur proof was to derive a falsehood from H and not C. We first showed
from the assumptions that S and T are both finite, that I also must be finitc.
But since U is stated in the hypothesis H to be infinite, and a set cannot be
both finite and infinite, we have proved the logical statcment “false.” In logical
terms, we have both a proposition p (U is finite) and its negation, not p (U
is infinite). We then use the fact that “p and not p” is logically equivalent to
“false.” O

To see why proofs by contradiction are logically cotrect, recall from Sce-
tion 1.3.2 that there arc four combinations of truth values for I and C. Only
the second case, H truc and C false, makes the statement “if I then C7 false.
By showing that H and not €' leads to falsehood, we are showing that case 2
cannot occur. Thus, the only possible combinations of truth values for H and
¢ are the three combinations that make “if A then O true.

1.3.4 Counterexamples

In real life, we are not told to prove a theorem, Rather, we are faced with some-
thing that seems true - a strategy for implementing a program for example --
and we need to decide whether or not the “theorem” is true. To resolve the
guestion, we may alternately try to prove the theorem, and if we cannot, try to
prove that its statcinent is false.

Theorems generally are statements about an infinite number of cases, per-
haps all values of its parameters. Indeed, strict muathematical convention will
only dignify a statement with the title “theorem™ if it has an infinite number
of cases; statements that have no parameters, or that apply to only a finitc
number of values of its parameter(s) are called observations. It is sufficient to
show that an alleged theorem is false in any one case in order to show it i not a
theoremn. The situation is analogous to programs, since a program is generally
considered to have & bug if it fails to operate correctly for even one input on
which it was expected to work.

It ofien is easier to prove that a statement is not a theorem than to prove
e o thoorom. Ac wae rnnﬁhr‘\nnﬂ if 515 anv statement. then the statement

a
fd OU RLAVA LN e SR TIAL LTl RARARS unn§ Liiecd eIl

“S is not a theorem™ 1s itsell a bta.temcnt without parameters, and thus can

18 CHAPTER 1. AUTOMATA: THE METHODS AND THE MADNESS

e regarded as an observation rather than a theorem. The following are two
examples, first of an obvious nontheorem, and the second a statement that just
misses being a theorem and that requires some investigation before resolving
the question of whether it is a theorem or not.

2 22% E AR S LuiN g =) Friild

Alleged Theorem 1.13: All primes are odd. (More formally, we might say:
if integer x is a prime, then z is odd.)

QOF: The integer 2 is a prime, but 2 is even. O

Now, let us discuss a “theorem” involving modular arithmetic. There is an
essential definition that we must first establish. If @ and b are positive integers,
then @ mod bis the remainder when a is divided by b, that is, the unique integer
r butween 0 and b — 1 such that a = ¢b + r for some integer q. For example,
8 mod 3 = 2, and 9 mod 3 = 0. Qur first proposed theorem, which we shall
determine to be false, is:

Alleged Theorem 1.14: There is no pair of integers ¢ and b such that

amodb=bmoda

When asked to do things with pairs of objects, such as a and b here, it is
often possible to simplify the relationship between the two by taking advantage
of symmetry. In this case, we can focus on the case where ¢ < b, since if b < a
we can swap a and b and get the same equation as in Alleged Theorem 1.14.
we must be carcful, however, not to forget the third case, where ¢ = b, This
case turns out to be fatal to our proof attempts.

Let us assume @ < b. Then ¢ mod b = a, since in the definition of a mod b
we have ¢ = 0 and r = @¢. That is, when a < b we have a = 0 x b+ a. But
b mod @ < a, since anything mod e is between 0 and ¢ — 1. Thus, when a < ,
b mod @ < e mod b, 50 a mod b = b mod ¢ is impossible. Using the argument
of symmetry above, we alsc know that ¢ mod b # bmod & when b < a.

However, consider the third case: a = b. Since x mod z = 0 for any integer
z, we do have a mod b = b mod ¢ if @ = b. We thus have a disproof of the
alleged theorem:

DISPROOF: {of Alleged Theorem 1.14) Let ¢ = b = 2. Then
amodb=bmoda=0

O

In the process of finding the counterexample, we have in fact discovered the
exact conditions under which the alleged theorem holds. Here is the correct
version of the theorem, and its proof.

Theorem 1.15: a mod b = b mod ¢ if and only if a = b.

1.4. INDUCTIVE PROOFS 19

PROOF: (If part) Assume @ = 6. Then as we observed above, x mod z = 0 for
any integer . Thus, @ mod b = b mod a = 0 whenever ¢ = b.

(Only-if part) Now, assume a mod b = b mod e. The best technique is a
proof by contradiction, so assume in addition the negation of the conclusion;
that is, assume @ # b. Then since a = b is eliminated, we have only to consider
the cases a < band b < a.

We already observed above that when a < b, we have ¢ mod b = ¢ and
b mod @ < @ Thus, these statements, in conjunction with the hypothesis
a mod & = b mod a lets us derive a contradiction.

By symmetry, if b < a then b mod @ = b and a mod b < b. We again derive
a contradiction of the hypothesis, and conclude the only-if part is also true. We
hs

L IS [P B, | i
ave now proved both directions and conclude that the theorem is true. U

1.4 Inductive Proofs

There is a special form of proof, called “inductive,” that is essential when dealing
with recursively defined objects. Many of the most familiar inductive proofs
deal with integers, but in automata theory, we also need inductive proofs about
such recursively defined concepts as trees and expressions of various sorts, such
as the regular expressions that were mentioned briefly in Section 1.1.2. In this
section, we shall introduce the subject of inductive proofs first with “simple”
inductions on integers. Then, we show how to perforin “structural” inductions
on any recursively defined concept.

1.4.1 Inductions on Integers

Suppose we are given a statement S{n), about an integer n, to prove. Ome
common approach is to prove two things:

1. The basis, where we show S(i) for a particular integer i. Usually, ¢ = 0
or i = 1, but there are examples where we want to start at some higher
i, perhaps because the statement S is false for a few small integers.

2. The inductive step, where we assume n > 4, where ¢ is the basis integer,
and we show that “if S(n} then S{n + 1).”

Intuitively, these two parts should convince us that S(r) is true for every
integer n that is equal to or greater than the basis integer ¢. We can argue as
follows. Suppose S{n) were false for one or more of those integers. Then there
would have 0 be a smallest value of n, say j, for which S(j) is false, and yet
4 > 4. Now j could not be 7, because we prove in the basis part that S(i) is
true. Thus, j must be greater than i. We now know that 7 —1 > 4, and S{j — 1)
18 tTue.

However. we proved in the inductive part that if = > 4, then 5 (n) implies
+1). Suppose we let 7 = § — 1. Then we know from the inductive step

f
\n e WAL RAUOT WL T e J L daTid AL LMYl

that S(j — 1) implies S(j). Since we also know S{j — 1), we can conclude S(j).

o
o

200 CHAPTER I. AUTOMATA: THE METHQODS AND THE MADNESS

We have assumed the negation of what we wanted to prove; that is, we
assumed 5(7) was false for some j > 7. In each case, we derived a contradiction,
80 we have a “proof by contradiction” that S{r) is true for all n > 1.

Unforiunately, there is a subtle logical fiaw in the above reasoning. Our
assumption that we can pick a least § > ¢ for which S(7) is false depends on

v holinviner tha meineinla AF indiantin tho Arat tlinre That iz +tha v wrnr
oar IIULIE\‘ILLE, the PLITCIEIe Of IGGUCUIoH l.l.l. L€ N8y paade. 11iat 1§, tie uul‘y WLy

to prove that we can find such a 7 is to prove it by a method that is essentially
an inductive proof, Howsver, the “proof” discussed abhove makes gnnrl intuitive

friadd e S

sense, and matches our understandmg of the real world. Thus, we generally
take as un integral part of our logical rcasoning system:

s The Induction Prinecipie: If we prove S(i) and we prove that for all n > 1,
S(n) implies S(n + 1), then we may conclude S(n) for all n > i,

The following two examples illustrate the use of the induction principle to prove
theorems about integers.

Theorem 1.16: For all n > (:

Z 2= nin + 1;(271 +1) (1.1)

PROOF: The proof is in two parts: the basis and the inductive step; we prove
each in turn.

BASIS: For the basis, we pick n = (. It might seem surprising that the theorem
even makes sense for n = 0, since the left side of Equation (1.1} is 3__, when
n = 0. However, there 15 a general principle that when the upper limit of a sum
(0 in this case) is less than the lower limit (1 here), the sum is over no terms
and therefore the sum is 0. That is, Z:-J:l i = 0.

The right side of Equation (1.1) is also 0, since 0 x (0+1) x (2% 0+1)/6 = 0.
Thus, Equation {1.1) is true when n = 0.

INDUCTION: Now, assume n > 0. We must prove the inductive step, that
Equation (1.1} implies the same formula with n 4 1 substituted for n. The
latter formula is

[%]2 [+ 1 + 1] + D)(2[e + 1] + 1)

6

(1.2)

We may simplify Equations (1.1) and (1.2) by expanding the sums and products
on the right sides. These equations become:

n

.|._
|7
.l.-
e
-‘"‘h
=0}
—
[y
w2
—r

1.4. INDUCTIVE PROOFS 21

]
i+
pn

Z (2n2 + 9n® + 130 + 6)/6 (1.4)

We need to prove (1.4} using (1.3}, since in the induction principle, these are
of meants ofn L 11 and
< AAN AN, ul

1
s S(n+ 1) an S{r\ reg tivalyy Tha ‘+ru\-l.— h'_- 1O hraak fha arim

u

f‘j’ eapeCuvaJJ. e A bl A LU bl JUA LS
to n + 1 on the right of (1.4) into a sum to n plus the {n + I)st term. In that
way, we can replace the su

4
um to n by the left side of f1 '-ﬂ and show that (1 4)
is truc. These steps are as follows:

n
ato
vaned

(i f.z) +{n+ 12 =2+ + 130 +6)/6 (1.5)

=1

(203 + 3n? +0Y/6+ (n? + 20+ 1) = (2n° + 9n? + 13n + 6)/6 (1.6)

The final verification that (1.6) is true requires only simple polynomial algebra
on the left side to show it is identical to the right side. O

Example 1.17 : In the next example, we prove Theorem 1.3 from Section 1.2.1.
Recall this theorem states that if x > 4, then 2% > #?. We gave an informal
proof based on the idea that the ratio x? /2% shrinks as z grows above 4. We
can make the idea precise if we prove the statement 2% > z? by induction on
T, starting with a basis of £ = 4. Note that the statement is actually false for
T <4

BASIS: If £ = 4, then 27 and x? are both 16. Thus, 2* > 47 holds.

INDUCTION: Suppose for some z > 4 that 2° > z*. With this statement as
the hypothesis, we need to prove the same statement, with z + 1 in place of z,
that is, 26+ > [x + 1]2. These are the statements S(z) and S(z + 1) in the
induction principle; the fact that we are using z instead of n as the parameter
should not be of concern; or n is just a local variable.

As in Theorem 1.16, we should rewrite S{z + 1) so it can make use of 5(z).
In this case, we can write 21711 a5 2 x 2%, Since S(z) tells us that 2% > z?, we
can cohclude that 25+ = 2 x 2% > 227,

But we need something different; we need to show that 2! > (z + 1)2.
One way to prove this statement is to prove that 222 > {z + 1)? and then use
the transitivity of > to show 25F! > 222 > (2 + 1)2. In our proof that

282 > (z +1)? (1.7)
we may use the assumption that 2 > 4. Begin by simplifying (1.7):

2> 241 (1.8)
Divide (1.8) by x, to get:

22 CHAPTER 1. AUTOMATA: THE METHODS AND THE MADNESS

Yir_\ mention o I‘hni‘ i'l"l{'l'l'ln"fi'!'ﬂ nraots are 1se 41 nxl-en "31"9

FR ey #RTRANE) B Line By IFE R L H) P AL L8 b Lt B 0 S

recursively defined. However, our first examples were inductions on inte-
gers, which we do not normally think of as recur‘;lvel y defined.” However,
there is a natural, recursive definition of when a number is a nonnegative
integer, and this definition does indeed match the way inductions on inte-

gers proceed: from objects defined first, to those defined later.
BASIS: 0 is an integer.

INDUCTION: If n is an integer, then so is n + 1.

1
T>24 = (1.9)
x

Sinice z > 4, we know 1/z < 1/4. Thus, the left side of (1.9} is at least
4, and the right side is at most 2.25. We have thus proved the truth of (1.9).
Therefore, Equations {1.8) and (1.7) are also true. Equation (1.7) in turn gives
us 22° > (z + 1)% for = > 4 and lets us prove statement S(z + 1), which we
recall was 257 > (z+ 1)>. O

1.4.2 More General Forms of Integer Inductions

Sometimes an inductive proof is made possible only by using a more general
scheme than the one proposed in Section 1.4.1, where we proved a statement S
for one basis value and then proved that “if S(n) then S{n+1)." Two important
generalizations of this scheme are:

1. We can use several basis cases. That is, we prove 5(}, Sz + 1),...,9()
for some § > i.

2, In proving S(n + 1), we can use the truth of all the statements
S(i), 86 +1),...,8(n)

rather than just using S(n). Moreover, if we have proved basis cases up
to S(j), then we can assume n > j, rather than just n > 4,

The conclusion to be made from this basis and inductive step is that S(n) is
true for alln > 4,

Example 1.18: The following example will illusirate the potential of both
principles. The statement S(n) we would like to prove is that if n» > 8, then n
can be written as a sum of 3's and 5’s. Notice, incidentally, that 7 cannot be

L4
written as a sum of 3’s and 5’s.

1.4. INDUCTIVE PROQOFS 23

BASIS: The basis cases are S(8), 5(9), and S{10}. The proofs are 8 = 3 + 3,
9=3+3+ 3, and 10 = 5 + 5, respectively.

INDUCTION: Assume that n > 10 and that S(8),5(9),...,S(n) are true. We
must prove S(n + 1) from these given facts. Our strategy is to subtract 3 from
n + 1, observe that this number must be writable as a sum of 3's and 5's, and
add one more 3 to the sum to get a way to write n + 1.

More formally, observe that n — 2 > 8, so we may assume S{n — 2). That
is, n — 2 = 3a + 5b for some integers @ and b. Then & + 1 = 3 + 3a + 5b, so
n + 1 can be written as the sum of @ + 1 3’s and b 5’s. That proves S{n + 1)
and concludes the inductive step. O

1.4.3 Structural Inductions

In antomata theory, there are several recursively defined structures about which
we nced to prove statements. Thoe familiar notions of trees and expressions
are important examples. Like inductions, all recursive definitions have a basis
case, where one or more elementary structures are defined, and an inductive
step, where more complex structures are defined in terms of previously defined
structures.

Example 1.19: Here is the recursive definition of a tree:
BASIS: A single node is a tree, and that node is the root of the trec.

INDUCTION: If T3, T, ..., T} are trees, then we can form a new tree as follows:

1. Begin with a new node /¥, which is the root of the tree.
2. Add copies of all the trees T3, Ty, ..., T}.
3. Add edges from node N to the roots of each of the trees 7. Ts, ..., T}.

Figure 1.7 shows the inductive construction of a tree with root N from k smaller
trees. U

Example 1.20: Here is another recursive definition. This time we define
expressions using the arithmetic operators + and #, with both mumbers and
variables allowed as operands.

BASIS: Any numboer or letter (i.e.. a variable) is an expression.
INDUCTION: If E and F are expressions, then so are E+ F, Ex F, and (E).

For example, both 2 and & are expressions by the basis. The inductive step
tells us 2 + 2, (z +2), and 2 * {z + 2) are all expressions. Notice how each of

these expressions depends on the previous ones being expressions. O

24 CHAPTER 1. AUTOMATA: THE METHODS AND THE MADNESS

Figure 1.7: Inductive construction of a tree

Intuition Behind Structural Induction

We can suggest informally why structural induction is a valid proof
method. Imagine the recursive definition establishing, one at a time, that
certain structures X, Xy, ... meet the definition. The basis elerments come
first, and the fact that X is in the defined set of structures can only depend
on the membership in the defined set of structures that precede X; on the
list. Viewed this way, a structural induction is nothing but an induction
on integer n of the statement S{X,). This induction may be of the gen-
eralized form discussed in Section 1.4.2, with multiple basis cases and an
inductive step that uses all previous instances of the statement. However,
we should remember, as explained in Section 1.4.1, that this intuition is
not a formal proof, and in fact we must assume the validity this induction
principle as we did the validity of the original induction principle of that
section.

When we have a recursive definition, we can prove theorerns about it using
the following proof form, which is called structural induction. Let S{X) be a
statement about the structures X that are defined by some particular recursive
definition.

1. As a basis, prove S(.X) for the basis structure(s) X.

2. For the inductive step, take a structure X that the recursive defini-
tion says is formed from Y1,Y3,...,Y.. Assume that the statements
S(Y1), 8(¥a),...,5(V), and use these to prove S{X),

a2 T TR 1 L

Our conclusion is that 5{X) is true for all X. The next two theorems are
examples of facts that can be proved about trees and expressions.

Theorem 1.21: Every tree has one more node than it has edges.

14. INDUCTIVE PROOQOFS 25

PROOF: The formal statement S{T) we need to prove by structural induction
is: “if T is a tree, and T has n nodes and e edges, then n —e + 1.7

BASIS: The basis case is when T is a single node. Then n =1 and ¢ = 0, so
the relationship n = e + 1 holds.

INDUCTION: Let T be a tree built by the inductive step of the definition,
from root node N and k smaller trees Ty, T3, ..., 7. We may assume that the
statements S{T;) hold for i = 1,2,..., k. That is, let T} have n, nodes and ¢

edges; then n; = e; + 1.

The nodes of T are node N and all the nodes of the T;’s. There are thus
1+ my +n2+ - +ny nodes in T'. The edges of T are the % edges we added
explicitly in the mduchve definition step, plus the edges of the T;’s. Hence, T
has

k+e +er+ - te (1.10)

edges. If we substitute e; + 1 for n; in the count of the number of nodes of T
we find that 7' has

l+fer+ 1) +[ea+ 4]+ +[ex+1] (1.11)

nodes. Since there are k of the “+1” terms in (1.10), we can regroup (1.11) as

k+1+e+ex+- ey (1.12)

This expression is exactly 1 more than the expression of {1.10) that was given
for the number of edges of T. Thus, T has one more node than it has edges.
O

Theorem 1.22: Every expression has an equal number of left and right paren-
theses.

PROOF: Formally, we prove the statement S({(3) about any expression G that
is defined by the recursion of Example 1.20: the numbers of left and right
parentheses in G are the same.

BASIS: If G is defined by the basis, then G is a number or variable. These
expressions have 0 left parentheses and 0 right parentheses, so the numbers are
equal.

INDUCTION: There are three rules whereby expression G may have been con-
structed according to the inductive step in the definition:

1. G=FE+F.
2. G:E*F.
3. G =(E)

96 CHAPTER 1. AUTOMATA: THE METHODS AND THE MADNESS

We may assume that S{E) and S(F) are true; that is, E has the same number
of left and right parentheses, say n of each, and F likewise has the same number
of left and right parentheses, say m of each. Then we can compute the numbers

T 7 ™ .« I rxs £ T o
1. & = E+ F, then G has n + 7

i 7
parentheses; n of each come from E and m of cach come from F.

2. If G = E = F, the count of parentheses for G is again n + m of each, for
the same reason as in case (1).

3. If G = (E), then there arc n+1 left parcutheses in G — onc left parenthesis
is explicitly shown, aud the other n are present in E. Likewise, there are
n + 1 right parentheses in G; one is explicit and the other n arc in E.

In each of the three cases, we see that the numbers of left and right parentheses
in @ are the same. This observation completes the inductive step and completes
the proof. O

1.4.4 Mutual Inductions

Sometimes, we cannot prove a single statement by induction, but rather need
to prove a group of statements Si(n), Sa(n), .- ., Sk(n) together by induction
on n. Automata theory provides many such situations. In Example 1.23 we
sample the common situation where we need to explain what an automaton
does by proving a group of statements, one for each state. These statements
tell under what sequences of inputs the automaton gets into cach of the states.

Strictly speaking, proving a group of statements is no different from proving
the conjunetion (logical AND) of all the statements. For instance, the group
of statements 81 (n), Sa(n), ..., Sk{n) could be replaced by the single statement
S (n) AND S, (n) AND - - - AND Si(n). However, when there are really several inde-
pendent statements to prove, it is generally less confusing to keep the statements
separate and to prove them all in their own parts of the basis and inductive
steps. We call this sort of proof mutual induction. An example will illustrate
the necessary sieps for a mutnal recursion.

Example 1.23: Let us revisit the on/off switch, which we represented as an
automaton in Example 1.1. The automaton itself is reproduced as Fig. 1.8.
Since pushing the button switches the state between on and off, and the switch
starts out in the off state, we expect that the following statements will together
explain the operation of the switch:

S;(n): The automaton is in state off after n pushes if and only if n is even.

S,(n): The automaton is in state on after n pushes if and only if n is odd.

1.4. INDUCTIVE PROOFS 27

Push
sun A
off ;ry

Push

Figure 1.8: Repeat of the automaton of Fig. 1.1

Wa micht SUDDES that S, I'J’Tl'n 1oy S, T"ld \,-"i("Pr-v

THC Niiljmadl Shepiprnd Lilcal 2] asdapleatar 2R g

versa, since we know that
a number n cannot be both even and odd. However, what is not always true
about an automaton is that it is in one and only one state. It happens that
the automaton of Fig. 1.8 is always in exactly one state, but that fact must be
proved as part of the mutual induction.

We give the basis and inductive parts of the proofs of statements Sy (n) and
S3(n) below. The proofs depend on several facts about odd and even integers:
if we add or subtract 1 from an even integer, we get an odd integer, and if we
add or subtract 1 from an odd integer we get an even integer.

BASIS: For the basis, we choose n = 0. Since there are two statemnents, each of
which must be proved in both directions (because 8y and S» are each “if-and-
only-if” statements), there are actually four cases to the basis, and four cases
to the induction as well.

1. [S1; If] Since O is in fact even, we must show that after O pushes, the
automaton of Fig. 1.8 is in state off. Since that is the start state, the
automaton is indeed in state off after U pushes.

2. [S1; Only-if) The automaton is in state off after 0 pushes, so we must
show that O is even. But 0 is even by definition of “even,” so therc is
nothing more to prove.

3. [Sa; If] The hypothesis of the “if” part of S5 is that 0 is odd. Since this
hypothesis H is false, any statement of the form “if H then C7 is true, as
we discussed in Section 1.3.2. Thus, this part of the basis also holds.

4. [S2; Only-if] The hypothesis, that the antomaton is in state on after 0
pushes, is also false, since the only way to get to state on is by following
an arc labeled Push, which requires that the button be pushed at least
once. Since the hypothesis is false, we can again conclude that the if-then

statement i3 true
INDITCTION: \I(}t;g. we assume that S (} and S ('n\ are true, and try to prove
S1{n + 1} and S2(n + 1). Apgain, th proof separates into fuur parts.

28

CHAPTER 1. AUTOMATA: THE METHODS AND THE MADNESS

. [S1(n + 1);] The hypothesis for this part is that n + 1 is even. Thus,

e ocded Thn sy #'” nart of ctatomeant Qn{ﬂ\ uavn that ofor 73 h||::1'\cnr. fl’\n

e BpF iSwAnd | LAL SURAL LRI Gy WUEACAL CLA VAL | Sl |

automaton is in state on. The atrc from on to off labeled Push tells us
that the {n 4 1)st push will cause the automaton to enter state ¢ff. That

completes the proof of the “if” part of §,{(rn + 1).

. [Si{n + 1}; Only-if] The hypothesis is that the automaton is in state off

after n + 1 pushes. Inspecting the automaton of Fig. 1.8 tells us that the
only way to get o state off after one or more moves is to be in state enand
receive an input Push. Thus, if we are in state off after n 4 1 pushes, we
must have been in state or after & pushes. Then, we may use the “only-if”
part of statement Sa(n) to conclude that » is odd. Consequently, n 41 is

Patirat oY riah e tha Adaoieard] semslaacion fvae fha sl 38 roombbomem A O faa 1Y
LViCll,y \'\‘Il.ll_.\.ll. I.D uuc LICEII.I.U\.I LUlILIUt’JJUll ILFL LT Ulliy ll PUI. LILHL Ul L}I\.I’& —I_ LJ’

. [S2(n+1); If] This part is essentially the same as part (1), with the roles of

statemnents S; and S> exchanged, and with the roles of “odd” and “even”
exchanged. The reader should be able to construct this part of the proof
easily.

. [S2(2 + 1); Only-if] This part is essentially the same as part (2}, with the

roles of statements S; and S exchanged, and with the roles of “odd” and
“even” exchanged.

We can abstract from Example 1.23 the pattern for all mutual inductions:

» Each of the statements must be proved separately in the basis and in the

inductive step.

o If the statements are “if-and-only-if,” then both directions of each state-

ment must be proved, both in the basis and in the induction.

1.5 The Central Concepts of Automata Theory

In this section we shall introduce the most importani definitions of terms that
pervade the theory of automata. These concepts include the “alphabet” (a sct
of symbols), “strings” (a list of symbols from an alphabet), and “language” (a
set of strings from the same alphabet).

1.5.1 Alphabets

An alphabet is a finite, nonempty set of symbals. Conventionally, we use the
symbol ¥ for an alphabet. Common alphabets include:

1. £ = {0,1}, the binary alphabet.

1.5. THE CENTRAL CONCEPTS OF AUTOMATA THEORY 29

2. ©={a,b,...,z}, the set of all lower-case letters.

3. The set of all ASCII characters, or the set of all printable ASCII charac-

F o

LAt

1.5.2 Strings

A string (or sometimes word) is a finite sequence of symbols chosen from some

At §
alphabet. For example, 01101 is a string from the binary alphabet & = {0,1}.
The string 111 is another string chosen from this alphabet.

The Empty Siring

The empty string is the string with zero occurrences of symbols. This string,
denoted ¢. is a string that may be chosen from any alphabet whatsoever.

Length of a String

Tt is often useful to classify strings by their length, that is, the number of
positions for symbols in the string. For instance, 01101 has length 3. It is
common to say that the length of a string is “the number of symbols” in the
string; this statement is colloguially accepted but not strictly correct. Thus,
there are only two symbols, 0 and 1, in the string 01101, but there are five
positions for symbols, and its length is 5. However, you should gencrally expect
that “the number of symbols” can be used when “number of positions” is meant.

The standard notation for the length of a string = is |w|. For example,
|011] = 3 and |e} = 0.

Powers of an Alphabet

If ¥ is an alphabet, we can express the set of all strings of a certain length from
that alphabet by using an exponential notation. We define T* to be the set of
strings of length k, each of whose symbols is in ¥.

Example 1.24: Note that Z° = {e}, regardless of what alphabet ¥ is. That
is, € is the only string whose length is 0.
If © = {0,1}, then £! = {0,1}, * = {00,01,10, 11},

% = {000,001,010,011,100,101,110, 111}

and so on. Note that there is a slight confusion between E and T!. The former

is an alphabet; its members 0 and 1 are symbols. The latter is a set of strings;

its members are the strings 0 and 1, each of which is of length 1. We shall not
trv 1o usze senarate notations for the twao gets, T‘F‘l\"lllE on context to make it

Ly WRS ME G pen S SIS SARSS

clear whether {0,1} or similar sets are alphabeta or sets of strings. O

30 CHAPTER 1. AUTOMATA: THE METHQODS AND THE MADNESS

e 1 P S~ 1 o
1ype Convention Ior >ym ngs
Commonly, we shall use lower-case letters at the beginnir ng of the alp__a_bet
{or digits) to denote symbols, and lower-case letters near the end of the

alphabet, typically w, z, ¥, and z, to denote strings. You shoutd try to get
used to this convention, to help remind you of the types of the elements
heing discussed.

The set of all s
1

imgkanes I0 11#
T L J’

ings over an alphabet ¥ is conventicnally denoted %*. For
n

00,01,10,11,000,...}. Put another way,

stri
— e
B

1
g Ay WA UL, BV, L,

v=xtuzslux?y

Sometimes, we wish to exclude the empty string from the set of strings. The
set of nonempty strings from alphabet ¥ is denoted ©F. Thus, two appropriate
equivalences are:

e Tt=l0ux?Uuzx’u
o T* =Yt U e}

Concatenation of Strings

Let z and y be strings. Then zy denotes the concatenation of x and y, that
is, the string formed by making a copy of z and following it by a copy of ¥.
More precisely, if x is the string composed of ¢ symbols # = @¢yag -+ a; and y is
the string composed of j symbols y = b1 by« - b;, then 2y is the string of length
ik oy = ardy el "-f)j.

Example 1.25: Let » = 01101 and y = 110. Then xzy = 01101110 and
yxr = 11001101. For any string w, the equations ew = we = w hold. That is,
¢ is the identity for concetenation, since when concatenated with any string it
vields the other string as a result (analogously to the way 0, the identity for
addition, can be added to any number z and yields » as a result). O

1.5.3 Languages

A set of strings all of which are chosen from some I*, where ¥ is a particular
alphabet, is called a lenguage. If ¥ is an alphabet, and L € E*, then L is a
lunguage over £. Notice that a language over X need not include strings with

all the symbols of ¥, so cnce we have established that L is a language over T,

we also know it is a languag(, over any alphabet that is a superset of L.
The choice of the terrn “language” may seem strange. However, comn

pLa) |
languages can be viewed as sets of strings. An cxa,mple is English, W’nere the

1.5. THE CENTRAL CONCEPTS OF AUTOMATA THEQORY 31

collection of legal English words is a set of strings over the alphabet that consists
of all the letters. Another example is C, or any other programming language.
where the legal programs are a suhset of the possible Qtrings that can be formed
from the alphabet of the language. This alphabet is a subset of the ASCII
characters. The exact alphabet may differ slightly among different programming
languages, but generally includes the upper- and lower-case letters, the digits,

punctuation, and mathematical symbols.
T-]nnrnwnr there are also many other]PIHFI"I ages that appear when we qtud\’

o

automarta. Somo arc abstract examplos Such as

1. The language of all strings consisting of n 0's followed by n 1's, for some
n > 0: {¢01,0011,000111,...}.

2. The set of strings of 0’s and 1’s with an equal number of each:

fe,01,10,0011,0101, 1001, .. .}

3. The sct of binary numbers whose value is a prime:

{10,11,101,111,1011,.. .}
4. ¥* is a langnage for any alphabet I.
5. B, the empty language, is a language over any alphabet.

6. {¢}, the language consisting of only the empty string, is also a language
over any alphabet. Notice that @ # {e}; the former has no strings and
the latter lLias one string,

The only important constraint on what can be a language is that all alphabets
are finite. Thus languages, although they can have an infinite number of strings,
are restricted to consist of strings drawn from one fixed, finite alphabet.

1.5.4 Problems

In automata theory, a problem is the question of deciding whether a given string
is a member of some particular language. It turns out, as we shall see, that
anything we more colloquially eall a “problem” can be expressed as membership
in a language. Morc precisely, if T is an alphabet, and L is a language over X,
then the problem L is:

s Given a string w in %*, decide whether or not w is in L.

Example 1.26: The problem of testing primality car (pressed
language L, consisting of all binary strings whose value as a binary number is
n prime Tbnf is. piven a string of 0’¢ and 1's. say “ves’ if the string is the

Lol lll.llid.\-!t EfAL &Rfy Pl aa

binary representation of say “mo” if not. For some strings, this

9—15‘
'TJ
:
e
=
PR,

32 CHAPTER 1. AUTOMATA: THE METHODS AND THE MADNESS

{w | something about w}

This expression is read “the set of words w such that (whatever is said
about w to the right of the vertical bar).” Examples are:

1. {w| w consists of an equal number of 0’s and 1's }.
2. {w | w is a binary integer that is prime }.
3. {w] w is a syntactically correct C program }.

It is also common to replace w by some expression with parameters and
describe the strings in the language by stating conditions on the parame-
ters. Here are some examples; the first with parameter n, the second with
parameters ¢ and j:

1. {0m1" | n > 1}. Read “the set of 0 to the n 1 to the » such that »
is greater than or equal to 1,” this language consists of the strings
{01,0011,000111,...}. Notice that, as with alphabets, we can raise
a single symbol tc a power n in order to represent n copies of that
symbol.

2. {0°17 | 0 < i < j}. This language consists of strings with some 0's
(possibly none) followed by at least as many 1’s.

decision is easy. For instance, 0011101 cannot be the representation of a prime,
for the simple reason that every integer except 0 has a binary representation
that begins with 1. However, it is less obvious whether the string 11101 belongs
t0 Ly, 50 any solution to this problem will have to use significant computational
resources of some kind: time and/or space, for example. 0O

One potentially unsatisfactory aspect of our definition of “problem” is that
one commonly thinks of problems not as decision questions (is or is not the
following true?) but as requests to compute or transform some input (find the
best way to do this task). For instance, the task of the parser in a C compiler
can be thought of as a problem in our formal sense, where one is given an ASCII

string and asked to decide whether or not the string is a member of L., the set

of valid C programs. However, the parser does more than decide. It produces a
parse tree, entries in a symbol table and perhaps more. Worse, the compiler as

a whole solves the problem of turning a C program into object code for some

1.5. THE CENTRAL CONCEPTS OF AUTOMATA THEORY 33

vl
E?_‘

»-:51:
< &
t..

=2

15 are really the same thing. Which term we prefer

5
allpaages @Al -..v Pl LER Lo TEE T Y Y LI =1 4

se depends on oint of view. When we care only about strings for
thelr own sake, e.g., in the set {0™1" | n > 1}, then we tend to think of

oages and nro

t

the set of strings as a language. In the last chapters of this book, we shall
tend to assign “semantics” to the strings, e.g., think of strings as coding
graphs, logical expressions, or even integers. In those cases, where we care
more about the thing represented by the string than the string itself, we
shall tend to think of a set of strings as a problem.

machine, which is far from simply answering “yes” or “no” about the validity
of a program.

Nevertheless, the definition of “problems” as languages has stood the test
of time as the appropriate way to deal with the important questions of com-
plexity theory, In this theory, we are interested in proving lower bounds on
the complexity of certain problems. Especially important are techniques for
proving that certain problems cannot be solved in an amount of time that is
less than exponential in the size of their input. It turns out that the yes/no
or language-based version of known problems arc just as hard in this sense, as
their “solve this” versions.

That is, if we can prove it is hard to decide whether a given string belongs to
the language L x of valid strings in programming language X, then it stands to
reason that it will not be casier to translate programs in language X to object
code. For if it were easy to generate code, then we could run the translator, and
conclude that the input was a valid member of Ly exactly when the translator
succeeded in producing object code. Since the final step of determining whether
object code has been produced cannot be hard, we can use the fast algorithmm
for generating the object code to decide membership in Lx efficiently. We thus
contradict the assumption that testing membership in Lx is hard. We have a
proof by contradiction of the statement “if testing membership in Ly is hard,
then compiling programs in programming language X is hard.”

This technique, showing one problem hard by using its supposed efficient
algorithm to solve efficiently another problem that is already known to be hard,

PR T fanry daa I AF b cprep:] vaemds
is called a “veduction” of the second p pr oblem to the first. It is an essential tog)

in the study of the complexity of problems, and it is facilitated greatly by our
notion that nroblems are ouoestions nhﬁnf memhoershin inh a Ianmml:m tather

HIFUELAL VAIG L PAS R LAG DR RA Tl DRSS AN RSALRRSRS R RS2 LEL R St <111

than more general kinds of questions.

34

CHAPTER 1. AUTOMATA: THE METHODS AND THE MADNESS

1.6 Summary of Chapter 1

* Finile Automata‘ Finite antomata involve states and transitions among

ot mtao 11 roaoTia ~ fey e Thaew aro ol for hnildine covaral Aiforant
b'J\.C-l h‘_"l I.Il I.'C'C‘IPUI.I')‘_ MU llll.‘lrlb_’ R 'Y T \11§ l—kll LUI. l’llllulll& [yl Row i ulllclcllh

kinds of software, including the lexical analysis component of a compiler

and svstems for VP‘I"I'FL!‘I"I!J' the correctness of circnits or protocols, for ex-

Sy aLlllln il 22 L LY S S LELY S o s col sy ASF

ample.

Regular Expressions: These are a structural notation for describing the
same pafterns that can be represented by finite automata. They are used
in many common types of software, including tools to search for patterns
in text or in file names, for instance.

Contezt-Free Grammars: These are an important notation for describing
the structure of programming languages and related sets of strings; they
are used to build the parser component of a compiler.

Turing Machines: These are automata that model the power of real com-
puters. They allow us to study decidabilty, the question of what can or
cannot be done by a computer. They also let us distinguish tractable
problems — those that can be solved in polynomial time — from the
intractable problems — those that cannot.

Deductive Proofs: This basic method of proof proceeds by listing state-
ments that are either given to be true, or that follow logically from some
of the previous statements.

