
Java sockets 101

Presented by developerWorks, your source for great tutorials

ibm.com/developerWorks

Table of Contents
If you're viewing this document online, you can click any of the topics below to link directly to that section.

1. Tutorial tips .. 2

2. Socket basics ... 3

3. An undercover socket ... 7

4. A simple example .. 11

5. A multithreaded example ... 18

6. A pooled example .. 21

7. Sockets in real life.. 27

8. Summary .. 31

9. Appendix... 33

Java sockets 101 Page 1 of 38

Section 1. Tutorial tips

Should I take this tutorial?
Sockets, which provide a mechanism for communication between two computers, have been
around since long before the Java language was a glimmer in James Gosling's eye. The
language simply lets you use sockets effectively without having to know the details of the
underlying operating system. Most books that focus on Java coding either fail to cover the
topic, or leave a lot to the imagination. This tutorial will tell you what you really need to know
to start using sockets effectively in your Java code. Specifically, we'll cover:

* What sockets are
* Where they fit into the structure of programs you're likely to write
* The simplest sockets implementation that could possibly work -- to help you understand

the basics
* A detailed walkthrough of two additional examples that explore sockets in multithreaded

and pooled environments
* A brief discussion of an application for sockets in the real world

If you can describe how to use the classes in the java.net package, this tutorial is probably
a little basic for you, although it might be a good refresher. If you have been working with
sockets on PCs and other platforms for years, the initial sections might bore you. But if you
are new to sockets, and simply want to know what they are and how to use them effectively
in your Java code, this tutorial is a great place to start.

Getting help
For questions about the content of this tutorial, contact the authors, Roy Miller (at
rmiller@rolemodelsoft.com) or Adam Williams (at awilliams@rolemodelsoft.com).

Roy Miller and Adam Williams are Software Developers at RoleModel Software, Inc. They
have worked jointly to prototype a socket-based application for the TINI Java platform from
Dallas Semiconductor. Roy and Adam are currently working on porting a COBOL financial
transaction system to the Java platform, using sockets.

Prior to joining RoleModel, Roy spent six years with Andersen Consulting (now Accenture)
developing software and managing projects. He co-authored Extreme Programming Applied:
Playing to Win (Addison-Wesley XP Series) scheduled for publication in October 2001.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java sockets 101 Page 2 of 38

mailto:rmiller@rolemodelsoft.com
mailto:awilliams@rolemodelsoft.com

Section 2. Socket basics

Introduction
Most programmers, whether they're coding in the Java language or not, don't want to know
much about low-level details of how applications on different computers communicate with
each other. Programmers want to deal with higher-level abstractions that are easier to
understand. Java programmers want objects that they can interact with via an intuitive
interface, using the Java constructs with which they are familiar.

Sockets live in both worlds -- the low-level details that we'd rather avoid and the abstract
layer we'd rather deal with. This section will explore just enough of the low-level details to
make the abstract application understandable.

Computer networking 101
Computers operate and communicate with one
another in a very simple way. Computer chips are
a collection of on-off switches that store and
transmit data in the form of 1s and 0s. When
computers want to share data, all they need to do
is stream a few million of these bits and bytes back
and forth, while agreeing on speed, sequence,
timing, and such. How would you like to worry
about those details every time you wanted to
communicate information between two
applications?

To avoid that, we need a set of packaged protocols
that can do the job the same way every time. That
would allow us to handle our application-level work
without having to worry about the low-level
networking details. These sets of packaged
protocols are called stacks. The most common
stack these days is TCP/IP. Most stacks (including
TCP/IP) adhere roughly to the International
Standards Organization (ISO) Open Systems
Interconnect Reference Model (OSIRM). The
OSIRM says that there are seven logical layers in

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java sockets 101 Page 3 of 38

a reliable framework for computer networking (see
the diagram). Companies all over have contributed
something that implements some of the layers in
this model, from generating the electrical signals
(pulses of light, radio frequency, and so on) to
presenting the data to applications. TCP/IP maps
to two layers in the OSI model, as shown in the
diagram.

