%

RUNGTA

Unit —II

Class and Object

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG)

%

RUNGTA

Class

<class modifiers> class <class name><formal type parameter list> <extends clause>
<implements clause> // Class header

{ /] class body
<field declarations>
<method declarations>
<nested class declarations>
<nested interface declarations>
<nested enum declarations>
<constructor declarations>

<initializer blocks>
} /1 End of Class Body

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 2

%

RUNGTA

Simple Class

class Cuboid

{
float length;
float breadth;
float height;

}

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG)

%

RUNGTA

Declaring Objects

Obtaining objects of a class is a two-step process.

First, you must declare a variable of the class type. This variable does not define an

object. Instead, it is simply a variable that can refer to an object.

Second, you must acquire an actual, physical copy of the object and assign it to that
variable. You can do this using the new operator. The new operator dynamically
allocates (that is, allocates at run time) memory for an object and returns a
reference to it. This reference is, more or less, the address in memory of the object

allocated by new.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 4

%

RUNGTA

Examle of Declaring Object

First Step

- Cuboid myCuboid; // declare reference to object
Second Step

- myCuboid= new Cuboid(); // allocate a Cube object

We can combine above two steps in single step.

Cuboid myCuboid = new Cuboid();

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG)

%

RUNGTA

Declaring an object of type Cuboid

Statement Effect
Cuboid myCuboid; null
myCuboid

myCuboid = new Cuboid();

myCuboid

length

breadth

height

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG)

RUNGTA

Assigning Object Reference Variables

class Box {

double width;
double height;
double depth;

}

Box bl = new Box();

Box b2 = bl

o)
=

\
/

.--"""—.—..

b2

Width

Height

Depth

Box object

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG)

RUNGTA

Assigning Object Reference Variables

bl = null;

Here, bl has been set to null, but b2 still points to the original object.

bl

Width
Height
Depth

h2

Box object

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG)

%

RUNGTA

Static Members
Static members belong to the class in which they are declared and are not part of any

instance of the class.

The declaration of static members is prefixed by the keyword static to distinguish

them from instance members.
Static members are

- Static variables

- Static methods

Static variables (also called class variables) exist in the class they are defined in
only. They are not instantiated when an instance of the class is created. In other

words, the values of these variables are not a part of the state of any object.
Static methods are also known as class methods. A static method in a class can

. directly access other static members in the class
Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 9

%

RUNGTA

Static Methods

Methods declared as static have following restrictions:

- They can only call other static methods.

- They must only access static data.

- They cannot refer to this or super in any way.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG)

10

rz Demonstrate static variables, methods, and blocks

RUNGTA

class StaticTest

{
static int a = 3;
static int b;
static void disp(int x)
{
System.out.printin("x =" + x);
System.out.printin("a =" + a);
System.out.printin("b =" + b);
} .
static
{
System.out.printin("Static block initialized.");
b=a*4,
}
public static void main(String args[])
{
disp(42);
}
}

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG)

11

%

RUNGTA

Terminology for Class Members

\/
000

4

L (4

L (4

4

L (4

D)

L (4

4

L (4

L)

Instance Members :- These are instance variables and instance methods of an
object. They can only be accessed or invoked through an object reference.

Instance Variable:- A field that is allocated when the class is instantiated, i.e., when an
object of the class is created. Also called non-static field.

Instance Method :- A method that belongs to an instance of the class. Objects of the
same class share its implementation.

Static Members:- These are static variables and static methods of a class. They
can be accessed or invoked either by using the class name or through an object
reference.

Static Variable :- A field that is allocated when the class is loaded. It belongs to the
class and not to any specific object of the class. Also called static field or class
variable.

Static Method:- A method which belongs to the class and not to any object of the
class. Also called class method.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG)

12

%

RUNGTA

Final members

A final variable is a constant despite being called a variable. Its value cannot be
changed once it has been initialized.

Instance and static variables can be declared final.

The keyword final can also be applied to local variables, including method
parameters.

Declaring a variable final has the following implications:

- A final variable of a primitive data type cannot change its value once it has been
initialized.

- A final variable of a reference type cannot change its reference value once it has
been initialized. This effectively means that a final reference will always refer to

the same object. However, the keyword final has no bearing on whether the state
of the object denoted by the reference can be changed or not.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 13

%

RUNGTA

Example of final members
final int FILE_NEW = 1;
final int FILE_OPEN = 2;
final int FILE_SAVE = 3;
final int FILE_SAVEAS = 4;

final int FILE_QUIT = 5;

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 14

%

RUNGTA

Review Question
Q.1 Which one of these declarations is a valid method declaration?

Select the one correct answer.
(a) void methodl1 { /* ... */ }
(b) void method2() { /* ... */ }
(c) void method3(void) { /* ... */ }
(d) method4() {/* ... */'}
(e) method5(void) { /* ... */ }

Answer: (b)

Only (b) is a valid method declaration. Methods must specify a return type or
must be declared void. This makes (d) and (e) invalid. Methods must specify a
list of zero or more comma-separated parameters enclosed by parentheses, ().

The keyword void cannot be used to specify an empty parameter list. This
makes (a) and (c) invalid.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 15

%

RUNGTA

Constructor

Constuctor is a special method in class

The main purpose of constructors is to set the initial state of an object, when
the object is created by using the new operator.

Constructors cannot return a value and, therefore, do not specify a return
type, not even void, in the constructor header. But their declaration can use
the return statement that does not return a value in the constructor body.

The constructor name must be the same as the class name.

Contructor would be

- Default Constructor

- Overloaded or prameterized Consturctor

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 16

%

RUNGTA

General Syntax of Constructor

<accessibility modifier> <class name> (<formal parameter list>)<throws clause>

{ /| Constructor body
<|ocal variable declarations>
<nested local class declarations>

<statements>

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 17

%

RUNGTA

Default Constructor

A default constructor is a constructor without any parameters, i.e., it is a no-

parameter constructor. It has the following signature:

- <class name>() { //statements}

If a class does not specify any constructors, then an implicit default constructor
IS generated for the class by the compiler. The implicit default constructor is

equivalent to the following implementation:

- <class name>() { super(); } // No parameters. Calls superclass constructor.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 18

%

RUNGTA

Overloaded or Prameterized Consturctor

- Like methods, constructors can also be overloaded.

