
1 

Introducing IPX  

 In its basic architectural structure, the Internetwork 
Packet Exchange (IPX) protocol suite is somewhat 
similar to TCP/IP.  
 The IPX protocol for which the suite is named is a 

connectionless network layer protocol that performs most of 
the same functions that Internet Protocol (IP) does in the 
TCP/IP suite.  

 Like IP, IPX encapsulates transport layer data, addresses it, 
and routes it to its destination on the network.  

 Scale is the primary difference between TCP/IP and 
IPX.  
 TCP/IP supports any type of computer on any type of 

network.  

 IPX is for use on local area networks (LANs) because 
NetWare is strictly a LAN operating system.  



2 

IPX Addressing  

 IPX does not have its own self-contained address 
space, as IP does.  

 IPX uses node addresses to identify network 
interfaces on a network and network addresses to 
identify LANs.  
 The node addresses are the data-link layer hardware 

addresses coded into the computers' network interface 
adapters. 

 NetWare randomly assigns network addresses during 
installation, or the network administrator can assign them 
manually.  

 There is no need for a network registrar or a 
separate node addressing system with IPX because it 
is limited to private LANs.  



3 

Data-Link Layer Protocols and IPX  

 IPX has no data-link layer protocols of its own; it 
relies completely on the standard LAN protocols used 
at the data-link layers, such as Ethernet and Token 
Ring.  

 The only important factor when combining Windows 
and NetWare on the same LAN is the selection of the 
correct frame type in the NetWare clients and 
servers.  

 NetWare supports four Ethernet frame types: 
Ethernet 802.3, Ethernet 802.2, Ethernet II, and 
Ethernet Subnetwork Access Protocol (SNAP).  

 In most NetWare clients, the selection of a frame 
type is automatic and usually reliable.  



4 

The IPX Datagram Format  



5 

IPX Header Fields  

 Checksum (2 bytes). A vestige of the now-unused 
protocol from which IPX was derived  

 Length (2 bytes). Specifies the length of the 
datagram in bytes, including the IPX header and the 
data  

 Transport Control (1 byte). Specifies the number of 
routers the datagram has passed through on the way 
to its destination; also known as the hop count  

 Packet Type (1 byte). Identifies the upper layer 
protocol that generated the information carried in the 
Data field  

 Destination Network Address (4 bytes). Identifies the 
network on which the destination system is located  



6 

IPX Header Fields (Cont.)  
 Destination Node Address (6 bytes). Identifies the 

network interface adapter in the computer to which the 
data is to be delivered  

 Destination Socket (2 bytes). Identifies the application or 
process on the destination system for which the 
information in the Data field is intended  

 Source Network Address (4 bytes). Identifies the network 
on which the source system is located  

 Source Node Address (6 bytes). Identifies the network 
interface adapter in the transmitting computer  

 Source Socket (2 bytes). Identifies the application or 
process on the transmitting system that generated the 
information in the Data field  

 Data (variable). Contains the data generated by the upper 
layer protocol  



7 

Sequenced Packet Exchange  

 Sequenced Packet Exchange (SPX) is a connection-
oriented transport protocol that is often thought of as 
a frequent partner to IPX, just as Transmission 
Control Protocol (TCP) is to IP.  

 NetWare uses the combination of IPX and SPX far 
less frequently than TCP/IP protocols use the 
combination of TCP and IP.  

 SPX is relegated to communications between network 
print devices, remote console sessions, network 
backups, and other relatively infrequent activities.  

 Like TCP, SPX provides reliable delivery by assigning 
sequence numbers to packets and acknowledging 
specific sequences.  



8 

The SPX Header Format  



9 

SPX Header Fields  

 Connection Control (1 byte). Contains a code that 
helps to regulate the bidirectional flow of data 
between the computers 

 Datastream Type (1 byte). Indicates the function of 
the data in the message and the upper layer process 
for which it is intended  

 Source Connection ID (2 bytes). Contains a unique 
value used by the source computer to identify this 
connection  

 Destination Connection ID (2 bytes). Contains the 
unique value used by the destination computer to 
identify this connection  



10 

SPX Header Fields (Cont.)  
 Sequence Number (2 bytes). Contains a value 

that identifies this message's place in the 
sequence of messages that make up the 
transaction  

 Acknowledgment Number (2 bytes). Contains the 
sequence number of the next message that the 
system expects to receive from the connected 
system  

 Allocation Number (2 bytes). Provides flow 
control by specifying the number of packet 
receive buffers available on the system  

 Data (variable). Contains the information 
generated by an application layer protocol  



11 

NetWare Core Protocol  

 NetWare Core Protocol (NCP) is NetWare's primary upper 
layer protocol and is responsible for the majority of the 
traffic traveling between clients and servers on most 
NetWare networks.  

 NCP carries messages that perform a wide variety of 
services, including file sharing, printing, directory services 
communications, messaging, and data synchronization.  

 NCP messages are carried within IPX datagrams, just like 
those of SPX.  

 There is also a variation on the protocol, called the 
NetWare Core Packet Burst Protocol (NCPB), which 
enables a computer to transmit multiple data packets 
without requiring each one to be acknowledged 
individually.  



12 

The NCP Request Message Format  



13 

NCP Request Message Fields  

 Request Type (2 bytes). Specifies the message's 
basic function  

 Sequence Number (1 byte). Contains a value that 
identifies this message's place in the sequence of 
messages that make up the transaction  
 The destination system uses these values to place the 

incoming messages in the proper sequence.  

 Connection Number Low (1 byte). Contains a value 
that indicates the number of the client's connection 
to the server  

 Task Number (1 byte). Contains a unique value that 
the computers use to associate request messages 
with replies  



14 

NCP Request Message Fields (Cont.)  

 Connection Number High (1 byte). Not used  

 Function (1 byte). Contains a code that indicates the 
message's specific function  

 Subfunction (1 byte). Contains a code that further 
defines the message's function  

 Subfunction Length (2 bytes). Specifies the length of 
the Data field  

 Data (variable). Contains information specific to the 
type of request, such as the name and location of a 
file  



15 

The NCP Reply Message Format  



16 

NCP Reply Message Fields  

 Reply/Response Type (2 bytes). Specifies the 
type of reply  

 Sequence Number (1 byte). Contains a value 
that identifies this message's place in the 
sequence of messages that make up the 
transaction  

 Connection Number Low (1 byte). Contains a 
value that indicates the number of the client's 
connection to the server  

 Task Number (1 byte). Contains a unique 
value that the computers use to associate 
request messages with replies  



17 

NCP Reply Message Fields (Cont.)  

 Connection Number High (1 byte). Not used  

 Completion Code (1 byte). Specifies whether 
the associated request succeeded or failed 

 Connection Status (1 byte). Indicates 
whether the connection between the client 
and the server is still active  

 Data (variable). Contains information 
transmitted by the server in response to the 
associated request  



18 

Windows 2003 and NetWare 
Compatibility  

 Microsoft Windows 2003 includes NetWare 
compatibility components in addition to its 
Windows networking components.  
 NetWare compatibility components include the 

NWLink IPX/SPX/NetBIOS Compatible Transport 
Protocol (NWLink), a client module, and a 
Directory Service Migration Tool.  

 When you install NWLink and an appropriate 
NetWare client on a computer running Windows, 
the computer can access files, printers, and other 
services on NetWare servers.  



19 

NWLink's Place in the Windows 2003 
Networking Architecture  



20 

Windows 2003 NetWare Clients  

 In addition to NWLink, Windows 2003 also 
includes a NetWare client, which performs 
roughly the same services as Client for Microsoft 
Networks, but for NetWare.  
 Microsoft Windows 2003 Professional comes with Client 

Service for NetWare (CSNW), and Microsoft Windows 
2003 Server comes with Gateway Service for NetWare 
(GSNW).  

 Both clients provide basic client access to NetWare 
servers, but GSNW includes additional gateway 
capabilities that CSNW lacks.  

 You must install NWLink if you want to use 
CSNW or GSNW to connect to NetWare servers.  



21 

Installing Client Service for NetWare  

1.  Click Start, and then select Network And Dial-Up 
Connections from the Settings menu. 

2.  Right-click the Local Area Connection icon, and then 
select Properties from the shortcut menu.  

3.  In the General tab, click Install.  

4.  Select Client, and then click Add.  

5.  Click Client Service For NetWare, and then click OK. 
When asked if you want to restart the computer, 
click No.  

6.  Click OK to complete the installation and close the 
Local Area Connection Properties dialog box.  

7.  Restart the computer.  



22 

Configuring NWLink 

1.  Click Start, and then select Network And Dial-Up 
Connections from the Settings menu.  

2.  Right-click the Local Area Connection icon, and then 
select Properties from the shortcut menu.  

3.  Select NWLink IPX/SPX/NetBIOS Compatible 
Transport Protocol, and then click Properties.  

4.  Specify values for any or all of the Internal Network 
Number, Frame Type, and Network Number 
settings, and then click OK to close the NWLink 
IPX/SPX/NetBIOS Compatible Transport Protocol 
Properties dialog box.  

5.  Click OK to close the Local Area Connection 
Properties dialog box.  



23 

NWLink Frame Types  

 The frame type defines the way the 
computer's network adapter formats the 
NWLink data for transmission over the 
network.  

 To communicate with NetWare servers, a 
computer running Windows 2003 must be 
configured to use the same frame type as the 
servers.  

 By default, NWLink is configured to 
automatically detect the frame type used on 
the network and configure itself accordingly.  



24 

Configuring Client Service for 
NetWare  
 In the Select NetWare Logon dialog box, you can 

specify either a preferred NetWare server to 
which the client will always connect first, or a 
default Novell Directory Services (NDS) tree and 
context that the client will use to log in to the 
network.  
 A preferred server is the NetWare server to which you 

are automatically connected when you log on if your 
network does not use NDS.  

 The tree and context define the position of the user 
object for the user name you use to log on to an NDS 
tree.  

 You set a default tree and context only in an NDS 
environment; otherwise, you set a preferred server.  



25 

Using Gateway Service for NetWare  

 GSNW included with Windows 2003 Server is a 
superset of CSNW.  

 The server computer can access NetWare file and 
print resources just like a workstation running CSNW, 
but it can also function as a gateway to those 
resources, enabling computers running Windows to 
access NetWare resources through the Windows 
2003 server.  
 GSNW is a bridge between Network Basic Input/Output 

System (NetBIOS) used by the Windows network and NCP 
used by the NetWare network.  

 When you enable a gateway on the network, computers 
running Microsoft client software can access NetWare files 
and printers without having to run NetWare client software 
locally.  



26 

A GSNW Gateway Configuration  



27 

Installing Gateway Service for 
NetWare  

1.  Click Start, and then select Network And Dial-Up 
Connections from the Settings menu.  

2.  Right-click the Local Area Connection icon, and then 
select Properties from the shortcut menu.  

3.  In the General tab, click Install.  

4.  Select Client, and then click Add.  

5.  Click Gateway (And Client) Service For NetWare, and 
then click OK. When asked if you want to restart the 
computer, click No.  

6.  Click OK to complete the installation.  

7.  Restart the computer.  



28 

Enabling Gateways in Windows 2003 
Server  

1.  Click Start, point to Settings, click Control Panel, and 
then click Gateway Service For NetWare.  

2.  Click Gateway.  

3.  Select the Enable Gateway check box.  

  This activates the Gateway Account, Password, and 
Confirm Password boxes.  

4.  In the Gateway Account box, type the name of the 
account you created in the NetWare NTGATEWAY 
group.  

5. In the Password and Confirm Password boxes, type 
the password for the gateway account, and then 
click OK to close the dialog box.  

 



29 

Activating Gateways  

1.  Click Start, point to Settings, click Control Panel, and 
then click Gateway Service For NetWare.  

2.  Click Gateway.  

3.  Click Add.  

4.  In the Share Name box, type a share name that 
Microsoft clients will use to access the NetWare 
resource.  

5. In the Network Path box, type the network path of 
the NetWare volume or directory you want to share.  

 



30 

Activating Gateways (Cont.)  

6.  In Use Drive, type the default drive you want to map 
to the share, if necessary.  

7.  Click Unlimited, and then click OK to add the share 
to the list in the Configure Gateway dialog box.  

8.  Repeat steps 3–7 to create additional shares, or click 
OK to close the Configure Gateway dialog box.  

9.  Click OK to close the Gateway Service For NetWare 
dialog box.  

 

 



USENET-UUCP 

Kapil 



Overview 

• USENET Introduction and Theory 

• History of USENET 

• USENET Structure and Operation 

• USENET Issues 

• Summary 



Why Should You Care? 

• USENET News is typically provided as a matter 

of course by Internet service providers 

– A check-box item 

• USENET “push” model of content transmission is 

still useful 

– as the proliferation of “groupware” would demonstrate 

• USENET can be very resource intensive 

– Bandwidth, hardware, management personnel 

• USENET articles can get you into trouble 



USENET Introduction and Theory 

• USENET is 

– A content transport system 

• Like electronic mail, only different 

– A logical network layered on top of other networks 

– A broadcast, one-to-many medium 

• Derived from very early Unix networking technology 

– “Unix to Unix Copy (UUCP)” 

• Internet USENET hosts normally runs its own protocol 

(NNTP) over TCP/IP, but can also use UUCP over TCP 

– UUCP over TCP useful in very bad network conditions 



Digression #1: UUCP 

• UUCP -- Unix to Unix Copy 

– Actually a suite of programs to facilitate transfer of files from one 

machine to another machine over a network 

• Either a dialup network (my machine calls yours) or an Internet(-like) 

network 

– Important commands: 

• uux -- execute a command on another system 

• uucp -- queue a file for copying 

• uucico -- copy in/copy out queued files 

• uusched -- the scheduler for UUCP commands 

• See Unix manual pages for more information 



Digression #2: UUCP Addressing 

• UUCP Addressing is position-relative 

– The address varies depending on where you are in the 

network 

– Uses a path concept to trace route from originating 

machine to destination 
• inn.isc.org!usenet.dec.com!usenet.sony.com!user 

– originator is user@usenet.sony.com 

– message got to inn.isc.org via usenet.dec.org 

• implies very little flexibility if any of the machines in a path 

are broken 

• USENET still uses UUCP addressing in places 



Short History of USENET 

• First started at Duke University in USA in late 1970’s 

– Conceptually, similar to posting a note on a subject specific 

bulletin board 

• First software was called “A News Software” 

– “B News” and then “C News” soon followed 

• Both B and C News still found on the Internet today 

• Originally, USENET consisted of two sets of bulletin 

boards, mod.* and net.* 

– mod.* was moderated, net.* wasn’t 



History (cont’d) 

• In mid-1980’s Network News Transport Protocol (NNTP) 

was developed 

– An application layer protocol using TCP 

– Internet Network News (INN) and other TCP/IP based news servers 

followed 

• In 1986, the Great USENET Renaming occurred 

– Splitting mod.* and net.* into “the big 8” 

• With the explosion of the Internet since the early 1990s, 

traffic has grown from a few megabytes per day to many 

gigabytes per day 

– Unfortunately, the signal to noise ratio is pretty poor 

• Very few sites carry full newsfeeds anymore 



USENET Structure and Operation 

• A distributed Bulletin Board System 

– Take your message and “post” it on the BBS 

• Users post messages (“articles”) to areas called “newsgroups” 

– Newsgroups have themes or topics 

– Each article is given 

• a site relative article number  

• a globally unique message identifier 

• Articles can be posted to multiple newsgroups at one time 

– Frowned upon, but common 

• Articles are copied to other USENET news servers 

– All servers willing to accept the article on the entire Internet 



USENET Structure & Operation (cont’d) 

• No central control or authority 

– Anyone can create and post a news article 

• New newsgroups can be created by anyone 

– simply post a specially formatted article called 

a “control message” 

• Control messages are easily forged 

– Can be cryptographically signed using PGP 

• Local policy determines how long articles 

are kept in storage 



USENET Structure & Operation (cont’d) 

• Newsgroups are hierarchical 

– comp. -- articles related to computers 

– comp.protocols -- articles related to computer 

(networking) protocols 

– comp.protocols.tcp-ip -- articles related to 

TCP/IP networking 

– comp.protocols.tcp-ip.dns -- articles related to 

the DNS (which uses TCP/IP and allows 

computers to talk to each other) 



Newsgroups 

• Newsgroup hierarchies vary wildly 

– addition/deletion of newsgroups in “the big eight” hierarchies controlled 

by the “USENET Cabal” 

• The “big eight” are comp, humanities, misc, news, rec, sci, 
soc, & talk 

– carried by most news servers 

– The “alt” hierarchy established because some people didn’t like the 

USENET Cabal 

– Other hierarchies are “private” but propagated 

• e.g., news hierarchies for a corporation’s products 

– e.g., microsoft.public.* 

• Acceptance of a particular hierarchy is a local policy decision 



Newsgroups (cont’d) 

• Newsgroups can be moderated or unmoderated 

– Articles posted to a moderated newsgroup must 

have an approved header field 

• The moderator is supposed to be the one to do this 

– Easy to forge the appropriate magic to get past this check 

• Moderators are volunteers interested in the subject of 

the newsgroup 

– Most newsgroups are not moderated 

• However, moderated ones usually have better signal to 

noise ratios 



Newsgroups (cont’d) 

• Currently there are 

– 460 newsgroup hierarchies 

– 28,948 newsgroups 

• Top hierarchies are: 

– alt   33.97% 

– fido7       7.21% 

– microsoft   3.34% 

– comp    3.31% 

– rec    2.49% 

– clari    2.09% 

rest

33%

alt                 

33%

fido7               

7%

microsoft           

3%

comp                

3%

rec                 

2%

clari               

2%

uw                  

2%

z-netz              

2%

it                  

1%

japan               

1%

de                  

1%

fj                  

1%

free                

1%

tw                  

1%

cl                  

1%

ucb                 

1%

uk                  

1%

soc                 

1%

Other

16%



Flood Fill Article Propagation 

• USENET articles are propagated using“flood fill” 

– Each USENET news server has one or more peers 

– Each article received from a peer or from a user of that 

server (a posting) is sent to all other peers that haven’t 

yet seen the article 

– A “push” model of data transmission 

• The full article is copied all over the Internet 

– when using real-time feeders, the article can reach all 

major news hosts on the Internet in a matter of minutes 



Article Format 

• Plain 7-bit ASCII text 

– non-ASCII encoded into ASCII 

• typically using uuencode 

• MIME encoding becoming more 

and more popular 

• Resembles an email message 

– News article format a subset of e-

mail (RFC 822) format 

• Described in RFC 1036 

– “Son of RFC 1036” is in progress 

• Content of articles moving more 

and more to HTML 

 

• Has 6 required headers 

– From -- who wrote the article 

– Date -- the date the article was 

posted 

– Newsgroups -- the newsgroup(s) 

the article was posted to 

– Subject -- the subject of the 

article 

– Message-ID -- a globally unique 

identifier for the article 

– Path -- the UUCP path the article 

has take to reach the current system 

• Other headers optional 

– Unknown headers passed unchanged 



A USENET Article 

Path: papaya.bbn.com!rsalz 

From: rsalz@bbn.com (Rich Salz) 

Newsgroups: news.software.nntp,news.admin,comp.org.usenix 

Subject: Seeking beta-testers for a new NNTP transfer system 

Message-ID: <3632@litchi.bbn.com> 

Date: 18 Jun 91 15:47:21 GMT 

Followup-To: poster 

Organization: Bolt, Beranek and Newman, Inc. 

Lines: 72 

Xref: papaya.bbn.com news.software.nntp:1550 news.admin:15565 

comp.org.usenix:418 

 

InterNetNews, or INN, is a news transport system.  The core part of the 

package is a single long-running daemon that handles all incoming NNTP 

connections.  It files the articles and arranges for them to be forwarded 

to downstream sites.  Because it is long-running, it can be directed to 

spawn other long-running processes, telling them exactly when an article 

should be sent to a feed. 

<…> 

/r$ 



The Path Field 

• When a server receives an article, it adds its own name 

to the front of the Path, e.g.: 

 

 

 

 

• Before sending an article to a peer, the news server 

checks the Path to see if the peer is already listed 

– Stops loops 

An article with a path of: 
Path: usenet.dec.com!usenet.sony.com!user 

would be modified to 
Path: inn.isc.org!usenet.dec.com!usenet.sony.com!user 

when it is sent from usenet.dec.com to inn.isc.org 



Control Message Propagation 

• Control messages come in several flavors 

– Cancel  removes a previously posted article 

– Newgroup creates a newsgroup 

– Rmgroup removes a newsgroup 

– Checkgroups asks the server to check its list of  

   newsgroups against an official list 

– Sendsys  request a copy of the configuration  

   describing the server’s peers 

– Version  request information about the type and  

   version of the software being run 



Control Messages (cont’d) 

• Only Cancel, Newgroup, and Rmgroup are in 

common usage now 

– Checkgroups, Sendsys, and Version considered 

security risks 

• Cancel control messages are by far the most common 

– And the most frequently forged 

• Newgroup and Rmgroup are important to track 

– Should not be blindly executed 

• Use PGP header verification if possible 



NNTP and Its Use 

• NNTP is a simple application layer protocol 

– “Standard” verb/numeric response code format 

– Described in RFC 977 

• Mostly a command/response protocol 

– One server sends  “I have article <number>” to peer 

– Peer sends “no thanks, seen it already” or “OK, send it” 

 



Internet Network News 

• ISC’s INN is an open source USENET news system 

– Available from ftp://ftp.isc.org/isc/inn/inn.tar.gz 

• INN is a transport system 

– Will use an appropriate application layer transport 

mechanism 

• NNTP (by preference) 

• UUCP 

• even SMTP 

– Can also handle compressed batches of news 

– Can be extended easily to handle other transport mechanisms 

as needed 



History of INN 

• Created in the early 1990’s 

– Originally written by Rich Salz 

• First beta release June 18, 1991 

– Current version 2.2 

• Released January 21, 1999 

• Was the first real-time News transporter 

– C news used the NNTP reference implementation, 

but incoming articles were put into batch files for 

later processing 



What INN Does 

• Transport news articles 

• Implements NNTP (RFC 977) 

• Primarily uses TCP/IP 

– Can use UUCP or other transport mechanisms 

• Provides network client (reader) interface 

• Feeds in real-time or in batch mode 

– Compressed or uncompressed articles 



What INN Doesn’t Do 

• No client software (news readers) 

– Gobs of news readers exist 

• Old style: rn, trn, vnews,  

• New style: Netscape Communicator, Microsoft Explorer 

• No extra support for large-scale “reverse” (sucking) feeds 

– “Pull” model instead of “push” 

• No web interfaces for users or administrators (yet) 

– Management of INN is a painful 

• INN is middleware and not a vertical solution 

– Vertical solutions such as Netscape’s Collabra exist 



Types of News Servers 

• Transit servers 
– Usually at enterprise 

gateways 

– Have no regular reader 

clients 

– Don’t keep articles around 

for long 

– Less resource requirements 

than readers 

– Easier to secure 

 

• Reader Servers 
– Require significantly more 

resources than transit 

servers 

– Require more management 

resources 

– Usually stores articles for 

long periods 

– Targets for spammers 



Caching NNTP Servers 

• Provides some level of scalability 

– Reduced resource requirements, higher performance 

• When a reader requests articles, the caching server 

first checks local storage and (if article isn’t found) 

requests the article from an upstream server using 

NNTP reader commands 

– Upstream server treats the request like any other reader 

request 

• Articles typically fetched on demand, but large 

numbers of articles can be pre-fetched 



Caching NNTP Servers (cont’d) 

• Lets the site running the caching server avoid 

accepting a full feed 

– Full feeds demand large amounts of disk space 

• Useful for sites with inconsistent or sparse 

reading patterns 

• Not a good idea for sites with poor network 

connections 

– Reader performance affected by upstream server 



Futures 

• “Groupware” such as Lotus Notes and Netscape 

Collabra are the next evolutionary of USENET News 

– Very pretty user interfaces on the news reading clients 

– Much more easily managed servers 

– Tighter integration of transport / user interface / article store 

• Includes database retrieval mechanisms for article content 

• USENET messages will likely become more HTML rich 

– Newsreaders unable to handle HTML will likely fade away 

• USENET will continue to evolve 



USENET Evolution 

• Current USENET technology results in 

tremendous resource utilization 

– Disk, network, CPU, management, etc. 

• Gigabytes / day of messages 

– Typically, only a tiny percentage of these 

messages are ever read 

– Large percentage of messages are spam 



USENET Evolution (Cont’d) 

• USENET articles will likely move to a header/pointer 

format 

– Content only fetched if article is read 

– Gateways to “old” USENET that fetch the content a create/post a 

“legacy” article 

• Likely permits a reduction in the amount of resources 

consumed 

– Can be aided by integration with WWW caches 

• Can help in the reduction of spam 

– Integration with tools like MAPS/RBL 



USENET Issues 

• As with any service which provides content, 

“inappropriate” content can be found 

– Hateful literature, pornography, libel/slander 

– There are constant calls to censor this content 

• ISPs often get caught in the middle 

– Easy targets 

– Little control 

– Technological advances may “help” content control issues 

• USENET growth will continue to be an issue 

– New technology many help this as well 



Summary 

• USENET has been around since the beginning of the 

Internet 

• News is still useful for pushing information to a wide audience 

– A flood fill model of information propagation assures global 

distribution 

• USENET News hierarchy is largely chaotic 

• USENET articles are similar to mail is format 

• USENET will likely evolve to a header/pointer format 

– Will reduce the resource requirements and (hopefully) help the 

signal to noise ratio 

 

 

 

 

 



Where to Get More Information 

• RFC 1036 -- Standard for Interchange of USENET Messages 

– http://www.isi.edu/in-notes/rfc1036.txt 

• RFC 977 -- Network News Transfer Protocol 

– http://www.isi.edu/in-notes/rfc1036.txt 

• Henry Spencer & David Lawrence, Managing Usenet, 1st 

Edition January 1998, O’Reilly & Associates 

• Internet Network News (INN) 

– http://www.isc.org/inn.html 



TCP/IP 

4/25/2008 



0 31 bits 

Ethernet Hdr - 14 bytes 

(little-endian) 

Destination Address - 6 bytes 

Source Address - 6 bytes 

Next Protocol # 

Bytes  0 - 3 

Bytes  4 - 7 

Bytes  8 - 11 

Bytes 12 - 13 
LSB                       MSB 

Next Level Protocol Header (08 00 -> x8000 ->IP) 

IP Header - 20 bytes 

(big-endian) 

TCP Header - 20 bytes 

(big-endian) 

App. Hdr  

& Data 

Ethernet Header 

2 



Ethernet Hdr - 20 bytes 

(little-endian) 

IP Header - 20 bytes 

(big-endian) 

TCP Header - 20 bytes 

(big-endian) 

App. Hdr  

& Data 

IP Header 

Next Protocol 

Length 

3 

Next Protocol #    1=ICMP   6=TCP    17=UDP 

Frag. 
Flags 

Frag. Flags:    010 = Do Not Fragment, DNF       001 = More Fragments, MF 

Fragment  Offset 



Ethernet Hdr - 20 bytes 

 

IP Header - 20 bytes 

(MF: 1, offset: 0) 

TCP Header - 20 bytes 

(big-endian) 

App. Hdr  

& Data 

Ethernet Hdr - 20 bytes 

 

IP Header - 20 bytes 

(MF: 1, offset:1280) 

More Data 

 

Ethernet Hdr - 20 bytes 

 

IP Header - 20 bytes 

(MF: 0, offset:2560) 

Last Data 

 

20 bytes 

20 bytes 

20 bytes 

20 + 1260 bytes 

1280 bytes 

760 bytes 

Data Packet from Token Ring has TCP header (20 bytes) plus App. 

Header and Data (3300 bytes) =  20 +1280 + 1280 + 760 bytes. 

 

IP Fragment ID number is the same for each fragment. 

Fragmented Packet 

4 



Ping of Death 

Ethernet Hdr - 20 bytes 

 

IP Header - 20 bytes 

(MF: 1, offset:65,500) 

Any Data 

 

20 bytes 1000 bytes 

Packet Buffer 65,535 bytes Packet Buffer 65,535 bytes 

Fragments are assembled in a buffer in memory.  Ping of Death 

fragment causes a buffer overflow, corrupting the next buffer 

causing an older version of Windows to crash. 

 

“Ping” was used because #ping -s 66500 used to work.  

“fragrouter” is a hacker program that generates bad fragments. 

5 



# tcpdump -nnvli eth3  'tcp and ((ip[6:2]&0x3fff) != 0)’    Filter for seeing frag.s 

 

22:10:48   128.61.60.143.3472 > 217.98.230.192.6881: . 

3041158335:3041158379(44) ack 829468732 win 65535  

(frag 43660:64@0+) (ttl 127, len 84)                              Very small fragments 

 

22:10:48   128.61.60.143 > 217.98.230.192: tcp  

(frag 43660:44@64) (ttl 127, len 64) )                            Very small fragments 

 

22:10:49   219.115.56.223 > 199.77.145.106: tcp  

(frag 0:20@16384) (ttl 237, len 40)                     Very small, isolated fragment 

 

22:10:50   217.232.26.184 > 128.61.104.27: tcp   Note close times, different IPs 

(frag 0:20@16384) (ttl 240, len 40)                        Very small, isolated fragment 

------- 

43660:64@0+  =  ID : Data-Length (without IP hdr) @ Offset/8, 

 “+” means More Fragments bit set. 

Fragmented Packets as seen by “tcpdump” 

6 



6 17  <- IP Next Protocol Numbers 

1 2 89 46 

IPsec ESP 50 

Protocols over IP 

7 

161  <- Listening Port No. (Well-Known?) 

x0800  <- Ethernet “Next Protocol” Number 

80 



UDP Header 
(big endian) 

8 



ICMP Header 
(big endian) 

9 

31 bits 

Type 

Optional Data 

Bytes 0 - 3 

Bytes 4 - 7 

Bytes 8 -      

0 

Sequence Number Identifier 

Checksum Code 

             Type Field 

 0 - Echo Reply (Code=0) 

 3 - Destination Unreachable 

 5 - Redirect (change route) 

 8 - Echo Request (Ping) 

11 - Timeout (traceroute) 

             Type 3 - Codes 

 0 - Network Unreachable 

 1 - Host Unreachable 

 3 - Port Unreachable (UDP Reset-old hdr in data) 

 7 - Destination Host Unknown 

12 - Host Unreachable for Type of Service 

9 



Smurf Attack 

Network 222.45.6.0/24 

Network Broadcast Address = 222.45.6.255 

Attacker 23.45.67.89 

ICMP Echo Request (Ping) 

    To: 222.45.6.255   (Broadcast) 

       From: 130.207.225.23 (spoof) 

Victim 

130.207.225.23 

ICMP Echo Responses 

    To: 130.207.225.23 

10 

(How is this prevented?) 



Ethernet Hdr - 20 bytes 

(little-endian) 

IP Header - 20 bytes 

(big-endian) 

TCP Header - 20 bytes 

(big-endian) 

App. Hdr  

& Data 

TCP Header 

* 

* Length of TCP Header in bytes /4     TCP Flags: U A P R S F 

11 



Client Server 

Syn (only) 

Syn + Ack 

Ack 

Ack( Push, Urgent) 

Ack( Push, Urgent) 

TCP Three-Way Handshake 

12 



Host A Host B 

Ack( Push, Urgent) 

Ack( Push, Urgent) 

TCP Three-Way Disconnect 

Fin + Ack 

Fin + Ack 

Ack 

Ack 

or Reset + Ack 

13 

Either A or B can be the Server 



QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

TCP Initial: SYN,  SYN-ACK,  ACK 

TCP Final:  FIN,  ACK,  FIN-ACK,  ACK 

TCP SYN and RES-ACK (no connection) 

14 

as seen using wireshark 



TCP State Diagram 

15 

Reset 



0 0 0 1 OK 

0 0 1 0 1st Packet 

0 0 1 1 2nd Packet 

0 1 0 0 Needs Ack 

0 1 0 1 OK 

0 1 1 0 Illegal 

0 1 1 1 Illegal 

1 0 0 0 Needs Ack 

1 0 0 1 OK 

1 0 1 0 Illegal 

1 0 1 1 Illegal 

1 1 0 0 Illegal 

1 1 0 1 Illegal 

1 1 1 0 Illegal 

1 1 1 1 Illegal 

Reset          Fin           Syn            Ack       Comment 

Illegal flag combinations are used to determine Operating System 
16 



DoS Exploits using TCP Packets 

Land - Source Address = Destination Address 

 Crashes some printers, routers, Windows, UNIX. 

 

Tear Drop - IP Fragments that overlap, have gaps 

 (also Bonk, Newtear, Syndrop)  Win 95, Win 98, NT, Linux. 

 

Winnuke - Any garbage data to an open file-sharing port (TCP-139) 

 Crashes Win 95 and NT 

 

Blue Screen of Death - Set Urgent Flag, & Urgent Offset Pointer = 3 

 Older Windows OS would crash. 

17 



Attacker - (1) sniffs network and watches 

Alice establish TCP session with Bob 

Bob 

(2) - DOS 

Attack to 

Silence 

Alice Acks 

and Resets 

Alice 

(0) - Established 

TCP Connection 

(3) - High Jacks TCP Connection 

by using correct sequence number 

TCP Session Highjack 

1. Open several TCP connections to Bob, to predict next sequence number 

2. DoS Alice so it will not send a TCP Reset to Bob.s SYN-ACK. 

3. Send Bob a SYN, then an ACK based on predicted Bob’s seq. no.(from Alice’s IP) 

4. Send exploit to Bob (assume all packets are Ack’ed). 

18 

Off-LAN Attack (can not sniff) to get by host-based firewall. 



20:43:58  192.168.1.132.49194 > 204.127.198.27.25: S [bad tcp cksum e773!] 

2818212180:2818212180(0) win 32768 <mss 1460,nop,wscale 0,nop,nop,timestamp 

1015223232 0> (DF) (ttl 64, id 13382, len 60)    <no ack!> 

 

20:43:59  204.127.198.27.25 > 192.168.1.132.49194: S [tcp sum ok] 

261524396:261524396(0) ack 2818212181 win 33304 <nop,nop,timestamp 693175946 

1015223232,nop,wscale 1,mss 1460> (DF) (ttl 52, id 16741, len 60) 

 

20:43:59   192.168.1.132.49194 > 204.127.198.27.25: . ack 1 win 33304 

<nop,nop,timestamp 1015223234 693175946> (DF) (ttl 64, id 13383, len 52) 

 

20:43:59   204.127.198.27.25 > 192.168.1.132.49194: P 1:62(61) ack 1 win 33304 

<nop,nop,timestamp 693175953 1015223234> (DF) (ttl 52, id 16742, len 113) 

 

20:43:59   192.168.1.132.49194 > 204.127.198.27.25: P [bad tcp cksum 24f8!] 1:23(22) 

ack 62 win 33304 <nop,nop,timestamp 1015223234 693175953> (DF) (ttl 64, id 13384, 

len 74) 

TCP Connect Handshake - shown by “tcpdump” 

19 



20:44:01    204.127.198.27.25 > 192.168.1.132.49194: P 2425:2467(42) ack 3889 win 33304 

<nop,nop,timestamp 693176146 1015223238> (DF) (ttl 52, id 16760, len 94) 

 

20:44:01    192.168.1.132.49194 > 204.127.198.27.25: F [bad tcp cksum 2c58!] 3889:3889(0) 

ack 2467 win 33304 <nop,nop,timestamp 1015223238 693176146> (DF) (ttl 64, id 13402, len 

52) 

 

20:44:01    204.127.198.27.25 > 192.168.1.132.49194: . [tcp sum ok] ack 3890 win 33304 

<nop,nop,timestamp 693176152 1015223238> (DF) (ttl 52, id 16761, len 52) 

 

20:44:01    204.127.198.27.25 > 192.168.1.132.49194: F [tcp sum ok] 2467:2467(0) ack 3890 

win 33304 <nop,nop,timestamp 693176152 1015223238> (DF) (ttl 52, id 16762, len 52) 

 

20:44:01    192.168.1.132.49194 > 204.127.198.27.25: . [bad tcp cksum 2c51!] ack 2468 win 

33304 <nop,nop,timestamp 1015223238 693176152> (DF) (ttl 64, id 13403, len 52) 

 

TCP Finish Handshake - shown by “tcpdump” 

20 



IPv6 Header 

KAPIL K NAGWANSHI 





• The 4-bit version field is 6. Since this field occupies the first 
4 bits of the first byte of the header (just like the IPv4 
version,  it allows a receiving IP stack to differentiate 
between the two versions. This differentiation is already 
done by most link layers by using different encapsulation 
for IPv4 and IPv6. 

• During the development of IPv6 in the early 1990s, before 
the version number of 6 was assigned, the protocol was 
called IPng, for "IP next generation." You may still 
encounter references to IPng. 

• The 6-bit DSCP field and the 2-bit ECN field replace the 
historical 8-bit traffic class field, which was described in RFC 
2460. We can set all 8 bits of this field with the 
IPV6_TCLASS socket option , although the kernel may 
overwrite any value we set to enforce Diffserv policy or 
implement ECN. 
 



• The 20-bit flow label field can be chosen by the application or 
kernel for a given socket. A flow is a sequence of packets from a 
particular source to a particular destination for which the source 
desires special handling by intervening routers. For a given flow, 
once the flow label is chosen by the source, it does not change. A 
flow label of 0 (the default) identifies packets that do not belong to 
a flow. The flow label does not change while flowing through the 
network.  

• The interface for the flow label is yet to be completely defined. The 
sin6_flowinfo member of the sockaddr_in6 socket address 
structure is reserved for future use. Some systems copy the lower 
28 bits from the sin6_flowinfo directly into the IPv6 packet header, 
overwriting the DSCP and ECN fields. 

• The 16-bit payload length field is the length in bytes of everything 
following the 40-byte IPv6 header. Note that unlike IPv4, the 
payload length field does not include the IPv6 header. A value of 0 
means the length requires more than 16 bits to describe and is 
contained in a jumbo payload option. This is called a JUMBOGRAM. 
 



• The 8-bit next header field is similar to the IPv4 protocol field. 
Indeed, when the upper layer protocol is basically unchanged from 
IPv4 to IPv6, the same values are used, such as 6 for TCP and 17 for 
UDP. There were so many changes from ICMPv4 to ICMPv6 that the 
latter was assigned a new value of 58. 

• An IPv6 datagram can have numerous headers following the 40-
byte IPv6 header. That is why the field is called the "next header" 
and not the "protocol." 

• The 8-bit hop limit field is similar to the IPv4 TTL field. The hop limit 
is decremented by 1 each time a router forwards the datagram and 
the datagram is discarded by any router that decrements the value 
to 0. The default value for this field can be set and fetched with the 
IPV6_UNICAST_HOPS and IPV6_MULTICAST_HOPS socket options. 
The IPV6_HOPLIMIT socket option also lets us set this field and the 
IPV6_RECVHOPLIMIT socket option lets us obtain its value from a 
received datagram. 

• Early specifications of IPv4 had routers decrement the TTL by either 
one or the number of seconds that the router held the datagram, 
whichever was greater. Hence the name "time-to-live." In reality, 
however, the field was always decremented by one. IPv6 calls for its 
hop limit field to always be decremented by one, hence the name 
change from IPv4. 



• The source IPv6 address and the destination IPv6 address are both 128-bit 
fields. 

• The most significant change from IPv4 to IPv6 is, of course, the larger IPv6 
address fields. Another change is simplifying the IPv6 header as follows, to 
facilitate faster processing as a datagram traverses the network: 

• There is no IPv6 header length field since the IPv6 header length is fixed at 
40 bytes. Optional headers may follow the fixed 40-byte IPv6 header, but 
each of these has its own length field. 

• The two IPv6 addresses end up aligned on a 64-bit boundary when the 
header itself is 64-bit aligned. This can speed up processing on 64-bit 
architectures. IPv4 addresses are only 32-bit aligned in a 64-bit aligned 
IPv4 header. 

• There are no fragmentation fields in the IPv6 header because there is a 
separate fragmentation header for this purpose. This design decision was 
made because fragmentation is the exception, and exceptions should not 
slow down normal processing. 

• The IPv6 header does not include its own checksum. This is because all the 
upper layers—TCP, UDP, and ICMPv6—have their own checksum that 
includes the upper-layer header, the upper-layer data, and the following 
fields from the IPv6 header: IPv6 source address, IPv6 destination address, 
payload length, and next header. By omitting the checksum from the 
header, routers that forward the datagram need not recalculate a header 
checksum after they modify the hop limit. Again, speed of forwarding by 
routers is the key point. 
 



In case this is your first encounter with IPv6, we also note the 
following major differences from IPv4 to IPv6: 

• There is no broadcasting with IPv6 .Multicasting ,which is optional 
with IPv4, is mandatory with IPv6. The case of sending to all 
systems on a subnet is handled with the all-nodes multicast group. 

• IPv6 routers do not fragment packets they forward. If fragmentation 
is required, the router drops the packet and sends an ICMPv6 error . 
Fragmentation is performed only by the originating host with IPv6. 

• IPv6 requires support for path MTU discovery .Technically, this 
support is optional and could be omitted from minimal 
implementations such as bootstrap loaders, but if a node does not 
implement this feature, it must not send datagrams larger than the 
IPv6 minimum link MTU (1280 bytes). describes socket options to 
control path MTU discovery behavior. 

• IPv6 requires support for authentication and security options. These 
options appear after the fixed header. 
 



IPv4 & v6 address structures 



Subnet Addresses 
 

IPv4 addresses are often subnetted (RFC 950 
[Mogul and Postel 1985]). This adds another 
level to the address hierarchy: 

• Network ID (assigned to site) 

• Subnet ID (chosen by site) 

• Host ID (chosen by site) 

 



Subnet Addresses 



IPv6 

These high-order bits are called the format prefix. For 
example, if the high-order 3 bits are 001, the address is 
called a global unicast address. If the high-order 8 bits are 
11111111 (0xff), it is a multicast address. 



Global Unicast Addresses 
 

• The IPv6 addressing architecture has evolved based on lessons learned 
from deployment and from IPv4. The original definition of aggregatable 
global unicast addresses, which in Figure A.7 begin with a 3-bit prefix of 
001, had a fixed structure built into the address. This structure was 
removed by RFC 3587 [Hinden, Deering, and Nordmark 2003], and while 
the addresses beginning with the 001 prefix will be the first ones assigned, 
there is no difference between them and any other global address. These 
addresses will be used where IPv4 unicast addresses are used today. 



Global Unicast Addresses 

• The format of aggregation-based unicast 
addresses is defined in RFC 3513 [Hinden and 
Deering 2003] and RFC 3587 [Hinden, Deering, 
and Nordmark 2003] and contains the 
following fields, starting at the leftmost bit 
and going right: 

• Global routing prefix (n bits) 

• Subnet ID (64–n bits) 

• Interface identifier (64 bits) 

 



6 bone Test Addresses 
 

• The 6bone is a virtual network used for early 
testing of the IPv6 protocols. Although 
aggregatable global unicast addresses are 
being assigned, sites that do not qualify for 
address space based on the rules used by 
regional registries can use a special format of 
these addresses on the 6bone (RFC 2471 
[Hinden, Fink, and Postel 1998]), as shown in  





IPv4-Mapped IPv6 Addresses 
 

• IPv4-mapped IPv6 addresses allow IPv6 applications on 
hosts supporting both IPv4 and IPv6 to communicate with 
IPv4-only hosts during the transition of the Internet to IPv6. 
These addresses are automatically created by DNS resolvers 
when a query is made by an IPv6 application for the IPv6 
addresses of a host that has only IPv4 addresses. 

• We saw in that using this type of address with an IPv6 
socket causes an IPv4 datagram to be sent to the IPv4 host. 
These addresses are not stored in any DNS data files; they 
are created when needed by a resolver. 

• Figure shows the format of these addresses The low-order 
32 bits contain an IPv4 address. 
 
 



IPv4-Mapped IPv6 Addresses 
 

• When writing an IPv6 address, a consecutive 
string of zeros can be abbreviated with two 
colons. Also, the embedded IPv4 address is 
written using dotted-decimal notation. For 
example, we can abbreviate the IPv4-mapped 
IPv6 address 0:0:0:0:0:FFFF:12.106.32.254 as 
::FFFF:12.106.32.254. 