We won't go into the details of the layers too much,
but we want you to be aware of where sockets fit.

Where sockets fit
Sockets reside roughly at the Session Layer of the
OSI model (see the diagram). The Session Layer
is sandwiched between the application-oriented
upper layers and the real-time data communication
lower layers. The Session Layer provides services
for managing and controlling data flow between
two computers. As part of this layer, sockets
provide an abstraction that hides the complexities
of getting the bits and bytes on the wire for
transmission. In other words, sockets allow us to
transmit data by having our application indicate
that it wants to send some bytes. Sockets mask
the nuts and bolts of getting the job done.

When you pick up your telephone, you provide
sound waves to a sensor that converts your voice
into electrically transmittable data. The phone is a
human's interface to the telecommunications
network. You aren't required to know the details of
how your voice is transported, only the party to
whom you would like to connect. In the same
sense, a socket acts as a high-level interface that
hides the complexities of transmitting 1s and 0s
across unknown channels.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java sockets 101 Page 4 of 38

Exposing sockets to an
application
When you write code that uses sockets, that code
does work at the Presentation Layer. The
Presentation Layer provides a common
representation of information that the Application
Layer can use. Say you are planning to connect
your application to a legacy banking system that
understands only EBCDIC. Your application
domain objects store information in ASCII format.
In this case, you are responsible for writing code at
the Presentation Layer to convert data from
EBCDIC to ASCII, and then (for example) to
provide a domain object to your Application Layer.
Your Application Layer can then do whatever it
wants with the domain object.

The socket-handling code you write lives only at
the Presentation Layer. Your Application Layer
doesn't have to know anything about how sockets
work.

What are sockets?
Now that we know the role sockets play, the question remains: What is a socket? Bruce
Eckel describes a socket this way in his book Thinking in Java:

The socket is the software abstraction used to represent the "terminals" of a connection
between two machines. For a given connection, there's a socket on each machine, and you
can imagine a hypothetical "cable" running between the two machines with each end of the
"cable" plugged into a socket. Of course, the physical hardware and cabling between
machines is completely unknown. The whole point of the abstraction is that we don't have to
know more than is necessary.

In a nutshell, a socket on one computer that talks to a socket on another computer creates a
communication channel. A programmer can use that channel to send data between the two
machines. When you send data, each layer of the TCP/IP stack adds appropriate header
information to wrap your data. These headers help the stack get your data to its destination.
The good news is that the Java language hides all of this from you by providing the data to
your code on streams, which is why they are sometimes called streaming sockets.

Think of sockets as handsets on either side of a telephone call -- you and I talk and listen on
our handsets on a dedicated channel. The conversation doesn't end until we decide to hang
up (unless we're using cell phones). And until we hang up, our respective phone lines are
busy.

If you need to communicate between two computers without the overhead of higher-level
mechanisms like ORBs (and CORBA, RMI, IIOP, and so on), sockets are for you. The
low-level details of sockets get rather involved. Fortunately, the Java platform gives you

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java sockets 101 Page 5 of 38

some simple yet powerful higher-level abstractions that make creating and using sockets
easy.

Types of sockets
Generally speaking, sockets come in two flavors in the Java language:

* TCP sockets (implemented by the Socket class, which we'll discuss later)
* UDP sockets (implemented by the DatagramSocket class)

TCP and UDP play the same role, but they do it differently. Both receive transport protocol
packets and pass along their contents to the Presentation Layer. TCP divides messages into
packets (datagrams) and reassembles them in the correct sequence at the receiving end. It
also handles requesting retransmission of missing packets. With TCP, the upper-level layers
have much less to worry about. UDP doesn't provide these assembly and retransmission
requesting features. It simply passes packets along. The upper layers have to make sure that
the message is complete and assembled in correct sequence.

In general, UDP imposes lower performance overhead on your application, but only if your
application doesn't exchange lots of data all at once and doesn't have to reassemble lots of
datagrams to complete a message. Otherwise, TCP is the simplest and probably most
efficient choice.