. The constructors In a class all have the same name as the

class, their signatures are differentiated by their parameter lists.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 19

%

RUNGTA

Review Question
Q.2 Given the following pairs of method declarations, which statements are true?
(i) void fly(int distance) { }
int fly(int time, int speed) { return time*speed; }
(iNvoid fall(int time) { }
int fall(int distance) { return distance; } Answer: (a) and (d)
(iivoid glide(int time) { }
void Glide(int time) { }

Select the two correct answer.
(a) The first pair of methods will compile, and overload the method name fly.

(b) The second pair of methods will compile, and overload the method name fall.
(c) The third pair of methods will compile, and overload the method name glide.
(d) The second pair of methods will not compile.

(e) The third pair of methods will not compile.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 20

RUNGTA

Review Question

Q.3 Given a class named Book, which one of these constructor declarations is valid for
the class Book?

Select the one correct answer.

(a) Book(Book b) {}

(b) Book Book() {}

(c) private final Book() {}

(d) void Book() {}

(e) public static void Book(String[] args) {}
(f) abstract Book() {}

Answer: (a)

A constructor cannot specify any return type, not even void. A constructor
cannot be final, static, or abstract.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 21

_

RUNGTA

Review Question
Q.4 Which statements are true?

Select the two correct answers.

(a) A class must define a constructor.

(b) A constructor can be declared private.

(c) A constructor can return a value.

(d) A constructor must initialize all fields when a class is instantiated.
(e) A constructor can access the non-static members of a class.

Answer: (b) and (e)

A constructor can be declared private, but this means that this constructor can
only be used within the class. Constructors need not initialize all the fields when
a class is instanstiated. A field will be assigned a default value if not explicitly
Initialized. A constructor Is non-static and, as such, it can directly access both
the static and non-static members of the class.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG)

22

%

RUNGTA

Review Question
Q.5 What will be the result of compiling the following program?

public class MyClass {

long var;
public void MyClass(long param) { var = param; } // (1)
public static void main(String[] args) {

MyClass a, b; Answer: (c)
a = new MyClass(); // (2)
b = new MyClass(5); // (3) }}
Select the one correct answer.
(a) A compilation error will occur at (1), since constructors cannot specify a return value.
(b) A compilation error will occur at (2), since the class does not have a default
constructor.
(c) A compilation error will occur at (3), since the class does not have a constructor that

takes one argument of type int.
(d) The program will compile without errors.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 23

%

RUNGTA

Enumerated Types

An enumerated type defines a finite set of symbolic names and their values.
These symbolic names are usually called enum constants or named constants.

The canonical form of declaring an enum type is
- enum MachineState { BUSY, IDLE, BLOCKED }

The keyword enum is used to declare an enum type.

The basic notation requires the type name and a comma-separated list of enum

constants.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 24

%

RUNGTA

Example of enum

enum MachineState { BUSY, IDLE, BLOCKED }
class Machine {
private MachineState state;
public void setState(MachineState state) { this.state = state; }
public MachineState getState() { return this.state; }
}
public class MachineClient {
public static void main(String[] args) {
Machine machine = new Machine();
machine.setState(MachineState.IDLE); // (1) Passed as a value.
/[machine.setState(1); // (2) Compile-time error!
MachineState state = machine.getState(); // (3) Declaring a reference.
System.out.printin("The machine state is: " + state); // (4) Printing the enum name.

Il MachineState newState = new MachineState();// (5) Compile-time error!

25

Dr LYK Sharma, Rungta College of Engineering and Technology, Bhilai (CG)

}

>

%

RUNGTA

Declaring enum Constructors and Members

An enum type declaration is a special kind of reference type declaration. It can

declare constructors and other members as in an ordinary class,

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 26

RUNGTA

Review Question

Q. 6 Given the following declaration, which expression returns the size of the array, assuming
the array has been initialized?

int[] array;
Select the one correct answer.
(a) array[].length()
(b) array.length()
(c) array[].length
(d) array.length
(e) array[].size()
(f) array.size()
Answer: (d)

In Java, arrays are objects. Each array object has a final field named
length that stores the size of the array.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 27

RUNGTA

Review Question

Q.7 Is it possible to create arrays of length zero?

Select the one correct answer.

(a) Yes, you can create arrays of any type with length zero.
(b) Yes, but only for primitive data types.
(c) Yes, but only for arrays of reference types.

(d) No, you cannot create zero-length arrays, but the main() method may be passed a
zero-length array of Strings when no program arguments are specified.

(e) No, it is not possible to create arrays of length zero in Java.

Answer: (a)

Java allows arrays of length zero. Such an array is passed as argument
to the main() method when a Java program is run without any program
arguments.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 28

Q Review Question
S

RUNGTA

Q.8 Which one of the following array declaration statements is not legal?

Select the one correct answer.

(@) int [Ja[] = new int [4][4];

(b) int &[][] = new int [4][4];

(c) int a[][] = new int [J[4]

(d) int [Ja[] = new int [4][];

(e) int [][]a = new int [4][4];

Answer: (c) The [] notation can be placed both
after the type name and after the variable name in
an array declaration. Multidimensional arrays are
created by constructing arrays that can contain
references to other arrays. The expression new
Int[4][] will create an array of length 4, which can
contain references to arrays of int values. The
expression new int[4][4] will create the same two-
dimensional array, but will in addition create four
more one-dimensional arrays, each of length 4
and of the type int[]. References to each of these
arrays are stored in the two-dimensional array.

