%

RUNGTA

Exception Handling

Unit - [l

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG)

© RCET, Bhilai

%

RUNGTA

Syntax Errors, Runtime Errors, and Logic Errors

there are three categories of errors: syntax errors, runtime errors, and logic

errors.

Syntax errors arise because the rules of the language have not been

followed. They are detected by the compiler.

Runtime errors occur while the program is running if the environment detects

an operation that is impossible to carry out.

Logic errors occur when a program doesn't perform the way it was intended

to

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG)

© RCET, Bhilai

¢'Runtime Errors

RUNGTA

1
2
3
S
6
/
8
S
1C
1
12
13

Inport java.util.Scarer;

public class BxogptioDa {

public static void main(String[] args) {
Scarer scamer = new Scamer(Qystan.in);
System.out._print(Eter an integer: 'Y);
1INt nunber = scamer.nextlntQ ;

If anexception cocurs onthis
lirg, the rest of tre lines inthe
ethodare sdpped andre System.out_printing
programis termmineted “The rurher entered is ** + nunber);
¥
3

Run

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG)

© RCET, Bhilai

r’{ Catch Runtime Errors

RUNGTA

©OCO~NOUIDSWNPE

© RCET, Bhilai

import java.util._*;

public class HandleExceptionDemo {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
boolean continuelnput = true;

do {

try {
System.out.print("Enter an integer: ");

Int number = scanner.nextint();

If an exception occurs on this line,

the rest of lines in the try block are

skipped and the control is System.out.printin(

transferred to the catch block. "The number entered is " + number);

continuelnput = false;

+
catch (InputMismatchException ex) {

» System.out.printIn(C'Try again. (" +

"Incorrect input: an integer 1Is required)"
scanner.nextLine();

+ while (continuelnput);
}

%

RUNGTA

What is an Exception?

An Exception is abnormal situation (or) unexpected situation in the normal

flow of the program execution.

Because of Exceptions the flow of program execution is getting disturbed so

that program execution may continue (or) may not be continued.

When ever the exception is occurred, handling those exceptions called as

“Exception Handling”.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) >

© RCET, Bhilai

%

RUNGTA

Advantages by handling Exceptions

It allows you to fix the error.

It prevents the program from automatically termination.

Default exception handler provided by the Java run-time system

Is useful for debugging.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 6

© RCET, Bhilai

v, Partial Exception Inheritance Hierarchy

RUNGTA

Jawva. 1o |

Jawva. lang I

| Throwalk1 = |

| IOErmomr I

| IOException i

EOFException

r_fl“:a.
Exception Error
£ I
ClassNHotFoundException _| AssasrtionError
|Ft.un1:-imeEx-:ept'iDn | | ExceptionIn-
Initiali=zerError
S
—| Arithmeti cException | | | Mol lassDetFound-—
Error
ﬂ ClassCastException | = e
FileHotFoundException — SrackOwer -
Error
| IMMegalargum=sntE xception | -
£

|_| HumberFormatException |

_| IMTTegalStateExcaeption |

—| IndexOutOfEoundsException |

ArrayIindexdutOfFfBoundsException

StringIndexOutdfBoundsException

—| FMul TPociIinterExcepticn

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG)

© RCET, Bhilai

%

RUNGTA

The Exception Class

The class Exception represents exceptions that a program would normally

want to catch.

Its subclass RuntimeException represents many common programming

errors that can manifest at runtime.

Other subclasses of the Exception class define other categories of
exceptions, e.g., I/O-related exceptions in the java.io package (IOException,

FileNotFoundException, EOFEXxception, IOError).

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 8

© RCET, Bhilai

%

RUNGTA

ClassNotFoundException

The subclass ClassNotFoundException signals that the JVM tried to load a

class by its string name, but the class could not be found.

A typical example of this situation is when the class name is misspelled

while starting program execution with the java command.

The source in this case is the JVM throwing the exception to signal that the

class cannot be found and therefore execution cannot be started.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 9

© RCET, Bhilai

%

RUNGTA

The RuntimeException Class

Runtime exceptions are all subclasses of the java.lang.RuntimeException

class, which is a subclass of the Exception class.

As these runtime exceptions are usually caused by program bugs that
should not occur in the first place, it is usually more appropriate to treat them
as faults in the program design and let them be handled by the default

exception handler.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 10

© RCET, Bhilai

%

RUNGTA

ArithmeticException

This exception represents situations where an illegal arithmetic
operation is attempted, e.g., integer division by 0. It is typically

thrown by the JVM.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 1

© RCET, Bhilai

%

RUNGTA

ArraylndexOutOfBoundsException

Java provides runtime checking of the array index value, i.e., out-of-bounds

array indices.

The subclass ArraylndexOutOfBoundsException represents exceptions
thrown by the JVM that signal out-of-bound errors specifically for arrays, i.e.,
an invalid index is used to access an element in the array. The index value

must satisfy the relation O <= index value < length of the array.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 12

© RCET, Bhilai

%

RUNGTA

ClassCastException

This exception is thrown by the JVM to signal that an attempt
was made to cast a reference value to a type that was not legal,

e.g., casting the reference value of an Integer object to the

Long type.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 13

© RCET, Bhilai

%

RUNGTA

NullPointerException

- This exception is typically thrown by the JVM when an attempt
IS made to use the null value as a reference value to refer to an
object. This might involve calling an instance method using a
reference that has the null value, or accessing a field using a

reference that has the null value.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 14

© RCET, Bhilai

%

RUNGTA

The Error Class

The class Error and its subclasses define errors that are invariably never
explicitly caught and are usually irrecoverable. Not surprisingly, most such
errors are signalled by the JVM. Apart from the subclasses mentioned
below, other subclasses of the java.lang.Error class define errors that
Indicate class linkage (LinkageError), thread (ThreadDeath), and virtual

machine (VirtualMachineError) problems.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 15

© RCET, Bhilai

%

“*" Checked Exceptions vs. Unchecked Exceptions

<*RuntimeException, Error and their subclasses are known as unchecked

exceptions.

*»All other exceptions are known as checked exceptions, meaning that the

compiler forces the programmer to check and deal with the exceptions.

16

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG)

© RCET, Bhilai

%

" Unchecked Exceptions

In most cases, unchecked exceptions reflect programming logic errors that are not

recoverable. For example, a NullPointerException is thrown if you access an

object through a reference variable before an object is assigned to it; an

IndexOutOfBoundsException is thrown if you access an element in an array

outside the bounds of the array. These are the logic errors that should be
corrected in the program. Unchecked exceptions can occur anywhere in the
program. To avoid cumbersome overuse of try-catch blocks, Java does not

mandate you to write code to catch unchecked exceptions.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 17

© RCET, Bhilai

Checked or Unchecked Exceptions

RUNGTA

ClassNotFoundException

IOEXxception

AWTEXception

RuntimeException

Object Throwable everal more classes

ArithmeticException

NullPointerException

IndexOutOfBoundsException

Illegal ArgumentException

LinkageError Several more classes

VirtualMachineError

- Unchecked

AWTError exception.

Several more classes

<.BI
D

Dr L K Sharma, Rungta College of Engineering and

© RCET, Bhilai

%

RUNGTA

Exception Handling
In java Exception handling mechanism is depending on the following
keywords: try, catch, finally, throw, throws

In java language all these exceptions are handled by using a class

called as “Exception”. Which is part of “java.lang” package.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 19

© RCET, Bhilai

%

RUNGTA

Exception Handling: try, catch, and finally

The mechanism for handling exceptions is embedded in the try-catch-finally
construct,

which has the following general form:
try { // try block
<statements>
} catch (<exception typel> <parameterl>) { // catch block
<statements>

}

catch (<exception typen> <parametern>) { // catch block
<statements>

} finally { // finally block

<statements>

}

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG)

© RCET, Bhilai

20

%

RUNGTA

The try Block

The try block establishes a context for exception handling. Termination of a
try block occurs as a result of encountering an exception, or from successful

execution of the code in the try block.

The catch blocks are skipped for all normal exits from the try block where no
exceptions were raised, and control is transferred to the finally block if one is

specified

For all exits from the try block resulting from exceptions, control is
transferred to the catch blocks—if any such blocks are specified—to find a

matching catch block

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 21

© RCET, Bhilai

%

RUNGTA

The try-catch-finally Construct

L
i
ton a catch biocx oud
[Exacite try Dhock] excenton] { Fred frat matcning catch Dook 4]
w
[exoaptioni] lecenions] oo tion,]
!
[Exacute 7 [Execyute Execute h
catch Dok for catch ook for catch block far
| esceptiony) | exceptions exceptionn
- i
o ute
ary fimally Dhock
o exoention oF excsntion e e % -i- excention not handied o rethrown]

MNommal asecuhibn conthrues aftar fry-catch finally conatruct, Frocuwtion aborted and axcapfion propagated.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 22

© RCET, Bhilai

%

RUNGTA

The catch Block

Only an exit from a try block resulting from an exception can transfer control to a

catch block. A catch block can only catch the thrown exception if the exception is

assignable to the parameter in the catch block.

The code of the first such catch block is executed and all other catch blocks are

ignored.