IPv4-Compatible IPv6 Addresses 
 

• IPv4-compatible IPv6 addresses were also planned to be 
used during the transition from IPv4 to IPv6 (RFC 2893 
[Gilligan and Nordmark 2000]). The administrator for a host 
supporting both IPv4 and IPv6 that does not have a 
neighbor IPv6 router should create a DNS AAAA record 
containing an IPv4-compatible IPv6 address. Any other IPv6 
host with an IPv6 datagram to send to an IPv4-compatible 
IPv6 address will then encapsulate the IPv6 datagram with 
an IPv4 header; this is called an automatic tunnel. However, 
deployment concerns have reduced the usage of this 
feature. We will talk more about tunneling in Section B.3 
and show an example of this type of IPv6 datagram 
encapsulated within an IPv4 header in 
 



IPv4-compatible IPv6 addresses can also appear in the source or destination 
of nontunnelled IPv6 packets when using the SIIT IPv4/IPv6 transition 

mechanism  



Loopback Address 
 

• An IPv6 address consisting of 127 zero bits and 
a single one bit, written as ::1, is the IPv6 
loopback address. In the sockets API, it is 
referenced as in6addr_loopback or 
IN6ADDR_LOOPBACK_INIT. 

 



Unspecified Address 
 

• An IPv6 address consisting of 128 zero bits, written as 
0::0, or just ::, is the IPv6 unspecified address. In an 
IPv6 packet, the unspecified address can appear only as 
the source address in packets sent by a node that is 
bootstrapping, before the node learns its IPv6 address. 

• In the sockets API, this address is called the wildcard 
address. Specifying it, for example, to bind for a 
listening TCP socket, indicates that the socket will 
accept client connections destined to any of the node's 
addresses. It is referenced as in6addr_any or 
IN6ADDR_ANY_INIT. 



Link-Local Address 
 

• A link-local address is used on a single link 
when it is known that the datagram will not 
be forwarded beyond the local network. 
Example uses are automatic address 
configuration at bootstrap time and neighbor 
discovery (similar to IPv4's ARP). Figure shows 
the format of these addresses. 

 



Site-Local Address 

• As of this writing, the IETF IPv6 working group 
has decided to deprecate site-local addresses 
in their current form. The forthcoming 
replacement may or may not finally use the 
same address range as was originally defined 
for site-local addresses (fec0/10). Site-local 
addresses were meant to be used for 
addressing within a site without the need for a 
global prefix. Figure  shows the originally 
defined format of these addresses. 

 



Site-Local Address 

An IPv6 router must not forward a datagram with a site-local source 

or destination address outside of that site. 

    

mk:@MSITStore:C:/Documents and Settings/rungta/Desktop/NETWORK PROGRAMMING/Unix Network Programming Volume 1,Third Edition The Sockets Networking API.chm::/0131411551_23961534.html
mk:@MSITStore:C:/Documents and Settings/rungta/Desktop/NETWORK PROGRAMMING/Unix Network Programming Volume 1,Third Edition The Sockets Networking API.chm::/0131411551_23961534.html
mk:@MSITStore:C:/Documents and Settings/rungta/Desktop/NETWORK PROGRAMMING/Unix Network Programming Volume 1,Third Edition The Sockets Networking API.chm::/0131411551_23961534.html


IPv6 

Internet Protocol Version 6 



2003-2004 - Information management 2 Groep T Leuven – Information department 2/24 

Internet Protocol Version 6 (IPv6) 

• IPv6 solutions to IPv4 disadvantages 

• IPv6 addressing 

• IPv6 header 

• DNS support for IPv6 

• Core protocols of IPv6 

• IPv6 Neighbor Discovery 

• Differences between IPv4 and IPv6 



2003-2004 - Information management 3 Groep T Leuven – Information department 3/24 

Disadvantages of IPv4 

• Limited address space 

• Flat routing infrastructure 

• Configuration 

• Security 

• Quality of service (QoS) 

• Mobility 



2003-2004 - Information management 4 Groep T Leuven – Information department 4/24 

IPv6 Solutions to IPv4 Disadvantages 

• Huge address space 

• Hierarchical routing infrastructure 

• Automatic configuration 

• Built-in security 

• Better support for QoS 

• Built-in mobility 



2003-2004 - Information management 5 Groep T Leuven – Information department 5/24 

Larger Address Space 

~ = 

~ = 
~ = 

~ = 

IPv4 
• 32 bits or 4 bytes long 

   4,200,000,000 possible addressable nodes 

IPv6 
• 128 bits or 16 bytes: four times the bits of IPv4 

     3.4 * 1038 possible addressable nodes 
   340,282,366,920,938,463,374,607,432,768,211,456 
   5 * 1028 addresses per person 



2003-2004 - Information management 6 Groep T Leuven – Information department 6/24 

IPv6 Adressing 

TrillionTrillion
Billion

  52
5.6
2128



)  523(  523
 100

  52
TrillionthousandnQuadrillio

Billion

TrillionTrillion


6.5 Billion people on earth 

Typical braincell has  

~100 Billion cells 

(your count may vary) 

IPv6 addresses for every  

human brain cell on the planet 

IPv6 addresses per person 



2003-2004 - Information management 7 Groep T Leuven – Information department 7/24 

Larger Address Space Enables Address Aggregation 

• Aggregation of prefixes announced in the global 
routing table 

• Efficient and scalable routing 
• Improved bandwidth and functionality for user traffic 



2003-2004 - Information management 8 Groep T Leuven – Information department 8/24 

The IPv6 Address Space 

• 128-bit address space 
• 128 bits were chosen to allow multiple levels of 

hierarchy and flexibility in designing hierarchical 
addressing and routing 

• Global unicast and anycast addresses are defined by a 
global routing prefix, a subnet ID, and an interface ID 



2003-2004 - Information management 9 Groep T Leuven – Information department 9/24 

IPv6 Address Representation 

• x:x:x:x:x:x:x:x, where x is a 16-bit hexadecimal field 

• Leading zeros in a field are optional: 

– 2031:0:130F:0:0:9C0:876A:130B 

• Successive fields of 0 can be represented as ::, but only 
once per address. 

Examples: 
 

2031:0000:130F:0000:0000:09C0:876A:130B 
 

2031:0:130f::9c0:876a:130b 
 

FF01:0:0:0:0:0:0:1 >>> FF01::1 
 

0:0:0:0:0:0:0:1 >>> ::1 
 

0:0:0:0:0:0:0:0 >>> :: 



2003-2004 - Information management 10 Groep T Leuven – Information department 10/24 

Compressing Zeros 

• Some IPv6 addresses contain long sequences of zeros 

• A single contiguous sequence of 16-bit blocks set to 0 can be 
compressed to “::” (double-colon)  

• Examples: 

– FE80:0:0:0:2AA:FF:FE5F:47D1 becomes 
FE80::2AA:FF:FE5F:47D1 

– FEC0:0:0:41CD:2AA:FF:FE5F:47D1 becomes 
FEC0::41CD:2AA:FF:FE5F:47D1 

– FF02:0:0:0:0:0:0:1 (a multicast address) becomes FF02::1 



2003-2004 - Information management 11 Groep T Leuven – Information department 11/24 

IPv6 Prefixes 
• Prefix is the part of the address where the bits have 

fixed values or are the bits of a route or subnet identifier 

• IPv6 subnets or routes always uses address/prefix-length 
notation 

– CIDR notation 

• Examples: 

– 3FFE:FFFF:2A:41CD::/64 is a subnet identifier 

– 3FFE:FFFF:2A::/48 is a route 

– FF::/8 is an address range 



2003-2004 - Information management 12 Groep T Leuven – Information department 12/24 

Types of IPv6 Addresses 

• Unicast 

– Address of a single interface 

– One-to-one delivery to single interface 

• Multicast 

– Address of a set of interfaces 

– One-to-many delivery to all interfaces in the set 

• Anycast 

– Address of a set of interfaces 

– One-to-one-of-many delivery to a single interface in 
the set that is closest 

• No more broadcast addresses 



2003-2004 - Information management 13 Groep T Leuven – Information department 13/24 

Unicast IPv6 Addresses 
• Global addresses 

– Used on IPv6 Internet 
– Equivalent to IPv4 public 

addresses 
• Local-Use Addresses 

– Site-local addresses 
• Equivalent to IPv4 private 

addresses 
• Always begin with FEC0 

– Link-local addresses 
• Equivalent to APIPA 

addresses 
• Always begin with FE80 

Link Local Site Local Global 



2003-2004 - Information management 14 Groep T Leuven – Information department 14/24 

IPv6 Interface Identifiers 

• Based on: 

– Derived from the MAC address of the network 
adapter to which the address is assigned 

– Randomly generated to provide IPv4-equivalent 
anonymity 

– Assigned during a Point-to-Point Protocol (PPP) 
connection 

– Assigned during DHCP configuration 

 



2003-2004 - Information management 15 Groep T Leuven – Information department 15/24 

IPv6 Interface identifier EUI-64 
• Cisco uses the extended 

universal identifier (EUI)-64 
format to do stateless 
autoconfiguration. 

• This format expands the 48-
bit MAC address to 64 bits 
by inserting “FFFE” into the 
middle 16 bits. 

• To make sure that the chosen 
address is from a unique 
Ethernet MAC address, the 
universal/local (U/L bit) is 
set to 1 for global scope (0 
for local scope). 

 

00 90 27 17 FC 0F 

00 90 27 17 FC 0F 

FF FE 

00 90 27 17 FC 0F FF FE 

02 90 27 17 FC 0F FF FE 

48 bit 

64 bit 

000000U0 

1 = Unique 

0 = Not Unique 
U = 

Mac address 



2003-2004 - Information management 16 Groep T Leuven – Information department 16/24 

IPv6 Header 

Fragment  
Offset 

Flags 

Total Length 
Type of  
Service 

IHL 

Padding Options 

Destination Address 

Source Address 

Header Checksum Protocol Time to Live 

Identification 

Version 

IPv4 Header 

Next  
Header 

Hop Limit 

Flow Label 
Traffic  
Class 

Destination Address 

Source Address 

Payload Length 

Version 

IPv6 Header 

Field’s Name Kept from IPv4 to IPv6 

Fields Not Kept in IPv6 

Name and Position Changed in IPv6 

New Field in IPv6 L
e
g

e
n

d
 



2003-2004 - Information management 17 Groep T Leuven – Information department 17/24 

IPv6 Extension Header types 

• Routing Header 

• Fragmentation Header 

• Hop-by-Hop Options Header 

• Destinations Options Header 

• Authentication Header 

• Encrypted Security Payload Header 

Ethernet 

header 

IPv6 

header 

Routing 

header 

Frag 

header 

Auth 

header 

ESP 

header 

TCP 

header 

Application 

data 



2003-2004 - Information management 18 Groep T Leuven – Information department 18/24 

DNS Support for IPv6 

• AAAA resource records for name-to-address 
resolutions 

• PRT resource records in the IP6.ARPA reverse domain 
for address-to-name resolutions 



2003-2004 - Information management 19 Groep T Leuven – Information department 19/24 

Core Protocols of IPv6 

• IPv6 

– Replacement for IPv4 

• ICMPv6 

– Replacement for ICMP for IPv4 

• Neighbor Discovery 

– Replacement for ARP, Redirect, and Router 
Discovery for IPv4 

• Multicast Listener Discovery 

– Replacement for IGMPv2 for IPv4 



2003-2004 - Information management 20 Groep T Leuven – Information department 20/24 

IPv6 Neighbor Discovery 
• Messages 

– Neighbor Solicitation 

– Neighbor Advertisement 

– Router Solicitation 

– Router Advertisement 

– Redirect 

• Processes 

– Address resolution 

– Duplicate address detection 

– Router discovery 

– Redirect 

– Neighbor unreachability detection 



2003-2004 - Information management 21 Groep T Leuven – Information department 21/24 

Stateless Autoconfiguration 

• A router sends network information to all the nodes on the local 
link.  

• A host can autoconfigure itself by appending its IPv6 interface 
identifier (64-bit format) to the local link prefix (64 bits).  

• The result is a full 128-bit address that is usable and guaranteed 
to be globally unique. 



2003-2004 - Information management 22 Groep T Leuven – Information department 22/24 

A Standard Stateless Autoconfiguration 

• Stage 1: The PC sends a router solicitation to request a 
prefix for stateless autoconfiguration. 



2003-2004 - Information management 23 Groep T Leuven – Information department 23/24 

• Stage 2: The router replies with a router 
advertisement. 

A Standard Stateless Autoconfiguration (Cont.) 



2003-2004 - Information management 24 Groep T Leuven – Information department 24/24 

Differences Between IPv4 and IPv6  
Feature IPv4 IPv6 

Address length 32 bits 128 bits 

Header size 20-60 bytes 40 bytes 

IPSec support Optional Required 

QoS support Some Better 

Fragmentation Hosts and routers Hosts only 

Checksum in header Yes No 

Options in header Yes No 

Link-layer address resolution ARP (broadcast) Multicast Neighbor 

  Discovery Messages 

Multicast membership IGMP Multicast Listener 

  Discovery (MLD) 

Router Discovery Optional Required 

Uses broadcasts? Yes No 

Configuration Manual, DHCP Automatic, DHCP 

DNS name queries Uses A records Uses AAAA  

  records 

DNS reverse queries Uses IN-ADDR.ARPA  Uses IP6.ARPA 



More than ever, organizations in all 
industries need ways to ensure that 
their software systems can function 
across multiple platforms.  In response 
to this requirement for interoperability, 
the POSIX® standard was born.

What is POSIX?
POSIX—the Portable Operating Sys-
tem Interface—is a family of standards 
designed to ensure source-code por-
tability of application programs across 
hardware and operating systems.  It is 
increasingly mandated for commercial
applications and government con-
tracts.

The POSIX standards provide for com-
munication between an application 
and the underlying operating system.  
POSIX was developed by the Institute 
of Electrical and Electronics Engineers 
(IEEE) and is recognized by the Inter-
national Organization for Standard-
ization (ISO) and American National 
Standards Institute (ANSI).

Who needs POSIX?
POSIX conformance directly benefi ts 
professionals who:
•  Develop applications where porta-

bility and compatibility is an objec-
tive

•   Buy hardware and software systems
•  Manage companies that are decid-

ing on future corporate computing 
directions

•  Implement operating systems

When an application is based on a 
POSIX-conformant operating sys-
tem, the future costs of adding new 
features or porting of the source code 
are reduced.  Code written for one 
POSIX operating system will generally 
port easily to another, including most 
UNIX® and Linux® systems.

In this way, POSIX makes developers’ 
jobs easier, and organizations get to 
preserve their software investment 
into the future when upgrades be-
come necessary.

POSIX also allows for systems to be 
designed with modules that run differ-
ent POSIX-based operating systems.  
For example, LynuxWorks’ BlueCat® 
Linux is often used with the POSIX-
conformant LynxOS real-time operat-
ing system.

What makes a POSIX operating system?
A savvy engineer just needs to ask a 
few quick questions about an operat-
ing system in order to determine if it 
might fully support the POSIX stan-
dards.

1.  Does each process in the operating 
system reside in a different name 
space and have its own symbols 
table?

2.  Does the operating system support 
the fork() call?

3.  Can the operating system distin-
guish between threads and pro-
cesses?

4.  Does the operating system support  
signals?

POSIX Conformance
LynuxWorks responds to the need for interoperability between systems

LynxOS onboard
Providing optimal interoperability between 
safety-critical systems, the POSIX-confor-
mant LynxOS® family of real-time operating 
systems is the natural choice for mission-critical defense systems 
development, and boasts more than 20 years of experience 
supporting military and government customers.

Because POSIX conformance assures code portability between 
systems, it is increasingly mandated for commercial applications 
and government contracts.  For instance, the United States 
Joint Technical Architecture-Army (JTA-A) standards set speci-
fi es that conformance to POSIX is critical to support software 
interoperability.

In addition, to ensure future system interoperability and to 
support software reuse, the U.S. Navy Open Architecture (OA) 
guidelines can require that software systems be strictly con-
formant to POSIX profi le 54.  The Navy OA initiative employs 
commercial-off the-shelf (COTS) POSIX-conformant products as 
a means for providing portable software that can be used across 
Naval surface, subsurface and air platforms.  POSIX-conformant 
LynxOS has passed Open Architecture Computing Environment 
(OACE) standards and is Navy OACE Category 3-compliant.



POSIX real-time and threads extensions
LynxOS real-time operating system 
serves as foundation software for mil-
lions of mission-critical applications 
worldwide.

LynxOS brings POSIX.1 conformance 
to these applications, and it also 
supplies them with all the services 
specifi ed by POSIX 1.b (real-time 
extensions) and POSIX 1.c (threads 
extensions).

The POSIX real-time and thread 
extensions are later additions to the 
original POSIX.1 standard, and they 

have extensive applicability for real-
time and embedded systems.

The real-time extensions include prior-
ity scheduling, real-time signals, clocks 
and timers, semaphores, message 
passing, shared memory, asynch and 
synch I/O and memory locking.  The 
threads extensions include specifi ca-
tions for thread creation, control, and 
clean-up; thread scheduling; thread 
synchronization and signal handling.

POSIX processes
In POSIX, each executing instance of 
a program is called a process, and is 

created when a parent process in-
vokes the fork() call, or when a process 
is spawned.  Each process by defi ni-
tion has its own protected address 
space.  Processes are kept separate 
through the use of memory protection 
and name spaces.

Every process owns one or more 
threads, each of which may be in-
structed to execute program code.  
The program code may contain 
system calls that create additional 
threads.  Each thread is a fl ow of 
control within the parent process.  The 
Memory Management Unit (MMU) is 
used to physically isolate processes 
from each another so that they cannot 
inadvertently infringe on each other.  
Due to this enforced separation, 
communications between processes 
can only take place by using kernel 
services.

POSIX threads
An important POSIX concept is the 
distinction between threads and pro-
cesses.  Not all operating systems are 
able make to this important distinc-
tion.  Those which do not are likely to 
categorize all threads and processes 
together as “tasks.”

POSIX threads are the schedulable 
entities that run within each process.  
Each process will be the parent of one 

POSIX and embedded systems
The POSIX family of standards includes 
many individual specifi cations and 
extensions for operating system servic-
es.  POSIX.1, .1b and .1c are especially 
relevant in real-time and embedded sys-
tems.  The POSIX.13 profi les 51-54 allow 
further specialization of these standards 
to fi t the needs of simple or complex 
system computers.

POSIX.1:
Operating System 
Core Services

Basic operating system interfaces; includes support for process cre-
ation and control, signals, fl oating point exceptions, segmentation 
violations, illegal instructions, bus errors, timers, fi le and directory 
operations, pipes, C library (standard C), I/O port interface and con-
trol.

POSIX.1b:
Real-Time 
Extensions

Functions needed for real-time systems; includes support for priority
scheduling, real-time signals, clocks and timers, semaphores, mes-
sage passing, shared memory, asynch and synch I/O, and memory 
locking.

POSIX.1c:
Thread Extensions

Functions to support multiple threads within a process; includes 
support for thread creation, control, and clean-up, thread schedul-
ing, thread synchronization, and signal handling.



main thread, but it may be the parent 
of several more threads as well.

The various threads running within a 
process all share the virtual address 
space of the parent process and do 
not have a parent-child relationship
with each other.  Unlike POSIX pro-
cesses, threads can share data and 
communicate with each other by using 
globals.

POSIX system calls will refer to a spe-
cifi c process ID or thread ID—these 
IDs are not interchangeable.

POSIX signals
Signals are integral to any UNIX or 
Linux application and are supported 
by the POSIX.1 standard.

POSIX.1 signals are used for many 
synchronous and asynchronous noti-
fi cations, such as terminating a child 
process or informing a process that it 
has issued a memory violation.  Sig-
nals can be caught, ignored, blocked, 
unblocked, handled, and more.

Signals in POSIX are quite powerful.  
Each thread can block incoming sig-
nals on a per-signal basis and defi ne 
signal handlers for each signal that it 
might receive.

The real-time signals that are defi ned 
by POSIX 1.b are even more useful, in 
that they can carry data, be queued 
(thus guaranteeing delivery to a spe-
cifi c thread), and be prioritized.

POSIX.13 profi les
The POSIX.13 family of four related 
real-time profi les (51 through 54) cov-
ers applications from the very small-
scale to full-featured.

POSIX.13 profi le 51 defi nes a very 
simple real-time device, with a single 

process and multiple threads, but no 
fi le system.

Profi le 52 defi nes the addition of a fi le 
system, profi le 53 adds multiprocess 
capabilities; and profi le 54 adds both.

Computers following the larger 
POSIX.13 profi les, such as 54, might 
operate at the top of a distributed 
system, with simpler computers at 
the bottom running smaller POSIX.13 
profi les.

The Linux operating system is con-
sidered to be of profi le 54, so Blue-
Cat Linux is frequently used with the 
LynxOS real-time operating system, 
both during development and proto-
typing phases, and as part of larger 
systems.

POSIX conformance is worth more than POSIX compliance

All POSIX operating systems do not implement POSIX standards to 

the same degree.

POSIX conformance is what embedded developers are usually looking 

for.  POSIX conformance means that the POSIX.1 standard is support-

ed in its entirety.  In the case of the LynxOS real-time operating system 

(RTOS), the specifi cations of the POSIX.1b and POSIX.1c subsets are 

also supported.

POSIX compliance is a less powerful label, and could merely mean that 

a product provides partial POSIX support.  “POSIX compliance” just 

means that documentation is available to show which POSIX features 

are supported and which ones are not.

POSIX is structured as a set of optional features, so operating-system 

vendors don’t need to support all possible POSIX features in order to 

claim “compliance.”



LynuxWorks, Inc.
855 Embedded Way
San José, CA 95138-1018
408.979.3900
408.979.3920 fax
www.lynuxworks.com

LynuxWorks Europe
Craven House
121 Kingsway, Holborn
London WC2B 6PA
United Kingdom
+44 208 906 9506
+44 208 906 2338 fax

©2008 LynuxWorks, Inc. LynuxWorks and the LynuxWorks 
logo are trademarks, and LynxOS and BlueCat are regis-
tered trademarks of LynuxWorks, Inc. Linux is a registered 
trademark of Linus Torvalds. All other trademarks are the 
trademarks and registered trademarks of their
respective owners.

All rights reserved. Printed in the USA.

The Improved Data Modem (IDM) from 
Innovative Concepts, Inc. (ICI) can 
interconnect the U.S. Army and the 
U.S. Air Force’s major networks for both 
maneuver and fi re support, and also 
provide critical linkage to the military’s 
legacy systems.

Plans to add a subset of FCBC2 (Force 
XXI Battle Command, Brigade and Be-
low) software to the IDM were threat-
ening to require physical changes to 
the IDM in order to accommodate the 
FCBC2’s Solaris™ operating system.

Instead, it was decided to port the 
FCBC2 software to a different operat-
ing system altogether.

The fi rst porting attempt was to a non-
POSIX operating system—VxWorks®.  

Since VxWorks was already being 
used in the IDM, porting the 
FCBC2 software to it seemed a 
logical approach—at fi rst.

Unfortunately, the lack of POSIX 
conformance proved to be a 
signifi cant disadvantage, and it ul-
timately contributed to the failure 
of the attempted VxWorks port, 
despite the three years that had been 
spent on that effort.

Finally, the earlier project team cut its 
losses and turned to the LynxOS real-
time operating system (RTOS), which is 
POSIX-conformant, therefore providing 
the UNIX compatibility that was impor-
tant for the software porting.

In fact, in just six short months, the port 
to LynxOS succeeded as expected.  
“We knew it would not be diffi cult 
to port the FBCB2 code to LynxOS,” 
said Bob Woodward, director, tactical 
communication systems at ICI.  “And it 
wasn't.”

POSIX conformance at work

LynxOS : The only certifi ed POSIX-conformant RTOS
The LynxOS real-time operating system 
(RTOS) from LynuxWorks has the most 
inherently secure, reliable design of 
virtually any commercial-off-the-shelf 
(COTS) embedded operating system 
today, and is the most open hard RTOS 
available.

LynxOS has supported a full POSIX 
process model since its introduction in 
1988.

Best of all, POSIX is the natural inter-
face for LynxOS, so POSIX calls are not 
an optional add-on library.

LynxOS is the only RTOS certifi ed by 
the IEEE as POSIX-conformant.  In 
addition to the POSIX.1 specifi cation, 

LynxOS supports all of the routines in 
POSIX.1b and POSIX.1c. subsets (real-
time and theads extensions).

Full POSIX conformance and determin-
istic performance makes LynxOS ideal 
for real-time systems intended to:

•   Execute complex series of tasks 
within set periods of time

•  Support multiple applications with 
multiple interrupting devices

•  Take full advantage of today’s pow-
erful high-end microprocessor and 
advanced networking architectures

Because LynxOS is designed from the 
ground up for conformance to open 
system interfaces, developers can 

leverage existing Linux, UNIX, and 
POSIX programming talent for embed-
ded real-time projects.

LynxOS not only conforms to POSIX 
standards, but it is also the only RTOS 
that provides true Linux ABI-compat-
ibility.  Linux ABI-compatibility means 
that applications written for Linux can 
easily run on LynxOS with no loss of 
functionality and little time and effort 
involved.

With the LynuxWorks solution, devel-
opers maximize the value of their code 
investment and improve their time to 
market.



 

 
 
 
 

 
 

CPNI TECHNICAL NOTE 3/2009 
SECURITY ASSESSMENT OF THE 
TRANSMISSION CONTROL PROTOCOL (TCP) 

FEBRUARY 2009 

 
 

Disclaimer: 

 
Reference to any specific commercial product, process or service by trade name, 
trademark, manufacturer, or otherwise, does not constitute or imply its endorsement, 
recommendation, or favouring by CPNI. The views and opinions of authors expressed 
within this document shall not be used for advertising or product endorsement purposes.  
 
To the fullest extent permitted by law, CPNI accepts no liability for any loss or damage 
(whether direct, indirect or consequential and including, but not limited to, loss of profits or 
anticipated profits, loss of data, business or goodwill) incurred by any person and 
howsoever caused arising from or connected with any error or omission in this document 
or from any person acting, omitting to act or refraining from acting upon, or otherwise 
using, the information contained in this document or its references. You should make your 
own judgement as regards use of this document and seek independent professional advice 
on your particular circumstances. 



 
 

 2

Contents 

1. Preface.................................................................................................. 5 
1.1. Introduction ..................................................................................................................................... 5 
1.2. Scope of this document .................................................................................................................. 6 
1.3. Organisation of this document........................................................................................................ 7 
1.4. Typographical conventions............................................................................................................. 7 
1.5 Acknowledgements ......................................................................................................................... 7 
1.6. Advice and guidance to vendors .................................................................................................... 8 

 
2. The Transmission Control Protocol................................................... 9 

 
3. TCP header fields .............................................................................. 10 

3.1. Source Port................................................................................................................................... 10 
3.2. Destination port............................................................................................................................. 18 
3.3. Sequence number ........................................................................................................................ 19 
3.4. Acknowledgement number ........................................................................................................... 20 
3.5. Data Offset.................................................................................................................................... 21 
3.6. Control bits.................................................................................................................................... 21 
3.7. Window......................................................................................................................................... 25 
3.8. Checksum..................................................................................................................................... 26 
3.9. Urgent pointer ............................................................................................................................... 27 
3.10. Options ....................................................................................................................................... 31 
3.11. Padding....................................................................................................................................... 33 
3.12. Data ............................................................................................................................................ 33 

 
4. Common TCP options....................................................................... 34 

4.1. End of Option List (Kind = 0) ........................................................................................................ 34 
4.2. No Operation (Kind = 1)................................................................................................................ 34 
4.3. Maximum Segment Size (Kind = 2).............................................................................................. 34 
4.4. Selective Acknowledgement option.............................................................................................. 36 
4.5. MD5 option (Kind=19)................................................................................................................... 38 
4.6. Window scale option (Kind = 3).................................................................................................... 39 
4.7. Timestamps option (Kind = 8) ...................................................................................................... 40 

 
5. Connection-establishment mechanism........................................... 43 

5.1. SYN flood...................................................................................................................................... 43 
5.2. Connection forgery ....................................................................................................................... 46 
5.3. Connection-flooding attack ........................................................................................................... 47 
5.4. Firewall-bypassing techniques ..................................................................................................... 49 

 
 



 
 

 3

6. Connection-termination mechanism ............................................... 50 
6.1. FIN-WAIT-2 flooding attack .......................................................................................................... 50 

 
7. Buffer management........................................................................... 53 

7.1. TCP retransmission buffer............................................................................................................ 53 
7.2. TCP segment reassembly buffer .................................................................................................. 56 
7.3. Automatic buffer tuning mechanisms ........................................................................................... 58 

 
8. TCP segment reassembly algorithm ............................................... 62 

8.1. Problems that arise from ambiguity in the reassembly process................................................... 62 

 
9. TCP congestion control .................................................................... 63 

9.1. Congestion control with misbehaving receivers ........................................................................... 64 
9.2. Blind DupACK triggering attacks against TCP ............................................................................. 66 
9.3. TCP Explicit Congestion Notification (ECN)................................................................................. 79 

 
10. TCP API ............................................................................................ 82 

10.1 Passive opens and binding sockets ............................................................................................ 82 
10.2. Active opens and binding sockets .............................................................................................. 83 

 
11. Blind in-window attacks.................................................................. 84 

11.1. Blind TCP-based connection-reset attacks ................................................................................ 84 
11.2. Blind data-injection attacks......................................................................................................... 90 

 
12. Information leaking ......................................................................... 91 

12.1. Remote Operating System detection via TCP/IP stack fingerprinting........................................ 91 
12.2. System uptime detection ............................................................................................................ 94 

 
13. Covert channels............................................................................... 95 

 
14. TCP port scanning........................................................................... 96 

14.1. Traditional connect() scan .......................................................................................................... 96 
14.2. SYN scan.................................................................................................................................... 96 
14.3. FIN, NULL, and XMAS scans..................................................................................................... 97 
14.4. Maimon scan .............................................................................................................................. 98 
14.5. Window scan .............................................................................................................................. 98 
14.6. ACK scan.................................................................................................................................... 98 

 
 



 
 

 4

 

15. Processing of ICMP error messages by TCP.............................. 100 
15.1. Internet Control Message Protocol ........................................................................................... 100 
15.2. Handling of ICMP error messages ........................................................................................... 101 
15.3 Constraints in the possible solutions ......................................................................................... 102 
15.4. General countermeasures against ICMP attacks..................................................................... 103 
15.5. Blind connection-reset attack ................................................................................................... 104 
15.6. Blind throughput-reduction attack............................................................................................. 107 
15.7. Blind performance-degrading attack ........................................................................................ 108 

 
16. TCP interaction with the Internet Protocol (IP) ........................... 120 

16.1. TCP-based traceroute .............................................................................................................. 120 
16.2. Blind TCP data injection through fragmented IP traffic ............................................................ 120 
16.3. Broadcast and multicast IP addresses ..................................................................................... 121 

 
17. References ..................................................................................... 122 
 



 
 

 5

1. Preface 

1.1. Introduction 

The TCP/IP protocol suite was conceived in an environment that was quite different from the 
hostile environment they currently operate in. However, the effectiveness of the protocols led 
to their early adoption in production environments, to the point that to some extent, the current 
world’s economy depends on them.  
 
While many textbooks and articles have created the myth that the Internet protocols were 
designed for warfare environments, the top level goal for the DARPA Internet Program was 
the sharing of large service machines on the ARPANET [Clark, 1988]. As a result, many 
protocol specifications focus only on the operational aspects of the protocols they specify, and 
overlook their security implications. 
 
While the Internet technology evolved since it early inception, the Internet’s building blocks are 
basically the same core protocols adopted by the ARPANET more than two decades ago. 
During the last twenty years, many vulnerabilities have been identified in the TCP/IP stacks of 
a number of systems. Some of them were based on flaws in some protocol implementations, 
affecting only a reduced number of systems, while others were based in flaws in the protocols 
themselves, affecting virtually every existing implementation [Bellovin, 1989]. Even in the last 
couple of years, researchers were still working on security problems in the core protocols 
[NISCC, 2004] [NISCC, 2005]. 
 
The discovery of vulnerabilities in the TCP/IP protocol suite usually led to reports being 
published by a number of CSIRTs (Computer Security Incident Response Teams) and 
vendors, which helped to raise awareness about the threats and the best mitigations known at 
the time the reports were published. Unfortunately, this also led to the documentation of the 
discovered protocol vulnerabilities being spread among a large number of documents, which 
are sometimes difficult to identify. 
 
For some reason, much of the effort of the security community on the Internet protocols did 
not result in official documents (RFCs) being issued by the IETF (Internet Engineering Task 
Force). This basically led to a situation in which “known” security problems have not always 
been addressed by all vendors. In addition, in many cases vendors have implemented quick 
“fixes” to the identified vulnerabilities without a careful analysis of their effectiveness and their 
impact on interoperability [Silbersack, 2005]. 
 
Producing a secure TCP/IP implementation nowadays is a very difficult task, in part because 
of the lack of a single document that serves as a security roadmap for the protocols. 
Implementers are faced with the hard task of identifying relevant documentation and 
differentiating between that which provides correct advice, and that which provides misleading 
advice based on inaccurate or wrong assumptions. 
 



 
 

 6

There is a clear need for a companion document to the IETF specifications that discusses the 
security aspects and implications of the protocols, identifies the existing vulnerabilities, 
discusses the possible countermeasures, and analyses their respective effectiveness. 
 
This document is the result of a security assessment of the IETF specifications of the 
Transmission Control Protocol (TCP), from a security point of view. Possible threats are 
identified and, where possible, countermeasures are proposed. Additionally, many 
implementation flaws that have led to security vulnerabilities have been referenced in the hope 
that future implementations will not incur the same problems. 
 
This document does not aim to be the final word on the security aspects of TCP. On the 
contrary, it aims to raise awareness about a number of TCP vulnerabilities that have been 
faced in the past, those that are currently being faced, and some of those that we may still 
have to deal with in the future. 
 
Feedback from the community is more than encouraged to help this document be as accurate 
as possible and to keep it updated as new vulnerabilities are discovered. 
 

1.2. Scope of this document  

While there are a number of protocols that may affect the way TCP operates, this document 
focuses only on the specifications of the Transmission Control Protocol (TCP) itself.  
 
The following IETF RFCs were selected for assessment as part of this work: 
 
• RFC 793, “Transmission Control Protocol. DARPA Internet Program. Protocol 

Specification” (91 pages) 

• RFC 1122, “Requirements for Internet Hosts -- Communication Layers” (116 pages) 

• RFC 1191, “Path MTU Discovery” (19 pages) 

• RFC 1323, “TCP Extensions for High Performance” (37 pages) 

• RFC 1948, “Defending Against Sequence Number Attacks” (6 pages) 

• RFC 1981, “Path MTU Discovery for IP version 6” (15 pages) 

• RFC 2018, “TCP Selective Acknowledgment Options” (12 pages) 

• RFC 2385, “Protection of BGP Sessions via the TCP MD5 Signature Option” (6 pages) 

• RFC 2581, “TCP Congestion Control” (14 pages) 

• RFC 2675, “IPv6 Jumbograms” (9 pages) 

• RFC 2883, “An Extension to the Selective Acknowledgement (SACK) Option for TCP” (17 
pages) 

• RFC 2884, “Performance Evaluation of Explicit Congestion Notification (ECN) in IP 
Networks” (18 pages) 

• RFC 2988, “Computing TCP’s Retransmission Timer” (8 pages) 



 
 

 7

• RFC 3168, “The Addition of Explicit Congestion Notification (ECN) to IP” (63 pages) 

• RFC 3465, “TCP Congestion Control with Appropriate Byte Counting (ABC)” (10 pages) 

• RFC 3517, “A Conservative Selective Acknowledgment (SACK)-based Loss Recovery 
Algorithm for TCP” (13 pages) 

• RFC 3540, “Robust Explicit Congestion Notification (ECN) Signaling with Nonces” (13 
pages) 

• RFC 3782, “The NewReno Modification to TCP’s Fast Recovery Algorithm” (19 pages) 

 

1.3. Organisation of this document 

This document is basically organised in two parts. The first part contains a discussion of each 
of the TCP header fields, identifies their security implications, and discusses the possible 
countermeasures. The second part contains an analysis of the security implications of the 
mechanisms and policies implemented by TCP, and of a number of implementation strategies 
in use by a number of popular TCP implementations. 
 

1.4. Typographical conventions 

Throughout this document the header fields of the Transmission Control Protocol (TCP) are 
discussed in detail. In some cases, a given term may have a slightly different meaning 
depending on whether it is used to refer to a concept, or to refer to a specific field of the TCP 
header. In order to avoid any possible confusion arising from this ambiguity, when referring to 
a specific field of the TCP header the name of the field is written in this font type. 

 
Throughout the document there are also a number of parenthetical notes such as this one, 
to provide additional details or clarifications. 
 

1.5 Acknowledgements 

This document was written by Fernando Gont on behalf of CPNI. 
 
The author would like to thank (in alphabetical order) Randall Atkinson, Guillermo Gont, Alfred 
Hönes, Jamshid Mahdavi, Stanislav Shalunov, Michael Welzl, Dan Wing, Andrew 
Yourtchenko, Michal Zalewski, and Christos Zoulas, for providing valuable feedback on earlier 
versions of this document. 
 
Additionally, the author would like to thank (in alphabetical order) Mark Allman, David Black, 
Ethan Blanton, David Borman, James Chacon, John Heffner, Jerrold Leichter, Jamshid 
Mahdavi, Keith Scott, Bill Squier, and David White, who generously answered a number of 
questions.  
 
Finally, the author would like to thank CPNI (formerly NISCC) for their continued support. 
 



 
 

 8

1.6. Advice and guidance to vendors 

Vendors are urged to contact CSIRTUK (csirtuk@cpni.gsi.gov.uk) if they think they may be 
affected by the issues described in this document. As the lead coordination centre for these 
issues, CPNI is well placed to give advice and guidance as required. 
 
CPNI works extensively with government departments and agencies, commercial 
organisations and the academic community to research vulnerabilities and potential threats to 
IT systems especially where they may have an impact on Critical National Infrastructure’s 
(CNI). 
 
Other ways to contact CPNI, plus CPNI’s PGP public key, are available at 
http://www.cpni.gov.uk. 
 
 

mailto:csirtuk@cpni.gsi.gov.uk
http://www.cpni.gov.uk/


 
 

 9

2. The Transmission Control Protocol 

The Transmission Control Protocol (TCP) is a connection-oriented transport protocol that 
provides a reliable byte-stream data transfer service.  

 
Very few assumptions are made about the reliability of underlying data transfer services below 
the TCP layer. Basically, TCP assumes it can obtain a simple, potentially unreliable datagram 
service from the lower level protocols. Figure 1 illustrates where TCP fits in the DARPA 
reference model. 

 
Figure 1: TCP in the DARPA reference model 

 
TCP provides facilities in the following areas: 
 
• Basic Data Transfer 
• Reliability 
• Flow Control 
• Multiplexing 
• Connections 
• Precedence and Security 
• Congestion Control 
 
The core TCP specification, RFC 793 [Postel, 1981c], dates back to 1981 and standardises 
the basic mechanisms and policies of TCP. RFC 1122 [Braden, 1989] provides clarifications 
and errata for the original specification. RFC 2581 [Allman et al, 1999] specifies TCP 
congestion control and avoidance mechanisms, not present in the original specification. Other 
documents specify extensions and improvements for TCP. 
  
The large amount of documents that specify extensions, improvements, or modifications to 
existing TCP mechanisms has led the IETF to publish a roadmap for TCP, RFC 4614 [Duke et 
al, 2006], that clarifies the relevance of each of those documents. 
 



 
 

 10

3. TCP header fields 

RFC 793 [Postel, 1981c] defines the syntax of a TCP segment, along with the semantics of 
each of the header fields. Figure 2 illustrates the syntax of a TCP segment.  
 

 
Figure 2: Transmission Control Protocol header format 

 
 
The minimum TCP header size is 20 bytes, and corresponds to a TCP segment with no 
options and no data. However, a TCP module might be handed an (illegitimate) “TCP 
segment” of less than 20 bytes. Therefore, before doing any processing of the TCP header 
fields, the following check should be performed by TCP on the segments handed by the 
internet layer: 

Segment.Size >= 20 
 
If a segment does not pass this check, it should be dropped. 
 
The following subsections contain further sanity checks that should be performed on TCP 
segments. 
 

3.1. Source Port 

This field contains a 16-bit number that identifies the TCP end-point that originated this TCP 
segment. Being a 16-bit field, it can contain any value in the range 0-65535. 
 
The Internet Assigned Numbers Authority (IANA) has traditionally reserved the following use 
of the 16-bit port range of TCP [IANA, 2008]: 
 
• The Well Known Ports, 0 through 1023 

• The Registered Ports, 1024 through 49151 

• The Dynamic and/or Private Ports, 49152 through 65535 



 
 

 11

 
The range of assigned ports managed by the IANA is 0-1023, with the remainder being 
registered by IANA but not assigned [IANA, 2008]. It is also worth noting that, while some 
systems restrict use of the port numbers in the range 0-1024 to privileged users, no trust 
should be granted based on the port numbers used for a TCP connection. 
 
Servers usually bind specific ports on which specific services are usually provided, while 
clients usually make use of the so-called “ephemeral ports” for the source port of their 
outgoing connections with the only requirement that the resulting four-tuple must be unique 
(not currently in use by any other transport protocol instance). 
 

While the only requirement for a selected ephemeral port is that the resulting four-tuple 
(connection-id) is unique, in practice it may be necessary to not allow the allocation of port 
numbers that are in use by a TCP that is in the LISTEN or CLOSED states for use as 
ephemeral ports, as this might allow an attacker to “steal” incoming connections from a local 
server application. Section 10.2 of this document provides a detailed discussion of this 
issue. 
 
It should also be noted that some clients, such as DNS resolvers, are known to use port 
numbers from the “Well Known Ports” range. Therefore, middle-boxes such as packet filters 
should not assume that clients use port number from only the Dynamic or Registered port 
ranges. 

 
While port 0 is a legitimate port number, it has a special meaning in the UNIX Sockets API. 
For example, when a TCP port number of 0 is passed as an argument to the bind() function, 
rather than binding port 0, an ephemeral port is selected for the corresponding TCP end-point. 
As a result, the TCP port number 0 is never actually used in TCP segments. 
 
Different implementations have been found to respond differently to TCP segments that have 
a port number of 0 as the Source Port and/or the Destination Port. As a result, TCP 
segments with a port number of 0 are usually employed for remote OS detection via TCP/IP 
stack fingerprinting [Jones, 2003]. 
 
Since in practice TCP port 0 is not used by any legitimate application and is only used for 
fingerprinting purposes, a number of host implementations already reject TCP segments that 
use 0 as the Source Port and/or the Destination Port. Also, a number firewalls filter 
(by default) any TCP segments that contain a port number of zero for the Source Port 
and/or the Destination Port. 
 
We therefore recommend that TCP implementations respond to incoming TCP segments that 
have a Source Port of 0 with an RST (provided these incoming segments do not have the 
RST bit set). 
 

Responding with an RST segment to incoming segments that have the RST bit would open 
the door to RST-war attacks. 

 



 
 

 12

As discussed in Section 3.2, we also recommend TCP implementations to respond with an 
RST to incoming packets that have a Destination Port of 0 (provided these incoming 
segments do not have the RST bit set). 

3.1.1. Problems that may arise as a result of collisions of connection-id’s 

A number of implementations will not allow the creation of a new connection if there exists a 
previous incarnation of the same connection in any state other than the fictional state 
CLOSED. This can be problematic in scenarios in which a client establishes connections with 
a specific service at  a particular server at a high rate: even if the connections are also closed 
at a high rate, one of the systems (the one performing the active close) will keep each of the 
closed connections in the TIME-WAIT state for 2*MSL.  
 