The expression int[][4] will not work, because the
arrays for the dimensions must be created from

left to right.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilzi (CG) 29

%

RUNGTA

Review Question
Q.9 Which of these array declaration statements are not legal?

Select the two correct answers.
(@) mntJil={{1,2}{1}{}{1,2,3}}
(b) int i[] = new int[2] {1, 2};
(c) inti[][] = new int[][] { {1, 2, 3}, {4, 5, 6} };
d)intif][={{1,2}, newint[2]};

(e)inti[4]={1, 2, 3,4}

Answer: (b) and (e)

The size of the array cannot be specified, as in (b) and (e). The size of
the array is given implicitly by the initialization code. The size of the
array Is never specified in the declaration of an array reference. The size
of an array Is always associated with the array instance (on the right-
hand side), not the array reference (on the lefthand side).

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 30

%

RUNGTA

Inheritance

There are two fundamental mechanisms for building new classes from
existing ones: inheritance and aggregation.

It makes sense to inherit from an existing class Vehicle to define a class Car,
since a car is a vehicle. The class Vehicle has several parts; therefore, it
makes sense to define a composite object of the class Vehicle that has
constituent objects of such classes as Motor, Axle, and GearBox, which
make up a vehicle.

Inheritance is one of the fundamental mechanisms for code reuse in OOP. It
allows new classes to be derived from an existing class. The new class (also
called subclass, subtype, derived class, child class) can inherit members
from the old class (also called superclass, supertype, base class, parent
class). The subclass can add new behavior and properties and, under
certain circumstances, modify its inherited behavior.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 31

%

RUNGTA

Class Diagram Depicting Inheritance Relationship

SUperclass

Slbclass

CharStack

IIIII

A

PrintablaCharStack

FEneralzation

|
!

S pecialzation

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG)

32

%

RUNGTA

Type of Inheritance

Single Inheritance

Multilevel Inheritance

Multiple Inheritance (Java does not support through class)
Herarical Inheritance

Hybrid Inheritance

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 33

%

RUNGTA

Syntax

class <sub class name> extends <base class name>

/l class members

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG)

34

%

RUNGTA

Method Overriding

- When ever super class method signature and subclass method

signature both are same it is said to be overriding.

- To perform overriding inheritance is compulsory.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 3

%

RUNGTA

Overriding vs. Overloading

Comparison Criteria

Overriding

Overloading

Method name

Must be the same.

Must be the same.

Argument list

MMust be the same.

M ust be different.

Return type

Can be the same type or a
covariant type.

Can be different.

throws clause

MMust not throw new checked
exceptions.

Can narrow exceptions
throwmn.

Can be different.

Accessibility

Can make it less restrictive,
but not more restrictive.

Can be different.

Declaration context

A method can only be

overridden in a subclass.

A method can be overloaded
in thie same class or in a
subclass.

Method call resclution

The runtimne type of the
reference, i.e., the type of the
object referenced at runtime,
determines which method is
selected for execution.

At compile time, the declared
type of the reference is used

to determine which method
will be executed at runtime.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG)

36

%

RUNGTA

The Object Reference super

The keyword super can be used in non-static code (e.g., in the body of an instance
method), but only in a subclass, to access fields and invoke methods from the

superclass.

The keyword super provides a reference to the current object as an instance of its

superclass.

super reference is used for member of super class for field member hiding

condition.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 37

%

RUNGTA Example

class A {
Int X, y;
void setValue(int a, int b){
X=a;y=b;
}
void show() {
System.out.println (“x“+x+“y“+y); }
class B extends A{
Int X, y;
void setValue(int a, int b, int ¢, int d){
super.x = a;
super.y = b;
X=¢;
y=d;
}
void show() {
System.out.println (“x“+x+“y“+y); }

}

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG)

38

%

RUNGTA

The this() Constructor Call

Constructors cannot be inherited or overridden.

They can be overloaded, but only in the same class. Since a constructor
always has the same name as the class, each parameter list must be

different when defining more than one constructor for a class.

the use of the this() construct, which is used to implement local chaining of

constructors in the class when an instance of the class is created.

Java requires that any this() call must occur as the first statement in a

constructor.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 39

%

RUNGTA

Example of the this() Constructor Call

class Light {
I/ Fields:
private int noOf\Watts;
private boolean indicator;
private String location;
// Constructors:
Light() { // (1) Explicit default constructor
this(0, false);
System.out.printin("Returning from default constructor no. 1.");
}
Light(int watt, boolean ind) { // (2) Non-default
this(watt, ind, "X");
System.out.printin("Returning from non-default constructor no. 2.");
}
Light(int noOfWatts, boolean indicator, String location) { // (3) Non-default
this.noOfWatts = noOfWatts;
this.indicator = indicator;
this.location = location;
System.out.printin("Returning from non-default constructor no. 3.");

b}

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG)

40

%

RUNGTA

The super() Constructor Call

The super() construct is used in a subclass constructor to invoke a constructor in the

immediate superclass.

This allows the subclass to influence the initialization of its inherited state when an

object of the subclass is created.

A super() call in the constructor of a subclass will result in the execution of the

relevant constructor from the superclass, based on the signature of the call.

The super() construct has the same restrictions as the this() construct: if used, the
super() call must occur as the first statement in a constructor, and it can only be

used in a constructor declaration.

This implies that this() and super() calls cannot both occur in the same constructor.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 4

% Review Question
~ 4

ruNeTA Q. 10 Which constructors can be inserted at (1) in MySub without causing a compile-time error?

class MySuper {
int number;
MySuper(int i) { number =1; }

}

class MySub extends MySuper {
Int count;
MySub(int count, int num) {
super(num);
this.count = count;

}

Answer (e)

The class MySuper does not have a default constructor. This
means that constructors in subclasses must explicitly call the
superclass constructor and provide the required parameters.
The supplied constructor accomplishes this by calling
super(num) in its first statement. Additional constructors can
accomplish this either by calling the superclass constructor
directly using the super() call, or by calling another constructor
in the same class using the this() call which, in turn, calls the
superclass constructor. (a) and (b) are not valid, since they do
not call the superclass constructor explicitly. (d) fails, since the

// (1) INSERT CONSTRUCTOR HERESuper() call must always Dbe the first statement in the

}

Select the one correct answer.
(@) MySub() {}

constructor body. (f) fails, since the super() and this() calls
cannot be combined.

