
Netprog:  UDP Sockets 1

UDP Sockets Programming

• Creating UDP sockets.
– Client
– Server

• Sending data.
• Receiving data.
• Connected Mode.



Netprog:  UDP Sockets 2

Creating a UDP socket
int socket(int family,int type,int proto);

int sock;
sock = socket( PF_INET, 
      SOCK_DGRAM,

     0);
if (sock<0) { /* ERROR */ }



Netprog:  UDP Sockets 3

Binding to well known address
(typically done by server only)
int mysock;
struct sockaddr_in myaddr;

  mysock = socket(PF_INET,SOCK_DGRAM,0);
 myaddr.sin_family = AF_INET;
 myaddr.sin_port = htons( 1234 );
 myaddr.sin_addr = htonl( INADDR_ANY );

  bind(mysock, &myaddr, sizeof(myaddr));



Netprog:  UDP Sockets 4

Sending UDP Datagrams
ssize_t sendto( int sockfd,
    void *buff,
    size_t nbytes,
    int flags,
      const struct sockaddr* to,
      socklen_t addrlen);

sockfd is a UDP socket
buff is the address of the data (nbytes long)
to is the address of a sockaddr containing the 

destination address.
Return value is the number of bytes sent, or -1 

on error.



Netprog:  UDP Sockets 5

sendto()

• You can send 0 bytes of data!

• Some possible errors :
EBADF, ENOTSOCK: bad socket descriptor
EFAULT: bad buffer address
EMSGSIZE: message too large
ENOBUFS: system buffers are full



Netprog:  UDP Sockets 6

More sendto()

• The return value of sendto() indicates 
how much data was accepted by the 
O.S. for sending as a datagram - not 
how much data made it to the 
destination.

• There is no error condition that 
indicates that the destination did not get 
the data!!!



Netprog:  UDP Sockets 7

Receiving UDP Datagrams
ssize_t recvfrom( int sockfd,
    void *buff,
    size_t nbytes,
    int flags,
      struct sockaddr* from,
      socklen_t *fromaddrlen);

sockfd is a UDP socket
buff is the address of a buffer (nbytes long)
from is the address of a sockaddr.
Return value is the number of bytes received 

and put into buff, or -1 on error.



Netprog:  UDP Sockets 8

recvfrom()

• If buff is not large enough, any extra data is lost 
forever...

• You can receive 0 bytes of data!
• The sockaddr at from is filled in with the 

address of the sender.
• You should set fromaddrlen before calling.
• If from and fromaddrlen are NULL we don’t find 

out who sent the data.



Netprog:  UDP Sockets 9

More recvfrom()

• Same errors as sendto, but also:
– EINTR: System call interrupted by signal.

• Unless you do something special - 
recvfrom doesn’t return until there is a 
datagram available.



Netprog:  UDP Sockets 10

Typical UDP client code

• Create UDP socket.
• Create sockaddr with address of  

server.
• Call sendto(), sending request to the 

server. No call to bind() is necessary!
• Possibly call recvfrom() (if we need a 

reply). 



Netprog:  UDP Sockets 11

Typical UDP Server code

• Create UDP socket and bind to well 
known address.

• Call recvfrom() to get a request, noting 
the address of the client.

• Process request and send reply back 
with sendto().



Netprog:  UDP Sockets 12

UDP Echo Server
int mysock;
struct sockaddr_in myaddr, cliaddr;
char msgbuf[MAXLEN];

socklen_t clilen;
int msglen;

   mysock = socket(PF_INET,SOCK_DGRAM,0);
 myaddr.sin_family = AF_INET;

 myaddr.sin_port = htons( S_PORT );
 myaddr.sin_addr = htonl( INADDR_ANY );

   bind(mysock, &myaddr, sizeof(myaddr));
 while (1) {
  len=sizeof(cliaddr);

  msglen=recvfrom(mysock,msgbuf,MAXLEN,0,cliaddr,&clilen);
  sendto(mysock,msgbuf,msglen,0,cliaddr,clilen);

  }

NEED TO CHECK

FOR ERRORS!!!



Netprog:  UDP Sockets 13

Debugging

• Debugging UDP can be difficult.
• Write routines to print out sockaddrs.
• Use trace, strace, ptrace, truss, etc.
• Include code that can handle 

unexpected situations.



Netprog:  UDP Sockets 14

Timeout when calling 
recvfrom()

• It might be nice to have each call to 
recvfrom() return after a specified 
period of time even if there is no 
incoming datagram.

• We can do this by using SIGALRM and 
wrapping each call to recvfrom() with a 
call to alarm()



Netprog:  UDP Sockets 15

recvfrom()and alarm()
 signal(SIGALRM, sig_alrm);
 alarm(max_time_to_wait);
 if (recvfrom(…)<0) 
  if (errno==EINTR)
   /* timed out */
  else
   /* some other error */
 else
  /* no error or time out 
  - turn off alarm */
  alarm(0); There are some other (better) ways to 

do this ...



Netprog:  UDP Sockets 16

Connected mode

• A UDP socket can be used in a call to 
connect().

• This simply tells the O.S. the address of the 
peer.

• No handshake is made to establish that the 
peer exists.

• No data of any kind is sent on the network as 
a result of calling connect() on a UDP 
socket.



Netprog:  UDP Sockets 17

Connected UDP

• Once a UDP socket is connected:
– can use sendto() with a null dest. 

address 
– can use write() and send()
– can use read() and recv()

• only datagrams from the peer will be returned.
– Asynchronous errors will be returned to the 

process.
OS Specific, some wonʼt do this!



Netprog:  UDP Sockets 18

Asynchronous Errors

• What happens if a client sends data to a 
server that is not running?
– ICMP  “port unreachable” error is 

generated by receiving host and sent to 
sending host.

– The ICMP error may reach the sending 
host after sendto() has already returned!

– The next call dealing with the socket could 
return the error.



Netprog:  UDP Sockets 19

Back to UDP connect()

• Connect() is typically used with UDP 
when communication is with a single 
peer only.

• Many UDP clients use connect().
• Some servers (TFTP).
• It is possible to disconnect and connect 

the same socket to a new peer.



TCP/IP Sockets in C: 
Practical Guide for 
Programmers

Michael J. Donahoo
Kenneth L. Calvert



Computer Chat

How do we make computers talk?

How are they interconnected?

Internet Protocol (IP)



Internet Protocol (IP)

Datagram (packet) protocol
Best-effort service

Loss
Reordering
Duplication
Delay

Host-to-host delivery 
(not application-to-application)



IP Address

32-bit identifier
Dotted-quad: 192.118.56.25
www.mkp.com -> 167.208.101.28
Identifies a host interface (not a host)

192.18.22.13 209.134.16.123



Transport Protocols

Best-effort  not sufficient!

Add services on top of IP
User Datagram Protocol (UDP)

Data checksum
Best-effort

Transmission Control Protocol (TCP)
Data checksum
Reliable byte-stream delivery
Flow and congestion control



Ports

Identifying the ultimate destination
IP addresses identify hosts
Host has many applications
Ports (16-bit identifier)
Application WWW       E-mail      Telnet

Port 80       25          23

192.18.22.13



Socket

How does one speak TCP/IP?