MSL (Maximum Segment Lifetime) is the maximum amount of time that a TCP segment can 
exist in an internet. It is defined to be 2 minutes by RFC 793 [Postel, 1981c]. 

 
If the connection rate is high enough, at some point all the ephemeral ports at the client will be 
in use by some connection in the TIME-WAIT state, thus preventing the establishment of new 
connections. In order to overcome this problem, a number of TCP implementations include 
some heuristics to allow the creation of a new incarnation of a connection that is in the TIME-
WAIT state. In such implementations a new incarnation of a previous connection is allowed if: 
 
• The incoming SYN segment contains a timestamp option, and the timestamp is greater 

than the last timestamp seen in the previous incarnation of the connection (for that 
direction of the data transfer), or, 

• The incoming SYN segment does not contain a timestamp option, but its Initial Sequence 
Number (ISN) is greater than the last sequence number seen in the previous incarnation 
of the connection (for that direction of the data transfer). 

Unfortunately, these heuristics are optional, and thus cannot be relied upon. Additionally, as 
indicated by [Silbersack, 2005], if the Timestamp or the ISN are trivially randomised, these 
heuristics might fail. 
 

Section 3.3.1 and Section 4.7.1 of this document recommend algorithms for the generation 
of TCP Initial Sequence Numbers and TCP timestamps, respectively, that provide 
randomisation, while still allowing the aforementioned heuristics to work. 

 
Therefore, the only strategy that can be relied upon to avoid this interoperability problem is to 
minimise the rate of collisions of connection-id’s. A good algorithm to minimise rate of 
collisions of connection-id’s would consider the time a given four-tuple {Source Address, 
Source Port, Destination Address, Destination Port} was last used, and would 
try avoid reusing it for 2*MSL. However, an efficient implementation approach for this 
algorithm has not yet been devised. A simple approach to minimise the rate collisions of 
connection-id’s in most scenarios is to maximise the port reuse cycle, such that a port number 
is not reused before all the other port numbers in the ephemeral port range have been used 
for outgoing connections. This is the traditional ephemeral port selection algorithm in 4.4BSD 
implementations. 
 



 
 

 13

However, if a single global variable is used to keep track of the last ephemeral port selected, 
ephemeral port numbers become trivially predictable. 
 
Section 3.1.2 of this document analyses a number of approaches for obfuscating the TCP 
ephemeral ports, such that the chances of an attacker of guessing the ephemeral ports used 
for future connections are reduced, while still reducing the probability of collisions of 
connection-id’s. Finally, Section 3.1.3 makes recommendations about the port range that 
should be used for the ephemeral ports.  

3.1.2. Port randomisation algorithms 

Since most “blind” attacks against TCP require the attacker to guess or know the four-tuple 
that identifies the TCP connection to be attacked [Gont, 2008a] [Touch, 2007] [Watson, 2004], 
obfuscation of this four-tuple to an off-path attacker requires, in a number of scenarios, much 
more work on the side of the attacker to successfully perform any of these attacks against a 
TCP connection. Therefore, we recommend that TCP implementations randomise their 
ephemeral ports. 
 
There are a number of factors to consider when designing a policy of selection of ephemeral 
ports, which include: 
 
• Minimising the predictability of the ephemeral port numbers used for future connections. 
• Minimising the rate of collisions of connection-id’s. 
• Avoiding conflicts with applications that depend on the use of specific port numbers. 

 
Given the goal of improving TCP’s resistance to attack by obfuscation of the four-tuple that 
identifies a TCP connection, it is key to minimise the predictability of the ephemeral ports that 
will be selected for new connections. While the obvious approach to address this requirement 
would be to select the ephemeral ports by simply picking a random value within the chosen 
ephemeral port number range, this straightforward policy may lead to a short reuse cycle of 
port numbers, which could lead to the interoperability problems discussed in [Silbersack, 
2005].  
 

It is also worth noting that, provided adequate randomisation algorithms are in use, the 
larger the range from which ephemeral pots are selected, the smaller the chances of an 
attacker are to guess the selected port number. This is discussed in Section 3.1.3 of this 
document. 

 
[Larsen and Gont, 2008] provides a detailed discussion of a number of algorithms for 
obfuscating the ephemeral ports. The properties of these algorithms have been empirically 
analysed in [Allman, 2008]. 
 
 
 
 
 



 
 

 14

[Larsen and Gont, 2008] recently suggested an approach that is meant to comply with the 
requirements stated above, which resembles the proposal in RFC 1948 [Bellovin, 1996] for 
selecting TCP Initial Sequence Numbers. Basically, it proposes to give each triple {Source 
Address, Destination Address, Destination Port} a separate port number space, 
by selecting ephemeral ports by means of an expression of the form: 
 

port = min_port + (counter + F()) % (max_port - min_port + 1) 
 

Equation 1: Simple hash-based ephemeral port selection algorithm 
where: 
 
• port: Ephemeral port number selected for this connection. 

• min_port: Lower limit of the ephemeral port number space. 

• max_port: Upper limit of the ephemeral port number space. 

• counter: A variable that is initialised to some arbitrary value, and is incremented once for 
each port number that is selected. 

• F(): A hash function that should take as input both the local and remote IP addresses, the 
TCP destination port, and a secret key. The result of F should not be computable without 
the knowledge of all the parameters of the hash function. 

 
The hash function F() separates the port number space for each triple {Source Address, 
Destination Address, Destination Port} by providing an “offset” in the port number 
space that is unique (assuming no hash collisions) for each triple. As a result, subsequent 
connections to the same end-point would be assigned incremental port numbers, thus 
maximising the port reuse cycle while still making it difficult for an attacker to guess the 
selected ephemeral port number used for connections with other endpoints.  
 
Keeping track of the last ephemeral port selected for each of the possible values of F() would 
require a considerable amount of system memory. Therefore, a possible approach would be to 
keep a global counter variable, which would reduce the required system memory at the 
expense of a shorter port reuse cycle. This latter approach would have the same port reuse 
properties than the widely implemented approach of selecting ephemeral port numbers 
incrementally (without randomisation), while still reducing the predictability of ephemeral port 
numbers used for connections with other endpoints. Figure 3 shows this algorithm in pseudo-
code. 
 



 
 

 15

 
Figure 3: Simple hash-based ephemeral port selection algorithm 

 
An analysis of a sample scenario can help to understand how this algorithm works. Table 2 
illustrates, for a number of consecutive connection requests, some possible values for each of 
the variables used in this ephemeral port selection algorithm. Additionally, the table shows the 
result of the port selection function. 
 

Nr. IP address:port offset min_port max_port counter port 
#1 10.0.0.1:80 1000 1024 65535 1024 3048 
#2 10.0.0.1:80 1000 1024 65535 1025 3049 
#3 192.168.0.1:80 4500 1024 65535 1026 6550 
#4 192.168.0.1:80 4500 1024 65535 1027 6551 
#5 10.0.0.1:80 1000 1024 65535 1028 3052 

 

Table 1: Sample scenario for a simple hash-based port randomisation algorithm 
 
The first two entries of the table illustrate the contents of each of the variables when two 
ephemeral ports are selected to establish two consecutive connections to the same remote 
end-point {10.0.0.1, 80}. The two ephemeral ports that get selected belong to the same port 
number “sequence”, since the result of the hash function F() is the same in both cases. The 
second and third entries of the table illustrate the contents of each of the variables when the 
algorithm later selects two ephemeral ports to establish two consecutive connections to the 
remote end-point {192.168.0.1, 80}. The result of F() is the same for these two cases, and 
thus the two ephemeral ports that get selected belong to the same “sequence”.  
 
 
 
 

    /* Initialization code at system boot time. * 
     * Initialization value could be random.    */ 
    counter = 0; 
 
    /* Ephemeral port selection function */ 

num_ephememeral = max_port - min_port + 1; 
    offset = F(local_IP, remote_IP, remote_port, secret_key); 
    count = num_ephemeral; 
 
    do { 
        port = min_port + (counter + offset) % num_ephemeral; 
        counter++; 
 
        if(four-tuple is unique) 
            return port; 
 
        count--; 
 
    } while (count > 0); 



 
 

 16

 
However, this sequence is different from that of the first two port numbers selected before, as 
the value of F() is different from that obtained when those two ports numbers (#1 and #2) were 
selected earlier. Finally, in entry #5 another ephemeral port is selected to connect to the same 
end-point as in entries #1 and #2. We note that the selected port number belongs to the same 
sequence as the first two port numbers selected (#1 and #2), but that two ports of that 
sequence (3050 and 3051) have been skipped. This is the consequence of having a single 
global counter variable that gets incremented whenever a port number is selected. When 
counter is incremented as a result of the port selections #3 and #4, this causes two ports 
(3050 and 3051) in all the other the port number sequences to be “skipped”, unnecessarily. 
 
[Larsen and Gont, 2008] describes an improvement to this algorithm, in which a value derived 
from the three-tuple {Source Address, Destination Address, Destination Port} is 
used as an index into an array of “counter” variables, which would be used in the equation 
described above. The rationale of this approach is that the selection of an ephemeral port 
number for a given three-tuple {Source Address, Destination Address, Destination 
Port} should not necessarily cause the counter variables corresponding to other three-tuples 
to be incremented. Figure 4 illustrates this improved algorithm in pseudo-code. 
 

 
Figure 4: Double hash-based ephemeral port selection algorithm 

 
 
 
 

     /* Initialization at system boot time */ 
     for(i = 0; i < TABLE_LENGTH; i++) 
         table[i] = random() % 65536; 
 
 
     /* Ephemeral port selection function */ 
     num_ephemeral = max_port - min_port + 1; 
     offset = F(local_IP, remote_IP, remote_port, secret_key1); 
     index = G(local_IP, remote_IP, remote_port, secret_key2); 
     count = num_ephemeral; 
 
     do { 
         port = min_port + (offset + table[index]) % num_ephemeral; 
         table[index]++; 
 
         if(four-tuple is unique) 
         return port; 
 
        count--; 
 
     } while (count > 0); 



 
 

 17

Table 2 illustrates a possible result for the same sequence of events as those in Table 1, 
along with the values for each of the involved variables. 
 

Nr. IP address:port offset min_port max_port index table[index] port 
#1 10.0.0.1:80 1000 1024 65535 10 1024 3048 
#2 10.0.0.1:80 1000 1024 65535 10 1025 3049 
#3 192.168.0.1:80 4500 1024 65535 15 1024 6548 
#4 192.168.0.1:80 4500 1024 65535 15 1025 6549 
#5 10.0.0.1:80 1000 1024 65535 10 1026 3050 

 

Table 2: Sample scenario for a double hash-based port randomisation algorithm 
 
The table illustrates that the destination end-points “10.0.0.1:80” and “192.168.0.1:80” result in 
different values for index and therefore the increments in one of the port number sequence 
does not affect the other sequences, thus minimising the port reuse frequency. 
 
We recommend the implementation of the ephemeral port selection algorithm illustrated in 
Figure 4. 

3.1.3. TCP ephemeral port range 

We recommend that TCP select ephemeral ports from the range 1024-65535 (i.e., set 
min_port and the max_port variables of the previous section to 1024 and 65535, respectively). 
This maximises the port number space from which the ephemeral ports are selected, while 
intentionally excluding the port numbers in the range 0-1023, which in UNIX systems have 
traditionally required super-user privileges to bind them. 
 

4.4BSD implementations have traditionally chosen ephemeral ports from the range 1024-
5000, thus greatly increasing the chances of an attacker of guessing the selected port 
number [Wright and Stevens, 1994]. Unfortunately, most current implementations are still 
using a small range of the whole port number space, such as 1024-49151 or 49152-65535. 

 
It is important to note that a number of applications rely on binding specific port numbers that 
may be within the ephemeral ports range. If such an application was run while the 
corresponding port number was in use, the application would fail.  
 

This problem does not arise from port randomisation itself, and has actually been 
experienced by users of popular TCP implementations that do not actually randomise their 
ephemeral ports.  

 
A solution to this potential problem would be to maintain a list of port numbers that are usually 
needed for running popular applications. In case the port number selected by Equation 1 was 
in such a list, the next available port number would be selected, instead. This “list” of port 
numbers could be implemented as an array of bits, in which each bit would correspond to 
each of the 65536 TCP port numbers, with a value of 0 (zero) meaning that the corresponding 
TCP port is available for allocation as an ephemeral port, and a value of 1 (one) meaning that 
the corresponding port number should not be allocated as an ephemeral port. The 
specification of which ports should be “reserved” for applications may depend on the 
underlying operating system, and is out of the scope of this document. 



 
 

 18

 
As discussed in Section 3.1 and Section 10.2, in practice it may be necessary to not allow the 
allocation as "ephemeral ports" of those port numbers that are currently in use by a TCP that 
is in the LISTEN or CLOSED states, as this might allow an attacker to “steal” incoming 
connections from a local server application. Section 10.2 of this document provides a detailed 
discussion of this issue. 
 

3.2. Destination port 

This field contains the destination TCP port of this segment. Being a 16-bit value, it can 
contain any value in the range 0-65535. While some systems restrict use of the ports numbers 
in the range 0-1023 to privileged users, no trust should be granted based on the port numbers 
in use for a connection. 
 
As noted in Section 3.1 of this document, while port 0 is a legitimate port number, it has a 
special meaning in the UNIX Sockets API. For example, when a TCP port number of 0 is 
passed as an argument to the bind() function, rather than binding port 0, an ephemeral port is 
selected for the corresponding TCP end-point. As a result, the TCP port number 0 is never 
actually used in TCP segments. 
 
Different implementations have been found to respond differently to TCP segments that have 
a port number of 0 as the Source Port and/or the Destination Port. As a result, TCP 
segments with a port number of 0 are usually employed for remote OS detection via TCP/IP 
stack fingerprinting [Jones, 2003]. 
 
Since in practice TCP port 0 is not used by any legitimate application and is only used for 
fingerprinting purposes, a number of host implementations already reject TCP segments that 
use 0 as the Source Port and/or the Destination Port. Also, a number firewalls filter 
(by default) any TCP segments that contain a port number of zero for the Source Port 
and/or the Destination Port. 
 
We therefore recommend that TCP implementations respond to incoming TCP segments that 
have a Destination Port of 0 with an RST (provided these incoming segments do not 
have the RST bit set). 
 

Responding with an RST segment to incoming packets that have the RST bit would open 
the door to RST-war attacks. 

 
Some systems have been found to be unable to process TCP segments in which the source 
endpoint {Source Address, Source Port} is the same than the destination end-point 
{Destination Address, Destination Port}. Such TCP segments have been reported 
to cause malfunction of a number of implementations [CERT, 1996], and have been exploited 
in the past to perform Denial of Service (DoS) attacks [Meltman, 1997]. While these packets 
are extremely unlikely to exist in real and legitimate scenarios, TCP should nevertheless be 
able to process them without the need of any “extra” code.  
 



 
 

 19

A SYN segment in which the source end-point {Source Address, Source Port} is the 
same as the destination end-point {Destination Address, Destination Port} will 
result in a “simultaneous open” scenario, such as the one described in page 32 of 
RFC 793 [Postel, 1981c]. Therefore, those TCP implementations that correctly 
handle simultaneous opens should already be prepared to handle these unusual 
TCP segments. 

 

3.3. Sequence number 

This field contains the sequence number of the first data octet in this segment. If the SYN flag 
is set, the sequence number is the Initial Sequence Number (ISN) of the connection, and the 
first data octet has the sequence number ISN+1. 

3.3.1. Generation of Initial Sequence Numbers 

The choice of the Initial Sequence Number of a connection is not arbitrary, but aims to 
minimise the chances of a stale segment from being accepted by a new incarnation of a 
previous connection. RFC 793 [Postel, 1981c] suggests the use of a global 32-bit ISN 
generator, whose lower bit is incremented roughly every 4 microseconds.  
 
However, use of such an ISN generator makes it trivial to predict the ISN that a TCP will use 
for new connections, thus allowing a variety of attacks against TCP, such as those described 
in Section 5.2 and Section 11 of this document. This vulnerability was first described in 
[Morris, 1985], and its exploitation was widely publicised about 10 years later [Shimomura, 
1995]. 
 
As a matter of fact, protection against old stale segments from a previous incarnation of the 
connection comes from allowing the creation of a new incarnation of a previous connection 
only after 2*MSL have passed since a segment corresponding to the old incarnation was last 
seen. This is accomplished by the TIME-WAIT state, and TCP’s “quiet time” concept. 
However, as discussed in Section 3.1 and Section 11.1.2 of this document, the ISN can be 
used to perform some heuristics meant to avoid an interoperability problem that may arise 
when two systems establish connections at a high rate. In order for such heuristics to work, 
the ISNs generated by a TCP should be monotonically increasing. 
 
RFC 1948 [Bellovin, 1996] proposed a scheme that greatly reduces the chances of an 
attacker from guessing the ISN of a TCP, while still producing a monotonically-increasing 
sequence that allows implementation of the optimisation described in Section 3.1 and Section 
11.1.2 of this document. Basically, the document proposes to compute the ISN of a new 
connection as a result of the expression: 
 

ISN = M + F(localhost, localport, remotehost, remoteport, secret_key) 
 
where M is a monotonically increasing counter maintained within TCP, and F() is a hash 
function. As it is vital that F() not be computable from the outside, RFC 1948 [Bellovin, 1996] 
suggests it to be a cryptographic hash function of the connection-id and some secret data.  
 



 
 

 20

RFC 1948 [Bellovin, 1996] proposes that F() be a MD5 hash function applied to the 
connection-id and some secret data. While there have been concerns regarding the 
properties of MD5 as a hash function, in this case it is simply used for obfuscating the ISN, 
rather than for signing the data contained in the TCP segments. While the MD5 function 
could be replaced by a more secure hash function, at the point in which this issue becomes 
a concern, proper authentication mechanisms such as IPsec [Kent and Seo, 2005] should 
be considered for protecting the corresponding TCP connection. 

 
[CERT, 2001] and [US-CERT, 2001] are advisories about the security implications of weak 
ISN generators. [Zalewski, 2001a] and [Zalewski, 2002] contain a detailed analysis of ISN 
generators, and a survey of the algorithms in use by popular TCP implementations. 
 
Finally, another security consideration that should be made about TCP sequence numbers is 
that they might allow an attacker to count the number of systems behind a Network Address 
Translator (NAT) [Srisuresh and Egevang, 2001]. Depending on the ISN generators 
implemented by each of the systems behind the NAT, an attacker might be able to count the 
number of systems behind the NAT by establishing a number of TCP connections (using the 
public address of the NAT) and indentifying the number of different sequence number 
“spaces”. This information leakage could be eliminated by rewriting the contents of all those 
header fields and options that make use of sequence numbers (such as the Sequence 
Number and the Acknowledgement Number fields, and the SACK Option) at the NAT. 
[Gont and Srisuresh, 2008] provides a detailed discussion of the security implications of NATs 
and of the possible mitigations for this and other issues. 
 

3.4. Acknowledgement number 

If the ACK bit is on, the Acknowledgement Number contains the value of the next sequence 
number the sender of this segment is expecting to receive. According to RFC 793, the 
Acknowledgement Number is considered valid as long as it does not acknowledge the 
receipt of data that has not yet been sent. That is, the following expression must be true: 
 

SEG.ACK <= SND.NXT 
 
As a result of recent concerns on forgery attacks against TCP (see Section 11 of this 
document), ongoing work at the IETF [Ramaiah et al, 2008] has proposed to enforce a more 
strict check on the Acknowledgement Number. The following check should be enforced on 
segments that have the ACK bit set: 
 

SND.UNA - SND.MAX.WND <= SEG.ACK <= SND.NXT 
 
If a TCP segment does not pass this check, the segment should be dropped, and an ACK 
segment should be sent in response. 
 
If the ACK bit is off, the Acknowledgement Number field is not valid. We recommend TCP 
implementations to set the Acknowledgement Number to zero when sending a TCP 
segment that does not have the ACK bit set (i.e., a SYN segment). 



 
 

 21

 
Some TCP implementations have been known to fail to set the Acknowledgement 
Number to zero, thus leaking information. 

 
TCP Acknowledgements are also used to perform heuristics for loss recovery and congestion 
control. Section 9 of this document describes a number of ways in which these mechanisms 
can be exploited. 
 

3.5. Data Offset 

The Data Offset field indicates the length of the TCP header in 32-bit words. As the 
minimum TCP header size is 20 bytes, the minimum legal value for this field is 5. Therefore, 
the following check should be enforced: 
 

Data Offset >= 5 
 
For obvious reasons, the TCP header cannot be larger than the whole TCP segment it is part 
of. Therefore, the following check should be enforced: 
 

Data Offset * 4 <= TCP segment length 
 

The TCP segment length should be obtained from the IP layer, as TCP does not include a 
TCP segment length field. 

 

3.6. Control bits 

The following subsections provide a discussion of the different control bits in the TCP header. 
TCP segments with unusual combinations of flags set have been known in the past to cause 
malfunction of some implementations, sometimes to the extent of causing them to crash 
[Postel, 1987] [Braden, 1992]. These packets are still usually employed for the purpose of 
TCP/IP stack fingerprinting. Section 12.1 contains a discussion of TCP/IP stack fingerprinting. 

3.6.1. Reserved (four bits) 

These four bits are reserved for future use, and must be zero. As with virtually every field, the 
Reserved field could be used as a covert channel. While there exist intermediate devices 
such as protocol scrubbers that clear these bits, and firewalls that drop/reject segments with 
any of these bits set, these devices should consider the impact of these policies on TCP 
interoperability. For example, as TCP continues to evolve, all or part of the bits in the 
Reserved field could be used to implement some new functionality. If some middle-box or 
end-system implementation were to drop a TCP segment merely because some of these bits 
are not set to zero, interoperability problems would arise. 
 
Therefore, we recommend implementations to simply ignore the Reserved field. 



 
 

 22

3.6.2. CWR (Congestion Window Reduced) 

The CWR flag, defined in RFC 3168 [Ramakrishnan et al, 2001], is used as part of the Explicit 
Congestion Notification (ECN) mechanism. For connections in any of the synchronised states, 
this flag indicates, when set, that the TCP sending this segment has reduced its congestion 
window. 
 
An analysis of the security implications of ECN can be found in Section 9.3 of this document. 

3.6.3. ECE (ECN-Echo) 

The ECE flag, defined in RFC 3168 [Ramakrishnan et al, 2001], is used as part of the Explicit 
Congestion Notification (ECN) mechanism.  
 
Once a TCP connection has been established, an ACK segment with the ECE bit set indicates 
that congestion was encountered in the network on the path from the sender to the receiver. 
This indication of congestion should be treated just as a congestion loss in non-ECN-capable 
TCP [Ramakrishnan et al, 2001]. Additionally, TCP should not increase the congestion 
window (cwnd) in response to such an ACK segment that indicates congestion, and should 
also not react to congestion indications more than once every window of data (or once per 
round-trip time). 
 
An analysis of the security implications of ECN can be found in Section 9.3 of this document. 

3.6.4. URG 

When the URG flag is set, the Urgent Pointer field contains the current value of the urgent 
pointer.  
 
Receipt of an “urgent” indication generates, in a number of implementations (such as those in 
UNIX-like systems), a software interrupt (signal) that is delivered to the corresponding 
process.  
 

In UNIX-like systems, receipt of an urgent indication causes a SIGURG signal to be 
delivered to the corresponding process. 

  
A number of applications handle TCP urgent indications by installing a signal handler for the 
corresponding signal (e.g., SIGURG). As discussed in [Zalewski, 2001b], some signal 
handlers can be maliciously exploited by an attacker, for example to gain remote access to a 
system. While secure programming of signal handlers is out of the scope of this document, we 
nevertheless raise awareness that TCP urgent indications might be exploited to abuse poorly-
written signal handlers. 
 
Section 3.9 discusses the security implications of the TCP urgent mechanism. 

3.6.5. ACK 

When the ACK bit is one, the Acknowledgment Number field contains the next sequence 
number expected, cumulatively acknowledging the receipt of all data up to the sequence 



 
 

 23

number in the Acknowledgement Number, minus one. Section 3.4 of this document 
describes sanity checks that should be performed on the Acknowledgement Number field. 
 
TCP Acknowledgements are also used to perform heuristics for loss recovery and congestion 
control. Section 9 of this document describes a number of ways in which these mechanisms 
can be exploited. 

3.6.6. PSH 

RFC 793 [Postel, 1981c] contains (in pages 54-64) a functional description of a TCP 
Application Programming Interface (API). One of the parameters of the SEND function is the 
PUSH flag which, when set, signals the local TCP that it must send all unsent data. The TCP 
PSH (PUSH) flag will be set in the last outgoing segment, to signal the push function to the 
receiving TCP. Upon receipt of a segment with the PSH flag set, the receiving user’s buffer is 
returned to the user, without waiting for additional data to arrive. 
 
There are two security considerations arising from the PUSH function. On the sending side, an 
attacker could cause a large amount of data to be queued for transmission without setting the 
PUSH flag in the SEND call. This would prevent the local TCP from sending the queued data, 
causing system memory to be tied to those data for an unnecessarily long period of time. 
 
An analogous consideration should be made for the receiving TCP. TCP is allowed to buffer 
incoming data until the receiving user’s buffer fills or a segment with the PSH bit set is 
received. If the receiving TCP implements this policy, an attacker could send a large amount 
of data, slightly less than the receiving user’s buffer size, to cause system memory to be tied 
to these data for an unnecessarily long period of time. Both of these issues are discussed in 
Section 4.2.2.2 of RFC 1122 [Braden, 1989]. 
 
In order to mitigate these potential vulnerabilities, we suggest assuming an implicit “PUSH” in 
every SEND call. On the sending side, this means that as a result of a SEND call TCP should 
try to send all queued data (provided that TCP’s flow control and congestion control algorithms 
allow it). On the receiving side, this means that the received data will be immediately delivered 
to an application calling the RECEIVE function, even if the data already available are less than 
those requested by the application. 
 
It is interesting to note that popular TCP APIs (such as “sockets”) do not provide a PUSH flag 
in any of the interfaces they define, but rather perform some kind of “heuristics” to set the PSH 
bit in outgoing segments. As a result, the value of the PSH bit in the received TCP segments is 
usually a policy of the sending TCP, rather than a policy of the sending application. All robust 
applications that make use of those APIs (such as the sockets API) properly handle the case 
of a RECEIVE call returning less data (e.g., zero) than requested, usually by performing 
subsequent RECEIVE calls. 
 
Another potential malicious use of the PSH bit would be for an attacker to send small TCP 
segments (probably with zero bytes of data payload) to cause the receiving application to be 
unnecessarily woken up (increasing the CPU load), or to cause malfunction of poorly-written 
applications that may not handle well the case of RECEIVE calls returning less data than 
requested. 



 
 

 24

3.6.7. RST 

The RST bit is used to request the abortion (abnormal close) of a TCP connection. RFC 793 
[Postel, 1981c] suggests that an RST segment should be considered valid if its Sequence 
Number is valid (i.e., falls within the receive window). However, in response to the security 
concerns raised by [Watson, 2004] and [NISCC, 2004], [Ramaiah et al, 2008] suggests the 
following alternative processing rules for RST segments: 
 
• If the Sequence Number of the RST segment is not valid (i.e., falls outside of the receive 

window), silently drop the segment. 

• If the Sequence Number of the RST segment matches the next expected sequence 
number (RCV.NXT), abort the corresponding connection. 

• If the Sequence Number is valid (i.e., falls within the receive window) but is not exactly 
RCV.NXT, send an ACK segment (a “challenge ACK”) of the form: 
<SEQ=SND.NXT><ACK=RCV.NXT><CTL=ACK> 

 [Ramaiah et al, 2008] suggests that implementations should rate-limit the challenge ACK 
segments sent as a result of implementation of this mechanism. 
 
Section 11.1 of this document describes TCP-based connection-reset attacks, along with a 
number of countermeasures to mitigate their impact. 

3.6.8. SYN 

The SYN bit is used during the connection-establishment phase, to request the 
synchronisation of sequence numbers. 
 
There are basically four different vulnerabilities that make use of the SYN bit: SYN-flooding 
attacks, connection forgery attacks, connection flooding attacks, and connection-reset attacks. 
They are described in Section 5.1, Section 5.2, Section 5.3, and Section 11.1.2, respectively, 
along with the possible countermeasures. 

3.6.9. FIN 

The FIN flag is used to signal the remote end-point the end of the data transfer in this 
direction. Receipt of a valid FIN segment (i.e., a TCP segment with the FIN flag set) causes 
the transition in the connection state, as part of what is usually referred to as the “connection 
termination phase”. 
 
The connection-termination phase can be exploited to perform a number of resource-
exhaustion attacks. Section 6 of this document describes a number of attacks that exploit the 
connection-termination phase along with the possible countermeasures. 
 
 



 
 

 25

3.7. Window 

The TCP Window field advertises how many bytes of data the remote peer is allowed to send 
before a new advertisement is made. Theoretically, the maximum transfer rate that can be 
achieved by TCP is limited to: 
 

Maximum Transfer Rate = Window / RTT 
 

This means that, under ideal network conditions (e.g., no packet loss), the TCP Window in use 
should be at least: 
 

Window = 2 * Bandwidth * Delay 
 

Using a larger Window than that resulting from the previous equation will not provide any 
improvements in terms of performance. 
 

In practice, selection of the most convenient Window size may also depend on a number of 
other parameters, such as: packet loss rate, loss recovery mechanisms in use, etc.  

3.7.1. Security implications of the maximum TCP window size 

An aspect of the TCP Window that is usually overlooked is the security implications of its size. 
Increasing the TCP window increases the sequence number space that will be considered 
“valid” for incoming segments. Thus, use of unnecessarily large TCP Window sizes increases 
TCP’s vulnerability to forgery attacks unnecessarily. 
 
In those scenarios in which the network conditions are known and/or can be easily predicted, 
it is recommended that the TCP Window is never set to a value larger than that resulting from 
the equations above. Additionally, the nature of the application running on top of TCP should 
be considered when tuning the TCP window. As an example, an H.245 signaling application 
certainly does not have high requirements on throughput, and thus a window size of around 4 
KBytes will usually fulfill its needs, while keeping TCP’s resistance to off-path forgery attacks 
at a decent level. Some rough measurements seem to indicate that a TCP window of 4Kbytes 
is common practice for TCP connections servicing applications such as BGP. 
 
In principle, a possible approach to avoid requiring administrators to manually set the TCP 
window would be to implement an automatic buffer tuning mechanism, such as that described 
in [Heffner, 2002]. However, as discussed in Section 7.3.2 of this document these 
mechanisms can be exploited to perform other types of attacks. 

3.7.2. Security implications arising from closed windows 

The TCP window is a flow-control mechanism that prevents a fast data sender application 
from overwhelming a “slow” receiver. When a TCP end-point is not willing to receive any more 
data (before some of the data that have already been received are consumed), it will advertise 
a TCP window of zero bytes. This will effectively stop the sender from sending any new data 
to the TCP receiver. Transmission of new data will resume when the TCP receiver advertises 
a nonzero TCP window, usually with a TCP segment that contains no data (“an ACK”). 



 
 

 26

 
This segment is usually referred to as a “window update”, as the only purpose of this 
segment is to update the server regarding the new window. 

 
To accommodate those scenarios in which the ACK segment that “opens” the window is lost, 
TCP implements a “persist timer” that causes the TCP sender to query the TCP receiver 
periodically if the last segment received advertised a window of zero bytes. This probe simply 
consists of sending one byte of new data that will force the TCP receiver to send an ACK 
segment back to the TCP sender, containing the current TCP window. Similarly to the 
retransmission timeout timer, an exponential back-off is used when calculating the 
retransmission timer, so that the spacing between probes increases exponentially. 
 
A fundamental difference between the “persist timer” and the retransmission timer is that there 
is no limit on the amount of time during which a TCP can advertise a zero window. This means 
that a TCP end-point could potentially advertise a zero window forever, thus keeping kernel 
memory at the TCP sender tied to the TCP retransmission buffer. This could clearly be 
exploited as a vector for performing a Denial of Service (DoS) attack against TCP, such as 
that described in Section 7.1 of this document. 
 
Section 7.1 of this document describes a Denial of Service attack that aims at exhausting the 
kernel memory used for the TCP retransmission buffer, along with possible countermeasures. 
 

3.8. Checksum 

The Checksum field is an error detection mechanism meant for the contents of the TCP 
segment and a number of important fields of the IP header. It is computed over the full TCP 
header pre-pended with a pseudo header that includes the IP Source Address, the IP 
Destination Address, the Protocol number, and the TCP segment length. While in 
principle there should not be security implications arising from this field, due to non-RFC-
compliant implementations, the Checksum can be exploited to detect firewalls, evade network 
intrusion detection systems (NIDS), and/or perform Denial of Service attacks.  
 
If a stateful firewall does not check the TCP Checksum in the segments it processes, an 
attacker can exploit this situation to perform a variety of attacks. For example, he could send a 
flood of TCP segments with invalid checksums, which would nevertheless create state 
information at the firewall. When each of these segments is received at its intended 
destination, the TCP checksum will be found to be incorrect, and the corresponding will be 
silently discarded. As these segments will not elicit a response (e.g., an RST segment) from 
the intended recipients, the corresponding connection state entries at the firewall will not be 
removed. Therefore, an attacker may end up tying all the state resources of the firewall to 
TCP connections that will never complete or be terminated, probably leading to a Denial of 
Service to legitimate users, or forcing the firewall to randomly drop connection state entries. 
 
If a NIDS does not check the Checksum of TCP segments, an attacker may send TCP 
segments with an invalid checksum to cause the NIDS to obtain a TCP data stream different 
from that obtained by the system being monitored. In order to “confuse” the NIDS, the attacker 



 
 

 27

would send TCP segments with an invalid Checksum and a Sequence Number that would 
overlap the sequence number space being used for his malicious activity. FTester [Barisani, 
2006] is a tool that can be used to assess NIDS on this issue. 
 
Finally, an attacker performing port-scanning could potentially exploit intermediate systems 
that do not check the TCP Checksum to detect whether a given TCP port is being filtered by 
an intermediate firewall, or the port is actually closed by the host being port-scanned. If a 
given TCP port appeared to be closed, the attacker would then send a SYN segment with an 
invalid Checksum. If this segment elicited a response (either an ICMP error message or a 
TCP RST segment) to this packet, then that response should come from a system that does 
not check the TCP checksum. Since normal host implementations of the TCP protocol do 
check the TCP checksum, such a response would most likely come from a firewall or some 
other middle-box. 
 
[Ed3f, 2002] describes the exploitation of the TCP checksum for performing the above 
activities. [US-CERT, 2005d] provides an example of a TCP implementation that failed to 
check the TCP checksum.  
 

3.9. Urgent pointer 

If the Urgent bit is set, the Urgent Pointer field communicates the current value of the 
urgent pointer as a positive offset from the Sequence Number in this segment. That is, the 
urgent pointer is obtained as:  
 

urgent_pointer = Sequence Number + Urgent Pointer 
 
According to RFC 1122 [Braden, 1989], the urgent pointer (urgent_pointer) points to the last 
byte of urgent data in the stream. However, in virtually all TCP implementations the urgent 
pointer has the semantics of pointing to the byte following the last byte of urgent data [Gont 
and Yourtchenko, 2009]. 
 

There was some ambiguity in RFC 793 [Postel, 1981c] with respect to the semantics of the 
urgent pointer. Section 4.2.2.4 of RFC 1122 [Braden, 1989] clarified this ambiguity, stating 
that the urgent pointer points to the last byte of urgent data. However, the RFC 1122 
semantics for the urgent pointer never resulted into actual implementations. 

 
Ongoing work at the IETF [Gont and Yourtchenko, 2009] aims at updating the IETF 
specifications to change the semantics of the urgent pointer so that it points to “the byte 
following the last byte of urgent data”, thus accommodating virtually all existing 
implementations of the TCP urgent mechanism. 

 
 
 
 



 
 

 28

Section 3.7 of RFC 793 [Postel, 1981c] states (in page 42) that to send an urgent indication 
the user must also send at least one byte of data. Therefore, if the URG bit is set, the following 
check should be performed: 
 

Segment.Size - Data Offset * 4 > 0 
 

If a TCP segment with the URG bit set does not pass this check, it should be silently dropped. 
 
It is worth noting that the resulting urgent_pointer may refer to a sequence number not present 
in this segment. That is, the “last byte of urgent data” might be received in successive 
segments.  
 
If the URG bit is zero, the Urgent Pointer is not valid, and thus should not be processed by 
the receiving TCP. Nevertheless, we recommend TCP implementations to set the Urgent 
Pointer to zero when sending a TCP segment that does not have the URG bit set, and to 
ignore the Urgent Pointer (as required by RFC 793) when the URG bit is zero. 
 

Some stacks have been known to fail to set the Urgent Pointer to zero when the 
URG bit is zero, thus leaking out the corresponding system memory contents. 
[Zalewski, 2008] provides further details about this issue. 

 
According to the IETF specifications, TCP’s urgent mechanism simply marks an interesting 
point in the data stream that applications may want to skip to even before processing any 
other data. However, “urgent data” must still be delivered “in band” to the application. 
 
Unfortunately, virtually all TCP implementations process TCP urgent data differently. By 
default, the “last byte of urgent data” is delivered to the application “out of band”. That is, it is 
not delivered as part of the normal data stream. 
 

For example, the “out of band” byte is read by an application when a recv(2) system call with 
the MSG_OOB flag set is issued. 

 
Most implementations provide a socket option (SO_OOBINLINE) that allows an application to 
override the default processing of urgent data, so that they are delivered “in band” to the 
application, thus providing the semantics intended by the IETF specifications. 
 
Some implementations have been found to be unable to process TCP urgent indications 
correctly. [Myst, 1997] originally described how TCP urgent indications could be exploited to 
perform a Denial of Service (DoS) attack against some TCP/IP implementations, usually 
leading to a system crash. 
 
The following subsections analyze the security implications of the TCP urgent mechanism. 
Section 3.9.1 discusses the security implications arising from the different possible semantics 
for the urgent pointer and for the TCP urgent indications. Section 3.9.2 discusses the security 
implications that may arise when systems implement the TCP urgent mechanism as “out of 
band” data. 



 
 

 29

3.9.1. Security implications arising from ambiguities in the processing of urgent 
indications 

As discussed in Section 3.9, there exists some ambiguity with respect to how a receiving 
application may process the TCP urgent indications sent by the peer application. Firstly, the 
different possible semantics of the urgent pointer create ambiguity with respect to which of the 
bytes in the data stream are considered to be “urgent data”. Secondly, some applications may 
process these urgent data “in band” (either if TCP urgent data is implemented as intended by 
the IETF specifications, or if the application sets the SO_OOBINLINE socket option), while 
others may process them “out of band” (e.g., as a result of a recv(2) call with the MSG_OOB 
option set). Thirdly, some TCP implementations keep a buffer of a single byte for storing the 
“urgent byte” that is delivered “out of band” to the application. Thus, if successive indications 
of urgent data are received before the application reads the pending “out of band” byte, the 
pending byte will be discarded (i.e., overwritten by the new byte of urgent data). Fourthly, 
some middle-boxes clear the URG bit and reset the Urgent field to zero before forwarding a 
packet, thus essentially eliminating the “urgent” indication.  
 

[Cisco, 2008a] provides documentation of such a middle-box. 
 
All these considerations make it difficult for Network Intrusion Detection Systems (NIDS) to 
monitor the application-layer data stream transferred to the screened systems, thus potentially 
leading to false negatives or false positives. 
 

[Ko et al, 2001] describes some of the possible ways to exploit TCP urgent data to evade 
Network Intrusion Detection Systems (NIDS). 

 
Considering the security implications of the TCP urgent mechanism, and given that widely-
deployed middle-boxes clear the URG bit and reset the Urgent Pointer to zero (thus 
making the urgent indication unreliable), we discourage the use of the TCP urgent mechanism 
by applications. 
 
We also recommend that those legacy applications that depend on the TCP urgent 
mechanism set the SO_OOBINLINE socket option, so that urgent data are delivered “in band” 
to the application running on top of TCP. 
 
Packet scrubbers might consider clearing the URG bit, and setting the Urgent Pointer to 
zero, thus eliminating the urgent indication and causing urgent data to be processed in-line 
regardless of the semantics in use at the destination system for the TCP urgent indications. 
However, this might cause interoperability problems and/or undesired behavior that should be  
considered before enabling such behavior in packet scrubbers.  

3.9.2 Security implications arising from the implementation of the urgent mechanism as 
“out of band” data 

As described in the previous sub-section, some implementations keep a buffer of a single byte 
for storing the “urgent byte” that is delivered “out of band” to the application running on top of 
TCP. If successive indications of urgent data are received before the application reads the 
pending “urgent” byte, the pending byte is discarded (i.e., overwritten by the new byte of 
urgent data). This makes it difficult for a NIDS to track the application-layer data transferred to 



 
 

 30

the monitored system, as some of the urgent data might (or might not) end up being discarded 
at the destination system, depending on the timing of the arriving segments and the 
consumption of urgent data by the application (assuming the SO_OOBINLINE socket option 
has not been set). 
 
In order to avoid urgent data being discarded, some implementations queue each of the 
received “urgent bytes”, so that even if another urgent indication is received before the 
pending urgent data are consumed by the application, those bytes do not need to be 
discarded. Unfortunately, some of these implementations have been known to fail to enforce 
any limits on the amount of urgent data that they queue. As a result, an attacker could exhaust 
the kernel memory of such TCP implementations by sending successive TCP segments that 
carry urgent data. 
 
TCP implementations that queue urgent data for “out of band” processing should enforce per-
connection limits on the amount of urgent data that they queue. 



 
 

 31

3.10. Options 

[IANA, 2007] contains the official list of the assigned option numbers. [Hönes, 2007] contains 
an un-official updated version of the IANA list of assigned option numbers. The following table 
contains a summary of the assigned TCP option numbers, which is based on [Hönes, 2007].  

Kind Meaning Summary 
0 End of Option List Discussed in Section 4.1 
1 No-Operation Discussed in Section 4.2 
2 Maximum Segment Size Discussed in Section 4.3 
3 WSOPT - Window Scale Discussed in Section 4.6 
4 SACK Permitted Discussed in Section 4.4.1 
5 SACK Discussed in Section 4.4.2 
6 Echo (obsoleted by option 8) Obsolete. Specified in RFC 1072 [Jacobson and 

Braden, 1988] 
7 Echo Reply (obsoleted by option 8) Obsolete. Specified in RFC 1072 [Jacobson and 

Braden, 1988] 
8 TSOPT - Time Stamp Option Discussed in Section 4.7 
9 Partial Order Connection Permitted Historic. Specified in RFC 1693 [Connolly et al, 

1994] 
10 Partial Order Service Profile Historic. Specified in RFC 1693 [Connolly et al, 

1994] 
11 CC Historic. Specified in RFC 1644 [Braden, 1994] 
12 CC.NEW Historic. Specified in RFC 1644 [Braden, 1994] 
13 CC.ECHO Historic. Specified in RFC 1644 [Braden, 1994] 
14 TCP Alternate Checksum Request Historic. Specified in RFC 1146 [Zweig and 

Partridge, 1990] 
15 TCP Alternate Checksum Data Historic. Specified in RFC 1145 [Zweig and 

Partridge, 1990] 
16 Skeeter Historic 
17 Bubba Historic 
18 Trailer Checksum Option Historic 
19 MD5 Signature Option Discussed in Section 4.5 
20 SCPS Capabilities Specified in [CCSDS, 2006] 
21 Selective Negative 

Acknowledgements 
Specified in [CCSDS, 2006] 

22 Record Boundaries Specified in [CCSDS, 2006] 
23 Corruption experienced Specified in [CCSDS, 2006] 
24 SNAP Historic 
25 Unassigned (released 2000-12-18) Unassigned 
26 TCP Compression Filter Historic 
27 Quick-Start Response Specified in RFC 4782 [Floyd et al, 2007] 

28-252 Unassigned Unassigned 
253 RFC3692-style Experiment 1 Described by RFC 4727 [Fenner, 2006] 
254 RFC3692-style Experiment 2 Described by RFC 4727 [Fenner, 2006] 

 



 
 

 32

There are two cases for the format of a TCP option: 
 

• Case 1: A single byte of option-kind. 
• Case 2: An option-kind byte, followed by an option-length byte, and the actual 

option-data bytes. 
 