Proving If-Then Siatements: NMany theorems are of the form “if {(some-
thing) then (something else).” The statement or statements following the
“if” are the hypothesis, and what follows “then” is the conclusion. Deduc-
tive proofs of if-then statements begin with the hypothesis, and continue
with statements that follow logically from the hypothesis and previous
statements, until the conclusion is proved as one of the statements.

Proving If And-Only-If Statements: There are other theorems of the form
“(something) if and only if (sumething else).” They are proved by showing
if-then statements in both directions. A similar kind of theorem claims
the equality of the sets described in two different ways; these are proved
by showing that each of the two sets is contained i the other.

Proving the Contrapositive: Sometimes, it is easier to prove a statement,
of the form “if H then C¥ by proving the equivalent statement: “if not
C then not H.” The latter is called the contrapositive of the former.

Proof by Contradiction: Other times, it is more convenient t0 prove the
statement “if H then C" by proving “if H and not C then {something

known to be false).” A proof of this type is called proof by contradiction.

1.7. REFERENCES FOR CHAPTER 1 35

+ Counterezamples: Sometimes we are asked to show that a certain state-
ment 18 not true. If the statement has one or more parameters, then we
can show it is false as a generality by providing just one counterexam-
ple, that is, one assignment of values to the parameters that makes the
statement false.

+ Inductive Proofs: A staterent that has an integer parameter n can often
by proved by induction on n. We prove the statement is true for the
basis, a finite nunber of cases for particular values of n, and then prove
the inductive step: that if the statement is true for values up to a, then
it is true for 4+ 1.

4 Structural Inductions: In some situations, including many in this book,
the theorem to be proved inductively is about some recursively defined
construct, such as trees. We may prove a theorem about the constructed
objeets by induction on the number of steps used in its construction. This
type of induction is referred to as structural.

4+ Alphabets: An alphabet is any finite set of symbols.
+ Strings: A string is a finite-length sequence of symbols.

4+ Languages and Problems: A language is a (possibly infinite} set of strings,
all of which choose their symbols from some one alphabet. When the
strings of a language are to be interpreted in some way, the question of
whether a string is in the language is sometimes called a problem.

1.7 References for Chapter 1

For extended coverage of the material of this chapter, including mathematical
concepts underlying Computer Science, we recommend [1].

1. A.V. Ahoand J. D. Ullman, Foundations of Computer Science, Computer
Science Press, New York, 1994.

s e
uLoliiau

v

~cdk A
11LC A\

This chapter introduces the class of languages known as “regular languages.”
These languages are exactly the ones that can be described by finite automata,
which we sampled briefly in Section 1.1.1. After an extended exaniple that will
provide motivation for the study to follow, we define finite automata formally.

As was mentioned earlier, a finite automaton has a set of states, and its
“control” moves from state to state in response to external “iuputs.” One of
the crucial distinctions among classes of finite automata is whether that con-
trol is “deterministic,” meaning that the automaton cannot be in more than
one state at any one time, or “nondeterministic,” meaning that it may be in
several states at once. We shall discover that adding nondeterminism does
not let us define any language that cannot be defined by a deterministic finite
automaton, but there can be substantial efficiency in describing an application
using a nondeterministic automaton. In effect, nondeterminism allows us to
“program” solutions to problems using a higher-level language. The nondeter-
ministic finite automaton is then “compiled,” by an algorithm we shall learn
in this chapter, into a deterministic automaton that can be “executed” on a
conventional computer.

We conclude the chapter with a study of an extended nondeterministic aut-
omaton that has the additional choice of making a transition from one state to
another spontancously, i.e., on the empty string as “input.” These automata
also accept nothing but the regular languages. However, we shall find them
quite important in Chapter 3, when we study regular expressions and their
equivalence to automata.

The study of the regular languages continues in Chapter 3. There, we in-
troduce another important way to describe regular languages: the algebraic
notation known as regular expressions. After discussing regular expressions,
and showing their equivalence to finite antomats, we use both automata and
regular expressions as tools in Chapter 4 to show certain important properties
of the regular languages. Examples of such properties are the “closure” proper-
ties, which allow us to claim that one language is regular because one or more

a7
i

38 CHAPTER 2. FINITE AUTOMATA

other languages are known to be regular, and “decision” properties. The latter
are algorithms to answer questions about antomata or regular expressions, e.g.,
whether two automata or expressions represent. the same language.

2.1

s LA il ALEL

nformal Picture of Finite Aut
In this section, we shall study an extended cxample of a real-world problem
whose solution uses finite automata in an important role. We investigate pro-
tocols that support. “clectronic money™ - files that a customer can use to pay
for goods on the internet, and that the seller can receive with assurance that
the “money™ is real. The seller must know that the file has not been forged,
nor has it been copied and sent to the seller, while the customer retains a copy
of the samc filc to spend again.

The nonforgeability of the file is something that must be assured by a bank
and by a eryptography policy. That is, & third player, the bank, 1nust issue and
enerypt the “money” files, so that forgery is not a problem. However, the bank
has a second important job: it must keep a database of all the valid money
that it has issued, so that it can verify to a store that the file it has received
represents real money and can be credited to the store’s account. We shall not
address the cryptographic aspects of the problem, nor shall we worry about
how the bank can store and retrieve what could be billions of “electronic dollar
bills.” These problems are not likely to represent long-term impediments to the
concept of electronic money, and examples of its small-scale use have existed
since the late 1990°s.

However, in order to use electronic money, protocols need to be devised to
allow the manipulation of the money in a variety of ways that the users want.
Because monetary systems always invite fraud, we must verify whatever policy
we adopt regarding how money is used. That is, we need to prove the only
things that can happen are things we intend to happen -~ things that do not
allow an uuscrupulous user to steal from others or to “manufacture” moncy.
In the balance of this section, we shall introduce a very simple example of a
(bad) clectronic-money protocol, model it with finite automata, and show how
constructions oun automata can be used to verify protocols {or, in this case, to
discover that the protocol has a bug).

2.1.1 The Ground Rules

There are three participants: the customer, the store, and the bank. We assume
for simplicity that there is only one “money” file in existence. The customer
may decide to transfer this money file to the store, which will then redeem the
file from the bank (i.e., get the bank to issue a new money file belonging to the
store rather than the customer) and ship goods to the customer. In addition,
the customer has the option to cancel the file. That is, the customer may ask

the bank to place the money back in the customer’s account, making the money

2.1. AN INFORMAL PICTURE OF FINITE AUTOMATA 39

no longer spendable. Interaction among the three participants is thus limited
to five events:

1. T

2. The customer may decide to cancel. The money is sent to the bank with
a message that the value of the money is to be added to the customer’s
bank account.

3. The storc may ship goods to the customer.

4. The store may redeem the money. That is, the money is sent to the bank
with a request that its value be given to the store.

5. The bank may trensfer the money by creating a new, suitably encrypted
money file and sending it to the store.

2.1.2 The Protocol

The three participants must design their behaviors carefully, or the wrong things
may happen. In our example, we make the reasonable assumption that the
customer cannot be relied upon to act responsibly. In particular, the customer
may try to copy the money file, use it to pay several times, or both pay and
cancel the money, thus getting the goods “for free.”

The bank must behave responsibly, or it cannot be a bank. In particular, it
must make sure that two stores cannot both redeem the same money file, and
it, must not allow money to be both canceled and redeemed. The store should
be careful as well. In particular, it should not ship goods until it is sure it has
heen given valid money for the goods.

Protocols of this type can be represented as finite automata. Each state
represents a situation that one of the participants could be in. That is, the state
“remembers” that certain important events have happened and that others have
not, yet happened. Transitions between states occur when one of the five events
described above occur. We shall think of these events as “external” to the
automata representing the three participants, even though each participant is
responsible for initiating one or more of the events. It turns out that what is
important about the problem is what sequences of events can happen, not who
is allowed to initiate them.

Figure 2.1 represents the three participants by antomata. In that diagram,
we show only the events that affect a participant. For example, the action pay
affects only the customer and store. The bank does not know that the money
has been sent by the customer to the store; it discovers that fact only when the

A +hom nrdioe oA on

“,I_,l)]_(" bﬂULuhﬂ'ﬂ l.le.t' ACTION TEaEeT.
Let us examine first the automaton (¢) for the bank, The start state is
gtate 1, it represents the situation where the bank has issued the money file in

Coliie) HFLE ¥ LA L) 0) A2 Bl 11

question but has not been requested either to redeem it or fo cancel it. If a

40 CHAPTER 2. FINITE AUTOMATA

N paykmredeem fer

a

() Store /Lsmp /}\smp /L hip
e Ty

redeem transfer

Start

cancel

cancel

redeem transfer

Start Start

(b) Customer (c) Bank

Figure 2.1: Finite antomata representing a customer, a store, and a bank

cancel request is sent to the bank by the customer, then the bank restores the
money to the customer’s account and enters state 2. The latter state represents
the situation where the money has been cancelled. The bank, being responsible,
will not leave state 2 once it is entered, since the bank must not allow the same
money to be cancelled again or spent by the customer.!

Alternatively, when in state 1 the bank may receive a redeem request from
the store. If so, it goes to state 3, and shortly sends the store a trensfer message,
with a new money file that now belongs to the store. After sending the transfer
message, the bank goes to state 4. In that state, it will neither accept cancel or
redeem requests nor will it perform any other actions regarding this particular
money file.

Now, let us consider Fig. 2.1(a), the automaton representing the actions of
the store. While the bank always does the right thing, the store’s system has
some defects. Imagine that the shipping and financial operations are done by

1ypu should remember that this entive discussion is about one single money fle. The bank
will in facl be running the same protocol with a large number of electronic pieces of money,
but the workings of the protocol are the same for each of them, so we can discuss the problem
as if there were only one piece of electronic money in existence.

21. AN INFORMAL PICTURE OF FINITE AUTOMATA 41

separate processes, so there is the opportunity for the ship action to be done
either before, after, or during the redemption of the electronic money. That
policy allows the store to get into a situation where it has already shipped the
goods and then finds out the money was bogus.

The store starts out in state @. When the customer orders the goods by

S . - i .
periorming tne pay action, the store enters stale b. In this state, the store

begins both the shipping and redemption processes. If the goods are shipped

firet, then the store enters stato a, whore it mast atill redeem the money from

AlbaTiry Ldanlin

the bank and receive the tmnsfer of an equivalent money file from the bank.
Alternatively, the store may send the redeem message first, entering state d.
From state d, the store might next ship, cntering state ¢, or it might next
receive the transfer of money from the bank, entering state f. From state f, we
expect that the store will eventually ship, putting the store in state g, where the
transaction is complete and nothing more will happen. In state e, the store is
waiting for the fransfer from the bank. Unfortunately, the goods have already
been shipped, and if the transfer never occurs, the store is out of luck.

Last, observe the antomaton for the customer, Fig. 2.1(b). This automaton
has only one state, reflecting the fact that the customer “can do anything.”
The customer can perform the pay and cancel actions any number of times, in
any order, and stays in the lone state after each action.

2.1.3 Enabling the Automata to Ignore Actions

While the three automata of Fig. 2.1 reflect the behaviors of the three partici-
pants independently, there are certain transitions that are missing. For example,
the store is not affected by a cancel message, so if the cancel action is performed
by the customer, the store should remain in whatever state it is in. However, in
the formal definition of a finite automaton, which we shall study in Section 2.2,
whenever an input X is reccived by an automaton, the automaton must follow
an arc labeled X from the state it is in to some new state. Thus, the automaton
for the store needs an additional arc from each state to itself, labeled cancel.
Then, whenever the cancel action is executed, the store automaton can make a
“transition” on that input, with the effect that it stays in the same state it was
in. Without these additional arcs, whenever the cancel action was executed the
store automaton would “die”; that is, the automaton would be in no state at
all, and further actions by that automaton would be impossible.

Another potential problem is that one of the participants may, intentionally
or erroneously, send an unexpected message, and we do not want this action to
cause one of the automata to die. For instance, suppose the customer decided
to execute the pay action a second time, while the store was in state e. Since
that state has no arc out with label pay, the store’s automaton would die before

1] i
it could receive the transfer from the bank. In summary, we must add to the

antomata of Fig. 2.1 loops on certain states, with labels for all those actions
that mmst he 1rr‘nnrpﬂ when in that state; the complete automata are shown

L e e TR LIlLL

in Fig. 2.2, To save space, we combine the labels onto one arc, rather than

42

CHAPTER 2. FINITE AUTOMATA

showing several arcs with the same heads and tails but different labels. The
two kinds of actions that must be ignored are:

cancel pay,cancel pay,cancel pay,cancel
st () r;s A
o g o o N
=) b
pay redeem transfer

pay,cancel pay,cancel pay,cancel

pay, ship

ship. redeem, transfer,

: pay.,redeem, pay,redeem,
pay, cance

cancel, ship cancel, ship

redeem transfer

Start Start

(b) Customer {c) Bank

Figure 2.2: The complete sets of transitions for the three automata

. Actions thot are trrelevant to the participant invelved. As we saw, the

only irrelevant action for the store is cancel, so each of its seven states
has a loop labeled cancel For the bank, both pay and ship are irrelevant,
50 we have put at each of the bank’s states an arc labeled pay, ship. For
the customer, ship, redeem and éransfer are all irrelevant, so we add arcs
with these labels. In effect, it stays in its one state on any sequence of
inputs, so the customer automaton has no effect on the operation of the
overall system. Of course, the customer is still a participant, since it is
the customer who initiates the pay and cancel actions. However, as we
menticned, the matter of who initiates actions has nothing to do with the
behavior of the automata.

. Artions thot must nof be allowed to kill an automaton. As mentioned, we

must not allow the customer to kill the store’s antomaton by executing pay

2.1. AN INFORMAL PICTURE OF FINITE AUTOMATA 43

again, so we have added loops with label pay to all but state o {where the
pay action is expected and relevant). We have also added loops with labels
cancel to states 3 and 4 of the bank, in order to prevent the customer from
killing the bank’s automaton by trying to cancel money that has already
been redeemed. The bank properly ignores such a request. Likewise,

ctobne T and A o loimema ~1t sadase Thao etars chintild nar Frer 0 rades

PLALTD o2 CLIIU 1 llﬂa\'ﬂ IUUIJD ULl § GGG . l.].l\.v OLUALL DdIWAAL LIV LA Y LY I.'U\.l\acm
the same money twice, but if it does, the bank properly ignores the second

reqgnuest,
request.

2.1.4 The Entire System as an Automaton

While we now have models for how the three participants behave, we do not
yet have a representation for the interaction of the three participants. As men-
tioned, because the customer has no constraints on behavior, that automaton
has only one state, and any sequence of events lets it stay in that state; i.e, it is
not possible for the system 4s a whole to “die” because the customer automaton
has no respomnse to an action. However, both the store and bank behave in a
complex way, and it is not immediately obvious in what combinations of states
these two automata can be.

The normal way to explore the interaction of automata such as these is to
construct the product automaton. That automaton’s states represent a pair of
states, one from the store and one from the bank. For instance, the state (3. d)
of the product automaton represents the situation where the bank 1s In state
3, and the store is in state d. Since the bank has four states and the store has
seven, the product automaton has 4 x 7 = 28 states.

We show the product automaton in Fig. 2.3. For clarity. we have arranged
the 28 states in an array. The row corresponds to the state of the bank and
the column to the state of the store. To save space, we have also abbroeviated
the labels on the arcs, with 2, 8, €, R, and T standing for pay, ship, cancel,
redeem, and transfer, respectively.

To construct the arcs of the product autotnaton, we need to run the bank
and store automata “in parallel.” Each of the two compouents of the product
automaton independently makes transitions on the various inputs. However, it
is important to notice that if an input action is received, and one of the two
automata has no state to go to on that input, then the product automaton
“dies”; it. has no state to go to.

To make this rule for state transitions precise, suppose the product automa-
ton is in state (i,x). That state corresponds to the situation where the bank
is in state ¢ and the store in state . Let Z be one of the input actions. We
look at the automaton for the bank, and see whether there is a transition out
of state 7 with label Z. Suppose there is, and it leads to state j (which might

1 ang i pimaak Py Phan weo lealr of +he ofore and

S mooa 3w

Twmemle 1
l,.lt_': l..llt‘ SAlIlG g & Ll bllt‘ vdall IUG})D LN J.ll.lJLI.L; L-I'J 1 LICLE, WU ILUL dl LIIU OLULC il

K
see if there is an arc labeled Z leading to some state y. If both 7 and y exist,
then the nroduct antomaton has an arc from gtate r? 'T'\I to gtato I('I ’”‘] IA.hP]P('q

L R T AR Tl = A Lo LR Azill

Z. H either of states 7 or 4 do not exist {(because the bank or '-".tom hav- no arc

44 CHAPTER 2. FINITE AUTOMATA

C rpc PC PC PFPC PFC PC

Figure 2.3: The product automaton for the store and bank

out of ¢ or z, respectively, for input Z), then there is no arc out cf (¢, z) labeled
Z.

We can now see how the arcs of Fig. 2.3 were selected. For instance, on
input pay, the store goes from state @ to b, but stays put if it is in any other
state besides a. The bank stays in whatever state it is in when the input is
pay, because that action is irrelevant to the bank. This observation explains
the four arcs laheled P at the left ends of the four rows in Fig. 2.3, and the
loops labeled P on other states.

For another example of how the arcs are selected, consider the input redeem.
If the bank receives a redeem message when in state 1, it goes to state 3. If in
states 3 or 4, it stays there, while in state 2 the bank automaton dies; i.e., it has
nowhere to go. The store, on the other hand, can make transitions from state
b to d or from ¢ to e when the redeem input is received. In Fig. 2.3, we see six
arcs labeled redeem, corresponding to the six combinations of three bank states
and two store states that have outward-bound arcs labeled R. For example, in

staie 'k" UJ, l.,,u,t arc ldu’.‘::lc:u I takes the automaton to state {3,{;.-1, since redeem

takes the bank from state 1 to 3 and the store from b to d. As another example,
there ig an avc labhelad R from (_d e to (4 p\ since redeemn takes the bank from

UALGL o A ChiE G W IGURSLGARE S kA TRk IR S ST L2 LA) will L2

state 4 back to state 4, while it takes the q’ror(, from state c to state e.

2.2. DETERMINISTIC FINITE AUTOMATA 15

2.1.5 Using the Product Automaton to Validate the
Protocol

Fie gure 2.3 tells us some intorestin g thing 5.

For instance, of the 28 stales, only
ten of them can be reached from the start state, which is (1,a) — the combi-
nation of the start states of the bank and store automata. Notice that states
like (2,e) and (4, d} are not accessible, that is, there is no path to them from
the start state. Inaccessible states need not be included in the antomaton. and
we did so in this example just to be systematic.

However, the rcal purpose of analyzing a protocol such as this one using
automata i3 to ask and answer questions that mean “can the following type
of error occur?” In the example at hand, we might ask whether it is possible
that the store can ship goods and never get paid. That 15, can the prodoet
automaton get into a state in which the store has shipped (that is, the state is
in column ¢, e, or g}, and yet no transition on input 7 was ever made or will
be made?

For instance, in state {3, ¢}, the goods have shipped, but there will eventu-
ally be a transition on input T to state {4, ¢). In terms of what the bank is
doing, once it has gotten to state 3, it has received the redeem request and pro-
cessed it. That means it must have been in state 1 before receiving the redeem
and thercefore the cancel message had not been received and will be ignored if
raceived in the future. Thus, the bank will eventually perform the transfer of
money to the store.

However, state (2,¢) is a problem. The state is accessible, but the only arc
out leads back to that state. This state corresponds to a situation where the
bank received a cancel message before a redeem message. However, the store
received a pay moessage; i.¢., the customer was being duplicitous and has hoth
spent and canceled the same money. The store foolishly shipped before tryving
to redeem the money, and when the store does execute the redeemn action. the
bank will not even acknowledge the message. because it is in state 2, where it

has canceled the money and will not process a redeem request.

2.2 Deterministic Finite Automata

Now it is time to present the formal notion of 4 finite automaton, so that we
may start to make preeise some of the informal arguments and descriptions that
we saw in Sections 1.1.1 and 2.1. We begin by introducing the formalism of a
deterministic finite automaton, one that is in a single state after reading any
sequence of inputs. The term “deterministic” refers to the fact that on each
input there is one and only one state to which the automaton can transition from
its current state. In contrast, “nondeterministic” finite automata, the subject of

Section 2.3, can be in several states at once. lhn, term “finite automaton”™ will
vefor to the deterministic variety, although we shall use “deterministic™ or the
abbreviation DFA normally, to remind the o (a_l of which kind of automaton

we are talking about.

46 CHAPTER 2. FINITE AUTOMATA

2.2.1 Definition of a Deterministic Finite Automaton
A deterministic finite autometon consists of:

1. A finite set of states, often denoted Q).

b A i1

3. A transition function that takes as arguments a state and an input symbol
and returns a state. The transition function will commonly be denoted 4.
In our informal graph representation of automata, § was represented by
arcs between states and the labels on the arcs. If ¢ is a state, and a is an
input symbol, then (g, a) is that state p such that there is an arc labeled
a from g to p.2

4. A start stote, one of the states in Q.

. A set of final or accepting states F. The set F i3 a subset of).

o

A deterministic finite automaton will often be referred to by its acronym: DFA.
The most succinct representation of a DFA is a listing of the five components
above. In proofs we often talk about a DFA in “five-tuple” notation:

A=(Q=Z:5190:F)

where A is the name of the DFA, @ is its set of states, & its input symbols, 4
its transition function, g its start state, and F its set of accepting states.

2.2.2 How a DFA Processes Strings

The first thing we need to understand about a DFA is how the DFA decides
whether or not to “accept” a sequence of input symbols. The “language” of
the DFA is the set of all strings that the DFA accepts. Suppose a1a2+--an 18 &
sequence of input symbots. We start out with the DFA in its start state, go. We
consult the transition function 4, say 8(go,a1) = ¢ to find the state that the
DFA A enters after processing the first input symbol a;. We process the next
input symbol, a3, by evaluating 8{g:,az); let us suppose this state is ¢g. We
continue in this manner, finding states ga,q4,.- .. ¢y such that 6{gi—1,a;) = ¢
for each i. If ¢, is a member of F', then the input aras - - -a, is accepted, and
if not then it is “rejected.”

Example 2.1: Let us formally specify a DFA that accepts all and only the
strings of s and 1’s that have the sequence 01 somewhere in the string. We
can write this language L as:

{aw | w is of the form 201y for some strings
z and y consisting of 0’s and 1’s only}

2NMiore accurately, the graph is a piciure of some iransiiion function 6, and the arcs of the

graph are constructed to reflect the transitions specified by 4.

2.2, DETERMINISTIC FINITE AUTOMATA 47

Another equivalent description, using parameters r and gy to the left of the
vertical bar, is:

Ix(lu) ¢ and u are anv string:
i XUly r and g are ¥ str1

Examples of strings in the language include 01, 11010, and 100011, Examples
of strings nied in the language include €. 0, and 111000,

What do we know about an automaton that can accept this language L7
First, its input alphabet is £ = {0.1}. It has some set of states. §. of which
one, say go. is the start state. This automaton has to remember the lmportant
facts about what inputs it has scen so far. To decide whether 01 is a substring
of the input, A needs to remember:

1. Has it already seen 01?7 T so, then it accepts every sequence of further
inputs; i.e., it will only be in accepting stales from now on.

2. Has it never seen (1, but its most recent inpat was 0, so i it now sces a
1, it will have seen 01 and can accept everything it sces from here on?

3. Has it never seen 01, bnrh its last inpul was either nonexistent (it just
started) or it last saw a 17 In this case, A4 cannot accept until it first sees
a 0 and then sees a 1 immediately after.

These three conditions can each be represented by a state. Condition (3} is
represented by the start state, gp. Surely. when just starling, we need to see
a 0 and then a 1. But if in state gg we next see a 1, then we are no closer to
seeing 01, and so we must stay in state gg. That is, d(go, 1) = g0

However, if we are in state ¢p and we next sec a 0, we are in condition (2}.
That i3, we have never seen 01, but we have our 0. Thus, lef us use g to
represent condition (2). Qur transition from ¢y on input 0 is 6(4y.0) = ¢2.

Now, let us consider the transitions from state gz. I we see a 0, we are no
better off than we were, but no worse either. We have not seen 01, butl 0 was
the last symbol, so we are still waiting for a 1. State g» describes this situation
perfectly, so we want 4(g.,0) = q.. If we are in state gs and we see a | input,
we now know thore is a 0 followed by a 1. We can go to an accepling state,
which we shall ¢all ¢,, and which corresponds to condition (1} above. That is,
6("1‘2: l) =d1.

Finally. we must design the transitions for state ¢;. In this state, we have
already seen a 01 sequence, so regardless of what happens, we shall still be in
a situation where we've seen 01, That is, 6(q1,0) = d{gr, 1) = qv.

Thus, @ = {gu,q1.02} As we said, ¢y is the start state, and the only
accepting state is g3 that is, F = {¢}. The complete specification of the
auntomaton A that aceepts the language L of strings that have a 01 substring,
is

A={{g.¢1.¢2},{0.1}.0.q0. {q1 })

where ¢ is the transition function described above, U

48 CHAPTER 2. FINITE AUTOMATA

Specifying a DFA as a five-tuple with a detailed description of the 4 transition
function is both tedious and hard to read. There are two preferred notations
for describing automata:

1. A transition diagram, which is a graph such as the ones we saw in Sec-

ST B |
LIl 4.1,

2. A transition table, which is a tabular listing of the é function, which by
implication tells us the set of states and the input alphabet.

Transtiion Diagrams

A transition diagram for a DFA A = (), 2,6, qu, F) is a graph defined as follows:
a) For each state in ¢ there is a node.

b) For each state g in @ and cach input symbol a in X, let §{g,a) = p.
Then the transition diagram has an arc from node ¢ to node p, labeled
a. 1f there are several input symbols that cause transitions from g to p,
then the transition diagram can have one arc, labeled by the list of these
symbols,

¢) There is an arrow intoe the start state gy, labeled Start. This arrow does
not originate at any node.

d} Nodes corresponding to accepting states (those in F) are marked by a
double circle. States not in F have a single circle.

Example 2.2: Figure 2.4 shows the transition diagram for the DFA that we
designed in Example 2.1. We see in that diagram the three nodes that cor-
respond to the three states. There is a Star! arrow entering the start state,
ga. and the one accepting state, gy, is represented by a double circle. Out of
each state is one arc labeled 0 and one are labeled 1 {although the two arcs
are combined into one with a double label it the case of ¢;). The arcs each
correspond to one of the § facts developed in Example 2.1. O

1 0

Start 0 | ’ o

Figure 2.4: The transition diagram for the DFA accepting all strings with a
substring 01

2.2, DETERMINISTIC' FINITE AUTOMATA 49

Transition Tables

A transition table is a conventional, labular representation of a function like §
that takes two arguments and returns a value. The rows of the table correspond

to the states, and the columns correspond to the inputs. The entry for the row
corresponding to state ¢ and the eolumn corresponding to input a is the state

8(g, a).

Example 2.3: The transition table corresponding to the function & of Ex-
ample 2.1 is shown in Fig. 2.5. We have also shown two other features of a
transition table. The start state is marked with an arrow, and the aceepting
states are marked with a star. Since we can deduce the sets of states and in-
put symbols by looking at the row and column heads, we can now read from
the transition table all the information we need to speeify the finite automaton
uniquely. O

] [
—rhe || g2 | @0
| | 4
G2 || 42 | 4

Figure 2.5: Transition tabie for the DFA of Example 2.1

2.2.4 Extending the Transition Function to Strings

We have explained informally that the DFA defines a language: the set of all
strings that result in s sequence of state transitions from the start state to an
accepting state. In terms of the transition diagram, the language of a DFA
is the set of labels along all the paths that lead from the start state to any
accepting state.

Now, we need to make the notion of the language of a DFA precise. To do
g0, we definie an extended transition funetion that describes what happens when
we stari. in any state and foflow any sequence of inputs. If § is our transition
function, then the extended transition function constructed from § will be ealled
8. The extended transition function is a function that takes a state g and a
string w and returns a state p — the state thar the automaton reaches v.,:hen
starting in state q and processing the sequence of inputs w. We define 4 by
induction on the length of the input string, as follows;

BASIS: d(g,c) = ¢. That is, if we are in state ¢ and read no inputs, then we

c d{g,c) = ¢
are still mn state g.

30 CHAPTER 2. FINITE AUTOMATA

INDUCTION: Suppose w is a string of the form za; that is, @ is the last symbol
of w. and z is the string consisting of all but the last symbol.® For example,
w = 1101 is broken into * = 110 and @ = 1. Then

d(¢,w) = 5(8(¢,), 0) (2.1)

Now {2.1) may seem like a lot to take in, but the idea is simple. To compute

5(g, w), first compute 4 (g,x), the state that the antomaton is in after processin
all but the last symbol of w. Suppose this state is p; that is, 4{g, z) = p. Then
e

3{g,w) is what we get by making a transition from state p on input a, the last
symbol of w. That is, 8(q,w) = d(p, a).

Example 2.4: Let us design a DFA to accept the language
L = {w | w has both an even number of 0's and an even number of 1’s}

It should not be surprising that the job of the states of this DFA is to count
both the number of ('s and the number of 1’s, but count them modulo 2. That
is, the state is used to remember whether the number of 0’s seen so0 far is even or
odd, and also to remember whether the number of 1's seen so far is even or odd.
There are thus four states, which can be given the following interpretations:

go: Both the number of (’s secn so far and the number of 1°s seen so far are
oven.

¢1: The number of 0's seen 80 far is even, but the number of 1’s scen so far is
odd.

g2 The number of I’s seen so far is even, but the nurnber of (’s seen so far is
odd.

gs: Both the number of 0’s secn so far and the number of 1’s seen so far arc
odd.

State go is both the start state and the lone accepting state. It is the start
state, because before reading any inputs, the numbers of 0’s and 1’s seen so
far arc both zero, and zero is even. It is the only accepting state, because it
describes exactly the condition for a sequence of 0's and 1's to be in language
L.

We now know almost how to specify the DFA for language L. It is

A= ({QO‘a d1:42, ,3}1 {0: 1}; '-51 05

L

)

3Recall our convention that letters at the beginning of the alphabet are symbols, and those
near the end of the alphabet are strings, We nced 1hat convention to make sense of the phrase
“of the form za.”

2.2. DETERMINISTIC FINITE AUTOMATA a1

Figure 2.6: Trausition diagram for the DFA of Example 2.4

where the transition function é is described by the transition diagram of Fig. 2.6.
Notice how each input O canses the state to cross the horizontal, dashed line.
Thus, after seeing an even number of (s we are always above the line, in state
go or ¢1 while after seeing an odd number of 0’s we are always below the line,
in state g2 or ga. Likewise, every 1 causes the state to cross the vertical, dashed
line. Thus, after seeing an even number of 1's, we are always to the left, in state
go Or g2, while after seeing an odd number of 1’s we are to the right, in state ¢;
or g3. These observations are an informal proof that the four states have the
interpretations attributed to them. However, one could prove the correctness
of our claims about the states formally, by a mutual induction in the spirit of
Example 1.23.

We can also represent this DFA by a transition table. Figure 2.7 shows this
table. However, we are not just concerned with the design of this DFA; we
want to use it to illustrate the consiruction of é from its transition function 4.
Suppose the input is 110101. Since this string has even numbers of 0's and 1’s
both, we expect it is in the language. Thus, we expect that & (go, 110101) = go,
since qp is the only accepting state. Let ns now verify that claim,

lo |1
*—go || 92 [D
i § 93 | %o
gz || 90 | @3
Gl o |
Figure 2.7: Transition table for the DFA of Example 2.4

involyves r'nm'r\nﬁng gl{ﬂn 'm} for ea_.(:h T’!rEﬁX kid of 110101. StaI'tIIlg

el 1
L A TAAAYRLY WARAL AT ARS LA {1 PR alat Pt

at ¢ and going in increasing size. The summary of this calculation is:

52 CHAPTER 2. FINITE AUTOMATA

iiiiy SR LAt rla 1214y

W

is required; that is, you must se & for the transition fun('tlon use A fo
the name of a DFA, and so on. We tend to use the same variables to
denote the same thing across all examples, because it helps to remind you
of the types of variables, much the way a variable ¢ in a program is almost
always of integer type. However, we are free to call the components of an
automaton, or anything else, anything we wish. Thus, you are free to call
a DFA M and its transition function T if you like.

Moreover, you should not be surprised that the same variable means
different things in different contexts. For example, the DFA’s of Examples
2.1 and 2.4 both were given a transition function called é. However, the
two transition functions arc each local variables, belonging only to their
examples. These two transition functions are very different and bear no
relationship to one another.

After readin n-+hiq section, you might imagine that our customary notation

o 8(q0,€} = .

o (g0, 1) = 6(8(go,€), 1) = (g0, 1) = qu.

o 8(q0,11) = (3(go, 1).1) = 8(q1, 1) = go.

o 3(go,110) = 6(8(go,11),0) = 5(go,0) = o.

o 8(go, 1101) = §(3{go, 110),1) = 6(go, 1} = gs5.

o 8(g0,11010) = 5(8(go, 1101),0) = 6(g3,0) = q.

o 8(qo, 110101} = 6(8(qo, 11010),1) = &(gs,1) = go.

a

2.2.5 The Language of a DFA

Now, we can define the language of a DFA A = (@, %,6,q¢, F). This language
is denoted L(A), and is defined by

L(A) = {w | 8{go,w) is in F}

That is, the language of A is the set of strings w that take the start state g to
one of the accepting states f L is T:’A‘a for some DFA A then we say Fisa

et WL LAt SR LALLES, AL AS LGS Lusy B Aty LI 2

regular language.

2.2. DETERMINISTIC FINITE AUTOMATA 53

Example 2.5: As we mentioned earlier, if A is the DFA of Example 2.1, then
L{A) is the set of all strings of O°s and 1’s that contain a substring 01. If A is
instead the DFA of Example 2.4, then L{4) is the set of all strings of 0’s and
1’s whose numbers of (s and 1's arc both even. O

2.2.6 Exercises for Section 2.2
Exercise 2.2.1: In Fig. 2.8 is a marble-rolling toy. A marble is dropped at
A or B. Levers x;, 7s, and x4 cause the marble to fall either to the left or to

the right. Whenever a marble encounters a lever, it causes the lever to reverse
after the marble passes, so the next marble will take the opposite branch.

A B
X

C D

Figure 2.8: A marble-rolling toy

* 4) Model this toy by a finite automaton. Let the inputs A and B represent
the input into which the marble is dropped. Let acceptance correspond
to the marbie exiting at D: nonacceptance represents a marble exiting at

C.
! b) Informally describe the language of the automaton.

¢) Suppose that instead the levers switched before allowing the marble to
pass, How would your answers to parts (a) and {b) change?

*! Exercise 2.2.2: We defined & by breaking the input string into any string
followed by a single symbol (in the inductive part, Equation 2.1). However, we

informally think of ¢ as describing what happens along a path with a certain

.y

T

54 CHAPTER 2. FINITE AUTOMATA

string of labels, and if so, then it should not matter how we break the input
string in the definition of 4. Show that in fact, a(q, y) = O[O(Q,z) yj for any
state g and strings r and y. Hint: Perform an induction on |y].

Exercise 2.2.3: Show that for any state ¢, string x, and input symbol e,
6(0 az) = 5((g ::\ Hint: Use Exercise 2.2.2.

Exercise 2.2.4: Give DFA’s accepting the following languages over the alpha-
bet {0,1}:

* a) The set of all strings ending in 00.

b) The set of all strings with three consecutive ('s (not necessarily at the
end).

¢} The set of strings with 011 as a substring,

Exercise 2.2.5: Give DFA’s accepting the following languages over the alpha-
bet {0,1}:

a) The set of all strings such that each block of five consecutive symbols
contains at least two 0's.

b) The set of all strings whose tenth symbol from the right end is a 1.
¢} The set of strings that either begin or end (or both) with 01.

d) The set of strings such that the number of 0’s is divisible by five, and the
number of 1’s is divisible by 3.

! Exercise 2.2.6: Give DFA’s accepting the following languages over the alpha-

bet {0,1}:

* a) The set of ail strings beginning with a 1 that, when interpreted as a binary
integer, is a multiple of 5. For example, strings 101, 1010, and 1111 are
in the language; 0, 100, and 111 are not.

b) The set of all strings that, when interpreted fn reverse as a binary inte-
ger, is divisible by 5. Exampics of strings in the language are 0, 10011,
1001100, and 0101.

Exercise 2.2.7: Let A be a DFA and ¢ a particular statc of A, such that
d{q,a) = q for all input symbols a. Show by induction on the length of the
input that for all input strings w, &(q,w) = g.

Exercise 2.2.8: Let A be a DFA and a a particular input symbol of 4, such
that for all states ¢ of 4 we have é(q,a) = q.

a) Show by induction on n that for

duction on n
string consisting of n a's

2.3. NONDETERMINISTIC FINITE AUTOMATA

[y |
L

b) Show that either {a}* C L(A4) or {e}" N L(4) = 1.