Sockets provides interface to TCP/IP
Generic interface for many protocols



Sockets
Identified by protocol and local/remote 
address/port 
Applications may refer to many sockets
Sockets accessed by many applications



TCP/IP Sockets

IPPROTO_UDPSOCK_DGRAMUDP

IPPROTO_TCPSOCK_STREAM
PF_INET

TCP

ProtocolTypeFamily

mySock = socket(family, type, protocol);
TCP/IP-specific sockets

Socket reference
File (socket) descriptor in UNIX
Socket handle in WinSock



struct sockaddr               
{

unsigned short sa_family; /* Address family (e.g., AF_INET) */
char sa_data[14];          /* Protocol-specific address information */

};

struct sockaddr_in
{

unsigned short sin_family;/* Internet protocol (AF_INET) */
unsigned short sin_port;   /* Port (16-bits) */
struct in_addr sin_addr;   /* Internet address (32-bits) */
char sin_zero[8];          /* Not used */

}; 
struct in_addr
{

unsigned long s_addr;    /* Internet address (32-bits) */
};

G
en

er
ic

IP
 S

pe
ci

fic

sockaddr Family Blob

8 bytes2 bytes 4 bytes2 bytes

sockaddr_in Family Port Internet address Not used



Clients and Servers

Client:  Initiates the connection

Server:  Passively waits to respond

Client:  Bob

“Hi.  I’m Bob.”

“Nice to meet you, Jane.”

Server:  Jane

“Hi, Bob.  I’m Jane”



TCP Client/Server Interaction

Server starts by getting ready to receive client connections…

Server
1. Create a TCP socket
2. Assign a port to socket
3. Set socket to listen
4. Repeatedly:

a. Accept new connection
b. Communicate
c. Close the connection

Client
1. Create a TCP socket
2. Establish connection
3. Communicate
4. Close the connection



TCP Client/Server Interaction

/* Create socket for incoming connections */
if ((servSock = socket(PF_INET, SOCK_STREAM, IPPROTO_TCP)) < 0)

DieWithError("socket() failed");

Server
1. Create a TCP socket
2. Bind socket to a port
3. Set socket to listen
4. Repeatedly:

a. Accept new connection
b. Communicate
c. Close the connection

Client
1. Create a TCP socket
2. Establish connection
3. Communicate
4. Close the connection



TCP Client/Server Interaction
echoServAddr.sin_family = AF_INET;                         /* Internet address family */
echoServAddr.sin_addr.s_addr = htonl(INADDR_ANY);/* Any incoming interface */
echoServAddr.sin_port = htons(echoServPort);           /* Local port */

if (bind(servSock, (struct sockaddr *) &echoServAddr, sizeof(echoServAddr)) < 0)
DieWithError("bind() failed");

Server
1. Create a TCP socket
2. Bind socket to a port
3. Set socket to listen
4. Repeatedly:

a. Accept new connection
b. Communicate
c. Close the connection

Client
1. Create a TCP socket
2. Establish connection
3. Communicate
4. Close the connection



TCP Client/Server Interaction

/* Mark the socket so it will listen for incoming connections */
if (listen(servSock, MAXPENDING) < 0)

DieWithError("listen() failed");

Server
1. Create a TCP socket
2. Bind socket to a port
3. Set socket to listen
4. Repeatedly:

a. Accept new connection
b. Communicate
c. Close the connection

Client
1. Create a TCP socket
2. Establish connection
3. Communicate
4. Close the connection



TCP Client/Server Interaction
for (;;) /* Run forever */
{

clntLen = sizeof(echoClntAddr);

if ((clntSock=accept(servSock,(struct sockaddr *)&echoClntAddr,&clntLen)) < 0)
DieWithError("accept() failed");

Server
1. Create a TCP socket
2. Bind socket to a port
3. Set socket to listen
4. Repeatedly:

a. Accept new connection
b. Communicate
c. Close the connection

Client
1. Create a TCP socket
2. Establish connection
3. Communicate
4. Close the connection



TCP Client/Server Interaction

Server is now blocked waiting for connection from a client

Later, a client decides to talk to the server…

Server
1. Create a TCP socket
2. Bind socket to a port
3. Set socket to listen
4. Repeatedly:

a. Accept new connection
b. Communicate
c. Close the connection

Client
1. Create a TCP socket
2. Establish connection
3. Communicate
4. Close the connection



TCP Client/Server Interaction

/* Create a reliable, stream socket using TCP */
if ((sock = socket(PF_INET, SOCK_STREAM, IPPROTO_TCP)) < 0)

DieWithError("socket() failed");

Server
1. Create a TCP socket
2. Bind socket to a port
3. Set socket to listen
4. Repeatedly:

a. Accept new connection
b. Communicate
c. Close the connection

Client
1. Create a TCP socket
2. Establish connection
3. Communicate
4. Close the connection



TCP Client/Server Interaction
echoServAddr.sin_family      = AF_INET;                /* Internet address family */
echoServAddr.sin_addr.s_addr = inet_addr(servIP); /* Server IP address */
echoServAddr.sin_port        = htons(echoServPort); /* Server port */

if (connect(sock, (struct sockaddr *) &echoServAddr, sizeof(echoServAddr)) < 0)
DieWithError("connect() failed");

Server
1. Create a TCP socket
2. Bind socket to a port
3. Set socket to listen
4. Repeatedly:

a. Accept new connection
b. Communicate
c. Close the connection

Client
1. Create a TCP socket
2. Establish connection
3. Communicate
4. Close the connection



TCP Client/Server Interaction

if ((clntSock=accept(servSock,(struct sockaddr *)&echoClntAddr,&clntLen)) < 0)
DieWithError("accept() failed");

Server
1. Create a TCP socket
2. Bind socket to a port
3. Set socket to listen
4. Repeatedly:

a. Accept new connection
b. Communicate
c. Close the connection

Client
1. Create a TCP socket
2. Establish connection
3. Communicate
4. Close the connection



TCP Client/Server Interaction

echoStringLen = strlen(echoString);          /* Determine input length */

/* Send the string to the server */
if (send(sock, echoString, echoStringLen, 0) != echoStringLen)

DieWithError("send() sent a different number of bytes than expected");

Server
1. Create a TCP socket
2. Bind socket to a port
3. Set socket to listen
4. Repeatedly:

a. Accept new connection
b. Communicate
c. Close the connection

Client
1. Create a TCP socket
2. Establish connection
3. Communicate
4. Close the connection



TCP Client/Server Interaction

/* Receive message from client */
if ((recvMsgSize = recv(clntSocket, echoBuffer, RCVBUFSIZE, 0)) < 0)

DieWithError("recv() failed");

Server
1. Create a TCP socket
2. Bind socket to a port
3. Set socket to listen
4. Repeatedly:

a. Accept new connection
b. Communicate
c. Close the connection

Client
1. Create a TCP socket
2. Establish connection
3. Communicate
4. Close the connection



TCP Client/Server Interaction

close(sock);                                        close(clntSocket)                         