In options of the Case 2 above, the option-length byte counts the option-kind byte and 
the option-length byte, as well as the actual option-data bytes.  
 
All options except “End of Option List” (Kind = 0) and “No Operation” (Kind = 1) are of “Case 
2”. 
 
There are a number of sanity checks that should be performed on TCP options before further 
option processing is done. These sanity checks help prevent a number of potential security 
problems, including buffer overflows. When these checks fail, the segment carrying the option 
should be silently dropped.  
 
For options that belong to the “Case 2” described above, the following check should be 
performed: 

option-length >= 2 
 

The value “2” accounts for the option-kind byte and the option-length byte, and 
assumes zero bytes of option-data. 

 
This check prevents, among other things, loops in option processing that may arise from 
incorrect option lengths. 
 
Additionally, while the option-length byte of TCP options of “Case 2” allows for an option 
length of up to 255 bytes, there is a limit on legitimate option length imposed by the syntax of 
the TCP header. Therefore, for all options of “Case 2”, the following check should be enforced: 
 

option-offset + option-length <= Data Offset * 4 
 

Where option-offset is the offset of the first byte of the option within the TCP header, with the 
first byte of the TCP header being assigned an offset of 0.  

 
If a TCP segment does not pass this check, it should be silently dropped. 
 
The aforementioned check is meant to detect forged option-length values that might 
make an option overlap with the TCP payload, or even go past the actual end of the TCP 
segment carrying the option.  
 
Section 3.1 of RFC 793 [Postel, 1981c] states that TCP must implement all the TCP options 
defined in that document. Additionally, a TCP implementation may support TCP extensions 
based on other TCP options as it sees fit, or as required by other specifications. 
 

TCP Options have been specified in the past both within the IETF and by other groups. 



 
 

 33

 
TCP must ignore unknown TCP options, provided they pass the validation checks described 
earlier in this Section. In the same way, middle-boxes such as packet filters should not reject 
TCP segments containing “unknown” TCP options that pass the validation checks described 
earlier in this Section. 
 

There is renewed interest in defining new TCP options for purposes like improved 
connection management and maintenance, advanced congestion control schemes, and 
security features. The evolution of the TCP/IP protocol suite would be severely impacted by 
obstacles to deploying such new protocol mechanisms. 

 
In the past, TCP enhancements based on TCP options regularly have specified the exchange 
of a specific "enabling" option during the initial SYN/SYN-ACK handshake.  Due to the 
severely limited TCP option space which has already become a concern, it should be 
expected that future specifications might introduce new options not negotiated or enabled in 
this way. Therefore, middle-boxes such as packet filters should not reject TCP segments 
containing unknown options solely because these options have not been present in the 
SYN/SYN-ACK handshake. 
 
The specification of particular TCP options may contain specific rules for the syntax and 
placement of these options. These can only be enforced by end systems implementing these 
options, and the relevant specifications must point out the necessary details and related 
security considerations, which must be followed by implementers. 
 
Some TCP implementations have been known to “echo” unknown TCP options received in 
incoming segments. Here we stress that TCP must not “echo” in any way unknown TCP 
options received in inbound TCP segments. 
 

This is at the foundation for the introduction of new TCP options, ensuring unambiguous 
behaviour of systems not supporting a new specification. 

 
Section 4 of this document analyses the security implications of common TCP options. 
 

3.11. Padding 

The TCP header padding is used to ensure that the TCP header ends and data begins on a 
32-bit boundary. The padding is composed of zeros. 
 

3.12. Data 

The data field contains the upper-layer packet being transmitted by means of TCP. This 
payload is processed by the application process making use of the transport services of TCP. 
Therefore the security implications of this field are out of the scope of this document. 



 
 

 34

4. Common TCP options 

4.1. End of Option List (Kind = 0) 

This option is used to indicate the “end of options” in those cases in which the end of options 
would not coincide with the end of the TCP header. 
 
TCP implementations are required to ignore those options they do not implement, and to be 
able to handle options with illegal lengths. Therefore, TCP implementations should be able to 
gracefully handle those TCP segments in which the End of Option List should have been 
present, but is missing. 
 
It is interesting to note that some TCP implementations do not use the “End of Option List” 
option for indicating the “end of options”, but simply pad the TCP header with several “No 
Operation” (Kind = 1) options to meet the header length specified by the Data Offset 
header field. 
 

4.2. No Operation (Kind = 1) 

The no-operation option is basically used to allow the sending system to align subsequent 
options in, for example, 32-bit boundaries. 
 
This option does not have any known security implications. 
 

4.3. Maximum Segment Size (Kind = 2) 

The Maximum Segment Size (MSS) option is used to indicate to the remote TCP endpoint the 
maximum segment size this TCP is willing to receive.  
 
The advertised maximum segment size may be the result of the consideration of a number of 
factors. Firstly, if fragmentation is employed, the size of the IP reassembly buffer may impose 
a limit on the maximum TCP segment size that can be received. Considering that the 
minimum IP reassembly buffer size is 576 bytes, if an MSS option is not present included in 
the connection-establishment phase, an MSS of 536 bytes should be assumed. Secondly, if 
Path-MTU Discovery (specified in RFC 1191 [Mogul and Deering, 1990] and RFC 1981 
[McCann et al, 1996]) is expected to be used for the connection, an artificial maximum 
segment size may be enforced by a TCP to prevent the remote peer from sending TCP 
segments which would be too large to be transmitted without fragmentation. Finally, a system 
connected by a low-speed link may choose to introduce an artificial maximum segment size to 
enforce an upper limit on the network latency that would otherwise negatively affect its 
interactive applications [Stevens, 1994]. 
 



 
 

 35

The option begins with an option-kind byte which must be equal to 2. It is followed by an 
option-length byte which must be equal to 4, and a two-byte field that holds the actual 
“maximum segment size”. 
 
As stated in Section 3.1 of RFC 793 [Postel, 1981c], this option can only be sent in the initial 
connection request (i.e., in segments with the SYN control bit set). Therefore, the following 
check should be enforced on a TCP segment that carries this option: 
 

SYN == 1 
 
If the segment does not pass this check, it should be silently dropped. 
 
Given the option syntax, the option length must be equal to 4. Therefore, the following check 
should be performed: 

option-length == 4 
 
If the check fails, the TCP segment should be silently dropped. 
 
The TCP specifications do not impose any requirements on the maximum segment size value 
that is included in the MSS option. However, there are a number of values that may cause 
undesirable results. Firstly, an MSS of 0 could possible “freeze” the TCP connection, as it 
would not allow data to be included in the payload of the TCP segments. Secondly, low values 
other than 0 would degrade the performance of the TCP connection (wasting more bandwidth 
in protocol headers than in actual data), and could potentially exhaust processing cycles at the 
sending TCP and/or the receiving TCP by producing an increase in the interrupt rate caused 
by the transmitted (or received) packets.  
 

The problems that might arise from low MSS values were first described by [Reed, 2001]. 
However, the community did not reach consensus on how to deal with these issues at that 
point. 

 
RFC 791 [Postel, 1981a] requires IP implementations to be able to receive IP datagrams of at 
least 576 bytes. Assuming an IPv4 header of 20 bytes, and a TCP header of 20 bytes, there 
should be room in each IP packet for 536 application data bytes. Therefore, the received MSS 
could be sanitized as follows: 
 

Sanitized_MSS = max(MSS, 536) 
 
This “sanitized” MSS value would then be used to compute the “effective send MSS” by the 
expression included in Section 4.2.2.6 of RFC 1122 [Braden, 1989], as follows: 
 

Eff.snd.MSS = min(Sanitized_MSS+20, MMS_S) - TCPhdrsize - IPoptionsize 
 
 
 
 
 



 
 

 36

where: 
 
• Sanitized_MSS: Is the sanitized MSS value (the value received in the MSS option, with an 

enforced minimum value) 

• MMS_S is the maximum size for a transport-layer message that TCP may send 

• TCPhdrsize is the size of the TCP header, which typically was 20, but may be larger if 
TCP options are to be sent. 

• IPoptionsize is the size of any IP options that TCP will pass to the IP layer with the current 
message. 

 
There are two cases to analyse when considering the possible interoperability impact of 
sanitizing the received MSS value: TCP connections relying on IP fragmentation and TCP 
connections implementing Path-MTU Discovery. In case the corresponding TCP connection 
relies on IP fragmentation, given that the minimum reassembly buffer size is required to be 
576 bytes by RFC 791 [Postel, 1981a], the adoption of 536 bytes as a lower limit is safe. 
 
In case the TCP connection relies on Path-MTU Discovery, imposing a lower limit on the 
adopted MSS may ignore the advice of the remote TCP on the maximum segment size that 
can possibly be transmitted without fragmentation. As a result, this could lead to the first TCP 
data segment to be larger than the Path-MTU. However, in such a scenario, the TCP segment 
should elicit an ICMP Unreachable “fragmentation needed and DF bit set” error message that 
would cause the “effective send MSS” (E_MSS) to be decreased appropriately. Thus, 
imposing a lower limit on the accepted MSS will not cause any interoperability problems.  
 

A possible scenario exists in which the proposed enforcement of a lower limit in the received 
MSS might lead to an interoperability problem. If a system was attached to the network by 
means of a link with an MTU of less than 576 bytes, and there was some intermediate 
system which either silently dropped (i.e., without sending an ICMP error message) those 
packets equal to or larger than that 576 bytes, or some intermediate system simply filtered 
ICMP “fragmentation needed and DF bit set” error messages, the proposed behavior would 
not lead to an interoperability problem, when communication could have otherwise 
succeeded. However, the interoperability problem would really be introduced by the network 
setup (e.g., the middle-box silently dropping packets), rather than by the mechanism 
proposed in this section. In any case, TCP should nevertheless implement a mechanism 
such as that specified by RFC 4821 [Mathis and Heffner, 2007] to deal with this type of 
“network black-holes”. 

 

4.4. Selective Acknowledgement option 

The Selective Acknowledgement option provides an extension to allow the acknowledgement 
of individual segments, to enhance TCP’s loss recovery. 
 
Two options are involved in the SACK mechanism. The “Sack-permitted option” is sent during 
the connections-establishment phase, to advertise that SACK is supported. If both TCP peers 



 
 

 37

agree to use selective acknowledgements, the actual selective acknowledgements are sent, if 
needed, by means of “SACK options”. 

4.4.1. SACK-permitted option (Kind = 4) 

The SACK-permitted option is meant to advertise that the TCP sending this segment supports 
Selective Acknowledgements. The SACK-permitted option can be sent only in SYN segments. 
Therefore, the following check should be performed on TCP segments that contain this option: 
 

SYN == 1 
 

If a segment does not pass this check, it should be silently dropped. 
 
The SACK-permitted option is composed by an option-kind octet (which must be 4), and 
an option-length octet which must be 2. Therefore, the following check should be 
performed on the option: 

option-length == 2 
 
If the option does not pass this check, the TCP segment carrying the option should be silently 
dropped. 

4.4.2. SACK Option (Kind = 5) 

The SACK option is used to convey extended acknowledgment information from the receiver 
to the sender over an established TCP connection. 
 
The option consists of an option-kind byte (which must be 5), an option-length byte, 
and a variable number of SACK blocks. Given that the space in the TCP header is limited, the 
following check should be enforced on the option field: 
 

option-offset + option-length <= Data Offset * 4 
 
If the option does not pass this check, the TCP carrying the option should be silently dropped. 
 
A SACK Option with zero SACK blocks is nonsensical. Therefore, the following check should 
be performed: 

option-length >= 10 
 

The value “10” accounts for the option-kind byte, the option-length byte, a 4-byte left-edge 
field, and a 4-byte right-edge field. 

 
Furthermore, as stated in Section 3 of RFC 2018 [Mathis et al, 1996], a SACK option that 
specifies n blocks will have a length of 8*n+2. Therefore, the following check should be 
performed: 
 

(option-length - 2) % 8 == 0 
 
If the option-length field does not pass this check, the TCP segment carrying the option 
should be silently dropped. 



 
 

 38

Each block included in a SACK option represents a number of received data bytes that are 
contiguous and isolated; that is, the bytes just below the block, (Left Edge of Block - 1), and 
just above the block, (Right Edge of Block), have not yet been received.  
 
For obvious reasons, for each block included in the option-data, the following check should 
be enforced: 

Left Edge of Block < Right Edge of Block 
 

As in all the other occurrences in this document, all comparisons between sequence 
numbers should be performed using sequence number arithmetic. 

 
If any block contained in the option does not pass this check, the TCP segment should be 
silently dropped. 
 
Potential of resource-exhaustion attacks 
The TCP receiving a SACK option is expected to keep track of the selectively-acknowledged 
blocks. Even when space in the TCP header is limited (and thus each TCP segment can 
selectively-acknowledge at most four blocks of data), an attacker could try to perform a buffer 
overflow or a resource-exhaustion attack by sending a large number of SACK options. 
 
For example, an attacker could send a large number of SACK options, each of them 
acknowledging one byte of data. Additionally, for the purpose of wasting resources on the 
attacked system, each of these blocks would be separated from each other by one byte, to 
prevent the attacked system from coalescing two (or more) contiguous SACK blocks into a 
single SACK block. If the attacked system kept track of each SACKed block by storing both 
the Left Edge and the Right Edge of the block, then for each window of data, the attacker 
could waste up to 4 * Window bytes of memory at the attacked TCP. 
 

The value “4 * Window” results from the expression “(Window / 2) * 8”, in which the value “2” 
accounts for the 1-byte block selectively-acknowledged by each SACK block and 1 byte that 
would be used to separate each SACK blocks from each other, and the value “8” accounts 
for the 8 bytes needed to store the Left Edge and the Right Edge of each SACKed block. 

 
Therefore, it is clear that a limit should be imposed on the number of SACK blocks that a TCP 
will store in memory for each connection at any time. Measurements in [Dharmapurikar and 
Paxson, 2005] indicate that in the vast majority of cases connections have a single hole in the 
data stream at any given time. Thus, a limit of 16 SACK blocks for each connection would 
handle even most of the more unusual cases in which there is more than one simultaneous 
hole at a time. 
 

4.5. MD5 option (Kind=19)  

The TCP MD5 option provides a mechanism for authenticating TCP segments with a 18-byte 
digest produced by the MD5 algorithm. The option consists of an option-kind byte (which 
must be 19), an option-length byte (which must be 18), and a 16-byte MD5 digest. 
 



 
 

 39

As with all TCP options of “Case 2”, the following check should be enforced on the option-
length field: 

option-offset + option-length <= Data Offset * 4 
 
If the option does not pass this check, the TCP segment carrying the option should be silently 
dropped. 
 
Given that the MD5 has a fixed length, the following check should be performed on the MD5 
option: 

option-length == 18 
 
If the option does not pass this check, the TCP segment containing the option should be 
silently dropped. 
 
A basic weakness on the TCP MD5 option is that the MD5 algorithm itself has been known 
(for a long time) to be vulnerable to collision search attacks. 
 

[Bellovin, 2006] argues that it has two other weaknesses, namely that it does not provide a 
key identifier, and that it has no provision for automated key management. However, it is 
generally accepted that while a Key-ID field can be a good approach for providing smooth 
key rollover, it is not actually a requirement. For instance, most systems implementing the 
TCP MD5 option include a “keychain” mechanism that fully supports smooth key rollover. 
Additionally, with some further work, ISAKMP/IKE could be used to configure the MD5 keys. 

 
There are a number of ongoing efforts within the IETF to develop a replacement for the 
address the weaknesses of the basic TCP MD5 option. Some of them aim at completely 
replacing the TCP MD5 option, while others aim at improving the current option by, for 
example, standardising mechanisms for re-keying.  
 
It is interesting to note that while the TCP MD5 option, as specified by RFC 2385 [Heffernan, 
1998], addresses the TCP-based forgery attacks against TCP discussed in Section 11, it does 
not address the ICMP-based connection-reset attacks discussed in Section 15. As a result, 
while a TCP connection may be protected from TCP-based forgery attacks by means of the 
MD5 option, an attacker might still be able to successfully perform the ICMP-based counter-
part.  
 

4.6. Window scale option (Kind = 3) 

The window scale option provides a mechanism to expand the definition of the TCP window to 
32 bits, such that the performance of TCP can be improved in some network scenarios.  
 

[Welzl, 2008] describes major problems with the use of the Window scale option in the 
Internet due to faulty equipment. 

 



 
 

 40

The Window scale option consists of an option-kind byte (which must be 3), followed by an 
option-length byte (which must be 3), and a shift count (shift.cnt) byte (the actual 
option-data). 
 
The option may be sent only in the initial SYN segment, but may also be sent in a SYN/ACK 
segment if the option was received in the initial SYN segment. If the option is received in any 
other segment, it should be silently dropped. 
 
As discussed above, the option-length must be 3. Therefore, the following check should be 
enforced: 

option-length == 3 
 
If the option does not pass this check, the TCP segment carrying this option should be silently 
ignored. 
 
As discussed in Section 2.3 of RFC 1323 [Jacobson et al, 1992], in order to prevent new data 
from being mistakenly considered as old and vice versa, the resulting window should be equal 
to or smaller than 2^32. Therefore, an upper limit should be enforced on the shift count 
(shift.cnt): 

shift.cnt <= 14 
 
If the option does not pass this check, the option-data should be set to 14. 
 
While there are not known security implications arising from the window scale mechanism 
itself, the size of the TCP window has a number of security implications. In general, larger 
window sizes increase the chances of an attacker from successfully performing forgery 
attacks against TCP, such as those described in Section 11 of this document. Additionally, 
large windows can exacerbate the impact of resource exhaustion attacks such as those 
described in Section 7 of this document. 
 
Section 3.7 provides a general discussion of the security implications of the TCP window size. 
Section 7.3.2 discusses the security implications of Automatic receive-buffer tuning 
mechanisms.  
 

4.7. Timestamps option (Kind = 8) 

The Timestamps option, specified in RFC 1323 [Jacobson et al, 1992], is used to perform two 
functions: Round-Trip Time Measurement (RTTM), and Protection Against Wrapped 
Sequence Numbers (PAWS). As defined by RFC 1323, the option-length must be 10. 
Therefore, the following check should be enforced: 
 

option-length == 10 
 
If the option does not pass this check, the TCP segment carrying the option should be silently 
dropped. 



 
 

 41

4.7.1. Generation of timestamps 

For the purpose of PAWS, the timestamps sent on a connection are required to be 
monotonically increasing. While there is no requirement that timestamps are monotonically 
increasing across TCP connections, the generation of timestamps such that they are 
monotonically increasing across connections between the same two endpoints allows the use 
of timestamps for improving the handling of SYN segments that are received while the 
corresponding four-tuple is in the TIME-WAIT state. This is discussed in Section 11.1.2 of this 
document. 
 
We therefore recommend that timestamps are generated with a similar algorithm to that 
introduced by RFC 1948 [Bellovin, 1996] for the generation of Initial Sequence Numbers 
(ISNs). That is: 
 

timestamp = T() + F(localhost, localport, remotehost, remoteport, secret_key) 
 
where the result of T() is a global system clock that complies with the requirements of Section 
4.2.2 of RFC 1323 [Jacobson et al, 1992], and F() is a function that should not be computable 
from the outside. Therefore, we suggest F() to be a cryptographic hash function of the 
connection-id and some secret data.  
 
F() provides an offset that will be the same for all incarnations of a connection between the 
same two endpoints, while T() provides the monotonically increasing values that are needed 
for PAWS. 
 

[Gont, 2008c] is CPNI’s effort at the IETF to document this recommended scheme for 
generating TCP timestamps. 

4.7.2. Vulnerabilities 

Blind In-Window attacks 
Segments that contain a timestamp option smaller than the last timestamp option recorded by 
TCP are silently dropped. This allows for a subtle attack against TCP that would allow an 
attacker to cause one direction of data transfer of the attacked connection to freeze [US-
CERT, 2005c]. An attacker could forge a TCP segment that contains a timestamp that is much 
larger than the last timestamp recorded for that direction of the data transfer of the connection. 
The offending segment would cause the recorded timestamp (TS.Recent) to be updated and, 
as a result, subsequent segments sent by the impersonated TCP peer would be simply 
dropped by the receiving TCP. This vulnerability has been documented in [US-CERT, 2005d].  
 
However, it is worth noting that exploitation of this vulnerability requires an attacker to guess 
(or know) the four-tuple {IP Source Address, IP Destination Address, TCP Source 
Port, TCP Destination Port}, as well a valid Sequence Number and a valid 
Acknowledgement Number. If an attacker has such detailed knowledge about a TCP 
connection, unless TCP segments are protected by proper authentication mechanisms (such 
as IPsec [Kent and Seo, 2005]), he can perform a variety of attacks against the TCP 
connection, even more devastating than the one just described. 



 
 

 42

Information leaking 
Some implementations are known to maintain a global timestamp clock, which is used for all 
connections. This is undesirable, as an attacker that can establish a connection with a host 
would learn the timestamp used for all the other connections maintained by that host, which 
could be useful for performing any attacks that require the attacker to forge TCP segments. A 
timestamps generator such as the one recommended in Section 4.7.1 of this document would 
prevent this information leakage, as it separates the “timestamps space” among the different 
TCP connections. 
 
Some implementations are known to initialise their global timestamp clock to zero when the 
system is bootstrapped. This is undesirable, as the timestamp clock would disclose the 
system uptime. A timestamps generator such as the one recommended in Section 4.7.1 of this 
document would prevent this information leakage, as the function F() introduces an “offset” 
that does not disclose the system uptime. 
 
As discussed in Section 3.2 of RFC 1323 [Jacobson et al, 1992], the Timestamp Echo 
Reply field (TSecr) is only valid if the ACK bit of the TCP header is set, and its value must be 
zero when it is not valid. However, some TCP implementations have been found to fail to set 
the Timestamp Echo Reply field (TSecr) to zero in TCP segments that do not have the 
ACK bit set, thus potentially leaking information. We stress that TCP implementations should 
comply with RFC 1323 by setting the Timestamp Echo Reply field (TSecr) to zero in those 
TCP segments that do not have the ACK bit set, thus eliminating this potential information 
leakage. 
 
Finally, it should be noted that the Timestamps option can be exploited to count the number of 
systems behind NATs (Network Address Translators) [Srisuresh and Egevang, 2001]. An 
attacker could count the number of systems behind a NAT by establishing a number of TCP 
connections (using the public address of the NAT) and indentifying the number of different 
timestamp sequences. This information leakage could be eliminated by rewriting the contents 
of the Timestamps option at the NAT. [Gont and Srisuresh, 2008] provides a detailed 
discussion of the security implications of NATs, and proposes mitigations for this and other 
issues. 



 
 

 43

5. Connection-establishment mechanism 

The following subsections describe a number of attacks that can be performed against TCP by 
exploiting its connection-establishment mechanism. 
 

5.1. SYN flood 

TCP uses a mechanism known as the “three-way handshake” for the establishment of a 
connection between two TCP peers. RFC 793 [Postel, 1981c] states that when a TCP that is 
in the LISTEN state receives a SYN segment (i.e., a TCP segment with the SYN flag set), it 
must transition to the SYN-RECEIVED state, record the control information (e.g., the ISN) 
contained in the SYN segment in a Transmission Control Block (TCB), and respond with a 
SYN/ACK segment.  
 

A Transmission Control Block is the data structure used to store (usually within the kernel) 
all the information relevant to a TCP connection. The concept of “TCB” is introduced in the 
core TCP specification RFC 793 [Postel, 1981c]. 

 
In practice, virtually all existing implementations do not modify the state of the TCP that was in 
the LISTEN state, but rather create a new TCP (i.e., a new “protocol machine”), and perform 
all the state transitions on this newly-created TCP. This allows the application running on top 
of TCP to service to more than one client at the same time. As a result, each connection 
request results in the allocation of system memory to store the TCB associated with the newly 
created TCB. 
 

If TCP was implemented strictly as described in RFC 793, the application running on top of 
TCP would have to finish servicing the current client before being able to service the next 
one in line, or should instead be able to perform some kind of connection hand-off. 

 
An attacker could exploit TCP’s connection-establishment mechanism to perform a Denial of 
Service (DoS) attack, by sending a large number of connection requests to the target system, 
with the intent of exhausting the system memory destined for storing TCBs (or related kernel 
data structures), thus preventing the attacked system from establishing new connections with 
legitimate users. This attack is widely known as “SYN flood”, and has received a lot of 
attention during the late 90’s [CERT, 1996].  
 
Given that the attacker does not need to complete the three-way handshake for the attacked 
system to tie system resources to the newly created TCBs, he will typically forge the source IP 
address of the malicious SYN segments he sends, thus concealing his own IP address. 
 
If the forged IP addresses corresponded to some reachable system, the impersonated system 
would receive the SYN/ACK segment sent by the attacked host (in response to the forged 
SYN segment), which would elicit an RST segment. This RST segment would be delivered to 



 
 

 44

the attacked system, causing the corresponding connection to be aborted, and the 
corresponding TCB to be removed.  
 

As the impersonated host would not have any state information for the TCP connection 
being referred to by the SYN/ACK segment, it would respond with a RST segment, as 
specified by the TCP segment processing rules of RFC 793 [Postel, 1981c].  

 
However, if the forged IP source addresses were unreachable, the attacked TCP would 
continue retransmitting the SYN/ACK segment corresponding to each connection request, 
until timing out and aborting the connection. For this reason, a number of widely available 
attack tools first check whether each of the (forged) IP addresses are reachable by sending an 
ICMP echo request to them. The receipt of an ICMP echo response is considered an 
indication of the IP address being reachable (and thus results in the corresponding IP address 
not being used for performing the attack), while the receipt of an ICMP unreachable error 
message is considered an indication of the IP address being unreachable (and thus results in 
the corresponding IP address being used for performing the attack), 
 

[Gont, 2008b] describes how the so-called ICMP soft errors could be used by TCP to abort 
connections in any of the non-synchronised states. While implementation of the mechanism 
described in that document would certainly not eliminate the vulnerability of TCP to SYN 
flood attacks (as the attacker could use addresses that are simply “black-holed”), it provides 
an example of how signaling information such as that provided by means of ICMP error 
messages can provide valuable information that a transport protocol could use to perform 
heuristics. 

  
In order to mitigate the impact of this attack, the amount of information stored for non-
established connections should be reduced (ideally, non-synchronised connections should not 
require any state information to be maintained at the TCP performing the passive OPEN). 
There are basically two mitigation techniques for this vulnerability: a syn-cache and syn-
cookies. 
 

[Borman, 1997] and RFC 4987 [Eddy, 2007] contain a general discussion of SYN-flooding 
attacks and common mitigation approaches. 

 
The syn-cache [Lemon, 2002] approach aims at reducing the amount of state information that 
is maintained for connections in the SYN-RECEIVED state, and allocates a full TCB only after 
the connection has transited to the ESTABLISHED state. 
 
The syn-cookie [Bernstein, 1996] approach aims at completely eliminating the need to 
maintain state information at the TCP performing the passive OPEN, by encoding the most 
elementary information required to complete the three-way handshake in the Sequence 
Number of the SYN/ACK segment that is sent in response to the received SYN segment. 
Thus, TCP is relieved from keeping state for connections in the SYN-RECEIVED state. 
 
The syn-cookie approach has a number of drawbacks: 
 



 
 

 45

• Firstly, given the limited space in the Sequence Number field, it is not possible to encode 
all the information included in the initial segment, such as, for example, support of 
Selective Acknowledgements (SACK). 

• Secondly, in the event that the Acknowledgement segment sent in response to the 
SYN/ACK sent by the TCP that performed the passive OPEN (i.e., the TCP server) were 
lost, the connection would end up in the ESTABLISHED state on the client-side, but in the 
CLOSED state on the server side. This scenario is normally handled in TCP by having the 
TCP server retransmit its SYN/ACK. However, if syn-cookies are enabled, there would be 
no connection state information on the server side, and thus the SYN/ACK would never be 
retransmitted. This could lead to a scenario in which the connection could be in the 
ESTABLISHED state on the client side, but in the CLOSED state at the server side. If the 
application protocol was such that it required the client to wait for some data from the 
server (e.g., a greeting message) before sending any data to the server, a deadlock would 
take place, with the client application waiting for such server data, and the server waiting 
for the TCP three-way handshake to complete. 

• Thirdly, unless the function used to encode information in the SYN/ACK packet is 
cryptographically strong, an attacker could forge TCP connections in the ESTABLISHED 
state by forging ACK segments that would be considered as “legitimate” by the receiving 
TCP. 

• Fourthly, in those scenarios in which establishment of new connections is blocked by 
simply dropping segments with the SYN bit set, use of SYN cookies could allow an 
attacker to bypass the firewall rules, as a connection could be established by forging an 
ACK segment with the correct values, without the need of setting the SYN bit. 

 
As a result, syn-cookies are usually not employed as a first line of defense against SYN-flood 
attacks, but are only as the last resort to cope with them. For example, some TCP 
implementations enable syn-cookies only after a certain number of TCBs has been allocated 
for connections in the SYN-RECEIVED state. We recommend this implementation technique, 
with a syn-cache enabled by default, and use of syn-cookies triggered, for example, when the 
limit of TCBs for non-synchronised connections with a given port number has been reached. 
 
It is interesting to note that a SYN-flood attack should only affect the establishment of new 
connections. A number of books and online documents seem to assume that TCP will not be 
able to respond to any TCP segment that is meant for a TCP port that is being SYN-flooded 
(e.g., respond with an RST segment upon receipt of a TCP segment that refers to a non-
existent TCP connection). While SYN-flooding attacks have been successfully exploited in the 
past for achieving such a goal [Shimomura, 1995], as clarified by RFC 1948 [Bellovin, 1996] 
the effectiveness of SYN flood attacks to silence a TCP implementation arose as a result of a 
bug in the 4.4BSD TCP implementation [Wright and Stevens, 1994], rather than from a 
theoretical property of SYN-flood attacks themselves. Therefore, those TCP implementations 
that do not suffer from such a bug should not be silenced as a result of a SYN-flood attack. 
 
[Zúquete, 2002] describes a mechanism that could theoretically improve the functionality of 
SYN cookies. It exploits the TCP “simultaneous open” mechanism, as illustrated in Figure 5. 
 
  



 
 

 46

 
 

Figure 5: Use of TCP simultaneous open for handling SYN floods 
 
In line 1, TCP A initiates the connection-establishment phase by sending a SYN segment to 
TCP B. In line 2, TCP B creates a SYN cookie as described by [Bernstein, 1996], but does not 
set the ACK bit of the segment it sends (thus really sending a SYN segment, rather than a 
SYN/ACK). This “fools” TCP A into thinking that both SYN segments “have crossed each other 
in the network” as if a “simultaneous open” scenario had taken place. As a result, in line 3 
TCP A sends a SYN/ACK segment containing the same options that were contained in the 
original SYN segment. In line 4, upon receipt of this segment, TCP processes the cookie 
encoded in the ACK field as if it had been the result of a traditional SYN cookie scenario, and 
moves the connection into the ESTABLISHED state. In line 5, TCP B sends a SYN/ACK 
segment, which causes the connection at TCP A to move into the ESTABLISHED state. In line 
6, TCP A sends a data segment on the connection. 
 
While this mechanism would work in theory, unfortunately there are a number of factors that 
prevent it from being usable in real network environments: 
 
• Some systems are not able to perform the “simultaneous open” operation specified in RFC 

793, and thus the connection establishment will fail. 

• Some firewalls might prevent the establishment of TCP connections that rely on the 
“simultaneous open” mechanism (e.g., a given firewall might be allowing incoming 
SYN/ACK segments, but not outgoing SYN/ACK segments). 

 
Therefore, we do not recommend implementation of this mechanism for mitigating SYN-flood 
attacks. 
 

5.2. Connection forgery 

The process of causing a TCP connection to be illegitimately established between two 
arbitrary remote peers is usually referred to as “connection spoofing” or “connection forgery”. 
This can have a great negative impact when systems establish some sort of trust relationships 
based on the IP addresses used to establish a TCP connection [daemon9 et al, 1996]. 
 

It should be stressed that hosts should not establish trust relationships based on the IP 
addresses [CPNI, 2008] or on the TCP ports in use for the TCP connection (see Section 3.1 
and Section 3.2 of this document). 

     TCP A                                                TCP B 

 

1. CLOSED                                                 LISTEN 

2. SYN-SENT     --> <SEQ=100><CTL=SYN>                --> LISTEN 

3. SYN-RECEIVED <-- <SEQ=300><CTL=SYN>                <-- LISTEN 

4. SYN-RECEIVED --> <SEQ=100><ACK=301><CTL=SYN,ACK>   --> ESTABLISHED 

5. ESTABLISHED  <-- <SEQ=301><ACK=101><CTL=SYN,ACK>   <-- ESTABLISHED 

6. ESTABLISHED  --> <SEQ=101><ACK=301><CTL=ACK><DATA> --> ESTABLISHED 



 
 

 47

One of the underlying weaknesses that allow this vulnerability to be more easily exploited is 
the use of an inadequate Initial Sequence Number (ISN) generator, as explained back in the 
80’s in [Morris, 1985]. As discussed in Section 3.3.1 of this document, any TCP 
implementation that makes use of an inadequate ISN generator will be more vulnerable to this 
type of attack. A discussion of approaches for a more careful generation of Initial Sequence 
Numbers (ISNs) can be found in Section 3.3.1 of this document. 
 
Another attack vector for performing connection-forgery attacks is the use of IP source routing. 
By forging the Source Address of the IP packets that encapsulate the TCP segments of a 
connection, and carefully crafting an IP source route option (i.e., either LSSR or SSRR) that 
includes a system whose traffic he can monitor, an attacker could cause the packets sent by 
the attacked system (e.g., the SYN/ACK segment sent in response to the attacker’s SYN 
segment) to be illegitimately directed to him [CPNI, 2008]. Thus, the attacker would not even 
need to guess valid sequence numbers for forging a TCP connection, as he would simply 
have direct access to all this information. As discussed in [CPNI, 2008], it is strongly 
recommended that systems disable IP Source Routing by default, or at the very least, they 
disable source routing for IP packets that encapsulate TCP segments. 
 

The IPv6 Routing Header Type 0, which provides a similar functionality to that provided by 
IPv4 source routing, has been officially deprecated by RFC 5095 [Abley et al, 2007]. 

 

5.3. Connection-flooding attack 

5.3.1. Vulnerability 

The creation and maintenance of a TCP connection requires system memory to maintain 
shared state between the local and the remote TCP. As system memory is a finite resource, 
there is a limit on the number of TCP connections that a system can maintain at any time. 
When the TCP API is employed to create a TCP connection with a remote peer, it allocates 
system memory for maintaining shared state with the remote TCP peer, and thus the resulting 
connection would tie a similar amount of resources at the remote host as at the local host.  
 
However, if special packet-crafting tools are employed to forge TCP segments to establish 
TCP connections with a remote peer, the local kernel implementation of TCP can be 
bypassed, and the allocation of resources on the attacker’s system for maintaining shared 
state can be avoided. Thus, a malicious user could create a large number of TCP 
connections, and subsequently abandon them, thus tying system resources only at the remote 
peer. This allows an attacker to create a large number of TCP connections at the attacked 
system with the intent of exhausting its kernel memory, without exhausting the attacker’s own 
resources. [CERT, 2000] discusses this vulnerability, which is usually referred to as the 
“Naptha attack”. 
 

This attack is similar in nature to the “Netkill” attack discussed in Section 7.1.1. However, 
while Netkill ties both TCBs and TCP send buffers to the abandoned connections, Naptha 
only ties TCBs (and related kernel structures), as it doesn’t issue any application requests.  



 
 

 48

The symptom of this attack is an extremely large number of TCP connections in the 
ESTABLISHED state, which would tend to exhaust system resources and deny service to new 
clients (or possibly cause the system to crash). 
 
It should be noted that it is possible for an attacker to perform the same type of attack causing 
the abandoned connections to remain in states other than ESTABLISHED. This might be 
interesting for an attacker, as it is usually the case that connections in states other than 
ESTABLISHED usually have no controlling user-space process (that is, the former controlling 
process for the connection has already closed the corresponding file descriptor). 
 
A particularly interesting case of a connection-flooding attack that aims at abandoning 
connections in a state other than ESTABLISHED is discussed in Section 6.1 of this document. 

5.3.2. Countermeasures 

As with many other resource exhaustion attacks, the problem in generating countermeasures 
for this attack is that it may be difficult to differentiate between an actual attack and a 
legitimate high-load scenario. However, there are a number of countermeasures which, when 
tuned for each particular network environment, could allow a system to resist this attack and 
continue servicing legitimate clients. 
 
Enforcing limits on the number of connections with no user-space controlling process 
Connections in states other than ESTABLISHED usually have no user-space controlling 
process. This prevents the application making use of those connections from enforcing limits 
on the maximum number of ongoing connections (either on a global basis or a per-IP address 
basis). When resource exhaustion is imminent or some threshold of ongoing connections is 
reached, the operating system should consider freeing system resources by aborting 
connections that have no user-space controlling process. A number of such connections could 
be aborted on a random basis, or based on some heuristics performed by the operating 
system (e.g., first abort connections with peers that have the largest number of ongoing 
connections with no user-space controlling process). 
 
Enforcing per-user and per-process limits 
While the Naphta attack is usually targeted at a service such as HTTP, its impact is usually 
system-wide. This is particularly undesirable, as an attack against a single service might affect 
the system as a whole (for example, possibly precluding remote system administration).  
 
In order to avoid an attack to a single service from affecting other services, we advise TCP 
implementations to enforce per-process and per-user limits on maximum kernel memory that 
can be used at any time. Additionally, we recommend implementations to enforce per-process 
and per-user limits on the number of existent TCP connections at any time. 
 
Limiting the number of simultaneous connections at the application 
An application could limit the number of simultaneous connections that can be established 
from a single IP address or network prefix at any given time. Once that limit has been 
reached, some other connection from the same IP address or network prefix would be 
aborted, thus allowing the application to service this new incoming connection.  



 
 

 49

There are a number of factors that should be taken into account when defining the specific 
limit to enforce. For example, in the case of protocols that have an authentication phase (e.g., 
SSH, POP3, etc.), this limit could be applied to sessions that have not yet been authenticated. 
Additionally, depending on the nature and use of the application, it might or might not be 
normal for a single system to have multiple connections to the same server at the same time. 
 
For many network services, the limit of maximum simultaneous connections could be kept 
very low. For example, an SMTP server could limit the number of simultaneous connections 
from a single IP address to 10 or 20 connections. 
 

While this limit could work in many network scenarios, we recommend network operators to 
measure the maximum number of concurrent connections from a single IP address during 
normal operation, and set the limit accordingly. 

 
In the case of web servers, this limit will usually need to be set much higher, as it is common 
practice for web clients to establish multiple simultaneous connections with a single web 
server to speed up the process of loading a web page (e.g., multiple graphic files can be 
downloaded simultaneously using separate TCP connections).  
 
NATs (Network Address Translators) [Srisuresh and Egevang, 2001] are widely deployed in 
the Internet, and may exacerbate this situation, as a large number of clients behind a NAT 
might each establish multiple TCP connections with a given web server, which would all 
appear to be originate from the same IP address (that of the NAT box). 
 
Limiting the number of simultaneous connections at firewalls 
Some firewalls can be configured to limit the number of simultaneous connections that any 
system can maintain with a specific system and/or service at any given time. Limiting the 
number of simultaneous connections that each system can establish with a specific system 
and service would effectively limit the possibility of an attacker that controls a single IP 
address to exhaust system resources at the attacker system/service. 
 

5.4. Firewall-bypassing techniques 

Some firewalls block incoming TCP connections by blocking only incoming SYN segments. 
However, there are inconsistencies in how different TCP implementations handle SYN 
segments that have additional flags set, which may allow an attacker to bypass firewall rules 
[US-CERT, 2003b]. 
 
For example, some firewalls have been known to mistakenly allow incoming SYN segments if 
they also have the RST bit set. As some TCP implementations will create a new connection in 
response to a TCP segment with both the SYN and RST bits set, an attacker could bypass the 
firewall rules and establish a connection with a “protected” system by setting the RST bit in his 
SYN segments. 
 
Here we advise TCP implementations to silently drop those TCP segments that have both the 
SYN and the RST flags set. 



 
 

 50

6. Connection-termination mechanism 

6.1. FIN-WAIT-2 flooding attack 

6.1.1. Vulnerability 

TCP implements a connection-termination mechanism that is employed for the graceful 
termination of a TCP connection. This mechanism usually consists of the exchange of four-
segments. Figure 6 illustrates the usual segment exchange for this mechanism. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: TCP connection-termination mechanism 
 
A potential problem may arise as a result of the FIN-WAIT-2 state: there is no limit on the 
amount of time that a TCP can remain in the FIN-WAIT-2 state. Furthermore, no segment 
exchange is required to maintain the connection in that state. 
 
As a result, an attacker could establish a large number of connections with the target system, 
and cause it close each of them. For each connection, once the target system has sent its FIN 
segment, the attacker would acknowledge the receipt of this segment, but would send no 
further segments on that connection. As a result, an attacker could cause the corresponding 
system resources (e.g., the system memory used for storing the TCB) without the need to 
send any further packets. 
 
While the CLOSE command described in RFC 793 [Postel, 1981c] simply signals the remote 
TCP end-point that this TCP has finished sending data (i.e., it closes only one direction of the 
data transfer), the close() system-call available in most operating systems has different 
semantics: it marks the corresponding file descriptor as closed (and thus it is no longer 
usable), and assigns the operating system the responsibility to deliver any queued data to the 
remote TCP peer and to terminate the TCP connection. This makes the FIN-WAIT-2 state 
particularly attractive for performing memory exhaustion attacks, as even if the application 
running on top of TCP were imposing limits on the maximum number of ongoing connections, 



 
 

 51

and/or time limits on the function calls performed on TCP connections, that application would 
be unable to enforce these limits on the FIN-WAIT-2 state. 

6.1.2. Countermeasures 

A number of countermeasures can be implemented to mitigate FIN-WAIT-2 flooding attacks. 
Some of these countermeasures require changes in the TCP implementations, while others 
require changes in the applications running on top of TCP. 
 
Enforcing limits on the number of connections with no user-space controlling process 
The considerations and recommendations in Section 5.3.2 for enforcing limits on the number 
of connections with no user-space controlling process are applicable to mitigate this 
vulnerability. 
 
Enforcing limits on the duration of the FIN-WAIT-2 state 
In order to avoid the risk of having connections stuck in the FIN-WAIT-2 state indefinitely, a 
number of systems incorporate a timeout for the FIN-WAIT-2 state. For example, the Linux 
kernel version 2.4 enforces a timeout of 60 seconds [Linux, 2008]. If the connection-
termination mechanism does not complete before that timeout value, it is aborted. 
 
We advise the implementation of such a timeout for the FIN-WAIT-2 state. 
 
Enabling applications to enforce limits on ongoing connections 
As discussed in Section 6.1.1, the fact that the close() system call marks the corresponding 
file descriptor as closed prevents the application running on top of TCP from enforcing limits 
on the corresponding connection. 
 
While it is common practice for applications to terminate their connections by means of the 
close() system call, it is possible for an application to initiate the connection-termination phase 
without closing the corresponding file descriptor (hence keeping control of the connection). 
 
In order to achieve this, an application performing an active close (i.e., initiating the 
connection-termination phase) should replace the system-call close(sockfd) with the following 
code sequence: 
 
• A call to shutdown(sockfd, SHUT_WR), to close the sending direction of this connection. 

• Successive calls to read(), until it returns 0, thus indicating that the remote TCP peer has 
finished sending data. 

• A call to setsockopt(sockfd, SOL_SOCKET, SO_LINGER, &l, sizeof(l)), where l is of type 
struct linger (with its members l.l_onoff=1 and l.l_linger=90). 

• A call to close(sockfd), to close the corresponding file descriptor. 