On exit from a catch block, normal execution continues unless there is any pending
exception that has been thrown and not handled. If this is the case, the method is

aborted and the exception is propagated up the runtime stack as explained earlier.

After a catch block has been executed, control is always transferred to the finally
block if one is specified. This is always true as long as there is a finally block,

regardless of whether the catch block itself throws an exception.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 23

© RCET, Bhilai

%

RUNGTA

Example of try and catch

public class AverageZ {

public static void main{ Strimg[] args) {

printAverage{ 100, 20): J4010
System.out .printTn{"Exit main{)."); S5O0 20
¥
public static woid printidverage{(int totalSum, Tnt totalNumber) {
try { FA03)
int average = computedverage{totalSum, totalNumber) ./ s (42
System..out.printin{”Average = " + SE05D
totalSum + " / 7 +« totalMumber +« " = " %+ awverage);

P catch {(ArithmeticException ae) { J4 06
ae.printStackTrace () ; SEO0F 0
System.out.printin{"Exception handled in 7 +

"printiverage{)."): A
iy

System.out.printin{"Exit printdverage{l. ") : d4090

iy
public static TNt computeldverage{int sum, Tnt number) {
System.out .printind "Computing average."): E A i
return sumSnumber; S4(C11)
¥
¥
Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 24

© RCET, Bhilai

2

i
_

RUNGTA

Exception Handling (Scenario 1)

Avarage? System.out
mainb...)
ANgsS = ...
printéverage 100,200 ; ~F (1)
totalSum = 100
tota lHumbar = 20
try { caomputedverage (100 2070 ¢ FF (43
sum = 100
number = 20))
printin"Computing averags. J; S5 (10)
|
wosz0 | 5 47 (1)
.;_'-'_ ___________ -
= 5 . = Iy i ” F o r R’
e printini"&veragse = 100 7 20 = 5"z S5 (5}
} L1
prantlni"Exit printiveragel).z S5 (9
E —
praineln{"Exit maind " S5 (2D

Ottt o thee oo granm:
Computing averags .
Average = 100 F 20 = &
Exit printlvaragsi).
Exit maini).

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 25

© RCET, Bhilai

%

RUNGTA

Exception Handling (Scenario 2)

maini...)}

Avaraga?

args = ...

Cl ="

printAverage(100,00; /7 (1)

System.out

totalSum = 100
totalNumbaer = 0
try { compu tedverage (100,00 ; /7 (4)
sum = 100
number = 0 _ _
printlni"Computing averaga."); 7/ (10)
L
1 sArithmeti cExcaption
E-Elti:h[:...:l E 4 = FF5 e
printStackTrace(); // (& "¢ by zero”
println{"Exception handled 1n printAverage()."J; // (7
=l
]' . e . . L PP
println{"Ext printAverage()."3; /7 (9)
i
praintln{"Ex1t main() ") SF (2]
| >
26

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG)

© RCET, Bhilai

%

RUNGTA

The finally Block

If the try block is executed, then the finally block is guaranteed to be

executed, regardless of whether any catch block was executed.

Since the finally block is always executed before control transfers to its final

destination, the finally block can be used to specify any clean-up code.

It is also possible to use finally block without catch block.

iInt sum = -1;

try {

sum = sumNumbers();

// other actions

} finally {

iIf (sum >= 0) calculateAverage();
}

DrL K‘\S’Iiarma, Rungta College of Engineering and Technology, Bhilai (CG)

© RCET, Bhilai

27

%

RUNGTA

Nested try Statements

The try statement can be nested. That is, a try statement can be inside the

block of another try.

Each time a try statement is entered, the context of that exception is pushed
on the stack. If an inner try statement does not have a catch handler for a
particular exception, the stack is unwound and the next try statement’s catch

handlers are inspected for a match.

This continues until one of the catch statements succeeds, or until all of the

nested try statements are exhausted.

If no catch statement matches, then the Java run-time system will handle the

exception.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 28

© RCET, Bhilai

rz Example of Nested Try

RUNGTA
class NestTry

{
public static void main(String args|])
{
try
{
int a = args.length;
intb =42/ a;
System.out.printin("a =" + a);
try {
if(a==1)
a = al(a-a);
if(a==2)
{
intc[]={1}
c[42] = 99;
bl

catch(ArraylndexOutOfBoundsException e)
{

System.out.printin("Array index out-of-bounds: " + e);

b}

catch(ArithmeticException e)

{
System.out.printin("Divide by 0: " + e);

bl

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG)

© RCET, Bhilai

29

%

RUNGTA

The throw Statement

The catching exceptions that are thrown by the Java run-time system.

It Is also possible for a program to throw an exception explicitly.

By using throw keyword we can able to create the exception
objects explicitly.
The general form of throw statement is shown here:

- throw < throwablelnstance >;

- Here throwablelnstance must be an object of type Throwable or a subclass of

Throwable.

30

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG)

© RCET, Bhilai

%

RUNGTA

Example of throw statement

class ThrowDemo {

static void demoproc() {

try {
throw new NullPointerException("demo");

} catch(NullPointerException e) {
System.out.printin("Caught inside demoproc.");
throw e; // rethrow the exception

3}

public static void main(String args[]) {

try {
demoproc();

} catch(NullPointerException e) {
System.out.printin("Recaught: " + e);

11}

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG)

© RCET, Bhilai

31

%

RUNGTA

The throws Clause

If a method is capable of causing an exception that it does not handle, it
must specify this behavior so that callers of the method can guard

themselves against that exception.
It can be used by including a throws clause in the method’s declaration.
A throws clause lists the types of exceptions that a method might throw.

This Is necessary for all exceptions, except those of type Error or

RuntimeException, or any of their subclasses.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG)

© RCET, Bhilai

32

%

RUNGTA

The throws Clause...

type method-name(parameter-list) throws <ExceptionTypel>, <ExceptionTypel>...

// body of method
Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 3

© RCET, Bhilai

%

RUNGTA

Advantage of throws Clause

The main advantage of throws is

1. Escape the Exception because it is a Weaker Exception Handler.

2. throws gives a warning message to the user, who is interested to handle

the Exception.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 34

© RCET, Bhilai

%

RUNGTA

Example of throws Clause

class ThrowsDemo {

static void throwOne() throws lllegalAccessException {
System.out.printin("Inside throwOne.");
throw new lllegalAccessException("demo");

}

public static void main(String argsl]) {
try {

throwOne();
} catch (lllegalAccessException e) {

System.out.printin("Caught " + e);
38

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG)

© RCET, Bhilai

35

r’{ Review Question

RUNGTA

Q.1 Which digits, and in what order, will be printed when the following program is

run?

Answer: (d)
public class MyClass { The program will only print 1, 4, and 5, in that
public static void main(String[] args) { order. The expression 5/k will throw an
int k=0: ArithmeticException, since k equals 0. Control
try { is transferred to the first catch block
Int i = 5/k;

} catch (ArithmeticException e) {
System.out.printin("1");

} catch (RuntimeException e) {
System.out.printin("2");

return;

} catch (Exception e) {
System.out.printin("3");

Select the one correct answer.
(a) The program will only print 5.
(b) The program will only print 1 and 4, in that order.

1 finally { (c) The program will only print 1, 2, and 4, in that order.
System.out.printin("4"); (d) The program will only print 1, 4, and 5, in that order.

} (e) The program will only print 1, 2, 4, and 5, in that order.
System.out.printin("5"); (f) The program will only print 3 and 5, in that order.

1}

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 36

© RCET, Bhilai

%

RUNGTA

Review Question
Q.2 Given the following program, which statements are true?
public class Exceptions {

public static void main(String|[] args) { Answer: (b) and (e)

try { The finally block will always be executed,
if (args.length == 0) return; no matter how control leaves the try block.
System.out.printin(args[0]);

} finally {

System.out.printin(*The end");

138

Select the two correct answers.

(a) If run with no arguments, the program will produce no output.

(b) If run with no arguments, the program will print "The end".

(c) The program will throw an ArraylndexOutOfBoundsException.

(d) If run with one argument, the program will simply print the given argument.

(e) If run with one argument, the program will print the given argument followed by "The
end".

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 37

© RCET, Bhilai

%

RUNGTA

Review Question
Q.3 What will be the result of attempting to compile and run the following program?

public class MyClass { Answer: (d)

public static void main(String[] args) {
RuntimeException re = null;

throw re;

1}

Select the one correct answer.

(a) The code will fail to compile because the main() method does not declare that it throws
RuntimeException in its declaration.

(b) The program will fail to compile because it cannot throw re.

(c) The program will compile without error and will throw java.lang.Runtime-Exception
when run.

(d) The program will compile without error and will throw java.lang.NullPointerException
when run.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 38

© RCET, Bhilai

%

RUNGTA

Review Question

Q.4Which statements are true?

Select the two correct answers.

(a) If an exception is not caught in a method, the method will terminate and normal
execution will resume.

(b) An overriding method must declare that it throws the same exception classes as the
method it overrides.

(c) The main() method of a program can declare that it throws checked exceptions.

(d) A method declaring that it throws a certain exception class may throw instances of any
subclass of that exception class.

(e) finally blocks are executed if, and only if, an exception gets thrown while inside the
corresponding try block.