Server
1. Create a TCP socket
2. Bind socket to a port
3. Set socket to listen
4. Repeatedly:

a. Accept new connection
b. Communicate
c. Close the connection

Client
1. Create a TCP socket
2. Establish connection
3. Communicate
4. Close the connection



TCP Tidbits
Client must know the server’s address and port
Server only needs to know its own port
No correlation between send() and recv()

Client
send(“Hello Bob”)

recv() -> “Hi Jane”

Server

recv() -> “Hello ”
recv() -> “Bob”
send(“Hi ”)
send(“Jane”)



Closing a Connection
close() used to delimit communication
Analogous to EOF

Echo Client
send(string)

while (not received entire string)
recv(buffer)
print(buffer)

close(socket)

Echo Server

recv(buffer)
while(client has not closed connection)

send(buffer)
recv(buffer)

close(client socket)



Constructing Messages

…beyond simple strings



TCP/IP Byte Transport

TCP/IP protocols transports bytes

Application protocol provides semantics

Application
byte stream

Application

byte stream

TCP/IPTCP/IP

Here are some 
bytes.  I don’t 

know what 
they mean.

I’ll pass 
these to 

the app.  It 
knows 

what to do.



Application Protocol

Encode information in bytes
Sender and receiver must agree on 
semantics
Data encoding

Primitive types:  strings, integers, and etc.
Composed types: message with fields



Primitive Types

String
Character encoding:  ASCII, Unicode, UTF
Delimit:  length vs. termination character

0 77 0 111 0 109 0 10 

M o m \n

3 77 111 109



Primitive Types

Integer
Strings of character encoded decimal digits

Advantage: 1. Human readable
2. Arbitrary size

Disadvantage: 1. Inefficient
2. Arithmetic manipulation

49 55 57 57 56 55 48 10 

‘1’ ‘7’ ‘9’ ‘9’ ‘8’ ‘7’ ‘0’ \n



Primitive Types

Integer
Native representation

Network byte order (Big-Endian)
Use for multi-byte, binary data exchange
htonl(), htons(), ntohl(), ntohs()

0 0 92 246 4-byte
two’s-complement 
integer

23,798

246 92 0 0Big-Endian

Little-Endian



Message Composition

Message composed of fields
Fixed-length fields

Variable-length fields

shortshortinteger

\n1 2ei kM



“Beware the bytes of padding” 
-- Julius Caesar, Shakespeare

Architecture alignment restrictions
Compiler pads structs to accommodate

Problem:  Alignment restrictions vary
Solution: 1) Rearrange struct members

2) Serialize struct by-member

struct tst {
short x;
int y;
short z;

};

x [pad] y z [pad]



Netprog:  Sockets API
1

Sockets Programming
Socket to me!



Netprog:  Sockets API
2

Network Application 
Programming Interface (API)

• The services provided (often by the operating 
system)  that provide the interface between 
application and protocol software.

Application

Network API

Protocol A Protocol B Protocol C



Netprog:  Sockets API
3

Network API wish list

• Generic Programming Interface.
• Support for message oriented and 

connection oriented communication.
• Work with existing I/O services (when 

this makes sense).
• Operating System independence.
• Presentation layer services



Netprog:  Sockets API
4

Generic Programming 
Interface

• Support multiple communication 
protocol suites (families).

• Address (endpoint) representation 
independence.

• Provide special services for Client and 
Server?



Netprog:  Sockets API
5

TCP/IP

• TCP/IP does not include an API 
definition.

• There are a variety of APIs for use with 
TCP/IP:
– Sockets
– TLI, XTI
– Winsock
– MacTCP



Netprog:  Sockets API
6

Functions needed:

• Specify local and remote 
communication endpoints

• Initiate a connection
• Wait for incoming connection
• Send and receive data
• Terminate a connection gracefully
• Error handling



Netprog:  Sockets API
7

Berkeley Sockets

• Generic:
– support for multiple protocol families.
– address representation independence

• Uses existing I/O programming 
interface as much as possible.



Netprog:  Sockets API
8

Socket

• A socket  is an abstract representation 
of a communication endpoint.

• Sockets  work with Unix I/O services 
just like files, pipes & FIFOs.

• Sockets (obviously) have special needs:
– establishing a connection
– specifying communication endpoint 

addresses



Netprog:  Sockets API
9

Unix Descriptor Table

Data structure for file 0

Data structure for file 1

Data structure for file 2

Descriptor Table

0
1
2
3
4



Netprog:  Sockets API
10

Socket Descriptor Data 
Structure

Family:  PF_INET
Service:  SOCK_STREAM
Local IP:  111.22.3.4
Remote IP:  123.45.6.78
Local Port:  2249
Remote Port:  3726

Descriptor Table

0
1
2
3
4



Netprog:  Sockets API
11

Creating a Socket
int socket(int family,int type,int proto);

• family specifies the protocol family 
(PF_INET for TCP/IP).

• type specifies the type of service 
(SOCK_STREAM, SOCK_DGRAM).

• protocol specifies the specific protocol 
(usually 0, which means the default).



Netprog:  Sockets API
12

socket()

• The socket() system call returns a 
socket descriptor (small integer) or  -1 
on error.

• socket() allocates resources needed 
for a communication endpoint - but it 
does not deal with endpoint addressing.



Netprog:  Sockets API
13

Specifying an Endpoint 
Address

• Remember that the sockets API is 
generic.

• There must be a generic way to specify 
endpoint addresses.

• TCP/IP requires an IP address and a 
port number for each endpoint address.

• Other protocol suites (families) may use 
other schemes.



Netprog:  Sockets API
14

Necessary Background Information: 
POSIX data types

int8_t  signed 8bit int
uint8_t  unsigned 8 bit int
int16_t  signed 16 bit int
uint16_t  unsigned 16 bit int
int32_t  signed 32 bit int
uint32_t  unsigned 32 bit int

u_char, u_short, u_int, u_long



Netprog:  Sockets API
15

More POSIX data types

sa_family_t  address family
socklen_t  length of struct
in_addr_t  IPv4 address
in_port_t  IP port number



Netprog:  Sockets API
16

Generic socket addresses

 struct sockaddr {
  uint8_t  sa_len;
  sa_family_t sa_family; 
  char        sa_data[14];
 };

• sa_family specifies the address type.
• sa_data specifies the address value.

Use
d by k

ern
el



Netprog:  Sockets API
17

sockaddr
• An address that will allow me to use 

sockets to communicate with my kids.
• address type AF_DAVESKIDS
• address values:
 Andrea 1  Mom  5

  Jeff 2  Dad  6
  Robert 3  Dog  7
  Emily 4



Netprog:  Sockets API
18

AF_DAVESKIDS
• Initializing a sockaddr structure to point 

to Robert:

 struct sockaddr robster;

 robster.sa_family = AF_DAVESKIDS;
 robster.sa_data[0] = 3;

Really old picture!



Netprog:  Sockets API
19

AF_INET

• For AF_DAVESKIDS we only needed 1 
byte to specify the address.