Exercise 2.2.8: Let A = (Q.Z,4,qy, {gs}) be a DFA, and suppose that for all

N R - P S .
¢ in & we have G{qo,u} = 5{1 f,u.-}.

a) Show that for all wr # ¢ we have S{go, w) = S(Qf,w).

b) Show that if & is a nonempty string in L(4), then for all k£ > 0, x* (ie.,
z written k times) is also in L{.A).

Exercise 2.2.10: Consider the DFA with the following transition table:

Lo |1
Al Al B
«B 1B A

Informally describe the language accepted by this DFA. and prove by induction
on the length of an input string that your description is correct. fint: When
setting up the inductive hypothesis, it is wise to make a statement about what
inputs get vou to each state, not just what inputs get you to the accepting
state.

Exercise 2.2.11: Repeat Exercise 2.2.10 for the following transition table:

Lo 1
—+*4A | B | A
«B || ¢ | A
S

2.3 Nondeterministic Finite Automata

A “nondererministic” finite antomaton (NFA) has the power to be in several
states at once. This ability is often expressed as an ability to “guess” something
about its input. For instance, when the automaton is used to search for cerrain
sequences of characters {c.g., keywords) in a long text string, it is helpful 1o
“guess” that we are at the beginning of one of those strings and use a sequence of
states to do nothing but check that the string appears, character by character.
We shall see an example of this type of application in Section 2.4.

Before examining applications, we need to deline nondeterministic finite
automata and show that each one accepts a language that is also accepted by
some DFA. That is, the NFA's accept exactly the regular languages, just as
DFA’s do. However, there are reasons to think about ¥FA's. They are often
more succinet and easier to design than DFA’s. Moreover, while we can always
convert NFA to a DFA, the latter may have exponentially more states than

LASLE YU Al NDA Lo a ke bedah s AL WL

the NFA; fortunately, cases of this type arc rare.

56 CHAPTER 2. FINITE AUTOMATA

92.3.1 An Informal View of Nondeterministic Finite
Automata

Like the DFA, an NFA has a finite set of states, a finite set of input symbols,
state and a set of accepting states. It also has a transition function,
shall

is in the type of 4. For the NFA, & is a function that takes a state and input
symbol as arguments (like the DFA’s transition function), but returns a set
of zero, one, or more states (rather than returning exactly one state, as the
DFA must). We shall start with an example of an NFA, and then make the
definitions precise.

Example 2.6: Figure 2.9 shows a nondeterministic {inite automs
job is to accept all and only the strings of 0’s and 1’s that end in 01. State
go is the start state, and we can think of the automaton as being in state ¢o
(perhaps among other states) whenever it has not yet “cuessed” that the final
01 has begun. It is always possible that the next symbol does not begin the
final 01, even if that symbol is 0. Thus, state go may transition to itself on both

0 and 1.
0,1

Start 0 @ 1

Figure 2.9: An NFA accepting all strings that end in 01

However, if the next symbol is 0, this NFA also guesses that the final 01 has
begun. An arc labeled O thus leads from gy to state qr. Notice that there are
two arcs labeled 0 out of gy The NFA has the option of going either to ¢y or
to ¢, and in fact it does both, as we shall see when we make the definitions
precise. In state ¢;, the NFA checks that the next symbol is 1, and if so, it, goes
to state gz and accepts.

Notice that there is no arc out of ¢ labeled 0, and there are no arcs at all
out of go. In these situations, the thread of the NFA’s existence corresponding
to those states simply “dies,” although other threads may continue to exist.
While a DFA has exactly one arc out of each state for each input symbol, an
NFA has no such constraint; we have seen in Fig. 2.9 cases where the number
of arcs is zero, one, and two, for example.

Figure 2.10 suggests how an NFA processes inputs. We have shown what
happens when the automaton of Fig. 2.9 receives the input sequence 00101. It
starts in only its start state, go. When the first 0 is read, the NFA may go to
either state gy or state g, so it does both. These two threads are suggested by
the second column in Fig. 2.10.

Then. the second 0 is read. State gp may aga.in

AALGLEy UADS DRSS W LI Rl

go to both ¢y and g;.
However, state ¢; has no transition on 0, so it “dies.” When the third input, a

2.3. NONDETERMINISTIC FINITE AUTOMATA 57

q 14 91

l (stuck) \ \

. A
4 4

{stuck)
0 0 1 0 l

Figurc 2.10: The states an NFA is in during the processing of inpuf sequence
00101

1, occurs, we must consider transitions from both gg and ¢,. We find that g
goes only to go on 1, while g1 goes only to ga. Thus, after reading 001, the NFA
is in states gy and g. Since ¢» is an accepting state, the NFA accepis 001.

However, the input is not finished. The fourth input, a 0, causes g's thread
to die, while gy goes to both gy and ¢. The last input, a 1, sends g to go and
g, to go. Since we are again in an accepting state, 00101 is accepted. O

2.3.2 Definition of Nondeterministic Finite Automata

Now, let us infroduce the formal notions associated with nondeterministic finite
automata. The differences between DFA’s and NFA's will be pointed out as we
do. An NFA is represented essentially like a DFA:

A=(Q,%,d.q0, F)
where;

1. @ is a finite set of stafes.

2. ¥ is a finite sct of input symbols.

3. qo, a member of @, is the start state.

4. F, a subset of (J, is the set of final (or accepting) states.

. 8, the fransition functien is a function that takes a state in ¢ and an
input symbol in ¥ as arguments and returns a subset of ¢. Notice that
the only difference between an NFA and a DFA is in the type of value
that & returns: a set. of states in the casc of an NFA and a single state in
the case of a DFA.

vl

Example 2.7: The NFA of Fig. 2.9 can be specificd formally as

({@w,m,q}:{0.1},9.90.{az})

58 CHAPTER 2. FINITE AUTOMATA

o |t
— qo ” {qo,q1} | {a0}
Il F~o1
g | @ {a2}
*qa || @ |]

Figure 2.11: Transition table for an NFA that accepts all strings ending in 01

where the transition function 4 is given by the transition table of Fig. 2.11. O

Notice that transition tables can be used to specify the transition function
for an NFA as well as for a DFA. The only difference is that each entry in the
table for the NFA is a set, even if the set is a singleion (has one member). Also
naotice that when there is no transition at all from a given state on a given input
symboal, the proper entry is 8, the empty set.

2.3.3 The Extended Transition Function

As for DFA’s, we need to extend the transition function § of an NFA to a
function & that takes a state ¢ and a string of input symbols w, and returns the
set of states that the NFA is in if it starts in state ¢ and processes the siring w.
The idea was suggested by Fig. 2.10; in essence 8{g,w) is the column of states
found after reading w, if ¢ is the lone state in the first column. For instance,
Fig. 2.10 suggests that 5(qo, 001) = {gn, g2 }. Formally, we define 4 for an NFA’s
transition function é by:

BASIS: 4(g,€) = {g}. That is, without reading any input symbols, we are only
in the state we began in.

INDUCTION: Suppose w is of the form w = ze, where a is the final symbol of
w and z is the rest of w. Also suppose that 6(q,)= {p1,p2,.- - Pr}. Let

k
Ué(p,-,a) = {T]1T2,...,Tm}
i=1

Then 4(q,w)} = {ri,r2,...,7m}. Less formally, we compute S(Q,w) by first
computing 4(g, x), and by then following any transition from any of these states
that is labeled a.

Example 2.8: Let us use & to describe the processing of input 00101 by the
NFA of Fig. 2.9. A summary of the steps is:

O

1. d(go.€) = {0}

2. 8(go.0) = 6{(¢0,0) = {g0,q1}-

2.3. NONDETERMINISTIC FINITE AUTOMATA 59

3. {go,00) = 5(g0,0) U 8(q1,0) = {go, @} U B = {go, ¢ }.

4. 8(g0,001) = &(go, 1) U &(g1,1) = {go} U {22} = {q0. 22}-
5. 8(q0,0010) = §{ga,0) U 8(g2.0) = {g0, 0} U® = {g0, }.
6. (g0,00101) = d(go,1) U d(g1,1) = {g0} U {2} = {0, 2:}-

Line {1) is the basis rule. We obtain line {(2) by applyiug & to the lone state, o,
that is in the previous set, and get {gg, ¢} as a result. Line {3) is obtained by
taking the union over the two states in the previous set of what we get when wc
apply & to them with input 0. That is, 6{gy,0) = {go, ¢}, while &(¢:,0) =

For line 1"-‘1\ wo take the union of ﬁfnn = {g.} and é(m 1] = [{hl Lines [:.5]]

it EAEERE MasRe RS s LER) L2v

and (6) are blnnlar to lines (3) and (4). 0O

2.3.4 The Language of an NFA

As we have suggested, an NFA accepts a string w if it is possible to make any
sequence of choices of next state, while reading the characters of w, and go from
the start state to any accepting state. The fact that other choices using the
input symbols of w lead to a nonaccepting state, or do not lead to any state at
all (i.e., the sequence of states “dies”), does not prevent w from being accepted
by the NFA as a whole. Formally, if A = (@, %, 4, g0, F) is an NFA, then

L(4) = {w | §(go,w) N F # 0}

That is, L(A) is the set of strings w in Z* such that 5(go, w) contains at least
one accepting state.

Example 2.9: As an example, let us prove formally that the NFA of Fig. 2.9
accepts the language L = {w | w ends in 01}. The proof is a mutual induction
of the following three staterents that characterize the three states:

1. &(go,) contains qq for every w.
5(go, w) contains g, if and only if w ends in 0.
8(go,w) contains g if and only if w ends in L.

To prove these statements, we need to consider how A can reach cach state; 1.e.,
what was the last input symbol, and in what state was A just before reading
that symbol?

Since the language of this automaton is the set of strings w such that J(qu, w)

contains go {because g» is the only accepting state), the proof of these three

statements, in particular the proof of {3), guarantees that the language of this
NFA is the set. of strings ending in 01, The proof of the theorem is an induction

R S T e v it B LA

on |w|, the length of w, starting with length 0.

60 CHAPTER 2. FINITE AUTOMATA

BASIS: If |w| = 0, then w = e. Statement (1} says that 3(q0,e) contains gg,
which it does by the basis part of the definition of 4. For statement (2}, we
know that ¢ does not end in 0, and we also know that 6(gg,€) does not contain
g1, again by the basis part of the definition of 4. Thus, the hypotheses of both
directions of the f-and-only-if statement arc false, and therefore both directions
of the statement are true. The proof of statement (3) for w = ¢ is essentially
the same as the above proof for statement (2).

INDUCTION: Assume that w = za, where a is a symbol, either 0 or 1. We
may assume statements (1) through (3) hold for z, and we need to prove them
for w. That is, we assume |w| = n + 1, so |zg| = n. We agsume the inductive
hypothesis for n and prove it for n + 1.

1. We know that 5(@-0,:1:) contains gp. Since there are transitions on both
0 and 1 from gp to itself, it follows that d{gp,w) also contains gg, so
statement {1) is proved for w.

2. {If) Assume that w ends in 0; i.e., @ = 0. By statement (1) applied to z,
we know that d{qg,) contains ¢p. Since there is a transition from go to
g, on input 00, we conclude that d(gg,w) contains ¢;.

(Only-if) Suppose S(QU,w) contains ¢,. If we look at the diagram of
Fig. 2.9, we see that the only way to get into state ¢; is if the input
sequence w is of the form x0. That is cnough to prove the “only-if”
portion of statement {2).

3. (If) Assume that w ends in 01. Then if w = za, we know that a = 1 and
z cnds in 0. By statement (2) applied to x, we know that (a0, z) contains
g Since there is a transition from g, to g2 on input 1, we conclude that
6{go,w) contains gs.

(Only-if) Suppose 5(gy, w) contains ¢z, Looking at the diagram of Fig. 2.9,
we discover that the only way to get to state g2 is for w to be of the form
#1, where 8(qp, x) contains ¢;. By statement (2) applied to z, we know
that z ends in 0. Thus, w ends in 01, and we have proved statement (3).

O

2.3.5 Equivalence of Deterministic and Nondeterministic
Finite Automata

Although there are many languages for which an NFA is easier to comstruct
than a DFA, such as the language (Example 2.6} of strings that end 1n 01, it is

a ﬂmrprising fact that every language that can be described by some NFA can

alo Lo monnilad Taer — !
also be described by some DFA. Moreover, the DFA in practice has about as

many states as the NFA, although it often has more transitions. In the worst
raso bﬁ'r'ifnvﬂr the smallest DFA can have 2% states Wh'llP ThP qmall[ﬂqf NF‘A fOI'

SeiAvine y Laats oill | Lt P N B L2 4§ Al

the same language has only n states.

2.3. NONDETERMINISTIC FINITE AUTOMATA 61

The proof that DFA’s can do whatever NFA’s can do involves an meorta,nt
“construction” called the subset construction because it involves constructing all
subsets of the set of states of the NFA. In general, many proofs about automata
involve constructing one automaton from another. It is importaut for us to
observe the subset construction as an example of how one formally describes one
e i wd tranal stinne of another. without](pnmlng

antomaton il terims Ul l...ut: states and transitions ¢f another, withou

the specifics of the latter automaton.

The subset construction starts from an NFA N = (Qn, X, ON, o, FN’) Its
goal is the description of a DFA D = (Qp, X,%p, {¢0} FD) such that L D) =
L(N). Notice that the input alphabets of the two automata are the same, and
the start state of D is the set containing only the start state of N. The other

components of D are constructed as follows.

o (p is the set of subsets of Qn; i.e., @p is the power sei of . Note
that if Qn has n states, then Qp will have 2" states. Often, not all these
states are accessible from the start state of p. Inaccessible states can
be “thrown away,” so effectively, the number of states of D may be much
smaller than 27.

e Fp is the set of subsets S of @n such that § N Fiy # §. That is, Fp is
all sets of N’s states that include at least one accepting state of N.

e For each set S C Qp and for each input symbol @ in %,

p(Se)= |J on(p.0)

pin 5§

That is, to compute 8p{S,a) we look at all the states p in S, see what
states N goes to from p on input a, and take the union of all those states.

| 0 | 1
@ e 0
= {0} || {a0. a1} | {20}
{m} | @ {g:}
w{@} || @ n

{go. a1} || {a0.q1} | {90, g2}
{0, 2} || {@. a1} | {20}
{q1,q2} || & {g2}

*{g0,q1.92} || {a0, @) | {40, 22}

Figure 2.12: The complete subset construction from Fig. 2.9

utomaton of Fig. 2.9 that accepts all strings
states is {go.q1.¢2}, the subset construction

62 CHAPTER 2. FINITE AUTOMATA

produces a DFA with 2° = 8 states, corresponding to all the subsets of these
three states. Figure 2.12 shows the transition table for these eight states; we
shall show shortly the details of how some of these entries are computed.
Notice that this transition tabie belongs to a deterministic finite automaton.
Even though the entries in the table are sets, the states of the constructed DFA

[P ge NP R PSS

are sets. To make the I‘)Oii’ih x,u,arcr Wwe can invent new names for these states,

e.g., Afor @, B for {go}, and so on. The DFA transition table of Fig 2.13 defines

nv::h.“'ﬂv the same antomaton as F'nr %, T‘) but makes clear the pO;nt that the

entries in the table are single Statcs of the DFA.

I

A

- B
C
D
E
#F
»(7
*H

By s 0 09 3= = 0 ==
el R I S v IR |

Figure 2.13: Renaming the states of Fig. 2.12

Of the eight states in Fig. 2.13, starting in the start state B, we can only
reach states B, E. and F. The other five states are inaccessible from the start
state and may as well not be there. We often can avoid the exponential-time step
of constructing transition-table entries for every subset of states if we perform
“lazy evaluation” on the subsets, as follows.

BASIS: We know for certain that the singleton set consisting only of N's start
state 1s accessible.

INDUCTION: Suppose we have determined that set S of states is accessible.
Then for each input symbol a, compute the set of states 6;(.5, a); we know that
these sets of states will also be accessible.

For the example at hand, we know that {gp} is a state of the DFA D. We
find that §p({g0}.0) = {0,491} and dn({ge},1) = {gy}. Both these facts are
established by looking at the transition diagram of Fig. 2.9 and observing that
on 0 there are arcs out of go to both go and q;, while on 1 there is an arc only
to go. We thus have one row of the transition table for the DFA: the second
row in Fig. 2.12.

One of the two sets we computed is “old”; {gp} has already been considered
However, the other — {gp, ¢} —- is new and its transitions must be computed
We find dp({g0.01}.0) = {g0.¢ } and So{{q0,q: },1) = {go.g2}. For instance,

to see the latter calculation, we know that

2.3. NONDETERMINISTIC FINITE AUTOMATA 63

51)({(105‘11}1 1) = 6N(QU1 1) U 'SN(QI!I) = {qﬂ} U {q?} = {QO,QQ}

We now have the fifth row of Fig. 2.12, and we have discovered onc new
state of D, which is {g9,g2}. A similar calculation tells us

60({g0, g2 },0) = dn{go, 0) U 8 (42,0} = {g0, 0 } Y & = {qo, &}
6p({¢n, g2}, 1) = n(g0. 1) U dnla, 1) = {go} U & = {q}

These calculations give us the sixth row of Fig. 2.12, but it gives us only sets
of states that we have already seen.

Thus, the subset construction has converged; we know ail the accessible
states and their transitions. The entire DFA is shown in Fig. 2.14. Notice that
it has only three states, which is, by coincidence, exactly the same number of
states as the NFA of Fig. 2.9, from which it was constructed. However, the DFA
of Fig. 2.14 has six transitions, compared with the four transitions in Fig. 2.9,
O

Figure 2.14: The DFA constructed from the NFA of Fig 2.9

We need to show formally that the subset comstruction works, although
the intuition was suggested by the examples. After reading sequence of input
symbols w, the constructed DFA is in one state that 1s the set of NFA states
that the NFA would be in after reading w. Since the accepting states of the
DFA are those sets that include at least one accepting state of the NFA, and the
NFA also accepts if it gets into at least one of its accepting states, we may then
conclude that the DFA and NFA accept exactly the same strings, and therefore
accept the same language.

Theorem 2.11: If D = (Qp,T,8p,{@}, Fo) is the DFA constructed from
NFA N = (Qn, 5, 6x, go, F) by the subset construction, then L(D) = L(N).

PROOF: What we actually prove first, by induction on |w|, is that
on{{g}.w) = on(Go, w)

Notice that each of the & functions returns a set of states from Q. but dp
interprets this set as one of the states of @p (which is the power set of Qn).

while &5 interprets this set as a subset of @x-

64 CHAPTER 2. FINITE AUTOMATA

BASIS: Let |w| = 0; that is, w = €. By the basis definitions of é for DFA’s and
NFA’s, both dp{{go},€) and dn{go,€) are {go}.
INDUCTION: Let w be of length n + 1, and assume the statement for length

n. Break w up as w = za, where a is the final symbol of w. By the induc-
tive hypothesis, dp({go},) = 8x(go,). Let both these sets of N’s states be

{p1,p2,.. .. ;e }- .
The inductive part of the definition of § for NFA’s tells us

dn (g0, w) = U Sx(pi. a) (2.2)

k
sp({pr,pa, - -.peh0) = [Jén(pi,a) (2.3)
i=1
Now, let us use (2.3) and the fact that 39({q0},3:} ={p1.pa,--.,px} in the
inductive part of the definition of § for DFA’s:

Sp{{a} w) = p(dp({a0},z),2) = 8p({p1,p2, ..., 1}, 0) U dn(pi,a)

(2.4)
Thus, Equations {2.2) and (2.4) demonstrate that dp({g},w) = 6N(q0,)
When we observe that D and N both accept w if and only if 69({q0}

6N(qc., w), respectively, contain a state in Fy, we have a complete proof that
L(Dy=L{N). O

Theorem 2.12: A language L is accepted by some DFA if and only if L is
accepted by some NFA.

PROOF: (If) The “if* part is the subset construction and Theorem 2.11.

(Only-if) This part is easy; we have only to convert a DFA into an identical NFA.
Put intuitively, if we have the transition diagram for a DFA, we can also inter-
pret it as the transition diagram of an NFA, which happens to have exactly one
choice of transition in any situation. More formally, let D = (Q,X,ép,q0, F)
be a DFA. Define NV = (@, Z, én, go, F) to be the equivalent NFA, where &y is
defined by the rule:

* If ép(g,a) = p, then dn(g,a) = {p}.
It is then easy to show by induction on |w], that if & plgo, w) = p then

S (g0, w) = {p}

We leave the proof to the reader. As a consequence, w is accepted by D if and
only if it is accepted by N;ie., L(D) = L{(N). O

2.3. NONDETERMINISTIC FINITE AUTOMATA 65

2.3.6 A Bad Case for the Subset Construction

In Example 2.10 we found that the DFA had no more states than the NFA.
As we mentioned, it is quite common in practice for the DFA to have roughly
the same number of states as the NFA from which it is constructed. However,
exponential growth in the number of states is possible; all the 2" DFA states
that we could construct from an n-state NFA may turn out to be accessible. The
following example does not quite reach that bound, but it is an understandable
way to reach 2% states in the smallest DFA that is equivalent to an n + l-statc
NFA.

Example 2.13: Consider the NFA N of Fig. 2.15. L(IV) is the set of all strings
of O’s and 1’s such that the nth svmbol from the end is 1. Intuitively, a DFA
D that accepts this language must remember the last n symbols it has read.
Since any of 2" subsets of the last n symbols could have been 1, if D has fewer
than 2" states, then there would be some state ¢ such that D can be in state ¢
after reading two different sequences of n bits, say a1az - - @, and bibg - b,-

Since the sequences are different, they must differ in some position, say
a; # b;. Suppose {(by symmetry) that ¢; = 1 and &; = 0. If i = 1, then ¢
must be both an accepting state and a nonaccepting state, since aq@s - -« Gy 18
accepted (the nth symbol from the end is 1) and hbz---b, is not. Ifi > 1,
then consider the state p that D enters after reading ¢ — 1 0’s. Then p must
be both accepting and nonaccepting, since a;a;1 -+ an00:+-0 is accepted and
bibiry - - -0, 00---0 15 not.

0, 1

O 1 0,1 0,1 0,1 0,1
. —l-

Start

Figure 2.15: This NFA has no equivalent DFA with fewer than 2" states

Now, let us see how the NFA N of Fig. 2.15 works. There is a state go that
the NFA is always in, regardless of what inputs have been read. If the next
input is 1, N may also “guess” that this 1 will be the nth symbol from the end,
so it goes to state ¢ as well as ¢o- From state q,, any input takes N to ¢z,
the next inpuft takes it to g3, and so on, until n — 1 inputs later, it is in the
accepting state ¢,. The formal statement of what the states of N dois:

1. N is in state go after reading any sequence of inputs w.

2. N is in state ¢, for i = 1,2, ...,n, after reading mput sequecnce w if and
only if the ith symbol from the end of w is 1; that is, w is of the form
zlajaz - ai_y, where the a;’s are each input symbols.

We shall not prove these statements formally; the proof is an easy induction

2 LIEwNL suvaleiaieaaa UL 22Ia2LY

66 CHAPTER 2. FINITE AUTOMATA

In Example 2.13 we used an important reasoning technique called the
pigeonhole principle. Colloquially, if you have more pigeons than pigeon-
holes, and each pigeon flies into some pigeonhole, then there must be at
least one hole that has more than one pigeon. In our example, the “pi-
geons™ are the sequences of n bits, and the “pigeonholes” are the states.
Since there are fewer states than sequences, one state must be assigned
two sequences.

The pigeonhole principle may appear obvious, but it actually depends
on the number of pigeonholes being finite, Thus, it works for finite-state
automata, with the states as pigeonholecs, but does not apply to other
kinds of automata that have an infinite number of states.

To see why the finiteness of the number of pigeonholes is essential,
consider the infinite situation where the pigeonholes correspond to integers
1,2,.... Number the pigeons 0,1,2,..., so there is one more pigeon than
there are pigeonholes. However, we can send pigeon 2 to hole 1 + 1 for all
¢ > 0. Then each of the infinite number of pigeons gets a pigeonhole, and
no two pigeons have to share a pigeonholc.

accepts exactly those strings with a 1 in the nth position from the end, we
consider statement (2) with ¢ = n. That says N is in state g, if and only if
the nth symbal from the end is 1. But g, is the only accepting state, so that
condition also characterizes exactly the set of strings accepted by . O

2.3.7 Exercises for Section 2.3
* Exercise 2.3.1: Convert to a DFA the following NFA:

1K | 1
—+p | {p.q} | {p}
g || {r} | {r}

7 || {s} Y
#s || {s} | {s}

Exercise 2.3.2: Convert to a DFA the following NFA:

Jo J1
—p | {55} | {g}
*q‘ | {er)
rll s} | {p}
s |8 | {p}

2.3. NONDETERMINISTIC FINITE AUTOMATA 67

We have formally defined a2 DFA to have a transition from any state,
on any input symbol, to exactly one state. However, sometimes, it is
more convenient to design the DFA to “die” in situations where we know
it is impossible for any extension of the input sequence to be accepted.
For instance, obscrve the automaton of Fig. 1.2, which did its job by
recoguizing a single keyword, then, and nothing else. Technically, this
automaton is not a DFA, because it lacks transitions on most symbols
from cach of its states.

However, such an antomaton is an NFA, If we usc the subset construc-
tion to convert it to a DFA, the automaton looks almost the same, but it
includes a dead state, that is, a nonaccepting state that goes to itself on
every possible input symbol. The dead state corresporkds to @i, the empty
set, of states of the automaton of Fig. 1.2.

In general, we can add a dead state to any automaton that has no
more than one transition for any state and input symbol. Then, add a
transition to the dead state from each other state ¢, on all input symbols
for which ¢ has no other transition. The result will be a DFA in the strict
sense. Thus, we shall sometimes refer to an automaton as a DFA if it Las
at most one transition out of any state on any symbol, rather than if it
has ezactly one transition.

1 Exercise 2.3.3: Convert the following NFA to a DFA and informally describe
the language it accepts.

[
—>pll {pa} | {p}
q | {rs) | {t}
r {p,’r} {t}
x5 || 0 @
#t || O @

! Exercise 2.3.4: Cive nondeterministic finite automata to accept the following
languages. Try to take advantage of nondeterminism as much as possible.

*) The set of strings over alphabet {0,1,..., 9} such that the final digit has
appeared before.

b) The set of strings over alphabet {0,1,...,9} such that the final digit has
not appeared before.

P] aT =% H
a number of positions multipl

¢) The set of strings of 0's and 1 such that there are two (s separated by
tions that is a multiple of 4, Note that 0 is an allowable

v
1Man
o

multiple of 4.

68 CHAFTER 2. FINITE AUTOMATA

Exercise 2.3.5: In the only-if pOI’thl’l of Theorem 2.12 we omitted the proof
by induction on jw| that if oD(qu,w = p then aN{q() w) = {p}. Supply this
proof.

! Exercise 2.3.6: In the box on “Dead States and DFA’s Missing Some Tran-

sitinns ” we claim that if NV is an NFA that has at most one choice of state for

sitions,” we claim that it &V is an NFA that has most o1 e Of

any statc and input symbol (i.c., §(g, @) never has size greater than 1}, then the
DFA D constructed from N by the subset construction has exactly the states
and transitions of N plus transitions to a new dead statc whenever N is missing
a transition for a given state and input symbol. Prove this contention.

Exercigse 2.3.7: In Example 2.13 we claimed that the NFA N is in state g;,
for i = 1,2, ..., n. after reading input scquence w if and only if the ith symbol
from the end of w is 1. Prove this claim.

2.4 An Application: Text Search

In this section, we shall see that the abstract study of the previous section,
where we considered the “problem” of deciding whether a sequence of bits ends
in 01, is actnally an excellent model for several rcal problems that appear in
applications such as Web search and extraction of information from text.

2.4.1 Finding Strings in Text

A common problem in the age of the Web and other on-line text repositories
is the following. Given a set of words, find all documents that contain one
(or all) of those words. A search engine is a popular example of this process.
The searcl engine uses a particular tethnology, called inverfed indezes, where
for each word appearing on the Web (there are 100,000,000 different words),
a list of all the places where that word occurs is stored. Machines with very
large amounts of main memory keep the most common of these lists available,
allowing many people to search for documents at once.

Inverted-index techniques do not make use of finite automata, but they also
take very large amounts of time for crawlers to copy the Web and set up the
indexes. There are a number of related applications that are unsuited for in-
verted indexes, but are good applications for automaton-based techniques. The
characteristics that make an application suitable for searches that use automata
are:

1. The repository on which the search is conducted is rapidly changing. For
example:

(a} Every day, news analysts want to search the day’s on-line news arti-
cles for relevant topics. For example, a financial analyst might search

for certain stock ticker symbols or names of companies.

2.4, AN APPLICATION: TEXT SEARCH 69

n

(b) A “shopping robot” wants to search for the current prices charged
for the items that its clients request. The robot will retrieve current
catalog pages from the Web and then search those pages for words
that suggest a price for a particular item.

2. The documents to be searched cannot be cataloged. For example, Ama-
zon.com does not make it easy for crawlers to find all the pages for all the
books that the company sells. Rather, these pages are generated “on the
fly” in response to queries. However, we could send a query for books on
a certain topic, say “finite automata,” and then search the pages retrieved
for certain words, e.g., “excellent” in a review portion.

2.4.2 Nondeterministic Finite Automata for Text Search

Suppose we are given a set of words, which we shall call the keywords, and we
want to find occurrences of any of these words. In applications such as these, a
uscful way to proceed is to design a nondeterministic finite automaton, which
signals, by entering an accepting state, that it has scen one of the keywords.
The text of a document is fed, one character at a time to this NFA, which then
recognizes oceurrences of the keywords in this text. There is a simple form to
an NFA that recognizes a set. of keywords.

1. There is a start state with a transition to itself on every input symbol,
e.g. every printable ASCII character if we are examining text. Intuitively,
the start state represents a “guess” that we have not yet begun to sce onc
of the keywords, even if we have seen some letters of onc of these words.

2. For each keyword ayay - - - ay, there are k states, say ¢1,4¢2,...,¢x. There
is a transition from the start state to g1 on symbol a;, a transition from
g1 to g2 on symbol ag, and so on. The state g is an accepting state and
indicates that the keyword ajas - - - ag has been found.

Example 2.14: Suppose we want to design an NFA to recognize occurrences
of the words web and ebay. The transition diagram for the NFA designed using
the rules above is in Fig. 2.16. State 1 is the start state, and we use ¥ to stand
for the set of all printable ASCII characters. States 2 through 4 have the job
of reeognizing web, while states 5 through 8 recognize ebay. O

Of course the NFA is not a program. We have two major choices for an
implementation of this NFA.

1. Write a program that simulates this NFA by computing the set of states
it is in after rcading ecach input symbol. The simulation was suggested in
Fig. 2.10.

b2

Convert the NT.

L AT T

Then simulate th

equivalent DFA using the suhset construction.

70 CHAPTER 2. FINITE AUTOMATA

©

5 = 6 = 7
Figure 2.16: An NFA that searches for the words web and ebay

Some text-processing programs, such as advanced forms of the UNIX grep
coinmand {egrep and fgrep) actually use a mixture of these two approaches.
However, for our purposes, conversion to a DFA is casy and is gnaranteed not
to increase the number of states.

2.4.3 A DFA to Recognize a Set of Keywords

We can apply the subset construction to any NFA. However, when we apply that
construction to an NFA that was designed from a set of keywords, according to
the strategy of Section 2.4.2, we find that the number of states of the DFA is
noever greater than the number of states of the NFA. Since in the worst case the
number of states exponentiates as we go to the DFA, this observation is good
news and explains why the method of designing an NFA for keywords and then
constructing a DFA from it is used frequently. The rules for constructing the
set, of DFA states is as follows.

a) If qo is the start state of the NFA| then {go} is one of the states of the
DFA.

b) Suppose p is one of the NFA states, and it is reached from the start state
along a path whose symbols are a;as - -+ ay. Then one of the DFA states
is the set of NFA states consisting of:

L. qo.
2. p

3. Ewery other state of the NFA that is reachable from ¢o by following
a path whose labels are a suffix of aras + - - am, that is, any sequence
of symbols of the forni a;a;41 - am-

i 3 JEA stat T &AL I\TUA state FZ8 HGW(VET,

in step (b), two § dtes may actually yield the same set of NFA states, and thus

tate of the DFA. F'nr P‘Yr'l'l'nn]F' if twa aof the kp erlq hF‘ﬂ'in with

uii - L

the same letter, say a, then the two NFA states that are rea.ched from ¢g by an

2.4. AN APPLICATION: TEXT SEARCH 71

arc labeled a will yield the same set of NFA states and thus get merged in the
DFA.

Figure 2.17: Conversion of the NFA from Fig. 2.16 to a DFA

Example 2.15: The construction of a DFA from the NFA of Fig. 2.16 is shown
in Fig. 2.17. Each of the states of the DFA is located in the same position as
the state p from which it is derived using rule (b) above. For example, consider
the state 135, which is our shorthand for {1,3,5}. This state was constructed
from state 3. It includes the start state, 1, because every set of the DFA states
does. Tt also includes state 5 because that state is reached from state 1 by a
suffix, e, of the string we that reaches state 3 in Fig. 2.16.

The transitions for each of the DFA states may be calculated according to
the subset construction. However, the rule is simple. From any set of states that

includes the start state gp and some other states {g, p2,- .., Pn}, determine, for
aarh svmhal — 11'.'}1:27‘:3 t!‘lﬂ -'n]S gO ln the NFA_. and_ li_?t thlﬂ DF‘A Htﬁi’e ha'\-"e a

LORLLE Y BLARFALAL sr VY Ahwd LR T nnin 171
1 1

transition labeled & to the DFA state consisting of go and all the targets of the

72 CHAPTER 2. FINITE AUTOMATA

pi’s on symbol z. On all symbols x such that there are no transitions out of
any of the p;’s on symbol &, let this DFA state have a transition on x to that
state of the DFA consisting of go and all states that are reached from g in the
NF4A following an arc labeled .

For instance, consider state 135 of Fig. 2.17. The NFA of Fig. 2.16 has
{ransitions on symbol b from states 3 and 5 to states 4 and 6, respectively.
Therefore, on symbol b, 135 goes to 146. On symbol ¢, there are no transitions
of the NFA out of 3 or 5, but there is a transition from 1 to 5. Thus, in the
DFA, 135 goes to 15 on input e. Similarly, on input w, 135 goes to 12.

On every other symbol #, there arc no transitions out, or 3 or d, and state 1
goes only to itself. Thus, there are transitions from 135 to 1 on every symbol
in ¥ other than b, ¢, and w. We usc the notation ¥ — b ~ e — w to represent
this set, and use similar representations of other sets in which a few symbols
are removed from 2. O

2.4.4 Exercises for Section 2.4
Exercise 2.4.1: Design NFA’s to recognize the following sets of strings.
* a) abc, abd, and aacd. Assume the alphabet is {a,b,c,d}.

b} 0101, 101, and 011.

¢) ab, bc, and ca. Assume the alphabet is {a,b,c}.

Exercise 2.4.2: Convert each of your NFA’s from Exercise 2.4.1 to DFA’s.

2.5 Finite Automata With Epsilon-Transitions

We shall now introduce another extension of the finite automaton. The new
“faature” is that we allow a transition on e, the empty string. In effect, an
NFA is allowed to make a transition spontaneously, without receiving an input
symbol. Like the nondeterminism added in Section 2.3, this new capability does
not expand the class of languages that can be accepted by finite automata, but it
does give us some added “programming convenience.” We shall also see, when
we take up regular expressions in Section 3.1, how NFA’s with e-transitions,
which we call e-NFA'’s, are closely related to regular expressions and useful
in proving the cquivalence between the classes of languages accepted by finite
automata and by regular expressions.

2.5.1 TUses of e-Transitions

We shall begin with an informal treatment of e-NFA'’s, using transition diagrams
“"iEh ¢ &HO“FEd as a la‘be‘i In ihe e-rr\mn‘lnn tn fallyer think of the antomaton

Aalul_ucn B LUAIIVWY y LLITHIN VB LD C0d WL/ LLCh L
as accepting those sequences of labels along paths from the start state to an
accepting state. However, each € along a path is “invisible”; i.e,, it contributes

Trirlisy Ay prEauRl 3 =

nothing to the string along the path.

2.5. FINITE AUTOMATA WITH EPSILON-TRANSITIONS 73
Example 2.16: In Fig. 2.18 is an « NFA that accepts decimal numbers con-

sisting of:
1. An opticnal -+ or — sign,
2. A string of digits,
3. A decimal point, and

4. Another string of digits. Either this string of digits, or the string (2) can
be empty, but at least one of the two strings of digits must be nonempty.