Because most readers are more likely to use TCP than UDP, we'll limit our discussion to the
TCP-oriented classes in the Java language.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java sockets 101 Page 6 of 38

Section 3. An undercover socket

Introduction
The Java platform provides implementations of sockets in the java.net package. In this
tutorial, we'll be working with the following three classes in java.net:

* URLConnection
* Socket
* ServerSocket

There are more classes in java.net, but these are the ones you'll run across the most
often. Let's begin with URLConnection. This class provides a way to use sockets in your
Java code without having to know any of the underlying socket details.

Using sockets without even trying
The URLConnection class is the abstract superclass of all classes that create a
communications link between an application and a URL. URLConnections are most useful
for getting documents on Web servers, but can be used to connect to any resource identified
by a URL. Instances of this class can be used both to read from and to write to the resource.
For example, you could connect to a servlet and send a well-formed XML String to the
server for processing. Concrete subclasses of URLConnection (such as
HttpURLConnection) provide extra features specific to their implementation. For our
example, we're not doing anything special, so we'll make use of the default behaviors
provided by URLConnection itself.

Connecting to a URL involves several steps:

* Create the URLConnection
* Configure it using various setter methods
* Connect to the URL
* Interact with it using various getter methods

Next, we'll look at some sample code that demonstrates how to use a URLConnection to
request a document from a server.

The URLClient class
We'll begin with the structure for the URLClient class.

import java.io.*;
import java.net.*;
public class URLClient {

protected URLConnection connection;
public static void main(String[] args) {
}
public String getDocumentAt(String urlString) {
}

}

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java sockets 101 Page 7 of 38

The first order of business is to import java.net and java.io.

We give our class one instance variable to hold a URLConnection.

Our class has a main() method that handles the logic flow of surfing for a document. Our
class also has a getDocumentAt() method that connects to the server and asks it for the
given document. We will go into the details of each of these methods next.

Surfing for a document
The main() method handles the logic flow of surfing for a document:

public static void main(String[] args) {
URLClient client = new URLClient();
String yahoo = client.getDocumentAt("http://www.yahoo.com");
System.out.println(yahoo);

}

Our main() method simply creates a new URLClient and calls getDocumentAt() with a
valid URL String. When that call returns the document, we store it in a String and then
print it out to the console. The real work, though, gets done in the getDocumentAt()
method.

Requesting a document from a server
The getDocumentAt() method handles the real work of getting a document over the Web:

public String getDocumentAt(String urlString) {
StringBuffer document = new StringBuffer();
try {

URL url = new URL(urlString);
URLConnection conn = url.openConnection();
BufferedReader reader = new BufferedReader(new InputStreamReader(conn.getInputStream()));
String line = null;
while ((line = reader.readLine()) != null)

document.append(line + "\n");
reader.close();

} catch (MalformedURLException e) {
System.out.println("Unable to connect to URL: " + urlString);

} catch (IOException e) {
System.out.println("IOException when connecting to URL: " + urlString);

}
return document.toString();

}

The getDocumentAt() method takes a String containing the URL of the document we
want to get. We start by creating a StringBuffer to hold the lines of the document. Next,
we create a new URL with the urlString we passed in. Then we create a URLConnection
and open it:

URLConnection conn = url.openConnection();

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java sockets 101 Page 8 of 38

Once we have a URLConnection, we get its InputStream and wrap it in an
InputStreamReader, which we then wrap in a BufferedReader so that we can read
lines of the document we're getting from the server. We'll use this wrapping technique often
when dealing with sockets in Java code, but we won't always discuss it in detail. You should
be familiar with it before we move on:

BufferedReader reader =
new BufferedReader(new InputStreamReader(conn.getInputStream()));

Having our BufferedReader makes reading the contents of our document easy. We call
readLine() on reader in a while loop:

String line = null;
while ((line = reader.readLine()) != null)

document.append(line + "\n");

The call to readLine() is going to block until in reaches a line termination character (for
example, a newline character) in the incoming bytes on the InputStream. If it doesn't get
one, it will keep waiting. It will return null only when the connection is closed. In this case,
once we get a line, we append it to the StringBuffer called document, along with a
newline character. This preserves the format of the document that was read on the server
side.