• For AF_INET we need:
– 16 bit port number 
– 32 bit IP address

IPv4 only!



Netprog:  Sockets API
20

struct sockaddr_in (IPv4)

struct sockaddr_in {
  uint8_t   sin_len;
  sa_family_t  sin_family;
  in_port_t  sin_port;
   struct in_addr sin_addr; 
  char    sin_zero[8];
 };

A special kind of sockaddr structure



Netprog:  Sockets API
21

struct in_addr

struct in_addr {
  in_addr_t  s_addr;  
};

in_addr just provides a name for the ‘C’ type 
associated with IP addresses.



Netprog:  Sockets API
22

Network Byte Order
• All values stored in a sockaddr_in 

must be in network byte order.
– sin_port  a TCP/IP port number.
– sin_addr  an IP address.

Common Mistake:
Ignoring Network 

Byte Order



Netprog:  Sockets API
23

Network Byte Order Functions

‘h’ : host byte order          ‘n’ : network byte order
‘s’ : short (16bit)               ‘l’ : long (32bit)

 uint16_t htons(uint16_t);
 uint16_t ntohs(uint_16_t);

 uint32_t htonl(uint32_t);
 uint32_t ntohl(uint32_t);



Netprog:  Sockets API
24

TCP/IP Addresses

• We don’t need to deal with sockaddr 
structures since we will only deal with a 
real protocol family.

• We can use sockaddr_in structures.

BUT: The C functions that make up the 
sockets API expect structures of type 
sockaddr.



Netprog:  Sockets API
25

AF_INET
sin_port

sin_addr

sin_zero

sockaddr sockaddr_in

sa_len
sa_family

sa_data

sin_len



Netprog:  Sockets API
26

Assigning an address to a 
socket

• The bind() system call is used to assign 
an address to an existing socket.

int bind( int sockfd, 
   const struct sockaddr *myaddr,   
  int addrlen);

• bind returns 0 if successful or -1 on error.

const!



Netprog:  Sockets API
27

bind()

• calling bind() assigns the address 
specified by the sockaddr structure to 
the socket descriptor.

• You can give bind() a sockaddr_in 
structure:

   bind( mysock, 
       (struct sockaddr*) &myaddr,
       sizeof(myaddr) );



Netprog:  Sockets API
28

bind() Example
int mysock,err;
struct sockaddr_in myaddr;

  mysock = socket(PF_INET,SOCK_STREAM,0);
 myaddr.sin_family = AF_INET;
 myaddr.sin_port = htons( portnum );
 myaddr.sin_addr = htonl( ipaddress);

  err=bind(mysock, (sockaddr *) &myaddr, 
   sizeof(myaddr));



Netprog:  Sockets API
29

Uses for bind()

• There are a number of uses for bind():
– Server would like to bind to a well known 

address (port number).

– Client can bind to a specific port.

– Client can ask the O.S. to assign any 
available port number.



Netprog:  Sockets API
30

Port schmort - who cares ?

• Clients typically don’t care what port 
they are assigned.

• When you call bind you can tell it to 
assign you any available port:

 myaddr.port = htons(0);



Netprog:  Sockets API
31

What is my IP address ?

• How can you find out what your IP address is 
so you can tell bind() ?

• There is no realistic way for you to know the 
right IP address to give bind() - what if the 
computer has multiple network interfaces?

• specify the IP address as: INADDR_ANY, 
this tells the OS to take care of things.



Netprog:  Sockets API
32

IPv4 Address Conversion
int inet_aton( char *, struct in_addr *);

Convert ASCII dotted-decimal IP address to 
network byte order 32 bit value. Returns 1 
on success, 0 on failure.

char *inet_ntoa(struct in_addr);

Convert network byte ordered value to 
ASCII dotted-decimal (a string).



Netprog:  Sockets API
33

Other socket system calls

• General Use
– read()
– write()
– close()

• Connection-oriented 
(TCP)
– connect()
– listen()
– accept()

• Connectionless (UDP)
– send()
– recv()



 
 
 

 
 

 

 
 

 
 

 
 

 

 
 

Socket Hijacking 
 

 
 

 

Author: 

Neelay S. Shah 
Senior Software Security Consultant 

Foundstone Professional Services 
 

Rudolph Araujo 
Technical Director 

Foundstone Professional Services 
 

 
 

 

 
 

 
 



 

 
2 www.foundstone.com | 1.877.91.FOUND 

Socket Hijacking 
 

 

 

Abstract  

Sockets are one of the most widely used inter-process communication primitives for clientserver applications 

due to a combination of the following factors. Sockets:  

 Allow for bi-directional communication 

 Allow processes to communicate across the network 

 Are supported by most operating systems 

What application developers need to be aware of is that attackers can target these same client-server 

applications by “hijacking” the server socket.  Insecurely bound server sockets allow an attacker to bind his / 

her own socket on the same port, gaining control of the client connections and ultimately allowing the 

attacker to successfully steal sensitive application user information as well as launch denial of service attacks 

against the application server. 

In this white paper we discuss the socket hijacking vulnerability on Windows, the impact of the vulnerability 

and what it takes to successfully exploit the vulnerability. We also review existing mitigating factors, the 

cause of the vulnerability as well as its remediation. 

This white paper is intended towards all software developers, architects, testers and system administrators. 

Foundstone has released a free tool “Foundstone Socket Security Auditor” which identifies the insecurely 

bound sockets on the local system. The free tool can be found at http://www.foundstone.com/us/resources-

free-tools.asp. 

 



 
 Socket Hijacking 

 

 

Discussion 

Sockets are identified by an IP address and port number.  Port number can be in the range of 0 to 65535 

whereas the IP address can be any of the underlying IP addresses associated with the system including the 

loopback address. The socket  library also supports a wildcard IP address (INADDRY_ANY) that binds the 

socket to the specified port on all underlying IP addresses associated with the system. This feature is 

extremely attractive (and hence widely used) from an application development point of view for the following 

reasons: 

 The application developer does not need to write code to programmatically enumerate the underlying 

IP addresses (associated with the system) and then use one or more of them to bind the listening 

server socket. 

 In scenarios where the server has multiple network routable IP addresses, there is no additional 

overhead needed for exchanging the server’s listening IP address with the client. The client could use 

any one of the server’s network routable address and connect successfully to the server. 

 

Figure 1:  Setup of a typical client –server application communicating using sockets 

 

However, it is possible to bind more than one socket to the same port. For instance, there could be an 

application server with a listening socket bound to INADDR_ANY:9000 and another malicious application 

server with its listening socket bound to 172.23.20.1101:9000. Note that both the applications are running on 

                                                
1 Assuming 172.23.20.110 is the IP addresses associated with the system. 



 

 
4 www.foundstone.com | 1.877.91.FOUND 

Socket Hijacking 
 

the same system, the only difference (as far as their listener sockets are concerned) is the binding of the 

listener socket. The legitimate application server has bound its listening socket to the wildcard IP address 

(INADDR_ANY) whereas the malicious application server has bound its listening socket to a specific IP 

address (172.23.20.110).  