 
The call to shutdown() (instead of close()) allows the application to retain control of the 
underlying TCP connection while the connection transitions through the FIN-WAIT-1 and FIN-



 
 

 52

WAIT-2 states. However, the application will not retain control of the connection while it 
transitions through the CLOSING and TIME-WAIT states. 
 

It should be noted that, strictly speaking, close(sockfd) decrements the reference count for 
the descriptor sockfd, and initiates the connection termination phase only when the 
reference count reaches 0. On the other hand, shutdown(sockfd, SHUT_WR) initiates the 
connection-termination phase, regardless of the reference count for the sockfd descriptor. 
This should be taken into account when performing the code replacement described above. 
For example, it would be a bug for two processes (e.g., parent and child) that share a 
descriptor to both call shutdown(sockfd, SHUT_WR). 

  
An application performing a passive close should replace the call to close(sockfd) with the 
following code sequence: 
 
• A call to setsockopt(sockfd, SOL_SOCKET, SO_LINGER, &l, sizeof(l)), where l is of type 

struct linger (with its members l.l_onoff=1 and l.l_linger=90). 

• A call to close(sockfd), to close the corresponding file descriptor. 

It is assumed that if the application is performing a passive close, the application already 
detected that the remote TCP peer finished sending data by means as a result of a call to 
read() returning 0. 

 
In this scenario, the application will not retain control of the underlying connection when it 
transitions through the LAST_ACK state. 
 
Limiting the number of simultaneous connections at the application 
The considerations and recommendations in Section 5.3.2 for limiting the number of 
simultaneous connections at the application are to mitigate this vulnerability. We note, 
however, that unless applications are implemented to retain control of the underlying TCP 
connection while the connection transitions through the FIN-WAIT-1 and FIN-WAIT-2 states, 
enforcing such limits may prove to be a difficult task. 
 
Limiting the number of simultaneous connections at firewalls 
The considerations and recommendations in Section 5.3.2 for enforcing limiting the number of 
simultaneous connections at firewalls are applicable to mitigate this vulnerability. 
 



 
 

 53

7. Buffer management 

7.1. TCP retransmission buffer 

7.1.1. Vulnerability 

[Shalunov, 2000] describes a resource exhaustion attack (Netkill) that can be performed 
against TCP. The attack aims at exhausting system memory by creating a large number of 
TCP connections which are then abandoned. The attack is usually performed as follows: 
 
• The attacker creates a TCP connection to a service in which a small client request can 

result in a large server response (e.g., HTTP). Rather than relying on his kernel 
implementation of TCP, the attacker creates his TCP connections by means of a 
specialised packet-crafting tool. This allows the attacker to create the TCP connections 
and later abandon them, exhausting the resources at the attacked system, while not tying 
his own system resources to the abandoned connections.  

• When the connection is established (i.e., the three-way handshake has completed), an 
application request is sent, and the TCP connection is subsequently abandoned. At this 
point, any state information kept by the attack tool is removed. 

• The attacked server allocates TCP send buffers for transmitting the response to the 
client’s request. This causes the victim TCP to tie resources not only for the Transmission 
Control Block (TCB), but also for the application data that needs to be transferred. 

• Once the application response is queued for transmission, the application closes the TCP 
connection, and thus TCP takes the responsibility to deliver the queued data. Having the 
application close the connection has the benefit for the attacker that the application is not 
able to keep track of the number of TCP connections in use, and thus it is not able to 
enforce limits on the number of connections. 

• The attacker repeats the above steps a large number of times, thus causing a large 
amount of system memory at the victim host to be tied to the abandoned connections. 
When the system memory is exhausted, the victim host denies service to new 
connections, or possibly crashes.  

There are a number of factors that affect the effectiveness of this attack that are worth 
considering. Firstly, while the attack is typically targeted at a service such as HTTP, the 
consequences of the attack are usually system-wide. Secondly, depending on the size of the 
server’s response, the underlying TCP connection may or may not be closed: if the response 
is larger than the TCP send buffer size at the server, the application will usually block in a call 
to write() or send(), and would therefore not close the TCP connection, thus allowing the 
application to enforce limits on the number of ongoing connections. Consequently, the 
attacker will usually try to elicit a response that is equal to or slightly smaller than the send 
buffer of the attacked TCP. Thirdly, while [Shalunov, 2000] notes that one visible effect of this 
attack is a large number of connections in the FIN-WAIT-1 state, this will not usually be the 
case. Given that the attacker never acknowledges any segment other than the SYN/ACK 



 
 

 54

segment that is part of the three-way handshake, at the point in which the attacked TCP tries 
to send the application’s response the congestion window (cwnd) will usually be 4*SMSS (four 
maximum-sized segments). If the application’s response were larger than 4*SMSS, even if the 
application had closed the connection, the FIN segment would never be sent, and thus the 
connection would still remain in the ESTABLISHED state (rather than transit to the FIN-WAIT-
1 state). 

7.1.2. Countermeasures 

The resource exhaustion attack described in Section 7.1.1 does not necessarily differ from a 
legitimate high-load scenario, and therefore is hard to mitigate without negatively affecting the 
robustness of TCP. However, complementary mitigations can still be implemented to limit the 
impact of these attacks. 
 
Enforcing limits on the number of connections with no user-space controlling process 
The considerations and recommendations in Section 5.3.2 for enforcing limits on the number 
of connections with no user-space controlling process are applicable to mitigate this 
vulnerability. 
 
Enforcing per-user and per-process limits 
While the Netkill attack is usually targeted at a service such as HTTP, its impact is usually 
system-wide. This is particularly undesirable, as an attack against a single service might affect 
the system as a whole (for example possibly precluding remote system administration).  
 
In order to avoid an attack against a single service from affecting other services, we advise 
TCP implementations to enforce per-process and per-user limits on maximum kernel memory 
that can be used at any time. Additionally, we recommend implementations to enforce per-
process and per-user limits on the number of existent TCP connections at any time. 
 
Limiting the number of ongoing connections at the application 
The considerations and recommendations in Section 5.3.2 for enforcing limits on the number 
of ongoing connections at the application are applicable to mitigate this vulnerability. 
 
Enabling applications to enforce limits on ongoing connections 
As discussed in Section 6.1.1, the fact that the close() system call marks the corresponding 
file descriptor as closed prevents the application running on top of TCP from enforcing limits 
on the corresponding connection. 
 
While it is common practice for applications to terminate their connections by means of the 
close() system call, it is possible for an application to initiate the connection-termination phase 
without closing the corresponding file descriptor (hence keeping control of the connection). 
 
 
 
 



 
 

 55

In order to achieve this, an application performing an active close (i.e., initiating the 
connection-termination phase) should replace the call to close(sockfd) with the following code 
sequence: 
 
• A call to shutdown(sockfd, SHUT_WR), to close the sending direction of this connection 

• Successive calls to read(), until it returns 0, thus indicating that the remote TCP peer has 
finished sending data. 

• A call to setsockopt(sockfd, SOL_SOCKET, SO_LINGER, &l, sizeof(l)), where l is of type 
struct linger (with its members l.l_onoff=1 and l.l_linger=90). 

• A call to close(sockfd), to close the corresponding file descriptor. 

The call to shutdown() (instead of close()) allows the application to retain control of the 
underlying TCP connection while the connection transitions through the FIN-WAIT-1 and FIN-
WAIT-2 states. However, the application will not retain control of the connection while it 
transitions through the CLOSING and TIME-WAIT states. Nevertheless, in these states TCP 
should not have any pending data to send to the remote TCP peer or to be received by the 
application running on top of it, and thus these states are less of a concern for this particular 
vulnerability (Netkill). 
 

It should be noted that, strictly speaking, close(sockfd) decrements the reference count for 
the descriptor sockfd, and initiates the connection termination phase only when the 
reference count reaches 0. On the other hand, shutdown(sockfd, SHUT_WR) initiates the 
connection-termination phase, regardless of the reference count for the sockfd descriptor. 
This should be taken into account when performing the code replacement described above. 
For example, it would be a bug for two processes (e.g., parent and child) that share a 
descriptor to both call shutdown(sockfd, SHUT_WR). 

  
An application performing a passive close should replace the call to close(sockfd) with the 
following code sequence: 
 
• A call to setsockopt(sockfd, SOL_SOCKET, SO_LINGER, &l, sizeof(l)), where l is of type 

struct linger (with its members l.l_onoff=1 and l.l_linger=90). 

• A call to close(sockfd), to close the corresponding file descriptor. 

 
It is assumed that if the application is performing a passive close, the application already 
detected that the remote TCP peer finished sending data by means as a result of a call to 
read() returning 0. 

 
In this scenario, the application will not retain control of the underlying connection when it 
transitions through the LAST_ACK state. However, in this state TCP should not have any 
pending data to send to the remote TCP peer or to be received by the application running on 
top of TCP, and thus this state is less of a concern for this particular vulnerability (Netkill). 
 
Limiting the number of simultaneous connections at firewalls 
The considerations and recommendations in Section 5.3.2 for enforcing limiting the number of 
simultaneous connections at firewalls are applicable to mitigate this vulnerability. 



 
 

 56

Performing heuristics on ongoing TCP connections 
Some heuristics could be performed on TCP connections that may possibly help if scarce 
system requirements such as memory become exhausted. A number of parameters may be 
useful to perform such heuristics.  
 
In the case of the Netkill attack described in [Shalunov, 2000], there are two parameters that 
are characteristic of a TCP being attacked: 
 
• A large amount of data queued in the TCP retransmission buffer (e.g., the socket send 

buffer). 

• Only small amount of data has been successfully transferred to the remote peer. 

Clearly, these two parameters do not necessarily indicate an ongoing attack. However, if 
exhaustion of the corresponding system resources was imminent, these two parameters 
(among others) could be used to perform heuristics when considering aborting ongoing 
connections. 
 

It should be noted that while an attacker could advertise a zero window to cause the target 
system to tie system memory to the TCP retransmission buffer, it is hard to perform any 
useful statistics from the advertised window. While it is tempting to enforce a limit on the 
length of the persist state (see Section 3.7.2 of this document), an attacker could simply 
open the window (i.e., advertise a TCP window larger than zero) from time to time to prevent 
this enforced limit from causing his malicious connections to be aborted. 

 

7.2. TCP segment reassembly buffer 

TCP buffers out-of-order segments to more efficiently handle the occurrence of packet 
reordering and segment loss. When out-of-order data are received, a “hole” momentarily 
exists in the data stream which must be filled before the received data can be delivered to the 
application making use of TCP’s services. This situation can be exploited by an attacker, 
which could intentionally create a hole in the data stream by sending a number of segments 
with a sequence number larger than the next sequence number expected (RCV.NXT) by the 
attacked TCP. Thus, the attacked TCP would tie system memory to buffer the out-of-order 
segments, without being able to hand the received data to the corresponding application. 
 
If a large number of such connections were created, system memory could be exhausted, 
precluding the attacked TCP from servicing new connections and/or continue servicing TCP 
connections previously established.  
 
Fortunately, these attacks can be easily mitigated, at the expense of degrading the 
performance of possibly legitimate connections. When out-of-order data is received, an 
Acknowledgement segment is sent with the next sequence number expected (RCV.NXT). This 
means that receipt of the out-of-order data will not be actually acknowledged by the TCP’s 
cumulative Acknowledgement Number. As a result, a TCP is free to discard any data that 
have been received out-of-order, without affecting the reliability of the data transfer. Given the 



 
 

 57

performance implications of discarding out-of-order segments for legitimate connections, this 
pruning policy should be applied only if memory exhaustion is imminent. 
 

As a result of discarding the out-of-order data, these data will need to be unnecessarily 
retransmitted. Additionally, a loss event will be detected by the sending TCP, and thus the 
slow start phase of TCP’s congestion control will be entered, thus reducing the data transfer 
rate of the connection. 

 
It is interesting to note that this pruning policy could be applied even if Selective 
Acknowledgements (SACK) (specified in RFC 2018 [Mathis et al, 1996]) are in use, as SACK 
provides only advisory information, and does not preclude the receiving TCP from discarding 
data that have been previously selectively-acknowledged by means of TCP’s SACK option, 
but not acknowledged by TCP’s cumulative Acknowledgement Number. 
 
There are a number of ways in which the pruning policy could be triggered. For example, 
when out of order data are received, a timer could be set, and the sequence number of the 
out-of-order data could be recorded. If the hole were filled before the timer expires, the timer 
would be turned off. However, if the timer expired before the hole were filled, all the out-of-
order segments of the corresponding connection would be discarded. This would be a 
proactive counter-measure for attacks that aim at exhausting the receive buffers. 
 
In addition, an implementation could incorporate reactive mechanisms for more carefully 
controlling buffer allocation when some predefined buffer allocation threshold was reached. At 
such point, pruning policies would be applied.  
 
A number of mechanisms can aid in the process of freeing system resources. For example, a 
table of network prefixes corresponding to the IP addresses of TCP peers that have ongoing 
TCP connections could record the aggregate amount of out-of-order data currently buffered 
for those connections. When the pruning policy was triggered, TCP connections with hosts 
that have network prefixes with large aggregate out-of-order buffered data could be selected 
first for pruning the out-of-order segments. 
  
Alternatively, if TCP segments were de-multiplexed by means of a hash table (as it is currently 
the case in many TCP implementations), a counter could be held at each entry of the hash 
table that would record the aggregate out-of-order data currently buffered for those 
connections belonging to that hash table entry. When the pruning policy is triggered, the out-
of-order data corresponding to those connections linked by the hash table entry with largest 
amount of aggregate out-of-order data could be pruned first. It is important that this hash is not 
computable by an attacker, as this would allow him to maliciously cause the performance of 
specific connections to be degraded. That is, given a four-tuple that identifies a connection, an 
attacker should not be able to compute the corresponding hash value used by the target 
system to de-multiplex incoming TCP segments to that connection. 
 
Another variant of a resource exhaustion attack against TCP’s segment reassembly 
mechanism would target the data structures used to link the different holes in a data stream. 
For example, an attacker could send a burst of 1 byte segments, leaving a one-byte hole 
between each of the data bytes sent. Depending on the data structures used for holding and 



 
 

 58

linking together each of the data segments, such an attack might waste a large amount of 
system memory by exploiting the overhead needed store and link together each of these one-
byte segments. 
 

For example, if a linked-list is used for holding and linking each of the data segments, each 
of the involved data structures could involve one byte of kernel memory for storing the 
received data byte (the TCP payload), plus 4 bytes (32 bits) for storing a pointer to the next 
node in the linked-list. Additionally, while such a data structure would require only a few 
bytes of kernel memory, it could result in the allocation of a whole memory page, thus 
consuming much more memory than expected. 

 
Therefore, implementations should enforce a limit on the number of holes that are allowed in 
the received data stream at any given time. When such a limit is reached, incoming TCP 
segments which would create new holes would be silently dropped. Measurements in 
[Dharmapurikar and Paxson, 2005] indicate that in the vast majority of TCP connections have 
at most a single hole at any given time. A limit of 16 holes for each connection would 
accommodate even most of the very unusual cases in which there can be more than hole in 
the data stream at a given time. 
 
[US-CERT, 2004a] is a security advisory about a Denial of Service vulnerability resulting from 
a TCP implementation that did not enforce limits on the number of segments stored in the 
TCP reassembly buffer. 
 
Section 8 of this document describes the security implications of the TCP segment 
reassembly algorithm. 
 

7.3. Automatic buffer tuning mechanisms 

7.3.1. Automatic send-buffer tuning mechanisms 

A number of TCP implementations incorporate automatic tuning mechanisms for the TCP 
send buffer size. In most of them, the underlying idea is to set the send buffer to some multiple 
of the congestion window (cwnd). This type of mechanism usually improves TCP’s 
performance, by preventing the socket send buffer from becoming a bottleneck, while avoiding 
the need to simply overestimate the TCP send buffer size (i.e., make it arbitrarily large). 
[Semke et al, 1998] discusses such an automatic buffer tuning mechanism. 
 
Unfortunately, automatic tuning mechanisms can be exploited by attackers to amplify the 
impact of other resource exhaustion attacks. For example, an attacker could establish a TCP 
connection with a victim host, and cause the congestion window to be increased (either 
legitimately or illegitimately). Once the congestion window (and hence the TCP send buffer) is 
increased, he could cause the corresponding system memory to be tied up by advertising a 
zero-byte TCP window (see Section 3.7) or simply not acknowledging any data, thus 
amplifying the effect of resource exhaustion attacks such as that discussed in Section 7.1.1. 
 



 
 

 59

When an automatic buffer tuning mechanism is implemented, a number of countermeasures 
should be incorporated to prevent the mechanism from being exploited to amplify other 
resource exhaustion attacks. 
 
Firstly, appropriate policies should be applied to guarantee fair use of the available system 
memory by each of the established TCP connections. Secondly, appropriate policies should 
be applied to avoid existing TCP connections from consuming all system resources, thus 
preventing service to new TCP connections.  
 
Appendix A of [Semke et al, 1998] proposes an algorithm for the fair share of the available 
system memory among the established connections. However, there are a number of limits 
that should be enforced on the system memory assigned for the send buffer of each 
connection. Firstly, each connection should always be assigned some minimum send buffer 
space that would enable TCP to perform at an acceptable performance. Secondly, some 
system memory should be reserved for future connections, according to the maximum number 
of concurrent TCP connections that are expected to be successfully handled at any given 
time.  
 
As a result, the following limit should be enforced on the size of each send buffer: 
 

send_buffer_size <= send_buffer_pool / (min_buffer_size * max_connections) 
where 
 

send_buffer_size:  Maximum send buffer size to be used for this connection 
send_buffer_pool: Total amount of system memory meant for TCP send buffers 
min_buffer_size:   Minimum send buffer size for each TCP connection 
max_connections: Maximum number of TCP connections this system is     expected to 

handle at a time 
 

max_connections may be an artificial limit enforced by the system administrator specifically 
on the number of TCP connections, or may be derived from some other system limit (e.g., 
the maximum number of file descriptors) 

 
These limits preclude the automatic tuning algorithm from assigning all the available memory 
buffers to ongoing connections, thus preventing the establishment of new connections. 
 
Even if these limits are enforced, an attacker could still create a large number of TCP 
connections, each of them tying valuable system resources. Therefore, in scenarios in which 
most of the system memory reserved for TCP send buffers is allocated to ongoing 
connections, it may be necessary for TCP to enforce some policy to free resources to either 
service more TCP connections, or to be able to improve the performance of other existing 
connections, by allocating more resources to them. 
 
When needing to free memory in use for send buffers, particular attention should be paid to 
TCP’s that have a large amount of data in the socket send buffer, and that at the same time 
fall into any of these categories: 
 



 
 

 60

• The remote TCP peer that has been advertising a small (possibly zero) window for a 
considerable period of time. 

• There have been a large number of retransmissions of segments corresponding to the first 
few windows of data. 

• Connections that fall into one of the previous categories, for which only a reduced amount 
of data have been successfully transferred to the peer TCP since the connection was 
established. 

Unfortunately, all these cases are valid scenarios for the TCP protocol, and thus aborting 
connections that fall in any of these categories has the potential of causing interoperability 
problems. However, in scenarios in which all system resources are allocated, it may make 
sense to free resources allocated to TCP connections which are tying a considerable amount 
of system resources and that have not made progress in a considerable period of time. 

7.3.2 Automatic receive-buffer tuning mechanism 

A number of TCP implementations include automatic tuning mechanisms for the receive buffer 
size. These mechanisms aim at setting the socket buffer to a size that is large enough to avoid 
the TCP window from becoming a bottleneck that would limit TCP’s throughput, without 
wasting system memory by over-sizing it.  
 
[Heffner, 2002] describes a mechanism for the automatic tuning of the socket receive buffer. 
Basically, the mechanism aims at measuring the amount of data received during a RTT 
(Round-Trip Time), and setting the socket receive buffer to some multiple of that value. 
 
Unfortunately, automatic tuning mechanisms for the socket receive buffer can be exploited to 
perform a resource exhaustion attack. An attacker willing to exploit the automatic buffer tuning 
mechanism would first establish a TCP connection with the victim host. Subsequently, he 
would start a bulk data transfer to the victim host. By carefully responding to the peer’s TCP 
segments, the attacker could cause the peer TCP to measure a large data/RTT value, which 
would lead to the adoption of an unnecessarily large socket receive buffer.  
 
For example, the attacker could optimistically send more data than those allowed by the TCP 
window advertised by the remote TCP. Those extra data would cross in the network with the 
window updates sent by the remote TCP, and could lead the TCP receiver to measure a 
data/RTT twice as big as the real one. Alternatively, if the TCP timestamp option (specified in 
RFC 1323 [Jacobson et al, 1992]) is used for RTT measurement, the attacker could lead the 
TCP receiver to measure a small RTT (and hence a large Data/RTT rate) by “optimistically” 
echoing timestamps that have not yet been received. 
 
Finally, once the TCP receiver is led to increase the size of its receive buffer, the attacker 
would transmit a large amount of data, filling the whole peer’s receive buffer except for a few 
bytes at the beginning of the window (RCV.NXT). This gap would prevent the peer application 
from reading the data queued by TCP, thus tying system memory to the received data 
segments until (if ever) the peer application times out. 
 
A number of limits should be enforced on the amount of system memory assigned to any 
given connection. Firstly, each connection should always be assigned some minimum receive 



 
 

 61

buffer space that would enable TCP to perform at a minimum acceptable performance. 
Additionally, some system memory should be reserved for future connections, according to 
the maximum number of concurrent TCP connections that are expected to be successfully 
handled at any given time.  
 
As a result, the following limit should be enforced on the size of each receive buffer: 
 

recv_buffer_size <= recv_buffer_pool / (min_buffer_size * max_connections) 
where 
 

recv_buffer_size:  Maximum receive buffer size to be used for this connection 
recv_buffer_pool: Total amount of system memory meant for TCP receive buffers 
min_buffer_size:   Minimum receive buffer size for each TCP connection 
max_connections: Maximum number of TCP connections this system is expected to 

handle at a time 
 

max_connections may be an artificial limit enforced by the system administrator specifically 
on the number of TCP connections, or may be derived from some other system limit (e.g., 
the maximum number of file descriptors). 

 
These limits preclude the automatic tuning algorithm from assigning all the available memory 
buffers to existing connections, thus preventing the establishment of new connections. 
 
It is interesting to note that a TCP sender will always try to retransmit any data that have not 
been acknowledged by TCP’s cumulative acknowledgement. Therefore, if memory exhaustion 
is imminent, a system should consider freeing those memory buffers used for TCP segments 
that were received out of order, particularly when a given connection has been keeping a large 
number of out-of-order segments in the receive buffer for a considerable period of time. 
 

It is worth noting that TCP Selective Acknowledgements (SACK) are advisory, in the sense 
that a TCP that has SACKed (but not ACKed) a block of data is free to discard that block, 
and expect the TCP sender to retransmit them when the retransmission timer of the peer 
TCP expires. 



 
 

 62

8. TCP segment reassembly algorithm 

8.1. Problems that arise from ambiguity in the reassembly 
process 

A security consideration that should be made for the TCP segment reassembly algorithm is 
that of data stream consistency between the host performing the TCP segment reassembly, 
and a Network Intrusion Detection System (NIDS) being employed to monitor the host in 
question.  
 
In the event a TCP segment was unnecessarily retransmitted, or there was packet duplication 
in any of the intervening networks, a TCP might get more than one copy of the same data. 
Also, as TCP segments can be re-packetized when they are retransmitted, a given TCP 
segment might partially overlap data already received in earlier segments. In all these cases, 
the question arises about which of the copies of the received data should be used when 
reassembling the data stream. In legitimate and normal circumstances, all copies would be 
identical, and the same data stream would be obtained regardless of which copy of the data 
was used. However, an attacker could maliciously send overlapping segments containing 
different data, with the intent of evading a Network Intrusion Detection Systems (NIDS), which 
might reassemble the received TCP segments differently than the monitored system. [Ptacek 
and Newsham, 1998] provides a detailed discussion of these issues. 
  
As suggested in Section 3.9 of RFC 793 [Postel, 1981c], if a TCP segment arrives containing 
some data bytes that have already been received, the first copy of those data should be used 
for reassembling the application data stream. It should be noted that while convergence to this 
policy might prevent some cases of ambiguity in the reassembly process, there are a number 
of other techniques that an attacker could still exploit to evade a NIDS [CPNI, 2008]. These 
techniques can generally be defeated if the NIDS is placed in-line with the monitored system, 
thus allowing the NIDS to normalise the network traffic or apply some other policy that could 
ensure consistency between the result of the segment reassembly process obtained by the 
monitored host and that obtained by the NIDS. 
 
[CERT, 2003] and [CORE, 2003] are advisories about a heap buffer overflow in a popular 
Network Intrusion Detection System resulting from incorrect sequence number calculations in 
its TCP stream-reassembly module. 
 



 
 

 63

9. TCP congestion control 

TCP implements two algorithms, “slow start” and “congestion avoidance”, for controlling the 
rate at which data is transmitted on a TCP connection [Allman et al, 1999]. These algorithms 
require the addition of two variables as part of TCP per-connection state: cwnd and ssthresh.  
 
The congestion window (cwnd) is a sender-side limit on the amount of outstanding data that 
the sender can have at any time, while the receiver’s advertised window (rwnd) is a receiver-
side limit on the amount of outstanding data. The minimum of cwnd and rwnd governs data 
transmission.  
 
Another state variable, the slow-start threshold (ssthresh), is used to determine whether it is 
the slow start or the congestion avoidance algorithm that should control data transmission. 
When cwnd < ssthresh, “slow start” governs data transmission, and the congestion window 
(cwnd) is exponentially increased. When cwnd > ssthresh, “congestion avoidance” governs 
data transmission, and the congestion window (cwnd) is only linearly increased. 
 

As specified in RFC 2581 [Allman et al, 1999], when cwnd and ssthresh are equal the 
sender may use either slow start or congestion avoidance. 

 
During slow start, TCP increments cwnd by at most SMSS bytes for each ACK received that 
acknowledges new data. During congestion avoidance, cwnd is incremented by 1 full-sized 
segment per round-trip time (RTT), until congestion is detected. 
 
Additionally, TCP uses two algorithms, Fast Retransmit and Fast Recovery, to mitigate the 
effects of packet loss. The “Fast Retransmit” algorithm infers packet loss when three Duplicate 
Acknowledgements (DupACKs) are received.  
 

The value “three” is meant to allow for fast-retransmission of “missing” data, while avoiding 
network packet reordering from triggering loss recovery. 

 
Once packet loss is detected by the receipt of three duplicate-ACKs, the “Fast Recovery” 
algorithm governs the transfer of new data until a non-duplicate ACK is received that 
acknowledges the receipt of new data. The Fast Retransmit and Fast Recovery algorithms are 
usually implemented together, as follows (from RFC 2581): 
 
• When the third duplicate ACK is received, set ssthresh to no more than the value given in 

the equation: ssthresh = max (FlightSize / 2, 2*SMSS) 

• Retransmit the lost segment and set cwnd to ssthresh plus 3*SMSS. This artificially 
"inflates" the congestion window by the number of segments (three) that have left the 
network and which the receiver has buffered. 



 
 

 64

• For each additional duplicate ACK received, increment cwnd by SMSS. This artificially 
inflates the congestion window in order to reflect the additional segment that has left the 
network. 

• Transmit a segment, if allowed by the new value of cwnd and the receiver’s advertised 
window. 

• When the next ACK arrives that acknowledges new data, set cwnd to ssthresh (the value 
set in step 1). This is termed "deflating" the window. 

 

9.1. Congestion control with misbehaving receivers 

 [Savage et al, 1999] describes a number of ways in which TCP’s congestion control 
mechanisms can be exploited by a misbehaving TCP receiver to obtain more than its fair 
share of bandwidth. The following subsections provide a brief discussion of these 
vulnerabilities, along with the possible countermeasures. 

9.1.1. ACK division 

Given that TCP updates cwnd based on the number of duplicate ACKs it receives, rather than 
on the amount of data that each ACK is actually acknowledging, a malicious TCP receiver 
could cause the TCP sender to illegitimately increase its congestion window by acknowledging 
a data segment with a number of separate Acknowledgements, each covering a distinct piece 
of the received data segment. 
 

 
Figure 7: ACK division attack 

 
[Savage et al, 1999] describes two possible countermeasures for this vulnerability. One of 
them is to increment cwnd not by a full SMSS, but proportionally to the amount of data being 
acknowledged by the received ACK, similarly to the policy described in RFC 3465 [Allman, 



 
 

 65

2003]. Another alternative is to increase cwnd by one SMSS only when a valid ACK covers 
the entire data segment sent. 

9.1.2. DupACK forgery 

The second vulnerability discussed in [Savage et al, 1999] allows an attacker to cause the 
TCP sender to illegitimately increase its congestion window by forging a number of duplicate 
Acknowledgements (DupACKs). Figure 8 shows a sample scenario. The first three DupACKs 
trigger the Fast Recovery mechanism, while the rest of them cause the congestion window at 
the TCP sender to be illegitimately inflated. Thus, the attacker is able to illegitimately cause 
the TCP sender to increase its data transmission rate.  
 

 
Figure 8: DupACK forgery attack 

 
Fortunately, a number of sender-side heuristics can be implemented to mitigate this 
vulnerability. First, the TCP sender could keep track of the number of outstanding segment 
(o_seg), and accept only up to (o_seg -1) DupACKs. Secondly, a TCP sender might, for 
example, refuse to enter Fast Recovery multiple times in some period of time (e.g., one RTT). 
 
[Savage et al, 1999] also describes a modification to TCP to implement a nonce protocol that 
would eliminate this vulnerability. However, this would require modification of all 
implementations, which makes this counter-measure hard to deploy. 

9.1.3 Optimistic ACKing 

Another alternative for an attacker to exploit TCP’s congestion control mechanisms is to 
acknowledge data that has not yet been received, thus causing the congestion window at the 
TCP sender to be incremented faster than it should. 
 



 
 

 66

 
Figure 9: Optimistic ACKing attack 

 
[Savage et al, 1999] describes a number of mitigations for this vulnerability. Firstly, it 
describes a countermeasure based on the concept of “cumulative nonce”, which would allow a 
receiver to prove that it has received all the segments it is acknowledging. However, this 
countermeasure requires the introduction of two new fields to the TCP header, thus requiring 
a modification to all the communicating TCPs, makes this counter-measure hard to deploy. 
Secondly, it describes a possible way to encode the nonce in a TCP segment by carefully 
modifying its size. While this countermeasure could be easily deployed (as it is just sender 
side policy), we believe that middle-boxes such as protocol-scrubbers might prevent this 
counter-measure from working as expected. Finally, it suggests that a TCP sender might 
penalise a TCP receiver that acknowledges data not yet sent by resetting the corresponding 
connection. Here we deprecate the implementation of this policy, as it would provide an attack 
vector for a TCP-based connection-reset attack, similar to those described in Section 11. 
 
[US-CERT, 2005a] is a vulnerability advisory about this issue. 
 

9.2. Blind DupACK triggering attacks against TCP 

While all of the attacks discussed in [Savage et al, 1999] have the goal of increasing the 
performance of the attacker’s TCP connections, TCP congestion control mechanisms can be 
exploited with a variety of goals. 
 
Firstly, if bursts of many duplicate-ACKs are sent to the “sending TCP”, the third duplicate-
ACK will cause the “lost” segment to be retransmitted, and each subsequent duplicate-ACK 
will cause cwnd to be artificially inflated. Thus, the “sending TCP” might end up injecting more 
packets into the network than it really should, with the potential of causing network congestion. 
This is a potential consequence of the “Duplicate-ACK spoofing attack” described in [Savage 
et al, 1999]. 
 
Secondly, if bursts of three duplicate ACKs are sent to the TCP sender, the attacked system 
would infer packet loss, and ssthresh and cwnd would be reduced. As noted in RFC 2581 
[Allman et al, 1999], causing two congestion control events back-to-back will often cut 



 
 

 67

ssthresh and cwnd to their minimum value of 2*SMSS, with the connection immediately 
entering the slower-performing congestion avoidance phase. While it would not be attractive 
for an attacker to perform this attack against one of his TCP connections, the attack might be 
attractive when the TCP connection to be attacked is established between two other parties. 
 
It is usually assumed that in order for an off-path attacker to perform attacks against a third-
party TCP connection, he should be able to guess a number of values, including a valid TCP 
Sequence Number and a valid TCP Acknowledgement Number. While this is true if the 
attacker tries to “inject” valid packets into the connection by himself, a feature of TCP can be 
exploited to fool one of the TCP endpoints to transmit valid duplicate Acknowledgements on 
behalf of the attacker, hence relieving the attacker of the hard task of forging valid values for 
the Sequence Number and Acknowledgement Number TCP header fields. 
  
Section 3.9 of RFC 793 [Postel, 1981c] describes the processing of incoming TCP segments 
as a function of the connection state and the contents of the various header fields of the 
received segment. For connections in the ESTABLISHED state, the first check that is 
performed on incoming segments is that they contain “in window” data. That is, 
 

RCV.NXT <= SEG.SEQ <= RCV.NXT+RCV.WND, or 
 

RCV.NXT <= SEG.SEQ+SEG.LEN-1 < RCV.NXT+RCV.WND 
 

If a segment does not pass this check, it is dropped, and an Acknowledgement is sent in 
response: 

<SEQ=SND.NXT><ACK=RCV.NXT><CTL=ACK> 
 

The goal of this behavior is that, in the event data segments are received by the TCP 
receiver, but all the corresponding Acknowledgements are lost, when the TCP sender 
retransmits the supposedly lost data, the TCP receiver will send an Acknowledgement 
reflecting all the data received so far. If “old” TCP segments were silently dropped, the 
scenario just described would lead to a “frozen” TCP connection, with the TCP sender 
retransmitting the data for which it has not yet received an Acknowledgement, and the TCP 
receiver silently ignoring these segments. Additionally, it helps TCP to detect half-open 
connections. 

 
This feature implies that, provided the four-tuple that identifies a given TCP connection is 
known or can be easily guessed, an attacker could send a TCP segment with an “out of 
window” Sequence Number to one of the endpoints of the TCP connection to cause it to 
send a valid ACK to the other endpoint of the connection. Figure 10 illustrates such a 
scenario. 
 



 
 

 68

 
Figure 10: Blind Dup-ACK forgery attack 

 
As discussed in [Watson, 2004] and RFC 4953 [Touch, 2007], there are a number of 
scenarios in which the four-tuple that identifies a TCP connection is known or can be easily 
guessed. In those scenarios, an attacker could perform any of the “blind” attacks described in 
the following subsections by exploiting the technique described above. 
 
The following subsections describe blind DupACK-triggering attacks that aim at either 
degrading the performance of an arbitrary connection, or causing a TCP sender to 
illegitimately increase the rate at which it transmits data, potentially leading to network 
congestion.  

9.2.1. Blind throughput-reduction attack 

As discussed in Section 9, when three duplicate Acknowledgements are received, the 
congestion window is reduced to half the current amount of outstanding data (FlightSize). 
Additionally, the slow-start threshold (ssthresh) is reduced to the same value, causing the 
connection to enter the slower-performing congestion avoidance phase. If two congestion-
control events occur back to back, ssthresh and cwnd will often be reduced to their minimum 
value of 2*SMSS. 
 
An attacker could exploit the technique described in Section 9.2 to cause the throughput of the 
attacked TCP connection to be reduced, by eliciting three duplicate acknowledgements from 
the TCP receiver, which would cause the TCP sender to reduce its congestion window. In 
principle, the attacker would need to send a burst of only three out-of-window segments. 
However, in case the TCP receiver implements an acknowledgement policy such as “ACK 
every other segment”, four out-of-window segments might be needed. The first segment would 
cause the pending (delayed) Acknowledgement to be sent, and the next three segments 
would elicit the actual duplicate Acknowledgements. 
 



 
 

 69

Figure 11 shows a time-line graph of a sample scenario. The burst of DupACKs (in green) 
elicited by the burst of out-of-window segments (in red) sent by the attacker causes the TCP 
sender to retransmit the missing segment (in blue) and enter the loss recovery phase. Once a 
segment that acknowledges new data is received by the TCP sender, the loss recovery phase 
ends, and cwnd and ssthresh are set to half the number of segments that were outstanding 
when the loss recovery phase was entered. 
 

 
 

Figure 11: Blind throughput-reduction attack (time-line graph) 
 

The graphic assumes that the TCP receiver sends an Acknowledgement for every other 
data segment it receives, and that the TCP sender implements Appropriate Byte Counting 
(specified in RFC 3465 [Allman, 2003]) on the received Acknowledgement segments. 
However, implementation of these policies is not required for the attack to succeed. 



 
 

 70

 

9.2.2. Blind flooding attack 

As discussed in Section 9, when three duplicate Acknowledgements are received, the “lost” 
segment is retransmitted, and the congestion window is artificially inflated for each DupACK 
received, until the loss recovery phase ends. By sending a long burst of out-of-window 
segments to the TCP receiver of the attacked connection, an attacker could elicit a long burst 
of valid duplicate acknowledgements that would illegitimately cause the TCP sender of the 
attacked TCP connection to increase its data transmission rate. 
 
Figure 12 shows a time-line graph for this attack. The long burst of DupACKs (in green) 
elicited by the long burst of out-of-window segments (in red) sent by the attacker causes the 
TCP sender to enter the loss recovery phase and illegitimately inflate the congestion window, 
leading to an increase in the data transmission rate. Once a segment that acknowledges new 
data is received by the TCP sender, the loss recovery phase ends, and the data transmission 
rate is reduced. 
 
 

 
Figure 12: Blind flooding attack (time-line graph) 

 
Figure 13 is a time-sequence graph produced from packet logs obtained from tests of the 
described attack in a real network. A burst of segments is sent upon receipt of the burst of 
Duplicate Acknowledgements illegitimately elicited by the attacker. Figure 14 is an averaged-
throughput graphic for the same time frame, which clearly shows the effect of the attack in 
terms of throughput. 
 
 



 
 

 71

 
 

Figure 13: Blind flooding attack (time sequence graph) 
 
 

 
 

Figure 14: Blind flooding attack (averaged throughput graph) 
 



 
 

 72

These graphics were produced with Shawn Ostermann’s tcptrace tool [Ostermann, 2008]. 
An explanation of the format of the graphics can be found in tcptrace’s manual (available 
at the project’s web site: http://www.tcptrace.org). 

9.2.3. Difficulty in performing the attacks 

In order to exploit the technique described in Section 9.2 of this document, an attacker would 
need to know the four-tuple {IP Source Address, TCP Source Port, IP Destination Address, 
TCP Destination Port} that identifies the connection to be attacked. As discussed by [Watson, 
2004] and RFC 4953 [Touch, 2007], there are a number of scenarios in which these values 
may be known or easily guessed.  
 
It is interesting to note that the attacks described in Section 9.2 of this document will typically 
require a much smaller number of packets than other “blind” attacks against TCP, such as 
those described in [Watson, 2004] and RFC 4953 [Touch, 2007], as the technique discussed 
in Section 9.2 relieves the attacker from having to guess valid TCP Sequence Numbers and a 
TCP Acknowledgement numbers. 
 
The attacks described in Section 9.2.1 and Section 9.2.2 of this document require the attacker 
to forge the source address of the packets it sends. Therefore, if ingress/egress filtering is 
performed by intermediate systems, the attacker’s packets would not get to the intended 
recipient, and thus the attack would not succeed. However, we consider that ingress/egress 
filtering cannot be relied upon as the first line of defence against these attacks. 
 
Finally, it is worth noting that in order to successfully perform the blind attacks discussed in 
Section 9.2.1 and Section 9.2.2 of this document, the burst of out-of-sequence segments sent 
by the attacker should not be intermixed with valid data segments sent by the TCP sender, or 
else the Acknowledgement number of the illegitimately-elicited ACK segments would change, 
and the Acknowledgements would not be considered “Duplicate Acknowledgements” by the 
TCP sender. Tests performed in real networks seem to suggest that this requirement is not 
hard to fulfil, though. 

9.2.4. Modifications to TCP’s loss recovery algorithms 

There are a number of algorithms that augment TCP’s loss recovery mechanism that have 
been suggested by TCP researchers and have been specified by the IETF in the RFC series. 
This section describes a number of these algorithms, and discusses how their implementation 
affects (or not) the vulnerability of TCP to the attacks discussed in Section 9.2.1 and Section 
9.2.2 of this document. 
 
NewReno 
RFC 3782 [Floyd et al, 2004] specifies the NewReno algorithm, which is meant to improve 
TCP’s performance in the presence of multiple losses in a single window of data. The 
implication of this algorithm with respect to the attacks discussed in the previous sections is 
that whenever either of the attacks is performed against a connection with a NewReno TCP 
sender, a full-window (or half a window) of data will be unnecessarily retransmitted. This is 
particularly interesting in the case of the blind-flooding attack, as the attack would elicit even 
more packets from the TCP sender. 
 

http://www.tcptrace.org/


 
 

 73

Whether a full-window or just half a window of data is retransmitted depends on the 
Acknowledgement policy at the TCP receiver. If the TCP receiver sends an 
Acknowledgement (ACK) for every segment, a full-window of data will be retransmitted. If 
the TCP receiver sends an Acknowledgement (ACK) for every other segment, then only half 
a window of data will be retransmitted. 
 

Figure 15 is a time-sequence graph produced from packet logs obtained from tests performed 
in a real network. Once loss recovery is illegitimately triggered by the duplicate-ACKs elicited 
by the attacker, an entire flight of data is unnecessarily retransmitted. Figure 16 is an 
averaged-throughput graphic for the same time-frame, which shows an increase in the 
throughput of the connection resulting from the retransmission of segments governed by 
NewReno’s loss recovery. 
 

 
 

Figure 15: NewReno loss recovery (time-sequence graph) 
 
 



 
 

 74

 
 

Figure 16: NewReno loss recovery (averaged throughput graph) 
 
Limited Transmit 
RFC 3042 [Allman et al, 2001] proposes an enhancement to TCP to more effectively recover 
lost segments when a connection’s congestion window is small, or when a large number of 
segments are lost in a single transmission window. The “Limited Transmit” algorithm calls for 
sending a new data segment in response to each of the first two Duplicate Acknowledgements 
that arrive at the TCP sender. This would provide two additional transmitted packets that may 
be useful for the attacker in the case of the blind flooding attack described in Section 9.2.2 is 
performed. 
 
SACK-based loss recovery 
RFC 3517 [Blanton et al, 2003] specifies a conservative loss-recovery algorithm that is based 
on the use of the selective acknowledgement (SACK) TCP option. The algorithm uses 
DupACKs as an indication of congestion, as specified in RFC 2581 [Allman et al, 1999]. 
However, a difference between this algorithm and the basic algorithm described in RFC 2581 
is that it clocks out segments only with the SACK information included in the DupACKs. That 
is, during the loss recovery phase, segments will be injected in the network only if the SACK 
information included in the received DupACKs indicates that one or more segments have left 
the network. As a result, those systems that implement SACK-based loss recovery will not be 
vulnerable to the blind flooding attack described in Section 9.2.2. However, as RFC 3517 does 
not actually require DupACKs to include new SACK information (corresponding to data that 
has not yet been acknowledged by TCP’s cumulative Acknowledgement), systems that 
implement SACK-based loss-recovery may still remain vulnerable to the blind throughput-
reduction attack described in Section 9.2.1. SACK-based loss recovery implementations 



 
 

 75

should be updated to implement the countermeasure (“Use of SACK information to validate 
DupACKs”) described in Section 9.2.5. 

9.2.5. Countermeasures 

Validating TCP sequence numbers 
As discussed in Section 9.2, TCP responds with an ACK when an out-of-window segment is 
received, to accommodate those scenarios in which the Acknowledgement segments that 
correspond to some received data are lost in the network, and to help discover half-open TCP 
connections. 
 
However, it is possible to restrict the sequence numbers that are considered acceptable, and 
have TCP respond with ACKs only when it is strictly necessary. 
 
The following check could be performed on the TCP sequence number of an incoming TCP 
segment: 
 

RCV.NXT – MAX.RCV.WND <= SEG.SEQ <= RCV.NXT + RCV.WND 
 

Equation 2: Validating TCP Sequence Numbers 
 
where MAX.RCV.WND is the largest TCP window that has so far been advertised to the 
remote endpoint. 
 