Answer: (c) and (d)

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 39

© RCET, Bhilai

%

Review Question

RUNGTA

Q.5 Which digits, and in what order, will be printed when the following program is compiled
and run?

public class MyClass {
public static void main(String[] args) {

try {

f();

} catch (InterruptedException e) {
System.out.printin("1");

throw new RuntimeException();

} catch (RuntimeException e) {

System.out.printin("2");
return: Answer: (b) An InterruptedException is handled

} catch (Exception €) { in the first catch Dblock. Inside this block a new
- Homy. RuntimeException is thrown. This exception was not
System.out.printin(*3"); thrown inside the try block and will not be handled by

Select the one correct answer.

(a) The program will print 5.

(b) The program will print 1 and 4, in that order.

(c) The program will print 1, 2, and 4, in that order.
(d) The program will print 1, 4, and 5, in that order.
(e) The program will print 1, 2, 4, and 5, in that order.
(f) The program will print 3 and 5, in that order.

} finally { : I the catch blocks, but will be sent to the caller of the
System.out.printin("4"); main() method. Before this happens, the finally block is
} executed.

System.out.printin("5");

}

Il InterruptedException is a direct subclass of Exception.
static void f() throws InterruptedException {
throw new InterruptedException("Time for lunch.");

fre K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 40

© RCET, Bhilai

rz Review Question

“UNETA Q. 6 Which digits, and in what order, will be printed when the following program is run?

public class MyClass {
public static void main(String[] args) throws InterruptedException {

try { Select the one correct answer.
fO; (a) The program will print 2 and throw InterruptedException.
(b) The program will print 1 and 2, in that order.

System.out.printin("1"); (c) The program will print 1, 2, and 3, in that order.

} finally { (d) The program will print 2 and 3, in that order.
System.out.printin("2"):; (e) The program will print 3 and 2, in that order.
) () The program will print 1 and 3, in that order..
System.out.printin("3"); Answer: (a)

}

Il InterruptedException is a direct subclass of Exception.
static void f() throws InterruptedException {
throw new InterruptedException("Time to go home.");

}

1
Orc K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 4

© RCET, Bhilai

%

RUNGTA

User Define Exception Subclasses

User can define own exception types to handle situations specific to their

applications.

It can be defined a subclass of Exception (which is a subclass of

Throwable)

all exceptions, including those that user create, have the methods defined by

Throwable available to them.

42

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG)

© RCET, Bhilai

RUNGTA

The Methods Defined by Throwable

Method

Throwable filllnStack Trace()

Throwable getCause()

String getl.ocalizedMessage()

String getMhMessage()
Stack'TraceElement| | getStackTrace()

Throwable initCause({ Throwable
causeExc)

Description

Returns a Throwable object that contains
a completed stack trace. This object can be
rethrown.

Returns the exception that underlies the
current exception. If there is no underlying
exception, null is returned. Added by Java 2,
version 1.4.

Returns a localized description of the
exception.

Returns a description of the exception.

Returns an array that contains the stack
trace, one element at a Hime as an arraw of
StackTraceElement. The method at the top
of the stack is the last method called before
the exception was thrown. This method

is found in the first element of the array.
The StackTraceElement class gives your
prograim access to information about each
element in the trace, such as its method
name. Added by Java 2, version 1.4

Associates causeExc with the invoking
exception as a cause of the invoking exception.
Returns a reference to the exception. Added
by Java 2, version 1.4

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 43

© RCET, Bhilai

%

RUNGTA

The Methods Defined by Throwable...

Method

void printStackTrace()

void printStackTrace(PrintStream
streant)

void printStack Trace(PrintWriter
stream)

void setStackTrace(StackTraceElement
elements] |)

String toString()

Description

Displays the stack trace.

Sends the stack trace to the specified stream.
Sends the stack trace to the specified stream.

Sets the stack trace to the elements passed

in elements. This method is for specialized
applications, not normal use. Added by Java 2,
version 1.4

Returns a String object containing a
description of the exception. This method
is called by println() when outputting a
Throwable object.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) a4

© RCET, Bhilai

%

Example of user define Exception

RUNGTA

class MyException extends Exception {

private int detail;

MyException(int a) {

detail = a;

}

public String toString() {

return "MyException[" + detail + "]";

3}

class ExceptionDemo {

static void compute(int a) throws MyException {
System.out.printin("Called compute(" + a + ")");
if(a > 10)

throw new MyException(a);
System.out.printin("Normal exit");

}

public static void main(String args[]) {
try {

compute(1);

compute(20);

} catch (MyException e) {
System.out.printin("Caught " + e);

11}

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG)

© RCET, Bhilai

45

%

" java.lang package

The java.lang package is indispensable when programming in Java. It is automatically

imported into every source file at compile time.
The package contains the Object class that is the superclass of all classes.

The wrapper classes (Boolean, Character, Byte, Short, Integer, Long, Float, Double)

used to handle primitive values as objects.

It provides classes essential for interacting with the JVM (Runtime), for security
(SecurityManager), for loading classes (ClassLoader), for dealing with threads (Thread),

and for exceptions (Throwable).

The java.lang package also contains classes that provide the standard input, output, and

error streams (System),

String handling (String, StringBuilder, StringBuffer), and Mathematical functions (Math).

46

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG)

© RCET, Bhilai

%

RUNGTA

Partial Inheritance Hierarchy in the java.lang Package

Ohject

Mumber ath string | BtringBuilger| |StringBuffer

)
LA
Tol .
20| loid
il
g0 foolean |{Character(| Byte || Short || Integer || Long || Float || Double
Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 47

© RCET, Bhilai

%

RUNGTA

java.lang includes the following classes:

Boolean

Long

Byte

Integer

Short

Void

Math

StrictMath (Java 2,1.3)
Character

Number

String

StringBuffer
StringBuilder

Class

Object
StackTraceElement (Java 2,1.4)

ClassLoader

Package (Java 2) System
Compiler

Process

Thread

Double

Runtime

ThreadGroup

Float

RuntimePermission (Java 2)
ThreadLocal (Java 2)

InheritableThreadLocal (Java 2)
SecurityManager

Throwable
..... and more

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG)

© RCET, Bhilai

48

%

RUNGTA

java.lang interfaces

Cloneable
Comparable
Runnable

CharSequence

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG)

© RCET, Bhilai

49

%

RUNGTA

The Object Class

All classes extend the Object class, either directly or indirectly.

A class declaration, without the extends clause, implicitly extends the Object

class.
The Object class is always at the root of any inheritance hierarchy.

The Object class defines the basic functionality that all objects exhibit and all

classes inherit.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) >0

© RCET, Bhilai

%

RUNGTA

The Methods Defined by Object

MWMethod

Object clone()
throws
CloneMNotSupported Exception

boolean equals{(Object object)

void finalize()
throws Throwable

final Class getClass()
int hashCode()

final void notiftv()
final void notitv AlL()

String toString()

final void wait()
throws Interrupted Exception

final void wait(long rmillisecords)
throws Interrupted Exception

final void wait(long milliseconds,
int rrarnosecornds)
throws Interrupted Exception

Description

Creates a new object that is the same as the
invoking object.

Returns true if thie invoking object is
equivalent to object.

Drefault finalize() method. This is usually
overridden by subclasses.

Obtains a Class object that describes the
invoking object.

Returns the hash code associated with the
invoking object.

Resumes execution of a thread waiting on
the invoking object.

Resumes execution of all threads waiting
on the invoking object.

Returns a string that describes the object.

WWaits on another thread of execution.

Waits up to the specified number of
mrilliseconds on another thread of execution.

Waits up to the specified number of
miilliseconds plus nanoseconds on another

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG)

© RCET, Bhilai

thiread of executioi.
- 51

%

RUNGTA

Review Question

Q.7 What is the return type of the hashCode() method in the Object class?
Select the one correct answer.

(a) String

(b) int

(c) long
(d) Object
(e) Class

Answer : (b)

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) >2

© RCET, Bhilai

%

RUNGTA

Review Question

Q.8 Which statement is true?
Select the one correct answer.

(a) If the references x and y denote two different objects, the expression x.equals(y) is

always false.

(b) If the references x and y denote two different objects, the expression (x.hashCode()

== y.hashCode()) is always false.
(c) The hashCode() method in the Object class is declared final.
(d) The equals() method in the Object class is declared final.

(e) All arrays have a method named clone.

Answer : (e)

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) >3

© RCET, Bhilai

%

RUNGTA

Review Question

Q.9 Which exception can the clone() method of the Object class throw?
Select the one correct answer.

(a) CloneNotSupportedException

(b) NotCloneableException

(c) lllegalCloneException

(d) NoClonesAllowedException

Answer : (a)

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG)

© RCET, Bhilai

54

%

RUNGTA

The Wrapper Classes

Primitive values in Java are not objects. In order to manipulate these values
as objects, the java.lang package provides a wrapper class for each of the

primitive data types.
All wrapper classes are final.

The objects of all wrapper classes that can be instantiated are immutable,

l.e., the value in the wrapper object cannot be changed.

The Void class is considered a wrapper class, it does not wrap any primitive
value and is not instantiable. It just denotes the Class object representing

the keyword void.

55

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG)

© RCET, Bhilai

%

RUNGTA

The Wrapper Classes..