When the client initiates a connection to the server, the client needs to use the routable address 

(172.23.20.110) and the port (9000) to connect to the server. When the connection request reaches the 

server, it is the responsibility of the network stack on the server to forward the connection to the listener. 

Now there are two sockets listening on the same port (9000), and the network stack can forward the 

connection to only one of the listening sockets. Thus, the network stack needs to resolve this conflict and 

choose one of the two sockets to forward the connection to. 

For this, the network stack inspects the incoming client request which is targeted for 172.23.20.110:9000.  

Based on this information, the network stack resolves in favor of the malicious application since it had bound 

its listening socket specifically on 172.23.20.110. Thus the malicious application gets the client connection 

and can communicate further with the client. This is referred to as “Socket Hijacking” i.e. the malicious 

application has successfully hijacked the legitimate application’s listener socket. 

The following figure illustrates the client-server communication setup in the event of socket hijacking: 



 

 
5 www.foundstone.com | 1.877.91.FOUND 

Socket Hijacking 
 

 

Figure 2:  Client-Server communication setup in a "socket hijacking" scenario 

 

Impact of the vulnerability 

Now that we understand and have discussed “socket hijacking” in detail, let’s turn our focus towards the 

impact of the socket hijacking vulnerability; or in other words what damage an attacker can perform by 

exploiting the socket hijacking vulnerability.  

Hijacking the listener socket of the legitimate server essentially allows the attacker to setup a “spoof 

server” and hijack client connections without having to poison the client application in any way i.e. the client 

application still connects to the same IP address and the port as before however the attacker gets hold of the 

client connection. Having received the client connection, the attacker will then be in a position to potentially 

carry out much more damaging things such as: 

 Information Disclosure – Depending on the transport security primitives and the actions the client 

and the server carry out based on the messages on the socket, the attacker could gain knowledge of 

sensitive data such as user credentials and even launch man-in-the-middle attacks. 

 Denial of Service – The real server has no notification of the client connection and as such the 

attacker would be successful in causing denial of service to legitimate client(s). 



 

 
6 www.foundstone.com | 1.877.91.FOUND 

Socket Hijacking 
 

 

Exploiting the vulnerability 

So the next question is: “What does the attacker need in order to successfully exploit this vulnerability?”  

Following are the key considerations and the mitigating factors with respect to successful exploitation of this 

vulnerability.  

 The attacker needs to have sufficient access to the system with the vulnerable application. The 

attacker does not need to have privileged access but needs to be able to execute his malicious 

application on the system. 

 On Windows Server 2003 and later a default ACL is applied to all sockets and as such a limited rights 

user cannot hijack a socket opened by a different user unless the application explicitly used an 

insecure ACL while creating the socket. 

 Ports 0-1023 are privileged ports on Windows XP SP2 & later. On these operating systems, the 

attacker would need administrator/super-user privileges to hijack sockets which are bound to ports in 

the range 0-1023. 

Identifying the vulnerability  

The vulnerability is introduced due to binding the socket insecurely.  Let us look at the signature of insecure 

invocation of the “bind” API which is used to bind the socket to the underlying IP address and port. Since 

the socket is bound to wildcard IP Address (INADDR_ANY), this code snippet is susceptible to “socket 

hijacking” on Windows 

 

SOCKET sListener = ::socket(AF_INET, SOCK_STREAM, 0); 

//Check for error return code 

 

sockaddr_in service; 

service.sin_family = AF_INET; 

service.sin_addr.S_un.S_addr = ::htonl(INADDR_ANY); 

service.sin_port = htons(9000); 

 

int iRet = ::bind(sListener, (sockaddr*) &service, sizeof(service)); 

//Check for error return code 

 

 

 



 

 
7 www.foundstone.com | 1.877.91.FOUND 

Socket Hijacking 
 

Remediating the vulnerability 

Listener sockets must be bound securely by turning on the exclusive address use option 

(SO_EXCLUSIVEADDRUSE) on the socket so that an attacker cannot hijack the server socket. The following 

code snippet shows the secure binding of a listener socket: 

 

SOCKET sListener = ::socket(AF_INET, SOCK_STREAM, 0); 

//Check for error return code 

 

sockaddr_in service; 

service.sin_family = AF_INET; 

service.sin_addr.S_un.S_addr = ::htonl(INADDR_ANY); 

service.sin_port = htons(9000); 

 

int iValLen = sizeof(BOOL); 

BOOL bExclusiveUseAddr = TRUE; 

int iFail = ::setsockopt(sTCPServer, SOL_SOCKET, SO_EXCLUSIVEADDRUSE, (char 

*)&bExclusiveUseAddr, iValLen); 

//Check for error return code 

 

int iRet = ::bind(sListener, (sockaddr*) &service, sizeof(service)); 

//Check for error return code 

 



 
 Socket Hijacking 

 
 

Acknowledgements 

Rudolph Araujo provided significant support with reviewing the white paper. 

About Foundstone Professional Services 

Foundstone® Professional Services, a division of McAfee. Inc., offers expert services and education to help 

organizations continuously and measurably protect their most important assets from the most critical threats. 

Through a strategic approach to security, Foundstone identifies and implements the right balance of 

technology, people, and process to manage digital risk and leverage security investments more effectively. 

The company’s professional services team consists of recognized security experts and authors with broad 

security experience with multinational corporations, the public sector, and the US military. 

References 

1. Socket Hijacking - Chapter 15, Writing Secure Code Vol. 2, Michael Howard et. al. ISBN: 0-7356-1722-8 

2. Using SO_REUSEADDR and SO_EXCLUSIVEADDRUSE - http://msdn2.microsoft.com/en-

us/library/ms740621(VS.85).aspx 

 

http://msdn2.microsoft.com/en-us/library/ms740621(VS.85).aspx
http://msdn2.microsoft.com/en-us/library/ms740621(VS.85).aspx


Socket Programming

Kameswari Chebrolu
Dept. of Electrical Engineering, IIT Kanpur

What is a socket?
� Socket: An interface between an application process 

and transport layer
� The application process can send/receive messages to/from 

another application process (local or remote)via a socket 
� In Unix jargon, a socket is a file descriptor – an integer 

associated with an open file
� Types of Sockets: Internet Sockets, unix sockets, 

X.25 sockets etc 
� Internet sockets characterized by IP Address (4 bytes) and 

port number (2 bytes)

Socket Description Types of Internet Sockets
� Stream Sockets (SOCK_STREAM)

� Connection oriented 
� Rely on TCP to provide reliable two-way connected 

communication
� Datagram Sockets (SOCK_DGRAM)

� Rely on UDP
� Connection is unreliable 



Background
� Two types of “Byte ordering”

� Network Byte Order: High-order byte of the number is stored 
in memory at the lowest address

� Host Byte Order: Low-order byte of the number is stored in 
memory at the lowest address

� Network stack (TCP/IP) expects Network Byte Order 
� Conversions:

� htons() - Host to Network Short
� htonl() - Host to Network Long
� ntohs() - Network to Host Short 
� ntohl() - Network to Host Long

Connection Oriented Protocol

socket()

connect()

bind()

accept()

send()

recv()

listen()

socket()

send()

recv()