(b) MySub(int count) { this.count = count; }

(c) MySub(int count) { super(); this.count = count; }

(d) MySub(int count) { this.count = count; super(count);
(e) MySub(int count) { this(count, count); }

(f) MySub(int count) { super(count); this(count, 0); }

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 42

%

Review Question

RUNGTA

Q. 11 What will the following program print when run?

public class MyClass {

public static void main(String[] args) {
B b = new B("Test");

3}

class A {

A() { this("1", "2"); }

A(String s, String t) { this(s + t); }
A(String s) { System.out.printin(s); }

}

class B extends A {

B(String s) { System.out.printin(s); }
B(String s, String t) { this(t + s + "3"); }
;3() { super("4"); }

Select the one correct answer.

(a) It will just print Test.

(b) It will print Test followed by Test.
(c) It will print 123 followed by Test.
(d) It will print 12 followed by Test.
(e) It will print 4 followed by Test.

Answer: (d)

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG)

43

Review Question

-_—

RUNGTA

Q. 12 Given the following classes and declarations, which statements are true?

Il Classes
class Foo {
private int i
public void f() { /* ... */} Answer (a), (b), and (d)
\ public void g { /* ... */ } Bar is a subclass of Foo that overrides the
class Bar extends Foo { method g(). The statement a.] = 5 is not
public int j; legal, since the member j in the class Bar
\ public void g() { /* ... */ } cannot be accessed through a Foo
// Declarations: reference. The statement b.l = 3 IS not
Foo a = new Foo(); legal either, since the private member I

sy newBal: cannot be accessed from outside of the
(a) The Bar class is a subclass of Foo.class Foo.

(b) The statement b.f(); is legal.

(c) The statement a.j = 5; is legal.

(d) The statement a.g(); is legal.

(e) The statement b.i = 3; is legal.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) a4

A Review Question

F'““'“f”'°*Q 13 What would be the result of compiling and running the following program?

public class MyClass { Answer (e)

public static void main(String[] args) { The code will compile without errors.

C c = new C(); None of the calls to a max() method

System.out.printin(c.max(13, 29)); are ambiguous. When the program is

} run, the main() method will call the

} max() method in C with the parameters

class A { 13 and 29. This method will call the
int max(int x, inty) {if (x>y) return x; else return y; } max() method in B with the parameters

} 23 and 39. The max() method in B will

Class B extends A{ in turn call the max() method in A with
iInt max(int x, int y) { return super.max(y, x) - 10; } the parameters 39 and 23. The max()
} method in A will return 39 to the max()

cIass_C exten_ds B.{ _ method in B. The max() method in B
Int max(int x, inty) { return super.max(x+10, y+10); } } \yill return 29 to the max() method in
Select the one correct answer. “The max() method in C will return

(a) The code will fail to compile because the max() method in RESSES, ﬁ(f‘ﬁ%{ﬁb nts
in the call super.max(y, x) in the wrong order. '
(b) The code will fail to compile because a call to a max() method is ambiguous.

(c) The code will compile and print 13, when run.

(d) The code will compile and print 23, when run.

(e) The code will compile and print 29, when run.

(f) The code will compile and print 39, when run,
Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 45

%

RUNGTA

Package

A package in Java is an encapsulation mechanism that can be used to group related

classes, interfaces, enums, and subpackages.
Java uses file system directories to store packages.

At most one package declaration can appear in a source file, and it must be the first

statement in the source file.

The package name is saved in the Java byte code for the types contained in the

package.

If a package declaration is omitted in a compilation unit, the Java byte code for the
declarations in the compilation unit will belong to an unnamed package (also called
the default package), which is typically synonymous with the current working

directory on the host system.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 46

%

RUNGTA

Defining Packages

The package statement has the following syntax:
- package <fully qualified package name>;
For example, a multileveled package declared as

- Package mypackage;

- needs to be stored in mypackage

The general form of a multileveled package statement is shown here:

- package pkgl[.pkg2[.pkg3]];
For example, a multileveled package declared as
- package java.awt.image;

- needs to be stored in java\awt\image

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG)

47

%

Example

rUNeTA package mypack;

class Balance {
String name;
double bal;
Balance(String n, double b) {
name = n;
bal = b;

}

void show() {
if(bal<0)
System.out.print("-->");
System.out.printin(name + ": $" + bal);

}
}

class AccountBalance {

public static void main(String args[]) {
Balance current[] = new Balance[3];
current[0] = new Balance("K. J. Fielding", 123.23);
current[1] = new Balance("Will Tell", 157.02);
current[2] = new Balance("Tom Jackson", -12.33);
for(int i=0; i<3; i++) current[i].show();

}

}

Orc K Sharma, Rungta College of Engineering and Technology, Bhilai (CG)

48

%

RUNGTA

Compile and Run the program

Create a folder mypack andsave java source code AccountBalance.java

Compile the java source inside mypack
- javac AccountBalance.java

Make sure that the resulting .class file is also in the MyPack directory

you will need to be in the directory above mypack when you execute following

command

- Java mypack.AccountBalance

AccountBalance is now part of the package mypack. This means that it cannot
be executed by itself. That is, you cannot use this command line:

- Java AccountBalance

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 49

%

RUNGTA

Using Packages
We can use liberay package as well user define pakcage

The simple form of the import declaration has the following syntax:
- import <fully qualified type name>;
- import pkgl[.pkg2].(classname|*);

Example

Importing all classes

Import java.awt.*;

Import java.util.*;

Importing specific class

import java.util.Date;