When we're done reading lines, we close the BufferedReader:

reader.close();

If the urlString supplied to a URL constructor is invalid, a MalformedURLException is
thrown. If something else goes wrong, such as when getting the InputStream on the
connection, an IOException is thrown.

Wrapping up
Beneath the covers, URLConnection uses a socket to read from the URL we specified
(which just resolves to an IP address), but we don't have to know about it and we don't care.
But there's more to the story; we'll get to that shortly.

Before we move on, let's review the steps to create and use a URLConnection:

1. Instantiate a URL with a valid URL String of the resource you're connecting to (throws
a MalformedURLException if there's a problem).

2. Open a connection on that URL.

3. Wrap the InputStream for that connection in a BufferedReader so you can read
lines.

4. Read the document using your BufferedReader.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java sockets 101 Page 9 of 38

5. Close your BufferedReader.

You can find the complete code listing for URLClient at Code listing for URLClient on page 33
.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java sockets 101 Page 10 of 38

Section 4. A simple example

Background
The example we'll cover in this section illustrates how you can use Socket and
ServerSocket in your Java code. The client uses a Socket to connect to a server. The
server listens on port 3000 with a ServerSocket. The client requests the contents of a file
on the server's C: drive.

For the sake of clarity, we split the example into the client side and the server side. At the
end, we'll put it all together so you can see the entire picture.

We developed this code in IBM VisualAge for Java 3.5, which uses JDK 1.2. To create this
example for yourself, JDK 1.1.7 or greater should be fine. The client and the server will run
on a single machine, so don't worry about having a network available.

Creating the RemoteFileClient class
Here is the structure for the RemoteFileClient class:

import java.io.*;
import java.net.*;
public class RemoteFileClient {

protected String hostIp;
protected int hostPort;
protected BufferedReader socketReader;
protected PrintWriter socketWriter;
public RemoteFileClient(String aHostIp, int aHostPort) {

hostIp = aHostIp;
hostPort = aHostPort;

}
public static void main(String[] args) {
}
public void setUpConnection() {
}
public String getFile(String fileNameToGet) {
}
public void tearDownConnection() {
}

}

First we import java.net and java.io. The java.net package gives you the socket tools
you need. The java.io package gives you tools to read and write streams, which is the
only way you can communicate with TCP sockets.

We give our class instance variables to support reading from and writing to socket streams,
and to store details of the remote host to which we will connect.

The constructor for our class takes an IP address and a port number for a remote host and
assigns them to instance variables.

Our class has a main() method and three other methods. We'll go into the details of these
methods later. For now, just know that setUpConnection() will connect to the remote

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java sockets 101 Page 11 of 38

server, getFile() will ask the remote server for the contents of fileNameToGet, and
tearDownConnection() will disconnect from the remote server.

Implementing main()
Here we implement the main() method, which will create the RemoteFileClient, use it to
get the contents of a remote file, and then print the result:

public static void main(String[] args) {
RemoteFileClient remoteFileClient = new RemoteFileClient("127.0.0.1", 3000);
remoteFileClient.setUpConnection();
String fileContents =

remoteFileClient.getFile("C:\\WINNT\\Temp\\RemoteFile.txt");
remoteFileClient.tearDownConnection();
System.out.println(fileContents);

}

The main() method instantiates a new RemoteFileClient (the client) with an IP address
and port number for the host. Then, we tell the client to set up a connection to the host (more
on this later). Next, we tell the client to get the contents of a specified file on the host. Finally,
we tell the client to tear down its connection to the host. We print out the contents of the file
to the console, just to prove everything worked as planned.