If a segment passes this check, the processing rules specified in RFC 793 [Postel, 1981c] 
should be applied. Otherwise, TCP should send an ACK (as specified by the processing rules 
in RFC 793 [Postel, 1981c]), applying rate-limiting to the Acknowledgement segments sent in 
response to out-of-window segments. 
 
Discussion 
A feature of TCP is that, in some scenarios, it can detect half-open connections. If an 
implementation chose to silently drop those TCP segments that do not pass the check 
enforced by Equation 2, it could prevent TCP from detecting half-open connections. Figure 17 
shows a scenario in which, provided that “TCP B” behaves as specified in RFC 793, a half-
open connection would be discovered and aborted. 
 

An established connection is said to be “half open” if one of the TCPs has closed or aborted 
the connection at its end without the knowledge of the other, or if the two ends of the 
connection have become desynchronised owing to a crash that resulted in loss of memory. 



 
 

 76

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 17: Half-Open Connection Discovery 
 
In the scenario illustrated by Figure 17, TCP A crashes losing the connection-state information 
of the TCP connection with TCP B. In line 3, TCP A tries to establish a new connection with 
TCP B, using the same four-tuple {IP Source Address, TCP source port, IP Destination 
Address, TCP destination port}. In line 4, as the SYN segment is out of window, TCP B 
responds with an ACK. This ACK elicits an RST segment from TCP A, which causes the half-
open connection at TCP B to be aborted. 
 

If the SYN segment had been “in window”, TCP B would have sent an RST segment 
instead, which would have closed the half-open connection. Ongoing work at the TCPM WG 
of the IETF proposes to change this behavior, and make TCP respond to a SYN segment 
received for any of the synchronised states with an ACK segment, to avoid in-window SYN 
segments from being used to perform connection-reset attacks [Ramaiah et al, 2008]. 

 
However, in case the out-of-window segment was silently dropped, the scenario in Figure 17 
would change into that in Figure 18. 
 

Figure 18: Half-Open Connection Discovery with the proposed counter-measure 
 

 

     TCP A                                           TCP B 

 

 1.  (CRASH)                               (send 300,receive 100) 

 

 2.  CLOSED                                           ESTABLISHED 

 

 3.  SYN-SENT --> <SEQ=400><CTL=SYN>              --> (??) 

 

4.  (!!)     <-- <SEQ=300><ACK=100><CTL=ACK>     <-- ESTABLISHED 

 

 5.  SYN-SENT --> <SEQ=100><CTL=RST>              --> (Abort!!) 

 

     TCP A                                           TCP B 

 

 1.  (CRASH)                               (send 300,receive 100) 

 

 2.  CLOSED                                           ESTABLISHED 

 

 3.  SYN-SENT --> <SEQ=400><CTL=SYN>              -->  

 

                           ........ 



 
 

 77

In line 3, the SYN segment sent by TCP A is silently dropped by TCP B because it does not 
pass the check enforced by Equation 2 (i.e., it contains an out-of-window sequence number). 
As a result, some time later (an RTO) TCP A retransmits its SYN segment. Even after TCP A 
times out, the half-open connection at TCP B will remain in the same state. 
 
Thus, a conservative reaction to those segments that do not pass the check enforced by 
Equation 2 would be to respond with an Acknowledgement segment (as specified by RFC 
793), applying rate-limiting to those Acknowledgement segments sent in response to 
segments that do not pass the check enforced by that equation. An implementation might 
choose to enforce a rate-limit of, e.g., one ACK per five seconds, as a single ACK segment is 
needed for the Half-Open Connection Discovery mechanism to work. 
 

As the only reason to respond with an ACK to those segments that do not pass the check 
enforced by Equation 2 is to allow TCP to discover half-open connections, an aggressive 
rate-limit can be enforced. As long as the rate-limit prevents out-of-window segments from 
eliciting three Acknowledgment segments in a Round-trip Time (RTT), an attacker would not 
be able to trigger TCP’s loss-recovery, and thus would not be able to perform the attacks 
described in the previous sections.  

 
It is interesting to note that RFC 793 [Postel, 1981c] itself states that half-open connections 
are expected to be unusual. Additionally, given that in many scenarios it may be unlikely for a 
TCP connection request to be issued with the same four-tuple as that of the half-open 
connection, a complete solution for the discovery of half-open connections cannot rely on the 
mechanism illustrated by Figure 17, either. Therefore, some implementations might choose to 
sacrifice TCP’s ability to detect half-open connections, and have a more aggressive reaction 
to those segments that do not pass the check enforced by Equation 2 by silently dropping 
them. 
 

This validation check can also help to avoid ACK wars in some scenarios that may arise 
from the use of transparent proxies. In those scenarios, when the transparent proxy fails to 
wire (i.e., is disabled), the sequence numbers of the two end-points of the TCP connection 
become desynchronised, and both TCPs begin to send duplicate Acknowledgements to 
each other, with the intention of re-synchronising them. As the sequence numbers never get 
re-synchronised, the ACK war can only be stopped by an external agent. 

 
Limiting the number of duplicate acknowledgments 
Given that duplicate acknowledgements should be elicited by out-of-order segments, a TCP 
sender could limit the number of duplicate acknowledgements it will honour to: 
 

Max_DupACKs = (FlightSize / SMSS) - 1 
 
Where FlightSize and SMSS are the values defined in RFC 2581 [Allman et al, 1999]. When 
more than Max_DupACKs duplicate acknowledgements are received, the exceeding 
DupACKs should be silently dropped. 
 



 
 

 78

 
Use of SACK information to validate DupACKs 
SACK, specified in 2018 [Mathis et al, 1996], provides a mechanism for TCP to be able to 
acknowledge the receipt of out-of-order TCP segments. For connections that have agreed to 
use SACK, each legitimate DupACK will contain new SACK information that reflects the data 
bytes contained in the out-of-order data segment that elicited the DupACK. 
 
RFC 3517 [Blanton et al, 2003] specifies a SACK-based loss recovery algorithm for TCP. 
However, it does recommend TCP implementations to validate DupACKs by requiring that 
they contain new SACK information. Results obtained from auditing a number of TCP 
implementations seem to indicate that most TCP implementations do not enforce this 
validation check on incoming DupACKs, either. 
 
In the case of TCP connections that have agreed to use SACK, a validation check should be 
performed on incoming ACK segments to completely eliminate the attacks described in 
Section 9.2.1 and Section 9.2.2 of this document: “Duplicate ACKs should contain new SACK 
information. The SACK information should refer to data that has already been sent, but that 
has not yet been acknowledged by TCP’s cumulative Acknowledgement”. 
 
Those ACK segments that do not comply with this validation check should not be considered 
“duplicate ACKs”, and thus should not trigger the loss-recovery phase. 
 
In case at least one segment in a window of data has been lost, the successive segments will 
elicit the generation of Duplicate ACKs containing new SACK information. This SACK 
information will indicate the receipt of these successive segments by the TCP receiver. 
 
In the case of pure ACKs illegitimately elicited by out-of-window segments, however, the 
ACKs will not contain any SACK information. 
 

If DSACK (specified in 2883 [Floyd et al, 2000]) were implemented by the TCP 
receiver, then the illegitimately elicited DupACKs might contain out-of-window SACK 
information if the sequence number of the forged TCP segment (SEG.SEQ) is 
lower than the next expected sequence number (RECV.NXT) at the TCP receiver. 
Such segments should be considered to indicate the receipt of duplicate data, 
rather than an indication of lost data, and therefore should not trigger loss 
recovery. 

 
TCP port number randomisation 
As in order to perform the blind attacks described in Section 9.2.1 and Section 9.2.2 the 
attacker needs to know the TCP port numbers in use by the connection to be attacked, 
obfuscating the TCP source port used for outgoing TCP connections will increase the number 
of packets required to successfully perform these attacks. Section 3.1 of this document 
discusses the use of port randomisation. 
 
It must be noted that given that these blind DupACK triggering attacks do not require the 
attacker to forge valid TCP Sequence numbers and TCP Acknowledgement numbers, port 
randomisation should not be relied upon as a first line of defense. 



 
 

 79

 
Ingress and Egress filtering 
Ingress and Egress filtering reduces the number of systems in the global Internet that can 
perform attacks that rely on forged source IP addresses. While protection from the blind 
attacks discussed in Section 9.2 should not rely only on Ingress and Egress filtering, its 
deployment is recommended to help prevent all attacks that rely on forged IP addresses. RFC 
3704 [Baker and Savola, 2004], RFC 2827 [Ferguson and Senie, 2000], and [NISCC, 2006] 
provide advice on Ingress and Egress filtering. 
 
Generalized TTL Security Mechanism (GTSM) 
RFC 5082 [Gill et al, 2007] proposes a check on the TTL field of the IP packets that 
correspond to a given TCP connection to reduce the number of systems that could 
successfully attack the protected TCP connection. It provides for the attacks discussed in this 
document the same level of protection than for the attacks described in [Watson, 2004] and 
RFC 4953 [Touch, 2007]. While implementation of this mechanism may be useful in some 
scenarios, it should be clear that countermeasures discussed in the previous sections provide 
a more effective and simpler solution than that provided by the GTSM. 
 

9.3. TCP Explicit Congestion Notification (ECN) 

ECN (Explicit Congestion Notification) provides a mechanism for intermediate systems to 
signal congestion to the communicating endpoints that in some scenarios can be used as an 
alternative to dropping packets. 
 
RFC 3168 [Ramakrishnan et al, 2001] contains a detailed discussion of the possible ways and 
scenarios in which ECN could be exploited by an attacker.  
 
RFC 3540 [Spring et al, 2003] specifies an improvement to ECN based on nonces, that 
protects against accidental or malicious concealment of marked packets from the TCP sender. 
The specified mechanism defines a “NS” (“Nonce Sum”) field in the TCP header that makes 
use of one bit from the Reserved field, and requires a modification in both of the endpoints of 
a TCP connection to process this new field. This mechanism is still in “Experimental” status, 
and since it might suffer from the behavior of some middle-boxes such as firewalls or packet-
scrubbers, we defer a recommendation of this mechanism until more experience is gained. 
 

There also is ongoing work in the research community and the IETF to define 
alternate semantics for the ECN field of the IP header (e.g., see [PCNWG, 2009]). 

 
The following subsections try to summarise the security implications of ECN. 

9.3.1. Possible attacks by a compromised router 

Firstly, a router controlled by a malicious user could erase the CE codepoint (either by 
replacing it with the ECT(0), ECT(1), or non-ECT codepoints), effectively eliminating the 
congestion indication. As a result, the corresponding TCP sender would not reduce its data 
transmission rate, possibly leading to network congestion. This could also lead to unfairness, 



 
 

 80

as this flow could experience better performance than other flows for which the congestion 
indication is not erased (and thus their transmission rate is reduced). 
 
Secondly, a router controlled by a malicious user could illegitimately set the CE codepoint, 
falsely indicating congestion, to cause the TCP sender to reduce its data transmission rate. 
However, this particular attack is no worse than the malicious router simply dropping the 
packets rather setting their CE codepoint. 
 
Thirdly, a malicious router could turn off the ECT codepoint of a packet, thus disabling ECN 
support. As a result, if the packet later arrives at a router that is experiencing congestion, it 
may be dropped rather than marked. As with the previous scenario, though, this is no worse 
than the malicious router simply dropping the corresponding packet. 
 
It should be noted that a compromised on-path IP router could engage in a much broader 
range of attacks, with broader impacts, and at much lower attacker cost than the ones 
described here. Such a compromised router is extremely unlikely to engage in the attack 
vectors discussed in this section, given the existence of more effective attack vectors that 
have lower attacker cost. 

9.3.2. Possible attacks by a malicious TCP endpoint 

If a packet with the ECT codepoint set arrives at an ECN-capable router that is experiencing 
moderate congestion, the router may decide to set its CE codepoint instead of dropping it. If 
either of the TCP endpoints do not honour the congestion indication provided by an ECN-
capable router, this would result in unfairness, as other (legitimate) ECN-capable flows would 
still reduce their sending rate in response to the ECN marking of packets. Furthermore, under 
moderate congestion, non-ECN-capable flows would be subject to packet drops by the same 
router. As a result, the flow with a malicious TCP end-point would obtain better service than 
the legitimate flows. 
 
As noted in RFC 3168 [Ramakrishnan et al, 2001], a TCP endpoint falsely indicating ECN 
capability could lead to unfairness, allowing the mis-beheaving flow to get more than its fair 
share of the bandwidth. This could be the result of the mis-behavior of either of the TCP 
endpoints. For example, the sending TCP could indicate ECN capability, but then send a 
CWR in response to an ECE without actually reducing its congestion window. Alternatively (or 
in addition), the receiving TCP could simply ignore those packets with the CE codepoint set, 
thus avoiding the sending TCP from receiving the congestion indication.  
 
In the case of the sending TCP ignoring the ECN congestion indication, this would be no 
worse than the sending TCP ignoring the congestion indication provided by a lost segment. 
However, the case of a TCP receiver ignoring the CE codepoint allows the TCP receiver to get 
more than its fair share of bandwidth in a way that was previously unavailable. If congestion 
was kept “moderate”, then the malicious TCP receiver could maintain the unfairness, as the 
router experiencing congestion would mark the offending packets of the misbehaving flow 
rather than dropping them. At the same time, legitimate ECN-capable flows would respond to 
the congestion indication provided by the CE codepoint, while legitimate non-ECN-capable 
flows would be subject of packet dropping. However, if congestion turned to sufficiently heavy, 
the router experiencing congestion would switch from marking packets to dropping packets, 



 
 

 81

and at that point the attack vector provided by ECN could no longer be exploited (until 
congestion returns to moderate state). 
 
RFC 3168 [Ramakrishnan et al, 2001] describes the use of “penalty boxes” which would act 
on flows that do not respond appropriately to congestion indications. Section 10 of RFC 3168 
suggests that a first action taken at a penalty box for an ECN-capable flow would be to switch 
to dropping packets (instead of marking them), and, if the flow does not respond appropriately 
to the congestion indication, the penalty box could reset the misbehaving connection. Here we 
discourage implementation of such a policy, as it would create a vector for connection-reset 
attacks. For example, an attacker could forge TCP segments with the same four-tuple as the 
targeted connection and cause them to transit the penalty box. The penalty box would first 
switch from marking to dropping packets. However, the attacker would continue sending 
forged segments, at a steady rate. As a result, if the penalty box implemented such a severe 
policy of resetting connections for flows that still do not respond to end-to-end congestion 
control after switching from marking to dropping, the attacked connection would be reset. 



 
 

 82

10. TCP API 

Section 3.8 of RFC 793 [Postel, 1981c] describes the minimum set of TCP User Commands 
required of all TCP Implementations. Most operating systems provide an Application 
Programming Interface (API) that allows applications to make use of the services provided by 
TCP. One of the most popular APIs is the Sockets API, originally introduced in the BSD 
networking package [McKusick et al, 1996]. 
 

10.1 Passive opens and binding sockets 

RFC 793 specifies the syntax of the “OPEN” command, which can be used to perform both 
passive and active opens. The syntax of this command is as follows: 
 

OPEN (local port, foreign socket, active/passive [, timeout] [, precedence] [, 
security/compartment] [, options]) -> local connection name 

 
When this command is used to perform a passive open (i.e., the active/passive flag is set to 
passive), the foreign socket parameter may be either fully-specified (to wait for a particular 
connection) or unspecified (to wait for any call).  
 
As discussed in Section 2.7 of RFC 793 [Postel, 1981c], if there are several passive OPENs 
with the same local socket (recorded in the corresponding TCB), an incoming connection will 
be matched to the TCB with the more specific foreign socket. This means that when the 
foreign socket of a passive OPEN matches that of the incoming connection request, that 
passive OPEN takes precedence over those passive OPENs with an unspecified foreign 
socket. 
 
Popular implementations such as the Sockets API let the user specify the local socket as fully-
specified {local IP address, local TCP port} pair, or as just the local TCP port (leaving the local 
IP address unspecified). In the former case, only those connection requests sent to {local port, 
local IP address} will be accepted. In the latter case, connection requests sent to any of the 
system’s IP addresses will be accepted. In a similar fashion to the generic API described in 
Section 2.7 of RFC 793, if there is a pending passive OPEN with a fully-specified local socket 
that matches that for which a connection establishment request has been received, that local 
socket will take precedence over those which have left the local IP address unspecified. The 
implication of this is that an attacker could “steal” incoming connection requests meant for a 
local application by performing a passive OPEN that is more specific than that performed by 
the legitimate application. 
 
In order to eliminate this vulnerability, when there is already a pending passive OPEN for 
some local port number, only processes belonging to the same user should be able to “reuse” 
the local port for another passive OPEN. Additionally, reuse of a local port could default to 



 
 

 83

“off”, and be enabled only by an explicit command (e.g., the setsockopt() function of the 
Sockets API). 
 

10.2. Active opens and binding sockets 

As discussed in Section 10.1, the “OPEN” command specified in Section 3.8 of RFC 793 
[Postel, 1981c] can be used to perform active opens. In case of active opens, the parameter 
“local port” will contain a so-called “ephemeral port”. While the only requirement for such an 
ephemeral port is that the resulting connection-id is unique, port numbers that are currently in 
use by a TCP in the LISTEN state should not be allowed for use as ephemeral ports. If this 
rule is not complied, an attacker could potentially steal” an incoming connection to a local 
server application by issuing a connection request to the victim client at roughly the same time 
the client tries to connect to the victim server application. If the SYN segment corresponding to 
the attacker's connection request and the SYN segment corresponding to the victim client 
“cross each other in the network”, and provided the attacker is able to know or guess the 
ephemeral port used by the client, a TCP simultaneous open scenario would take place, and 
the incoming connection request sent by the client would be matched with the attacker's 
socket rather than with the victim server application's socket.  
 
As already noted, in order for this attack to succeed, the attacker should be able to guess or 
know (in advance) the ephemeral port selected by the victim client, and be able to know the 
right moment to issue a connection request to the victim client. While in many scenarios this 
may prove to be a difficult task, some factors such as an inadequate ephemeral port selection 
policy at the victim client could make this attack feasible. 
 
It should be noted that most applications based on popular implementations of TCP API (such 
as the Sockets API) perform “passive opens” in three steps. Firstly, the application obtains a 
file descriptor to be used for inter-process communication (e.g., by issuing a socket() call). 
Secondly, the application binds the file descriptor to a local TCP port number (e.g., by issuing 
a bind() call), thus creating a TCP in the fictional CLOSED state. Thirdly, the aforementioned 
TCP is put in the LISTEN state (e.g., by issuing a listen() call). As a result, with such an 
implementation of the TCP API, even if port numbers in use for TCPs in the LISTEN state 
were not allowed for use as ephemeral ports, there is a window of time between the second 
and the third steps in which an attacker could be allowed to select a port number that would 
be later used for listening to incoming connections. Therefore, these implementations of the 
TCP API should enforce a stricter requirement for the allocation of port numbers: port 
numbers that are in use by a TCP in the LISTEN or CLOSED states should not be allowed for 
allocation as ephemeral ports. 
 
An implementation might choose to relax the aforementioned restriction when the process or 
system user requesting allocation of such a port number is the same that the process or 
system user controlling the TCP in the CLOSED or LISTEN states with the same port number. 



 
 

 84

11. Blind in-window attacks 

In the last few years awareness has been raised about a number of “blind” attacks that can 
be performed against TCP by forging TCP segments that fall within the receive window 
[NISCC, 2004] [Watson, 2004].  
 

The term “blind” refers to the fact that the attacker does not have access to the packets that 
belong to the attacked connection. 

 
The effects of these attacks range from connection resets to data injection. While these 
attacks were known in the research community, they were generally considered unfeasible. 
However, increases in bandwidth availability and the use of larger TCP windows raised 
concerns in the community. The following subsections discuss a number of forgery attacks 
against TCP, along with the possible countermeasures to mitigate their impact. 
 

11.1. Blind TCP-based connection-reset attacks 

Blind connection-reset attacks have the goal of causing a TCP connection maintained 
between two TCP endpoints to be aborted. The level of damage that the attack may cause 
usually depends on the application running on top of TCP, with the more vulnerable 
applications being those that rely on long-lived TCP connections.  
 

An interesting case of such applications is BGP [Rekhter et al, 2006], in which a connection-
reset usually results in the corresponding entries of the routing table being flushed. 

 
There are a variety of vectors for performing TCP-based connection-reset attacks against 
TCP. [Watson, 2004] and [NISCC, 2004] raised awareness about connection-reset attacks 
that exploit the RST flag of TCP segments. [Ramaiah et al, 2008] noted that carefully crafted 
SYN segments could also be used to perform connection-reset attacks. This document 
describes yet two previously undocumented vectors for performing connection-reset attacks: 
the Precedence field of IP packets that encapsulate TCP segments, and illegal TCP options. 

11.1.1. RST flag 

The RST flag signals a TCP peer that the connection should be aborted. In contrast with the 
FIN handshake (which gracefully terminates a TCP connection), an RST segment causes the 
connection to be abnormally closed. 
 
As stated in Section 3.4 of RFC 793 [Postel, 1981c], all reset segments are validated by 
checking their Sequence Numbers, with the Sequence Number considered valid if it is within 
the receive window. In the SYN-SENT state, however, an RST is valid if the 
Acknowledgement Number acknowledges the SYN segment that supposedly elicited the 
reset. 
 



 
 

 85

[Ramaiah et al, 2008] proposes a modification to TCP’s transition diagram to address this 
attack vector. The counter-measure is a combination of enforcing a more strict validation 
check on the sequence number of reset segments, and the addition of a “challenge” 
mechanism. With the implementation of the proposed mechanism, TCP would behave as 
follows: 
 
If the Sequence Number of an RST segment is outside the receive window, the segment is 
silently dropped (as stated by RFC 793). That is, a reset segment is discarded unless it 
passes the following check: 
 

RCV.NXT <= Sequence Number < RCV.NXT+RCV.WND 
 
If the sequence number falls exactly on the left-edge of the receive window, the reset is 
honoured. That is, the connection is reset if the following condition is true: 
 

Sequence Number == RCV.NXT 
 
If an RST segment passes the first check (i.e., it is within the receive window) but does not 
pass the second check (i.e., it does not fall exactly on the left edge of the receive window), an 
Acknowledgement segment (“challenge ACK”) is set in response: 
 

<SEQ=SND.NXT><ACK=RCV.NXT><CTL=ACK> 
 
This Acknowledgement segment is referred to as a “challenge ACK” as, in the event the RST 
segment that elicited it had been legitimate (but silently dropped as a result of enforcing the 
above checks), the challenge ACK would elicit a new reset segment that would fall exactly on 
the left edge of the window and would thus pass all the above checks, finally resetting the 
connection. 
 
We recommend the implementation of this countermeasure. However, we are aware of patent 
claims on this counter-measure, and suggest vendors to research the consequences of the 
possible patents that may apply. 
 
[US-CERT, 2003a] is an advisory of a firewall system that was found particularly vulnerable to 
resets attack because of not validating the TCP Sequence Number of RST segments. 
Clearly, all TCPs (including those in middle-boxes) should validate RST segments as 
discussed in this section. 

11.1.2. SYN flag 

Section 3.9 (page 71) of RFC 793 [Postel, 1981c] states that if a SYN segment is received 
with a valid (i.e., “in window”) Sequence Number, an RST segment should be sent in 
response, and the connection should be aborted. 
 
The IETF has been working on a document, “Improving TCP’s Resistance to Blind In-Window 
Attacks” [Ramaiah et al, 2008] which addresses, among others, this variant of TCP-based 
connection-reset attack. This section describes the counter-measure proposed by the IETF, a 
problem that may arise from the implementation of that solution, and a workaround to it. 



 
 

 86

 
In order to mitigate this attack vector, [Ramaiah et al, 2008] proposes to change TCP’s 
reaction to SYN segments as follows. When a SYN segment is received for a connection in 
any of the synchronised states, an Acknowledgement (ACK) segment is sent in response.  
 

As discussed in [Ramaiah et al, 2008], there is a corner-case that would not be properly 
handled by this mechanism. If a host (TCP A) establishes a TCP connection with a remote 
peer (TCP B), and then crashes, reboots and tries to initiate a new incarnation of the same 
connection (i.e., a connection with the same four-tuple as the previous connection) using an 
Initial Sequence Number equal to the RCV.NXT value at the remote peer (TCP B), the ACK 
segment sent by TCP B in response to the SYN segment would contain an 
Acknowledgement number that would be considered valid by TCP A, and thus an RST 
segment would not be sent in response to the Acknowledgement (ACK) segment. As this 
ACK would not have the SYN bit set, TCP A (being in the SYN-SENT state) would silently 
drop it (as stated on page 68 of RFC 793). After a Retransmission Timeout (RTO), TCP A 
would retransmit its SYN segment, which would lead to the same sequence of events as 
before. Eventually, TCP A would timeout, and the connection would be aborted. This is a 
corner case in which the introduced change would lead to a non-desirable behavior. 
However, we consider this scenario to be extremely unlikely and, in the event it ever took 
place, the connection would nevertheless be aborted after retrying for a period of USER 
TIMEOUT seconds. 

 
However, when this change is implemented exactly as described in [Ramaiah et al, 2008], the 
potential of interoperability problems is introduced, as a heuristic widely incorporated in many 
TCP implementations is disabled.  
 
In a number of scenarios a socket pair may need to be reused while the corresponding four-
tuple is still in the TIME-WAIT state in a remote TCP peer. For example, a client accessing 
some service on a host may try to create a new incarnation of a previous connection, while the 
corresponding four-tuple is still in the TIME-WAIT state at the remote TCP peer (the server). 
This may happen if the ephemeral port numbers are being reused too quickly, either because 
of a bad policy of selection of ephemeral ports, or simply because of a high connection rate to 
the corresponding service. In such scenarios, the establishment of new connections that reuse 
a four-tuple that is in the TIME-WAIT state would fail. In order to avoid this problem, RFC 1122 
[Braden, 1989] states (in Section 4.2.2.13) that when a connection request is received with a 
four-tuple that is in the TIME-WAIT state, the connection request could be accepted if the 
sequence number of the incoming SYN segment is greater than the last sequence number 
seen on the previous incarnation of the connection (for that direction of the data transfer). 
 

This requirement aims at avoiding the sequence number space of the new and old 
incarnations of the connection to overlap, thus avoiding old segments from the previous 
incarnation of the connection to be accepted as valid by the new connection. 

 
The requirement in [Ramaiah et al, 2008] to disregard SYN segments received for 
connections in any of the synchronised states forbids the implementation of the heuristic 
described above. As a result, we argue that the processing of SYN segments proposed in 



 
 

 87

[Ramaiah et al, 2008] should apply only for connections in any of the synchronized states 
other than the TIME-WAIT state. 
 
The following paragraphs summarize the processing of SYN segments in the synchronized 
states, such that connection-reset attacks are mitigated, while interoperability is not affected. 
Additionally, the timestamp option of the incoming SYN segment is included (if present) in the 
heuristics performed for allowing a high connection-establishment rate, thus improving the 
robustness of TCP.  
 
Processing of SYN segments received for connections in the synchronized states should 
occur as follows: 
 
• If a SYN segment is received for a connection in any synchronized state other than TIME-

WAIT, respond with an ACK, applying rate-throttling. 

• If the corresponding connection is in the TIME-WAIT state, then, 

• If the previous incarnation of the connection used timestamps, then, 

• If TCP timestamps would be enabled for the new incarnation of the connection, and the 
timestamp contained in the incoming SYN segment is greater than the last timestamp 
seen on the previous incarnation of the connection (for that direction of the data transfer), 
honour the connection request (creating a connection in the SYN-RECEIVED state). 

• If TCP timestamps would be enabled for the new incarnation of the connection, the 
timestamp contained in the incoming SYN segment is equal to the last timestamp seen on 
the previous incarnation of the connection (for that direction of the data transfer), and the 
Sequence Number of the incoming SYN segment is larger than the last sequence number 
seen on the previous incarnation of the connection (for that direction of the data transfer), 
then honour the connection request (creating a connection in the SYN-RECEIVED state). 

• If TCP timestamps would not be enabled for the new incarnation of the connection, but the 
Sequence Number of the incoming SYN segment is larger than the last sequence number 
seen on the previous incarnation of the connection (for the same direction of the data 
transfer), honour the connection request (creating a connection in the SYN-RECEIVED 
state). 

• Otherwise, silently drop the incoming SYN segment, thus leaving the previous incarnation 
of the connection in the TIME-WAIT state. 

• If the previous incarnation of the connection did not use timestamps, then, 

• If TCP timestamps would be enabled for the new incarnation of the connection, honour the 
incoming connection request. 

• If TCP timestamps would not be enabled for the new incarnation of the connection, but the 
Sequence Number of the incoming SYN segment is larger than the last sequence number 
seen on the previous incarnation of the connection (for the same direction of the data 
transfer), then honour the incoming connection request (even if the sequence number of 
the incoming SYN segment falls within the receive window of the previous incarnation of 
the connection). 



 
 

 88

• Otherwise, silently drop the incoming SYN segment, thus leaving the previous incarnation 
of the connection in the TIME-WAIT state. 

 
In the above explanation, the phrase “TCP timestamps would be enabled for the new 
incarnation for the connection” means that the incoming SYN segment contains a TCP 
Timestamps option (i.e., the client has enabled TCP timestamps), and that the SYN/ACK 
segment that would be sent in response to it would also contain a Timestamps option (i.e., 
the server has enabled TCP timestamps). In such a scenario, TCP timestamps would be 
enabled for the new incarnation of the connection. 
 
The “last sequence number seen on the previous incarnation of the connection (for the 
same direction of the data transfer)” refers to the last sequence number used by the 
previous incarnation of the connection (for the same direction of the data transfer), and not 
to the last value seen in the Sequence Number field of the corresponding segments. That is, 
it refers to the sequence number corresponding to the FIN flag of the previous incarnation of 
the connection, for that direction of the data transfer. 
 
The processing rules proposed in this Section do not comply with one of the requirements in 
the upcoming RFC “Improving TCP’s Robustness to Blind In-Window Attacks” [Ramaiah et 
al, 2008], which requires implementations to send an ACK in response to in-window SYN 
segments received for connections in any of the synchronized states (including the TIME-
WAIT state). 

 
Many implementations do not include the TCP timestamp option when performing the above 
heuristics, thus imposing stricter constraints on the generation of Initial Sequence Numbers, 
the average data transfer rate of the connections, and the amount of data transferred with 
them. RFC 793 [Postel, 1981c] states that the ISN generator should be incremented roughly 
once every four microseconds (i.e., roughly 250000 times per second). As a result, any 
connection that transfers more than 250000 bytes of data at more than 250 KB/s could lead to 
scenarios in which the last sequence number seen on a connection that moves into the TIME-
WAIT state may still be greater than the sequence number of an incoming SYN segment that 
aims at creating a new incarnation of the same connection. In those scenarios, the 4.4BSD 
heuristics would fail, and therefore the connection request would usually time out. By including 
the TCP timestamp option in the heuristics described above, all these constraints are greatly 
relaxed. 
 
It is clear that the use of TCP timestamps for the heuristics described above depends on the 
timestamps to be monotonically increasing across connections between the same two TCP 
endpoints. Therefore, we strongly advice to generate timestamps as described in Section 
4.7.1. 

11.1.3. Security/Compartment 

Section 3.9 (page 71) of RFC 793 [Postel, 1981c] states that if the IP security/compartment of 
an incoming segment does not exactly match the security/compartment in the TCB, a RST 
segment should be sent, and the connection should be aborted. 
 



 
 

 89

A discussion of the IP security options relevant to this section can be found in Section 
3.13.2.12, Section 3.13.2.13, and Section 3.13.2.14 of [CPNI, 2008]. 

 
This certainly provides another attack vector for performing connection-reset attacks, as an 
attacker could forge TCP segments with a security/compartment that is different from that 
recorded in the corresponding TCB and, as a result, the attacked connection would be reset. 
 
It is interesting to note that for connections in the ESTABLISHED state, this check is 
performed after validating the TCP Sequence Number and checking the RST bit, but before 
validating the Acknowledgement field. Therefore, even if the stricter validation of the 
Acknowledgement field (described in Section 3.4) was implemented, it would not help to 
mitigate this attack vector. 
 
This attack vector can be easily mitigated by relaxing the reaction to TCP segments with 
“incorrect” security/compartment values: if the security/compartment field does not match the 
value recorded in the corresponding TCB, TCP should not abort the connection, but simply 
discard the corresponding packet. Additionally, this whole event should be logged as a 
security violation. 

11.1.4. Precedence 

Section 3.9 (page 71) of RFC 793 [Postel, 1981c] states that if the IP Precedence of an 
incoming segment does not exactly match the Precedence recorded in the TCB, a RST 
segment should be sent, and the connection should be aborted. 
 
This certainly provides another attack vector for performing connection-reset attacks, as an 
attacker could forge TCP segments with a IP Precedence that is different from that recorded 
in the corresponding TCB and, as a result, the attacked connection would be reset. 
 
It is interesting to note that for connections in the ESTABLISHED state, this check is 
performed after validating the TCP Sequence Number and checking the RST bit, but before 
validating the Acknowledgement field. Therefore, even if the stricter validation of the 
Acknowledgement field (described in Section 3.4) were implemented, it would not help to 
mitigate this attack vector. 
 
This attack vector can be easily mitigated by relaxing the reaction to TCP segments with 
“incorrect” IP Precedence values. That is, even if the Precedence field does not match the 
value recorded in the corresponding TCB, TCP should not abort the connection, and should 
instead continue processing the segment as specified by RFC 793. 
 

It is interesting to note that resetting a connection due to a change in the Precedence value 
might have a negative impact on interoperability. For example, the packets that correspond 
to the connection could temporarily take a different internet path, in which some middle-box 
could re-mark the Precedence field (due to administration policies at the network to be 
transited). In such a scenario, an implementation following the advice in RFC 793 would 
abort the connection, when the connection would have probably survived.  

 



 
 

 90

While the IPv4 Type of Service field (and hence the Precedence field) has been 
redefined by the Differentiated Services (DS) field specified in RFC 2474 [Nichols et 
al, 1998], RFC 793 [Postel, 1981c] was never formally updated in this respect. We note that 
both legacy systems that have not been upgraded to implement the differentiated services 
architecture described in RFC 2475 [Blake et al, 1998] and current implementations that have 
extrapolated the discussion of the Precedence field to the Differentiated Services 
field may still be vulnerable to the connection reset vector discussed in this section. 

11.1.5. Illegal options 

Section 4.2.2.5 of RFC 1122 [Braden, 1989] discusses the processing of TCP options. It 
states that TCP must be able to receive a TCP option in any segment, and must ignore 
without error any option it does not implement. Additionally, it states that TCP should be 
prepared to handle an illegal option length (e.g., zero) without crashing, and suggests 
handling such illegal options by resetting the corresponding connection and logging the 
reason. However, this suggested behavior could be exploited to perform connection-reset 
attacks. Therefore, as discussed in Section 3.10 of this document, we advise TCP 
implementations to silently drop those TCP segments that contain illegal option lengths. 
 

11.2. Blind data-injection attacks 

An attacker could try to inject data in the stream of data being transferred on the connection. 
As with the other attacks described in Section 11 of this document, in order to perform a blind 
data injection attack the attacker would need to know or guess the four-tuple that identifies the 
TCP connection to be attacked. Additionally, he should be able to guess a valid (“in window”) 
TCP Sequence Number, and a valid Acknowledgement Number. 
 
As discussed in Section 3.4 of this document, [Ramaiah et al, 2008] propose to enforce a 
more strict check on the Acknowledgement Number of incoming segments than that specified 
in RFC 793 [Postel, 1981c]. 
 
Implementation of the proposed check requires more packets on the side of the attacker to 
successfully perform a blind data-injection attack. However, it should be noted that 
applications concerned with any of the attacks discussed in Section 11 of this document 
should make use of proper authentication techniques, such as those specified for IPsec in 
RFC 4301 [Kent and Seo, 2005]. 
 



 
 

 91

12. Information leaking 

12.1. Remote Operating System detection via TCP/IP stack 
fingerprinting 

Clearly, remote Operating System (OS) detection is a useful tool for attackers. Tools such as 
nmap [Fyodor, 2006b] can usually detect the operating system type and version of a remote 
system with an amazingly accurate precision. This information can in turn be used by 
attackers to tailor their exploits to the identified operating system type and version. 
 
Evasion of OS fingerprinting can prove to be a very difficult task. Most systems make use of a 
variety of protocols, each of which have a large number of parameters that can be set to 
arbitrary values. Thus, information on the operating system may be obtained from a number of 
sources ranging from application banners to more obscure parameters such as TCP’s 
retransmission timer. 
 
Nmap [Fyodor, 2006b] is probably the most popular tool for remote OS detection via active 
TCP/IP stack fingerprinting. p0f [Zalewski, 2006a], on the other hand, is a tool for performing 
remote OS detection via passive TCP/IP stack fingerprinting. SinFP [SinFP, 2006] can 
perform both active and passive fingerprinting. Finally, TBIT [TBIT, 2001] is a TCP 
fingerprinting tool that aims at characterising the behaviour of a remote TCP peer based on 
active probes, and which has been widely used in the research community. 
 

TBIT [TBIT, 2001] implements a number of tests not present in other tools, such as 
characterizing the behaviour of a TCP peer with respect to TCP congestion control.  

 
[Fyodor, 1998] and [Fyodor, 2006a] are classic papers on the subject. [Miller, 2006] and [Smith and 
Grundl, 2002] provide an introduction to passive TCP/IP stack fingerprinting. [Smart et al, 
2000] and [Beck, 2001] discuss some techniques for evading OS detection through TCP/IP 
stack fingerprinting. 
 
The following subsections discuss TCP-based techniques for remote OS detection via and, 
where possible, propose ways to mitigate them. 

12.1.1. FIN probe 

The attacker sends a FIN (or any packet without the SYN or the ACK flags set) to an open port. 
RFC 793 [Postel, 1981c] leaves the reaction to such segments unspecified. As a result, some 
implementations silently drop the received segment, while others respond with a RST. We 
advice implementations to silently drop any segments received for a connection in the LISTEN 
state that do not have the SYN, RST, or ACK flags set. In the rest of the cases, the processing 
rules in RFC 793 should be applied. 
 



 
 

 92

12.1.2. Bogus flag test 

The attacker sends a TCP segment setting at least one bit of the Reserved field. Some 
implementations ignore this field, while others reset the corresponding connection or reflect 
the field in the TCP segment sent in response. We advice implementations to ignore any flags 
not supported, and not reflect them if a TCP segment is sent in response to the one just 
received. 

12.1.3. TCP ISN sampling 

The attacker samples a number of Initial Sequence Numbers by sending a number of 
connection requests. Many TCP implementations differ on the ISN generator they implement, 
thus allowing the correlation of ISN generation algorithm to the operating system type and 
version.  
 
This document advises implementing an ISN generator that follows the behavior described in 
RFC 1948 [Bellovin, 1996]. However, it should be noted that even if all TCP implementations 
generated their ISNs as proposed in RFC 1948, there is still a number of implementation 
details that are left unspecified, which would allow remote OS fingerprinting by means of ISN 
sampling. For example, the time-dependent parameter of the hash could have a different 
frequency in different TCP implementations. 

12.1.4. TCP initial window 

Many TCP implementations differ on the initial TCP window they use. There are a number of 
factors that should be considered when selecting the TCP window to be used for a given 
system. A number of implementations that use static windows (i.e., no automatic buffer tuning 
mechanisms are implemented) default to a window of around 32 KB, which seems sensible for 
the general case. On the other hand, a window of 4 KB seems to be common practice for 
connections servicing critical applications such as BGP. It is clear that the window size is a 
tradeoff among a number of considerations. Section 3.7 discusses some of the considerations 
that should be made when selecting the window size for a TCP connection. 
 
If automatic tuning mechanisms are implemented, we suggest the initial window to be at least 
4 * RMSS segments. We note that a remote OS fingerprinting tool could still sample the 
advertised TCP window, trying to correlate the advertised window with the potential automatic 
buffer tuning algorithm and Operating System. 

12.1.5. RST sampling 

 [Fyodor, 1998] reports that many implementations differ in the Acknowledgement Number 
they use in response to segments received for connections in the CLOSED state. In particular, 
these implementations differ in the way they construct the RST segment that is sent in 
response to those TCP segments received for connections in the CLOSED state. Here we 
provide advice on how the corresponding RST segments should be constructed. 
 
If the ACK bit of an incoming TCP segment is off, a Sequence Number of zero should be 
used in the RST segment sent in response. That is, 
 

<SEQ=0><ACK=SEG.SEQ+SEG.LEN><CTL=RST, ACK> 



 
 

 93

 
It should be noted that the SEG.LEN value used for the Acknowledgement Number should 
be incremented once for each flag set in the original segment that makes use of a byte of the 
sequence number space. That is, if only one of the SYN or FIN flags were set in the received 
segment, the Acknowledgement Number of the response should be set to 
SEG.SEQ+SEG.LEN+1. If both the SYN and FIN flags were set in the received segment, the 
Acknowledgement Number should be set to SEG.SEQ+SEG.LEN+2. 
 
RFC 793 [Postel, 1981c] describes (in pages 36-37) how RST segments are to be generated. 
According to this RFC, the ACK bit (and the Acknowledgment Number) is set in a RST only if 
the incoming segment that elicited the RST did not have the ACK bit set (and thus the 
Sequence Number of the outgoing RST segment must be set to zero). However, we 
recommend TCP implementations to set the ACK bit (and the Acknowledgement Number) in 
all outgoing RST segments, as it allows for additional validation checks to be enforced at the 
system receiving the segment. 

12.1.6. TCP options 

Different implementations differ in the TCP options they enable by default. Additionally, they 
differ in the actual contents of the options, and in the order in which the options are included in 
a TCP segment. There is currently no recommendation on the order in which to include TCP 
options in TCP segments. 

12.1.7. Retransmission Timeout (RTO) sampling 

TCP uses a retransmission timer for retransmitting data in the absence of any feedback from 
the remote data receiver. The duration of this timer is referred to as “retransmission timeout” 
(RTO). RFC 2988 [Paxson and Allman, 2000] specifies the algorithm for computing the TCP 
retransmission timeout (RTO). 
 
The algorithm allows the use of clocks of different granularities, to accommodate the different 
granularities used by the existing implementations. Thus, the difference in the resulting RTO 
can be used for remote OS fingerprinting. [Veysset et al, 2002] describes how to perform 
remote OS fingerprinting by sampling and analysing the RTO of the target system. However, 
this fingerprinting technique has at least the following drawbacks: 
 
• It is usually much slower than other fingerprinting techniques, as it may require 

considerable time to sample the RTO of a given target. 

• It is less reliable than other fingerprinting techniques, as latency and packet loss can lead 
to bogus results. 

 
While in principle it would be possible to defeat this fingerprinting technique (e.g., by 
obfuscating the granularity of the clock used for computing the RTO), we consider that a more 
important step to defeat remote OS detection is for implementations to address the more 
effective fingerprinting techniques described in Sections 12.1.1 through 12.1.7 of this 
document. 
 



 
 

 94

12.2. System uptime detection 

The “uptime” of a system may prove to be valuable information to an attacker. For example, it 
might reveal the last time a security patch was applied. Information about system uptime is 
usually leaked by TCP header fields or options that are (or may be) time-dependent, and are 
usually initialised to zero when the system is bootstrapped. As a result, if the attacker knows 
the frequency with which the corresponding parameter or header field is incremented, and is 
able to sample the current value of that parameter or header field, the system uptime will be 
easily obtained. Two fields that can potentially reveal the system uptime is the Sequence 
Number field of a SYN or SYN/ACK segment (i.e., when it contains an ISN) and the TSval 
field of the timestamp option. Section 3.3.1 of this document discusses the generation of TCP 
Initial Sequence Numbers. Section 4.7.1 of this document discusses the generation of TCP 
timestamps. 
 