Dr L K. SHp Gulrlg 4606 @egel i G5 0@ @4, Technology, Bhiilai (CG)

50

%

Using Packages Example

RUNGTAImport java.util.Scanner;

class Testinput{

public static void main(String args[]){
String name;

int age;

float fee;

Scanner input = new Scanner(System.in);
System.out.printin(“Enter your name :“);
name = input.nextLine();
System.out.printin(“Enter your age:“);
age = input.nextint();
System.out.printin(name+* “ +age);

1}

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG)

51

%

RUNGTA

Example to access class of another package

//Save A.java inside folder mypackl
package mypackl;

public class A {

public void show(){
System.out.printin("l am class A");

I3

//Save B.java inside folder mypack?2

package mypack?2;

Import mypackl.*;

public class B extends A{

public void show(){

super.show();

System.out.printin("l am class B");

}

public static void main(String args[])X{
new B().show();

1}

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG)

52

%

RUNGTA

Compile and Run the program

Let us my computer has following direcory(package) structure
G:\

TYPrY (’ mypackl

mypack?2

Compile

- G:\myprg\mypackl> javac A.java

- G:\myprg\mypack2> javac —classpath /myprg B.java
Run

- G:\myprg> java mypack2.B

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) >3

%

" JAR Files
The JAR (Java ARchive) utility provides a convenient way of

bundling and deploying Java programs.

A JAR file is created by using the jar tool.

A typical JAR file for an application will contain the class files
and any other resources needed by the application (for
example image and audio files).

JAR technology makes it much easier to deliver and install
software.

A utility is used to generate a JAR file. Its syntax is shown here:

- Jar options files

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) >4

%

RUNGTA

JAR Command Options

Option Description

C A new archive is to be created.

L Change directories during command execution.

t The first element in the file list is the name of the archive that is to be
created or accessed.

i Index information should be provided.

1 The second element in the file list is thie name of the external manifest file.

A% | Manifest file not created.

t The archive contents should be tabulated.

u Update existing JAIR file.

W WVerbose output should be provided by the utility as it executes.

b4 Files are to be extracted from the archive. (If there is only one file, that
is the name of the archive, and all files in it are extracted. Otherwise,
the first element in the file list is the name of the archive, and the
remaining elements in the list are the files that should be extracted
from the archive.)

(] Do not use compression.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) >

%

RUNGTA

Create a JAR file

- Jar -cf Xyz.jar *.class *.gif

- Above uses of jar utility create jar file and include all
class file and gif inside jar file

- Jar -cf Xyz.jar A.class

- Above uses of jar utility create jar file and include only
A.class file inside jar file

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) >0

%

RUNGTA

Review Question

Q.14 What will be the output.
public class TestLoop {

public static void main(String[] args) {
int x[] ={1,2,3,4,5};

for (int i:x){

System.out.print(i);

138

Select correct answer

a) Compile time error

b) Run time error

c) It will compile and run. It will print 12345
d) It will run and throw exception

Answer: (c)

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG)

57

%

RUNGTA

Access Protection
Classes and packages are both means of encapsulating and containing the name
space and scope of variables and methods.

The class is Java’s smallest unit of abstraction. Because of the interplay between
classes and packages.

Java addresses four categories of visibility for class members:

Subclasses in the same package

Non-subclasses in the same package

Subclasses in different packages

Classes that are neither in the same package nor subclasses

The accessibility of members can be one of the following:
- public
- protected
- default (also called package accessibility)
- private

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG)

58

%

RUNGTA

Public member
- Public accessibility is the least restrictive of all the accessibility

modifiers.

A public member is accessible from anywhere, both in the
package containing its class and in other packages where this

class iIs visible.

. This Is true for both instance and static members.

59

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG)

%

Example

RUNGTA [[Filename: SuperclassA.java (1)

package packageA;
public class SuperclassA {
public int superclassVarA; // (2)
public void superclassMethodA() {/*...*/} Il (3)

class SubclassA extends SuperclassA {
void subclassMethodA() { superclassvarA = 10; } // (4) OK.
}

class AnyClassA {
SuperclassA obj = new SuperclassA();
void anyClassMethodA() {
obj.superclassMethodA(); // (5) OK.

1}

/[Filename: SubclassB.java (6)

package packageB;

import packageA.*;

public class SubclassB extends SuperclassA {
void subclassMethodB() { superclassMethodA(); } // (7) OK.

}

class AnyClassB {
SuperclassA obj = new SuperclassA();
void anyClassMethodB() {
obj.superclassVarA = 20; // (8) OK.

1}

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG)

60

»

RUNGTA

Public Accessibility

Client 2 / Glienm

packageA packageB
Client 3 Client 4
SuperclassA <j SubclassB AnyClassB
+superclassVarA:int [obJj:SuperClassA
+superclassMethodA < subclassMethodB || anyClassMethodB

AnyClassA SubclassA
obj:SuperClassA
anyClassMethodA| | subclassMethodA

Q Inheritance relationship
<—— Access is permitted.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG)

61

%

RUNGTA

Protected member
- A protected member is accessible in all classes in the same

package, and by all subclasses of its class in any package

where this class is visible.

- In other words, non subclasses in other packages cannot

access protected members from other packages.

- It is more restrictive than public member accessibility.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 62

%

RUNGTA

Protected Accessibility

packageA packageB

Client 3 Client 4
SuperclassA Q SubclassB AnyClassB
#superclassVarA:int obj:SuperClassA
#superclassMethodA %‘ subclassMethodB || anyClassMethodB
Client 2 / DIEHN X
Any(lassA SubclassA < |— Inheritance relationship
obj:SuperClassA <—— Access is permitted.
anyClassMethodA | | subclassMethodA <—>¢— Access is denied.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG)

%

RUNGTA

Default Accessibility for Members

When no member accessibility modifier is specified, the

member is only accessible by other classes in its own class’s

package.