Setting up a connection
Here we implement the setUpConnection() method, which will set up our Socket and
give us access to its streams:

public void setUpConnection() {
try {

Socket client = new Socket(hostIp, hostPort);
socketReader = new BufferedReader(

new InputStreamReader(client.getInputStream()));
socketWriter = new PrintWriter(client.getOutputStream());

} catch (UnknownHostException e) {
System.out.println("Error setting up socket connection: unknown host at " + hostIp + ":" + hostPort);

} catch (IOException e) {
System.out.println("Error setting up socket connection: " + e);

}
}

The setUpConnection() method creates a Socket with the IP address and port number
of the host:

Socket client = new Socket(hostIp, hostPort);

We wrap the Socket's InputStream in a BufferedReader so that we can read lines
from the stream. Then, we wrap the Socket's OutputStream in a PrintWriter so that
we can send our request for a file to the server:

socketReader = new BufferedReader(new InputStreamReader(client.getInputStream()));
socketWriter = new PrintWriter(client.getOutputStream());

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java sockets 101 Page 12 of 38

Remember that our client and server simply pass bytes back and forth. Both the client and
the server have to know what the other is going to be sending so that they can respond
appropriately. In this case, the server knows that we'll be sending it a valid file path.

When you instantiate a Socket, an UnknownHostException may be thrown. We don't do
anything special to handle it here, but we print some information out to the console to tell us
what went wrong. Likewise, if a general IOException is thrown when we try to get the
InputStream or OutputStream on a Socket, we print out some information to the
console. This is our general approach in this tutorial. In production code, we would be a little
more sophisticated.

Talking to the host
Here we implement the getFile() method, which will tell the server what file we want and
receive the contents from the server when it sends the contents back:

public String getFile(String fileNameToGet) {
StringBuffer fileLines = new StringBuffer();
try {

socketWriter.println(fileNameToGet);
socketWriter.flush();
String line = null;
while ((line = socketReader.readLine()) != null)

fileLines.append(line + "\n");
} catch (IOException e) {

System.out.println("Error reading from file: " + fileNameToGet);
}
return fileLines.toString();

}

A call to the getFile() method requires a valid file path String. It starts by creating the
StringBuffer called fileLines for storing each of the lines that we read from the file on
the server:

StringBuffer fileLines = new StringBuffer();

In the try{}catch{} block, we send our request to the host using the PrintWriter that
was established during connection setup:

socketWriter.println(fileNameToGet);
socketWriter.flush();

Note that we flush() the PrintWriter here instead of closing it. This forces data to be
sent to the server without closing the Socket.

Once we've written to the Socket, we are expecting some response. We have to wait for it
on the Socket's InputStream, which we do by calling readLine() on our
BufferedReader in a while loop. We append each returned line to the fileLines
StringBuffer (with a newline character to preserve the lines):

String line = null;
while ((line = socketReader.readLine()) != null)

fileLines.append(line + "\n");

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java sockets 101 Page 13 of 38

Tearing down a connection
Here we implement the tearDownConnection() method, which will "clean up" after we're
done using our connection:

public void tearDownConnection() {
try {

socketWriter.close();
socketReader.close();

} catch (IOException e) {
System.out.println("Error tearing down socket connection: " + e);

}
}

The tearDownConnection() method simply closes the BufferedReader and
PrintWriter we created on our Socket's InputStream and OutputStream,
respectively. Doing this closes the underlying streams that we acquired from the Socket, so
we have to catch the possible IOException.

Wrapping up the client
Our class is done. Before we move on to the server end of things, let's review the steps to
create and use a Socket:

1. Instantiate a Socket with the IP address and port of the machine you're connecting to
(throws an Exception if there's a problem).

2. Get the streams on that Socket for reading and writing.

3. Wrap the streams in instances of BufferedReader/PrintWriter, if that makes
things easier.

4. Read from and write to the Socket.

5. Close your open streams.

You can find the complete code listing for RemoteFileClient at Code listing for
RemoteFileClient on page 33.

Creating the RemoteFileServer class
Here is the structure for the RemoteFileServer class:

import java.io.*;
import java.net.*;
public class RemoteFileServer {

protected int listenPort = 3000;
public static void main(String[] args) {

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java sockets 101 Page 14 of 38

}
public void acceptConnections() {
}
public void handleConnection(Socket incomingConnection) {
}

}

As with the client, we first import java.net and java.io. Next, we give our class an
instance variable to hold the port to listen to for incoming connections. By default, this is port
3000.