Server Client

close() close()

Connectionless Protocol

socket()

bind()

bind()

recvfrom()

sendto()

socket()

recvfrom()

sendto()

ClientServer

close() close()

socket() -- Get the file descriptor
� int socket(int domain, int type, int protocol);

� domain should be set to AF_INET
� type can be SOCK_STREAM or SOCK_DGRAM
� set protocol to 0 to have socket choose the correct protocol 

based on type
� socket() returns a socket descriptor for use in later system 

calls or -1 on error



socket structures
� struct sockaddr: Holds socket address information for 

many types of sockets

� struct sockaddr_in: A parallel structure that makes it 
easy to reference elements of the socket address

struct sockaddr {
          unsigned short sa_family;     //address family AF_xxx
          unsigned short sa_data[14]; //14 bytes of protocol addr
}

struct sockaddr_in {
          short int sin_family;    // set to AF_INET
          unsigned short int sin_port;        // Port number
          struct in_addr sin_addr;       // Internet address
          unsigned char sin_zero[8];  //set to all zeros    
}

Dealing with IP Addresses
� int inet_aton(const char *cp, struct in_addr *inp);
� Example usage:

� inet_aton() gives non-zero on success and zero on failure
� To convert binary IP to string: inet_noa()

printf(“%s”,inet_ntoa(my_addr.sin_addr));

  
struct sockaddr_in my_addr;
my_addr.sin_family = AF_INET;
my_addr.sin_port = htons(MYPORT);
inet_aton(“10.0.0.5”,&(my_addr.sin_addr));
memset(&(my_addr.sin_zero),'\0',8);

bind() - what port am I on?
� Used to associate a socket with a port on the local machine

� The port number is used by the kernel to match an incoming 
packet to a process

� int bind(int sockfd, struct sockaddr *my_addr, int addrlen)
� sockfd is the socket descriptor returned by socket()
� my_addr is pointer to struct sockaddr that contains information 

about your IP address and port
� addrlen is set to sizeof(struct sockaddr)
� returns -1 on error

� my_addr.sin_port = 0; //choose an unused port at random
� my_addr.sin_addr.s_addr = INADDR_ANY; //use my IP addr

connect() - Hello!
� Connects to a remote host
� int connect(int sockfd, struct sockaddr *serv_addr, int 

addrlen)
� sockfd is the socket descriptor returned by socket()
� serv_addr is pointer to struct sockaddr that contains 

information on destination IP address and port
� addrlen is set to sizeof(struct sockaddr)
� returns -1 on error

� At times, you don't have to bind() when you are using 
connect()



listen() - Call me please!
� Waits for incoming connections
� int listen(int sockfd, int backlog);

� sockfd is the socket file descriptor returned by socket() 
� backlog is the number of connections allowed on the 

incoming queue
� listen() returns -1 on error
� Need to call bind() before you can listen() 

accept() - Thank you for calling !
� accept() gets the pending connection on the port 

you are listen()ing on
� int accept(int sockfd, void *addr, int *addrlen);

� sockfd is the listening socket descriptor
� information about incoming connection is stored in 

addr which is a pointer to a local struct sockaddr_in
� addrlen is set to sizeof(struct sockaddr_in)
� accept returns a new socket file descriptor to use for 

this accepted connection and -1 on error

send() and recv() - Let's talk!
� The two functions are for communicating over stream 

sockets or connected datagram sockets.
� int send(int sockfd, const void *msg, int len, int flags);

� sockfd is the socket descriptor you want to send data to 
(returned by socket() or got with accept())

� msg is a pointer to the data you want to send
� len is the length of that data in bytes
� set flags to 0 for now
� sent() returns the number of bytes actually sent (may be less 

than the number you told it to send) or -1 on error

send() and recv() - Let's talk!
�  int recv(int sockfd, void *buf, int len, int flags);

� sockfd is the socket descriptor to read from
� buf is the buffer to read the information into
� len is the maximum length of the buffer
� set flags to 0 for now
� recv() returns the number of bytes actually read into the 

buffer or -1 on error
� If recv() returns 0, the remote side has closed connection 

on you 



sendto() and recvfrom() - DGRAM style
� int sendto(int sockfd, const void *msg, int len, int 

flags, const struct sockaddr *to, int tolen);
� to is a pointer to a struct sockaddr which contains the 

destination IP and port
� tolen is sizeof(struct sockaddr)

� int recvfrom(int sockfd, void *buf, int len, int flags, 
struct sockaddr *from, int *fromlen);
� from is a pointer to a local struct sockaddr that will be filled 

with IP address and port of the originating machine
� fromlen will contain length of address stored in from

close() - Bye Bye!

� int close(int sockfd);
� Closes connection corresponding to the socket 

descriptor and frees the socket descriptor 
� Will prevent any more sends and recvs

Miscellaneous Routines
� int getpeername(int sockfd, struct sockaddr *addr, 

int *addrlen);
� Will tell who is at the other end of a connected stream 

socket and store that info in addr
� int gethostname(char *hostname, size_t size);

� Will get the name of the computer your program is 
running on and store that info in hostname

Miscellaneous Routines
� struct hostent *gethostbyname(const char *name);  

� Example Usage:

struct hostent {
char *h_name; //official name of host
char **h_aliases; //alternate names for the host
int h_addrtype; //usually AF_NET
int h_length; //length of the address in bytes
char **h_addr_list; //array of network addresses for the host

}
#define h_addr h_addr_list[0]

struct hostent *h;
h = gethostbyname(“www.iitk.ac.in”);
printf(“Host name : %s \n”, h->h_name);
printf(“IP Address: %s\n”,inet_ntoa(*((struct in_addr *)h->h_addr))); 



Summary

� Sockets help application process to communicate with 
each other using standard Unix file descriptors

� Two types of Internet sockets: SOCK_STREAM and 
SOCK_DGRAM

�  Many routines exist to help ease the process of 
communication

References
� Books:

� Unix Network Programming, volumes 1-2 by W. 
Richard Stevens.

� TCP/IP Illustrated, volumes 1-3 by W. Richard 
Stevens and Gary R. Wright

� Web Resources:
� Beej's Guide to Network Programming

� www.ecst.csuchico.edu/~beej/guide/net/



IPv6 for Developers and 

socket address structure 
Kapil  



Presentation Agenda 

• Socket API extensions 

• Name Service API changes 

• Tools and Recommendations 

• Miscellaneous Topics 



Programming with IPv6 

• This presentation geared towards C 

programming 

• Java programmers can go to sleep 

– Java API is already IP version agnostic 



Programming with IPv6 

• Most applications will require minimal 

changes to support IPv6 

– Change the socket, name-service, and UI 

• Network-intensive applications will require 

a bit more 
• IDS, firewall, network/security analysis tools 

• Security tools that use addresses in protocol 

 



A Few Notes about Java and IPv6 

• Class InetAddress will handle IPv4 & IPv6 addrs 

– Methods that support IPv6 features 

• isLinkLocalAddress() 