Primitive Data Type

Wrapper Class

byte Byte
short Short
Int Integer
long Long
float Float
double Double
char Character
boolean Boolean

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG)

© RCET, Bhilai

56

_

RUNGTA

Converting Values Between Primitive, Wrapper, and String

Types
string
String str;
str = WrapperType.toString(v); // (6a) Str
str = String.valueOf(v); // (6b)
str = "" 4+ v, // (6cC)

Kf//f ref

v = WrapperType.parseType(str); // (5) ref

/)

primitive value

ref.toString(); // (3)

new WrapperType(str); // (2a)
WrapperType.valueOf(str); // (2b)

N\

type v; < _
v = ref: // (4a) ref
v = ref.typeValue(Q); // (4b) ref

ref

object
> WrapperType ref;
V) // (1la)
new WrapperType(v); // (1b)

WrapperType.valueOf(v); // (1)

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG)

© RCET, Bhilai

57

%

“r"Common Wrapper Class Constructors

The Character class has only one public constructor, taking a char value as
parameter.

The other wrapper classes all have two public one-argument constructors: one takes
a primitive value and the other takes a string.

- WrapperType(type v)
- WrapperType(String str)
Example
- Integer intObj = new Integer(100);
- Integer intObjl = new Integer(“125%);
- Float floatObj = new Float(255.4f);

- Double doubleObj = new Double(2345.50);
- Character charObjl ="\n';

- Boolean boolObjl = true;

- Integer intODbj2 = 2008;

- Double doubleObjl = 3.14;

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) >8

© RCET, Bhilai

%

RUNGTA

Float and Double Wrapper Class

Double and Float are wrappers for floating-point values of type double and float,

respectively.

Both Float and Double define the following constants:

Constant Description

MAX_ VALUE Maximum positive value

MIN_VALUE Minimum positive value

NaN Not a number

POSITIVE_INFINITY Positive infinity

NEGATIVE_INFINITY Negative infinity

TYPE The Class object for float or double

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) >9

© RCET, Bhilai

[

2

Methods of Float Class

RUNGTA

Method Description
byte byteValue() Returns the value of the invoking object as
a byte.
static int compare(float rnumd, Compares the values of num1 and rnum?2.
float nurn2) Returns 0O if the values are equal. Returns a

negative value if numl is less than num2.
Returns a positive value it num1 is greater
than num?2. (Added by Java 2, version 1.4)

int compareTo(Float f) Compares the numerical value of the
invoking object with that of f. Returns O if
the values are equal. Returns a negative
value if the invoking object has a lower
value. Returns a positive value if the
invoking object has a greater value.

(Added by Java 2)

int compareTo(Object 0bj) Operates identically to compareTo(Float)
it obj is of class Float. Otherwise, throws a
ClassCastException. (Added by Java 2)

double doubleValue() Returns the value of the invoking object as
a double.
boolean equals(Object FloatODbj) Returns true if the invoking Float object is

equivalent to FloatObj. Otherwise, it
returns false.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 60

© RCET, Bhilai

,\Methods of Float Class...
L

RUNGT, e tlhhocl

static imt Float T olntBPitsi flaoat sredme

fFliat float™ alued |

imt hashi{od=1)

static fheat intBEit=s"T oEFEloa tiint ssaame
it it aluel] O

loolearn sl fFirvitsd

static boclean isThhfimdateil float sgeem2)

Eoolean is~al-I(]

static Bbooclean is<a-l(float M)
longe longg S alwus=i 0

static floamt parseFloat(Strin g S0
throsws=s MNurmber Forma tExceptdonm

shuort sheort™ aloued O
Strimg toStrinreesi])
static String toStringifloat e

static Float wraluel N Strings s
thross=s Nurmber Forma tExosp o

D¥e=criptiom

Feturns the ITIEEE-—ocompatille=,
sinole—precisioorm it patterm that
Ccorrespaorucls o tlee fredere.

Feturns the vralue of the irmroking object as

a FloaE.

Feturns float equivalemnt of thee
IEEE-compatible sinmngle—precisiorm bt
patterm specified by sreema .

EFeturn=s the valuese of the irmvrolking object as
ar it

Fetams troee if thee imvoline olbject ocoataim=
an infindte value, COOtherwrise, it retuarmi=s false.

Feturnms frus if S0 specifies am imfimite
walu=. Crtherwsri=e, it retuarns false.

Feturns Brus if the irvrokinmge olbject
corit@irees @& valuese that is oot & mourenods e
Ctherwwi=e, it returti= False.

Feturns true if ffeien specifies a wvalue that is
ot a nouanbsr, Citherssris=e, it retarmns false.

Feturns the vralue of the irmroking object as

a loaeg.

Feturns the floak eqguivalent of the mnuamlser
contained in the strinmg specified by sir
usirnge radix 10, (&S dde=d by Jawva =)

Feturns the vralue of the irmroking object as
a shhaoat.

EFeturn=s the strinmge equivalent of thee
invrokimgs ol ot

EFeturn=s the strinmee egquivalent of the waluas
== cifiecd by e eeer

Feturns the Floatk objaect that comtainms the
wa lues spe=cified by the strinmges ine S5

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG)

© RCET, Bhilai

% Methods of Double Class...

3

RUMNGTA
Ml =ik e el
bt byt alue])

static int comparel] doulele ecmald |
A oual=le rrrrEr2

it oo e Lol hooalsle al

it ooarea e Do e ot B f)

static lomes doulble Tol onesBits0d onalsle reesrea)

Adoubles doublas " aluaesi

boolean equal=0f Flejaect DA edB OB)

flo=t Float™alaed 3

it hashecodd e

Descriptior

Feturms thee wralue of thee i okboirmg
alject as a bwte

Coamnmprares the valuaes of e d andcdd
e 2. Fetarnes O Gf the wraluss are
ceoual. Feaeturms a rneematisre walue if
frenrrr f dis less tham e 2. FEebarnis a
pPosite walue if el is greater than
e 2. (Sd deaed By Tara 2. wrersioae 1)

Conmmpa res the mouaarmerical walue of
the imnvolkinge object wwith that of ol
Feturms= [if thhe wralues are sgual.
Feturms a negativees wralue if the
imroking olject has a lowweer wralue,
Feturms a poaositive walues iF the
imeroking olject has a sreater walue.
(Scdd ed s Jawsa =0

(e rates idermntcally e

corm prare Lol Dol el iF off is of
Class DFoaalble. Cridhhaerswiss,. thhroswws=s
a ClasstCastExceptior. (SSdd=d
b Tasa 20

Feturms thee TEEE-cormpatlle,
daouble—precisica bt pattern that
oo especaLcds bo thee e

Feturms thee wraluase of thee i oboirmg
olject as a doulkle.

Feturms truee if thee ek
Crou b e olbyjaect is equiscalemt

o T Aces BB, O therwise, it
returrms False.

Feturms thee wraluase of thee i oboirmg
olject as a Eloak.

Feturmms the hash cod e for thoe
irveroboiT g odeject.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG)

© RCET, Bhilai

62

Methods of Double Class...

3

RUNGTA

Ml =t ol

int it wWaluel 3

BEoolean islnfirvited

static boclean islnhdfinndateld oul=le saeeere]

Eooclean is<al-di

static booclean isl<aWNidoulls el

static doulxle lomaeBit=sT ol o wulle) oo e seweem)

long longe W alwuel)

static doulle parseldouble(String sér)
throsws MNurmmber Forma tExceptdom

short sheort%W aluael])
Strimg toStrimg()
static String toStringid oulsle 2w

static Choulble wraluel M Strin g =)
throsws HNurmber Forma tExceptdom

Drescription
Feturms the sralus of the incsroboimg

olject as armn it

Feturms trmes if the inveoking objaect
corntainms anm infindates valuas=s.
Crthersri=s, it retarns false.
Feturms tmee if o sps=cifies an
infinites wvalue, Otheersei=ae, it
returns False.

Feturms tree if the incveoking olbgect

cornmtains a walue thhat i=s muot a

nurmber. Crthereri=se, it retarns false.

Feturms tree if a0 speecifies a
waEliee thiat is mot a nurmilber.
Crthervwi=ss, it returns false.

Feturms doukle equivalent of the
IEEE-compatilkls, doulble-precision
it patterm specified by semm.

Feturms the wralue of thee inseokoimg
object as a lomes.

Feturms the doulrle equivalent of
the mumiber comtained in the string
specified by s using radisc 10,
(Sdded by JTawa 20

Feturms the wralues of the inseokoimg
object as a sheaort.

Feturms the string equivalent of thee
imeokoit g oleject.

Feturms the string equivalsnt of the
waloe specifiecd by rearre.