Our class has a main() method and two other methods. We'll go into the details of these
methods later. For now, just know that acceptConnections() will allow clients to connect
to the server, and handleConnection() interacts with the client Socket to send the
contents of the requested file to the client.

Implementing main()
Here we implement the main() method, which will create a RemoteFileServer and tell it
to accept connections:

public static void main(String[] args) {
RemoteFileServer server = new RemoteFileServer();
server.acceptConnections();

}

The main() method on the server side is even simpler than on the client side. We
instantiate a new RemoteFileServer, which will listen for incoming connection requests on
the default listen port. Then we call acceptConnections() to tell the server to listen.

Accepting connections
Here we implement the acceptConnections() method, which will set up a
ServerSocket and wait for connection requests:

public void acceptConnections() {
try {

ServerSocket server = new ServerSocket(listenPort);
Socket incomingConnection = null;
while (true) {

incomingConnection = server.accept();
handleConnection(incomingConnection);

}
} catch (BindException e) {

System.out.println("Unable to bind to port " + listenPort);
} catch (IOException e) {

System.out.println("Unable to instantiate a ServerSocket on port: " + listenPort);
}

}

The acceptConnections() method creates a ServerSocket with the port number to
listen to. We then tell the ServerSocket to start listening by calling accept() on it. The

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java sockets 101 Page 15 of 38

accept() method blocks until a connection request comes in. At that point, accept()
returns a new Socket bound to a randomly assigned port on the server, which is passed to
handleConnection(). Notice that this accepting of connections is in an infinite loop. No
shutdown supported here.

Whenever you create a ServerSocket, Java code may throw an error if it can't bind to the
specified port (perhaps because something else already has control of that port). So we have
to catch the possible BindException here. And just like on the client side, we have to
catch an IOException that could be thrown when we try to accept connections on our
ServerSocket. Note that you can set a timeout on the accept() call by calling
setSoTimeout() with number of milliseconds to avoid a really long wait. Calling
setSoTimeout() will cause accept() to throw an IOException after the specified
elapsed time.

Handling connections
Here we implement the handleConnection() method, which will use streams on a
connection to receive input and write output:

public void handleConnection(Socket incomingConnection) {
try {

OutputStream outputToSocket = incomingConnection.getOutputStream();
InputStream inputFromSocket = incomingConnection.getInputStream();
BufferedReader streamReader =

new BufferedReader(new InputStreamReader(inputFromSocket));
FileReader fileReader = new FileReader(new File(streamReader.readLine()));
BufferedReader bufferedFileReader = new BufferedReader(fileReader);
PrintWriter streamWriter =

new PrintWriter(incomingConnection.getOutputStream());
String line = null;
while ((line = bufferedFileReader.readLine()) != null) {

streamWriter.println(line);
}
fileReader.close();
streamWriter.close();
streamReader.close();

} catch (Exception e) {
System.out.println("Error handling a client: " + e);

}
}

As with the client, we get the streams associated with the Socket we just made, using
getOutputStream() and getInputStream(). As on the client side, we wrap the
InputStream in a BufferedReader and the OutputStream in a PrintWriter. On the
server side, we need to add some code to read the target file and send the contents to the
client line by line. Here's the important code:

FileReader fileReader = new FileReader(new File(streamReader.readLine()));
BufferedReader bufferedFileReader = new BufferedReader(fileReader);
String line = null;
while ((line = bufferedFileReader.readLine()) != null) {

streamWriter.println(line);
}

This code deserves some detailed explanation. Let's look at it bit by bit:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java sockets 101 Page 16 of 38

FileReader fileReader = new FileReader(new File(streamReader.readLine()));

First, we make use of our BufferedReader on the Socket's InputStream. We should be
getting a valid file path, so we construct a new File using that path name. We make a new
FileReader to handle reading the file.

BufferedReader bufferedFileReader = new BufferedReader(fileReader);

Here we wrap our FileReader in a BufferedReader to let us read the file line by line.

Next, we call readLine() on our BufferedReader. This call will block until bytes come in.
When we get some bytes, we put them in our local line variable, and then write them out to
the client. When we're done reading and writing, we close the open streams.

