I/O MAPPING

 DEPT OF ELECTRONICS AND TELE. ENGG
I/O mapping

Interfacing I/O devices with MP
-Input device
-Output device
Example: -
When MP wants to read data frores input device, the input buffer should enable

Where the signal used to detect the input port

1. RD as IOR
2. Combinations of address lines

Similarly if Mp wants to write the data on output device, the out put latch should active
Where the signal used to detect the input port

- 1. WR as IOW
- 2. Combinations of address lines

Concludes: - Here we can say that I/O devices should have unique address

- Instruction used to input or output data
- - IN 8 bit add
- * It is used to input data to accumulator from a port with 8 bit address
- It is 2 byte instruction and no flags are modified
- * Here the 8 bit address is transferred to $A_{0}-A_{7}$ and same as to access the data from
- port $\mathrm{A}_{8}-\mathrm{A}_{15}$

Example : - IN 20H
Timing Diagram of instruction IN 20H

Fig. 9.3: Timing diagram of IN 20
NOTE : - Since the I/O address is 8 bit so the range of I/O address is from 00 H to FF H

Hence total 256 address may possible for I/O mapping

- Q. 1 What is the status of $A_{8}-A_{15}$ while the $3^{\text {rd }} T$ state of In instruction
- Ans We have 16 bit of address line in 8085 but in I/O mapping the specified address is of 8 bit so to implement this 8 bit address is transferred on both address group
- Out 8 bit add
* It is used to send the data for accumulator to output port

It is 2 byte instruction and no flags are modified

* Here the 8 bit address is transferred to $\mathrm{A}_{0}-\mathrm{A}_{7}$ and same as to access the data from

$$
\operatorname{port} \mathrm{A}_{8}-\mathrm{A}_{15}
$$

Timing diagram of OUT 20 H

In $3^{\text {rd }} \mathrm{T}$ state the address lines are loaded by specified address

I/O mapped I/O

In I/O mapped I/O we have to specific add for I/O device this address are provided by Decoder logic

Example- Interface Input buffer with input address FF H

And out put latch with address FE H

Step 111 : Intertacing butter,

A_{7}	$\mathrm{~A}_{6}$	$\mathrm{~A}_{5}$	$\mathrm{~A}_{4}$	$\mathrm{~A}_{3}$	$\mathrm{~A}_{2}$	$\mathrm{~A}_{1}$	$\mathrm{~A}_{0}$	Device address
A_{15}	$\mathrm{~A}_{14}$	$\mathrm{~A}_{13}$	$\mathrm{~A}_{12}$	$\mathrm{~A}_{11}$	$\mathrm{~A}_{10}$	$\mathrm{~A}_{9}$	$\mathrm{~A}_{8}$	1
1	1	1	1	1	1	1	$\mathrm{FF} H$	

Output from decoder logic, required is "LOW".
\therefore Use NAND gate. Presently, we will consider all the address lines, i.e. absolute decoding. The diagram is shown in Fig. 9.5.

Fia 05 . Tmnat mont intanfucinat in IC munmaillll

Step IV : Interface latch,

A_{7}	$\mathrm{~A}_{6}$	$\mathrm{~A}_{5}$	$\mathrm{~A}_{4}$	$\mathrm{~A}_{3}$	$\mathrm{~A}_{2}$	$\mathrm{~A}_{1}$	$\mathrm{~A}_{0}$	Device
A_{15}	$\mathrm{~A}_{14}$	$\mathrm{~A}_{13}$	$\mathrm{~A}_{12}$	$\mathrm{~A}_{11}$	$\mathrm{~A}_{10}$	$\mathrm{~A}_{9}$	$\mathrm{~A}_{8}$	address
1	1	1	1	1	1	$\mathbf{1}$	0	$\mathrm{FE} \mathbf{H}^{2}$

Note: For latch, to be enabled, we require HIGH logic, not LOW logic.
So again we will use 8 input NAND, with two input AND. The interfacing is shown in Fig. 9.6.

Fig. 9.6 : Output port interfacing in 10 mapped $1 / 0$

Fig. 9.7

Points :

(1) We can map $1 / O$ device, any where in $1 / O$ map.
(2) It is not essential to use, all the addresses. Few can be unused, depending upon application We can now draw a generalised block diagram for $/ / O$ device interfacing. Refer Fip. is x

Example 2

Interface 8 LED to 8085 using buffer and latch as a input and out put device and also write a program to take data from to take switched data from input buffer and display it on LED

Input address is FF H
Output address is FE H
Connect switch with buffer and Led with latch
Input logic 0 switch is pressed
1 other wise
output logic 0 LED glow
1 Led off

Instead of using lower order address line one can use higher order address line so that demultiplexing of lower order address and data line may be neglected

Program: -

up IN FF H
 CMA
 Out FEH
 JMP up HLT

Shadowing Effect

While designing decoder logic for I/O mapped if the number of I/O devices are less we can use linear or partial decoding

Here we consider some of the address line as Do't care Due to this instead of providing specific address we get multiple address

Memory Mapped I/O

In memory mapped I/O technique I/O device can be treated as memory location

There is no separate add and I/O address
I/O address is not 256 here but whole 64 kb memory is shared by I/O and memory
Step II :

\mathbf{A}_{15}	\mathbf{A}_{14}	\mathbf{A}_{13}	\mathbf{A}_{12}	\mathbf{A}_{11}	\mathbf{A}_{10}	\mathbf{A}_{9}	\mathbf{A}_{8}	\mathbf{A}_{7}	\mathbf{A}_{6}	\mathbf{A}_{5}	\mathbf{A}_{4}	\mathbf{A}_{3}	\mathbf{A}_{2}	\mathbf{A}_{1}	$\mathbf{A}_{\mathbf{0}}$	Device address
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	I/P (FFFF H)
0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	O/P $(7 F F F$

Presently we will use simple logic gates to design decoder logic. One can also use 3:8 decoder (74138).
Step III : Interfacing diagram

Fig. 9.16: 1/O interfacing in memory mapped $1 / O$
The combination of address lines A_{0} to $A_{1 s}$ can be done by using NAND gates and then it is combined with MEMR or MEMW signal. The interfacing diagram will be as shown in Fig. 9.16.

For buffer when A_{0} to A_{15} all are 1's the output of NAND gate will be low. It is then combined with MEMR using NAND gate with inverted inputs and connected to $\overline{\mathbf{1 G}}$ and $\overline{2 G}$. So the address of buffer will be FFFF H. For latch when A_{0} to A_{14} all are 1's and the line $A_{15}=0$ the output of NAND gate will be LOW, it is then combined with MEMW using AND gate with inverted inputs and connected to G, So the address of latch will be $7 \mathrm{FFF} \mathbf{H}$.
Step IV : The general interfacing diagram of an I/O device with 8085 in memory mapped I/O scheme is as shown in Fig. 9.17.

Fig. 9.17 : I/O interfacing in memory mapped $/ / O$