Feturms a Dowuble object that
comtains the valuse sp=cified by the

stringe i SHr.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG)

© RCET, Bhilai

63

%

RUNGTA

Demonstrate isInfinite() and isNaN()

class InfNaN {
public static void main(String argsl]) {
Double d1 = new Double(1/0.);
Double d2 = new Double(0/0.);
System.out.printin(d1 + ": " + d1l.isInfinite() + ", " + d1.isNaN());
System.out.printin(d2 + ": " + d2.isInfinite() + ", " + d2.isNaN());
System.out.printin(Double.POSITIVE_INFINITY);

System.out.printin(Double.NEGATIVE_INFINITY);

1}

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG)

© RCET, Bhilai

64

%

RUNGTA

Byte, Short, Integer, and Long

The following constants are defined:

- MIN_VALUE Minimum value

- MAX_VALUE Maximum value

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG)

© RCET, Bhilai

65

o

{

RUNGTA

Methods in Integer Class

Ml e thocd
v bybae™ alurel)

ik coamnpare Lol Invbesaer §)

ik coamn prare Lo ject o bih

static Integer decod e Strinmge ssr)
throtwws NumberFormatExcce s tHon

dowulzle dowuble™aluel)

booleamn equals(Oljaect FeeregemT M)

float Float™W aluel)

static Integer setlnbeser| Stringe preoprertyr N e)

static Integer setlnbeger] String, preoprerty N amre,
1t deforee)

Drescrl pritilaonm

Feturns the wvalus of the invokimme
albject as a by ke

Cormpares the murmnmeriscal value of
the invoking olyject wwith that oF i,
Feturns O if the values are ecgual.
Feturns a negative walue if the
imwvaokine olject has a lowwer
waluwe, Return=s a positive walue if
the invoking olyject Ihas a greater
walue, (A dded by Tawa 25

CHeerabes identically o

comyprare Tof{lmtegmerd iF ol is of
Class Inbeger. Chthernwvise, throwws=s
a ClasstCastException. (Sdded
b Jawa 2)

FEeturns an Integer ol>ject that
contaims tlhe value specified by
the stritng i s

Feturns the valus of tlhe incvokimme
abject as a doualle.

Feturns trwe if the ineoboiimes
T keger olrject 1= equivalent
o fmrteger Dy, Oitherswwise, ik
reburns False.

Feturns the wvalus of the invokimme
alject as a Flook.

FEeturns the wvalue associabed
wwith the enviroramnmental properes
specified bvw propertyriNamee. S
meall is returned oo failure.

Feturns the value associabed
writh the envirosumnmental properess
specified bwv propertyriName.

The wraluwe of defiredf s i= returreecd
o Faillure.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG)

© RCET, Bhilai

66

3

Methods in Integer Class

RUNGTA

Nl ethaocd

static Integer setlnbteser] String prroprertyrMNasre,
Integer defmmae s8]

it hashCoda] o
it ™ aluaed)
loag long™Walwae]

static int parselnt] String, s
throtwwvs NumberFormatExceptthion

static int parselnt] String s, it raaddxc)
throsws NumberFormatExceprtthion

slhhort short™aloeel)

Static String boBinaryStrime] ik srerer])
static String, boHexxStriame it sree e
Static String bl hcealStrimedime srwese)

Sktring boStrined)

sStatic String, boStritne it rras e

Dresorlptiar

FEeturns the value associabked
wiitlh the enviroaouamnmental properess
specified bw prropertiriName.

The vwalbue of deffracd s is rebureed
o Faillure.

Feturns the hash code for the
inwvokinge object.

Feturns the wvalue of the nvolkinmg
ol ject as @ ik

Feturns the wvalue of the nvolkinmg
object a=s a love,.

Feturns the inmbteger equivalent
of Elhee muagmber combained dm

the string specified by s¢r ising
raclix 10,

Feturns the inmbeger equivalemte of
the number comtamed i thee
string specified by sdr sing Hhee
specified s i

Feturns the wvalue of the anvolkinmg;
obhject as a shorke.

Feturns a striung that contains the
binmary equivalent of e
Feturns a striung that contains the
hexadecinal eqguivalent of e

Feturns a striung that contains the
octal eqguivalent of rras .

FHeturns a strinmg that comntains the
decitmal equivalent of the

iwvo ke olbhject.

Feturns a striung that contains the
decitmal equivalent of meem.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG)

© RCET, Bhilai

67

%

RUNGTA

Methods in Integer Class
Method

static String toString(int num, int radix)

static Integer valueOH String str)
throws NumberFormatException

static Integer valueOHR String str, int mdix)
throws NumberFormatException

Description

Returns a string that contains the
decimal equivalent of num using

the specified radix.

Returns an Integer object that

contains the value specitied by
the string in str.

Returns an Integer object that
contains the value specified by

the string in str using the
specitied mdix.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG)

© RCET, Bhilai

FZ Example of Integer Class

RUNGTA
public class IntegerRepresentation {

pubTlic static void main(String[] args) {
int positivelnt = +41; // 051, 0x29
int negativelnt = -41; J/ 037777777727, -051, Oxftfffffd7, -0x29
System.out.printin("String representation for decimal value: " + positivelnt);
integerStringRepresentation(positivelnt);
System.out.println("String representation for decimal value: " + negativelnt);
integerStringRepresentation(negativelnt);

¥

public static void integerStringRepresentation(int 1) {
System.out.printin(” Binary:\t" + Integer.toBinaryString(i));
System.out.printin(” Octal:\t" + Integer.toOctalString(i));
System.out.printin(” Hex :\t" + Integer.toHexString(i));
System.out.printin(” Decimal:\t" + Integer.toString(i));
System.out.printin(” Using toString(int 1, int base) method:");
System.out.printin(” Base 2:\t" + Integer.toString(i, 2));
System.out.printin(” Base 8:\t" + Integer.toString(i, 8));
System.out.printin(” Base 16:\t" + Integer.toString(i, 16));
System.out.printin(” Base 10:\t" + Integer.toString(i, 10));

¥

}
Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 69

© RCET, Bhilai

%

RUNGTA

Character

The Character class defines several constants, including the following:

- MAX_RADIX
- MIN_RADIX
- MAX_VALUE
- MIN_VALUE

- TYPE The

The largest radix

The smallest radix

The largest character value
The smallest character value

Class object for char

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG)

© RCET, Bhilai

70

3

Methods in Character Class

RUNGTA

[= & Tt |

static booclean

static bhoolean

static bhoolean

static bhoaoolean

static bhoolean

static booclean

s=tatic bhoolean

static bhaoolean

s=tatic bhoolean

static bhoolean

static bhoolean

i=[Cremned]clhhar i)
islrisit(clhar okl

isldentiHerlsgnorallef{char e

i=lIsCv " omtrol] cliar cfed

islavaldentifAerFPart cluar ofh

i=slavaldenubfierStart clhar ol

i=ElLetb=ri clhuar cfed
islLetberCrr TN =it clhuar el

i=lLoswer_a=s={clhar «f2)

i=hlirroreddcluam s ofz)

isSpaceCharichuar ofe)

Cresc ri pptiorm

Feturns true iF o is defimed by
LUTniacods . CHInersvi=s, it retuarnns false.

Fenurns trwae 1F ofr is a digik.
e i==_ it returns Ealse.

Feturns trae iF of showa ld e
ignored in an identdfer.
(e rsari=s, it returns Ealsa.

Feturns trae iF ofr is e TS coambrasl
clharaclerr. Chl e s, AL re L s
Fal=se.

Feturnms true iF o is allosweaed as
prart of a Java identifier (other thaam
tHre First character), COxtlherssari=as, ik
returin=s False.

EFeturms truae 1F ofr is alloswwecl
as the first characks=r ofF a
Tava wd=samtifier, Ctlierse s
it returs False.

Fetrurm=s true iF o is a l=tter.
(Crlnersari=as, it returns Ealsa.

Feturms trase if ofr is a l=etber or a
digrit. Ortherwri=e, it returns false.

Fetutrms trwue iF o2 is a
Lowwrercase letter. Crrherswise,
it retuiris False.

FHFerurms true iF o is a mmmdrnoraec]
LTinicodse character., A mmarrooecl
character 1= one that is reversed bor
tewk that is displaved right-bo—leFr.

{ Sdded by Jawa 2, wersioan 1.4

FHeturm=s truae iF ofr i= a Llinicocd e
space characker. Ththerwwise, it
returins False.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG)

© RCET, Bhilai

71

QMethods In Character Class
>,

RUNGTA

Method Description

static boolean isTitleCase{char ch) Eeturns true if ch is a Unicode
titlecase character. Otherwise,

it returns false.

atatic boolean isUnicodeldentifierPart{char ch) Eeturns true if oft is allowed as
part of a Unicode identifier {other
than the Frst character).
Ctherwise, it returns false.

nicodeldentifierStartichar ch) EReturns true if ch is allowed
as the first character of a Unicode
identifier. Otherwise,
it returns false.

static boolean isUpperCase(char ch) Eeturns true if ch is an uppercase
letter. Otherwise, it returns False.

static boolean isWhitespace(char ch) Eeturns true if ch is whitespace.
Ctherwise, it returns false.

static char toLowerCase{char clt) Eeturns lowercase equivalent of ch.

static char toTitleCase(char ch) Eeturns titlecase equivalent of ch.

static char toUpperCase{char ch) Eeturns uppercase equivalent of ch.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG)

© RCET, Bhilai

%

RUNGTA

Math Class

The Math class contains all the floating-point functions that are used for geometry

and trigonometry, as well as several general-purpose methods.

Math defines two double constants:

- E (approximately 2.72)

- Pl (approximately 3.14).