– Methods that are version-agnostic 

• toString(), getByAddress(), getAllByName(), etc 

– Inet4Address and Inet6Address are subclasses 

• Socket calls all use InetAddress 

• Unless you are doing something specific to IPv4, not 
porting is necessary for Java code 

– Underlying OS must support IPv6 



Socket API Extensions 

• Basic socket() system call is unchanged 

– Just a new protocol family for IPv6 

s = socket(AF_INET, SOCK_DGRAM, 0); [IPv4] 

s = socket(AF_INET6, SOCK_DGRAM, 0); [IPv6] 

– IPv4-only sockets continue to work as they always have 

– System calls that bind or receive address to/from IPv6 

sockets must use IPv6 socket addresses 

• bind(), connect(), sendmsg(), sendto() 

• accept(), recvfrom(), recvmsg(), getpeername(), getsockname() 



IPv6 Address Structure 

• struct in6_addr versus struct in_addr 

– Usually defined in /usr/include/netinet/in.h 

– Often see int or uint to carry IPv4 addresses 

• Makes IP address variables harder to find in code 

struct in6_addr { 

 u_int8_t s6_addr[16]; 

} 

struct in6_addr { 

 union { 

  u_int8_t   u6_addr8[16]; 

  u_int16_t  u6_addr16[8]; 

  u_int32_t  u6_addr32[4]; 

 } u6_addr; 

} 

 

#define  s6_addr     u6_addr.u6_addr8 

#define  s6_addr16   u6_addr.u6_addr16 

#define  s6_addr32   u6_addr.u6_addr32 

Officially: Often implemented as: 



struct in6_addr 

• A few useful constants and macros (<netinet/in.h>) 

– const struct in6_addr in6addr_any;  /* :: */ 

• INADDR_ANY is v4 equivalent 

– const struct in6_addr in6addr_loopback; /* ::1 */ 

• INADDR_LOOPBACK is v4 equivalent 

– #define INET6_ADDRSTRLEN 46 

• Longest string representation of IPv6 address 

– IN6_IS_ADDR_UNSPECIFIED(a) 

– IN6_IS_ADDR_LOOPBACK(a) 

– IN6_IS_ADDR_MULTICAST(a) 

– IN6_IS_ADDR_LINKLOCAL(a) 

– IN6_IS_ADDR_SITELOCAL(a) 

– IN6_IS_ADDR_V4_MAPPED(a) 

– IN6_IS_ADDR_V4_COMPAT(a) 

– IN6_ARE_ADDR_EQUAL(a,b) 

– Multicast scope macros 



IPv6 Socket Addresses 

• New socket address structure defined for IPv6 

– Usually defined in /usr/include/netinet/in.h 

struct sockaddr_in6 { 

 u_int16_t  sin6_family; 

 u_int16_t  sin6_port; 

 u_int32_t  sin6_flowinfo; 

 struct sockaddr_in6 sin6_addr; 

 u_int32_t  sin6_scope_id; 

}; 

#define SIN6_LEN 

struct sockaddr_in6 { 

 u_int8_t   sin6_len; 

 u_int8_t   sin6_family; 

 u_int16_t  sin6_port; 

 u_int32_t  sin6_flowinfo; 

 struct sockaddr_in6 sin6_addr; 

 u_int32_t  sin6_scope_id; 

}; 

BSD 4.3-based: 

BSD 4.4-based: 



IPv6 Socket Addresses 

• Most system calls that pass in or receive socket 
addresses use a generic (struct sockaddr *) 

– Cast your specific type of sockaddr_* to a sockaddr before 
passing in/out 

– Generic struct sockaddr is not large enough to hold IPv6 
socket address 

– Define new generic sockaddr_storage which has enough 
space to hold largest sockaddr system supports 

• Has ss_family member that overlaps sin_family & sin6_family 

• Usually defined in /usr/include/sys/socket.h 



IPv6 Socket Addresses 
sockaddr_storage 

struct sockaddr_storage ss; 

int ss_len; 

 

get_sock_addr((struct sockaddr *)&ss); 

 

switch (ss.ss_family) { 

 case AF_INET: 

  sin = (struct sockaddr_in *)&ss; 

  ss_len = sizeof(struct sockaddr_in); 

  break; 

 case AF_INET6: 

  sin6 = (struct sockaddr_in6 *)&ss; 

  ss_len = sizeof(struct sockaddr_in6); 

  break; 

 [...] 

} 

 

ret = bind(s, (struct sockaddr *)&ss, ss_len); 



IPv6 and IPv4 Interoperability 

• An IPv6 socket can talk to and accept IPv4 connections 

– Assuming dual-stacks active 

– To connect to an IPv4 address via an IPv6 socket 

• Use IPv4-Mapped address (e.g. ::FFFF:192.168.0.1) 

• Use IPv4-Compatible address (e.g. ::192.168.0.1) 

– Accepting connections on an IPv6 socket 

• IPv4 connections will return IPv6 address as IPv4-mapped/compatible 

• Can use IN6_IS_ADDR_V4_MAPPED to test 

• Use AF_INET6 sockets for applications that will 
support both IPv4 and IPv6 



Dual-Stacked Nodes: 
Sending IPv4 and IPv6 Packets 

tcp_output() udp_output() tcp6_output() udp6_output() 

AF_INET 

SOCK_STREAM 

AF_INET 

SOCK_DGRAM 

AF_INET6 

SOCK_STREAM 

AF_INET6 

SOCK_DGRAM 

ip_output() ip6_output() 

Auto-tunnel driver 
(prepend IPv4 header) To Link-Layer To Link-Layer 



Dual-Stacked Nodes 
Receiving IPv4 and IPv6 Packets 

Link Layer 

ip_input() ip6_input() 
Version = 6 

Auto-tunnel driver 
(removes IPv4 header) 

tcp_input() udp_input() tcp6_input() udp6_input() 

AF_INET 

SOCK_STREAM 

AF_INET 

SOCK_DGRAM 

AF_INET6 

SOCK_STREAM 

AF_INET6 

SOCK_DGRAM 

Ethertype 0x0800 

and 0x86dd 
Ethertype 0x86dd 



IPv6 Socket Options 

• Changing socket type 

– If an IPv6 application inherits a socket from a v4-only 

application and wants to make it a v6 socket 

int addrform = PF_INET6; 

 

setsockopt(s, IPPROTO_IPV6, IPV6_ADDRFORM, 

   (char *)&addrform, sizeof(addrform)); 

• Changing Hop Limit 

int hoplimit = 10; 

 

setsockopt(s, IPPROTO_IPV6, IPV6_UNICAST_HOPS, 

   (char *)&hoplimit, sizeof(hoplimit)); 



IPv6 Socket Options 

• Multicast Options 

– IPV6_MULTICAST_IF -- set interface (int) 

– IPV6_MULTICAST_HOPS -- set hop limit (int) 

– IPV6_MULTICAST_LOOP -- toggle loopback (int) 

– IPV6_ADD_MEMBERSHIP -- (struct ipv6_mreq) 

– IPV6_DROP_MEMBERSHIP -- (struct ipv6_mreq) 



Displaying and Interpreting IPv6 

Addresses 
• Replace inet_ntoa() and inet_addr() functions with 

protocol-agnostic versions 

– inet_ntop() -- network format to presentation format 

• inet_ntop(int af, void *src, char *dst, int cnt) 

– src is in_addr, in6_addr, etc 

– dst is char array of cnt bytes (INET[6]_ADDRSTRLEN)  

– inet_pton() -- presentation format to network format 

• inet_pton(int af, const char *src, void *dst) 

– src is string represenation 

– dst is pointer to in_addr, in6_addr, etc. 