 
 

 95

13. Covert channels 

As virtually every communications protocol, TCP can be exploited to establish covert 
channels. While an exhaustive discussion of covert channels is out of the scope of this 
document, for completeness of the document we simply note that it is possible for a (probably 
malicious) user to establish a covert channel by means of TCP, such that data can be 
surreptitiously passed to a remote system, probably unnoticed by a monitoring system, and 
with the possibility of concealing the location of the source system. 
 
In most cases, covert channels based on manipulation of TCP fields can be eliminated by 
protocol scrubbers and other middle-boxes. On the other hand, “timing channels” may prove 
to be more difficult to eliminate. 
  
[Rowland, 1996] contains a discussion of covert channels in the TCP/IP protocol suite, with 
some TCP-based examples. [Giffin et al, 2002] describes the use of TCP timestamps for the 
establishment of covert channels. [Zander, 2008] contains an extensive bibliography of papers 
on covert channels, and a list of freely-available tools that implement covert channels with the 
TCP/IP protocol suite. 
 
 



 
 

 96

14. TCP port scanning 

TCP port scanning aims at identifying TCP port numbers on which there is a process listening 
for incoming connections. That is, it aims at identifying TCPs at the target system that are in 
the LISTEN state. The following subsections describe different TCP port scanning techniques 
that have been implemented in freely-available tools. These subsections focus only on those 
port scanning techniques that exploit features of TCP itself, and not of other communication 
protocols. 
 

For example, the following subsections do not discuss the exploitation of application 
protocols (such as FTP) or the exploitation of features of underlying protocols (such as the 
IP Identification field) for port-scanning purposes. 

 

14.1. Traditional connect() scan 

The most trivial scanning technique consists in trying to perform the TCP three-way 
handshake with each of the port numbers at the target system (e.g. by issuing a call to the 
connect() function of the Sockets API). The three-way handshake will complete for port 
numbers that are “open”, but will fail for those port numbers that are “closed”. 
 
As this port-scanning technique can be implemented by issuing a call to the connect() function 
of the Sockets API that normal applications use, it does not require the attacker to have 
superuser privileges.  The downside of this port-scanning technique is that it is less efficient 
than other scanning methods (e.g., the “SYN scan” described in Section 14.2), and that it can 
be easily logged by the target system. 
 

14.2. SYN scan 

The SYN scan was introduced as a “stealth” port-scanning technique. It aims at avoiding the 
target system from logging the port scan by not completing the TCP three-way handshake. 
When a SYN/ACK segment is received in response to the initial SYN segment, the system 
performing the port scan will respond with an RST segment, thus preventing the three-way 
handshake from completing. While this port-scanning technique is harder to detect and log 
than the traditional connect() scan described in Section 14.1, most current NIDS (Network 
Intrusion Detection Systems) can detect and log it. 
 

SYN scans are sometimes mistakenly reported as “SYN flood” attacks by NIDS, though. 
 
The main advantage of this port scanning technique is that it is much more efficient than the 
traditional connect() scan. 
 



 
 

 97

In order to implement this port-scanning technique, port-scanning tools usually bypass the 
TCP API, and forge the SYN segments they send (e.g., by using raw sockets). This typically 
requires the attacker to have superuser privileges to be able to run the port-scanning tool. 
 

14.3. FIN, NULL, and XMAS scans 

RFC 793 [Postel, 1981c] states, in page 65, that an incoming segment that does not have the 
RST bit set and that is received for a connection in the fictional state CLOSED causes an RST 
to be sent in response. Pages 65-66 of RFC 793 describes the processing of incoming 
segments for connections in the state LISTEN, and implicitly states that an incoming segment 
that does not have the ACK bit set (and is not a SYN or an RST) should be silently dropped. 
 
As a result, an attacker can exploit this situation to perform a port scan by sending TCP 
segments that do not have the ACK bit set to the target system. When a port is “open” (i.e., 
there is a TCP in the LISTEN state on the corresponding port), the target system will respond 
with an RST segment. On the other hand, if the port is “closed” (i.e., there is a TCP in the 
fictional state CLOSED) the attacker will not get any response from the target system. 
 
Since the only requirement for exploiting this port scanning vector is that the probe segments 
must not have the ACK bit set, there are a number of different TCP control-bits combinations 
that can be used for the probe segments.  
 
When the probe segment sent to the target system is a TCP segment that has only the FIN bit 
set, the scanning technique is usually referred to as a “FIN scan”. When the probe packet is a 
TCP segment that does not have any of the control bits set, the scanning technique is usually 
known as a “NULL scan”. Finally, when the probe packet sent to the target system has only 
the FIN, PSH, and the URG bits set, the port-scanning technique is known as a “XMAS scan”. 
 

It should be clear that while the aforementioned control-bits combinations are the 
most popular ones, other combinations could be used to exploit this port-scanning 
vector. For example, the CWR, ECE, and/or any of the Reserved bits could be set in the 
probe segments. 

 
The advantage of this port-scanning technique is that in can bypass some stateless firewalls. 
However, the downside is that a number of implementations do not comply strictly with RFC 
793 [Postel, 1981c], and thus always respond to the probe segments with an RST, regardless 
of whether the port is open or closed. 
 
This port-scanning vector can be easily defeated by responding with an RST when a TCP 
segment is received for a connection in the LISTEN state, and the incoming segment has 
neither the SYN bit nor the RST bit set. We recommend TCP/IP stacks to implement this 
alternative processing of TCP segments for connections in the LISTEN state. 
 
  



 
 

 98

14.4. Maimon scan 

This port scanning technique was introduced in [Maimon, 1996] with the name “StealthScan” 
(method #1), and was later incorporated into the nmap tool [Fyodor, 2006b] as the “Maimon 
scan”. 
 
This port scanning technique employs TCP segments that have both the FIN and ACK bits 
sets as the probe segments. While according to RFC 793 [Postel, 1981c] these segments 
should elicit an RST regardless of whether the corresponding port is open or closed, a 
programming flaw found in a number of TCP implementations has caused some systems to 
silently drop the probe segment if the corresponding port was open (i.e., there was a TCP in 
the LISTEN state), and respond with an RST only if the port was closed.  
 
Therefore, an RST would indicate that the scanned port is closed, while the absence of a 
response from the target system would indicate that the scanned port is open. 
 
While this bug has not been found in current implementations of TCP, it might still be present 
in some legacy systems. 
 

14.5. Window scan  

This port-scanning technique employs ACK segments as the probe packets. ACK segments 
will elicit an RST from the target system regardless of whether the corresponding TCP port is 
open or closed. However, as described in [Maimon, 1996], some systems set the Window field 
of the RST segments with different values depending on whether the corresponding TCP port 
is open or closed. These systems set the Window field of their RST segments to zero when 
the corresponding TCP port is closed, and set the Window field to a non-zero value when the 
corresponding TCP port is open. 
 
As a result, an attacker could exploit this situation for performing a port scan by sending ACK 
segments to the target system, and examining the Window field of the RST segments that his 
probe segments elicit. 
 
In order to defeat this port-scanning technique, we recommend TCP implementations to set 
the Window field to zero in all the RST segments they send. 
 

Most popular implementations of TCP already implement this policy. 
 

14.6. ACK scan 

The so-called “ACK scan” is not really a port-scanning technique (i.e., it does not aim at 
determining whether a specific port is open or closed), but rather aims at determining whether 
some intermediate system is filtering TCP segments sent to that specific port number. 
 



 
 

 99

The probe packet is a TCP segment with the ACK bit set which, according to RFC 793 [Postel, 
1981c] should elicit an RST from the target system regardless of whether the corresponding 
TCP port is open or closed. If no response is received from the target system, it is assumed 
that some intermediate system is filtering the probe packets sent to the target system. 
 
It should be noted that this “port scanning” techniques exploits basic TCP processing rules, 
and therefore cannot be defeated at an end-system. 
 
 
 



 
 

 100

15. Processing of ICMP error messages by TCP 

The Internet Control Message Protocol (ICMP) is used in the Internet Architecture mainly to 
perform a fault-isolation function, that is, the group of actions that hosts and routers take to 
determine that there is some network failure [Clark, 1982]. 
 
When a router detects a network problem while trying to forward an IP packet, it usually sends 
an ICMP error message to the source host, to raise awareness of the network problem taking 
place. In the same way, there are a number of scenarios in which a host may generate an 
ICMP error message if it finds a problem while processing an IP datagram. The received 
ICMP errors are handed to the corresponding transport-protocol instance, which will usually 
perform a fault recovery function. 
 
Unfortunately, ICMP can be exploited to perform a variety of attacks against TCP (and other 
similar protocols), which include blind connection-reset, blind throughput-reduction, and blind 
performance-degrading attacks. All of these attacks can be performed even with the attacker 
being off-path, without the need to sniff the packets that correspond to the attacked TCP 
connection. 
 
While the security implications of ICMP have been known in the research community for a 
long time, there is not yet an official proposal on how to deal with these vulnerabilities. 
However, as a result of the disclosure process carried out by the UK’s National Infrastructure 
Security Co-ordination Centre (NISCC) (during 2004 and 2005) and the publication of an IETF 
Internet-Draft [Gont, 2008a], virtually all current TCP implementations now incorporate some 
countermeasures for these attacks. 
 
The next sections provide a description of the use of ICMP to perform attacks against TCP, 
and describe the set of countermeasures that have become the “de facto” standard to mitigate 
the impact of these vulnerabilities. 
 

15.1. Internet Control Message Protocol 

The specification of the ICMP protocol is spread among a number of documents. This section 
provides a roadmap to the ICMP documents that are relevant to TCP. 

15.1.1. Internet Control Message Protocol for IP version 4 (ICMP) 

RFC 792 [Postel, 1981b] is the base specification of the Internet Control Message Protocol 
(ICMP) to be used with the Internet Protocol version 4 (IPv4). It defines, among other things, a 
number of error messages that can be used by end-systems and intermediate-systems to 
report network errors to the sending host. Additionally, it defines the ICMP Source Quench 
message (type 4, code 0), which is meant to provide a mechanism for flow control and 
congestion control. 
 



 
 

 101

RFC 1122 [Braden, 1989] classifies ICMP error messages into those that indicate “soft errors”, 
and those that indicate “hard errors”, thus roughly defining the semantics of them. 
 
RFC 1191 [Mogul and Deering, 1990] defines the Path-MTU Discovery (PMTUD) mechanism, 
which makes use of ICMP error messages of type 3 (Destination Unreachable), code 4 
(fragmentation needed and DF bit set) to allow hosts to determine the MTU of an arbitrary 
internet path. 
 
Finally, Appendix D of RFC 4301 [Kent and Seo, 2005] provides information about which 
ICMP error messages are produced by hosts, routers, or both. 

15.1.2. Internet Control Message Protocol for IP version 6 (ICMPv6) 

RFC 4443 [Conta et al, 2006] specifies the Internet Control Message Protocol (ICMPv6) to be 
used with the Internet Protocol version 6 (IPv6) [Deering and Hinden, 1998]. 
 
RFC 4443 [Conta et al, 2006] defines the “Packet Too Big” (type 2, code 0) error message, 
that is analogous to the ICMP “fragmentation needed and DF bit set” (type 3, code 4) error 
message. RFC 1981 [McCann et al, 1996] defines the Path MTU Discovery mechanism for IP 
Version 6, that makes use of these messages to determine the MTU of an arbitrary internet 
path. 
 
Appendix D of RFC 4301 [Kent and Seo, 2005] provides information about which ICMPv6 
error messages are generated by hosts, routers, or both. 
 

15.2. Handling of ICMP error messages 

RFC 1122 [Braden, 1989] states that a TCP must act on an ICMP error message passed up 
from the IP layer, directing it to the connection that elicited the error. 
 
In order to allow ICMP messages to be demultiplexed by the receiving host, part of the original 
packet that elicited the message is included in the payload of the ICMP error message. Thus, 
the receiving host can use that information to match the ICMP error to the transport protocol 
instance that elicited it. 
 
Neither RFC 793 [Postel, 1981c] nor RFC 1122 [Braden, 1989] recommend any validation 
checks on the received ICMP messages. Thus, as long as the ICMP payload contains the 
information that identifies an existing communication instance, it will be handed to the 
corresponding transport-protocol instance, and the corresponding action will be performed. 
 
Therefore, in the case of TCP, an attacker could send a forged ICMP message to the attacked 
host, and, as long as he is able to guess the four-tuple that identifies the communication 
instance to be attacked, he will be able to use ICMP to perform a variety of attacks. 
 
As discussed in [Watson, 2004], there are a number of scenarios in which an attacker may 
know or be able to guess the four-tuple that identifies a TCP connection. If we assume the 
attacker knows the two systems involved in the TCP connection to be attacked, both the 



 
 

 102

client-side and the server-side IP addresses will be known. Furthermore, as most Internet 
services use the so-called “well-known” ports, only the client port number would need to be 
guessed. This means that an attacker would need to send, in principle, at most 65536 packets 
to perform any ICMP-based attack against TCP. However, as many systems choose the port 
numbers they use for outgoing connections from a subset of the whole port number space and 
do not randomise the ephemeral port numbers, in practice fewer packets are needed to 
perform any of these attacks. 
 

15.3 Constraints in the possible solutions 

For ICMPv4, RFC 792 [Postel, 1981b] states that the internet header plus the first 64 bits of 
the packet that elicited the ICMP message are to be included in the payload of the ICMP error 
message. Thus, it is assumed that all data needed to identify a transport protocol instance and 
process the ICMP error message is contained in the first 64 bits of the transport protocol 
header. RFC 1122 [Braden, 1989] allows implementations to optionally include more data 
from the original packet than those required by the original ICMP specification. Finally, RFC 
1812 [Baker, 1995] recommends that ICMP error messages should contain as much of the 
original datagram as possible without the length of the ICMP datagram exceeding 576 bytes. 
 
Thus, for ICMP messages generated by hosts, we can only expect to get the entire IPv4 
header of the original packet, plus the first 64 bits of its payload. For TCP, this means that the 
only fields that will be included in the ICMP payload are: the Source Port, the Destination Port, 
and the 32-bit TCP Sequence Number. This clearly imposes a constraint on the possible 
validation checks that can be performed, as there is not much information available on which 
these checks could be performed. 
 
These constraints mean, for example, that even if TCP were signing its segments by means of 
the TCP MD5 signature option specified in RFC 2385 [Heffernan, 1998], this mechanism could 
not be used as a counter-measure against ICMP-based attacks, because, as ICMP messages 
include only a piece of the TCP segment that elicited the error, the MD5 signature could not 
be recalculated. In the same way, even if the attacked peer was authenticating its packets at 
the IP layer [Kent and Seo, 2005], because only a part of the original IP packet would be 
available, the signature used for authentication could not be recalculated, and thus this 
mechanism could not be used as a counter-measure against ICMP-based attacks against 
TCP. 
 
For the IPv6 case, RFC 4443 [Conta et al, 2006] specifies that the payload of ICMPv6 error 
messages includes as many octets from the IPv6 packet that elicited the ICMPv6 error 
message as will fit without making the resulting ICMPv6 packet exceed the minimum IPv6 
MTU (1280 octets). Thus, more information is available than in the IPv4 case. 
 
Hosts could require ICMP error messages to be authenticated (e.g., by means of IPsec), in 
order to act upon them. However, while this requirement could make sense for those ICMP 
error messages sent by hosts, it would not be feasible for those ICMP error messages 
generated by routers, as this would imply either that the attacked host should have a security 
association with every existing router, or that it should be able to establish one dynamically. 



 
 

 103

The current level of deployment of protocols for dynamic establishment of security 
associations makes this unfeasible. Also, in some cases, such as embedded devices, the 
processing power requirements of authentication might not allow IPsec authentication to be 
implemented effectively. 
 

15.4. General countermeasures against ICMP attacks 

There are a number of countermeasures that can be implemented to eliminate or mitigate the 
impact of ICMP-based attacks against TCP. The general countermeasures discussed in the 
following subsections help to mitigate many ICMP-based attacks against TCP. Rather than 
being alternative countermeasures, they can be implemented together to increase the 
protection against these attacks. 

15.4.1. TCP sequence number checking 

The current specifications do not impose any validity checks on the TCP segment that is 
contained in the ICMP payload.  For instance, no checks are performed to verify that a 
received ICMP error message has been elicited by a segment that was “in flight” to 
destination. Thus, even stale ICMP error messages will be acted upon. 
 
TCP should check that the TCP Sequence Number contained in the payload of the ICMP 
error message should be within the range of the data already sent but not yet acknowledged. 
That is, 
 

SND.UNA =< Sequence Number < SND.NXT 
 
If an ICMP error message does not pass this check, it should be silently dropped. 
 
Even if an attacker were able to guess the four-tuple that identifies the TCP connection, this 
additional check would reduce the possibility of considering a forged ICMP packet as valid to 
FlightSize/232 (where FlightSize is the number of data bytes already sent to the remote peer, 
but not yet acknowledged, as defined in RFC 2581 [Allman et al, 1999]). For connections in 
the SYN-SENT or SYN-RECEIVED states, this would reduce the possibility of considering a 
forged ICMP packet as valid to 1/232. For a TCP endpoint with no data “in flight”, this would 
completely eliminate the possibility of success of these attacks. 
 
This check has been incorporated by most major implementations of TCP. 
 
It is important to note that while this check greatly increases the number of packets required to 
perform any of the attacks discussed in this document, this may not be enough in those 
scenarios in which bandwidth is easily available, and/or large TCP windows are in use (e.g., 
by means of the mechanism specified in RFC 1323 [Jacobson et al, 1992]). Therefore, 
implementation of the attack-specific countermeasures discussed in this document is strongly 
recommended. 
 



 
 

 104

15.4.2. Port randomisation 

As discussed in the previous sections, in order to perform any of these ICMP-based attacks, 
an attacker would need to guess (or know) the four-tuple that identifies the connection to be 
attacked. Increasing the port number range used for outgoing TCP connections, and 
obfuscating the ephemeral port numbers used for outgoing TCP connections would make it 
harder for an attacker to perform any of these blind attacks against TCP. 
 
Section 3.1 of this document discusses TCP ephemeral port randomisation in great detail. 

15.4.3. Filtering ICMP error messages based on the ICMP payload 

The source address of ICMP error messages does not need to be forged to perform the 
ICMP-based attacks against TCP. Therefore, simple filtering based on the source address of 
ICMP error messages does not serve as a counter-measure against these attacks. However, 
a more advanced packet filtering could be implemented in firewalls and other middle-boxes, 
which could help to mitigate these attacks. Firewalls implementing such advanced filtering 
would look at the payload of the ICMP error messages, and perform ingress and egress 
packet filtering based on the source IP address of the IP header contained in the payload of 
the ICMP error message.  
 
[Gont, 2006] provides a discussion of filtering of ICMP messages based on the ICMP payload.  
 

15.5. Blind connection-reset attack 

15.5.1. Description 

When TCP is handed an ICMP error message, it will perform its fault recovery function, as 
follows: 
 
• If the network problem being reported is a hard error, TCP will abort the corresponding 

connection. 

• If the network problem being reported is a soft error, TCP will just record this information, 
and repeatedly retransmit its data until they either get acknowledged, or the connection 
times out. 

 
RFC 1122 [Braden, 1989] states that a host should abort a connection when receiving an 
ICMP error message that indicates a “hard error”, and states that ICMP error messages of 
type 3 (Destination Unreachable) codes 2 (protocol unreachable), 3 (port unreachable), and 4 
(fragmentation needed and DF bit set) should be considered to indicate hard errors.  
 

While RFC 4301 [Conta et al, 2006] did not exist when RFC 1122 was published, one could 
extrapolate the concept of “hard errors” to ICMPv6 error messages of type 1 (Destination 
unreachable) codes 1 (communication with destination administratively prohibited), and 4 
(port unreachable). 

 
Thus, an attacker could use ICMP to perform a blind connection-reset attack. That is, even 
being off-path, an attacker could reset any TCP connection taking place by sending any ICMP 



 
 

 105

error message that indicates a “hard error”, to either of the two TCP endpoints of the 
connection. Because of TCP’s fault recovery policy, the connection would be immediately 
aborted. 
 
As discussed in Section 15.2, all an attacker needs to know to perform such an attack is the 
socket pair that identifies the TCP connection to be attacked. In some scenarios, the IP 
addresses and port numbers in use may be easily guessed or known to the attacker [Watson, 
2004]. 
 
Some stacks are known to propagate ICMP errors across TCP connections, increasing the 
impact of this attack, as a single ICMP packet could bring down all the TCP connections 
between the corresponding peers. 
 
It is important to note that even if TCP itself were protected against the blind connection-reset 
attack described in [Watson, 2004] and [NISCC, 2004], by means of IPsec authentication 
[Kent and Seo, 2005], by means of the TCP MD5 signature option specified in RFC 2385 
[Heffernan, 1998], or by means of the mechanism proposed in [Ramaiah et al, 2008], the blind 
connection-reset attack described in this document could still succeed. 

15.5.2. Attack-specific countermeasures 

Changing the reaction to hard errors 
An analysis of the circumstances in which ICMP messages that indicate hard errors may be 
received can shed some light on how to eliminate the impact of ICMP-based blind connection-
reset attacks. 
 
ICMP type 3 (Destination Unreachable), code 2 (protocol unreachable) 
This ICMP error message indicates that the host sending the ICMP error message received a 
packet meant for a transport protocol it does not support. For connection-oriented protocols 
such as TCP, one could expect to receive such an error as the result of a connection-
establishment attempt. However, it would be strange to get such an error during the life of a 
connection, as this would indicate that support for that transport protocol has been removed 
from the host sending the error message during the life of the corresponding connection. 
Thus, it would be fair to treat ICMP protocol unreachable error messages as soft errors if they 
are meant for connections that are in synchronised states. For TCP, this means TCP should 
treat ICMP protocol unreachable error messages as soft errors if they are meant for 
connections that are in the ESTABLISHED, FIN-WAIT-1, FIN-WAIT-2, CLOSE-WAIT, 
CLOSING, LAST-ACK or TIME-WAIT states. 
 
ICMP type 3 (Destination Unreachable), code 3 (port unreachable) 
This error message indicates that the host sending the ICMP error message received a packet 
meant for a socket {IP address, port number} on which there is no process listening. Those 
transport protocols which have their own mechanisms for notifying this condition should not be 
receiving these error messages. However, RFC 1122 [Braden, 1989] states that even those 
transport protocols that have their own mechanism for notifying the sender that a port is 
unreachable must nevertheless accept an ICMP Port Unreachable for the same purpose. For 
security and robustness reasons, it would be fair to treat ICMP port unreachable messages as 



 
 

 106

soft errors when they are meant for protocols that have their own mechanism for reporting this 
error condition. 
 
ICMP type 3 (Destination Unreachable), code 4 (fragmentation needed and DF bit set) 
This error message indicates that an intermediate node needed to fragment a datagram, but 
the DF (Don’t Fragment) bit in the IPv4 header was set. Those systems that do not implement 
the PMTUD mechanism should not be sending their IP packets with the DF bit set, and thus 
should not be receiving these ICMP error messages. Thus, it would be fair for them to treat 
this ICMP error message as indicating a soft error, therefore not aborting the corresponding 
connection when such an error message is received. On the other hand, and for obvious 
reasons, those systems implementing the Path-MTU Discovery (PMTUD) mechanism 
specified in RFC 1191 [Mogul and Deering, 1990] and RFC 1981 [McCann et al, 1996] should 
not abort a corresponding connection when such an ICMP error message is received. 
 
ICMPv6 type 1 (Destination Unreachable), code 1 (communication with destination 
administratively prohibited) 
This error message indicates that the destination is unreachable because of an administrative 
policy. For connection-oriented protocols such as TCP, one could expect to receive such an 
error as the result of a connection-establishment attempt. Receiving such an error for a 
connection in any of the synchronised states would mean that the administrative policy 
changed during the life of the connection. Therefore, while it would be possible for a firewall to 
be reconfigured during the life of a connection, it would be fair, for security and robustness 
reasons, to ignore these messages for connections that are in the ESTABLISHED, FIN-WAIT-
1, FIN-WAIT-2, CLOSE-WAIT, CLOSING, LAST-ACK or TIME-WAIT states. 
 
ICMPv6 type 1 (Destination Unreachable), code 4 (port unreachable) 
This error message is analogous to the ICMP type 3 (Destination Unreachable), code 3 (Port 
unreachable) error message discussed above. Therefore, the same considerations apply. 
 
Therefore, TCP should treat all ICMP error messages as indicating “soft errors” when they are 
meant for connections in any of the synchronised states and therefore should not abort the 
corresponding connection upon receipt of them. Also, as discussed in Section 15.5.1, hosts 
should not extrapolate ICMP errors across TCP connections. 
 
In case the received message was legitimate, it would mean that the “hard error” condition 
appeared during the life of the connection. However, there is no reason to think that in the 
same way this error condition appeared, it would not get solved in the near term. Therefore, 
treating the received ICMP error messages as “soft errors” would make TCP more robust, and 
could avoid TCP from aborting a TCP connection unnecessarily. Aborting the connection 
would be to ignore the valuable feature of the Internet that for many internal failures it 
reconstructs its function without any disruption of the end points [Clark, 1982]. 
 
It is interesting to note that, as ICMP error messages are unreliable, transport protocols should 
not depend on them for correct functioning. In the event one of these messages was 
legitimate, the corresponding connection would eventually time out. Also, applications may still 
be notified asynchronously about the received error messages, and thus may still abort their 
connections on their own if they consider it appropriate. 



 
 

 107

 
This counter-measure has become the “de facto” standard for dealing with the so-called ICMP 
“hard errors” when they are received for connection in any of the synchronised states.  
 
Delaying the connection reset 
An alternative counter-measure would be, in the case of connections in any of the 
synchronised states, to honour the ICMP error messages only if there is no progress on the 
connection. Rather than immediately aborting a connection, a TCP would abort a connection 
only after an ICMP error message indicating a hard error has been received, and the 
corresponding data have already been retransmitted more than some specified number of 
times.  
 
The rationale behind this proposed fix is that if a host can make forward progress on a 
connection, it can completely disregard the "hard errors" being indicated by the received ICMP 
error messages. However, while this counter-measure could be useful, the one described 
earlier in this section is easier to implement, and provides increased protection against this 
type of attack. 
 

15.6. Blind throughput-reduction attack 

15.6.1. Description 

RFC 1122 [Braden, 1989] states that hosts must react to ICMP Source Quench messages by 
slowing transmission on the connection. Thus, an attacker could send ICMP Source Quench 
(type 4, code 0) messages to a TCP endpoint to make it reduce the rate at which it sends data 
to the other end-point of the connection. RFC 1122 further adds that the recommended 
procedure is to put the corresponding connection in the slow-start phase of the TCP’s 
congestion control algorithm (described at the time in [Jacobson, 1988], and currently 
standardised by RFC 2581 [Allman et al, 1999]). In the case of those implementations that use 
an initial congestion window of one segment, a sustained attack would reduce the throughput 
of the attacked connection to about SMSS (Sender Maximum Segment Size) bytes per RTT 
(round-trip time). The throughput achieved during attack might be higher if a larger initial 
congestion window is in use, as specified in RFC 3390 [Allman et al, 2002]. 

15.6.2. Attack-specific countermeasures 

RFC 1122 [Braden, 1989] states that hosts must react to ICMP Source Quench messages by 
slowing transmission on the connection. However, as discussed in RFC 1812 [Baker, 1995], 
research seems to suggest ICMP Source Quench is an ineffective (and unfair) antidote for 
congestion. RFC 1812 further states that routers should not send ICMP Source Quench 
messages in response to congestion. On the other hand, TCP implements its own congestion 
control mechanisms [Allman et al, 1999] [Ramakrishnan et al, 2001], that do not depend on 
ICMP Source Quench messages. Thus, hosts should silently drop ICMP Source Quench 
messages that are meant for TCP connections. 
 



 
 

 108

15.7. Blind performance-degrading attack 

15.7.1. Description 

When one IP host has a large amount of data to send to another host, the data will be 
transmitted as a series of IP datagrams. It is usually preferable that these datagrams be of the 
largest size that does not require fragmentation anywhere along the path from the source to 
the destination. This datagram size is referred to as the Path MTU (PMTU), and is equal to the 
minimum of the MTUs of each hop in the path [Mogul and Deering, 1990]. 
 
A technique called “Path MTU Discovery” (PMTUD) mechanism lets IP hosts determine the 
Path MTU of an arbitrary internet path. RFC 1191 [Mogul and Deering, 1990] and RFC 1981 
[McCann et al, 1996] specify the PMTUD mechanism for IPv4 and IPv6, respectively. 
 
The PMTUD mechanism for IPv4 uses the Don’t Fragment (DF) bit in the IPv4 header to 
dynamically discover the Path MTU. The basic idea behind the PMTUD mechanism is that a 
source host assumes that the MTU of the path is that of the first hop, and sends all its 
datagrams with the DF bit set. If any of the datagram is too large to be forwarded without 
fragmentation by some intermediate router, the router will discard the corresponding 
datagram, and will return an ICMP “Destination Unreachable” (type 3) “fragmentation needed 
and DF set” (code 4) error message to sending host. This message will report the MTU of the 
constricting hop, so that the sending host can reduce the assumed Path-MTU accordingly. 
 
For IPv6, intermediate systems do not fragment packets. Thus, there is an “implicit” DF bit set 
in every packet sent on an IPv6 network. If any of the datagrams is too large to be forwarded 
without fragmentation by some intermediate router, the router will discard the corresponding 
datagram, and will return an ICMPv6 “Packet Too Big” (type 2, code 0) error message to the 
sending host. This message will report the MTU of the constricting hop, so that the sending 
host can reduce the assumed Path-MTU accordingly. 
 
As discussed in both RFC 1191 [Mogul and Deering, 1990] and RFC 1981 [McCann et al, 
1996], the Path-MTU Discovery mechanism can be used to attack TCP. An attacker could 
send a forged ICMP “Destination Unreachable, fragmentation needed and DF set” error 
message (or its ICMPv6 counterpart) to the sending host, advertising a small Next-Hop MTU. 
As a result, the attacked system would reduce the size of the packets it sends for the 
corresponding connection accordingly.  
 
The effect of this attack is two-fold. On one hand, it will increase the headers/data ratio, thus 
increasing the overhead needed to send data to the remote TCP end-point. On the other 
hand, if the attacked system wanted to keep the same throughput it was achieving before 
being attacked, it would have to increase the packet rate. On virtually all systems this will lead 
to an increase in the IRQ (Interrrupt ReQuest) rate, thus increasing processor utilisation, and 
degrading the overall system performance. A particular scenario that may take place is that in 
which an attacker reports a Next-Hop MTU smaller than or equal to the amount of bytes 
needed for headers (IP header, plus TCP header). For example, if the attacker reports a Next-
Hop MTU of 68 bytes, and the amount of bytes used for headers (IPv4 header, plus TCP 
header) is larger than 68 bytes, the assumed Path-MTU will not even allow the attacked host 



 
 

 109

to send a single byte of application data without fragmentation. This particular scenario might 
lead to unpredictable results. Another possible scenario is that in which a TCP connection is 
being secured by means of IPsec [Kent and Seo, 2006]. If the Next-Hop MTU reported by the 
attacker is smaller than the amount of bytes needed for headers (IP and IPsec, in this case), 
the assumed Path-MTU will not even allow the attacked host to send a single byte of the TCP 
header without fragmentation. This is another scenario that might lead to unpredictable 
results. 
 
For IPv4, the reported Next-Hop MTU could be as low as 68 octets, as RFC 791 [Postel, 
1981a] requires every internet module to be able to forward a datagram of 68 octets without 
further fragmentation. For IPv6, the reported Next-Hop MTU could be as low as 1280 octets 
(the minimum IPv6 MTU, as specified by RFC 2460 [Deering and Hinden, 1998]). 
 
Recently, the PMTUD WG [PMTUDWG, 2007] of the IETF produced the document RFC 4821 
[Mathis and Heffner, 2007], which specifies a mechanism for discovering the Path-MTU known 
as “Packetization Layer Path MTU Discovery” (PLPMTUD), which does not rely on ICMP error 
messages. This mechanism can be implemented as a replacement for the traditional Path-
MTU Discovery mechanism specified in RFC 1191 [Mogul and Deering, 1990] and RFC 1981 
[McCann et al, 1996], or only for black-hole detection.  
 

“Black-holes” are caused by routers that discard packets that are too large to be 
forwarded without fragmentation (and have the IP DF bit set), without sending an 
ICMP error message to the sending endpoint. An equivalent scenario is that in 
which the router that discards the packets does send an ICMP error message to the 
sending endpoint, but some intermediate system (such as a firewall) consistently 
drops the corresponding ICMP error messages [Lahey, 2000]. 

 
While replacement of the traditional Path-MTU Discovery mechanism with PLPMTUD would 
eliminate the attack vector described in this section, the convergence time of PLPMTUD is 
typically longer than that of the traditional PMTUD mechanism, and thus a number TCP 
implementers seem to be unwilling to implement PLPMTUD as a complete replacement for 
the traditional PMTUD mechanism. 

15.7.2. Attack-specific countermeasures 

Henceforth, we will refer to both ICMP “fragmentation needed and DF bit set” and ICMPv6 
“Packet Too Big” error messages as “ICMP Packet Too Big” error messages. 
 
In addition to the general validation check described in Section 15.4.1, processing of ICMP 
“Packet Too Big” error message could be delayed as described in Section 15.5.2, to greatly 
mitigate the impact of this attack. 
 
This would mean that upon receipt of an ICMP “Packet Too Big” error message, TCP would 
just record this information, and would honour it only when the corresponding data had 
already been retransmitted a specified number of times. 
 
While this policy would mitigate the impact of the attack against the PMTUD mechanism, it 
would also mean that it might take TCP more time to discover the Path-MTU for a TCP 



 
 

 110

connection. This would be particularly annoying for connections that have just been 
established, as it might take TCP several transmission attempts (and the corresponding 
timeouts) before it discovers the PMTU for the corresponding connection. Thus, this policy 
would increase the time it takes for data to begin to be received at the destination host. 
 
We would like to protect TCP from the attack against the PMTUD mechanism, while still 
allowing TCP to quickly determine the initial Path-MTU for a connection. To achieve both 
goals, we can divide the traditional PMTUD mechanism into two stages: Initial Path-MTU 
Discovery and Path-MTU Update. 
 
The Initial Path-MTU Discovery stage is when TCP tries to send segments that are larger than 
the ones that have so far been sent and acknowledged for this connection. That is, in the 
Initial Path-MTU Discovery stage TCP has no record of these large segments getting to the 
destination host, and thus it would be fair to believe the network when it reports that these 
packets are too large to reach the destination host without being fragmented.  
 
The Path-MTU Update stage is when TCP is asked to reduce the size of the segments it 
sends to a value that is equal to or smaller than that of the largest TCP segment that has so 
far been sent and acknowledged for this connection. During the Path-MTU Update stage, TCP 
already has knowledge of the estimated Path-MTU for the given connection. Thus, it would be 
fair to be more cautious with the errors being reported by the network. 
 
In order to allow TCP to distinguish segments between those performing Initial Path-MTU 
Discovery and those performing Path-MTU Update, two new variables would need to be 
introduced to TCP: maxsizeacked and maxsizesent. 
 
maxsizesent would hold the size (in octets) of the largest packet that has so far been sent for 
this connection. It would be initialized to 68 (the minimum IPv4 MTU) when the underlying 
internet protocol is IPv4, and would be initialized to 1280 (the minimum IPv6 MTU) when the 
underlying internet protocol is IPv6. Whenever a packet larger than maxsizesent octets is 
sent, maxsizesent should be set to that value. 
 
On the other hand, maxsizeacked would hold the size (in octets) of the largest packet that has 
so far been acknowledged for this connection. It would be initialized to 68 (the minimum IPv4 
MTU) when the underlying internet protocol is IPv4, and would be initialized to 1280 (the 
minimum IPv6 MTU) when the underlying internet protocol is IPv6. Whenever an 
acknowledgement for a packet larger than maxsizeacked octets is received, maxsizeacked 
should be set to the size of that acknowledged packet. 
 
Upon receipt of an ICMP “Packet Too Big” error message, the Next-Hop MTU claimed by the 
ICMP message (henceforth “claimedmtu”) should be compared with maxsizesent. If 
claimedmtu is equal to or larger than maxsizesent, then the ICMP error message should be 
silently discarded. The rationale for this policy is that the ICMP error message cannot be 
legitimate if it claims to have been elicited by a packet larger than the largest packet we have 
so far sent for this connection. 
 



 
 

 111

If this check is passed, claimedmtu should be compared with maxsizeacked. If claimedmtu is 
equal to or larger than maxsizeacked, TCP is supposed to be in the Initial Path-MTU 
Discovery stage, and thus the ICMP “Packet Too Big” error message should be honoured 
immediately. That is, the assumed Path-MTU should be updated according to the Next-Hop 
MTU claimed in the ICMP error message. Also, maxsizesent should be reset to the minimum 
MTU of the internet protocol in use (68 for IPv4, and 1280 for IPv6). 
 
On the other hand, if claimedmtu is smaller than maxsizeacked, TCP is supposed to be in the 
Path-MTU Update stage. At this stage, TCP should be more cautious with the errors being 
reported by the network, and should therefore just record the received error message, and 
delay the update of the assumed Path-MTU. 
 
To perform this delay, one new variable and one new parameter should be introduced to TCP: 
nsegrto and MAXSEGRTO. nsegrto will hold the number of times a specified segment has 
timed out. It should be initialized to zero, and should be incremented by one every time the 
corresponding segment times out. MAXSEGRTO would specify the number of times a given 
segment must timeout before an ICMP “Packet Too Big” error message can be honoured, and 
could be set, in principle, to any value greater than or equal to 0. 
 
Thus, if nsegrto is greater than or equal to MAXSEGRTO, and there’s a pending ICMP 
“Packet Too Big” error message, the corresponding error message should be honoured. 
maxsizeacked should be set to claimedmtu, and maxsizesent should be set to 68 (for IPv4) or 
1280 (for IPv6). 
 
If while there is a pending ICMP “Packet Too Big” error message the TCP Sequence 
Number claimed by the pending ICMP error message is acknowledged (i.e., an ACK that 
acknowledges that sequence number is received), then the “pending error” condition should 
be cleared. 
 
The rationale behind performing this delayed processing of ICMP “Packet Too Big” error 
messages is that if there is progress on the connection, the ICMP “Packet Too Big” errors 
must be a false claim. By checking for progress on the connection, rather than just for 
staleness (i.e., checking the embedded TCP Sequence Number) of the received ICMP 
messages, TCP is protected from attack even if the offending ICMP messages are “in 
window”, and therefore as a corollary, is made more robust to spurious ICMP messages 
elicited by, for example, corrupted TCP segments. 
 
MAXSEGRTO can be set, in principle, to any value greater than or equal to 0. Setting 
MAXSEGRTO to 0 would make TCP perform the traditional PMTUD mechanism defined in 
RFC 1191 [Mogul and Deering, 1990] and RFC 1981 [McCann et al, 1996]. A MAXSEGRTO 
of 1 should provide enough protection for most scenarios. In any case, implementations are 
free to choose higher values for this constant. MAXSEGRTO could be a function of the Next-
Hop MTU claimed in the received ICMP “Packet Too Big” message. That is, higher values for 
MAXSEGRTO could be imposed when the received ICMP “Packet Too Big” message claims a 
Next-Hop MTU that is smaller than some specified value. 
 



 
 

 112

In the event a higher level of protection was desired at the expense of a higher delay in the 
discovery of the Path-MTU, an implementation could consider TCP to always be in the Path-
MTU Update stage, thus always delaying the update of the assumed Path-MTU. 
 
The current PMTUD mechanism, as specified by RFC 1191 [Mogul and Deering, 1990] and 
RFC 1981 [McCann et al, 1996], still suffers from some functionality problems described in 
RFC 2923 [Lahey, 2000] that the proposed countermeasure does not aim to address. A 
mechanism that addresses those issues is specified in  RFC 4821 [Mathis and Heffner, 2007]. 

15.7.3. The countermeasure for the PMTUD attack in action 

This section shows the proposed counter-measure for the ICMP attack against the PMTUD 
mechanism in action. It shows both how the counter-measure protects PMTUD from being 
exploited and how the counter-measure works in normal scenarios. This section assumes the 
PMTUD-specific counter-measure is implemented in addition to the TCP sequence number 
check proposed in Section 15.4.1. 
 
Figure 19 illustrates a hypothetical scenario in which two hosts are connected by means of 
three intermediate routers. It also shows the MTU of each hypothetical hop. All the following 
subsections assume the network setup of this figure. 
 
Also, for simplicity’s sake, all subsections assume an IPv4 header of 20 octets and a TCP 
header of 20 octets. Thus, for example, when the PMTU is assumed to be 1500 octets, TCP 
will send segments that contain at most 1460 octets of data. 
 
Finally, all the following subsections assume the TCP implementation at Host 1 has chosen an 
MAXSEGRTO of 1. 
 

 
Figure 19: Hypothetical scenario 

 
Normal operation for bulk transfers 
This subsection shows the proposed counter-measure in normal operation, when a TCP 
connection is used for bulk transfers. That is, it shows how the proposed counter-measure 
works when there is no attack taking place, and a TCP connection is used for transferring 
large amounts of data. It assumes that just after the connection is established, one of the TCP 
endpoints begins to transfer data in packets that are as large as possible. 
 



 
 

 113

 

 
 

Figure 20: Normal operation for bulk transfers 
 
nsegrto is initialised to zero. Both maxsizeacked and maxsizesent are initialized to the 
minimum MTU for the internet protocol being used (68 for IPv4, and 1280 for IPv6). 
 
In lines 1 to 3 the three-way handshake takes place, and the connection is established. In line 
4, H1 tries to send a full-sized TCP segment. As described by RFC 1191 and RFC 1981, in 
this case TCP will try to send a segment with 4424 bytes of data, which will result in an IP 
packet of 4464 octets. Therefore, maxsizesent is set to 4464. When the packet reaches R1, it 
elicits an ICMP "Packet Too Big" error message. 
 
In line 5, H1 receives the ICMP error message, which reports a Next-Hop MTU of 2048 octets. 
After performing the TCP sequence number check described in Section 15.4.1, the Next-Hop 
MTU reported by the ICMP error message (claimedmtu) is compared with maxsizesent. As it 
is smaller than maxsizesent, it passes the check, and thus is then compared with 
maxsizeacked. As claimedmtu is larger than maxsizeacked, TCP assumes that the 
corresponding TCP segment was performing the Initial PMTU Discovery. Therefore, the TCP 
at H1 honours the ICMP message by updating the assumed Path-MTU. maxsizesent is reset 
to the minimum MTU of the internet protocol in use (68 for IPv4, and 1280 for IPv6). 
 
In line 6, the TCP at H1 sends a segment with 2008 bytes of data, which results in an IP 
packet of 2048 octets. maxsizesent is thus set to 2008 bytes. When the packet reaches R2, it 
elicits an ICMP “Packet Too Big” error message. 
 
In line 7, H1 receives the ICMP error message, which reports a Next-Hop MTU of 1500 octets. 
After performing the TCP sequence number check, the Next-Hop MTU reported by the ICMP 
error message (claimedmtu) is compared with maxsizesent. As it is smaller than maxsizesent, 
it passes the check, and thus is then compared with maxsizeacked. As claimedmtu is larger 
than maxsizeacked, TCP assumes that the corresponding TCP segment was performing the 
Initial Path-MTU Discovery. Therefore, the TCP at H1 honours the ICMP message by updating 
the assumed Path-MTU. maxsizesent is reset to the minimum MTU of the internet protocol in 
use. 
 
In line 8, the TCP at H1 sends a segment with 1460 bytes of data, which results in an IP 
packet of 1500 octets. maxsizesent is thus set to 1500. This packet reaches H2, where it 
elicits an acknowledgement (ACK) segment. 