Even if its class is visible in another (possibly nested) package,

the member is not accessible elsewhere.

Default member accessibility is more restrictive than protected

Dr m&mbﬁﬁgta@@ﬁtsﬁmu&tym Technology, Bhilai (CG) 64

%

RUNGTA

Default Accessibility

packageA packageB
Client 3 Client 4
SuperclassA < SubclassB AnyClassB
superclassVarA:int € 5 ob7j:SuperClassA
superclassMethodA (<€ ‘ subclassMethodB || anyClassMethodB
Client 2 / Gnem\/&\ X
Any(lassA SubcTassA <}— Inheritance relationship
obj:SuperClassA < Access is permitted.
anyClassMethodA | | subclassMethodA <~ Access is denied.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 65

%

RUNGTA

private Members

- This is the most restrictive of all the accessibility modifiers.

- Private members are not accessible from any other classes.
This also applies to subclasses, whether they are in the same

package or not.

- Since they are not accessible by their simple name Iin a

subclass, they are also not inherited by the subclass.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 66

%

RUNGTA

Private Accessibility

packageA packageB
Client 3 Client 4
SuperclassA Q SubclassB AnyClassB
-superclassVarA:int [< X obj:SuperClassA
-superclassMethodA ﬂ subclassMethodB || anyClassMethodB
Client 2 / Gliemx/&\ X
AnyClassA SubcTassA

<}~ Inheritance relationship

<< Access is denied.

ob7:SuperClassA

anyClassMethodA| | subclassMethodA

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG)

%

RUNGTA

Summary of Accessibility Modifiers for Members

Moditiers Members
public Accessible everywhere.
protectec Accessible by any class in the same package asits class, and

accessible only by subclasses of its class in other packages.

default (no modifier) Only accessible by classes, including subclasses, in the
same package as ifs class (package accessibility).

private Onlj; accessible in its own class and not anj;where else,

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG)

%

RUNGTA

Summary of Accessibility Modifiers for Members...

Private

Same class Yes

Same package Mo
subclass

Same package No
non-subclass

Ditterent Mo
package

stibelass

Ditterent Mo
package
non-siubclass

No modifier

Yes
Yes

Yes

Mo

Mo

Protected

Yes
Yes

Yes

Yes

Mo

Public

Yes
Yes

Yes

Yes

Yes

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG)

69

RUNGTA

Review Question
Q.14 Given the following declaration of a class, which fields are accessible from outside

the package com.corporation.project?

package com.corporation.project;

public class MyClass { Answer: (b) and (d)
int i Outside the package, the
public int j; member | is accessible to any
E:S:t:?:tllr;ﬂ K class, whereas the member

} k Is only accessible to

subclasses of MyClass.
Select the two correct answers.

(a) Field iis accessible in all classes in other packages.
(b) Field jis accessible in all classes in other packages.
(c) Field kis accessible in all classes in other packages.
(d) Field kis accessible in subclasses only in other packages.
(e) Field 1is accessible in all classes in other packages.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 70

%

RUNGTA

Review Question

Q.15 How restrictive is the default accessibility compared to public, protected, and
private accessibility?

Select the one correct answer.

(a) Less restrictive than public.

(b) More restrictive than public, but less restrictive than protected.
(c) More restrictive than protected, but less restrictive than private.
(d) More restrictive than private.

(e) Less restrictive than protected from within a package, and more restrictive than
protected from outside a package.

Answer: (c)

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) &

%

RUNGTA

Review Question
Q. 16 Which statement is true about the accessibility of members?

Select the one correct answer.
(a) A private member is always accessible within the same package.
(b) A private member can only be accessed within the class of the member.

(c) A member with default accessibility can be accessed by any subclass of the class in
which it is declared.

(d) A private member cannot be accessed at all.

(e) Package/default accessibility for a member can be declared using the keyword
default.

Answer:(b)
A private member is only accessible within the class of the member.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 72

r’{ Review Question

rune™Q.17 Which lines that are marked will compile in the following code?
/[Filename: A.java

package packageA; class C extends B {

public class A { void ac_tion(A obj1, B obj2, C obj3) {
protected int pf; (p)szl 1p? _//1(3?// ©

} S

[/[Filename: B.java ggjé'pI _ 18 Z g;

package packageB;) Jo-p ’

import packageA.A;)

public class B extends A{ | class D {

void action(A obj1, B obj2, CobI3) 1 /i 4 ction(A objl, B obj2, C obj3) {
pf=10; // (1) of = 10: // (9) ’ ’

obj2 pt = 10,1 (3) objLpf = 10; // (10)

e obj2.pf = 10; // (11)
0bj3.pf=10:/1(4) obj3.pf = 10: // (12)
1) }

Select the five correct answers.

@1 BE@ ©E@ @@ ©6) 06 @0 ME) HE) ()@ (K1) () (12)
Answer: (a), (c), (d), (e), and (h)

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) &

%

RUNGTA

Abstract Class

A class can be declared with the keyword abstract to indicate that it cannot

be instantiated.

Define a superclass that declares the structure of a given abstraction without

providing a complete implementation of every method.
An abstract class is considered incomplete
Enum types cannot be declared abstract,

Syntax

abstract class <class name>{

}

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) “

%

e Abstract Method

An abstract method does not have an implementation; i.e., no method body is defined

for an abstract method, only the method header is provided in the class declaration.

The keyword abstract is mandatory in the header of an abstract method declared in a

class.
Its class is then incomplete and must be explicitly declared abstract.

Subclasses of an abstract class must then provide the method implementation;

otherwise, they must also be declared abstract.

The accessibility of an abstract method declared in a class cannot be private, as

subclasses would not be able to override the method and provide an implementation.