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) &

© RCET, Bhilai

%

RUNGTA

Methods in Math Class

Method

static double sin(double arg)
static double cos(double arg)

static double tan(double arg)

static double asin(double arg)

static double acos(double arg)

static double atan(double arg)

static double atan2(double x, double)

Description

Returns the sine of the angle specified
by arg in radians.

Returns the cosine of the angle specitied
by arg in radians.

Returns the tangent of the angle
specified by arg in radians.

Returns the angle whose sine is specified
by arg.

Returns the angle whose cosine is
specified by arg.

Returns the angle whose tangent is
specified by arg.

Returns the angle whose tangent is x/y.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG)

© RCET, Bhilai

74

%

RUNGTA

Methods in Math Class

Method Description
static double exp(double arg) Returns e to the arg.
static double log(double arg) Returns the natural logarithm of arg.

static double pow(double y, double x) Returns y raised to the x; for example,
pow(2.0, 3.0) returns 8.0.

static double sqrt(double arg) Returns the square root of arg.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) &

© RCET, Bhilai

Methods in Math Class

RUNGTA

Method

static int abs(int arg)

static long abs(long arg)
static float abs(float arg)
static double abs(double arg)
static double ceil(double arg)

static double floor(double arg)

static int max(int x, int y)

static long max(long x, long y)

static float max(float x, float y)

static double max(double x, double vy)
static int min(int x, int y)

static long min(long x, long v)

static float min(float x, float v)

static double min(double x, double /)
static double rint(double arg)

static int round(float arg)

static long round(double arg)

Description

Returns the absolute value of arg.
Returns the absolute value of arg.
Returns the absolute value of arg.

Returns the absolute value of arg.

Returns the smallest whole number greater

than or equal to arg.

Returns the largest whole number less than

or equal to arg.

Returns the maximum of x and y.
Returns the maximum of x and y.
Returns the maximum of x and y.

Returns the maximum of x and y.

Returns the minimum of x and v

Returns the minimum of x and .
Returns the minimum of x and y.

Returns the minimum of x and .

Returns the integer nearest in value to arg.

Returns arg rounded up to the nearest int.

Returns arg rounded up to the nearest long,.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG)

© RCET, Bhilai

76

%

RUNGTA

Miscellaneous Math Methods

static double IEEEremainder(double dividend, double divisor)
static double random()

static double toRadians(double angle)

static double toDegrees(double angle)

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG)

© RCET, Bhilai

77

%

RUNGTA

Demonstrate toDegrees() and toRadians().

class Angles {

public static void main(String args[]) {

double theta = 120.0;
System.out.printin(theta + " degrees is " +
Math.toRadians(theta) + " radians.");
theta = 1.312;

System.out.printin(theta + " radians is " +
Math.toDegrees(theta) + " degrees.");

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG)

© RCET, Bhilai

78

%

RUNGTA

Demonstrate Random()

public class TestRandom({

public static void main(String args[]X{

for(int i = 1; i<= 100; i++){

System.out.printin(Math.round(Math.random()*100));

3}

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 7

© RCET, Bhilai

%

RUNGTA

String Handling

Handling character sequences or sting is supported through three final
classes:

- String,
- StringBuilder
- StringBuffer

Immutability

- The String class implements immutable character strings, which are read-
only once the string has been created and initialized.

- Itis not changeable.
Mutability
StringBuilder and StringBuffer classes implement dynamic character strings.

The StringBuffer class is a thread-safe version of the StringBuilder class.

80

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG)

© RCET, Bhilai

%

RUNGTA

String Constructors

The String class supports several constructors. To create an empty String,

you call the default constructor.
- String()
- String(String str)
- String(char[]ch)
- String(char[]ch, int startindex, int numChars)
- String(byte asciiChars|])
- String(byte asciiCharg| |, int startindex, int numChars)
- String(StringBuilder builder)
- String(StringBuffer buffer)

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG)

© RCET, Bhilai

%

RUNGTA

String Length

The length of a string is the number of characters that it contains.
To obtain this value , call the length() method.
E.g.,

char chars[] ={'a', 'b', 'c' };

String s = new String(chars);

System.out.printin(s.length());

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 82

© RCET, Bhilai

%

RUNGTA

String Concatenation

In java we can use “+” operator for concatenation, which concatenates two

strings & produces a string object as a result.
E.g.,
String age = "9";
String s ="He i1s " + age + " years old.";
System.out.printin(s);
- This displays the string : He is 9 years old.

One practical use of string concatenation is found when you are creating very

long strings. We can break them into smaller pieces, using the + to concatenate

them
Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 83

© RCET, Bhilai

%

RUNGTA

String Concatenation...

E.g., intage =09;
Strings ="He is " + age + " years old.";
System.out.printin(s);

Here age is an int rather than another String, but the output produced is the
same as before. This is because the int value in age is automatically

converted into its string representation within a String object.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 84

© RCET, Bhilai

%

RUNGTA

String Concatenation...

String S="four:” +2+2;
System.out.printin(S);

Output:
four:22

Operator precedence causes the concatenation of “four” with the string
equivalent of 2 to take place first. This result is then concatenated with the

string equivalent of 2 a second time.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 85

© RCET, Bhilai

%

RUNGTA

String Concatenation...

String S= “four:"+(2+2);
System.out.printin(S);

Output:

four: 4

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 86

© RCET, Bhilai

%

"M String Methods

charAt(): By using this method we can able to extract a single character from

a String.
General form:
char charAt(int index)

The value of index must be nonnegative and specify a location within the
string.
charAt() returns the character at the specified location.
E.gQ.,
char ch;
ch = "abc".charAt(1);

assigns the value “b” to ch.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 87

© RCET, Bhilai

%

RUNGTA

String Methods
- getChars():

By using this method we can extract more than one character at a time.

General Form:

void getChars(int sourceStart, int sourceEnd, char target[], int targetStart)
sourcesStart specifies the index of the beginning of the substring .
sourceEnd specifies an index that is one past the end of the desired substring.
The substring contains the characters from sourceStart through sourceEnd.
The array that will receive the characters is specified by target.

The index within target at which the substring will be copied is passed in

targetStart.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 88

© RCET, Bhilai

rZ String Methods

e getBytes():

By using this method we can able to convert a string in to byte array. So that we
can able to write this array on to the output stream.

It is most useful when we are exporting a String value in to an environment that
does not support 16-bit Unicode characters. Because most Internet protocols
and text file formats use 8-bit ASCII for all text interchange.

General Form:
byte[] getBytes()

E.g.,
String s="Hello How are Your”;
byte b[]=s.getBytes();

getBytes() is an alternative to getChars() which stores the characters in an

array of bytes. It uses the default character-to-byte conversions provided by

platform.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 89

© RCET, Bhilai

%

RUNGTA

String Methods
toCharArray():

By using this method we can able to convert the string in to new character
array.

General form:
char[] toCharArray()
E.g.,

String str="Rungta”;
char ch[]=str.toCharArray();
for(int i=0;i<ch.length;i++)
{

System.out.printin(ch[i]);

}

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG)

© RCET, Bhilai

90

%

RUNGTA

String Comparison methods
equals(): Compares two strings for equality.

General Form:
boolean equals(Object str)
str is the String object being compared with the invoking String object.

It returns true if the strings contain the same characters in the same order,

and false otherwise. The comparison is case-sensitive.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) ol

© RCET, Bhilai

%

RUNGTA

String Comparison methods

equalslignoreCase():

To perform a comparison that ignores case differences call
equalsignoreCase().

When it compares two strings it considers A-Z to be the same as a-z.
General Form:

boolean equalsignoreCase(String str)

str is the String object being compared with the invoking String object. It
returns true if the strings contain the same characters in the same order, and
false otherwise.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 92

© RCET, Bhilai

%

RUNGTA

String Comparison methods

regionMatches():

This method compares a specific region inside a string with another specific region
In another string.

General Form:
boolean regionMatches(int startindex, String str2, int str2Startindex, int numChars)

boolean regionMatches(boolean ignoreCase, Iint startindex, String str2, int
str2Startindex, iInt numChars)

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 9

© RCET, Bhilai

%

RUNGTA

String Comparison methods

startindex specifies the index at which the region begins within the invoking

String object.
The String being compared is specified by str2.

The index at which the comparison will start within str2 is specified by

str2Startindex.
The length of the substring being compared is passed in numChars.

In the second form, if ignoreCase is true, the case of the characters is

ignored. Otherwise, case is significant.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) o

© RCET, Bhilai

%

RUNGTA

String Comparison methods
startsWith():

This method determines whether a given String begins with a specified
string.
General Form:
boolean startsWith(String str)
boolean startsWith(String str, int startindex)

str is the String being tested. If the string matches, true is returned

Otherwise false is returned

E.gQ.,
String str="Rungta Engineering College of Technology”;
boolean b=str.startsWith(“Rungta”);
System.out.printin(b);

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 9

© RCET, Bhilai

%

RUNGTA

String Comparison methods

endsWith():

This method determines whether a given String ends with a specified string.

General Form:

boolean endsWith(String str)

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) %

© RCET, Bhilai

%

RUNGTA

String Comparison methods

E.g.,
String str="Rungta Engg. College”;
boolean b=str.endsWith(“College”);
System.out.printin(b);

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG)

© RCET, Bhilai

97

%

RUNGTA

Equals() Vs ==

The equals() method compares the characters inside a String object.