Figure 2.18: An ¢-NFA accepting decimal numbers

Of particular interest is the transition from gy to ¢ on any of €, -+, or —.
Thus, state g, represents the situation in which we have seen the sign if there
is one, and perhaps some digits, but not the decimal point. State ¢o represents
the situation where we have just seen the decimal point, and may or may not
have seen prior digits. In gy we have definitely seen at least one digit, but
not the decimal point. Thus, the interpretation of g; is that we have seen a
decimal point and at least one digit, either before or after the decimal point.
We may stay in gz reading whatever digits there are, and also have the option
of “guessing” the string of digits is complete and going spontaneously to g, the
accepting state. O

Example 2.17: The strategy we outlined in Example 2.14 for building an
NFA that recognizes a set of keywords can be simplified further if we allow
e-transitions. For instance, the NFA recognizing the keywords web and ebay,
which we saw in Fig. 2.16, can also be implemented with e-transitions as in
Fig. 2.19. In general, we construct a complete sequence of states for each
keyword, as if it were the only word the automaton needed to recognize. Then,
we add a new start state (state 9 in Fig. 2.19), with e-transitions to the start-
states of the automata for each of the keywords. O

74 CHAPTER 2. FINITE AUTOMATA

e N e I /:"'___::\
b2 W e b
S eA N
9

/m N TN N N VRN
0 5 6 7 8
St e Para e ama\\P)

Figure 2.19: Using e-transitions to help recognize keywords

2.5.2 The Formal Notation for an «¢-NFA

We may represent an e-NFA exactly as we do an NFA, with ane exception: the
transition function must include information about transitions on e. Formally,
we represent an «-NFA 4 by A = (Q, £, 4§, go, F), where all components have
their same interpretation as for an NFA, except that § is now a function that

takes as arguments:

1. A state in ¢}, and
2. A member of X U {e}, that is, either an input symbol, or the symbo! ¢.

We require that ¢, the symbol for the empty string, cannot be a member
of the alphabet T, so no confusion results.

Example 2.18: The e-NFA of Fig. 2.18 is represented formally as

E= ({QG:QI;- v 5q5}1 {'=+: _:0)1:' . .,9},5, QG,{Qs})

where 4 is defined by the transition table in Fig. 2.20. 0O

le |+-—-1]- | 0,1,...,9
do {QI} {Ql} i @
@ |0 () {a:} | {on, 4}
gz || @ @ @ {ga}
gs | {gs} | O ¢ {a3}
L] B) {*'-13} @
gs 1| O @ B 0

Figure 2.20: Trausition table for Fig. 2.18

2.5. FINITE AUTOMATA WITH EPSILON-TRANSITIONS

=]
Loy]

We shall proceed to give formal definitions of an extended transition function for
¢-NFA's, which leads to the definition of acceptance of strings and languages by
these automata, and eventually lets us explain why e-NFA’s can bo simulated by
TYTA T, PR mmetan] Al Meel 4+ = nlnoaswa

DIFA'S, ﬂ(JW(‘;‘VEI‘ we Tllhl.l HLL.LI. 10 Jt_.d.l.ll & CeliiTdal ubuuluuh Calil L8 e~ L0

of a state. Informally, we e-close a state g by following all trapsitions ot of

q that are labeled &. Fr\“!ev{‘\{’ when we gn+ to other statos In, Fnl]nu.rmrr €, wWe

follow the e-transitions out of those states, and so on, wcntua.ll} hndmg every
state that can be reached from ¢ along any path whose arcs are all labeled e.
Formally, we defiue the e-closure ECLUSE(y) recursively, as follows:

BASIS: State g is in ECLOSE(g).

INDUCTION: If state p is in ECLOSE(g), and there is a transition from statc p
to state r labeled ¢, then r is in BCLOSE(y). More precisely, if 4 is the transition
function of the e-NFA involved, and p is in ECLOSE(g), then ECLOSE{y) also
contains all the states in d(p, €).

Example 2.19: For the automaton of Fig. 2.18, cach state is its own e-closure,
with two exceptions: ECLOSE(gy) = {g0.¢1} and ECLOSE(ys) = {g3,q5}. The
reason is that there are only two e-transitions, one that adds ¢ to FCLOSE{qo)
and the other that adds g5 to ECLOSE(gs).

A more complex example is given in Fig. 2.21. For this collection of states,
which may be part of some e-NFA, we can conclude that

ECLOSE(l) = {1,2,3.4,6}

Each of these states can be reached from state 1 along a path exclusively labeled
e. For example, state 6 is reached by the path 1 —+ 2 — 3 — 6. State 7 is not
in ECLOSE(1), since although it is reachable from state 1, the path must use
the arc 4 = 5 that is not labeled €. The fact that state 6 is also rcached from
state 1 along a path 1 =+ 4 — 5 — 6 that has non-¢ transitions 1s unimportant.
The cxistence of one path with all labels € is sufficient to show state 6 is in
ECLOSE(1). O

a

Figure 2.21: Some states and transitions

76 CHAPTER 2. FINITE AUTOMATA

2.5.4 Extended Transitions and Languages for ¢-NFA’s

The e-closure allows us to explain easily what the transitions of an e-NFA look
like when given a sequence of (non-¢) inputs. From there, we can define what
it means for an e-NFA to accept its input.

Suppose that B = (Q, X, 4. g0, F) is an e-NFA. We first define &, the extended
transition function, to reflect what happens on a sequence of inputs. The intent
is that é(q,w) is the set of states that can be reached along a path whose labels,
when concatenated, form the string w. As always, €’s along this path do not

contribute to w. The appropriate recursive definition of & is:

BASIS: & (g,€) = ECLOSE(g). That is, if the label of the path is ¢, then we can
follow only e-labeled arcs extending from state g; that is exactly what ECLOSE
does.

INDUCTION: Supposc w is of the form ze, where ¢ is the last symbol of w.
Note that a is a member of ¥; it cannot be ¢, which is nof in ¥, We compute

&(q, w) as follows:

1. Let {p1,p2,--., 05} be S(Q,). That is, the p;’s are all and only the states
that we can reach from g following a path labeled z. This path may end
with one or more transitions labeled €, and may havc other é-transitions,
as well.

2. Let Ule (pi, @) be the set {r1,r2,...,7m}. That is, follow all transitions
labeled @ from states we can reach from ¢ along paths labeled z. The
rj's are some of the states we can reach from g along paths labeled w.
The additional states we can reach are found from the 7;'s by following
e-labeled arcs in step (3), below.

3. Then 8(g,w) = U;';l ECLOSE(r;). This additional closure step includes
all the paths from ¢ labeled w, by considering the possibility that there
arc additional e-labeled arcs that we cau follow after making a transition
on the final “real” symbal, a.

Example 2.20: Let us compute d(go,5.6) for the e NFA of Fig. 2.18. A
summary of the steps needed are as follows:

e d(go.€) = ECLOSE(q0) = {g0.q1}.
e Compute §(go,5) as follows:

1. First compute the transitions on input 5 from the states go and §)
that we obtained in the calculation of S(QU,E), above. That is, we
compute 6(gg,5) U 6(g1,5) = {q1, ¢}

2. Next, e-close the members of the set computed in step (1). We get
BOLOSE(qy) U BCLOSE(qs) = {¢1} U {¢a} = {q1,qa}- That set is
8 (go,5). This two-step pattern repeats for the next two symbols.

2.5. FINITE AUTOMATA WITH EPSILON-TRANSITIONS

=1
e |

¢ Compute (g0, 5.} as follows:

1. First compute 6(g,, .} Ud{gy, .} = {2} U {gs} = {gu s}

=y L) SR N Y
L. L IELL LUHpne

S(qu,S._) = ECLOSE(g2) U ECLOSE(g3) = {g2} U {g3. 95} = {42- 3. @}

¢ Compute §(qo,5.6) as follows:

1. First compute 8{gs,6) U 8{q3.6) U 8(g5.6) = {g:} U {a} U B =
{03}-

2. Then compute 5(4}0,5.6) = ECLOSE(q3) = {q3.45}.
O

Now, we can define the language of an -NFA E = (Q.X.d,40. F'} in the
expected way: L{E) = {u | d(gg.w) N F # B}. That is, the language of £ is
the set of strings w that take the start state to at least one aceepting state. For
instance, we saw in Example 2.20 that 5(:;0,5.6) contains the aceepting state
gs, so the string 5.6 is in the language of that ¢-NFA.

2.5.5 Eliminating ¢-Transitions

Given any e-NFA E, we can find a DFA D that accepts the same language as £,
The construction we use is very close to the subset construction, as the states of
D are subsets of the states of E. The only difference is that we must incorporate
e-transitions of E. which we do through the mechanism of the e-closure.

Let E = (Qg.5,0E, g0, Fg). Then the equivalent DFA

D= (QD; Ea 5Dqur FD)
is defined as follows:

1. Qp is the set of subsets of Qp. More precisely, we shall find that all
accessible states of D are e-closed subsets of (Qg, that is, sets S C Qp
such that § = ECLOSE(S). Put another way, the e-closed sets of states 5
are those such that any e-transition out of one of the states in § leads to
a state that is also in . Note that @ is an e-closed set.

2. gp = ECLOSE(gy): that is, we get the stary state of D by closing the set
consigting of only the start state of E. Note that this rule differs from
the original subset construction, where the start state of the constructed
autonaton was just the set containing the start state of the given NIA.

3. Fyp is those scts of states that contain at least one accepting state of .
That is, Fp = {8] Sisin Qp and SN Fy # 0}.

4. 8p(S.a) is computed, for all a in £ and sets S in p by:

78 CHAPTER 2. FINITE AUTOMATA

(a) Let S={p1.pa2,..., Pk }.

(b) Compute U:":l 8g(p;,a); let this set be {ry,ra, ..., 7}

(¢) Then §p(S,a) = U;":l ECLOSE(r;).
Example 2.21: Let us eliminate e-transitions from the ¢-NFA of Fig. 2.18,
which we shall call £ in what follows. From E, we construct an DFA D, which
is shown in Fig. 2.22. However, to avoid clutter, we omitted from Fig. 2.22 the
dead state § and all transitions to the dead state. You should imagine that for
each state shown in Fig. 2.22 there are additional transitions from any state to

® on any input symbols for which a transition is not indicated. Also, the state
® has transitions to itself on all input symbols.

0,1,....9

0,1,..9

Start

Figure 2.22: The DFA D that eliminates e-transitions from Fig. 2.18

Since the start state of E is gg, the start state of D is ECLOSE(qgg), which
18 {go,¢1}. Our first job is to find the successors of go and ¢1 on the various
symbols in Z; note that these symbols are the plus and minus signs, the dot,
and the digits 0 through 9. On + and —, 4, goes nowhere in Fig. 2.18, while
go goes to ¢1. Thus, to compute dp({go, q1}, +) we start with {41} and e-close
it. Since there are no e-transitions out of ¢i, we have ép({go, 1}, +) = {g:}.
Similarly, §n({g0,¢1}. —) = {1 }. These two transitions atre shown by one arc
in Fig. 2.22.

Next, we need to compute ép({go,q1}, .). Since go goes nowhere on the
dot, and ¢, goes to ¢ in Fig. 2.18, we must e-close {g2}. As there are no
e-transitions out of g, this state is its own closurlL1 so dpl{q,q},)= {qg}

Finally: o mmiar smoann Ly ng ey seormela AT b dnm sl

L uxu.u‘}- Wi ERLLIOL x,uu.s.p{ut uf)\ll_ﬂh l:“ Il U;, o Al CJ\.dJulJll, Ol ch l.,lqll.':il.l_,],uul:!
from {go,m } on all the digits. We find that go goes nowhere on the digits, but

¢ goes to hoth ¢, and a1 Since neither of those states have s—transitions out

e RAn S L LRl ALOLLS AAGNL STva et tatiaad Wiy

we conclude dp({go, ¢1},0) = {¢1, gu}, and likewise for the other digits.

2.5. FINITE AUTOMATA WITH EPSILON-TRANSITIONS 79

We have now explained the arcs out of {go,q1} in Fig. 2.22. The other
transitions are computed similarly, and we leave them for you to check. Since
gs is the only accepting state of E, the accepting states of I are those accessible
states that contain gs. We see these two sets {g3,¢5} and {g2,q3,¢5} indicated
by double circles in Fig. 2.22. O

Theorem 2.22: A language L is accepted by some e-NFA if and only if L is
accepted by some DFA.

PROOF: (If} This direction is easy. Suppose L = L{D) for some DFA. Turn
D into an e-DFA E by adding transitions d(g,e) = @ for all states ¢ of D.
Technically, we must alse convert the transitions of D on input symbols, e.g.,
ép(¢g.a) = p into an NFA-transition to the set containing only p, that is
8g{g.a) = {p}. Thus, the transitions of £ and D are the same, but E ex-
plicitly states that there are no transitions out of any state on €.

{Only-if) Let £ = (Qg,%,0r,q0, Fr) be an eNFA. Apply the modified
subset construction described above to produce the DFA

= (QD:EaaDaQD:FD)

We need to show that L{D) = L({E), and we do so by showing that the extended
transition functions of E and D are the same. Formally, we show dg(go, w) =
dp(gp,w) by induction on the length of w.

BASIS: If |w] = 0, then w = ¢. We know dg{qo,€) = ECLOSE(gg). We also
know that gn = ECLOSE{go), because that is how the start state of D is defined.
Finally, for 2 DFA, we know that 5@), ¢) = p for any state p, so in parficular,
SD(qD,e) = ECLOSE(qgo). We have thus proved that 5;3(:;9, €) = dplgp, €).

INDUCTION: Supposc w = 2a, where a is the final symbol of w, and assunie
that the statement holds for z. That is, dp{ge.) = 6p{gp.z). Let both these
sets of states be {p1,p2,....Pr}-

By the definition of 8 for -NFA's, we compute du(ga,) by

1. Let {ri.rs,....Tm} be U:;] dr(pi,a).
2. Then dg{qy. w) = U;.“:] ECLOSE(r;).

If we examine the construction of DFA D in the modified subset construction
above, we see that §p({p1,p2,.... P}, a} is constructed by the same two steps
(1) and (2) above. Thus, 6D(qD,w), which is 6p{({p1.p2,--., pr}, @) is the same
set as ﬁm(nn). We have now proved that Jrfﬂn w) = én(ﬂn w) and completed

[N L B

the mductwa part. O

80 CHAPTER 2. FINITE AUTOMATA

2.5.6 Exercises for Section 2.5
* Exercise 2.5.1: Consider the following e-NFA.

e le [B e
—p & [{p}|1a} | {r}
gl {p} {{a} | {r} |
s || {g} [{r} @ | {p}

a) Compute the e-closure of each state.
b} Give all the strings of lengt th three or less accepted by the automaton.

¢) Convert the automaton to a DFA.

Exercise 2.5.2: Repeat Exercise 2.5.1 for the following e-NFA:

le la fb Jc
a>p {ar} [® | {a} | {r}
g| @ {p} | {r} | {pra}
w7 || O B @ 3

Exercise 2.5.3: Design e-NFA’s for the following languages. Try to use e-
transitions to simplify your design.

a) The set of strings consisting of zero or more e’s followed by zero or more
b’s, followed by zero or more ¢'s.

1 b) The set of strings that consist of either 01 repeated one or more times or
010 repeated one or more times.

! ¢) The set of strings of 0's and 1's such that at least one of the last ten
positions is a 1.

2.6 Summary of Chapter 2

4 Deterministic Finite Automata: A DFA has a finite set of states and a
finite set of input symbols. One state is designated the start state, and
Z0ro Or more states arc accepting states. A iransition function determines
how the state changes each time an input symbaol is processed.

a by a m‘nh

i to tomata agr
in which the nodes are the states, and arcs labe-le-d by input symbols,
ndi e transitions of that a,ufgm,afon, Th(* c;tar’r state is designated

+
-,
=
E\
=
L
s

2.7.

REFERENCES FOR CHAPTER 2 81

4 Language of an Automaton: The automaton accepts strings. A string is

accepted if, starting in the start state, the transitions caised by processing
the symbols of that string one-at-a-time lead to an accepting state. In
terms of the transition diagram, a string is accepted if it is the label of &
path from the start state to some accepting state.

Nondeterministic Finite Automata: The NFA differs from the DFA in
that the NFA can have any number of transitions (including zero) to next
states from a given state on a given input symbol.

The Subset Construction: By treating sets of states of an NFA as states
of a DFA, it is possible to convert any NFA to a DFA that accepts the
same language.

¢- Transitions: We can extend the NFA by allowing transitions on an
empty input, i.e., no input symbol at all. Thesc extended NFA’s can be
converted to DFA’s accepting the same language.

Text-Searching Applications: Nondeterministic finite automata are a usc-
ful way to represent a pattern matcher that scans a large body of text for
one or more keywords. These automata are either simulated directly in
software or are first converted to a DFA, which is then simulated.

2.7 References for Chapter 2

The formal study of finite-statc systems is gencrally regarded as originating
with [2]. However, this work was based on a “neural nets” model of computing,
rather than the finite automaton we know today. The conventional DFA was
independently proposed, in several similar variations, by [1], [3], and [4]. The
nondeterministic finite automaton and the subsct consiruction are from [5].

1. D. A. Huffman, “The synthesis of sequential switching circuits,” J. Frank-

lin Inst. 257:3-4 (1954), pp. 161-190 and 275-303.

. W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent

in nervious activity,” Bull. Math. Biophysics 5 (1943). pp. 115-133.

G. H. Mealy, “A method for synthesizing sequential circuits,” Bell Systemn
Technical Journal 34:5 (1955), pp. 1045-1079.

. E. F. Moore, “Gedanken experiments on sequential machines,” in [6],

pp. 129-133.

M. O. Rabin and D. Scott, “Finite automata and their decision problems,”

lopment 3:2 (1959), pp. 115-125.

. (. E. Shannon and J. McCarthy, Automate Studies, Princeton Univ.
P

ress, 1956.

gui"‘r Expressions and

We begin this chapter by introducing the notation called “regular expressions.”
These expressions are another type of language-defining notation, which we
sampled briefly in Section 1.1.2. Regular expressions also may be thought of as
a “programming language,” in which we express some imporfant applications,
such as text-search applications or compiler components. Regular expressions
are closely related to nondeterministic finite automata and can be thought of
as a “user-friendly” alternative to the NFA notation for describing software
Compaonents,

In this chapter, after defining regular expressions, we show that they are
capable of defining all and only the regular languages. We discuss the way
that regular expressions are used in several software systems. Then, we exam-
ine the algebraic laws that apply to regular expressions. They have significant
resemblance to the algebraic laws of arithmetic, yet there are also some im-
portant differences between the algebras of regular expressions and arithmetic
EXpressions.

3.1 Regular Expressions

Now, we switch our attention from machine-like descriptions of languages —
deterministic and nondeterministic finite automata — to an algebraic descrip-
tion: the “regular expression.” We shall find that regular expressions can define
exactly the same languages that the various forms of automata describe: the
regular languages. However, regular expressions offer something that automata
do not: a declarative way to express the strings we want to accept. Thus,
regular expressions serve as the input language for many systems that process
strings. Examples include:

o)
Qd

84 CHAPTER 3. REGULAR EXPRESSIONS AND LANGUAGES

1. Search commands such as the UNIX grep or equivalent commands for
finding strings that one sces in Web browsers or text-formatting systems.
These systems use a regular-expression-like notation for describing pat-
terns that the user wants to find in a file. Different search systems convert,
the regular expression into either a DFA or an NFA, and simulate that

automaton on the file being searched.

2. Lexical-analyzer generators, such as Lex or Flex. Recall that a lexical
analyzer is the component of a compiler that breaks the source program
into logical units {called Zokens) of one or more characters that have a
shared significance. Examples of tokens include keywords {e.g., while),
identifiers (e.g., any letter followed by zero or more letters and for digits},
and signs, such as + or <=. A lexical-analyzer generator accepts descrip-
tions of the forms of tokens, which arc essentially regular expressions, and
produces a DFA that recognizes which token appears next on the input.

3.1.1 The Operators of Regular Expressions

Regular expressions denote languages. For a simple example, the regular ex-
pression 01* 4+ 10" denotes the language consisting of all strings that are either
a single 0 followed by any number of 1’s or a single 1 followed by any number
of 0's. We do not expect you to know at this point how to interpret regular
expressions, so our statement about the language of this expression must be
accepted on faith for the moment. We shortly shail define all the symbols used
in this expression, s0 you can see why our interpretation of this regular expres-
sion iy the correct one. Before describing the regular-expression notation, we
need to learn the three operations on languages that the operators of regular
expressions represent. These operations are:

1. The union of two languages L and M, denoted L U M, is the set of strings
that are in either L or M, or both. For example, if L = {001,10,111} and
M = {€,001}, then L U M = {¢,10,001,111}.

9. The concatenation of languages L and A is the set of strings that can
be formed by taking any string in L and concatenating it with any string
in M. Recall Section 1.5.2, where we defined the concatenation of a
pair of strings; one string is followed by the other to form the result of the
concatenation. We denote concatenation of languages either with a dot or
with no operator at all, although the concatenation operator is frequently
called “dot.” For example, if L = {001,10,111} and M = {¢,001}, then
L.M, or just LM, is {001,10,111,001001, 10001,111001}. The first three
strings in LM are the strings in L concatenated with €. Since € is the
identity for concatenation, the resulting strings are the same as the strings
of L. However, the last three strings in L} are formed by taking cach
string in L and concatenating it with the second string in M, which is
001. For instance, 10 from L concatenated with 001 from M gives us

LDLa@IIv Gy AW IR A Wt Fe R+ Triwy U R AL AL

10001 for LM,

3.1. REGULAR EXPRESSIONS 85

3. The closure (or star, or Kieene closure)! of a language L is denoted L*
and represents the set of those strings that can be formed by taking any
number of strings from L, possibly with repetitions (i.e., the same string
may be selected more than once) and concatenating all of them. For
instance, if L = {0,1}, then L* is all strings of s and 1’s. If L = {0,11},

by T * pmmaoioto ~F +hno i !
thien L7 consists of tiiose -,umgs of O's and 1’s such that the 1's come in

pairs, e.g., 011, 11110, and ¢, but not 01011 or 101. More formally, L*
the infinite union U;s; Li“ where LD = {f_}: L = Li and Lii for i > 1 IS

WAL LAARRRRAVL. saazfiid I'./U

LL .- L (the concatenation of i copies of L).

Example 3.1: Since the idea of the closure of a language is somewhat tricky,
let us study a few examples. First, let L = {0,11}. L® = {e} independent of
what language L is; the Oth power represents the selection of zero sir ings from
L. L' = L, which represents the choice of one string from L. Thus, the first
two terms in the expansion of L* give us {¢,0,11}.

Next, consider L2, We pick two strings from L, with repetitions allowed, s0
there are four choices. These four selections give us L? = {00,011, 110, 1111}
Similarly, L? is the set of strings that may be formed by making three choices

of the two strings in L and gives us
{000,0011,0110, 1100,01111,11011,11110, 111111}

To compute L*, we must compute L for each ¢, and take the union of all these
languages. L! has 28 members. Although each L is finite, the union of the
infinite number of terms L is generally an infinite language, as it is in our
example.

Now, let L be the set of all strings of 0’s. Note that L is infinite, unlike
our previous example, which is a finite language. However, it is not hard to
discover what L* is. L = {¢}, as always. L' = L. L? is the set of strings that
can be formed by taking one string of 0’s and concatenating it with another
string of 0’s. The result is still a string of O’s. In fact, every string of 0's
can be written as the concatenation of two strings of O’s (don’t forget that e
is a “string of 0’s”; this string can always be one of the two strings that we
concatenate). Thus, L? = L. Likewise, L3 = L, and so on. Thus, the infinite
union L* = L° U L' U L2 U --- is L in the particular case that the language L
the set of all strings of {'s.

For a final example, §* = {¢}. Note that @° = {€}, while §?, for any i > 1,
is empty, since we can’t select any strings from the empty set. In fact, @ is one
of only two languages whose closure is not infinite. O

3.1.2 Building Regular Expressions

Algehras of all kinds start with some elementary expressions, usually constants

Alael

and/or variables. Algebras then allow us to construct more expressions by

IThe term “Klcene closure” refers to 5. C. Kleene, who originated the

notation and chis operator.

o
1

[P
TEEUIAT EX[PTEI5IaN

86 CHAPTER 3. REGULAR EXPRESSIONS AND LANGUAGES

i P L I R . [I TR R,
URE 01 LIIE JDLdr UPEI LOT
We saw the star operator first in Seetion 1.5, 2, where we 2nn|mﬁ it to an

alphabet, e.g., £*. That operator formed all strlngs whose symbols were
chosen from alphabet X. The closure operator is essentially the same,
although there is a subtle distinction of types.

Suppose L is the language containing strings of length 1, and for each
symbol ¢ in X there is a string a in L. Then, although L and X “look”
the same, they are of different types; L is a set of strings, and £ is a set
of symbols. On the other hand, L* denotes the same language as X*.

applying a certain set of operators to these elementary expressions and to pre-
viously constructed expressions. Usually, some method of grouping operators
with their operands, such as parentheses, is required as well. For instance,
the familiar arithmetic algebra starts with constants such as integers and real
numbers, plus variables, and builds more complex expressions with arithmetic
operators such as + and X.

The algebra of regular expressions follows this pattern, using constants and
variables that denote languages, and operators for the three operations of Sec-
tion 3.1.1 —union, dot, and star. We can describe the regular expressions
recursively, as follows. In this definition, we not only describe what the le-
gal regular expressions are, but for each regular expression &, we describe the
language it represents, which we denote L(E).

BASIS: The basis consists of three parts:

1. The constants € and @ are regular expressions, denoting the languages {e}
and @, respectively. That is, L{e) = {e}, and L{}}) = @.

2. If ¢ i3 any symbol, then a is a regular expression. This expression denotes
the language {a}. That is, L{a) = {a}. Note that we use boldface fout
to denote an expression corresponding to a symbol. The correspondence,
e.g. that a refers to a, should be obvious.

3. A variable, usually capitalized and italic such as L, is a variable, repre-
senting any language.

INDUCTION: There are four parts to the inductive step, one for each of the
three operators aud one for the introduction of parentheses.

1. If £ and F are regular expressions, then & + F is a regular expression
dencting the union of L(E) and L{F). That is, L{(E+ F) = L{E) U L(F)}.

3

sions, _p'nFFmarp ular

If F and F are repular expr

F=THLN I ~Ltgtiad

o5 ex
ing the concatenation of L(E) a (F). That is, (

3.1. REGULAR EXPRESSIONS 87

Strictly speaking, a vegular e

3
=
an]
o
W
=
(D
f}
txy
7
—
5
-
At

8 1541 7 18 just an expression, not a lan-
guage. We should use L(E) when we want to refer to the language that £
denotes. However, it is common usage to refer to say “E” when we really
mean “L(E).” We shall use this convention as long as it is clear we are
talking about a language and not about a regular expression.

Note that the dot can optionally be used to denote the concatenation op-
erator, either as an operation on languages or as the operator in a regular
expression. For instance, 0.1 is a regular expression meaning the same as
01 and representing the language {01}. However, we shall avoid the dot

as concatenation in regular expressions.”

3. If E is a regular expression, then E* is a regular expression, denoting the
closure of L{E). That is, L(E*) = (L(E))".

4. If E is a regular expression, then (E), a parenthesized F, is also a regular
expression, denoting the same language as E. Formally; L((E)) = L(E).

Example 3.2: Let us write a regular expression for the set of strings that
consist of alternating 0’s and 1's. First, let us develop a regular expression
for the language consisting of the single string 01. We can then use the star
operator to get an expression for all strings of the form 0101.-.01.

The hasis rule for regular expressions tells us that 0 and 1 are expressions
denoting the languages {0} and {1}, respectively. If we concatenate the two
expressions, we get a regular expression for the language {01}; this expression is
01. As a general rule, if we want a regular expression for the language consisting
of only the string w, we use w itself as the regular expression. Note that in the
regular expression, the symbols of w will normally be written in boldface. but
the change of font is only to help you distinguish expressions from strings and
should not be taken as significant.

Now, to get all strings consisting of zero or more occurrences of 01, we use
the regular expression {01)*. Note that we first put parcntheses around 01, to
avoid confusing with the expression 017, whose language is all strings consisting
of a 0 and any number of 1'3. The reason for this interpretation is explained
in Section 3.1.3, but briefly, star takes precedence over dot, and therefore the
argument of the star is sclected before performing any concatenations.

However, L{(01)*) is not exactly the language that we want. It includes
only those strings of aiternating 0°s and 1°s that begin with 0 and end with 1.
We also need to consider the possibility that there is a 1 at the beginning and/or

s o

Iy Fome TTIXATTLF oo b - e e i B b o Lt T AITE i d ol oiel o w ieomen s
IM 1ACL, UVINLA TEEUIAT CXPIESSIONE UG LOC AOL 100 all COIrely GQUTETCII PPUCPURR, TURTEsULL-

ing any ASCII character.

88 CHAPTER 3. REGULAR EXPRESSIONS AND LANGUAGES

a0 at the end. One approach is to construct three more regular expressions that
handle the other three possibilities. That is, (10)* represents those alternating
stnngs that begin with 1 and end with 0, while 0(10) can be used for strings

that both begin and end with 0 and uu.l.) serves for strings that begin and
end with 1. The entire regular expression is

(01)* 4+ (10)* +0(10)" + 1{01)"

Notice that we use the + operator to take the union of the four languages that
together give us all the strings with alternating 0’s and 1’s.

However, there is another approach that yields a regular expression that
looks rather different and is also somewhat more succinct. Start again with the
expression (01)*. We can add an optional 1 at the beginning if we concatenate
on the left with the expression e + 1. Likewise, we add an optional 0 at the ond
with the expression ¢ + 0. For instance, using the definition of the + operator:

Lie+1) = L{e) UL(1) = {e} U {1} = {e,1}

If we concatenate this language with any other language L, the ¢ choice gives
us all the strings in L, while the 1 choice gives us lw for every string w in L.
Thus, another expression for the set of strings that alternate 0°s and 1’s is:

(€ + 1)(01)*{c + 0)

Note that we need parentheses around each of the added expressions, to make
sure the operators group properly. O

3.1.3 Precedence of Regular-Expression Operators

Like other algebras, the regular-expression operators have an assumed order of
“precedence,” which means that operaiors are associated with their operands in
a particular order. We are familiar with the notion of precedence from ordinary
arithmetic expressions. For instance, we know that xy+ 2z groups the product zy
before the sum, s0 it is equivalent to the parenthesized expression (zy) + z and
not to the expression z(y + z). Similarly, we group two of the same operators
irom the left in arithmetic, so —y — 2 i3 equivalent to (z — y) — 2, and not to
x— (y — z). For regular expressions, the following is the order of precedence for
the operators:

1. The star operator is of highest precedence. That is, it applies only to
the smallest sequence of symbols to its left that is a well-formed regular
expression.

!\D

Next in precedence comes the

grouping all stars to their operands, we gr

oup concatenation operators
to their 0}'}81‘&11(1.‘3. That is, all PYT‘lr{—“:‘-‘.l{‘j ns that are }?rq'tapgggd fadjacgp+
with no intervening operater) are grouped together. Since concatenation

3.1. REGULAR EXPRESSIONS &9

is an associative operator it does not matter in what order we group
consecutive concatenations, although if there is a choice to be made, you
should group them from the left. For instance, 012 is grouped {01)2.

3. Finally, all unions (+ operators) are grouped with their operands. Since
union is also associative, it again matters little in which order consecutive

Lul ¥y A% S5 ELELe] =3 g/

unions are grouped, but we shall assume grouping from the left.

Of course, sometimes we do not want the grouping in a regular expression
to be as required hy the precedence of the operators. If so, we are free to use
parentheses to group operands exactly as we choose. In addition, there is never
anything wrong with putting parentheses around operands that you want to
group, even if the desired grouping is implied by the rules of precedence.

Example 3.3: The expression 01* + 1 is grouped (0(1*)) + 1. The star
operator is grouped first. Since the symbol 1 immediately to its left is a legal
regular expression, that alone is the operand of the star. Next, we group the
concatenation between 0 and (1*), giving us the expression (0(1%)). Finally,
the union operator connects the latter expression and the expression to its right,
which is 1.

Notice that the language of the given expression, grouped according to the
precedence rules, is the string 1 plus all strings consisting of a 0 followed by any
number of 1’s (including none). Had we chosen to group the dot before the star,
we could have used parentheses, as (01)* + 1. The language of this expression
is the string 1 and all strings that repeat 01, zero or more times. Had we wished
to group the union Arst, we could have added parentheses around the union to
make the expression 0(1* + 1). That expression’s language is the set of strings
that begin with 0 and have any number of 1's following. 0O

3.1.4 Exercises for Section 3.1

Exercise 3.1.1: Write regular expressions for the {ollowing languages:

* a) The set of strings over alphabet {a,b, ¢} containiug at least one ¢ and at
least one b.

b) The set of strings of 0’s and 1’s whose tenth symbol from the right end is
1.

¢) The set of strings of 0’s and 1’s with at most one pair of consecutive 1's.
! Exercise 3.1.2: Write regular expressions for the following languages:

* a) The set of all strings of 0’s and 1's such that every pair o
appears before any pair of adjacent 1’s.

b) The set of strings of 0’s and 1’s whose pumber of 0’s is divisible by five.

90 CHAPTER 3. REGULAR EXPRESSIONS AND LANGUAGES

! Exercise 3.1.3: Write regular expressions for the following languages:
a} The set of all strings of 0’s and 1's not containing 101 as a substring.

b} The set of all strings with an equal number of 0’s and 1’s, such that no
prefix has two more (0’s than 1’s, nor two more 1's than 0’s.

¢} The set of strings of 0’s and 1’s whose number of ('s is divisible by five
and whose number of 1's is even.

! Exercise 3.1.4: Give English descriptions of the languages of the following
regular expressions:

* 2) (1+€)(00*1)*0~.
b) (0*1*)*000(6 + 1)".
¢) (0+10)*1%,

*1 Exercise 3.1.5: In Example 3.1 we pointed out that @ is one of two languages
whose closure is Anite. What is the other?

3.2 Finite Automata and Regular Expressions

While the regular-expression approach to describing languages is fundamentally
different from the finite-automaton approach, these two notations turn out to
represent exactly the same set of languages, which we have termed the “reg-
ular languages.” We have already shown that deterministic finite automata,
and the two kinds of nondeterministic finite automata —- with and without
e-transitions — accept the same class of languages. In order to show that the
regular expressions define the same class, we must show that:

1. Every language defined by one of these antomata is also defined by a
regular expression. For this proof, we can assume the language is accepted

by some DFA.

2. Every language defined by a regular expression is defined by one of these
automata. For this part of the proof, the easiest is to show that there is
an NFA with e-transitions accepting the same language.

Figure 3.1 shows all the equivalences we have proved or will prove. An arc from

Aalaaan T v mnane dliat s mmeern prrotee lomoaosn dalroad by o aloca X o

Lildog ~L LU' l,..ld.bb x mieans !.lld.l- Wi PI.U\‘C CYLLY lalipudagc LICJ.LI.ICLI Ly Lldoa s1 1o

also defined by class Y. Since the graph is strongly connected (i.e., we can get
from each of the four nodes to anv other node) we see that all an‘l‘ clasges are

TR s LAR kAT und fmil Y LIRS ARy LT LAAAL Qi MAEL LISt

really the same.

3.2, FINITE AUTOMATA AND REGULAR EXPRESSIONS 9

Figure 3.1: Plan for showing the equivalence of four different notatious for
regular languages

3.2.1 From DFA’s to Regular Expressions

The construction of a regular expression to define the language of any DFA is
surprisingly tricky. Roughly, we build expressions that describe sets of strings
that label certain paths in the DFA’s transition diagram. However, the paths
are allowed to pass through only a limited subset of the states. In an inductive
definition of these expressions, we start with the simplest expressions that de-
scribe paths that are not allowed to pass through any states (i.e., they are single
nodes or single ares), and inductively build the expressions that let the paths
go through progressively larger sets of states. Finally, the paths are allowed to
go through any state; i.e., the expressions we generate at the end represent all
possible paths. These ideas appear in the proof of the following theorem.

Theorem 3.4: If L = L{A) for some DFA A, then therc is a regular expression
R such that L = L{R}.

PROOF: Let us suppose that A’s states are {1,2,...,n} for some integer 7. No
matter what the states of A actually are, there will be n of them for some finite
n, and by renaming the states, we can refer to the states in this manner, as if
they were the first n positive integers. Qur first, and most difficult, task is to
construct a collection of regular expressions that describe progressively broader
sets of paths in the transition diagram of A.

Let us use Rm as the name of a regular expression whose language is the
set of strings w bmh that w is the label of a path from state ¢ to state j in A,
and that path has no intermediate node whose number is greater than &, I\otc
that the beginning and end points of the path are not “intermediate,” so there
is 1o constraint that ¢ and/or j be less than or equal to k.