Note that we closed streamWriter and streamReader after we were done reading from
the Socket. You might ask why we didn't close streamReader immediately after reading in
the file name. The reason is that when you do that, your client won't get any data. If you
close the streamReader before you close streamWriter, you can write to the Socket all
you want but no data will make it across the channel (it's closed).

Wrapping up the server
Before we move on to another, more practical example, let's review the steps to create and
use a ServerSocket:

1. Instantiate a ServerSocket with a port on which you want it to listen for incoming
client connections (throws an Exception if there's a problem).

2. Call accept() on the ServerSocket to block while waiting for connection.

3. Get the streams on that underlying Socket for reading and writing.

4. Wrap the streams as necessary to simplify your life.

5. Read from and write to the Socket.

6. Close your open streams (and remember, never close your Reader before your Writer).

You can find the complete code listing for RemoteFileServer at Code listing for
RemoteFileServer on page 34.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java sockets 101 Page 17 of 38

Section 5. A multithreaded example

Introduction
The previous example gives you the basics, but that won't take you very far. If you stopped
here, you could handle only one client at a time. The reason is that handleConnection()
is a blocking method. Only when it has completed its dealings with the current connection
can the server accept another client. Most of the time, you will want (and need) a
multithreaded server.

There aren't too many changes you need to make to RemoteFileServer to begin handling
multiple clients simultaneously. As a matter of fact, had we discussed backlogging earlier, we
would have just one method to change, although we'll need to create something new to
handle the incoming connections. We will show you here also how ServerSocket handles
lots of clients waiting (backing up) to use our server. This example illustrates an inefficient
use of threads, so be patient.

Accepting (too many?) connections
Here we implement the revised acceptConnections() method, which will create a
ServerSocket that can handle a backlog of requests, and tell it to accept connections:

public void acceptConnections() {
try {
ServerSocket server = new ServerSocket(listenPort, 5);
Socket incomingConnection = null;
while (true) {

incomingConnection = server.accept();
handleConnection(incomingConnection);

}
} catch (BindException e) {
System.out.println("Unable to bind to port " + listenPort);
} catch (IOException e) {
System.out.println("Unable to instantiate a ServerSocket on port: " + listenPort);
}

}

Our new server still needs to acceptConnections() so this code is virtually identical. The
highlighted line indicates the one significant difference. For this multithreaded version, we
now specify the maximum number of client requests that can backlog when instantiating the
ServerSocket. If we don't specify the max number of client requests, the default value of
50 is assumed.

Here's how it works. Suppose we specify a backlog of 5 and that five clients request
connections to our server. Our server will start processing the first connection, but it takes a
long time to process that connection. Since our backlog is 5, we can have up to five requests
in the queue at one time. We're processing one, so that means we can have five others
waiting. That's a total of six either waiting or being processed. If a seventh client asks for a
connection while our server is still busy accepting connection one (remember that 2-6 are still
in queue), that seventh client will be refused. We will illustrate limiting the number of clients
that can be connected simultaneously in our pooled server example.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java sockets 101 Page 18 of 38

Handling connections: Part 1
Here we'll talk about the structure of the handleConnection() method, which spawns a
new Thread to handle each connection. We'll discuss this in two parts. We'll focus on the
method itself in this panel, and then examine the structure of the ConnectionHandler
helper class used by this method in the next panel.

public void handleConnection(Socket connectionToHandle) {
new Thread(new ConnectionHandler(connectionToHandle)).start();

}

This method represents the big change to our RemoteFileServer. We still call
handleConnection() after the server accepts a connection, but now we pass that
Socket to an instance of ConnectionHandler, which is Runnable. We create a new
Thread with our ConnectionHandler and start it up. The ConnectionHandler's run()
method contains the Socket reading/writing and File reading code that used to be in
handleConnection() on RemoteFileServer.