The == operator compares two object references to see whether they refer to the same
instance.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 98

© RCET, Bhilai

%

RUNGTA

String Comparison methods

compareTo():

By using this method we can able to compare two String objects
character by character. This type of comparison is called as Dictionary type checking.

General Form:

int compareTo(String str)

str is the String being compared with the invoking String.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 99

© RCET, Bhilai

%

RUNGTA

String Comparison methods

Value Meaning
Less than zero The invoking string is less
than str
Greater than zero The invoking string is greater
than str.
Zero The two strings are equal.
Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 100

© RCET, Bhilai

%

RUNGTA

String Comparison methods

compareTolgnore():

General Form:

int compareTolgnoreCase(String str)

This method returns the same results as compareTo() except that case differences are ignored.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 101

© RCET, Bhilai

%

RUNGTA

Searching Strings

indexOf():

Searches for the first occurrence of a character or substring. This method
returns the index at which the character or substring was found or —1 on failure.

To search for the first occurrence of a character

int indexOf(int ch)

To search for the first occurrence of a substring

int indexOf(String str)

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 102

© RCET, Bhilai

%

RUNGTA

Searching Strings

we can specify a starting point for the searching using these forms:
Int indexOf(int ch, int startindex)
int indexOf(String str, int startindex)

Here, startindex specifies the index at which point the search begins.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 103

© RCET, Bhilai

%

RUNGTA

Searching Strings

lastindexOf():

Searches for the last occurrence of a character or substring.

To search for the last occurrence of a character

int lastindexOf(int ch)

To search for the first or last occurrence of a substring, use
int lastindexOf(String str)

str specifies the substring.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 104

© RCET, Bhilai

%

RUNGTA

Searching Strings

int lastindexOf(int ch, int startindex)

int lastindexOf(String str, int startindex)

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 105

© RCET, Bhilai

%

RUNGTA

Modifying a String

substring():

We can extract a substring by using this method.

String substring(int startindex)

Here, startindex specifies the index at which the substring will begin. This form

returns a copy of the substring that begins at startindex and runs to the end of the
invoking string.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 106

© RCET, Bhilai

%

RUNGTA

Modifying a String

String substring(int startindex, int endindex)

Here, startindex specifies the beginning index, and endindex specifies the stopping
point. The string returned contains all the characters from the beginning index to the
ending index.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 107

© RCET, Bhilai

%

RUNGTA

Modifying a String

E.g.,
String s1="Rungta Engg. College™;
String str =s.subString(6);
String strl=s.subString(6,8);
System.out.printin(str);

System.out.printin(strl);

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 108

© RCET, Bhilai

%

RUNGTA

Modifying a String

concat():

By using this method we can concatenate two strings .
String concat(String str)

This method creates a new object that contains the invoking string with the contents of str

appended to the end. concat() performs the same function as +

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 109

© RCET, Bhilai

%

RUNGTA

Modifying a String

E.g.1:
String s1="one”;
String s2=sl.concat(“two”);
E.g.2:
String s1="one”;
String s2="“two”;
System.out.printin(sl.concat(s2));

In this case new String object will be created and it is handled by JVM.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 110

© RCET, Bhilai

%

RUNGTA

Modifying a String

replace():

This method replaces all occurrences of one character in the invoking string with
another character.

String replace(char original, char replacement)

Here, original specifies the character to be replaced by the character specified by
replacement. The resulting string is returned.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 111

© RCET, Bhilai

%

RUNGTA

Modifying a String

E.g.,

String s = "Hello".replace('l', 'w');

puts the string “Hewwo” into s.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 112

© RCET, Bhilai

%

RUNGTA

Modifying a String

replaceAll():

By using this method a group of characters can be replaced.

replaceAll(String original, String replacement)

E.g.,
String s=“Hello”.replace Al (“11”,”LLLL");

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 113

© RCET, Bhilai

%

RUNGTA

Modifying a String

replaceFirst():

This method replaces first character.

replaceFirst(String original, String replacement)

E.g.,
String s="Hello How”;

System.out.printin(s.replaceFirst(“he”,”how™));

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 114

© RCET, Bhilai

%

RUNGTA

Modifying a String

trim():

The trim(') method returns a copy of the invoking string from which any leading and
trailing whitespace has been removed.

String trim()

E.g.,
String s=*“ Hello World “.trim();
System.out.printin(s);
Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 115

© RCET, Bhilai

%

RUNGTA

Data Conversion Using valueOf()

valueOf():

By using this method any data type will able to convert in to reasonable String
representation. It is a static method that is overloaded within String for all of Java’s built-in
types, so that each type can be converted properly into a string.

static String valueOf(double num)
static String valueOf(long num)
static String valueOf(Object ob)
static String valueOf(char chars]])

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 116

© RCET, Bhilai

%

RUNGTA

Data Conversion Using valueOf()

static String valueOf(char chars]], int startindex, int numChars)

chars is the array that holds the characters,
startindex is the index into the array of characters at which the desired substring begins and

numChars specifies the length of the substring.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 117

© RCET, Bhilai

%

RUNGTA

toString():

By using this method we can able to convert any object in to String object type.

String toString()

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 118

© RCET, Bhilai

%

RUNGTA

Changing the case of characters

toLowerCase(): converts all the characters in a string from uppercase to lowercase.

String toLowerCase()

toUpperCase(): converts all the characters in a string from lowercase to uppercase

String toUpperCase()

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 119

© RCET, Bhilai

%

RUNGTA

StringBuffer

StringBuffer is a peer class of String that provides much of the functionality

of strings.

String represents fixed-length, immutable character sequences where as

StringBuffer represents growable and writeable character sequences.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 120

© RCET, Bhilai

%

RUNGTA

StringBuilder and StringBuffer

StringBuffer may have characters and substrings inserted in the middle or

appended to the end.

StringBuffer will automatically grow to make room for such additions and
often has more characters preallocated than are actually needed, to allow

room for growth.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 121

© RCET, Bhilai

%

RUNGTA

StringBuffer Constructors

Constructs a string buffer with no characters in it and an initial capacity of 16 characters.

StringBuffer()

Constructs a string buffer with no characters in it and an initial capacity specified by the length
argument.

StringBuffer(int length)

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 122

© RCET, Bhilai

%

RUNGTA

StringBuffer Constructors

Constructs a string buffer so that it represents the same sequence of characters as the string
argument.

StringBuffer(String str)

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 123

© RCET, Bhilai

%

RUNGTA

length() and capacity()

length():

This method returns current length of this StringBuffer.

int length();

capacity():

This method returns total allocated space of this StringBuffer.

int capacity();

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 124

© RCET, Bhilai

%

RUNGTA

StringBuffer Methods

ensureCapacity():

Ensures that the capacity of the buffer is at least equal to the specified
minimum.

void ensureCapacity(int minimumCapacity)

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 125

© RCET, Bhilai

%

RUNGTA

StringBuffer Methods

setLength():

To set the length of the buffer with in a StringBuffer object use setLength()
method.

void setLength(int len)

len specifies the length of the buffer.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 126

© RCET, Bhilai

%

RUNGTA

StringBuffer Methods

When we increase the size of the buffer null characters are added to the end of the existing
buffer.

If we call setLength() method with a value less than the current value returned by length()
method, then the characters stored beyond the new length will be lost.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 127

© RCET, Bhilai

%

RUNGTA

StringBuffer Methods

charAt():

The value of a single character can be obtained from a StringBuffer by using charAt()
method.

char charAt(int index)

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 128

© RCET, Bhilai

%

RUNGTA

StringBuffer Methods

setChatAt(): We can set the value of character with in a stringBuffer by using setChatAt()
method.

void setChatAt(int index, char ch)

index must not specify a location beyond the end of the buffer.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 129

© RCET, Bhilai

%

RUNGTA

StringBuffer Methods

getChars():

By using this method we can copy a substring of a StringBuffer into an array.

void getChars(int sourceStart, int sourceEnd,

char target[], int targetStart)

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 130

© RCET, Bhilai

%

RUNGTA

StringBuffer Methods

append():

This method concatenates the string representation of any other type of data to the
end of the invoking StringBuffer object.

StringBuffer append(String str)
StringBuffer append(int num)
StringBuffer append(Object obj)

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 131

© RCET, Bhilai

%

RUNGTA

StringBuffer Methods

E.g.,
String s;
int a=42;
StringBuffer sb= new StringBuffer(40);
s=sbh.append(“a=").append(a).append(“!").toString();

System.out.printin(s);

Output: a=42!

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 132

© RCET, Bhilai

%

RUNGTA

StringBuffer Methods

insert():

This method inserts one String in to another.

StringBuffer insert(int index, String str)
StringBuffer insert(int index, char ch)

StringBuffer insert(int index, Object obj)

index specifies the index at which point the string will be inserted into the invoking StringBuffer
object.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 133

© RCET, Bhilai

%

RUNGTA

StringBuffer Methods

E.g.,
StringBuffer sb= new StringBuffer(“l Java!”);
sb.insert(2,”Like™;
System.out.printin(sb);

Output: | Like Javal!