Figure 3.2 suggests the requirement on the paths represented by jo.“’. There,
the vertical dimension represents the state, from 1 at the bottom to n at the

RS | g
top, and the horizontal dimension represents travel along the path. Notice that

in this diagram we have shown both ¢ and j to be greater than k, bui either or
both could be k or less, Also notice that the nr'l‘l'h DAasses thI’OuE"h node & twice,

BAOUFUL L e bl el T ALALALE LIRS LALD £lan

but never goes through a state higher than &, except ar the endpoints.

92 CHAPTER 3. REGULAR EXPRESSIONS AND LANGUAGES

Fl __A___A_A__,AHA_AUA_A_’AVAVA_A‘_,*‘_JA___A‘_,

Figure 3.2: A path whose label is in the language of regular expression Rg_f}

To construct the expressions Rf:), we usé the following inductive definition,
starting at £ = 0 and finally reaching £ = n. Notice that when & = n, there is
no restriction at all on the paths represented, since there ere no states greater
than n.

BASIS: The basis is & = 0. Since all states are numbered 1 or above, the
restriction on paths is that the path must have no intermediate states at all.
There are only two kinds of paths that meet such a condition:

1. An arc from node (state) i to node j.

2. A path of length O that consists of only some node 7.

If i # j, then only case (1) is possible. We must examine the DFA A and
find those input symbols @ such that there is a transition from state i to state
J on symbol a.

a, If there is no such symbol a, then R(O) =9{.

b) If there is exactly one such symbol a, then RE?) =a.

¢} If there are symbols ay,as,. .., e that label arcs from state i to state 7,
then R}? =a;tay+---+a.

However, if ¢+ = j, then the legal paths arc the path of length 0 and all loops
from ¢ to itself. The path of length 0 is represented by the regular expression
¢, since that path has no symbols along it. Thus, we add € to the various
expressions devised in (a} through (¢} above. That is, in case (a) [no symbol a]
the expression hecomes €, in case (b) [one symbol a] the expression becomes e+a,
and in case (¢) [multiple symbols] the expression becomes e+a; + a4+ --+a;.

=
o
g
ot
0
P
D
3]
=
et
n
[
i
i+
o
N
T
i
2
=]
[l
b
L]
-
=2
=]
Q
o]
o5
C

INDUCTION: Suppose there is a path

n st
no state higher than k. There are two possible cases to consider:

3.2. FINITE AUTOMATA AND REGULAR EXPRESSIONS 93

1. The path does not go through state & at all. In this case, the label of the
path is in the language of 2.

9.:»

The path goes through state k at least once. Then we can break the path
into several pieces, as suggested by Fig. 3.3, The first goes from state
i £ wtate kB without DCI_SS]HFI Thl’ﬂllEh k, the last piece goes from & 1o]
without passing through %, and all the pieces in the middle go from k
to itsclf, without passing through 4. Note that if the path goes through
state k only once, then there are no “niiddle” pieces, just a path from i

to k and a path from & to j. The set of labvla for all paths of this type
is represented by the regular expression R 1)(J’i’ R k=L That is,
the first expression represcnts the part of thv paLh ’[hdfﬁ f_,ets o state &
the first time, the second reprosents the portion that goes from k to itself,
gero times, once, or more than once, and the third expression represents
the part of the path that leaves & for the last time and goes to state j.

m‘_______,—f\\—\v/m_________.—f
{(k-1) (k-1)
In R (k_” In Rkj

Zero or more strings in R

Figure 3.3: A path from ¢ 1o j can be broken into segments at each point where
it goes through state &

When we combine the expressions for the paths of the two types above, we
have the expression

Y = R Dy REVRE My RETY

for the labels of all paths from state i to state § that go through no state higher
than k. If we coustmct these expressions in order of increasing superscript,
then since each R. -:h,pemls only on expressions with a smaller superscript,
then all cxplebblons arc available when we need them.

Eventually, we have R(J} for all 7 and j. We may assume that state 1 is the
start state, although the accepting states could be any set of the states. The
regular expression for the language of the automaton is then the sum (union)

of all exproessions Rl i) such that state j is an aecepting state. O

Example 3.5: Let us convert the DFA of Fig. 3.4 to a regular expression.
This DFA accepts all strings that have at Jeast one 0 in them. To see why. note

that the automaton goes from the start state 1 to accepting state 2 as soon as
it sces an input 0. The automaton then stays in state 2 on all input sequences.

PLEVY 2Ll

Below arc the basis cxpressions in the construction of Theorem 3.4.

94 CHAPTER 3. REGULAR EXPRESSIONS AND LANGUAGES

1
Cpuat TN
otait |

<
o

®

Figure 3.4: A DFA accepting all strings that have at least one 0

) ED+ !

12

R%E; ¢

Ryy | (e+0+1)

For instance, Rw} has the term ¢ because the beginning and ending states are
the same, state 1. It has the term 1 because there is an arc from state 1 to state
1 on input 1. As another example, Rig) is 0 because there is an arc labeled 0
from state 1 to state 2. There is no ¢ term because the beginning and ending
states are different. For a third example, R(l = §}, because there is no are from
state 2 fo state 1.

Now, we must do the induction part, building more complex expressions
that first take into account paths that go through state 1, and then paths that
can go through states 1 and 2, ic., any path. The rule for computing the
expressgions Rg;} are instances of the general rule given in the inductive part of
Theorem 3.4:

Ry = RY + R (R(P) RY (3.1)

The table in Fig. 3.5 gives first the expressions computed by direct substitution
into the above formula, and then a simplified expression that we can show, by
ad-hoc reasoning, to represent the same language as the more complex expres-
gion.

| By direct substitution | Simplified
BV et 1+ (e+ e+ 1) (e+1)] 1
R 10+ (e +1)(e+1)*0 1*0
Sl 0+0(e+1)(e+1) 0
RS 1 e4+0+4+1+8(+1)"0 e+0+1

Figure 3.5. Regular expressions for paths that can go through only state 1

LR el Deuv.“; P s Aw.' LX 3 T T

1 . 0 0 0
For example, consider R&QJ. Its expression is Riz) + PI,E]}{R(H))* 52}, which
we get from (3.1) by substitutingi=1and j =2
To nnderstand the qrmnhﬁcat ion. note the neral T\T‘lnr‘1n]n that if R is anv

dd Y

regular expression, then (e + R)* = R*. The justification is that both sides of

3.2. FINITE AUTOMATA AND REGULAR EXPRESSIONS 95

the cquation describe the language consisting of any concatenation of zero or
more strings from L{R). In our case, we have (¢ + 1)" = 1*, notice that both
expressions denote any number of 1's. Furthcr, (c+1)1"‘ = 1*. Again, it can be
observed that both expressions denote “any nurnber of 1's.” Thu‘: the originak
expression R{Q} is equivalent to 0 +170. This exprn%smn denotes the language
containing the string 0 and ali strings consisting of a § preceded by any number
of 1’s. This language is also expressed by the simpler expression 1*0.

The simplification of ﬂlﬁl is similar to the bullpulu ation ot .u.{]j that we just
considered. The simplification of Réll} and R22 depends on two rules about
how @ operates. For any regular expression i:

1. @R = R — Q. That is, @ is an annihslator for concatenatio; it results in
itself when concatenated, either on the left or right, with any expression.
This rule makes sense, because for a string to be in the result of a voncate-
nation, we must find strings from both arguments of the concatenation.
Whenever one of the arguments is ¢, it will be impossible to find a string

from that argument.

9. 0+ R=R+0=R. Thatis, 0 is the identity for union; it results in the
other expression whenever it appears in a union.

As a result, an expression like B(e + 1)*(e + 1) can be replaced by 8. The last
two simplifications should now be clear.

Now, lot us compute the expressions Rff) The inductive rule applied with
k = 2 gives us:

Rg-) R(l) +R“)((?)ng}} (3.2)

If we substitute the simplified expressions from Fig. 3.5 mio {3.2), we ght he
expressions of Fig. 3.6. That figure also shows simplifications following the same
principles that we described for Fig. 3.5.

| By direct substitution | Simplified
R® [1" +1°0(c + 0+ 1)*0 I
RY | 104+ 1"0(e + 0+ 1)* (e + 0+ 1) 1°0(0 + 1)*
R | 4 (e+0+1){e+0+1)"0 i)

O | b 0+1+(e+0+1)(e+0+ 1) (E+0+1) | (0+1)*

Figure 3.6: Regular expressions for paths that can go through any state

ion equivalent to the automaton of Fig. 3.4 is cou-
structe d by taking the union of all the expressions whele the first state is the
start state and the sccond state is accepting. In this example, with 1 as the
start state and 2 as the only accepting state, we need only the expression R].

96 CHAPTER 3. REGULAR EXPRESSIONS AND LANGUAGES

This expression is 1*0{0 + 1)*. It is simple to interpret this expression. Its
Janguage consists of ail strings that begin with zero or more 1’s, then have a 0,
and then any string of 0’s and 1’s. Put another way, the language is all strings
of §’s and 1’s with at least one {i. O

3.2.2 Converting DFA’s to Regular Expressions by
Eliminating States

The method of Section 3.2.1 for converting a DFA to a regular expression al-
ways works. In fact, as you may have noticed, it doesn’t really depend on the
automaton being deterministic, and could just as well have been applicd to an
NFA or even an e NFA. However, the construction of the regular expression
is expensive. Not only do we have to construct about n® expressions for an
n-state automaton, but the length of the expression can grow by a factor of 4
on the average, with each of the n inductive steps, if there is no simplification
of the expressions. Thus, the expressions themselves could reach on the order
of 4" symbols,

There is a similar approach that avoids duplicating work at some points.
For example, all of the expressions with superscript (£ + 1) in the construction

of Theorem 3.4 use the same subexpression (Ri?)*; the work of writing that
expression is therefore repeated n? times.

The approach to constructing regular cxpressions that we shall now learn
involves eliminating states. When we eliminate a state s, all the paths that went
through s no longer exist in the automaton. If the langunage of the automaton
is not to change, we must include, on an arc that goes directly from g to p,
the labels of paths that went from some state g to state p, through s. Since
the label of this arc may now involve strings, rather than single symbols, and
there may even be an infinite number of such strings, we canmot simply list the
strings as a label. Fortunately, there is a simple, finite way to represent all such
strings: use a regular expression.

Thus, we are led to consider automata that have regular cxpressions as
labels. The language of the automaton is the union over all paths from the
start state to an accepting state of the language formed by concatenating the
languages of the regular expressions along that path. Note that this rule is
consistent with the definition of the language for any of the varieties of automata
we hiave considered so far. Each symbol a, or ¢ if it is allowed, can be thought
of as a regular expression whose language is a single string, either {a} or {¢}.
We inay regard this observation as the bagis of a state-elimination procedure,
which we describe next.

Figure 3.7 shows a generic state s about to be eliminated. We suppose that
the automaton of which s is a state has predecessor states ¢, g2,....qr for s

ATl anisragon ofot Irnr o It 30 nmccihls that anmna AF +thn e arn
alll..l ouUL- VOO BUCLLCD PL,}J‘J, .- Pm AL 3. AL 1o }IUDD EraL. UIICL'J SURLLIT 1Rl l.lJ.l_ lf o CLLK-

also p’s, but we assume that s is not among the ¢’s or p's, even if there is a loop
fromn s to itself, as suggested by F'n:r 3.7. We also show a rogular expression on

each arc¢ from one of the q’s to s; expression ¢; labels the arc from ¢;. Likewise,

3.2. FINITE AUTOMATA AND REGULAR EXPRESSIONS 97

Figure 3.7: A state s about to be eliminated

we show a regular expression F; labeling the arc from s to p, for all i. We show
a loop on s with label S. Fiually, there is a regular expression R;; on the arc
from ¢; to p;, for all ¢ and j. Note that some of these ares may not exist in the
automaton, in which case we take the expression on that arc to be @.

Figure 3.8 shows what happens when we eliminate state ¢. All arcs involving
state s are deleted. To compensate, we introduce, for each predecessor g; of s
and each successor p; of 8, a regular expression that represents all the paths
that start at ¢:. go to s, perhaps loop around s zero or more times, and finally
go to p;. The expression for these paths is QuS™F;. This expression is added
(with the union operator) to the arc from ¢; to p;. If there was no arc g; —+ p;,
then first introduce one with regular expression @.

The strategy for constructing a regular expression from a finite automaton
is as follows:

1. For cach accepting state ¢, apply the above reduction process to pro-
duce an equivalent automaton with regular-expression labels on the arcs.
Eliminate all states except ¢ and the start state qo.

2. If ¢ # gy, then we shall be left with a two-state automaton that looks like

98

90

CHAPTER 3. REGULAR EXPRESSIONS AND LANGUAGES

Figure 3.8: Result of eliminating state s fromn Fig. 3.7

Fig. 3.9. The regular expression for the actepted strings can be deseribed
in various ways. One is (R + SU*T}*SU*. In explanation, we can go
from the start state to itself any number of times, by following a sequence
of paths whose labels are in either L(R) or L{SU*T). The expression
SU*T represents paths that go to the accepting state via a path in L(S),
perhaps return to the accepting state several times using a sequence of
paths with labels in L(T/), and then return to the start state with a path
whose label is in L(T). Then we must go to the accepting state, never to
return to the start state, by following a path with a label in L{S). Once
in the accepting state, we can return to it as many times as we like, by
following a path whose label is in L{U).

Figure 3.9: A generic two-state automaton

,
d oy - h - al
ifs L LN WT MiUST 430 peErio

avery
one-s

=

u. . k] Y
a state-elimination from the original automaton that gets rid o
state but the start state. When we do 50, we are left with a

$4 L LA, vy L LI LT L=La Y £

automaton that looks like Fig. 3.10. The regular expression denoting the

[
Lol

3.2. FINITE AUTOMATA AND REGULAR EXPRESSIONS 99

strings that it accepts is R”*.

R
N
Start
0
N

noaa

Figure 3.10: A generic one-staic¢ automaton

4. The desired regular expression is the sum (unicn) of all the expressions
derived from the reduced automata for each accepting state, by rules (2)
and (3).

0.1

Start I 1 I 0,1 . 0,1 '
Figure 3.11: An NFA accepting strings that have a 1 either two or three posi-
tions from the end

Example 3.6: Let us consider the NFA in Fig. 3.11 that accepts all strings of
0's and 1's such that either the second or third position from the end has a 1.
Our first step is to convert it to an automaton with regular expression labels.
Since no state elimination has been performed, all we have to do is replace the
labels “0,1" with the equivalent regular expression 0 + 1. The result is shown
in Fig. 3.12.

Start Q 1 ._f\ . 0+1 '

Figure 3.12: The automaton of Fig. 3.11 with regular-expression labels

Let us first eliminate state B. Since this state i1s neither accepting nor
the start state, it will not be in any of the reduced automata. Thus, we save
work if we eliminate it first, before developing the two reduced automata that

oo dtn tha t
correspond {o the two accepting states.

State B has one predecessor, A, and one successor, C. In terms of the
'rr-\a'niar axnressions in the diagram of Fig 3.7: =1 A =0+1 Ry, =]

L+ med Rl ALT Slans a8l

(smce the arc from A to C' does not exlst) and § = @ (because there is no

100 CHAPTER 3. REGULAR EXPRESSIONS AND LANGUAGES

loop at state B), As a result, the expression on the new arc from A4 to C is
@+ 1f7(0 + 1).
To simp]ify, we first elimina‘re the initial @, which may be ignored in a union.
nnnnnn 1 Y . L

th" l")‘;j)]’.b“‘p‘:lull l..IlLl“! Ut'lUl]lt"" J.'Ll kU - J.} l\ULE L“d.t LI T gllldl ()Lpl.l‘s":lUIl \’J
is equivalent to the regular expression ¢, since

LWy ={e} VLB U LBLDHU---

Since all the terms but the first are empty, we see that L(§*) = {¢}, which
is the samec as L{e). Thus, 1¥~(0 + 1) is equivalent to 1{0 + 1), which is the
expression we use for the arc 4 — € in Fig. 3.13.

' 1
v i

(]
+

Start @ 100+ 1) -@ 0+1 -_:@

Figure 3.13: Eliminating state B

Now, we must branch, eliminating states C' and D in separate reductions.
‘To eliminate state (', the mechanics are similar to those we performed above
to eliminate state B, and the resulting automaton is shown in Fig. 3.14.

0+1

Start @ 10+ 10+ 1) f::(@)

Figure 3.14: A two-state automaton with states 4 and D

In terms of the generic two-state automaton of Fig. 3.9, the regular expres-
sions from Fig. 3.14are: R=0+1, 5 =10+ 1){(0+ 1), T =0, and U = §.
The expression ' can be replaced by e, i.e., eliminated in a concatenation;
the justification is that * = ¢, as we discussed above. Also, the expression
SU*T is equivalent to @, since T, one of the terms of the concatenation, is 8.
The generic expression (R + SU*T)*S5U* thus simplifies in this case to R*S,
or (0 +1)*1(0 + 1){0 + 1). In informal terms, the language of this expression
is any string ending in 1, followed by two symbols that are each either 0 or
1. That language 1s one portion of the strings accepted by the automaton of
Fig. 3.11: those strings whose third position from the end has a 1.

Now, we must start again at Fig. 3.13 and eliminate state D instead of C.

Since 2 has no successors, an inspection of Fig. 3.7 tells us that there will be

o r-]-mngn:: to arcs, and the arc from O to D is aliminated :a]nncr with state).

B T

The resulting fwo- state automaton is shown in Fig. 3.15.

3.2. FINITE AUTOMATA AND REGULAR EXPRESSIONS 101

As we observed in Example 3.6, when a state is neither the start state
nor an accepting state, it gets eliminated in all the derived automata.
Thus, one of the advantages of the srate-climination process compared
with the mechanical generation of regular expressions thar we deseribed
in Section 3.2.1 is that we can start by eliminating all the states that
are neither start nor accepting, once and lor all. We only have to begin
duplicating the reduction effort when we need to eliminate some accepting
states.

Even there, we can combine some of the effort. For instance, if there
are three acrepting states p, ¢, and 7, we can eliminate p and then branch
to climinate cither ¢ or r, thus producing the automata for accepting states
v and g, respectively. We then start again with all three accepting stales
and eliminate both ¢ and r 1o get the automaton for p.

0+1

Start o 100 + 1)
—{4J ~(©)

Figure 3.15: Two-slate automaton resulting from the elimination of D

This antomaton is very much like that of Fig. 3.14; only the label on the arc
from the start state 1o the accepting state is different. Thus. we can apply the
rule for two-state automata and simplify the expression to get (0+1)"1{0+1).
This expression represents the other type of string the automaton accepts: those
with a 1 in the sccond position from the end.

All that remains is 1o sum the two expressions to gel the expression for the
entire antomaton of Fig. 3.11. This expression is

(0+1)°1(0+ 1) + (0 + 1)71(0 + 1){0 + 1)

L

3.2.3 Converting Regular Expressions to Automata

We shall now complete the plan of Fig. 3.1 by showing that every language I
that is L{R) for some regular expression . is alse L{F) for some e-NFA E. The

proof is a structural induetion on the f‘.}{pression R. We start by showing how
to construct, antomata for the basis expressions: single svmbols, €, and #. We

then show how to combine these automata into]FHITPI antornata that accept. the

union, concatenation, or ClO-‘:iuI'E‘ of the language ac urpted by smaller antomata.

102 CHAPTER 3. REGULAR EXPRESSIONS AND LANGUAGES

All of the automata we construct are e-NFA’s with a single accepting state.

Thearem 3.7: Every language defined by a regular expression is also defined
by a finite automaton.

PROOF: Suppose L = L{R) for a regular expression R. We show that L = L(E)

Lo aienn - WA TV il
IUL pOIIIe £-.8N08 L WLl

1. Exactly one accepting state.
2. No arcs into the initial state.
3. No arcs out of the accepting state.

The proof is by structural induction on R, following the recursive definition of
regular expressions that we had in Section 3.1.2.

(a)

Figure 3.16: The basis of the construction of an automaton from a regular
exXpression

BASIS: There are three parts to the basis, shown in Fig. 3.16. In part (a) we
see how to handle the expression ¢. The language of the automaton is easily
seen to be {€}, since the only path from the start state to an accepting state
is labeled e. Part (b) shows the construction for #. Clearly therc are no paths
from start state to accepting state, so @ is the language of this automaton.
Finally, part {c) gives the automaton for a regular expression a. The language
of this automaton evidently consists of the one string e, which is also L{a). It
is easy to check that these automata all satisfy conditions (1}, (2), and (3) of
the inductive hypothesis.

3.2. FINITE AUTOMATA AND REGULAR EXPRESSIONS 103

g)

(@)
SN

P

Figure 3.17: The inductive step in the regular-expression-to-e-NFA construction

INDUCTION: The three parts of the induction are shown in Fig. 3.17. Wc
assume that the statement of the theorem is true for the immediate subexpres-
sions of a given regular expression; that is, the languages of these subexpressions
are also the languages of e-NFA’s with a single accepting state. The four cascs
are:

1. The expression is R + § for some smaller expressions It and 5. Then the
antomaton of Fig. 3.17(a) serves. That is, starting at the new start state,
we cah go to the start state of either the automaton for K or the automa-

£, LA . A oY
ton for §. We then reach the accepting state of one of these automata,

following a path labeled by some string in L{R) or L(S}, respectively.
Onee we reach the ac r‘Pn'f"IT‘ID' state of the antomaton for K or 9 WwWe can

L AT [==Y} ik py LU Liic Al LA Nt

follow one of the e-arcs to the accepting state of the new automaton.

104 CHAPTER 3. REGULAR EXPRESSIONS AND LANGUAGES

Thus. the language of the automaton in Fig. 3.17{(a) is L(R) U L(S).

2. The expression is RS for some smaller expressions R and S. The automa-
ton for the concatenation is shown in Fig. 3.17(b). Note that the start
state of the first automaton becomes the start state of the whole, and the
accepting state of the second automaton becomes the accepting state of
the whole. The idea is that the only paths from start to accepting state go
first. through the automaton for R, where it must follow a path labeled by
a string in L{R), and then through the automaton for §, where it follows
a path labeled by a string in L{8). Thus, the paths in the automaton of
Fig. 3.17(b} are all and only those labeled by strings in L{R)L(S)

2. Tho exnression is B* for some smaller expression 2. Then we nse the

<. LIIC LY SR SRR Slaadsliatel o ol " + A - 22%al =t

automaton of Fig. 3.17(c). That automaton allows us to go either:

._...
1l

(a) Directly from the start state to the accepting state along a path
labeled ¢. That patlt lets us accept €, which is in L(f{") no matter
what expression R is.

(b) To the start state of the automaton for R, through that antomaton
one or more times, and then to the accepting state. This set of paths
allows us to accept strings in L(R), L(R)L(R), L{R)L(R)L(R), and
so on, thus covering all strings in L{R*) cxcept perhaps €, which was
covered by the direct arc to the accepting state mentioned in {3a).

4. The expression is (R} for some smaller expression B. The automaton
for R also serves as the automaton for (R), since the parentheses do not
change the language defined by the expression.

It is a simple observation that the constructed automata satisfy the three con-
ditions given in the inductive hypothesis — one accepiing state, with no arcs
into the initial state or out of the accepting state. 0O

Example 3.8: Let us convert the regular expression (0 4+ 1)*1(0 + 1) to an
e-NFA. Our first step is to construct an automaton for 0 + 1. We use two
automata constructed according to Fig. 3.16(c), one with label 0 on the arc
and one with label 1. These two automata are then combined using the union
construction of Fig. 3.17{(a). The result is shown in Fig. 3.18(a).

Next, we apply to Fig. 3.18(a) the star construction of Fig. 3.17(¢). This
automaton is shown in Fig. 3.18(b). The last two steps involve applying the
concatenation construction of Fig. 3.17(b). First, we connect the automaton of
Fig. 3.18(b) to another automaton designed to accept only the string 1. This
automaton is another application of the basis construction of Fig. 3.16(c) with
label 1 on the arc. Note that we must create a new automaton to recognize 1;

ik mian tlia sardraeand oo Fan 1 bhos mree masd AF T T 10/aY Mha ahind
we lllu"l JICFL LT LIS LAV AINIaua)lil v b Lllﬂ-b ¥l IJGIL oL IB . lo\ﬂ) i ¢ Lll].l.u

auntomaton in the concatenation is another automaton for 0 + 1. Again, we
must create a copy of the antomaton of Pn:r 3. 1Rra\ we must not, use the same

ol LIS 2 Ladt il Al Al SRRy, YR 22 ML RN AT L e A

copy that became part of Fig, 3.18(b). The completc automaton is shown in

3.2. FINITE AUTOMATA AND REGULAR EXPRESSIONS 105

()

Figure 3.18: Automata constructed for Example 3.8

106 CHAPTER 3. REGULAR EXPRESSIONS AND LANGUAGES

Fig. 3.18(c). Note that this ¢-NFA, when e-transitions are removed, looks just
like: the much simpler automaton of Fig. 3.15 that also accepts the strings that
have a 1 in their next-to-last position. 0O

3.2.4 Exercises for Section 3.2

Exercise 3.2.1: Hore 15 a transition table for a DFA;

[0 |1

=0 |42 | @
g2 | 93 | th
*g3 || G3 | g2

* a) Give all the regular expressions RE_?). Note: Think of state g; as if it were
the state with integer number i.

* h) Give all the regular expressions Rg;) Try to simplify the expressions as
much as possible.

c) Give all the regular expressions Ri? . Try to simplify the expressions as
much as possible.

d) Give a regular expression for the language of the automaton.

* e) Construct the transition diagram for the DFA and give a regular expres-
sion for its language by eliminating state ¢.

Exercise 3.2.2: Repeat Exercise 3.2.1 for the following DFA;

|0 |1
—+q || d2 | g3
gz || 91 | 43
¥y | 42 |

Note that solutions to parts (a), (b) and (e) are not available for this exercise.

Exercise 3.2.3: Convert the following DFA to a regular expression, using the
state-elimination technique of Section 3.2.2.

x|l s |p

ajr|s

T r {q

5 i T

N
. . B ~ P -
Exercise 3.2.4: Convert the following regular expressions to NFA’s with -

transitions.

3.2. FINITE AUTOMATA AND REGULAR EXPRESSIONS 107

*a) 01",
b) (0+1)01.
¢) 00(0 +1)*.

Exercise 3.2.5: Eliminate e-transitions from your e- NFAs o
A solution to part (a) appears in the book’s Web pages.

! Exercise 3.2.6: Let A = (Q, X, 4, ¢, {qs}) be an -NFA such that there are no
transitions into go and no transitions out of g;. Describe the language accepted
by each of the following modifications of A, in terms of L = L(A}):

& __1 ML T R SR T Y J S -~ e Mimn o dewmanan CEw ok w e e ey
* a) The automaton constructed from A by adding an e-transition from 47
o-

* b) The antomaton constructed from A by adding an e-transition from g
to every state reachable from g, {along a path whose labels may include
symbols of T as well as €).

¢) The automaton constructed from 4 by adding an e-transition to g, from
every state that can reach gy along some path.

d) The automaton constructed from A4 by doing both (b) and (c).

!! Exercise 3.2.7: There are some simplifications to the constructions of Theo-
rem 3.7, where we converted a regular expression to an e-NFA. Here are three:

1. For the union operator, instead of creating new start and accepting states,
merge the two start states into one state with all the transitions of both
start states. Likewise, merge the two accepting states, having all trausi-
tions to either go to the merged state instead.

2. For the concatenation operator, merge the accepting state of the first
automaton with the start state of the second.

3. For the closure operator, simply add e-transitions fron: the accepting state
to the start state and vice-versa.

Each of these simplifications, by themselves, still yield a correct construction;
that is, the resulting -NFA for any regular expression accepts the language of
the expression. Which subsets of changes (1), (2), and (3) may be made to the
construction together, while still yielding a correct automaton for every regular
expression?

*1! Exercise 3.2.8: Give an a.lgorithm that takes a DFA A and computes the

PR walobad &~ b . R

number of btrlngs of Jellgl..u FL [IUI 50Ie E,nt'u 7, nob réigieq L0 ine ndmoerl

of states of A) accepted by A. Your algorithm should be polynomial in both

n and the number of states of A. Hing: Use the technique suggested by the

construction of Theorem 3.4.

108 CHAPTER 3. REGULAR EXPRESSIONS AND LANGUAGES

3.3 Applications of Regular Expressions

51 regular expression that gives a “picture” of the pattern we want to recognize

iz the medinm of choice for applications that search for patterns in text. The

regular expressions are then compiled, behind the scenes, inte deterministic or
nondeterministic automata, which are then simulated to produce a program
that recognizes patterns in text. In this section, we shall consider two impor-
tant classes of regular-expression-based applications: lexical analyzers and text

search.

3.3.1 Regular Expressions in UNIX

Before seeing the applications, we shall introduce the UNLX notation for ex-
tended regular expressions. This notation gives us a number of additional ca-
pabilities. In fact, the UNIX cxtensions include certain features, especially the
ability to name and refer to previous strings that have matched a pattern, that
actually allow nonregular languages to be recognized. We shall not consider
these features here; rather we shall only introduce the shorthands that allow
complex regular expressions to be written succinctly.

The first enhancement to the regular-expression notation concerns the fact
that most real applications deal with the ASCII character set. Our examples
have typically used a small alphabet; such as {0,1}. The existence of only two
symbols allowed us to write suceinct expressions like 0+ 1 for “any character.”
However, if there were 128 characters, say, the same expression would involve
listing them all, and would be highly inconvenient to write. Thus, UNIX reg-
ular expressions allow us to write character classes to represent large sets of
characters as succinctly as possible. The rules for character classes are:

¢ The symbol . (dot) stands for “any character.”
¢ The scquence [eyaz -+ ax] stands for the regular expression
@ e+ -+ g

This notation saves about half the characters, since we don’t have to write
the +-signs. For example, we could express the four characters used in C
comparison operators by [<>=!].

» Between the square braces we can put a range of the form z-y to mean all
the characters from « to y in the ASCII sequence. Since the digits have
codes in order, as do the upper-case letters and the lower-case letters, we
can express many of the classes of characters that we really care about
with jm‘r a few keystrokes. For example, the digits can be expressed

e dme i b e nmasm A aet A atl

LU }:!J, l.ul UpIJl;:l-(.d.‘:l-' lt'.bu:'u: CATl De CXPICHsta Ln L.J., d.uu uuc 3L UL Al
letters and digits can be expressed [A-Za-z0-9]. If we want to include a

minus sign among a list of characters, we can place it first or last, so it is

not confused with its use to form a character range. For example, the set

3.3. APPLICATIONS OF REGULAR EXPRESSIONS 109

of digits, plus the dot, plus, and minus signs that are used to form signed
decimal numbers may be expressed [-+.0-9]. Square brackets, or other
characters that have special meanings in UNIX rcgular expressions can

be represented as characters by preceding them with a backslash (\}.

» There are special notations for several of the most common classes of

characters. For instance:

a) [:digit:] is the set of ten digits, the same as [0-9] 3
b} [:alpha:] stands for any alphabetic character, as does [A-Za-z].

c¢) [:alnum:] stands for the digits and letters (alphabetic and numeric
runterc\ ac dneog A= 7::—'7n—q-|

o}y Ao WUTo LG

In addition, there are several operaters that are used in UNIX regular ex-
pressions that we have not encountered previously. None of these operators
extend what languages can be expressed, but they sometimes make it easier €0
express what we want.

1. The operator | is used in place of -+ to denote union.

2. The operator ? means “zero or one of.” Thus, R? in UNIX is the same
as € + R in this book’s regular-expression notation.

3. The operator + means “one or more of.” Thus, R+ in UNIX is shorthand
for RR* in our notation.

4. The operator {n} means “n copies of ™ Thus, R{5} in UNIX is shorthand
for RRERR.

Note that UNIX regular expressions allow parentheses to group subexpressions,
just as for the regular expressions described in Section 3.1.2. and the same
operator precedence is used (with 7, + and {n} treated like * as far as precedence
is concerned). The star operator * is used in UNIX (without being a superscript,
of course) with the same meaning as we have used.

3.3.2 Lexical Analysis

One of the oldest applications of regular expressions was in specifying the com-
ponent of a compiler called a “lexical analyzer.” This component scans the
source program and recognizes all tokens, those snbstrings of consecutive char-
acters that belong together logically. Keywords and identifiers are common
examples of tokens, but there are many others.

$The notation [:digit:] has the advantage that should some code other than ABCIT be
used, including a code where the digits did not have conseculive cocles, [:digit:] would still
e Ao P

represent (01234867897, while [0-9] would represeni whatever characiers had codes betwenn
the codes for 0 and 9, inclusive.

110 CHAPTER 3. REGULAR EXPRESSIONS AND LANGUAGES

~ Tnd - Lo e TV D
1HE WUOIILpIeLeE QLuUly 1ul UINLA I

The reader who wants to get the complete list of operators and short-
hands available in the UNI‘{ regular-expression notation can find them
in the manual pages for varicus commands. There are some differences
among the various versions of UNIX, but a command like man grep will
get vou the notation used for the grep command, which is fundamental.
“Grep” stands for “Global (search for) Regular Expression and Print,”

incidentally.

The UNIX command lex and its GNU version flex, accept as input a list of
regular expressions, in the UNIX style, each followed by a bracketed section of
code that indicates what the lexical analyzer is to do when it finds an instance
of that token. Such a facility is called a lezical-analyzer generator, because it
takes as input a high-level description of a lexical analyzer and produces from
it a function that is a working lexical analyzer.

Commands such as 1lex and flex have been found extremely useful because
the regular-expression notation is exactly as powerful as we need to describe
tokens. These commands are able t¢ use the regular-expression-to-DFA con-
version process to generate an efficient function that breaks source programs
into tokens. They make the implementation of a lexical analyzer an afternoon’s
work, while before the development of these regular-expression-based tools, the
hand-generation of the lexical analyzer could take months. Further, if we need
to modify the lexical analyzer for any reason, it is often a simple matter to
change a regular expression or two, instead of having to go into mysterious
code to fix a bug.

Example 3.9: In Fig. 3.19is an example of partial input to the lex command,
describing some of the tokens that are found in the language C. The first line
handles the keyword else and the action is to return a symbolic constant {ELSE
in this example) to the parser for further processing. The second line contains
a regular expression describing identifiers: a letter followed by zero or more
letters and/or digits. The action is first to enter that identifier in the symbol
table if not already there; lex isolates the token found in a buffer, so this piece
of code knows exactly what identifier was found. Finally, the lexical analyzer
returns the symbolic constant ID, which has been chosen in this example to
represent identifiers.

The third entry in Fig. 3.19 is for the sign >=, a two-character operator.
The last example we show is for the sign =, a one-character operator. There

rocainneg doereihinoe oach I 1+l 1 A4 nanl
would in practice appear expressions describing each of the keywords, each of

the signs and punctuation symbols like commas and parentheses, and families
of constants such as numbers and strings. Many of these are very simple,

Just a sequence of one or more specific cha;racters. However, some have more

3.3. APPLICATIONS OF REGULAR EXPRESSIONS 111

elsa {return(ELSE);}

[A-Za-z] [A-Za-20-9])* {code to enter the found identifier
in the symbol table;

_ TN

return{iv;;

1
Sz {return(GE}:}

= {return(EQ);}

Figure 3.19: A sample of lex input

of the flavor of identifiers, requiring the full power of the regular-expression
notation to deseribe. The integers, floating-point numbers, character strings,
and comments are other examples of sets of strings that profit from the regular-
expression capabilities of commands like 1ex. O

The conversion of a collection of expressions, such as those suggested in
Fig. 3.19, to an automaton proceeds approximately as we have described for-
mally in the preceding sections. We start by building an automaton for the
union of all the expressions. This automaton in principle tells us only that
some token has been recognized. However, if we follow the construction of The-
orem 3.7 for the union of expressions, the e-NFA state tells us exactly which
token has been recognized.

The only problem is that more than one token may be recognized at once;
for instance, the string else matches not only the regular expression else but
also the expression for identifiers. The standard resolution is for the lexical-
analyzer gencrator to give priority to the first expression listed. Thus, if we
want keywords like else to be reserved (not usable as identifiers), we simply
list them ahead of the expression for identifiers.

3.3.3 Finding Patterns in Text

Tn Section 2.4.1 we introduced the notion that automata could be used to scarch
efficiently for a set of words in a large repository such as the Web. While the
tools and technology for doing so are not so well developed as that for lexical
analyzers, the regular-expression notation is valuable for describing searches
for interesting patterns. As for lexical analyzers, the capability to go from
the natural, descriptive regular-expression notation to an efficient {antomaton-
based) implementation offers substantial intellectual leverage.