Only an instance method can be declared abstract. Since static methods cannot be

overridden, declaring an abstract static method makes no sense.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) &

%

™ An abstract method syntax

abstract <accessibility modifier> <return type> <method name> (<parameter list>) <throws clause>;

Example
/[A Simple demonstration of abstract.
abstract class A {
abstract void callme();
I/l concrete methods are still allowed in abstract classes
void callmetoo() {
System.out.printin("This is a concrete method.");
3}
class B extends A {
void callme() {
System.out.printin("B's implementation of callme.");
3}
class AbstractDemo {
public static void main(String argsl]) {
B b = new B();
b.callme();
b.callmetoo();

1}
Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 76

%

" Einal Class

A class can be declared final to indicate that it cannot be extended: that is,

one cannot declare subclasses of a final class.

In other words, the class behavior cannot be changed by extending the

class.

A final class must be complete, whereas an abstract class is considered

Incomplete.
Classes cannot be both final and abstract at the same time.

Syntax

final class <class name>{

}

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 77

%

RUNGTA

Final Method
- A final method in a class is complete (that is, has an implementation) and

cannot be overridden in any subclass

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG)

%

RUNGTA

Interface

Interfaces are syntactically similar to classes, but they lack instance

variables, and their methods are declared without any body.

Using the keyword interface, you can fully abstract a class’ interface

from its implementation.

That is, using interface, you can specify what a class must do, but not

how it does it.

Once interface is defined, any number of classes can implement it. Also, one

class can implement any number of interfaces.

Interfaces are designed to support dynamic method resolution at run time.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 7

%

RUNGTA

Defining Interfaces

A top-level interface has the following general syntax:

/I Interface header

<accessibility modifier> interface <interface name><extends interface clause>

{ /I Interface body

<constant declarations>
<abstract method declarations>
<nested class declarations>

<nested interface declarations>

}

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG)

80

%

RUNGTA

Example of interface

Interface I1Stack {
Int top = 10;
void push(Object item);

Obiject pop();

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 81

%

RUNGTA

Methods in interface
An interface defines a contract by specifying a set of abstract method

declarations, but provides no implementations.

The methods in an interface are all implicitly abstract and public by virtue of

their definition.

An abstract method declaration has the following form:

- return-type method-namel(parameter-list) <throws clause>;

82

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG)

%

RUNGTA

Variable in interface

Variables can be declared inside of interface declarations.

Variables are implicitly final and static, meaning they cannot be changed by

the implementing class.

Variables must also be initialized with a constant value.

Variables are implicitly public. It does not accept other accessibility modifier

except public.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 83

%

RUNGTA

Implementing Interfaces

Once an interface has been defined, one or more classes can implement that

interface.

The general form of a class that includes the implements clause :

access class classname [extends superclass] [implements interface [,interface...]] {

/Il class-body

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 84

%

Example for Variables in Interfaces

rRUNGTA interface Constants {

double PI_APPROXIMATION = 3.14;
String AREA_UNITS = "sqg.cm.";
String LENGTH_UNITS ="cm.";

}

public class Client implements Constants {
public static void main(String[] args) {
double radius = 1.5;

// (1) Using direct access:

System.out.printf("Area of circle is %.2f %s%n", PI_APPROXIMATION * radius*radius,
AREA_UNITS);

Il (2) Using fully qualified name:

System.out.printf("Circumference of circle is %.2f %s%n", 2.0 *
Constants.PI_ APPROXIMATION * radius, Constants.LENGTH_UNITS);

b}

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 85

%

RUNGTA

Extending the Interface

An interface can extend other interfaces, using the extends clause.

A subinterface inherits all methods from its superinterfaces, as their method

declarations are all implicitly public

Multiple inheritance hierarchy between interfaces

Example

inteface A{

}

interface C{

}

interface B extends A,C{

}

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG)

86

RUNGTA

Review Question
Q.18 Which statements about interfaces are true?

Select the two correct answers.

(a) Interfaces allow multiple implementation inheritance.

(b) Interfaces can be extended by any number of interfaces.
(c) Interfaces can extend any number of interfaces.

(d) Members of an interface are never static.

(e) Members of an interface can always be declared static.

Answer : (b) and (c)

Interface declarations do not provide any method implementations and only permit
multiple interface inheritance. An interface can extend any number of interfaces and
can be extended by any number of interfaces. Fields in interfaces are always static,
and can be declared static explicitly. Abstract method declarations in interfaces are
always non-static, and cannot be declared static.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 87

RUNGTA

Review Question

Q.19 Which of these field declarations are legal within the body of
an interface?

Select the three correct answers.
(a) public static int answer = 42,
(b) int answer;
(c) final static int answer = 42,
(d) public int answer = 42;
(e) private final static int answer = 42,;

Answer : (a), (c) and (d)

Fields in interfaces declare named constants, and are always public, static,
and final. None of these modifiers are mandatory in a constant declaration.
All named constants must be explicitly initialized in the declaration.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 88

%

RUNGTA

Review Question

Q.20 Which statements about the keywords extends and
Implements are true?

Select the two correct answers.

(a) The keyword extends is used to specify that an interface
Inherits from another interface.

(b) The keyword extends is used to specify that a class
Implements an interface.

(c) The keyword implements is used to specify that an
Interface inherits from another interface.

(d) The keyword implements is used to specify that a class
Inherits from an interface.

(e) The keyword implements is used to specify that a class
Inherits from another class.

Answer : (a) and (d)

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 89

rz Review Question

RUNGTA

Q.21 Which statement is true about the following code?

Interface Interfacel { Interface Interface2 {

int VAL_A =1, int VAL _B = 3;

int VAL _B = 2; int VAL_C = 4;

void f(); void g();

void g(); void h(); Answer : (d)
¥ ¥

abstract class MyClass implements Interfacel, Interface2 {
public void f() { }

publicvoid g() { }
¥

Select the one correct answer.
(a) MyClass only implements Interfacel. Implementation for void h() from Interface2 is

missing.

(b) The declarations of void g() in the two interfaces conflict, therefore, the code will not
compile.

(c) The declarations of int VAL _B in the two interfaces conflict, therefore, the code will
not compile.