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 134

© RCET, Bhilai

%

RUNGTA

StringBuffer Methods

reverse():

By using this method we can reverse the characters with in a String.
StringBuffer reverse()

This method returns the reversed object on which it was called.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 135

© RCET, Bhilai

%

RUNGTA

StringBuffer Methods

delete():

This method deletes a sequence of characters from the invoking object.

StringBuffer delete(int startindex, int endIndex)

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 136

© RCET, Bhilai

%

RUNGTA

StringBuffer Methods

deleteCharAt():

StringBuffer deleteCharAt(int loc)

This method deletes the character at the index specified by loc and returns resulting
StringBuffer.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 137

© RCET, Bhilai

%

RUNGTA

StringBuffer Methods

replace():

This method replaces one set of characters with another set inside a StringBuffer
object.

StringBuffer replace(int startindex, int endIndex,

String str)

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 138

© RCET, Bhilai

%

RUNGTA

StringBuffer Methods

substring() :

String substring(int startindex)

This returns a substring that starts at startindex and runs to the end of the invoking
StringBuffer object.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 139

© RCET, Bhilai

%

RUNGTA

StringBuffer Methods

String substring(int startindex, int endindex)

This returns a substring that starts at startindex and runs through endindex.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 140

© RCET, Bhilai

%

RUNGTA

Collection Framework

A data structure is nothing but arranging the data in a particular order, In order to perform
some operations on it.

The Built-in data Structure are for storing the homogeneous elements only. But java language
needs Heterogeneous element collection. So to satisfy our new requirements we can able to
create our own data structure.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 141

© RCET, Bhilai

%

RUNGTA

Collection Framework

Collection is a group of objects.

Collection Framework means unified architecture for representing and manipulating the
collection classes.

From jdk1.2 onwards a new concept is introduced in util package called as “Collection
Framework”.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 142

© RCET, Bhilai

%

RUNGTA

Collection Framework

Collections are of 2 types
1) Single value collections

2) Double value collections

Single value collections are used for storing the data (or) record where as double value
collections are meant for comparison.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 143

© RCET, Bhilai

%

RUNGTA

Collection Framework

Single value collection Double value collection

Vector HashTable
Stack Properties
ArrayList HashMap
LinkedList LinkedHashMap
HashSet TreeMap

LinkedHashSet
TreeHashSet

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 144

© RCET, Bhilai

%

RUNGTA

Vector

The Vector class implements a growable array of objects.

Vector class is by default supporting synchronized methods.

Vector is a special class which always supporting jdk1.0 and jdk1.2 methods.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 145

© RCET, Bhilai

%

RUNGTA

Vector Constructors

Vector():

By using this constructor a collection object will be created, by default which will
occupy 10 elements space.

E.g. Vector v=new Vector();

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 146

© RCET, Bhilai

%

RUNGTA

Vector Constructors

Vector(Collection c):

Constructs a vector containing the elements of the specified collection.

E.g. Vector v1= new vector();

Vector v2= new Vector(vl);

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 147

© RCET, Bhilai

%

RUNGTA

Vector Constructors

Vector(int intialCapacity):

Constructs an empty vector with the specified initial capacity and
with its capacity increment equal to zero.

E.g. Vector v=new Vector(25);

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 148

© RCET, Bhilai

%

RUNGTA

Vector Constructors

Vector(int initialCapacity, int capacitylncrement):

By using this constructor we can able to specify the initial, incremental
capacity.

Whenever the initial size is filled up, based on incremental capacity the collection size will be
expanded.

E.g. Vector v=new vector(5,4);

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 149

© RCET, Bhilai

%

RUNGTA

Vector Methods

add():

Inserts the specified element at the specified position in this Vector.

void add(int index, Object element)

Appends the specified element to the end of this Vector.
boolean add(Object 0)

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 150

© RCET, Bhilai

%

RUNGTA

Vector Methods

addAll():

Appends all of the elements in the specified Collection to the end of this Vector.

boolean addAll(Collection c)

Inserts all of the elements in in the specified Collection into this VVector at the
specified position.

boolean addAll(int index, Collection c)

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 151

© RCET, Bhilai

%

RUNGTA

Vector Methods

addElement():

Adds the specified component to the end of this vector, increasing its size by
one.

void addElement(Object obj)

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 152

© RCET, Bhilai

%

RUNGTA

Vector Methods

capacity():

Returns the current capacity of this vector.

Int capacity()

E.g. Vector v=new Vector(3);
System.out.printin(v.capacity());

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 153

© RCET, Bhilai

%

RUNGTA

Vector Methods

clear():

Removes all of the elements from this Vector.

void clear()

clone():

Returns a clone of this vector.

Object clone()

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 154

© RCET, Bhilai

%

RUNGTA

Vector Methods

contains():

Tests if the specified object is a component in this vector.
boolean contains(Object element)

Returns true if and only if the specified object is the same as a component in this vector, as
determined by the equals method; false otherwise.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 155

© RCET, Bhilai

%

RUNGTA

Vector Methods

containsAll():

Returns true if this Vector contains all of the elements in the specified Collection.

boolean containsAll(Collection c).

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 156

© RCET, Bhilai

%

RUNGTA

Vector Methods

copylInto():

Copies the components of this vector into the specified array.

void copylnto(Object[] anArray)

elementAt():

Returns the component at the specified index.

Object elementAt(int index)

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 157

© RCET, Bhilai

%

RUNGTA

Vector Methods

- ensureCapacity():

Increases the capacity of this vector, If necessary,
to ensure that it can hold at least the number of components
specified by the minimum capacity argument.

void ensureCapacity(int mincapacity)

- equals():

Compares the specified Object with this Vector for
equality.

ort K shame, Sy ey A S (OB £ ©)

© RCET, Bhilai

%

RUNGTA

Vector Methods

firstElement():

Returns the first component (the item at index Q) of this vector.

Object firstElement()

get():

Returns the element at the specified position in this Vector.

Object get(int index)

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 159

© RCET, Bhilai

%

RUNGTA

Vector Methods

hashCode():

Returns the hash code value for this VVector.
int hashCode()
indexOf():

Searches for the first occurrence of the given argument.
int indexOf(Object element)

Searches for the first occurrence of the given argument, beginning the search at
index.

int indexOf(Object element, int index)

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 160

© RCET, Bhilai

%

RUNGTA

Vector Methods

insertElementAt():

Inserts the specified object as a component in this vector at the specified
index.

void insertElementAt(Object obj, int index)

lastElement():

Returns the last component of the vector.

Object lastElement()

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 161

© RCET, Bhilai

%

RUNGTA

Vector Methods

ISEmpty():

Tests if this vector has no components.

boolean isEmpty()

Returns true if and only if this vector has no components, that is, its size is zero; false
otherwise.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 162

© RCET, Bhilai

%

RUNGTA

Vector Methods

lastlndexOf():

Returns the index of the last occurrence of the specified object in this vector.

int lastindexOf(Object element)

Searches backwards for the specified object, starting from the specified index,
and returns an index to it.

int lastindexOf(Object element,int index)

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 163

© RCET, Bhilai

%

RUNGTA

Vector Methods
removeg)Z

Removes the element at the specified position in this Vector.

Object remove(int index)

Removes the first occurrence of the specified element in this Vector .

boolean remove(Object 0)

Returns true if the Vector contained the specified element.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 164

© RCET, Bhilai

%

RUNGTA

Vector methods

removeAll():

Removes from this Vector all of its elements that are contained in the specified
Collection.

boolean removeAll(Collection c)

removeAllElements():

Removes all components from this vector and sets its size to zero.

void removeAllElements()

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 165

© RCET, Bhilai

%

RUNGTA

Vector Methods

removeElementAt():

Deletes the component at the specified index.
void removeElementAt(int index)

removeElement():

Removes the first occurrence of the argument from this vector.

boolean removeElement(Object obj)
Returns true if the argument was a component of this vector; false otherwise.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 166

© RCET, Bhilai

%

RUNGTA

Vector methods

removeRange():

Removes from this List all of the elements whose index is between
fromlIndex, inclusive and tolndex, exclusive.

protected void removeRange(int fromindex,
int tolndex)

retainAll():

Retains only the elements in this Vector that are contained in the specified
Collection.

boolean retainAll(Collection c)

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 167

© RCET, Bhilai

%

RUNGTA

Vector methods

set():

Replaces the element at the specified position in this Vector with the specified element.

Object set(int index,Object element)

setElementAt():

Sets the component at the specified index of this vector to be the specified
object.

void setElementAt(Object obj, int index)

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 168

© RCET, Bhilai

%

RUNGTA

Vector Methods

setSize():

Sets the size of this vector.

void setSize(int newSize)

size():
Returns the number of components in this vector.

int size()

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 169

© RCET, Bhilai

%

RUNGTA

Vector Methods

toArray():

Returns an array containing all of the elements in this VVector in the correct order.

Object[] toArray()

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 170

© RCET, Bhilai

%

RUNGTA

Vector Methods

toString():

Returns a string representation of this Vector, containing the String representation
of each element.

String toString()

trimToSize():

Trims the capacity of this vector to be the vector's current size.

void trimToSize()

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 7

© RCET, Bhilai