112 CHAPTER 3. REGULAR EXPRESSIONS AND LANGUAGES

The genceral problem for which regular-expression technology has been found
useful is the description of a vaguely defined class of patterns in text. The
vagueness of the description virtually guarantees that we shall not describe
the pattern correctly at first — perhaps we can never get exactly the right
doscription By using regular (‘xpression notation, it hecomes easy to describe

R a P 2l 1irdln AT A v A +lhna Aocevin

lilL pd.El;LLIm at 111511 IL\U with little cuunu and {o luuuuy tne aoso J.ipt.nuu
auickly when things go wrong. A “compiler” for regular expressions is useful

to turn Hﬂn nvpl"ps(jl{)ns weow I"Ife 1n+n (1\'r1!1‘|f"‘lh1ﬂ {"'ﬂ.‘]h

Let us explore an extended example of the sort of problem that arises in
many Web applications. Suppose that we want to scan a very large number of
Web pages and deteet addresses. We might simply want to crcate a mailing
list. Or, perhaps we are trying to classify businesses by their location so that
we can answer queries like “find me a restaurant within 10 minutes drive of
where [am now.”

We shall focus on recognizing street addresses in particular. What is a street
address? We'll have to figure that out, and if, while testing the software, we
find we miss some cases, we'll have to modify the expressions to capture what
we were missing. To begin, a street address will probably end in “Street” or its
abbreviation, “St.” However, some people live on “Avenues” or “Roads,” and
these might be abbreviated in the address as well. Thus, we might use as the
ending for our regular expression something like:

Street |S5t\. | Avenue| Ave\. |Road|Rd\.

In the above expression, we have used UNIX-style notation, with the vertical
bar, rather than -+, as the union opcrator. Note also that the dots are escaped
with a preceding backslash, since dot has the special meaning of “any character”
in UNIX expressions. and in this case we really want only the period or “dot”
character to end the three abbreviations.

The designation such as Street must be preceded by the name of the sireet.
Usually, the name is a capital letter followed by some lower-case letters. We
can describe this pattern by the UNIX ecxpression (A-Z][a-z]*. However,
some streets have a name consisting of more than one word, such as Rhode
Island Avenue in Washington DC. Thus, after discovering that we were missing
addresses of this form, we could revise our description of street names to be

'[A-Z] [a-z] *([A-Z] [a-z]l*)#*?

The expression ahove starts with a group consisting of a capital and zero
or more lower-case letters. There follow zero or more groups consisting of a
bla:nk another capital letter, and zero or more lower-case letters. The blank

. :
is an mdmm y character in UNIX expressions, but to avoid havin

g
expression look like two expressions separated by a blank in a UNIX command
line, we are required to place quotation marks around the whole ex

The quotes are not part of the expression itself.

tha ahaun
Uiy aoiove

'lr q‘.‘l(‘l

-
—

-

L]

3.3, APPLICATIONS OF REGULAR EXPRESSIONS 113

Now, we need to include the house number as part of the address, Most
house numbers are a string of digits. However, some will have a letter follow-
ing, as in “123A Main St.” Thus, the expression we use for numbers has an
optional capital letter following: [0-9]1+[4-Z]7. Notice that we use the UNIX
+ operator for “one or more” digits and the 7 operator for “zero or one” capital

P g V. S Liarn aresloninme]l Fron obene

letter. The entire expression we have develo opca tor street adaresses is:

' [0-9]+1A-Z)7 [A-Z2])la-z]1*([A-Z][a-z]l*)*
(Street|St\.|Avenue|Ave\. |Road|Rd\.)’

If we work with this expression, we shall do fairly well. However, we shall
eventually discover that we are missing:

1. Streets that are called something other than a street, avenue, or road. For
example, we shall miss “Boulevard,” “Place,” “Way,” and their abbrevi-
ations.

2. Strect names that arc numbers, or partially numbers, like “42nd Street.”
3. Post-Office boxes and rural-delivery routes.

4. Street names that don’t end in anything like “Street.” An example is El
Camino Real in Silicon Valley. Being Spanish for “the royal road,” saying
“Fi Camino Real Road” would be redundant, so one has to deal with
complete addresses like 2000 El Camino Real.”

5. All sorts of strange things we can’t even imagine. Can you?

Thus, having a regular-expression compiler can make the process of slow con-
vergence to the complete recognizer for addresses much easier than if we had
to recode overy change directly in a conventional programming language.

3.3.4 Exercises for Section 3.3

Exercise 3.3.1: Give a regular expression to describe phone numbers in all
the various forms you can think of. Consider international numbers as well as
the fact that different countries have different numbers of digits in arca codes
and in local phone numbcrs.

Exercise 3.3.2: Give a regular expression to represent salaries as they might
appear in employment advertising. Consider that salaries might be given on
a per hour, week, month, or year basis. They may or may not appear with a
dollar sign, or other unit such as “K” following. There may be a word or words
nearby that identify a salary. Sugpgestion: look at classified ads in a newspaper,
or on-linc jobs listings to get an idea of what patterns might be useful.

Exercise 3.3.3: At the end of Section 3.3.3 we gave some examples of improve-
ments that could be possible for the regular expression that describes addresses.

Modify the expression developed there to include all the mentioned options.

114 CHAPTER 3. REGULAR EXPRESSIONS AND LANGUAGES

3.4 Algebraic Laws for Regular Expressions

in Example 3.5, we saw the need for simplifying regular expressions, in order to
keep the size of expressions manageable. There, we gave some ad-hot arguments
why one expression could be replaced by another. In all cases, the basic issue

was that the two prresqu}nq wire ﬂq@:iﬂ@ip?lf im the sense that thev defined

the same languages. In this section, we shall offer a collection of algebraic
laws that bring to a higher level the issuc of when two regular expressions are
equivalent. Instead of examining specifie regular expressions. we shall consider
pairs of regular expressions with variables as arguments. Two expressions with
variables are equivalent if whatever languages we substitute for the variables,
the results of the two expressions are the same language.

An exawple of this process in the algebra of arithmetic is as follows. 1t is
ohe matter to say that 142 = 2+ 1. That is an exaple of the commutative law
of addition, and it is easy to check by applying the addition operator on both
sides and getting 3 = 3. However, the commautative low of addition says more;
it says that £ +y = y + =, where z and y are variables that can be replaced
by any two numbers. That is, no matter what two numbers we add, we get the
same result regardless of the order in whicl we sum them.

Like arithmetic expressions, the regular expressions have a number of laws
that work for them. Many of thesc are similar to the laws for arithmetic, if we
think of union as addition and concatenation as multiplication. However, there
are a few places where the analogy breaks down, and there are also some laws
that apply to regular expressions but have no analog for arithmetic, especially
when the closure operator is involved. The next sections form a catalog of the
major laws. We conclude with a discussion of how one can check whether a
proposed law for regular expressions is indeed a law; i.e., it will hold for any
languages that we may substitute for the variables.

3.4.1 Associativity and Commutativity

Commutativity is the property of an operator that says we can switch the order
of its operands and get the same result. An example for arithmetic was given
above: T +y = y + . Associativity is the property of an operator that allows
us Lo regroup the operands when the operator is applied twice. For example,
the associative law of multiplication is (x x y) X z = x x (i % z). Here arc three
laws of these types that hold for regular expressions:

e L+ M =M+ L. This law, the commutative law for union, says that we
may take the union of two languages in cither order.

s (L+ MY+ N=L+ (M' + N). This law, the associalive law for union,

,,,,, 1.2 Lin siodm AL dlean laneingeas aithar ey falsive thn

SAYs that we may l.fdht: tlie union of three LAafiglagts €itlcl Oy warlipg biiu

union of the first two initially, or taking the union of the last two initially.
Naote that. tooether with the commutative law for union., we conclude

LWL LGy LW e Ll T LT P) Liwiywn ihastian,

that we can take the union of any collection of languages with any order

34. ALGEBRAIC LAWS FOR REGULAR EXPRESSIONS 115

and grouping, and the result will be the same. Intuitively, a string is in
LyULs U ULy if and only i it is in one or more of the L;’s.

o (LM)N = L(MN). This law, the associctive law for concatenation, says
that we can concatenate three languages by concatenating either the first
two or the last two initially.

Missing from this list is the “law” LM = ML, which would say that con-
catenation is commutative. However, this law 1s false.

Example 3.10: Consider the regular expressions 01 and 10. These expres-
sions denote the languages {01} and {10}, respectively. Since the languages are
different the general law LM = ML cannot hold. If it did, we could substitute

the regular expression 0 for L and 1 for M and conclude falsely that 01 = 10.
O

3.4.2 Identities and Annihilators

An identity for an operator is a value such that when the operator is applied to
the identity and some other value, the result is the other value. For instance,
0 is the identity for addition, since 0+ z = z + 0 = =z, and 1 i3 the identity
for multiplication, since 1 X * = = X 1 = x. An annihiletor for an operator
is a value such that when the operator is applied to the annihilator and some
other value, the result is the annihilator. For instance, § is an annihilator for
multiplication, since 0 x = x 0 = (. There is no annihilator for addition.

There are three laws for regular expressions involving these coneepts; we list
them helow.

e 0 + L =L+ 0= L. Thislaw asserts that @ is the identity for union.
o ¢L = Le = L. This law asserts that ¢ is the identity for concatenation.
o BL = LB = B. This law asserts that @ is the annihilator for concatenation.

These laws are powerful tools in simplifications. For example, if we have a
union of several expressions, some of which are, or have been simplified to §,
then the @’s can be dropped from the nnion. Likewise, if we have a concatenation
of several expressions, some of which are, or have been simplified to £, we can
drop the ¢’s from the concatenation. Finally, if we have a concatenation of any
number of expressions, and even one of them is @, then the entire concatenation
can be replaced by 9.

A distributive law involves two operators, and asserts that one operator can be
pushed down to be applied to each argument of the other operator individually.
The 1 n i

WL AL [F AT

cation over addition, that is, x x (y + 2) = ¢ X y + & x z. Since multiplication is

AR TR A VAAEAR A : 18 AL

n t,
t common o ‘_}'nmn]n from arlfhmetlc 18 the distrihn hﬂ:l law |.'TF multinli-
I

116 CHAPTER 3. REGULAR EXPRESSIONS AND LANGUAGES

commutative, it doesn’t matter whether the multiplication is on the left or right
of the sum. However, there is an analogous law for regular expressions, that we
must state in two forms, since concatenation is not commutative. These laws
are:

o L{M+ N)=LM + LN. This law, is the left distributive

law of concate-

nation cver union.

o (M + N} = ML+ NL. This law, is the right distributive law of con-
catenation over union.

Let us prove the left distributive law; the other is proved similarly. The
proof will refer to languages only; it does not denend on the languages hawrm‘

[EE R Lt rau A Rt 2L e e aete-s 20

regular expressions.
Theorem 3.11: If L, M, and N are any languages, then
L(MUN)=LMULN

PROOF: The proof is similar to another proof about a distributive law that we
saw in Theorem 1.10. We need first to show that a string w is in L{M U N) if
and only if it is in LM U LN.

(Only if) If wis in L(M U N), then w = zy, where z is in L and ¥ is in either
Mor N. Ifyisin M, then zy is in LM, and therefore in LA U LN. Likewise,
if y isin N, then zy is in LN and therefore in LM U LN.

(If) Suppose w is in LA U LN. Then ® is in either LM or in LN. Suppouse
first that w isin LM. Then w = zy, where xisin L and y isin M. Asy is in
M, it is also in M U N. Thus, ay is in L{M U N}, If w is not in LM, then it
ig surely in LN, and a similar argument shows it is in LM U N). O

Example 3.12: Consider the regular expression 0-+01*. We can “factor cut a
0" from the union, but first we have to recognize that the expression 0 by itself
is actually the concatenation of 0 with something, namely e. That is, we use
the identity law for concatenation to replace 0 by O¢, giving us the expression
0e +01*. Now, we can apply the left distributive law to replace this expression
by O(e + 1*). If we further recognize that € is in L{1*), then we observe that
€+ 1" =1*, and can simplify to 01*. O

3.4.4 The Idempotent Law

An operator is said to be idempetent if the result of applying it to two of the
same values as arguments is that value. The comnmon arithmetic operators are

Pt
not wwempotent; ¥ + & 7-— z in general and T X T ?‘— T in gencral {althcugh there

are somne values of x for which the equality holds, such as 0+ 0 = 0) However,
union and intorsection are common exambles of idemnotent operators. Thus,

PEEL AN L) RESA AT R L T 1 i,

for regular expressions, we may assert the following law:

3.4. ALGEBRAIC LAWS FOR REGULAR EXPRESSIONS 117

o L+ L = L. This law, the idempotence law for union, states that i we
take the union of two identical expressions, we can replace them by one
copy of the expression.

3.4.5 Laws Involving Closures

There arc a number of laws involving the closure operators and its UNIX-style
variants T and 7. We shall list them here, and give some explanation for why

they are true.

e (L*)* = L*. This law says that closing an expression that is already
closed does not change the language. The language of (L*)” is all strings
created by concatenating strings in the language of L*. But those strings
are themselves composed of strings from L. Thus, the string in (L*)* is
also a concatenation of strings from L and is therefore in the language of
L=

e " = ¢. The closure of @ contains only the string e, as we discussed in
Example 3.6.

s ¢t = ¢. It is easy to check that the only string that can be formed by
concatenating any number of copies of the empty string is the empty
string itself.

o Lt =LL" = L*L. Recall that .7 is defined to be L+ LL + LLL + -
Also, I* = e+ L+ LL+ LLL+ - . Thus,

LL*=Le+LL+ LLL+LLLL 4 ---

When we remember that Le = L, we sec that the infinite expansions for
LL* and for LT are the same. That proves Lt = LL*. The proof that
L* = L*L is similar.*

e L* = LT + €. The proof is easy, since the expansion of L includes every
term in the expansion of L* except e. Note that if the language L contains
the string ¢, then the additional “+¢” term is not needed; that is, L* = L*
in this special case.

o L7 =¢+ L. This rule is really the definition of the ? operator.

3.4.6 Discovering Laws for Regular Expressions

Each of the laws above was proved, formally or informally. However, there is
an infinite variety of laws about regular expressions that might be proposed.

Tz gomonal el oA
Is there a gendral maeur ’juﬁlﬂgj that will make our proafs of the correct laws

ANptice that, as a consequence, any language L commutes (unc]cr coucatena,tmn) with ils

own closure; LL" = L~ f.. Thai ruie does not contradict the faci ulan in gcueral Concarena-
tion is not commutative.

118 CHAPTER 3. REGULAR EXPRESSIONS AND LANGUAGES

easy? It turns out that the truth of a law reduces to a question of the equality
of two specific languages. Interestingly, the technique is closely tied to the
regular-expression operators, and cannot be extended to expressions involving
some other operators, such as intersection.

To see how this test works, let us consider a proposed law, such as

(L+ M) = (L' M*)*

This law says that if we have any two languages I and A, and we close their
union, we get the same language as if we take the language L*Af™, that is,
all strings composed of zero or more choices from L followed by zero or more
choices from M, and close that language.

T nrove H'n; 1o SUDTINLS firet that etrine 12 in tho lananacanf { 7L ;‘;f\" 5
Al PRV LS LAYy U R ST LR B il uunxu,c, wislin th it A A.;buu.bu I L
Then we can write w; = wws - - - for some &, where each w; is in either L or

M. It follows that each w; is in the language of L*M' *. To see why, if w is in
L. pick one string, wy;, from L; this string is also in L*. Pick no strings from
M that is, pick ¢ from M*. If w; is iIn M, the argument is similar. Once every
w; 18 seen to be in L* M, it follows that w is in the closure of this language.

To complete the proof, we also have to prove the converse: that strings
in (L*M™)* are also in (L + M)*. We omit this part of the proof, since our
objective is not to prove the [aw, but to notice the following important property
of regular expressions.

Any regular expression with variables can be thought of as a concrete regular
expression, one that has no variables, by thinking of each variable as if it were a
distinict symbol. For example, the expression (L + M)* can have variables L and
M replaced by symbols @ and &, respectively, giving us the regular expression
{a+b)~.

The language of the concrete expression guides us regarding the form of
strings in any language that is formed from the original expression when we
replace the variables by languages. Thus, in our amnalysis of (L + A", we
observed that any string w composed of a sequence of choices from either L or
M, would be in the language of (L + M)*, We can arrive at that conclusion
by locking at the language of the concrete expression, L{(a + b)*}, which is
evidently the set of all strings of a’s and b’s. We could substitute any string in
L for any occurrence of e in one of those strings, and we could substitute any
string in M for any occurrence of b, with possibly different choices of strings for
different occurrences of o or b. Those substitutions, applied to all the strings
in {a+ b)=, gives us all strings formed by concatenating strings from L and/or
M, in any order.

The above statement may seem obvious, but as is pointed out in the box

1 “Extensions of the Test Beyond Regular Expressions May Fail,” it is not
even truc when some other operators are added to the three regular-expreq'swn

Mrmanat oo ‘:‘I rarn the moannral meincinds for rarecilar ovmroooimmoe in fho moss
Opalawdra. v DPIOVE wii€ genild: principlc el Tegidl €XPressiQns il onc nexy
theorem.

LR m " L N TS LRI WS L TR 1. - L R L IR 1 . .t
“For simplicity, we shall identify the regular expressions and their languages, and avoid
saving “the language of? in front of every regular expression,

3.4. ALGEBRAIC LAWS FOR REGULAR EXPRESSIONS 119

Theorem 3.13: Let E be a regular expression with variables Ly, Lo,. .., Ly,
Form concrete regular expression C by replacing each occurrence of L; by the
symbol g, for ¢ = 1,2,...,m. Then for any languages Ly, L»,..., Ly, every
string w in L{E) can be written w = wywy - wg, where each w; is in one of
the languages, say Lj;, and the strmg @y O * -'a-,,‘ is in the language L(C).
Less formally, we can construct L{E) by starting with each string in L(C),
say aj, aj, ---&j,, and substituting for each f the @;,’s any string from the

PROQF: The proof is a structural induction on the expression E.

BASIS: The basis cases are where E is ¢, §, or a variable L. In the first two
cases, there is nothing to prove, since the concrete expression C is the same as
E. If E is a variable I, then L(E) L. The concrete expression C is just a,
where « is the symbol corresponding to L. Thus, L{C) = {a}. If we substitute
any string in L for the symbol « in this one string, we get the langunage I, which
ig also L(E).

INDUCTION: There are three cases, depending on the final operator of E.
First, suppose that E = F 4 G, i.e., 2 union is the final operator. Let C and D
be the concrete expressions formed from F and G, respectively, by substituting
concrete symbols for the language-variables in these expressions. Note that the
same symbol must be substituted for all occurrcnces of the same variable, in
both F and G. Then the concrete expression that we get from E is C+ D, and
L(C + D)= L{C) + L(D}.

Suppose that w is a string in L(E), when the language variables of F are
replaced by specific languages. Then w is in either L(F) or L(G). By the
inductive hypothesis, w is obtained by starting with a concrete string in L(C) or
L(D), respectively, and substituting for the symbols strings in the corresponding
languages. Thus, in either case, the string w can be constructed by starting
with a concrete string in L{C + D), and making the same substitutions of strings
for syinbols.

We must also consider the cases where E is FG or F*. However, the ar-
guments are similar to the union case above, and we leave them for you to
complete. O

3.4.7 The Test for a Regular-Expression Algebraic Law

Now, we can state and prove the test for whether or not a law of regular
cxpressions is true. The test for whether £ = F is true, where K and F are
two regular expressions with the same set of variables, 1s:

1. Convert E and F' to concrete regular expressions € and D, respectively,
by replacing each variable by a concrete symbol.

[FAY NN ik o (=3 L LS)

C} — L{D} Wen thon F — Fis a true law w, and if n ot
then the “law is false. Note that we shall not see ‘rhe st for whether two

120 CHAPTER 3. REGULAR EXPRESSIONS AND LANGUAGES

regular expressions denote the same language uutil Section 4.4. However,
we can use ad-hoc means to decide the equality of the pairs of languages
that we actually care abont. Recall that if the languages are nof the same,
than it is sufficient to provide one counterexample: a single string that is
in one language but not the other.

Theorem 3.14: The above test correctly identifies the true laws for regular
expressions.

PROOF: We shall show that L(E) = L(F} for any languages in place of the
variables of E and F if and only if L{C) = L(D).

(Only-if) Suppose L(E) = L{F) for all choices of languages for the variables.
In particular, choose for every variable L the concrete symbol a that replaces L
in expressions ¢ and D. Then for this choice, L(C) = L(E}, and L(D) = L(F).
Since L{F) = L(F) is given, it follows that L{C) = L(D).

(If) Suppose L(C) = L(D). By Theorem 3.13, L(E) and L{F) are each
constructed by replacing the concrete symbols of strings in L{C) and L{D),
respectively, by strings in the languages that correspond to those symbols. If
the strings of L(C) and L{D) are the same, then the two languages constructed
in this manner will also be the same; that is, L(E) = L(F). O

Example 3.15: Consider the prospective law (L + A)* = (L*M*)". If we
replace variables L and M hy concrete symbols ¢ and b respectively, we get the
regular expressions (a + b)* and (a*b™)". It is easy to check that both these
expressions denote the language with all strings of a@’s and &’s. Thus, the two
concrete expressions denote the same language, and the law holds.

For another example of a law, consider L* = L*L*. The concrete languages
are a* aud a*a“, respectively, and each of these is the set of all strings of a’s.
Again, the law is found to Lold; that is, concatenation of a closed language with
itself yields that language.

Finally, consider the prospective law L+ ML = (L + M) L. If we choose
symbols ¢ and b for variables L and A, respectively, we have the two concrete
regular expressions a + ba and {(a + bja. However, the languages of these
expressions are not the same. For example, the string ¢a is in the second, but
not the first. Thus, the prospective law is false. O

3.4.8 Exercises for Section 3.4

Exercise 3.4.1: Verify the following identities involving regular expressions.
*a) R+ S=5+R.

b) (R+8)+T=R+{(5+T).

¢) (RS)T = R(ST).

3.4. ALGEBRAIC LAWS FOR REGULAR EXPRESSIONS 121

T . __ .Y FET. o E™_ 1T __¥_ 1 . RN
EXLensions OI tlie lesSt oeyond negular LXpresslons

May Fail

Let us consider an extended regular-expression algebra that includes
the intersection operator. Interestingly, adding N to the three regular-
expression operators does not increase the set of languages we can de-
scribe. as we shall see in Theorem 4.8. However, it dues mmake the test for
algebraic laws invalid.

Consider the “law” L N M N N = L N M; that is, the intersection of
any three languages is the same as the wtersection of the first two of these
languages. This “law” is patently falsc. For example, let L = M = {a}
and N = 0. But the test based on concretizing the variables wonld fail to
se¢ the difference. That is, if we replaced L, A/, and N by the symbols a.
b, and ¢, respectively, we would test whether {2} N {6} N {¢} = {«} N {b}.
Since both sides are the empty set, the oquality of languages holds and
the test would imply that the “law™ is true.

d) R(S+T)= RS + RT.

e)
*f

(R+ S)YT' = RT + ST.
) (B*)*=R".
g) (e+ Ry =R
h) (R*8%)" = (R + S)".

! Exercise 3.4.2: DProve or disprove cach of the following statements about
regular cxpressions.

*a) (R+S)y =R +8",
h) (RS+ R)y*R= R{(SR+ R)".
*c) (RS + R)*RS = (RR*S)™.
d} (R+S8yS=(R"S).
e} S(RS+ S)*R=NRR*S(RR*S)".
Exercise 3.4.3: Tn Example 3.6. we developed the regular expression
(0+1)

Tige tho dictributive lnwe +0o davalon tr
S Bf A% r AAARFW A dbd LEUE ¥ 41 ARLTY M Vel Wl Y\vlull ury

=}
=
=l

-

sions,

122 CHAPTER 3. REGULAR EXPRESSIONS AND LANGUAGES

Exercise 3.4.4: At the beginning of Section 3.4.6, we gave part of a proof that
(L*M*)* = (L+ M)*. Complete the proof by showing that strings in (L*M~)*
are also in (L + M)™.

1 Exercise 3.4.5: Complete the proof of Theorem 3.13 by handling the cases
is FG or of the form F*,

s

R a T CITESS PiTass]

WIlblL !.("BLII.O.L U)\Pl. L

tlj

3.5 Summary of Chapter 3

4 Regular Expressions: This algebraic notation describes exactly the same
languages as finite automata: the regular languages. The regular-ex-
pression operators are union, concatenation (or “dot”}, and closure (or
“star”).

+ Regular Expressions in Praciice: Systems such as UNIX and various of
its commands use an extended regular-expression language that provides
shorthands for many common expressions. Character classes allow the
easy expression of sets of symbols, while operators such as one-cr-more-of
and at-most-onc-of augment the usual regular-expression operators.

+ Equivalence of Regular Expressions and Finite Auiomata: We can con-
vert a DFA to a regular expression by an inductive construction in which
expressions for the labels of paths allowed to pass through increasingly
larger sets of states are constructed. Alternatively, we can use a state-
elimination procedure to build the regular expression for a DFA. In the
other direction, we can construct recursively an e-NFA from regular ex-
pressions, and then convert the e-NFA to a DFA, if we wish.

+ The Algebra of Regular Expressions: Regular expressions obey many of
the algebraic laws of arithmetic, although there are differences. Union
and concatenation are associative, but only union is commutative. Con-
catenation disiributes over union. Union is idempotent.

4 Testing Algebraic Identities: We can tell whether a regular-expression
equivalence involving variables as arguments is true by replacing the vari-
ables by distinct constants and testing whether the resulting languages
are the same.

3.6 References for Chapter 3

The idea of regular expressiom and the proof of their equivalence to finite

PRy sirmwrmae Fhoa wo e e

automata is the work of 8. C. Kleene [3]. However, the construction of an e
NFA from a regular expression, as presented here, i3 the “McNaughton-Yamada

- »
construction,” from [4]. The test for regular-expression identities by treating

variables as constants was written down by J. Gischer [2]. Although thought to

3.6. REFERENCES FOR CHAPTER 3 123

be folklore, this report demonstrated how adding several other operations such

+ baafla 0 F 1
as intersection or shuffle {See Exercise 7.3.4) makes the test fail, even though

they do not extend the class of languages representable.

Even hefore dpwﬂnnmu UNIX, K. 'T‘hnmnqnn was mwmhg‘nhng the nge of
regular expressions in comma,ndb such as grep, and his algorlthm for processing
such commands appears in [5]. The early development of UNIX produced sev-
eral other commands that make heavy use of the extended regular-expression
notation, such as M. Lesk’s 1lex command. A description of this command and

other regular-expression techniques can be found in [1].

1. A.V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles, Techniques,
and Tools, Addison-Wesley, Reading MA, 1986.

2. J. L. Gischer, STAN-CS-TR-84-1033 (1984).

3. 8. C. Kleene, “Representation of events in nerve nets and finite automata,”
In C. E. Shannon and J. McCarthy, Automata Studies, Princeton Univ.
Press, 1958, pp. 3-42.

4. R. McNaughton and H. Yamada, “Regular expressions and state graphs
for automata,” IEEE Trans. Electronic Computers 9:1 (Jan., 1960), pp.
39-47.

5. K. Thompson, “Regular expression search algorithm,” Comm. ACM 11:6
(June, 1968), pp. 419-422.

Chapter 4

Properties of Regular

I

Languages

The chapter explores the properties of regular languages. Our first tool for
this exploration is a way to prove that certain languages are not regular. This
theorcm, called the “punping lemma,” is introduced in Section 4.1.

One important kind of fact about the regular languages is called a “closure
property.” These properties let us build recognizers for languages that are
coustructed from other languages by certain operations. As an example, the
intersection of two regular languages is also regular, Thus, given automata
that recognize two different regular languages, we can construct mechanically
an automaton that recognizes exactly the intersection of these two languages.
Since the automaton for the intersection may have many more states than either
of the two given automata, this “closure property” can be a useful tool for
building complex automata. Section 2.1 used this construction in an essential
way.

Some other important facts about regular languages are called “decision
properties.” Qur study of these properties gives us algorithms for answering
important questions about automata. A central example is an algorithm for
deciding whether two automata define the same language. A consequence of
our ability to decide this question is that we can “minimize” automata, that
is, find an equivalent to a given automaton that has as few states as possible.
This problem has been important in the design of switching circuits for decades,
since the cost of the circuit (arca of a chip that the circuit occupies) tends to
decrease as the nurnber of states of the automaton implemented by the circuit
decreases.

126 CHAPTER 4. PROPERTIES OF REGULAR LANGUAGES

4.1 Proving Languages not to be Regular

We have established that the class of languages known as the regular languages

Tono+ Froin AifFrvnnt dacr—imtinme Thos o

hab d..l.l 1edst [oUr Qliereic ll\"u')\.l.l.l-llfJ.UJ.J.D .I..I.I.L.)' are LhC IG.IJ.BLLG.B'ED beClJl.qu IJJ

DFA’s, by NFA’s, and by e-NFA’s; they are also the languages defined by regular

nvnrnqmnn Q
R=ny =L LR

Not every language is a regular language In this section, we shall introduce
a powerful technique, known as the “pumping lemma,” for showing certain
languages not to be reg,lllar. We then give several examples of nonregular
languages. In Section 4.2 we shall sce how the punping lemma can be used in
tandem with closure propertics of the regular languages to prove other languages
not to be regular,

4.1.1 The Pumping Lemma for Regular Languages

Let us consider the langnage Loy = {0"1" | » > 1}. This language contains
all strings 01, 0011, 000111, and so on, that consist of one or more 0’s followed
by an cqual number of 1's. We claim that Ly is not a regular language. The
intuitive argument is that if Ly, were regular, then Loy would be the language
of some DFA A. This automaton has some particular number of states, say &
states. Imagine this automaton receiving & 0's as input. It is in some state after
consuming each of the k + 1 prefixes of the input: €,0,00,...,0%. Since there
are only k different states, the pigeonhole principle tells ug that after reading
two different prefixes, say 0 and 09, A must be in the same state, say state g.

However, suppose instead that after reading ¢ or j (s, the automaton A
starts receiving 1's as input. After receiving ¢ 1's, it must accept if it previously
received i O’s, but not if it received 7 0%s. Since it was in state g when the 1's
started, it. cannot “remember” whether it received ¢ or § 0’s, so we can “fool”
A and make it do the wrong thing - accept if it should not, or fail to accept
when it should.

The above argument is informal, but can be made precise. However, the
same conclusion, that the language Ly is not regular, can be reached using a
general result, as follows.

Theorem 4.1: (The pumping lemma for regular languages) Let L be a regular
language. Then there exists a constant » {which depends on L) such that for
every string w in L such that |w| > n, we can break w into three strings,
w = ayz, such that:

L.y#e
2. |2y < n.
3. For all £ > 0, the string zy*z is also in L.

That is, we can always find a nonempty string y not too far from the beginning

af 'I']f\ at can he “onmned®: that i 18, rnnn9+1‘nn' fu Aantr nnmhm!" nf hmulz nr Hn]nhna‘
WAL R RLACAL LSRR W priiiipr i 1 vaalaw Seps WA, B ERAAF EALRALESSNE WA DARIITATy WL WTAL vidiE

it (the case k = 0), keeps the rehu]tmg string In the language L.

4.1. PROVING LANGUAGES NOT TO BE REGULAR 127

PROOF: Suppose L is regular. Then L = L(A4) for some DFA 4. Suppose A has
n states. Now, consider any string w of length n or more, say w = @ity * * .
where m > n and cach ¢; is an input symbol. For i = 0.1....,n define stare
pi to be §(gg. ar1az - - - @;), where § is the transition function of 4, and go is the
start state of 4. That is, p; is the stare A is in after reading the first 7 symhols

~F R e o T S T Y
L9} % UJ AULT LhLCAL Fﬂ -_— I.f”

By the pigeonhole principle, ii 18 not possible for the n + 1 different ;s for
1=0,1,...,n 10 be distinct. since there are only n different states. Thns, we

can find two different mn‘gms tand j, with 0 <i < j € n, such that p; = p;.
Now, we con break w = gyz as follows:

l.a=ane-a.
2.y =ajaize- o a .
3.z = Aj 1 jp Uy,

That is, a takes us to p; once; ¥ takes us from p; back to p; (since p; is also p;),
and z is the balance of w. The relationships among the strings and stales arc
suggested by Fig. 4.1. Note that x may he empty, i the case that £ = 0. Also,
z may be empty if § = n = m. However, y can not be empty, since { is strictly
less than j.

Figure 4.1: Every string longer than the number of states must cause a state
to repeal

Now, consider what happens if the automaton A receives the input ay®z for
any k 2 0. If £ = 0, then the automaton goes from the start state go (Wi m,h is
also) to p; on input x. Since p; is also p;, it must be that A goes from p; to
the accepting state shown in Fig. 4.1 on input z. Thus, .1 accepts rz.

If k£ > 0, then 4 goes from gp to pr on input &, circles from p; to p; k times
on input ¥*, and then gous to the accepting state on input . Thus, for any
k>0, :cy"'z is also accepted by A; that is, ryfzisin L. O

4.1.2 Applications of the Pumping Lemma

Let us sce some examples of how the pumping lemma is used. ln each case.
we shall Nropoese a Lar nguage nd use rthe nllml'ﬂTlQ letnma to prave that the

pritdpiat & Lo andl

language is not regula.L.

128 CHAPTER 4. PROPERTIES OF REGULAR LANGUAGES

Rerall onr diseussion from Section 1.2.2 where we pﬂlﬂtvd out that a theo-
remn whose statement involves several alternations of “for-all” and “there-
exists” quantifiers can be thought of as a game between two players. The
pumping lemma is an important example of this type of theorem, since it
in effect involves four different quantifiers: “for all regular languages L
there exists n such that for all w in L with |w| > n there exists zyz
cqual to w such that --- ." We can see the application of the pumping

lemma as a game, in which:
1. Player 1 picks the language L to be proved nonreguiar.
2. Player 2 picks n, but doesn’t reveal to player 1 what n is; player 1

must devise a play for all possible n's.

3. Player 1 picks w, which may depend on n and which must be of
length at least n.

4. Player 2 divides w into z, y, and z, obeying the constraints that
are stipulated in the pumping lemma; y . Again,
player 2 does not have to tell player 1 what z, i, and z are, although
they must obey the constraints.

5. Player 1 “wins” by picking &, which may be a function of n, z, y.
and z, snch that zy*z is not in L.

Example 4.2: Let us show that the language L., consisting of all strings with
an equal number of (s and 1’s {not in any particular order) is not a regular
language. In terms of the “two-player game” described in the box on “The
Pumping Lemma as an Adversarial Game,” we shall be player 1 and we must
deal with whatever choices player 2 makes. Suppose n is the constant that must
oxist if L., is regular, according to the pumping lemima; i.e., “player 27 picks
1. We shall pick w = 0717, that is, n O’s followed by n 1’s, a string that surcly
is in Log.

Now, “player 2" breaks our w up into zyz. All we know is that y # e, and
|ry| < n. However, that information is very useful, and we “win” as follows.
Since |zy| < n, and zy comes at the front of w, we know that & and y consist
only of 0's. The pumping lemma tells us that xz is in L.,, if L., is regular.
This concluston is the case k = 0 in the pumping lemma.! However, rz has n
I’s, since all the 1's of w are in 2. But zz also has fewer than n 0's, because we

Toma o a Lom Ny L v T

'Observe in what follows that we could have also succeeded by picking £ = 2, or indeed
any value of & other than 1.

4.1. PROVING LANGUAGES NOT TO BE REGULAR 129

lost the 0’s of 3. Since ¥ # ¢ we know that there can be no more than n — 1 0's
among z and z. Thus, after assuming L., i a regular language, we have proved
a fact known to be false, that zz is in L.;. We have a proof by contradiction
of the fact that L.q is not regular. O

- : Let us show that the language L, consisting of all strings of
1's whose length is a prime is not a regular language. Suppose it were. Then
there would be a constant n satisfying the conditions of the pumping lemma.
Consider some prime p > n + 2; there must be such a p, since therc are an
infinity of primes. Let w = 17,

By the pumping lemma, we can break w = xyz such that y # € and [zy| < n.

Let |y| = m. Then |zz| = p— m. Now consider the string zy*~ ™z, which must
be in Ly, by the pumping leinma, if L, really is regular. However,

ley" " z] = |z2| + (p—m)|ly| =p—-m+ (p—m)m ={m + 1)(p - m)

It locks like jzy®~™z| is not a prime, since it has two factors m + 1 and
p — m. However, we must check that neither of these factors are 1, since then
(m + 1)}{p — m) might be a prime after all. But m + 1 > 1, since y # € tells us
m > 1. Also, p —m > 1, since p 2 n + 2 was chosen, and m < n since

m=y| <|ey| < n

Thus, p—m > 2.

Again we have started by assuming the language in question was regular,
and we derived a contradiction by showing that some string not in the language
was required by the pumping lemma to be in the language. Thus, we conclude
that L,, is not a regular language. O

4.1.3 Exercises for Section 4.1

Exercise 4.1.1: Prove thai the following are not regular languages.

a) {071" | n > 1}. This language, consisting of a string of Os followed by an
equal-length string of 1’s, is the language Lo, we considered informally at
the begiuning of the section. Here, you should apply the pumping lemma
in the proof.

b) The set of strings of balanced parentheses. These are the strings of char-
acters “(* and “)* that can appear in a well-formed arithmetic expression.