Hostname and Address Lookups 

• DON’T USE gethostbyname()/gethostbyaddr()  

– Interface to address results is cumbersome with respect to 
address type 

– Not thread-safe 

• gethostbyname() behavior can be changed with 
resolver flag 

• gethostbyname2() allows you to specify an address 
family 

• gethostbyaddr() already has address family 



Hostname and Address Lookups 

• Preferred interface is protocol independent 

– getaddrinfo() and getnameinfo() 

– Allows multiple addresses with independent types 

• Addresses are returned as linked-list of type struct addrinfo 

struct addrinfo { 

   int     ai_flags;          /* AI_PASSIVE, AI_CANONNAME */ 

   int     ai_family;         /* PF_xxx */ 

   int     ai_socktype;       /* SOCK_xxx */ 

   int     ai_protocol;       /* 0 or IPPROTO_x for IPv4 & IPv6 */ 

   size_t  ai_addrlen;        /* length of ai_addr */ 

   char   *ai_canonname;      /* canonical name for hostname */ 

   struct sockaddr  *ai_addr; /* binary address */ 

   struct addrinfo  *ai_next; /* next structure in linked list */ 

}; 



Hostname and Address Lookups 

• getaddrinfo() 
– getaddrinfo(const char *node, const char *service, const     struct 

addrinfo *hints, struct addrinfo **results); 

struct addrinfo hints, *res, *res0; 

int error; 

 

memset(&hints, 0, sizeof(hints)); 

hints.ai_family = PF_UNSPEC; 

hints.ai_socktype = SOCK_STREAM; 

error = getaddrinfo("www.kame.net", "http", &hints, &res0); 

[...] 

 

for (res = res0; res; res = res->ai_next) { 

    s = socket(res->ai_family,  

  res->ai_socktype,res->ai_protocol); 

    [...] 

    error = connect(s, res->ai_addr, res->ai_addrlen); 

    [...] 

} 



Hostname and Address Lookups 

• getnameinfo() -- inverse lookup 
– getnameinfo(const struct sockaddr *sa, size_t sa_len, 

     char *host, size_t hostlen, 

     char *serv, size_t servlen, 

     int flags); 



Advanced Socket API for IPv6 

RFC 2292 
• Details on header structures  

– IPv6 header 

– Extension Headers, 

– ICMPv6 headers 

– Neighbor Discovery message formats 

• RAW sockets and ICMPv6 filters 

• Ancillary data 

– How to get IPv6 Extension data from socket 

• Specifying and receiving Packet Information 

– Src/Dst addr, in/out interface, in/out hop limit, next hop addr 

• API for hop-by-hop, destination, routing options 

• Future API for flow, PMTU, Neighbor reachability 



IPv6 Programming: 
UI Considerations 

• Reading addresses -- use inet_pton()as needed 

– Configuration/Data files and user input need to change 

• Larger address strings -- larger buffers to read and parse 

– Address lookups will return multiple addresses per host 

– Do you need to handle [<ipv6-addr>]:<port> format? 

– Check for overflow 

• Writing addresses -- use inet_ntop()as needed 

– Text or GUI output will require larger screen area 

– Building log messages will require larger buffers 

– Data file formats may need change (addr type and size) 

• Integration with databases or other processes 



General IPv6 Programming: Tools 

• There are some good software tools publicly available that 
can automatically determine if an IPv4 program contains IP-
specific calls, and suggest needed changes. A few are: 
– http://msdn.microsoft.com/library/ 

• IPv6 Guide for Windows Sockets Applications 

• Checkv4.exe utility program 

– http://wwws.sun.com/software/solaris/ipv6/ 

• IPv6 Socket Scrubber  

– http://wwws.sun.com/software/solaris/ipv6/porting_guide_ipv6.pdf 

• Porting Networking Applications to the IPv6 APIs 

– Linux tools also available 



General IPv6 Programming: 
Recommendations 

• Build application-specific address structure in the code. 
– This would typically be a structure that includes the address type, address 

data, and optionally address size.  This allows a single structure for dealing 
with multiple address types. 

• Build small set of functions that deal with these address structures 
– Functions may include: setting, comparing, printing, etc., address structures. 

• Hostname lookups 
– Expect multiple addresses to be returned.  This should be obvious for hosts 

with multiple IPv4 addresses, but account for several IP addresses (at least 2) 
per interface.  Also, consider link-local, multicast, and anycast addresses. 

• When replacing IPv4 addresses in code 
– Rename variables or structure members so that the compiler can help you find 

all instances of the address variable that need to be adjusted 

• Use of "struct sockaddr_storage" and cast to the appropriate sockaddr_* 



General IPv6 Programming: 
Recommendations 

• When processing packets, look for: 

– IPv6 extension headers -- may need to skip for transport layer access 

– Tunneling of IPvX-in-IPvX (how many layers of encapsulation are 

sufficient to handle?) 

– BPF issues 

• Write protocol-independent code 

– Will you be retired when IPv8 is deployed?? 



IPv6 Miscellaneous Issues 

• Libpcap and Berkeley Packet Filters (BPF) 

– Used by tcpdump, ethereal, etc. 

– Have supported IPv6 for a few years 

• But must be enabled in the build 

– tcpdump ip6 

– tcpdump net 2001:480:31:10::/64 

– Filter on port X -- verify that v4 & v6 will be processed 

• tcpdump -d port 22 

• Look for ldh[12] and compare to 0x86dd  



Checking BPF code for IPv6 

root# tcpdump -d port 22 

(000) ldh      [12] 

(001) jeq      #0x86dd          jt 2    jf 10 

(002) ldb      [20] 

(003) jeq      #0x84            jt 6    jf 4 

(004) jeq      #0x6             jt 6    jf 5 

(005) jeq      #0x11            jt 6    jf 23 

(006) ldh      [54] 

(007) jeq      #0x16            jt 22   jf 8 

(008) ldh      [56] 

(009) jeq      #0x16            jt 22   jf 23 

(010) jeq      #0x800           jt 11   jf 23 

(011) ldb      [23] 

(012) jeq      #0x84            jt 15   jf 13 

(013) jeq      #0x6             jt 15   jf 14 

(014) jeq      #0x11            jt 15   jf 23 

(015) ldh      [20] 

(016) jset     #0x1fff          jt 23   jf 17 

(017) ldxb     4*([14]&0xf) 

(018) ldh      [x + 14] 

(019) jeq      #0x16            jt 22   jf 20 

(020) ldh      [x + 16] 

(021) jeq      #0x16            jt 22   jf 23 

(022) ret      #96 

(023) ret      #0 