(d) Nothing is wrong with the code, it will compile without errors.

90

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG)

%

RUNGTA

Review Question

Q.22 Which declaration can be inserted at (1) without causing a
compilation error?

Interface MyConstants {

Intr=42;

int s = 69: Answer : (a) and (c)
// (1) INSERT CODE HERE

}

Select the two correct answers.

(a) final double circumference = 2 * Math.PI *r;
(b) int total = total + r + s;

(c) int AREA=r*s;

(d) public static MAIN = 15;

(e) protected int CODE = 31337,

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG)

91

%

RUNGTA

Programming Exercises

- Q. 1 Create a program for following Inheritance Relations

«iNnterfaces
IStack

push)
pop ()

>

«Nterfaces
ISarfesStack

Object

StackImpl

e — — — — =

push)
pop ()

L’F

SafteStackImpl

isFullC)
isEmpty ()

e K Sharma, Rungta College of Engineering and Technology, Bhilai (CG)

%

RUNGTA

Programming Exercises
Q.2 Declare an interface called Function that has a method named evaluate

that takes an int parameter and returns an int value.

Create a class called Half that implements the Function interface. The
Implementation of the method evaluate() should return the value obtained by

dividing the int argument by 2.

In a client, create a method that takes an arbitrary array of int values as a
parameter, and returns an array that has the same length, but the value of
an element in the new array is half that of the value in the corresponding
element in the array passed as the parameter. Let the implementation of this
method create an instance of Half, and use this instance to calculate values

for the array that is returned.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 9

rz Programming Exercises

RUNGTA

Q.3 Rewrite the method that operated on arrays from the previous exercise 2:
the method should now also accept a Function reference as an argument,

and use this argument instead of an instance of the Half class.

Create a class called Print that implements the method evaluate() in the
Function interface. This method simply prints the int value passed as

argument, and returns this value.

Now, write a program that creates an array of int values from 1 to 10, and

does the following:

Prints the array using an instance of the Print class and the method described earlier.

Halves the values in the array and prints the values again, using the Half and Print

classes, and the method described above.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) o

%

RUNGTA

Programming Exercises
Q. 4Design a class for a bank database. The database should support the following

operations:

= deposit a certain amount into an account
= withdraw a certain amount from an account
= get the balance (i.e., the current amount) in an account

transfer an amount from one account to another The amount in the transactions is a
value of type double. The accounts are identified by instances of the class Account
that is in the package myprg.records. The database class should be placed in a
package called myprg.mysys The deposit, withdraw, and balance operations should
not have any implementation, but allow subclasses to provide the implementation.
The transfer operation should use the deposit and withdraw operations to implement
the transfer. It should not be possible to alter this operation in any subclass, and only
classes within the package myprg.mysys should be allowed to use this operation.
The deposit and withdraw operations should be accessible in all packages. The
balance operation should only be accessible in subclasses and classes within the
package myprg.mysys

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 9

%

RUNGTA

Object Finalization

Object finalization provides an object with a last resort to undertake any action before
its storage is reclaimed.

The automatic garbage collector calls the finalize() method in an object that is eligible
for garbage collection before actually destroying the object.

The finalize() method has this general form:

protected void finalize() [throws Throwable]

{
}

the keyword protected is a specifier that prevents access to finalize() by code
defined outside its class.

96

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG)

%

RUNGTA

Nested Class
A class that is declared within another type declaration is called a nested

class.

an interface or an enum type that is declared within another type declaration is

called a nested interface or a nested enum type, respectively

there are four categories of nested classes,

static member classes, enums, and interfaces

non-static member classes

local classes

anonymous classes

Non static member class, local class and anonymous class are collectively

known as inner classes
Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 7

Overview of Type Declarations

RUNGTA

Figect Socess

Ceclaratiom Accessibiliey Enclosiig o Enclosing Eeclaratioams idan
Twpe Cimrte sk Modifiers Instanoe Caoankest Twpe Body
Top-lk=vel Fackage == o= o it I Al that ar=
i las==, Envirm, Aefauilt walid in a class=,
or nberfaos ST, O
interface oy
resp=Ctively
Static bM=mber & 5 memiler A1 s Static mermbers in Al thiat ar=
Class, Broom, of & borp- enclosing cornbesce walid in a class=,
or Invesrfass l=wel vpp= ETILATL, T
O @ reesibeac] inberfaoce ooy,
Static typEs respe=ctively :
o -static 8] Al Tes Adl memibers in CEnly meosan-statis
bPA=mb=r T — SEatic enclosing corneesce de=claraHorns
Class meanber of + Final static
enclo=ing tields=
Y=
Lical Class [blo=ck Fone Te=s Al members in iy necan-stStis
writh enclosing context d=clarations
Lo - SEatic + Fimal local + Fimal static
Corvbesck varialkles tield=
[bloschk Flone s Staatic meembers in CEnly nuoan-static
wridh sratic enclosing Corbesce d=claratHons
Corvbesck + Famal local + Final static
varialkles tield=
AN WIS] o Tes Adl members in CEnly nuoan-statis
Class s = T enclosing context d=clarations
i e — + Frimal local + Fimal seatic
=1 T = T wvariables field=
Corvbesck
&= Fdome s Static mermbers in CEnly ruoan-statis
s = T enclosing context d=clarations
it =Sk + Fimal local + Fimal skatic
COrrbeEsct wvariables field=

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG)

98

%

RUNGTA

Assignment

1.

10.

11.

What do you mean by class and object? How can you use class and object
In java?

What do you mean by constructor?

What is method overloading and overriding?

Explain various access specifier?

Explain the concept of inheritance with suitable example?

What do you mean by package? What are the uses of it?

What is abstract and final classes and methods?

What do you mean by static members?

What do you mean by interface? Compare and contrast with class.
Describe this and super methods?

Explain various nested classes.

Dr L K Sharma, Rungta College of Engineering and Technology, Bhilai (CG) 99