*¢) {010 | n> 1}
d) {0"1™2" | n and m are arbitrary integers}.
e} {U"1™ | n <m}.

£y {012% | > 1).

130 CHAPTER 4. PROPERTIES OF REGULAR LANGUAGES

! Exercise 4.1.2: Prove that the following are not regular languages.
* a) {0" | n is a perfect square}.
b) {0" | n is a perfect cube}.
c) {0" | n is a power of 2}.
d) The set of strings of 0's and 1's whose length is a perfect square.

e) The set of strings of 0’s and 1’s thai are of the form ww, that is, some
string repeated.

f) The set of strings of 0’s and 1's that are of the form ww®, that is, some
string followed by its reverse. (See Section 4.2.2 for a formal definition of
the reversal of a string.)

g) The set of strings of 0’s and 1's of the form ww, where % is formed from
w by replacing all 0’s by 1’s, and vice-versa; e.g., 011 = 100, and 011100

is an example of a string in the language.

h) The set of strings of the form w1", where w is a string of 0's and 1’s of
length .

! Exercise 4.1.3: Prove that the following are not regular languages.

a} The set of strings of 0's and 1’s, beginning with a 1, such that when
interpreted as an integer, that integer is a prime.

b) The set of strings of the form 0?17 such that the greatest common divisor
of i and jis 1.

I Exercise 4.1.4: When we try to apply the pumping lemma to a regular lan-
guage, the “adversary wins,” and we cannot complete the proof. Show what
goes wrong when we choose L to be one of the following languages:

* a) The empty set.
* b} {00.11}.
* ¢) (00 +11)*.

d) 01'0"1.

4.2, CLOSURE PROPERTIES OF REGULAR LANGUAGES 131

4.2 Closure Properties of Regular Languages

Ins this section, we shall prove several theorems of the form “if certain languages
and a lmlauabr L is formed from them b} certain "‘p‘:“"‘"f‘f‘“q (e -B-, L
two regular languages), then L is also regular.” These theorems
fren called elosure properties of the regular languages, since they show that

the class of regular languages is closed under the operation mentioned. Closure
properties express the idea that when cone (or several) languages are regular,
then certain related langnages arc also regular. They also serve as an interest-
ing illustration of how the equivalent representations of the regular languages
(automata and regular expressions) reinforce each other in our understanding
of the class of languages, since often one representation is far better than the
others in supporting a proof of a closure property. Here is a summary of the

prineipal closure properties for regular languages:

" RARL

1. The union of two regular languages is regular.
The interscetion of two regular languages is regular.

The complement of a regular language is regular.

e

The difference of two regular languages is regular.
The reversal of a regular language is regular.
The closure (star) of a regular language is regular.

The concatenation of regular languages is regular.

2

A homomorphisin (substitution of strings for symbols) of a regular lan-
guage is regular.

9. The inverse homomorphism of a regular language is regular.

4.2.1 Closure of Regular Languages Under Boolean
Operations

Our first closure properties are the three boolean operations: umon, intersec-
tion. and complementation:

1. Let L and M be languages over alphabet . Then L U M is the language
that contains all strings that arc in either or both of L and M.

2. Let L and 3/ be languages over alphabet £. Then L N Af is the language
that contains all strings that are in both L and AJ.

3. Let L be a language over alphabet ¥. Then L, the complement of L, is
the set of strings in X* that are not in L.

It turns out that the regular languages are closed under all three of the
i roofs take rather different approac ches l’]lﬂllE’h as wo

hnanlonn annr 1y
has L B P« oAl S - L 28 nereit 4 1 cl!

LV AW L dl Y] Uli

shall see.

132 CHAPTER 4. PROPERTIES OF REGULAR LANGUAGES

What if Languages Have Different Alphabets?

When we take the union or intersection of two languages L and M, ihey
might have different alphabets. For example, it iy possible that L € {a,b}
while Ly C {b,c.d}. However, if a language L consists of strings with
symbols in T, then we can also think of L as a language over any finite
alphabet that is a superset of . Thus, for example. we can think of both
L, and Lo above as being languages over alphabet {a,b,c,d}. The fact
that none of Ly’s strings contain symbols ¢ or d is irrelovant, as is the fact
that La's strings will not contain «.

Likewise, when taking the complement of a language L that is a subset
of T} for some alphabet ¥;, we may choose to take the complement with
respect to some alphabet ¥ that is a superset of £,. If so. then the
complement of L will be B3 — L; that is, the complement of L with respect
ta Ty includes (among other strings) all those strings in T3 that have at
least one symbol that is in Xy but not in £;. Had we taken the complement
of L with respect to By, then no string with symbols in 3 — %3 would be in
L. Thus, to be strict, we should always state the alphabet with respect to
which a complement is taken. However, often it is obvious which alphabet
is meant; e.g., if L is defined by an automaton, then the specification of
that automaton mcludes the alphabet. Thus, we shall often speak of the
“complement” without specifying the alphabet.

Closure Under Union
Theorem 4.4: If L and M are regular languages, then so is L U M.

PROOF: This proof is simple. Since I and M are regular, they have regular
expressions; sav L = L(R) and Al = L{S). Then L U Af = L{R + S5) by the
definition of the + operator for regular expressions. D

Closurc Under Complementation

The theorem for union was made very easy by the use of the regular-expression
representation for the languages. However, ler us next consider complemen-
tation. Do you see how to take a regular expression and change it into one
that defines the complement language? Well neither do we, However, it can be
done. because as we shall sec in Theorem 4.5, it is easy to start with a DFA and
construct 2 DFA that accepts the complement. Thus, starting with a regular
expression, we could find a regular expression for its complement as follows:

1. Convert the regular expression to an e NFA.

2. Convert that e NFA 1o a DFA by the subset construction.

4.2. CLOSURE PROPERTIES OF REGULAR LANGUAGES 133

The proof that regular languages are closed under union was exceptionally
easy because union is one of the three operations that define the regular
expressions. The same idea as Theorem 4.4 applies to concatenation and
closure as well. That is:

b x
f

o if L and Af arc regular languages, then so is LA,

e If L is a regular language, then so is L”.

3. Complement the accepting states of that DFA.

4. Turn the complement DFA back into a regular expression using the con-
struction of Sections 3.2.1 or 3.2.2.

Theorem 4.5: If L is a regular language over alphabet T, then L = 5 — L is
also a regular language.

PROOF: Let L = L{A) for some DFA A4 = (Q,%,4,g0, F). Then L = L{B),
where B is the DFA (Q.X.8,q90.Q — F). That is, B is exactly like A, but the
accepting states of A have become nonaccepting states of B, and vice versa.
Then w is in L(B) if and only if (g, w) is in Q — F, which oceurs if and only
if wis not in L(4). D

Notice that it is important for the above proof that §(go,) is always some
state; i.e., there are no missing transitions in A. If there were, then certain
strings might lead neither to an accepting nor nonaccepting state of A, and
those strings would be missing from both L{Ad) and L(B). Fortunately, we
have defined a DFA to have a transition on every symbol of X from every state,
so each string leads either to a statc in F or a state in ¢ — F.

Example 4.6: Let 4 be the automaton of Fig. 2.14. Recall that DFA A ac-
cepts all and only the strings of 0’s and 1's that end in 01; in regular-expression
terms, L{4) = (0 + 1)*01. The complement of L({A} is therefore all strings
of 0’s and 1's that do not end in 01. Figure 4.2 shows the automaton for
{0,1}* — L(A). Tt is the same as Fig. 2.14 but with the accepting state made
nonaccepting and the two nonaccepting states made accepting. O

Example 4.7 : 1n this example, we shall apply Theorem 4.5 to show a certain
language not to be regular. In Example 4.2 we showed that the language L.
consisting of strings with an equal number of ('s and 1’s and is not regular. This
proof was a straightforward application of the pumping lemma. Now consider

Figure 4.2: DFA accepting the complement of the language (0 + 1)*01

the language 14 consisting of those strings of (s and 1’s that have an unequal
mumber of 0°s and 1.

It. would be hard to use the pumping lemma to show M is not regular.
Intuitively, if we start with some string w in M, break it into w = zyz, and
“pump” y, we might find that y itsclf was a string like 01 that had an equal
number of 0’s and 1’s. If so, then for no k will zy*z have an equal number of 0’s
and I's, since Tyz has an unequal number of 0’s and 1's, and the numbers of s
and 1's change cqually as we “pump” y. Thus, we can never use the pumping
lemma to contradict the assumption that M is regular.

However, M is still not regular. The reason is that M = I. Since the
complement of the complement is the set we started with, it also follows that
L = M. If M is regular, then by Theorem 4.5, L is regular. But we know L is
not regular, 860 we have a proof by contradiction that M is not regular. D

Closure Under Intersection

Now, let us consider the intersection of two regular lunguages. We actually
have little to do, since the three boolean operations are not independent. Once
we have ways of performing complementation and union, we can obtain the
intersection of languages L and A by the identity

LnM=LuM (4.1)

In general, the ingersection of two sets is the set of clements that are not in
the complement of either set. That observation, which is what Equnation (4.1)
says, 18 ouc of DeMorgan’s laws. The other law is the same with union and
intersection interchanged; that is, LU M = L N M.

However. we can also perform a direct construction of a DFA for the in-
tersection of two regular languages. This construction, which essentially runs
two DFA’s in parallel; is useful in its own right. For instance, we used it to
construct the automaton in Fig. 2.3 that represented the “product” of what
two participants — the bank and the store — were doing. We shall make the
preduct construction formal in the next theorem.

4.2. CLOSURE PROPERTIES OF REGULAR LANGUAGES 135

Theorem 4.8: If L and M are regular languages, then so is L N M.

PROOF: Let L and M be the languages of automata 4y = (@, %,8.,q5, F1)
and Ay = (Qar, 2, 6ar, a1, Far). Notice that we are assuming that the alpha-
bets of both automata are the same; that is, ¥ is the union of the alphabets
of L and M, if those alphabets are different. The product construction actu-
ally works for NFA’s as well as DFA’s, but to make the argument as simple as
possible, we assume that 4; and Ay are DFA’s.

For L N M we shall construct an automaton A that simulates both A; and
Apr. The states of A are pairs of states, the first from Ay and the second from
Apr. To design the transitions of A, suppose A is in state (p, ¢}, where p is the
state of Az and ¢ is the state of Apr. If @ is the input symbol, we see what A,
does on input a; say it goes to state s. We also see what Ajp does on input
a: say it makes a transition to state £. Then the next state of A will be (s, ¢).
In that manner, A has sirmulated the effect of both Ay and An;. The idea is
sketched in Fig. 4.3.

Input a

Y

L

Start Z@-’ Accept

M

A

Figure 4.3: An automaton simulating two other automata and accepting if and
only if both accept

The remaining details are simple. The start state of 4 is the pair of start
states of A7 and Aaxs. Since we want to accept if and only if both automata
accept, we select as the accepting states of A all those pairs (p, ¢) such that p
is an accepting state of Ay and g is an accepting state of Ax;. Formally, we
define:

A:{QL XQAIsE:av(QL:QRI)JFL bt -F‘ﬂf)

where 8((p, g).a} = (62.(p.a),dn(g.a)}.

136 CHAPTER 4. PROPERTIES OF REGULAR LANGUAGES

To see why L(A) = L{AL) N L(AM) first observe that an easy induction
on |w| proves that 6[((11,, qrm) w) = (6; (qr.,w), Oar{gn, w)). But 4 accepts w if
and only if J((qL,qJ‘;), w) is a pair of accepting states. That is, dp(gg,w) must

be in Fy, and SM(qM,w) must be in Fyr. Put another way, w is accepted by 4
if and only if both Ar and Ay accept w. Thus, 4 accepts the intersection of
Land A, O

P) Yo v gtaaduman b an ton Tl A AL
Example 4.9: In Fig. 4.4 we see two DFA's. The automaton in rig. 4.44a)

accepts all those strings that have a 0, while the automaton in Fig. 4.4(b)
accepts all those strings that have a 1. We show in Fig. 4.4(¢) the product of
these two automata. Its states are labeled by the pairs of states of the automata
in (a) and (b).

1

Start 3 w@ 0 ’ Ol

(a)

©)

Figure 4.4: The product construction

It is casy to argue that this automaton accepts the intersection of the first
two languages: those strings that have both a 0 and a 1. State pr represents
only the initial condition, in which we have seen neither O nor 1, State gr means
that we have seen only s, while state ps represents the condition that we have

4.2. CLOSURE PROPERTIES OF REGULAR LANGUAGES 137

seen only 1's. The accepting state ¢s represents the condition where we have
seen both {’'s and 1’'s. O

Closure Under Difference

There is a fourth operation that is often applied to sets and is related to the
boolecan operations: set difference. In terms of languages, L — M, the difference
of L and f'v}‘.r is the set of ntiungo that are in lang"ﬂg" L but not inl nguagoe

M. The regular languages are also closed under this operation, and the proof
follows easily from the theorems just proven.

Theorem 4.10: If L and M are regu

ular languages, then so is L — A,

PROOF: Observe that L — M = L N 3. By Theorem 4.5, M is regular, and
by Theorem 4.8 L N M is regular. Therefore L — M is regular. O

4.2.2 Reversal

The reversal of a string a,a;---a, is the string written backwards, that is,
Qptiy—1 - - 1. We use w? for 1;119 reversal of string w. Thus, 0010% is 0100, and
¢l =

The reversal of a language L, written LT, is the language consisting of the
reversals of all its strings. For instance, if L = {001,10,111}, then LA =
{100,01,111}.

Reversal is another operation that preserves regular languages; that is, if
L is a regular language, so is L. There are two simple proofs, one based on
automata and one based on rogular expressions. We shall give the automaton-
based proof informally, and let you fill in the details if you like. We then prove
the theorem formally using regular expressions.

Given a language L that is L{A) for some finite automaton, perhaps with
nondeterminism and e-transitions, we may construct an autornaton for LE by:

1. Reverse all the arcs in the transition diagram for A.

2. Make the start state of 4 be the only accepting state for the new automa-
tomn.

3. Create a new start state pg with transitions on € to all the accepting states
of A.

nd only if 4 accepts wi, Now, we prove the reversal theorem

The result is an automaton that simulates A “in reverse,” and therefore accepts
o oot g an 1F an

a 5irl L

formally.

Theorem 4.11: If L is a regular language, so is L.

138 CHAPTER 4. PROPERTIES OF REGULAR LANGUAGES

PROOF: Assume L is defined by regular expression E. The proof is a structural
induction on the size of E. We show that there is another regular expression
E#® such that L(ER) = (L(E))R; that is, the language of E® is the reversal of
the language of E. '

—t
x|
1
=
+
3
H
~a
]
=]
3
s
Il
e
o
+
|
=
4]
E.
oh
=
=5
[}
g
=)
=
=
&+
=
g
=+
-
1]
3
:
=3

of the union of two languages is obtained by computing the reversals of
o , .

f those languages.

2. B = E\E,. Then Ef = ERER. Note that we reverse the order of
the two languages, as well as reversing the languages themselves. For
instance, if L(E,) = {01,111} and L(F») = {00,10}, then L(F E,) =
{0100,0110,11100,11110}. The reversal of the latter language is

{0010,0110,00111,01111}
If we concatenate the reversals of L{E,) and L(E,) in that order, we get

{00,01}{10,111} = {0010,00111,0110,01111}

which is the same language as (L(ElEg))R. In general, if a word w in
L(E) is the concatenation of w, from L{E;) and wy from L(E,), then
wh = whw
2 Wi
3. E = EY. Then BE® = (Ef)*. The justification is that any string w in
L(E) can be written as wyws - - -w,, where each w; is in L(E). But

w? = wlwk .. wh
Each wf is in L(E®), so w® is in L((E)*). Conversely, any string in
L((Ef)*) is of the form wyw; - - -wy,, where each w; is the reversal of a
string in L(E;). The reversal of this string, wfw?® | ... wit, is therefore
a string in L{E}), which is L{E). We have thus shown that a string is in

L{E) if and only if its reversal is in L((Ef)*).
a

Example 4.12: Let L be defined by the regular expression (0 + 1)0*. Then

: .)
L% is the language of (0*)R(0+ 1}®, by the rule for concatenation.

€
that says the reversals of 0 and 1 are unchanged, we find that L® hag regular
expression 0"(0+1). O

42 CLOSURE PROPERTIES OF REGULAR LANGUAGES 139

4.2.3 Homomorphisms

A string homomerphism is a function on strings that works by substituting a
particular string for each symbol.

Example 4.13: The function h defined by ~{0) = ab and (1) = ¢ is a homo-
morphism. Given any string of 0’s and 1’s, it replaces all 0's by the string ab
and replaces all 1’s by the empty string. For example, h applied to the string
0011 is abab. O

Formally, if h is a homomorphism on alphabet X, and w = ajaz---a,
is a string of symbols in ¥, then h{w) = h{a1)h{az)---h{e,). That is, we
apply h to each symbol of w and concatenate the results, in order. For in-
stance, if & is the homomorphism in Example 4.13, and w = 0011, then
h(w) = hA(0)h(0)R(1}R(1) = (ab)(ab)(e)(e) = abab, as we claimed in that ex-
ample.

Further, we can apply a homomorphism to a language by applying it to
cach of the strings in the language. That is, if L is a language over alphabet
¥, and h is a homomorphism on I, then A(L) = {h{w) | w is in L}. For
instance, if L is the language of regular expression 10*1, i.c., any munber of
0’s surrounded by single 1’s, then h(L} is the language (ab)". The reason is
that h of Example 4.13 effectively drops the 1's, since they are replaced by e,
and turns each 0 into ab. The same idea, applying the homomorphism divectly
to the regular expression, can be used to prove that the regular languages are
closed under homomorphisms.

Theorem 4.14: If L is a regular language over alphabet I, and k is a homo-
morphism on X, then k(L) is also regular.

PROOF: Let L = L(R) for some regular expression R. In general, if E is a
regular expression with symbols in I, let A{E) be the exprcssion we obtain by
replacing each symbol @ of £ in E by h{a). We claim that A(R) defines the
language h{L).

The proof is an easy structural induction that says whenever we take a
subexpression E of R and apply h to it to get h(E), the language of h(E)
is the same language we get if we apply h to the language L(FE). Formally,
L{{E)) = h{L(E)}.

BASIS: If F is € or @, then A{E) is the same as F, since & docs uot affect the
string € or the language §. Thus, L(h(E)) = L(E). However, if E is @ or ¢, then
L(E) contains either no strings or a string with no symbols, respectively. Thus
h(L{E)) = L(E) in either case. We conclude L(h(E)} = L(E) = h(L{E)).
The only other hasis case is if £ = a for some symbol ¢ in £. In this case,
L(E) = {a}, so h(L(E)) = {hla)}. Also, h(E) is the regular expression that
is the string of symbols k(a). Thus, L(h{E)) is also {h(a)}, and we conclude

L(h(B)) = h(L(E)).

140 CHAPTER 4. PROPERTIES OF REGULAR LANGUAGES

INDUCTION: There are three cases, each of them simple. We shall prove only
the union case, where E = F'+G. The way we apply homomorphisms to regular
exp1e°.-sions assures us that h() = A(F +G) = h(F)+ h(G). We also know

T i

that L{E) = L{(F) U L{{) and

L{h{}:}) = L(MF) + h(G)) = L{MFY) U L{MG)) {4.2)
by the definition of what “+” means in regular expressions. Finally,

ML(E)) = MI(F) U L(G)) = h{L(F)) U h(L(G)) (4.3)
because h is applied to a language by application to each of its strings individ-
ually. Now we may invoke the inductive hypothesis to assert that L{R(F)} =

R(L{F)) and L{{G)) = h{L(G)). Thus, the final expressions in (4.2) and
(4.3) are equivalent, and therefore so are their respective first terms; that is,

L{R(E)) = R(I{(E)).

We shall not prove the cases where expression F is a concatenation or clo-
sure; the ideas are similar to the above in both cases. The conclusion is that
L(h({R)) is indeed h(L(R)); ie., applying the homomorphism h to the regu-
lar expression for language L results in a regular expression that defines the
language h{L). O

4.2.4 Inverse Homomorphisms

Homomorphisms may also be applicd “backwards,” and in this mode they also
preserve regular languages. That is, suppose A is a homomorphism from some
alphabet ¥ to strings in another (possibly the same) alphabet T.% Let L be
a language over alphabet T. Then A71(L), read “h inverse of L,” is the sct
of strings w in £* such that A{w) is in L. Figure 4.5 suggests the effect of
a homomorphism on a language L in part (a), and the effect of an inverse
homomarphism in part (b).

Example 4.15: Let L be the language of regular expression (00 + 1)*. That
15, L consists of all strings of 0's and 1’s such that all the 0's occur in adjacent
pairs. Thus, 0010011 and 10000111 are i L, but 000 and 10100 are not.

Let £ be the homomorphism defined by k{e) = 01 and 2{b) = 10. We claim
that A='(L) is the language of regular expression (ba)*, that is, all strings of
repeating ba pairs. We shall prove that A{w) is in L if and only if w is of the
form baba - - - ba.

(If) Suppose w is n repetitions of ba for some n > 0. Note that h(ba) = 1001,
50 h{w) is n repetitions of 1001. Since 1001 is composed of two 1’s and a pair of
(’s, we know that 1001 is in L. Therefore any repetition of 1001 is also formed
from 1 and 00 scgments and is in L. Thus, A(w) is in L.

That “T™ should be thought of as a Greek capital tau, the letter following sigma.

4.2. CLOSURE PROPERTIES OF REGULAR LANGUAGES 141

77N /_\

[)
1IOIEIO)
S/

(w1

(b)

Figure 4.5: A homomorphism applied in the forward and inverse direction

(Only-if) Now, we must assume that h(w) is in L and show that w is of the
form baba-- - ba. There are four conditions under which a string is not of that
form, and we shall show that if any of them hold then h{w) is not in L. That
is, we prove the contrapositive of the statement we set out to prove.

1. If w begins with a, then h(w) begins with 01. It therefore has an isolated
0, and is not in L.

2. If w ends in b, then h(w) ends in 10, and again therc is an isolated 0 in
h{w).

3. If w has two consecutive a's, then A{w) has a substring 0101. Here too,
there is an isolated 0 in w.

4. Likewise, if w has two consecutive b's, then A(w) has substring 1010 and
has an isolated 0.
Th g, er one of the ases hold, h{(w) is not in L. However, unless

t least one of items (1) through (4) hold, then w is of the form baba - - - ba.

whenever one of the above cas

142 CHAPTER 4. PROPERTIES OF REGULAR LANGUAGES

To see why, assume none of (1) through (4) hold. Then (1) tells us w must

begin with b, and (2) tells us w ends with a. Statements (3) and (4) tell us that

a’s and b’s must alternate in w. Thus, the logical “OR” of (1) through (4) is

equivalent to the statement “w is not of the form babda -+ - ba.” We have proved

that the “OR” of (1) throug 4} implies A{w) is not in L. That statement is
1T

[P I S, . R — 3, rp LSy oz T i P S
a: I ole) 18 111 Ly, LHEGIL 0 1y U1

DII.(. LUIlI.I'deblEl‘fL UI '[.IlL statement we wante

the form baba---ba.” O

We shall next prove that the inverse homomorphism of a regular language
is also regular, and then show how the theorem can be used.

Theorem 4.16: If & is a homomorphism from alphabet ¥ to alphabet T, and
L is a regular language over T, then h~1(L) is also a regular language.

PROOF: The proof starts with a DFA A for L. We construct from 4 and 2 a
DFA for A~1(L) using the plan suggested by Fig. 4.6. This DFA uses the states
of A but translates the input symbol according to h before deciding on the next
state.

Input a

Input
Start hia) to A

Accept/reject

P
o

]
>

Figure 4.6: The DFA for A~!(L) applies 4 to its input, and then simulates the
DFA for L

Formally, let L be L(A), where DFA A = (Q,T,4,4q, F). Define a DFA

B = (QaE:’Y:QUaF)

where transition function -y is constructed by the rule v(g,a) = 5(q, h{a}). That

the tramcitine B minleao o 1n“11 tha wacilt nf tha gnmmrotion off fon o eid i o

lﬂ LJ.I.C' LifbLioluinrig &7 lllﬂ-[\UD LrL: I.llJLl.L (L I.O DLIC Ll Ul iiic DCL].LJ.C.’.].LC Ul LL AL SILLLFLLY

that A4 makes on the string of symbols h{a). Remember that k(a) could be ¢,
1t could be one symbol. or it co 11]:‘] ha manv svmhbols. bt 4 io nroperls efine

AL A Wdd e JJJJ‘I’UJ Tl A e Tl A W e “‘GM‘J \JJJ‘&HUI!?’ ELAED S A F‘ UH‘.!I IJ [y R N

1o take care of all these cases.

4.2. CLOSURE PROPERTIES OF REGULAR LANGUAGES 143

It is an easy induction on || to show that 4(go.w) = 4{go, 2(w)). Since the
accepting states of A and B are the same, B accepts w if and only if 4 accepts
h{(w). Put another way, B accepts exactly those strings w that are in A=1(L).
[

Example 4.17: In this example we ghall use inverse homomorphism and sev-

B Y AT ALVl oh iU

eral other closure properties of regular sets to prove an odd fact about finite
automata. Suppose we required that a DFA visit every state at least once when
accepting its input. More precisely, suppose 4 = (¢}, X, 8,40, F) is a DFA, and
we are interested in the language L of all strings w in £* such that 3(qn,w)
is in F, and also for every state ¢ in @ there is some prefix z; of w such that
8(go0, z,) = q. Is L regular? We can show it is, but the construction is complex.

First, start with the language M that is L(A), i.e., the set of strings that
A accepts in the usual way, without regard to what stafes it visits during the
processing of its input. Note that L € M, gince the definition of L puts an
additional condition on the strings of L(A). Qur proof that L is regular begins
by using an inverse homomorphism to, in effect, place the states of A into the
input symbols. More precisely, let us define a new alphabet T consisting of
symbols that we may think of as triples [pag|, where:

1. p and q are states in @,

2. ais a symbol in ¥, and
3. 6{p,a) =

That is, we may think of the symbols in T as representing transitions of the
automaton 4. It is important to see that the notation [pag] is our way of
expressing a single symbol, not the concatenation of three symbols. We could
have given it a single letter as a name, but then its relationship to p, g, and a
would be hard to describe.

Now, define the homomorphism h([pag]) = a for all p, a, and ¢. That is, A
remtoves the state components from each of the symbols of 7' and leaves only
the symbol from E. Our first step in showing L is regular is to construet the
language L, = A~1(M). Since M is regular, so is L; by Theorem 4.16. The
strings of L, are just the strings of M with a pair of states, representing a
transition, attached to each symbol.

As a very simple illustration, consider the two-state automaton of Fig.
4.4{a). The alphabet T is {0,1}, aud the alphabet T consists of the four syw-
bols [pUgq], [¢0q], [pip], and [glq). For instance, there is a transition from state
p to g on input 0, so [plg] is one of the symbols of T'. Since 101 is a string ac-

cepted by the automaton, h~! applied to this string will give us 2% = 8 strings,

of which [plp]ip0¢]lglq] and [glg][q0g][plp] are two examples.

We shall now construet L from L, by using a series of further operatious
that nreserve r‘pmﬂ,’n‘ ianm]nu’ﬂq Our frst D‘n,-‘a] is to eliminate all those Ql'I'HliZ‘-‘;

prateat e Y ¥ 2] 11812

of L, that deal 1ncorrectl} mth states. That is, we can think of a symbol like

144 CHAPTER 4. PROPERTIES OF REGULAR LANGUAGES

[pag] as saying the automaton was in state p, read input a, and thus entered
state q. The sequence of symbols must satisfv three conditions if it is to be
decmed an accepting computation of A:

1. The first state in the first symbol must be gg, the start state of A.

2. Each transition must pick up where the previous one left off. That is,
the first state in one symbol must equal the second state of the previons

symbol.

3. The second state of the last symbol must be in ¥. This condition in fact
will be gnaranteed once we enforce (1) and (2), since we know that every
string in L; came from a string accepted by A.

The plan of the construction of L is shown in Fig. 4.7,

M The language of automaton A
¥ Inverse homomorphism
L, Strings of M with state transitions embedded

Intersection with a regular language

L 2 Add condition that first state is the start state

Difference with a regular language

-

3 Add condition that adjacent states are equal

Difference with regular languages

4 Add condition that all states appear on the path

Homomorphism

e ™ f— ™

Delete state components, ieaving the symbols

Figure 4.7: Constructing language L from language M by applying operations

Armrlamifer of lasaven rno

Ve FEgIlATIVY O1 1ATIEUAZES

that begin with a

.ﬂ

Wa enforce (1) by interserting L; with the set of strings th

symbol of the form [qc.aq] for some symbol « a.nd state ¢. That is, let F; be the

¥ x @ su ch tha,t 8(gn,a;) = ¢;. Then let L, = Ly N L{E,T*). Since E\T* i3
a regular expression denoting all sirings in T that begin with the start state
(treat 7 in the regular expression as the sum of its symbols), L» is all strings
that are formed by applying h~! to language M and that have the start state
as the first component of its Arst symbol; i.e., it meets condition (1).

To enforce condition (2), it is easicr to subtract from Lg (using the set-
difference operation) all those strings that violate it. Let E» be the regular
expression consisting of the sum {umion) of the concatenation of all pairs of
symbols that fail to match; thas is, pairs of the form [pagl[rbs] where g # 7.
Then T*E,T™ is a regular expression denoting all strings that fail to meet
condition {2).

We may now define Ly = Ls — L(T*E»T™). The strings of L satisfy condi-
tion (1) because strings in L, must begin with the start symbol, They satisfy
condition {2) because the subtraction of L(T*ExT*) removes any string that
violates that condition. Finally, they satisfy condition (3), that the last state
is accepting, because we started with enly strings in A, all of which lead to
acceptance by A. The effect is that Ly consists of the strings in M with the
states of the accepting computation of that string embedded as part of each
symbol. Note that Ly is regular because it is the result of starting with the
regular language M, and applying operations — inverse homomorphism, inter-
section, and set difference — that yield regular sets when applied to regular
sets.

Recall that our goal was to accept only those sirings in M that visited
every state in their accepting computation. We may enforce this condition by
additional applications of the set-difference operator. That is, for each state g,
let E, be the regular expression that is the sum of all the S}IIIbOlb in 7' such
that ¢ appears in neither its first or last position. If we subtract L(E}) frown
L3 we have those strings that are an accepting computation of 4 and thaL visit
state ¢ at least once. If we subtract from Lz all the languages L(E7) for ¢ in
O, then we have the accepting computations of A that visit all the states. Call
this language Ly. By Theorem 4.10 we know L, is also regular.

Qur final step is to construct L from L, by getting rid of the state com-
ponents. That is, L = h(L4). Now, L is the sct of strings in E* that are
accepted by A and that visit each state of A ar least once during their accep-
tance. Since regular languages arc closed under homomorphisms, we conclude
that L is regnlar. O

4.2.5 FExercises for Section 4.2

Exercise 4.2.1: Suppose % is the homomerphism from the alphabet {0,1,2}
to the alphabet {a,b} defined by: A(0) = «; (1) = ab, and 2(2) = ba.

* a) What is A{0120}7
! oRNOTER 7

b) What is h{21120}?

146 CHAPTER 4. PROPERTIES OF REGULAR LANGUAGES

* ¢) If L is the language L{01"2), what is h(L)7
d) If L is the language L{0 + 12), what is h({L)?

* e) Suppose L is the langnage {ababa}, that is. the language consisting of
only the cne string ¢baba. What is h~1(L)?

I'f) If L is the language L(a(ba)"), what is 7(L)7?

*! Exercise 4.2.2: If L is a language, and a is a symbol, then L/a, the quotient
of L and a, is the set of strings w such that wa is in L. TFor example, if
L = {a,aab,baa}, then L/a = {¢,ba}. Prove that if L is regular, sois L/a.
Hini: Start with a DFA for L and consider the set of accepting states.

! Exercise 4.2.3: Lf L is a language, and e is a symbol, then a\L is the sct
of strings w such that aw is in L. For example, if L = {a,aab, bac}, then
a\L = {e, ab}. Prove that if L is regular, so is e\L. Hint: Remember that the
regular languages are closed under reversal and under the quotient operation of
Excreise 4.2.2.

! Exercise 4.2.4: Which of the following identities are true?

a) {L/a)e = L (the left side represents the concatenation of the langnages
Lja and {a}).

b) a(a\L) = L (again, concatenation with {a}, this time on the left, is
intended).

¢) (La)je= L.
d) a\(al) = L.

Exercise 4.2.5: The operation of Exercise 4.2.3 is sometiines viewed as a “der-
ivative,” and a\L is written ‘é—a. These derivatives apply to regular expressions
in a manner similar to the way ordinary derivatives apply to arithmetic expres-
sions. Thus, if R is a regular expression, we shall use % to mean the same as

L —
il if [, = L(R).
a) Show that 7‘“";1"5) = % + ﬁ—g.

*I'b) Give the rule for the “derivative” of RS. Hint: You need to consider two
cases: if L(R) does or does not contain e. This rule is not quite the same
as the “product rule” for ordinary derivatives, but is similar.

! ¢) Give the rule for the “derivative™ of a closure, i.e., A‘%}__

d) Usec the rules from (a)- (c) to find the “derivatives” of regular expression
(0 + 1)*011 with respect to 0 and 1.

: . . : gL
* ¢) Characterize those languages L for which G5 =0.

*11

4.2. CLOSURE PROPERTIES OF REGULAR LANGUAGES 147

*1 f) Characterize those languages L for which ‘ﬂ’ = L.

Exercise 4.2.6: Show that the regular languages are closed under the follow-

1ng nnm‘ahnnq

a) min(L) = {w | wis in L, but no proper prefix of w is in L}.
b) mez(L) = {w | wis in L and for no x other than ¢ is wz in L}.
c) init(L) = {w | for some z, wz is in L}.

Hint: Like Exercisc 4.2.2, it is casiest to start with a DFA for L and perform a
construction o get the desired language.

Exercise 4.2.7: If w = aiag---an and £ = b1ba-- - by are strings of the
same length, define alf(w,z) to be the string in which the symbols of w and =
alternate, starting with w, that is, a1b1a2bz - - - apdp. If L and M are languages,
define alt(L, M) to be the set of strings of the form alt(w, z}, where w is any
string in L and z is any string in M of the same length. Prove that if L and
M are regular, so is alt{L, M),

Exercise 4.2.8: Let L be a language. Define half{L) to be the set of first
halves of strings in L, that is, {w | for some z such that |z| = |w|, we have wz
in L}. For example, if L = {¢,0010,011,010110} then half(L) = {¢, 00,010}
Notice that odd-length strings do not contribute to half(L). Prove that if L is
a regular language, so is half(L).

Exercise 4.2.9: We can generalize Exercise 4.2.8 to a number of functions that
determine how much of the string we take. If f is a function of integers, define
f(L) to be {w | for some z, with |z| = f(|w}), we have wz in L}. For instance,
the operation half corresponds to f being the identity function f(n) = n, since
half(L) is defined by having [z| = |w|. Show that if L is a regular language,
then so is f{L), if f is one of the following functions:

a) f(n) = 2n (i.e., take the first thirds of strings).

b) f(n} = n? {i.c., the amount we takc has length equal to the square root
of what we do not take.

¢) f(n) = 2" (i.e, what we take has length equal to the logarithm of what
we leave).

Exercise 4.2.10: Suppose that L is any language, not necessarily regular,
whose alphabet is {0}; i.e., the strings of L consist of 0's only. Prove that L* is
regular. Hint: At first, ThlS theorem sounds preposterous. However, an example

will h@lp 3011 see why it is true. Consider the language L = {0° | ¢ is prime},

which we know is not regular by Example 4.3. Strings 00 and 000 are in L,

since 2 and 3 are both primes. Thus, if j > 2, we can show V¥ is in L*. If j is
one copy of 000 and {j — 3)/2

aven. use 1/2 comies of 00, and if '1 is ndﬂ nuse

AER AR LI I LA I A Y S Thtat

copies of 00. Thus, L™ = 000".

148 CHAPTER 4. PROPERTIES OF REGULAR LANGUAGES

I Exercise 4.2.11: Show that the regular languages are closed under the fol-

1"

lowing operation: cyele(L) = {w | we can write w as w = zy, such that yx is
in L}. For example, if L = {01,011}, then cycle(L) = {01,10,011,110, 101}.
Hint: Start with a DFA for L and construct an e-NFA for eyele().

Exercise 4.2.12: Let vy — agaga;, and w; = wy_w;—qa; for all ¢ > 1.
For instance, w3 = aptot)Qplpl1a2apdedGoaodiaads. The shortest regular
cxpression for the language L, = {wy}, i.e., the language consisting of the one
string 1y, is the string wy, itself, and the length of this expression is 27"+! — 1.
However, if we allow the intersection operator, we can write an expression for
Ly, whose length is O(n?). Find such an expression. Hint: Find n languages,
cach with regular expressions of length O(r), whose intersection is L,,.