 

      Host 1                                         Host 2 

 

   1.    -->           <SEQ=100><CTL=SYN>            --> 

   2.    <--     <SEQ=X><ACK=101><CTL=SYN,ACK>       <-- 

   3.    -->      <SEQ=101><ACK=X+1><CTL=ACK>        --> 

   4.    --> <SEQ=101><ACK=X+1><CTL=ACK><DATA=4424>  --> 

   5.        <--- ICMP "Packet Too Big" MTU=2048, TCPseq#=101 <--- R1 

   6.    --> <SEQ=101><ACK=X+1><CTL=ACK><DATA=2008>  --> 



 
 

 114

 
In line 9, H1 finally gets the acknowledgement for the data segment. As the corresponding 
packet was larger than maxsizeacked, TCP updates maxsizeacked, setting it to 1500. At this 
point TCP has discovered the Path-MTU for this TCP connection. 
 
Operation during Path-MTU changes 
Let us suppose a TCP connection between H1 and H2 has already been established, and that 
the Path-MTU for the connection has already been discovered to be 1500. At this point, both 
maxsizesent and maxsizeacked are equal to 1500, and nsegrto is equal to 0. Suppose some 
time later the Path-MTU decreases to 1492. For simplicity, let us suppose that the Path-MTU 
has decreased because the MTU of the link between R2 and R3 has decreased from 1500 to 
1492. Figure 21 illustrates how the proposed counter-measure would work in this scenario. 
 
 

 
 

Figure 21: Operation during Path-MTU changes 
 
In line 1, the Path-MTU for this connection decreases from 1500 to 1492. In line 2, the TCP at 
H1, without being aware of the Path-MTU change, sends a 1500-byte packet to H2. When the 
packet reaches R2, it elicits an ICMP “Packet Too Big” error message. 
 
In line 3, H1 receives the ICMP error message, which reports a Next-Hop MTU of 1492 octets. 
After performing the TCP sequence number check, the Next-Hop MTU reported by the ICMP 
error message (claimedmtu) is compared with maxsizesent. As claimedmtu is smaller than 
maxsizesent, it is then compared with maxsizeacked. As claimedmtu is smaller than 
maxsizeacked (full-sized packets were getting to the remote end-point), this packet is 
assumed to be performing Path-MTU Update. And a “pending error” condition is recorded. 
 
In line 4, the segment times out. Thus, nsegrto is incremented by 1. As nsegrto is greater than 
or equal to MAXSEGRTO, the assumed Path-MTU is updated. nsegrto is reset to 0, 
maxsizeacked is set to claimedmtu, and maxsizesent is set to the minimum MTU of the 
internet protocol in use. 
 
In line 5, H1 retransmits the data using the updated Path-MTU, and thus maxsizesent is set to 
1492. The resulting packet reaches H2, where it elicits an acknowledgement (ACK) segment. 
 
In line 6, H1 finally gets the acknowledgement for the data segment. At this point TCP has 
discovered the new Path-MTU for this TCP connection. 
 
 

 

        Host 1                                         Host 2 

 

   1.                     (Path-MTU decreases) 

   2.      -->  <SEQ=100><ACK=X><CTL=ACK><DATA=1500>   --> 

   3.         <--- ICMP "Packet Too Big" MTU=1492, TCPseq#=100 <--- R2 

4 (Segment times out)



 
 

 115

Idle connection being attacked 
Let us suppose a TCP connection between H1 and H2 has already been established, and the 
PMTU for the connection has already been discovered to be 1500. Figure 22 shows a sample 
time-line diagram that illustrates an idle connection being attacked. 
 
 

 
Figure 22: Idle connection being attacked 

 
In line 1, H1 sends its last bunch of data. In line 2, H2 acknowledges the receipt of these data. 
Then the connection becomes idle. In lines 3, 4, and 5, an attacker sends forged ICMP 
“Packet Too Big” error messages to H1. Regardless of how many packets it sends and the 
TCP sequence number each ICMP packet includes, none of these ICMP error messages will 
pass the TCP sequence number check described in Section 15.4.1, as H1 has no 
unacknowledged data in flight to H2. Therefore, the attack does not succeed. 
 
Active connection being attacked after discovery of the Path-MTU 
Let us suppose an attacker attacks a TCP connection for which the PMTU has already been 
discovered. In this case, as illustrated in Figure 23, the PMTU would be found to be 1500 
bytes. Figure 23 shows a possible packet exchange. 
 

 
 

Figure 23: Active connection being attacked after discovery of PMTU 
 
As we assume the Path-MTU has already been discovered, we assume both maxsizesent and 
maxsizeacked are equal to 1500. We also assume nsegrto is equal to zero, as there have 
been no segment timeouts. 
 
In lines 1, 2, 3, and 4, H1 sends four data segments to H2. In line 5, an attacker sends a 
forged ICMP error message to H1. We assume the attacker is lucky enough to guess both the 
four-tuple that identifies the connection and a valid TCP sequence number. As the Next-Hop 
MTU claimed in the ICMP “Packet Too Big” message (claimedmtu) is smaller than 

   Host 1                                           Host 2 

 

   1.     -->     <SEQ=100><ACK=X><CTL=ACK><DATA=50>      --> 

   2.     <--         <SEQ=X><ACK=150><CTL=ACK>           <-- 

   3.         <--- ICMP "Packet Too Big" MTU=68, TCPseq#=100 <--- 

   4.         <--- ICMP "Packet Too Big" MTU=68, TCPseq#=100 <--- 

   5.         <--- ICMP "Packet Too Big" MTU=68, TCPseq#=100 <--- 

   Host 1                                           Host 2 

 

   1.    -->    <SEQ=100><ACK=X><CTL=ACK><DATA=1460>    --> 

   2.    -->    <SEQ=1560><ACK=X><CTL=ACK><DATA=1460>   --> 

   3.    -->    <SEQ=3020><ACK=X><CTL=ACK><DATA=1460>   --> 

   4.    -->    <SEQ=4480><ACK=X><CTL=ACK><DATA=1460>   --> 

   5.        <--- ICMP "Packet Too Big" MTU=68, TCPseq#=100 <--- 

   6.    <--        <SEQ=X><CTL=ACK><ACK=1560>          <-- 

 



 
 

 116

maxsizeacked, this packet is assumed to be performing Path-MTU Update. Thus, the error 
message is just recorded. 
 
In line 6, H1 receives an acknowledgement for the segment sent in line 1, before it times out. 
At this point, the “pending error” condition is cleared, and the recorded ICMP “Packet Too Big” 
error message is discarded. Therefore, the attack does not succeed. 
 
TCP peer attacked when sending small packets just after the three-way handshake 
This subsection analyzes a corner-case in which a TCP peer that is sending small segments 
just after the connection has been established is attacked. The connection could be being 
used by protocols such as SMTP [Klensin, 2008] or HTTP [Fielding et al, 1999], for example, 
which usually behave like this. 
 
Figure 24 shows a possible packet exchange for such scenario. 
 

 
Figure 24: TCP peer attacked when sending small packets just  

after the three-way handshake 
 
nsegrto is initialized to zero. Both maxsizesent and maxsizeacked are initialized to the 
minimum MTU for the internet protocol being used (68 for IPv4, and 1280 for IPv6). 
 
In lines 1 to 3 the three-way handshake takes place, and the connection is established. At this 
point, the assumed Path-MTU for this connection is 4464. In line 4, H1 sends a small segment 
(which results in a 140-byte packet) to H2. maxsizesent is thus set to 140. In line 5 this 
segment is acknowledged, and thus maxsizeacked is set to 140. 
 
In lines 6 and 7, H1 sends two small segments to H2. In line 8, while the segments from lines 
6 and 7 are still in flight to H2, an attacker sends a forged ICMP “Packet Too Big” error 
message to H1. Assuming the attacker is lucky enough to guess a valid TCP sequence 
number, this ICMP message will pass the TCP sequence number check. The Next-Hop MTU 
reported by the ICMP error message (claimedmtu) will then be compared with maxsizesent. 
As claimedmtu will be larger than maxsizesent, the ICMP error message will be silently 
discarded. Therefore, the attack will not succeed. 
 

      Host 1                                         Host 2 

 

   1.   -->          <SEQ=100><CTL=SYN>             --> 

   2.   <--     <SEQ=X><ACK=101><CTL=SYN,ACK>       <-- 

   3.   -->      <SEQ=101><ACK=X+1><CTL=ACK>        --> 

   4.   -->  <SEQ=101><ACK=X+1><CTL=ACK><DATA=100>  --> 

   5.   <--      <SEQ=X+1><ACK=201><CTL=ACK>        <-- 

   6.   -->  <SEQ=201><ACK=X+1><CTL=ACK><DATA=100>  --> 

   7.   -->  <SEQ=301><ACK=X+1><CTL=ACK><DATA=100>  --> 

   8.        <--- ICMP "Packet Too Big" MTU=150, TCPseq#=101 <--- 



 
 

 117

15.7.4. Pseudo-code for the counter-measure for the blind performance-degrading 
attack 

This section contains a pseudo-code version of the counter-measure to the blind performance-
degrading attack described in the previous section. It is meant to provide guidance for 
developers on how to implement this counter-measure. 
 
The pseudo-code makes use of the following variables, constants, and functions: 
 
ack 
Variable holding the acknowledgement number contained in the TCP segment that has just 
been received. 
 
acked_packet_size 
Variable holding the packet size (data, plus headers) the ACK that has just been received is 
acknowledging. 
 
adjust_mtu() 
Function that adjusts the MTU for this connection, according to the value of the variable 
“current_mtu”. 
 
claimedmtu 
Variable holding the Next-Hop MTU advertised by the ICMP “Packet Too Big” error message 
that has just been received. 
 
claimedtcpseq 
Variable holding the TCP sequence number contained in the payload of the ICMP "Packet 
Too Big" message that has just been received. 
 
current_mtu 
Variable holding the assumed Path-MTU for this connection. 
 
drop_message() 
Function that performs the necessary actions to drop the ICMP “Packet Too Big” error 
message being processed. 
 
initial_mtu 
Variable holding the MTU for new connections, as explained in RFC 1191 [Mogul and 
Deering, 1990] and RFC 1981 [McCann et al, 1996]. 
 
maxsizeacked 
Variable holding the largest packet size (data plus headers) that has so for been 
acknowledged for this connection. 
 
maxsizesent 
Variable holding the largest packet size (data, plus headers) that has so for been sent for this 
connection. 
 
nsegrto 
Variable holding the number of times this segment has timed out. 



 
 

 118

 
packet_size 
Variable holding the size of the IP datagram being sent 
 
pending_message 
Variable (flag) that indicates whether there is a pending ICMP “Packet Too Big” message to 
be processed. 
 
saved_tcpseq 
Variable that holds the TCP sequence number contained in the payload of an ICMP “Packet 
Too Big” error message whose processing was pending. 
 
saved_mtu 
Variable holding the Next-Hop MTU advertised by an ICMP “Packet Too Big” error message 
whose processing was pending. 
 
MINIMUM_MTU 
Constant holding the minimum MTU for the internet protocol in use (68 for IPv4, and 1280 for 
IPv6. 
 
MAXSEGRTO 
Constant holding the number of times a given segment must timeout before an ICMP “Packet 
Too Big” error message can be honoured. 
 
EVENT: New TCP connection 

 
 
 
EVENT: Segment is sent 

 
 
 
EVENT: Segment is received 

 
 

   if (packet_size > maxsizesent) 
        maxsizesent = packet size; 

   current_mtu = initial_mtu; 
   maxsizesent = MINIMUM_MTU; 
   maxsizeacked = MINIMUM_MTU; 
   nsegrto = 0; 
   pending_message = 0;

   if (acked_packet_size > maxsizeacked) 
        maxsizeacked = acked_packet_size; 
 
   if (pending_message) 
        if (ack > saved_tcpseq){ 
             pending_message = 0; 
             nsegrto = 0; 

}



 
 

 119

 
EVENT: ICMP "Packet Too Big" message is received 

 
 
 
 
EVENT: Segment times out 

 
 
 
Notes: 
 
All comparisons between sequence numbers must be performed using sequence number 
arithmetic. 
 

   if (claimedtcpseq < SND.UNA || claimedtcpseq >= SND.NXT){ 
        drop_message(); 
   } 
 
   else { 
        if (claimedmtu >= maxsizesent || claimedmtu >= current_mtu) 
             drop_message(); 
 
        else { 
             if (claimedmtu > maxsizeacked){ 
                  current_mtu = claimedmtu; 
                  maxsizesent = MINIMUM_MTU; 
                  adjust_mtu(); 
                  drop_message(); 
             } 
 
             else { 
                  pending_message = 1; 
                  saved_tcpseq = claimedtcpseq; 
                  saved_mtu = claimedmtu; 
                  drop_message(); 
             } 
        } 
   } 

        nsegrto++; 
 
        if (pending_message && nsegrto >= MAXSEGRTO){ 
             nsegrto = 0; 
             pending_message = 0; 
             maxsizeacked = saved_mtu; 
             maxsizesent = MINIMUM_MTU; 
             current_mtu = saved_mtu; 
             adjust_mtu(); 
        } 



 
 

 120

16. TCP interaction with the Internet Protocol (IP) 

16.1. TCP-based traceroute 

The traceroute tool is used to identify the intermediate systems, the local system and the 
destination system. It is usually implemented by sending “probe” packets with increasing IP 
Time to Live values (starting from 0), without maintaining any state with the final destination. 
 

Some traceroute implementations use ICMP “echo request” messages as the probe 
packets, while others use UDP packets or TCP SYN segments. 

 
In some cases, the state-less nature of the traceroute tool may prevent it from working 
correctly across stateful devices such as Network Address Translators (NATs) or firewalls. 
 
In order to by-pass this limitation, an attacker could establish a TCP connection with the 
destination system, and start sending TCP segments on that connection with increasing IP 
Time to Live values (starting from 0) [Zalewski, 2007] [Zalewski, 2008]. Provided ICMP 
error messages are not blocked by any intermediate system, an attacker could exploit this 
technique to map the network topology behind the aforementioned stateful devices in 
scenarios in which he could not have achieved this goal using the traditional traceroute tool. 
 
NATs [Srisuresh and Egevang, 2001] and other middle-boxes could defeat this network-
mapping technique by overwriting the Time to Live of the packets they forward to the 
internal network. For example, they could overwrite the Time to Live of all packets being 
forwarded to an internal network with a value such as 128. We strongly recommend against 
overwriting the IP Time to Live field with the value 255 or other similar large values, as this 
could allow an attacker to bypass the protection provided by the Generalized TTL Security 
Mechanism (GTSM) described in RFC 5087 [Gill et al, 2007]. [Gont and Srisuresh, 2008] 
discusses the security implications of NATs, and proposes mitigations for this and other issues. 
 

16.2. Blind TCP data injection through fragmented IP traffic 

As discussed in Section 11.2, TCP data injection attacks usually require an attacker to guess 
or know a number of parameters related with the target TCP connection, such as the 
connection-id {Source Address, Source Port, Destination Address, Destination 
Port}, the TCP Sequence Number, and the TCP Acknowledgement Number. Provided 
these values are obfuscated as recommended in this document, the chances of an off-path 
attacker of successfully performing a data injection attack against a TCP connection are fairly 
low for many of the most common scenarios. 
 

As discussed in this document, randomization of the values contained in different TCP 
header fields is not a replacement for cryptographic methods for protecting a TCP 
connection, such as IPsec (specified in RFC 4301 [Kent and Seo, 2005]). 



 
 

 121

However, [Zalewski, 2003b] describes a possible vector for performing a TCP data injection 
attack that does not require the attacker to guess or know the aforementioned TCP connection 
parameters, and could therefore be successfully exploited in some scenarios with less effort 
than that required to exploit the more traditional data-injection attack vectors. 
 
The attack vector works as follows. When one system is transferring information to a remote 
peer by means of TCP, and the resulting packet gets fragmented, the first fragment will 
usually contain the entire TCP header which, together with the IP header, includes all the 
connection parameters that an attacker would need to guess or know to successfully perform 
a data injection attack against TCP. If an attacker were able to forge all the fragments other 
than the first one, his forged fragments could be reassembled together with the legitimate first 
fragment, and thus he would be relieved from the hard task of guessing or knowing connection 
parameters such as the TCP Sequence Number and the TCP Acknowledgement Number. 
 
In order to successfully exploit this attack vector, the attacker should be able to guess or know 
both of the IP addresses involved in the target TCP connection, the IP Identification 
value used for the specific packet he is targeting, and the TCP Checksum of that target 
packet. While it would seem that these values are hard to guess, in some specific scenarios, 
and with some security-unwise implementation approaches for the TCP and IP protocols, 
these values may be feasible to guess or know. For example, if the sending system uses 
predictable IP Identification values, the attacker could simply perform a brute force 
attack, trying each of the possible combinations for the TCP Checksum field. In more specific 
scenarios, the attacker could have more detailed knowledge about the data being transferred 
over the target TCP connection, which might allow him to predict the TCP Checksum of the 
target packet. For example, if both of the involved TCP peers used predictable values for the 
TCP Sequence Number and for the IP Identification fields, and the attacker knew the 
data being transferred over the target TCP connection, he could be able to carefully forge the 
IP payload of his IP fragments so that the checksum of the reassembled TCP segment 
matched the Checksum included in the TCP header of the first (and legitimate) IP fragment. 
 
As discussed in Section 4.1 of [CPNI, 2008], IP fragmentation provides a vector for performing 
a variety of attacks against an IP implementation. Therefore, we discourage the reliance on IP 
fragmentation by end-systems, and recommend the implementation of mechanisms for the 
discovery of the Path-MTU, such as that described in Section 15.7.3 of this document and/or 
that described in RFC 4821 [Mathis and Heffner, 2007]. We nevertheless recommend 
randomisation of the IP Identification field as described in Section 3.5.2 of [CPNI, 2008]. While 
randomisation of the IP Identification field does not eliminate this attack vector, it does 
require more work on the side of the attacker to successfully exploit it. 
 

16.3. Broadcast and multicast IP addresses 

TCP connection state is maintained between only two endpoints at a time. As a result, 
broadcast and multicast IP addresses should not be allowed for the establishment of TCP 
connections. Section 4.3 of [CPNI, 2008] provides advice about which specific IP address 
blocks should not be allowed for connection-oriented protocols such as TCP. 



 
 

 122

17. References 

Abley, J., Savola, P., Neville-Neil, G. 2007. Deprecation of Type 0 Routing Headers in IPv6. 
RFC 5095. 
 
Allman, M. 2003. TCP Congestion Control with Appropriate Byte Counting (ABC). RFC 3465. 
 
Allman, M. 2008. Comments On Selecting Ephemeral Ports. Available at: 
http://www.icir.org/mallman/share/ports-dec08.pdf 
 
Allman, M., Paxson, V., Stevens, W. 1999. TCP Congestion Control. RFC 2581. 
 
Allman, M., Balakrishnan, H., Floyd, S. 2001. Enhancing TCP’s Loss Recovery Using Limited 
Transmit. RFC 3042. 
 
Allman, M., Floyd, S., and C. Partridge. 2002. Increasing TCP's Initial Window. RFC 3390. 
 
Baker, F. 1995. Requirements for IP Version 4 Routers. RFC 1812. 
 
Baker, F., Savola, P. 2004. Ingress Filtering for Multihomed Networks. RFC 3704. 
 
Barisani, A. 2006. FTester - Firewall and IDS testing tool. Available at:  
http://dev.inversepath.com/trac/ftester  
 
Beck, R. 2001. Passive-Aggressive Resistance: OS Fingerprint Evasion. Linux Journal. 
 
Bellovin, S. M. 1989. Security Problems in the TCP/IP Protocol Suite. Computer 
Communication Review, Vol. 19, No. 2, pp. 32-48. 
 
Bellovin, S. M. 1996. Defending Against Sequence Number Attacks. RFC 1948. 
 
Bellovin, S. M. 2006. Towards a TCP Security Option. IETF Internet-Draft (draft-bellovin-
tcpsec-00.txt), work in progress. 
 
Bernstein, D. J. 1996. SYN cookies. Available at: http://cr.yp.to/syncookies.html 
 
Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z., and Weiss, W., 1998. An Architecture 
for Differentiated Services. RFC 2475. 
 
Blanton, E., Allman, M., Fall, K., Wang, L. 2003. A Conservative Selective Acknowledgment 
(SACK)-based Loss Recovery Algorithm for TCP. RFC 3517. 
 

http://www.icir.org/mallman/share/ports-dec08.pdf
http://dev.inversepath.com/trac/ftester


 
 

 123

Borman, D. 1997. Post to the tcp-impl mailing-list. Message-Id: 
<199706061526.KAA01535@frantic.BSDI.COM>. Available at: 
http://www.kohala.com/start/borman.97jun06.txt 
 
Borman, D., Deering, S., Hinden, R. 1999. IPv6 Jumbograms. RFC 2675. 
 
Braden, R. 1989. Requirements for Internet Hosts -- Communication Layers. RFC 1122. 
 
Braden, R. 1992. Extending TCP for Transactions – Concepts. RFC 1379. 
 
Braden, R. 1994. T/TCP -- TCP Extensions for Transactions Functional Specification. RFC 
1644. 
 
CCSDS. 2006. Consultative Committee for Space Data Systems (CCSDS) Recommendation 
Communications Protocol Specification (SCPS) – Transport Protocol (SCPS-TP). Blue Book. 
Issue 2. Available at: http://public.ccsds.org/publications/archive/714x0b2.pdf 
 
CERT. 1996. CERT Advisory CA-1996-21: TCP SYN Flooding and IP Spoofing Attacks. 
Available at: http://www.cert.org/advisories/CA-1996-21.html  
 
CERT. 1997. CERT Advisory CA-1997-28 IP Denial-of-Service Attacks. Available at: 
http://www.cert.org/advisories/CA-1997-28.html 
 
CERT. 2000. CERT Advisory CA-2000-21: Denial-of-Service Vulnerabilities in TCP/IP Stacks. 
Available at: http://www.cert.org/advisories/CA-2000-21.html 
 
CERT. 2001. CERT Advisory CA-2001-09: Statistical Weaknesses in TCP/IP Initial Sequence 
Numbers. Available at: http://www.cert.org/advisories/CA-2001-09.html  
 
CERT. 2003. CERT Advisory CA-2003-13 Multiple Vulnerabilities in Snort Preprocessors. 
Available at: http://www.cert.org/advisories/CA-2003-13.html 
 
Cisco. 2008a. Cisco Security Appliance Command Reference, Version 7.0. Available at: 
http://www.cisco.com/en/US/docs/security/asa/asa70/command/reference/tz.html#wp1288756  
 
Cisco. 2008b. Cisco Security Appliance System Log Messages, Version 8.0. Available at: 
http://www.cisco.com/en/US/docs/security/asa/asa80/system/message/logmsgs.html#wp47739
52 
 
Clark, D.D. 1982. Fault isolation and recovery. RFC 816. 
 
Clark, D.D. 1988. The Design Philosophy of the DARPA Internet Protocols, Computer 
Communication Review, Vol. 18, No.4, pp. 106-114. 
 
Connolly, T., Amer, P., Conrad, P. 1994. An Extension to TCP : Partial Order Service. RFC 
1693. 
 

http://www.kohala.com/start/borman.97jun06.txt
http://public.ccsds.org/publications/archive/714x0b2.pdf
http://www.cert.org/advisories/CA-1996-21.html
http://www.cert.org/advisories/CA-2001-09.html
http://www.cisco.com/en/US/docs/security/asa/asa70/command/reference/tz.html#wp1288756
http://www.cisco.com/en/US/docs/security/asa/asa80/system/message/logmsgs.html#wp4773952
http://www.cisco.com/en/US/docs/security/asa/asa80/system/message/logmsgs.html#wp4773952


 
 

 124

Conta, A., Deering, S., Gupta, M. 2006. Internet Control Message Protocol (ICMPv6) for the 
Internet Protocol Version 6 (IPv6) Specification. RFC 4443. 
 
CORE. 2003. Core Secure Technologies Advisory CORE-2003-0307: Snort TCP Stream 
Reassembly Integer Overflow Vulnerability. Available at: 
http://www.coresecurity.com/common/showdoc.php?idx=313&idxseccion=10 
 
CPNI, 2008. Security Assessment of the Internet Protocol. Available at: 
http://www.cpni.gov.uk/Docs/InternetProtocol.pdf 
 
daemon9, route, and infinity. 1996. IP-spoofing Demystified (Trust-Relationship Exploitation), 
Phrack Magazine, Volume Seven, Issue Forty-Eight, File 14 of 18. Available at: 
http://www.phrack.org/archives/48/P48-14  
 
Deering, S., Hinden, R. 1998. Internet Protocol, Version 6 (IPv6) Specification. RFC 2460. 
 
Dharmapurikar, S., Paxson, V. 2005. Robust TCP Stream Reassembly In the Presence of 
Adversaries. Proceedings of the USENIX Security Symposium 2005. 
 
Duke, M., Braden, R., Eddy, W., Blanton, E. 2006. A Roadmap for Transmission Control 
Protocol (TCP) Specification Documents. RFC 4614. 
 
Ed3f. 2002. Firewall spotting and networks analisys with a broken CRC. Phrack Magazine, 
Volume 0x0b, Issue 0x3c, Phile #0x0c of 0x10. Available at: 
http://www.phrack.org/phrack/60/p60-0x0c.txt  
 
Eddy, W. 2007. TCP SYN Flooding Attacks and Common Mitigations. RFC 4987. 
 
Fenner, B. 2006. Experimental Values in IPv4, IPv6, ICMPv4, ICMPv6, UDP, and TCP 
Headers. RFC 4727. 
 
Ferguson, P., and Senie, D. 2000. Network Ingress Filtering: Defeating Denial of Service 
Attacks which employ IP Source Address Spoofing. RFC 2827. 
 
Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., and Berners-Lee, T. 
1999. Hypertext Transfer Protocol -- HTTP/1.1. RFC 2616. 
 
Floyd, S., Mahdavi, J., Mathis, M., Podolsky, M. 2000. An Extension to the Selective 
Acknowledgement (SACK) Option for TCP. RFC 2883. 
 
Floyd, S., Henderson, T., Gurtov, A. 2004. The NewReno Modification to TCP's Fast Recovery 
Algorithm. RFC 3782. 
 
Floyd, S., Allman, M., Jain, A., Sarolahti, P. 2007. Quick-Start for TCP and IP. RFC 4782. 
 
Fyodor. 1998. Remote OS Detection via TCP/IP Stack Fingerprinting. Phrack Magazine, 
Volume 8, Issue, 54. 

http://www.cpni.gov.uk/Docs/InternetProtocol.pdf
http://www.phrack.org/phrack/60/p60-0x0c.txt


 
 

 125

 
Fyodor. 2006a. Remote OS Detection via TCP/IP Fingerprinting (2nd Generation). Available at: 
http://insecure.org/nmap/osdetect/. 
 
Fyodor. 2006b. Nmap – Free Security Scanner For Network Exploration and Audit. Available 
at: http://www.insecure.org/nmap. 
 
Fyodor. 2008. Nmap Reference Guide: Port Scanning Techniques. Available at: 
http://nmap.org/book/man-port-scanning-techniques.html 
 
GIAC. 2000. Egress Filtering v 0.2. Available at: http://www.sans.org/y2k/egress.htm  
 
Giffin, J., Greenstadt, R., Litwack, P., Tibbetts, R. 2002. Covert Messaging through TCP 
Timestamps. PET2002 (Workshop on Privacy Enhancing Technologies), San Francisco, CA, 
USA, April  2002. Available at: http://web.mit.edu/greenie/Public/CovertMessaginginTCP.ps 
 
Gill, V., Heasley, J., Meyer, D., Savola, P, Pignataro, C. 2007. The Generalized TTL Security 
Mechanism (GTSM). RFC 5082. 
 
Gont, F. 2006. Advanced ICMP packet filtering. Available at: 
http://www.gont.com.ar/papers/icmp-filtering.html 
 
Gont, F. 2008a. ICMP attacks against TCP. IETF Internet-Draft (draft-ietf-tcpm-icmp-attacks-
04.txt), work in progress. 
 
Gont, F.. 2008b. TCP's Reaction to Soft Errors. IETF Internet-Draft (draft-ietf-tcpm-tcp-soft-
errors-09.txt), work in progress. 
 
Gont, 2008c. Generation of timestamps. 
 
Gont, F. 2009. On the generation of TCP timestamps. IETF Internet-Draft (draft-gont-tcpm-tcp-
timestamps-01.txt), work in progress. 
 
Gont, F., Srisuresh, P. 2008. Security Implications of Network Address Translators (NATs). 
IETF Internet-Draft (draft-gont-behave-nat-security-01.txt), work in progress. 
 
Gont, F., Yourtchenko, A. 2009. On the implementation of TCP urgent data. IETF Internet-Draft 
(draft-gont-tcpm-urgent-data-01.txt), work in progress. 
 
Heffernan, A. 1998. Protection of BGP Sessions via the TCP MD5 Signature Option. RFC 
2385. 
 
Heffner, J. 2002. High Bandwidth TCP Queuing. Senior Thesis. 
 
Hönes, A. 2007. TCP options - tcp-parameters IANA registry. Post to the tcpm wg mailing-list. 
Available at: http://www.ietf.org/mail-archive/web/tcpm/current/msg03199.html 
 

http://insecure.org/nmap/osdetect/
http://www.insecure.org/nmap
http://nmap.org/book/man-port-scanning-techniques.html
http://www.sans.org/y2k/egress.htm
http://web.mit.edu/greenie/Public/CovertMessaginginTCP.ps
http://www.gont.com.ar/papers/icmp-filtering.html
http://www.ietf.org/mail-archive/web/tcpm/current/msg03199.html


 
 

 126

IANA. 2007. Transmission Control Protocol (TCP) Option Numbers. Avialable at: 
http://www.iana.org/assignments/tcp-parameters/ 
 
IANA. 2008. Port Numbers. Available at: http://www.iana.org/assignments/port-numbers  
 
Jacobson, V. 1988. Congestion Avoidance and Control. Computer         Communication 
Review, vol. 18, no. 4, pp. 314-329. Available at: ftp://ftp.ee.lbl.gov/papers/congavoid.ps.Z 
 
Jacobson, V., Braden, R. 1988. TCP Extensions for Long-Delay Paths. RFC 1072. 
 
Jacobson, V., Braden, R., Borman, D. 1992. TCP Extensions for High Performance. RFC 
1323. 
 
Jones, S. 2003. Port 0 OS Fingerprinting. Available at: http://www.gont.com.ar/docs/port-0-os-
fingerprinting.txt 
 
Kent, S. and Seo, K. 2005. Security Architecture for the Internet Protocol. RFC 4301. 
 
Klensin, J. 2008. Simple Mail Transfer Protocol. RFC 5321. 
 
Ko, Y., Ko, S., and Ko, M. 2001. NIDS Evasion Method named SeolMa. Phrack Magazine, 
Volume 0x0b, Issue 0x39, phile #0x03 of 0x12. Available at: 
http://www.phrack.org/issues.html?issue=57&id=3#article  
 
Lahey, K. 2000. TCP Problems with Path MTU Discovery. RFC 2923. 
 
Larsen, M., Gont, F. 2008. Port Randomization. IETF Internet-Draft (draft-ietf-tsvwg-port-
randomization-02), work in progress. 
 
Lemon, 2002. Resisting SYN flood DoS attacks with a SYN cache. Proceedings of the 
BSDCon 2002 Conference, pp 89-98. 
 
Maimon, U. 1996. Port Scanning without the SYN flag. Phrack Magazine, Volume Seven, Issue 
Fourty-Nine, phile #0x0f of 0x10. Available at: 
http://www.phrack.org/issues.html?issue=49&id=15#article 
 
Mathis, M., Mahdavi, J., Floyd, S. Romanow, A. 1996. TCP Selective Acknowledgment 
Options. RFC 2018. 
 
Mathis, M., and Heffner, J. 2007. Packetization Layer Path MTU Discovery. RFC 4821. 
 
McCann, J., Deering, S., Mogul, J. 1996. Path MTU Discovery for IP version 6. RFC 1981. 
 
McKusick, M., Bostic, K., Karels, M., and J. Quarterman. 1996. The Design and 
Implementation of the 4.4BSD Operating System. Addison-Wesley. 
 

http://www.iana.org/assignments/tcp-parameters/
ftp://ftp.ee.lbl.gov/papers/congavoid.ps.Z
http://www.gont.com.ar/docs/port-0-os-fingerprinting.txt
http://www.gont.com.ar/docs/port-0-os-fingerprinting.txt
http://www.phrack.org/issues.html?issue=57&id=3#article
http://www.phrack.org/issues.html?issue=49&id=15#article


 
 

 127

Meltman. 1997. new TCP/IP bug in win95. Post to the bugtraq mailing-list. Available at: 
http://insecure.org/sploits/land.ip.DOS.html 
 
Miller, T. 2006. Passive OS Fingerprinting: Details and Techniques. Available at: 
http://www.ouah.org/incosfingerp.htm . 
 
Mogul, J., and Deering, S. 1990. Path MTU Discovery. RFC 1191. 
 
Morris, R. 1985. A Weakness in the 4.2BSD Unix TCP/IP Software. Technical Report CSTR-
117, AT&T Bell Laboratories. Available at: http://pdos.csail.mit.edu/~rtm/papers/117.pdf . 
 
Myst. 1997. Windows 95/NT DoS. Post to the bugtraq mailing-list. Available at: 
http://seclists.org/bugtraq/1997/May/0039.html 
 
Nichols, K., Blake, S., Baker, F., and Black, D. 1998. Definition of the Differentiated Services 
Field (DS Field) in the IPv4 and IPv6 Headers. RFC 2474. 
 
NISCC. 2004. NISCC Vulnerability Advisory 236929: Vulnerability Issues in TCP.  
 
NISCC. 2005. NISCC Vulnerability Advisory 532967/NISCC/ICMP: Vulnerability Issues in 
ICMP packets with TCP payloads. Available at: http://www.cpni.gov.uk/docs/re-20050412-
00303.pdf  
 
NISCC. 2006. NISCC Technical Note 01/2006: Egress and Ingress Filtering. Available at: 
http://www.cpni.gov.uk/docs/re-20060420-00294.pdf?lang=en  
 
Ostermann, S. 2008. tcptrace tool. Tool and documentation available at: 
http://www.tcptrace.org. 
 
Paxson, V., Allman, M. 2000. Computing TCP’s Retransmission Timer. RFC 2988. 
 
PCNWG. 2009. Congestion and Pre-Congestion Notification (pcn) charter. Available at: 
http://www.ietf.org/html.charters/pcn-charter.html 
 
PMTUDWG. 2007. Path MTU Discovery (pmtud) charter. Available at: 
http://www.ietf.org/html.charters/OLD/pmtud-charter.html 
 
Postel, J. 1981a. Internet Protocol. DARPA Internet Program. Protocol Specification. RFC 791. 
 
Postel, J. 1981b. Internet Control Message Protocol. RFC 792. 
 
Postel, J. 1981c. Transmission Control Protocol. DARPA Internet Program. Protocol 
Specification. RFC 793. 
 
Postel, J. 1987. TCP AND IP BAKE OFF. RFC 1025. 
 

http://insecure.org/sploits/land.ip.DOS.html
http://www.ouah.org/incosfingerp.htm
http://pdos.csail.mit.edu/~rtm/papers/117.pdf
http://seclists.org/bugtraq/1997/May/0039.html
http://www.cpni.gov.uk/docs/re-20050412-00303.pdf
http://www.cpni.gov.uk/docs/re-20050412-00303.pdf
http://www.cpni.gov.uk/docs/re-20060420-00294.pdf?lang=en
http://www.tcptrace.org/
http://www.ietf.org/html.charters/pcn-charter.html
http://www.ietf.org/html.charters/OLD/pmtud-charter.html


 
 

 128

Ptacek, T. H., and Newsham, T. N. 1998. Insertion, Evasion and Denial of Service: Eluding 
Network Intrusion Detection. Secure Networks, Inc. Available at: 
http://www.aciri.org/vern/Ptacek-Newsham-Evasion-98.ps  
 
Ramaiah, A., Stewart, R., and Dalal, M. 2008. Improving TCP's Robustness to Blind In-Window 
Attacks. IETF Internet-Draft (draft-ietf-tcpm-tcpsecure-10.txt), work in progress. 
 
Ramakrishnan, K., Floyd, S., and Black, D. 2001. The Addition of Explicit Congestion 
Notification (ECN) to IP. RFC 3168. 
 
Rekhter, Y., Li, T., Hares, S. 2006. A Border Gateway Protocol 4 (BGP-4). RFC 4271. 
 
Rivest, R. 1992. The MD5 Message-Digest Algorithm. RFC 1321. 
 
Rowland, C. 1997. Covert Channels in the TCP/IP Protocol Suite. First Monday Journal, 
Volume 2, Number 5. Available at: http://www.firstmonday.org/issues/issue2_5/rowland/ 
 
Savage, S., Cardwell, N., Wetherall, D., Anderson, T. 1999. TCP Congestion Control with a 
Misbehaving Receiver. ACM Computer Communication Review, 29(5), October 1999. 
 
Semke, J., Mahdavi, J., Mathis, M. 1998. Automatic TCP Buffer Tuning. ACM Computer 
Communication Review, Vol. 28, No. 4. 
 
Shalunov, S. 2000. Netkill. Available at: http://www.internet2.edu/~shalunov/netkill/netkill.html 
 
Shimomura, T. 1995. Technical details of the attack described by Markoff in NYT. Message 
posted in USENET´s comp.security.misc newsgroup, Message-ID: 
<3g5gkl$5j1@ariel.sdsc.edu>. Available at: http://www.gont.com.ar/docs/post-shimomura-
usenet.txt. 
 
Silbersack, M. 2005. Improving TCP/IP security through randomization without sacrificing 
interoperability. EuroBSDCon 2005 Conference. 
 
SinFP. 2006. Net::SinFP - a Perl module to do OS fingerprinting. Available at: 
http://www.gomor.org/cgi-bin/index.pl?mode=view;page=sinfp 
 
Smart, M., Malan, G., Jahanian, F. 2000. Defeating TCP/IP Stack Fingerprinting. Proceedings 
of the 9th USENIX Security Symposium, pp. 229-240. Available at: 
http://www.usenix.org/publications/library/proceedings/sec2000/full_papers/smart/smart_html/i
ndex.html 
  
Smith, C., Grundl, P. 2002. Know Your Enemy: Passive Fingerprinting. The Honeynet Project.  
 
Spring, N., Wetherall, D., Ely, D. 2003. Robust Explicit Congestion Notification (ECN) Signaling 
with Nonces. RFC 3540. 
 

http://www.aciri.org/vern/Ptacek-Newsham-Evasion-98.ps
http://www.firstmonday.org/issues/issue2_5/rowland/


 
 

 129

Srisuresh, P., Egevang, K. 2001. Traditional IP Network Address Translator (Traditional NAT). 
RFC 3022. 
 
Stevens, W. R. 1994. TCP/IP Illustrated, Volume 1: The Protocols. Addison-Wesley 
Professional Computing Series. 
 
TBIT. 2001. TBIT, the TCP Behavior Inference Tool. Available at: http://www.icir.org/tbit/ 
   
Touch, J. 2007. Defending TCP Against Spoofing Attacks. RFC 4953. 
 
US-CERT. 2001. US-CERT Vulnerability Note VU#498440: Multiple TCP/IP implementations 
may use statistically predictable initial sequence numbers. Available at: 
http://www.kb.cert.org/vuls/id/498440 
 
US-CERT. 2003a. US-CERT Vulnerability Note VU#26825: Cisco Secure PIX Firewall TCP 
Reset Vulnerability. Available at: http://www.kb.cert.org/vuls/id/26825 
 
US-CERT. 2003b. US-CERT Vulnerability Note VU#464113: TCP/IP implementations handle 
unusual flag combinations inconsistently. Available at: http://www.kb.cert.org/vuls/id/464113 
 
US-CERT. 2004a. US-CERT Vulnerability Note VU#395670: FreeBSD fails to limit number of 
TCP segments held in reassembly queue. Available at: http://www.kb.cert.org/vuls/id/395670 
 
US-CERT. 2005a. US-CERT Vulnerability Note VU#102014: Optimistic TCP 
acknowledgements can cause denial of service. Available at: 
http://www.kb.cert.org/vuls/id/102014 
 
US-CERT. 2005b. US-CERT Vulnerability Note VU#396645: Microsoft Windows vulnerable to 
DoS via LAND attack. Available at: http://www.kb.cert.org/vuls/id/396645 
 
US-CERT. 2005c. US-CERT Vulnerability Note VU#637934: TCP does not adequately validate 
segments before updating timestamp value. Available at: http://www.kb.cert.org/vuls/id/637934 
 
US-CERT. 2005d. US-CERT Vulnerability Note VU#853540: Cisco PIX fails to verify TCP 
checksum. Available at: http://www.kb.cert.org/vuls/id/853540.  
 
Veysset, F., Courtay, O., Heen, O. 2002. New Tool And Technique For Remote Operating 
System Fingerprinting. Intranode Research Team. 
 
Watson, P. 2004. Slipping in the Window: TCP Reset Attacks, CanSecWest 2004 Conference. 
 
Welzl, M. 2008. Internet congestion control: evolution and current open issues. CAIA guest 
talk, Swinburne University, Melbourne, Australia. Available at: 
http://www.welzl.at/research/publications/caia-jan08.pdf 
  
Wright, G. and W. Stevens. 1994. TCP/IP Illustrated, Volume 2: The Implementation. Addison-
Wesley. 

http://www.icir.org/tbit/
http://www.welzl.at/research/publications/caia-jan08.pdf


 
 

 130

 
Zalewski, M. 2001a. Strange Attractors and TCP/IP Sequence Number Analysis. Available at: 
http://lcamtuf.coredump.cx/oldtcp/tcpseq.html 
 
Zalewski, M. 2001b. Delivering Signals for Fun and Profit. Available at: 
http://lcamtuf.coredump.cx/signals.txt 
 
Zalewski, M. 2002. Strange Attractors and TCP/IP Sequence Number Analysis - One Year 
Later. Available at: http://lcamtuf.coredump.cx/newtcp/ 
 
Zalewski, M. 2003a. Windows URG mystery solved! Post to the bugtraq mailing-list. Available 
at: http://lcamtuf.coredump.cx/p0f-help/p0f/doc/win-memleak.txt 
 
Zalewski, M. 2003b. A new TCP/IP blind data injection technique? Post to the bugtraq mailing-
list. Available at: http://lcamtuf.coredump.cx/ipfrag.txt 
 
Zalewski, M. 2006a. p0f passive fingerprinting tool. Available at: 
http://lcamtuf.coredump.cx/p0f.shtml 
 
Zalewski, M. 2006b. p0f - RST+ signatures. Available at: http://lcamtuf.coredump.cx/p0f-
help/p0f/p0fr.fp 
 
Zalewski, M. 2007. 0trace - traceroute on established connections. Post to the bugtraq mailing-
list. Available at: http://seclists.org/bugtraq/2007/Jan/0176.html 
 
Zalewski, M. 2008. Museum of broken packets. Available at: http://lcamtuf.coredump.cx/mobp/ 
 
Zander, S. 2008. Covert Channels in Computer Networks. Available at: 
http://caia.swin.edu.au/cv/szander/cc/index.html 
 
Zúquete, A. 2002. Improving the functionality of SYN cookies. 6th IFIP Communications and 
Multimedia Security Conference (CMS 2002). Available at: 
http://www.ieeta.pt/~avz/pubs/CMS02.html 
 
Zweig, J., Partridge, C. 1990. TCP Alternate Checksum Options. RFC 1146. 
 

http://lcamtuf.coredump.cx/oldtcp/tcpseq.html
http://lcamtuf.coredump.cx/signals.txt
http://lcamtuf.coredump.cx/p0f-help/p0f/doc/win-memleak.txt
http://lcamtuf.coredump.cx/ipfrag.txt
http://lcamtuf.coredump.cx/p0f.shtml
http://lcamtuf.coredump.cx/p0f-help/p0f/p0fr.fp
http://lcamtuf.coredump.cx/p0f-help/p0f/p0fr.fp
http://seclists.org/bugtraq/2007/Jan/0176.html
http://lcamtuf.coredump.cx/mobp/
http://caia.swin.edu.au/cv/szander/cc/index.html
http://www.ieeta.pt/~avz/pubs/CMS02.html