Exercise 4.2.13: We can use closure properties to help prove certain lan-
guages are not regular. Start with the fact that the language

Lonin = {0717 | n > 0}

is not a regular set. Prove the following languages not to be regular by trans-
forming them. using operations known to preserve regularity, to Lonin:

*a) {0717 |4 # j).
b) {0'1‘1,]1’!1212—1’71 | 7 2 m 2 D}

Exercise 4.2.14: In Theorem 4.8, we described the “product construction”
that took two DFA’s and coustructed one DFA whose language is the intersec-
tion of the languages of the first two.

a) Show how to perform the product construction on NFA’s (without e-
transitions).

!'b) Show how to perform the product construction on e-NFA's.

* ¢) Show how to modify the product construction s¢ the resulting DFA ac-
cepts the difference of the languages of the two given DFA's.

d} Show how to modify the product construction so the resulting DFA ac-
cepts the union of the languages of the two given DFA’s.

Exercise 4.2.15: In the proof of Theorem 4.8 we claimed that it could be
proved by induction on the length of w that

8((gi., aar)yw) = (Or(qe, w). darlqar,0))
Give this inductive proof.

Exercise 4.2.16: Complete the proof of Theorem 4.14 by considering the cases
where expression E is a concatenation of two subexpressions and where F is
the closure of an expression.

Exercise 4.2.17: In Theorem 4.16, we omitted a proof by induction on the
length of w that 4(go,w) = é(go, R(w)). Prove this statement.

4.3. DECISION PROPERTIES OF REGULAR LANGUAGES 149

4.3 Decision Properties of Regular Languages

In this section we consider how one answers important questions about regular
languages. First, we must consider what it means to ask a question about a
language. The typical language is infinite, s0 you cannot present the strings of

o 1. A 1!
the language to someonc and ask a guestion that requires them to inspect the

infinite set of strings. Rather, we present a language by giving one of the finite
representations for it that we have developed: a DFA, an NFA| an ¢-NFA, or a
rt,gula.r €XPression.

Of course the language so described will be regular, and in fact there is no
way at all to represent completely arbitrary languages. In later chapters we
shall see finite ways to represent more than the regular languages, so we can
consider questions about languages in these more general classes. However, for
many of the questions we ask, algorithms exist only for the class of regular
languages. The same questions become “undecidable” {no algorithm to answer
them exists) when posed using more “expressive” notations (i.e., notations that
can be used to express a larger set of languages) than the representations we
have developed for the regular langnages.

We begin our study of algorithms for questions about regular languages by
reviewing the ways we can convert one representation into another for the same
language. In particular, we want to observe the time complexity of the algo-
rithms that perform the conversions. We then consider some of the fundamental
questions about languages:

1. Is the language described empty?
2. Is a particular string w in the described language?

3. Do two descriptions of a language actually describe the same language?
This question is often called “equivalence” of languages.

4.3.1 Converting Among Representations

We know that we can convert any of the four representations for regular lan-
guages to any of the other three representations. Figure 3.1 gave paths from
any representation to any of the others. While there are algorithms for any
of the conversions, sometimes we are interested not only in the possibility of
making a conversion, but in the amount of time it takes. Tn particular, it is
important to distinguish between algorithms that take exponential time (as a
function of the size of their input), and therefore can be performed only for
relatively small instances, from those that take time that is a linear, quadratic,

| (RS PR | 1 mdan d2n s a-:Hl\ Tha lotFar ﬂ‘lrrl'\.l"l"l‘\'rv‘l(P

QOr S0OTIE ‘iulrul LI,CF’I,\,':' lJU'I._}' TIOITiiAL UJ. l,.llt,'l.l ul.plll.. LA AN 141 El GIEUVILLILLIS dic

“realistic,” in the sense that we expect ths-m to be executable for large instances
af tho nT(\I’\](_\f'n We chall ¢ plﬂ U nfnar h ﬁ'F the CONVErsion

ML DAL JFRNVLAAC AL TTL A m L \-Gl]slu\u Lilg LIIme GO T head L et SRS

EJ"

we discussed.

150 CHAPTER 4. PROPERTIES OF REGULAR LANGUAGES

Converting NFA’s to DFA’s

When we start with either an NFA or and ¢-NFA and convert it to a DFA, the
time can be exponential in the number of states of the NFA. First, computing
the e-closure of n states takes O{n>) time. We must search from each of the n
states along all arcs labeled e. If there are n states, there can be no more than
n? arcs. Judicious bookkeeping and well-designed data structures will make
sure that we can explore from each state in O(n?) time. In fact, a transitive
closure algorithm such as Warshall’s algorithm can be used to compute the
entire e-closure at once.?

Once the e-closure is computed, we can compute the equivalent DFA by the
subset construction. The dominant cost is, in principle, the number of states
of the DFA, which can be 2*. For each state, we can compute the transitions
in O(n?) time by consulting the e-closure information and the NFA's trausition
table for each of the input symbols. That is, suppose we want to compute
d{{q1,@2,...,qx}, @) for the DFA, There may be as many as n states reachable
from each ¢; along e-labeled paths, and each of those states may have up to n
arcs labeled a. By creating an array indexed by states, we can compute the
union of up to n sets of up to n states in time proportional to n?.

In this way, we can compute, for each ¢;, the set of states reachable from
g; along a path labeled u (possibly including €'s). Since k& < n, there are at
most n states to deal with. We compute the reachable states for cach in O(n?)
time. Thus, the total time spent computing reachable states is O(n®). The
union of the sets of reachable states requires only (M(n?) additional time, and
we conclude that the computation of one DFA trausition takes O(n®) time.

Note that the number of input symbols is assumed constant, and does not
depend on n. Thus, in this and other estimates of running time, we do not
consider the number of input symbols as a factor. The size of the input alpha-
bet influences the constant factor that is hidden in the “big-oh” notation, but
nothing more.

Our conclusion is that the running time of NFA-to-DFA conversion, includ-
ing the case where the NFA has e-transitions, is O(n?2"). Of course in practice
it is common that the number of states created is much less than 2%, often only
n states. We could state the bound on the running time as {n3s), where s is
the number of states the DFA actually has,

DFA-to-INFA Conversion

This conversion is simple, and takes O(n} time on an n-state DFA. All that we
necd to do is modify the transition table for the DFA by putting set-brackets
around states and. if the output is an e-NFA, adding a column for ¢. Since we
treat the number of input symbols (i.e., the width of the transition table) as a
constant, copying and processing the table takes O(n) time.

P P r

s B T T S Y U P S S - PO T, P | AL _ T T 1T |
FOr a ISCUSSION QI UTaisivve CIOSUre aigoriviims, see AL v, Alo, Jo D AORCTOIL, ardd J.

D Ullman, Pala Siructures ond Algorithms, Addison-Wesley, 1084.

4.3. DECISION PROPERTIES OF REGULAR LANGUAGES 151

Automaton-to-Regular-Expression Conversion

If we examine the construction of Section 3.2.1 we observe that at each of n
rounds {where n is the number of states of the DFA) we can quadruple the size
of the regular expressions constructed, since each is built from four expressions
of the previous round. Thus, simply writing down the n® expressions can take
time O{n®4"). The improved construction of Section 3.2.2 reduces the constant
factor, but does not affect the worst-case exponentiality of the problem.

The same construction works in the same running time if the input is an
NFA, or even an e-NFA, although we did not prove those facts. It is important
to use those constructions for NFA’s, however. If we first convert an NFA to
a DFA 3an“d then convert the DFA to a regular expression, it could take time
Q(n”4™ ¢), which is doubly exponential.

Regular-Expression-to-Automaton Conversion

Conversion of a regular expression to an e-NFA takes lincar time. We nced to
parse the expression efficiently, using a technique that takes only O(n) time on
a regular expression of length n.® The result is an expression tree with one
node for each symbol of the regular expression (although parentheses do not
have to appear in the tree; they just guide the parsing of the expression).

Once we have an expression tree for the regular expression, we can work
up the tree, building the e-NFA for each node. The construction rules for the
conversion of a regular expression that we saw in Scction 3.2.3 never add more
than two states and four arcs for any node of the expression tree. Thus, the
numbers of states and arcs of the resulting e-NFA are both G(n). Moreover,
the work at each node of the parse tree in creating these elements is constant,
provided the function that processes each subtree returns pointers to the start
and accepting states of its automatomn.

We conclude that construction of an e-NFA from a regular expression takes
time that is linear in the size of the expression. We can eliminate e-transitions
from an n-state eNFA, to make an ordinary NFA, in O(n®) time, without
increasing the number of states. However, proceeding to a DFA can take expo-
nential time.

4.3.2 Testing Emptiness of Regular Languages

At first glance the auswer to the question “is regular language L empty?” is
obvious: @ is empty, and all other regular languages are not. However, as we
discussed at the beginning of Section 4.3, the problem is not stated with an
explicit list of the strings in L. Rather, we are given some representation for L
and need 10 decide whether that representation denotes the language 9.

1Parsing methods capable of doing this Lask in O(n) time are discussed in
™ 1T an N -

. Sethi, and J. . Ullman, Coemptler Destgn: Principles, Tools, and

Weslew, 1686,

152 CHAPTER 4. PROPERTIES OF REGULAR LANGUAGES

If our representation is any kind of finite automaton. the emptiness question
is whether there is any path whatsoever from the start state to some accepting
state. If so, the language Is nonempty, while if the accepting states are all
separated from the start state, then the language is empty. Deciding whether
we can reach an accepting statc from the start state is a simple instance of
graph-reachability, similar in spirit to the calculation of the e-closurc that we
discussed in Section 2.5.3. The algorithm can be summarized by this recursive

et alnTaratnlal
PLryetaon.

BASIS: The start state is surely reachable from the start state.

INDUCTION: If state ¢ is reachable from the start state, and there is an arc
from g to p with any label (an input symbol, or ¢ if the automaton is an e-NFA),
then p is reachable.

In that manner we can compute the set of reachable states. If any accepting
state is among them, we answer “no” (the language of the automaton is not
empty), and otherwise we answer “yes.” Note that the reachability calculation
takes no more time that (O(n”) if the automaton has n states, and in fact it is
no worse than proportional to the number of arcs in the automaton’s transition
diagram, which could be less than n” and cannot be more than O(n?).

If we arc given a regular expression representing the language L, rather
than an automaton, we could convert the expression to an e-NFA and proceed
as above. Since the automaton that results from a regular expression of length
n hag at most Ofn) states and transitions, the algorithm takes O(n) time.

However, we can also inspect the regular expression to decide whether it
is empty. Notice first that if the expression has no occurrence of @, then its
language is surely not empty. If there are @’s, the language may or may not be
empty. The following recursive rules tell whether a regular expression denotes
the empty language.

BASIS:) denotes the empty language; € and a for any input symbol a do not.

INDUCTION: Suppose R is a regular expression. There are four cases to con-
sider, corresponding to the ways that £ could be constructed.

1. R= Ry + Ry. Then L(R) is empty if and only if both L{Ry) and L(R»)
are empty.

2. R = RjR>. Then L(R) is empty if and only if either L(R;) or L{Ry) is
empty.

o

R=

4. R ={(Ry). Then L{R) is empty if and only if L{Ry) is empty, since they

re the same language.

oy

4.3, DECISION PROPERTIES OF REGULAR LANGUAGES 133

4.3.3 Testing Membership in a Regular Language

The next question of importance is, given a string w and a regular language L,
is w in L. While w is represented explicitly, L is represented by an automaton
or regular expression.

If L is represented by a DFA, the algorithm is sitnple. Simulate the DFA
processing the string of input symbols w, beginning in the start state. If the
DFA ends in an accepting state, the answer is “yes”; otherwise the answer is
“no.” This algorithm is extremely fast. If [w| = n, and the DFA is represented
by a suitable data structure, such as a two-dimensional array that is the transi-
tion table, then each transition requires constant time, and the entire test takes
O(n) time.

If L has any other representation besides a DFA, we could convert to a DFA
and run the test above. That approach could take time that is exponential
in the size of the representation, although it is linear in [w|. However, if the
representation is an NFA or e-NF4, it is simpler and more efficient to simulate
the NFA directly. That is, we process symbols of w one at a time, maintaing
the sct of states thie NFA can be in after following any path labeled with that
prefix of w. The idea was presented in Fig. 2.10.

If 2 is of length n, and the NFA has s states, then the running time of this
algorithm is O(ns?). Each input symbol can be processed by taking the previous
set of states, which numbcers at most s states, and looking at the successors of
each of these states. We take the union of at tnost ¢ scts of at most s states
each, which requires (J{(s?) time.

If the NFA has e-transitions, then we must compute the e-closure before
starting the simulation. Then the processing of each input symbol & has two
stages, each of which requires O(s?) time. TFirst, we take the previous set of
states and find their successors on input symbol a. Next, we compute the e-
closure of this set of states. The initial sct of states for the simulation is the
e-closure of the initial state of the NFA.

Lastly, if the representation of L is a regular expression of size s, we can
convert to an e-NFA with at most 2s states, in O(s) time. We then perform
the simulation above, taking O(ns?) time on an input w of length n.

4.3.4 Exercises for Section 4.3

Exercise 4.3.1: Give an algorithm to tell whether a regular language L is
infinite. Hint: Use the pumping lemma to show that if the language contains
any string whose length is above a certain lower limit, then the language must
be infinite.

Exercise 4.3.2: Give an algorithm to tell whether a regular language L con-

1y

tains at leasi 100 stri

185

Exercise 4.3.3: Suppose I is a regular language with alphabet £. Give an

R P B -5t ea? P

algorithm to tell whether L = ¥, i.e,, all strings over its alphabet.

154 CHAPTER 4. PROPERTIES OF REGULAR LANGUAGES

Exercise 4.3.4: Give an algorithm to tell whether two regular languages Ly
and L, have at least one string in common,

Exercise 4.3.5: Give an algorithm to tell, for two regular languages Ly and
L, over the same alphabet, T, wheiher there is any string in 3* that is in neither

L]_ nor Lg.

4.4 Equivalence and Minimization of Automata

In contrast to the previous questions — emptiness and membership — whose
algorithins were rather simple, the question of whether two descriptious of two
regitlar languages actually define the same langnage involves considerable intel-
lectua.l mechanics. In this section we discuss how to test whether two descriptors
for regular languages are equivalent, in the sense that they define the same lan-
guage. An important consequence of this test is that there is a way to minimize
a DFA. That is, we can take any DFA and find an equivalent DFA that has
the minimum number of states. In fact, this DFA is essentially unique: given
any two minimum-state DFA’s that are equivalent, we can always find a way

to rename the states so that the two DFA’s become the same.

4.4.1 Testing Equivalence of States

We shall begin by asking a question about the states of a single DFA. Qur goal
is to understand when two distinct states p and ¢ can be replaced by a single
state that behaves like both p and g. We say that states p and g are equivalent
if;

e For all input strings w, é(p, w) is an accepting state if and only if &(g, w)
15 an accepting state.

Less formally, it is impossible to tell the difference between equivalent states
p and g merely by starting in one of the states and asking whether or not a
given input string leads to acceptance when the automaton is started in this
(unknown) state. Note we do net require that {p,w) and §(q, w) are the same
state, only that either both are accepting or both are nonaccepting.

If two states are not equivalent, then we say they are distinguishable. That
is, state p is distinguishable from state g if there s at least one string w such
that one of 4 (p,w) and 8(q,w) is accepting, and the other is not accepting,.

Example 4.18 : Consider the DFA of Fig. 4.8, whose transition function we
shall refer to as ¢ in this example. Cextain pairs of states are obviously not
equivalent. For example, C' and & are not equivalent because one is accepting

H Aichag +h e 4t
and the other is not. That is, the empty string distinguishes these two states,

because §(C, e} is accepting and S{G) not.
Consider states 4 and . Stri gdo ,’f rht:rmo'lnch them, because they ar

both nonaccepting states. String 0 does dlstmgmsh them because they go

('D

44. FEQUIVALENCE AND MINIMIZATION OF AUTOMATA 155

<&

Figure 4.8: An automaton with eguivalent states

states B and G, respectively on input 0, and both these states are nonaccepting.
Likewise, string 1 doesn’t distinguish A from G, because they go to F and E,
respectively, and both are nonaccepting. However, 01 distinguishes A from G,
because 8(4,01) = C, §{(G,01) = E, C is accepting, and £ is not. Any input
string that takes A and G to states only one of which is accepting is sufficient
to prove that A and G are not equivalent.

In contrast, consider states A and E. Neither is accepting, so € does not
distinguish them. On input 1, they both go to state F. Thus, no input string
that begins with 1 can distingunish A from E, since for any string z, (4, 1z} =
8(E, 1x).

Now consider the behavior of states 4 and E on inputs that begin with 0.
They go to states B and H, respectively. Since neither is accepting, string 0
by itself does not distinguish A from E. However, B and H are no help. On
input 1 they both go to C, and on input 0 they both go to G. Thus, all inputs
that begin with 0 will fail to distinguish 4 from E. We conclude that no input
string whatsoever will distinguish A from E; i.e., they are equivalent states. 0O

To find states that are equivalent, we make our best efforts to find pairs
of states that are distinguishable. It is perhaps surprising, but true, that if
we try our best, according to the algorithm to be described below, then any
pair of states that we do not find distinguishable are equivalent. The algo-
rithm, which we refer to as the table-filling algorithm, is a recursive discovery
of distinguishable pairs in a DFA A = (@, 2.4, 00, F)-

BASIS: If p is an accepting state and ¢ is nonaccepting, then the pair {p,q} is
distinguishable.

INDUCTION: Let p and ¢ be states such that for some input symbol a, r =
§(p,a) and s = §(g, a) are a pair of states known to be distinguishable. Then

156 CHAPTER 4. PROPERTIES OF REGULAR LANGUAGES

{p,q} is a pair of distinguishable states. The reason this rule makes sense is
that there must be some string w that distinguishes r from s; that is, exactly
one of J(r w) and d(s, , 1) 15 accepting. Then string aw must d15tmgumh p from

g, since d(p,aw)} and c}(q aw} is the same pair of states as 6(? w) and 6(3 w).

Examp A9: Le) DFA of
Fig 4.8. The final table is hom in F1g 4, 9 whero an « mdxcates ai

dlq‘rlnmlmlmhlp states, and the blank squares indicate those pairs th

heen fmmd (‘.qmva.lent. Initially, thore are no z’s in the table.

ik
airs of
ha

EB'C-‘

t

_,.1
3

e

B |x

C |x |x

D |x |x |x

E X |x Ix

F olx |x |x X
G [x (x|x|x|x |x
H |x X |x |x |x |x

A B C D E F G
Figure 4.9: Table of state inequivalences

For the basis, since ¢ is the only accopting state, we put @’s in each pair
that invelves C. Now that we know some distinguishable pairs, we can discover
others. For instance, since {C, H} is distinguishable, and states £ and F go to
H and C, respectively, on input 0, we know that {£, F} is also a distinguishable
pair. In fact, all the r's in Fig. 4.9 with the exception of the pair {4, G} can be
discovered simply by looking at the transitions from the pair of states on cither
0 or on 1, and observing that (for ene of those inputs) one state goes to € and
the other docs not. We can show {4, G} is distinguishable on the next round,
since on input 1 they go to F and E, respectively, and we already established
that the pair {E, F'} is distinguishable,

However, then we can discover no more distinguishable pairs. The three
remaining pairs, which are therefore equivalent pairs, are {A, E}, {B, H}, and
{D,F}. For example, consider why we can not infer that {4, £} is a distin-
guishable pair. On input 0, A and E go to B and H, respectively, and {B, H}
has not yet been shown distingunishable. On input 1, A and E both go to F, so
there is no hope of distinguishing them that way. The other two pairs, {B, H}

H‘Hr'] Jn pl W 1" neaver }'\i:l r]l&‘!’l'l’](}‘l11&.}‘lﬂr‘ hocaren thev parh hawo idonticral $ran

aa LAz ¥ TELTLRLAL st LAY LCetll Llee v LG EIWILOL ELeIlLT

sitions on 0 and identical transitions on 1. Thus, the table-filling algOrlfhm
stops with the table as shown in Fig. 4.9, which is the correct determination of
equivalent and distinguishable states. O

4.4. EQUIVALENCE AND MINIMIZATION OF AUTOMATA La7

Theorem 4.20: If two states are not distinguished by the table-filling algo-
rithm, then the states are equivalent.

PROOF: Let us again assume we are talking of the DFA A = (Q.%.8, g0, F).
Suppose the Theorem is false; that is, there is at least one pair of states {p,q}
such that

1. States p and ¢ are distinguishable, in the sense that there is some string
w such that exactly one of §(p, w) and (g, w) is accepting, and yet

2. The table-filing algorithm does not find p and g to be distinguished.

Call such a pair of states a bad pair.

If there are bad pairs, then there must be some that are distinguished by the
shortest strings among all those strings that distinguish bad pairs. Let {p, g}
be onc such bad pair, and let w = ajas -+~ a, be a string as short as any that
distinguishes p from ¢. Then exactly one of o{p,w) and &(g,w) is accepting.

Observe first that w cannot be e, since if € distinguishes a pair of states,
then that pair is marked by the basis part of the table-filling algorithm. Thus,
n > 1.

Consider the states r = d(p, a;) and s = d(g, ¢1). States » and s are distin-

uished by the string asay - - e,, since this string takes r and s to the states
&(p, w) and 8(g, w). However, the string distinguishing r from s is shorter than
any string that distinguishes a bad pair. Thus, {r,s} cannot be a bad pair.
Rather, the table-filling algorithm must have discovered that they are distin-
guishable.

But the inductive part of the table-filling algorithm will not stop until it has
also inferred that p and ¢ are distinguishable, since it finds that §(p.ar) = r is
distinguishable from §{g,a;) = s. We have contradicted our assumption that
bad pairs exist. If there are no bad pairs, then every pair of distinguishable
states is distinguished by the table-filling algorithm, and the theorem is true.
[

4.4.2 Testing Equivalence of Regular Languages

The table-filling algorithm gives us an easy way to test if two regular languages
are the same. Suppose languages L and A are each represented in some way,
e.g., one by a regular expression and one by an NFA. Convert each represent-
ation to a DFA. Now, imagine one DFA whose states are the union of the
states of the DFA’s for I and M. Technically, this DFA has two start states,
but actually the start state is irrelevant as far as testing state equivalence is

£ l"
concerned, so make any state the lone start state.

Now, test if the start states of the two original DFA’s are equivalent, using
the Ua‘hlo_ﬁllma alrorithm. If ‘rhm are (-\nnnmbﬂf then L = M, and If not, then

[T S iwa FY SR Y] dapliiatdilil. 20 LR AL UL VAR M At

L#M.

158 CHAPTER 4. PROPERTIES OF REGULAR LANGUAGES

Yo
)-

Star

e &

,
©
©

—
o

Figure 4.10: Two equivalent DFA’s

Example 4.21: Cousider the two DFA’s in Fig. 4.10. BEach DFA accepts
the empty string and all strings that end in G; that is the language of regular
expression € + (0 + 1)*0. We can imagine that Fig. 4.10 represents a single
DFA, with five states 4 through E. Tf we apply the table-filling algorithm to
that automaton, the result is as shown in Fig. 4.11.

B |x

C X

D X

E |x x |x
A B C D

Figure 4.11: The table of distinguishabilities for Fig. 4.10

To see how the table is filled out, we start by placing <’s in all pairs of
states where exactly one of the states 1s accepting. It turns out that there is
no maore to do. The four remaining pairs, {4,C}, {4, D}, {C, D}, and {B, E}

o all s rex loamd oo WVerr abharld ohoolr thot na morn dierinoerichahls nnirg
al < all Lqulvmcllb l)ﬂllﬂ lUu "".JULI.!\-I l,-LlC\I\ hllﬂl.l dILF ILILFI A ul"blll&ul"lllﬂk)lr l)fl,.lj.')

are discovered in the inductive part of the table-filling algorithm. For instance,
with the table as in Fig. 411, we cannot rhqhn:rmqh the pair IA‘ D‘l hecause

LW LR) Lo L Nt RPN LS TR Y inil Ll

on O they go to them%elveq, and on 1 they go to the pair {B,E} Wthh has

4.4. EQUIVALENCE AND MINIMIZATION OF AUTOMATA 159

not vet been distinguished. Since A and € are found equivalent by this test,
and those states were the start states of the two original automata, we conclude
that these DFA’s do accept the same language. O

The time to fill out the table, and thus to decide whether two states are
equivalent is polynomial in the number of states. If there are n states, then
there are {5), or nu(n — 1)/2 pairs of states. In one round, we consider all pairs
of states, to see if one of their successor pairs has been found distinguishable,
s0 a round surely takes no more than O(n?) time. Moreover, if on some round,
no additional z's are placed in the table, then the algorithm ends. Thus, there
can be no more than O(n?) rounds, and O(n?) is surely an upper bound on the
running time of the table-filling algorithm.

However, a more carcful algorithm can fill the table in O(n”) time. The
idea is to initialize, for cach pair of states {r, 5}, a list of those pairs {p, ¢} that
“depend on” {r,s}. That is, if {r,s} is found distinguishable, then {p.q} is
distinguishable. We create the lists initially by examining each pair of states
{p,q}, and for cach of the fixed number of input symbols a. we put {p,q} on
the list for the pair of states {8(p,a), 6(g,a)}. which are the successor states for
p and ¢ on input a.

If we ever find {r,s} to be distinguishable, then we go down the list for
{r.s}. For cach pair on that list that is not already distingnishable, we make
that pair distinguishable, and we put the pair on a queue of pairs whose lists
we must check similarly.

The total work of this algorithm is proportional to the sumn of the lengths
of the lists, since we are at all times either adding something to the lists (ini-
tialization) or examining a member of the list for the first and last time {when
we go down the list for a pair that has been found distinguishable). Since the
size of the inpu alphabet is considered a constant, each pair of states is put ou
O(1) lists. As there are O(n?) pairs. the total work is Oln?).

4.4.3 Minimization of DFA’s

Another important consequence of the test for equivalence of states is that we
can “minimize” DFA’s. That is, for each DFA we can find an equivalent DFA
that has as few states as any DFA accepting the sume language. Moreover,
except for our ability to call the states by whatever names we choose, this
minimum-state DFA is unique for the language. The algorithm is as follows:

1. First, eliminate any state that cannot be reached from the start state.

2. Then, partition the remaining states into blocks, so thaf all states in the
same block are equivalent, and no pair of states from different blocks are
oquivalent. Theoremn 4.24, below. shows that we can always make such a
partition.

Example 4.22: Consider the table of Fig. 4.9, where we determined the state
cquivalences and distinguishabilitics for the states of Fig. 4.8. The partition

160 CHAPTER 4. PROPERTIES OF REGULAR LANGUAGES

of the states into equivalent blocks is ({4, E}, {B, H}, {C}, {D,F}, {G}).
Notice that the three pairs of states that are equivalent are each placed in a
block together, while the states that are distinguishable from all the other states
are each in a block alone.]

For the automaton of Fig. 4.10, the partition is ({4,C, D}, {B, E}). This

example shows that we can have more than two states in a block, It may
appear fortuitous that A, C, and an all live together in a block, because

every pair of them is equivalent, ar (i none of them is equivalent to any other

altill, A TN

state. However, as we shall see in the next theorem to be proved, this situation
is guaranteed by our definition of “equivalence” for states. 0O

Theorem 4.23: The equivalence of states is transitive. That is, if in sore
DFA A =(Q.Z,4,40, F) we find that states p and g are equivalent, and we also
find that ¢ and r are equivalent, then it must be that p and r arc equivalent.

PROOF: Note that transitivity is a property we expect of any relationship called
“equivalence.” However, simply calling something “equivalence” doesn’t make
it transitive; we must prove that the name is justified.

Suppose that the pairs {p,q} and {¢,r} are equivalent, but pair {p,7} is
distinguishable. Then there is some input string w such that exactly one of
6(p,w) and 8(r,w) is an accepting state. Suppose, by symmnetry, that §(p, w)
is the accepting state. i

Now consider whether d(g, w) is accepting or not. If it is accepting, then
{g,r} is distinguishable, since 8(g,w) is accepting, and 5(r,w) is not. If §(q, w)
is nonaccepting, then {p, g} is distinguishable for a similar reason. We conclude
by contradiction that {p, 7} was not distinguishable, and therefore this pair is
equivalent, O

We can use Theorem 4.23 to justify the obvious algorithm for partitioning
states. For each state g, construct a block that consists of ¢ and all the states
that are equivalent to g. We must show that the resulting blocks are a partition;
that is, no state is in two distinct blocks.

First, observe that all states in any block are mutually equivalent. That is,
if p and = are two states in the block of states equivalent to ¢, then p and r are
equivalent, to each other, by Theorem 4.23.

Suppose that there are two overlapping, but not identical blocks. That
is, there is a block B that includes states » and q, and another block C' that
includes p but not ¢. Since p and g are in a block together, they are equivalent.
Consider how the block C was formed. If it was the block generated by p, then
g would be in C, because those states are equivalent. Thus, it must be that
there is some third state s that generated block C; i.e., C is the set of states
equivalent to s.

Wo Lrnoor that o e

it |
YL DLIVY LUl B Lo ¥

LlL.l-L 3
P is equivalent to ¢ because they are together in
Theorem 4.23, ¢ is equivalent to s. But then ¢ belgn

e L e -.. L

tion. We conclude that equivalence of states partitions the states; that is, two

]

at
h ramitivi’ry of
blgvk ', a contradic-

Seruradva Lahaah

4.4. EQUIVALENCE AND MINIMIZATION OF AUTOMATA 161

states either have the same set of equivalent states (Including themselves), or
their equivalent states are disjoint. To conclude the above analysis:

Theorem 4.24: If we create for each state ¢ of a DFA a block consisting of
g and all the states equivalent te g, then the different blocks of states form a
partition of the set of states.®> That is, each state is in exactly one block. All

members of a block are equivalent, and no pair of states chosen from different
blocks are equivalent. O

We are now able to state succinetly the algorithm for minimizing a DFA
A= (Q E,J, do: F)

1. Usc the

i~
—+
a
-
—
{'F}
-
=
—
_—
-

2. Partition the set of states @ into blocks of mutually cquivalent states by
the method described above.

3. Construct the minimum-state equivalent DFA B by using the blocks as
its states. Let v be the transition function of B. Suppose S is a sct of
equivalent states of A, and a is an input symbol. Then thera must exist one
block T of states such that for all states ¢ in S, 8(g. a) is a member of block
T. For if not, then input symbol a takes two states p and ¢ of S to states
in different blocks, and those states are distinguishable by Theorem 4.24.
That fact lets us conclude that p and g are not equivalent, and they did
not both belong in $. As a consequence, we can let y(S,e¢) = T. In
addition:

(a) The start state of B is the block containing the start state of A

(b) The set of accepting states of B is the set of blocks containing ac-
cepting states of 4. Note that if one state of a block is accepting,
then all the states of that block must be accepting. The reason is
that any accepting state is distinguishable from any nonaccepting
state, so you can’t have both accepting and nonaccepting states in
one block of equivalent states.

Example 4.25: Let us minimize the DFA from Fig. 4.8. We established the
blocks of the state partition in Example 4.22. Figure 4.12 shows the winimun-
state automaton. Tts five states correspond to the five blocks of equivalent states
for the automaton of Fig. 4.8,

The start state is {4, B}, since A was the start statc of Fig. 4.8. The ounly
accepting state is {C}, since C is the only accepting state of Fig. 4.8. Notice
that the transitions of Fig. 4.12 properly reflect the transitions of Fig. 4.8. For
instance, Fig. 4.12 has a transition on input 0 from {4, E} to {B, H}. That

Sveu should remember that the same block may be formed several times, starting from
P JF o JJERENP R}
T

different states. [Towever, the partition consists of the different blocks. so this block appears
only once in Lhe partition.

162 CHAPTER 4. PROPERTIES OF REGULAR LANGUAGES

Figure 4.12: Minimum-state DFA equivalent to Fig. 4.8

makes sense, because in Fig. 4.8, A goes to B on input 0, and E goes to H.
Likewise, on input 1, {4, E} goes to {D, F}. If we examine Fig. 4.8, we find
that both 4 and £ go to F on input 1, so the selection of the successor of
{4,E} on input 1 is also correct. Note that the fact neither 4 nor F goes to
D on input 1 is not important. You may check that all of the other transitions
are also proper. O

4.4.4 Why the Minimized DFA Can’t Be Beaten

Suppose we have a DFA A, and we minimize it to construct a DFA M, using the
partitioning method of Theorem 4.24. That theorem shows that we can’t group
the states of A into fewer groups and still have an equivalent DFA. However,
could there be another DFA N, unrelated to 4, that accepts the same language
as A and M, yet has fewer states than M7 We can prove by contradiction that
N does not exist.

First, run the state-distingnishability process of Section 4.4.1 on the states of
M and N together, as if they were one DFA. We may assume that the states of
M and N have no names in common, so the transition function of the combined
antomaton is the union of the transition rules of M and N, with no interaction.

H S Ty, o
States are accepting in the combined DFA if and only if they are accepting in

the DFA from which they come.
The star‘r states Of M Anr‘] N are mdmhnﬂ'mqha_l

D"
-;
1
=
Lt
Il
]
-
<
e’

4.4. EQUIVALENCE AND MINIMIZATION OF AUTOMATA 163

T

Minimizing the States of an NFA

You might imagine that the same state-partition technique that minimize
the states of a DFA could aiso be used to find a minimum- sta.tc \‘FJ&
equivalent to a given NFA or DFA. While we can, by a process of exhaustive

iteal L i LB ily

enuineration, fmd an NFA with as few statcs as po‘smbk. accepting a given
regular language, we cannot simply group the states of some given NFA
for the language.

An example is in Fig. 4.13. None of the three states are equivalent.
Surely aceepting state B is distinguishable from nonaccepting states 4 and
C. However, 4 and C arc distinguishable by input 0. The successors of C
are A alone, which does not include an accepting state, while the successors
of A are {4, B}, which does include an accepting state. Thus, grouping
cquivalent, states does not reduce the number of states of Fig. 4.13.

However, we can find a smaller NFA for the same language if we
simply remove state C. Note that A and I alone accept all strings ending
in 0, while adding state €' does not allow us to accept any other strings.

symbol are also indistinguishable. The reason is that if we could distinguish
the suceessors, then we could distinguish p from g.

Neither Af nor N could have an inaccessible state, or else we could eliminate
that state and have an even smaller DFA for the same language. Thus, every
state of M is indistinguishable from at least one state of N. To sec why, suppose
p is a state of M. Then there is some string aia- - - - ag that takes the start
state of A to state p. This string also takes the start state of N to some state
g. Since we know the start states are indistinguishable, we also know that their
successors nnder input symbol ¢, are indistinguishable, Then, the successors
of those states on input a» are indistinguishable, and so on, until we conclude

Start O 0
(4)

Figure 4.13: An NFA that cannot be minimized by state equivalence

164 CHAPTER 4. PROPERTIES OF REGULAR LANGUAGES

that p and ¢ are indistinguishable,

Since & has Tewer states than M, there are two states of Af that are in-
distinguishable from the same state of N, and therefore indistinguishable from
each other. But M was designed so that all its states are distinguishable from
cach other. We have a contradiction, so the assumption that N exists is wrong,
ciend A ten Foir Licin e Poois sabrsbrmes mp manss meccaiornloesd TATIA Lo A Tlommn w11o, oo
it J il 1aCl Iad by 10W AldlUs cdd ally CUIVGILL wra 1ol A, rotlildlily, wo
have proved:

Theorem 4.26: If A is a DFA, and M the DFA constructed from A by the
algorithm deseribed in the statement of Theorem 4.24, then M has as fow states
as any DFA equivalent to 4. 0O

In fact we can say something even stronger than Theorem 4.26. There must
be a one-to-one correspondence between the states of any other minimum-state
N and the DFA M. The reason is that we argued above how each state of M
must be equivalent to onc state of N, and no state of M can be equivalent to
two states of N. We can similarly argue that no state of N can be equivalent
to two states of M, although each state of N must be equivalent, to one of M’y
states. Thus, the minimum-state DFA equivalent to A is unique except for a
possible renaming of the states.

[0

1
i

*

Slo RN oReRe N
SR BB S I B |

PROEMRwhw liw Ry

Figure 4.14: A DFA to be minimized

4.4.5 Exercises for Section 4.4
* Exercise 4.4.1: In Fig. 4.14 is the transition table of a DFA.
a) Draw the table of distinguishabilities for this automaton.
b) Coanstruct the minimum-state equivalent DFA.
Exercise 4.4.2: Repeat Exercise 4.4.1 for the DFA of Fig 4.15.
!1 Exercise 4.4.3: Suppose that p are g are distinguishable states of a given DFA

A with n states. As a function of n, what is the tightest npper bound on how
long the shortest string that distinguishes p from ¢ can be?