Handling connections: Part 2
Here is the structure for the ConnectionHandler class:

import java.io.*;
import java.net.*;
public class ConnectionHandler implements Runnable{

Socket socketToHandle;
public ConnectionHandler(Socket aSocketToHandle) {

socketToHandle = aSocketToHandle;
}
public void run() {
}

}

This helper class is pretty simple. As with our other classes so far, we import java.net and
java.io. The class has a single instance variable, socketToHandle, that holds the
Socket handled by the instance.

The constructor for our class takes a Socket instance and assigns it to socketToHandle.

Notice that the class implements the Runnable interface. Classes that implement this
interface must implement the run() method, which our class does. We'll go into the details
of run() later. For now, just know that it will actually process the connection using code
identical to what we saw before in our RemoteFileServer class.

Implementing run()
Here we implement the run() method, which will grab the streams on our connection, use
them to read from and write to the connection, and close them when we are done:

public void run() {
try {

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java sockets 101 Page 19 of 38

PrintWriter streamWriter = new PrintWriter(socketToHandle.getOutputStream());
BufferedReader streamReader =

new BufferedReader(new InputStreamReader(socketToHandle.getInputStream()));
String fileToRead = streamReader.readLine();
BufferedReader fileReader = new BufferedReader(new FileReader(fileToRead));
String line = null;
while ((line = fileReader.readLine()) != null)

streamWriter.println(line);
fileReader.close();
streamWriter.close();
streamReader.close();

} catch (Exception e) {
System.out.println("Error handling a client: " + e);

}
}

The run() method on ConnectionHandler does what handleConnection() on
RemoteFileServer did. First, we wrap the InputStream and OutputStream in a
BufferedReader and a PrintWriter, respectively (using getOutputStream() and
getInputStream() on the Socket). Then we read the target file line by line with this code:

FileReader fileReader = new FileReader(new File(streamReader.readLine()));
BufferedReader bufferedFileReader = new BufferedReader(fileReader);
String line = null;
while ((line = bufferedFileReader.readLine()) != null) {

streamWriter.println(line);
}

Remember that we should be getting a valid file path from the client, so we construct a new
File using that path name, wrap it in a FileReader to handle reading the file, and then
wrap that in a BufferedReader to let us read the file line by line. We call readLine() on
our BufferedReader in a while loop until we have no more lines to read. Remember that
the call to readLine() will block until bytes come in. When we get some bytes, we put them
in our local line variable, and then write them out to the client. When we're done reading
and writing, we close the open streams.

Wrapping up the multithreaded server
Our multithreaded server is done. Before we move on to the pooled example, let's review the
steps to create and use a multithreaded version of the server:

1. Modify acceptConnections() to instantiate a ServerSocket with a default
50-connection backlog (or whatever specific number you want, greater than 1).

2. Modify handleConnection() on the ServerSocket to spawn a new Thread with
an instance of ConnectionHandler.

3. Implement the ConnectionHandler class, borrowing code from the
handleConnection() method on RemoteFileServer.

You can find the complete code listing for MultithreadedRemoteFileServer at Code
listing for MultithreadedRemoteFileServer on page 35, and the complete code listing for
ConnectionHandler at Code listing for ConnectionHandler on page 35.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java sockets 101 Page 20 of 38

Section 6. A pooled example

Introduction
The MultithreadedServer we've got now simply creates a new ConnectionHandler in
a new Thread each time a client asks for a connection. That means we have potentially a
bunch of Threads lying around. Creating a Thread isn't trivial in terms of system overhead,
either. If performance becomes an issue (and don't assume it will until it does), being more
efficient about handling our server would be a good thing. So, how do we manage the server
side more efficiently? We can maintain a pool of incoming connections that a limited number
of ConnectionHandlers will service. This design provides the following benefits:

* It limits the number of simultaneous connections allowed.
* We only have to start up ConnectionHandler Threads one time.

Fortunately, as with our multithreaded example, adding pooling to our code doesn't require
an overhaul. In fact, the client side of the application isn't affected at all. On the server side,
we create a set number of ConnectionHandlers when the server starts, place incoming
connections into a pool and let the ConnectionHandlers take care of the rest. There are
many possible tweaks to this design that we won't cover. For instance, we could refuse
clients by limiting the number of connections we allow to build up in the pool.

Note: We will not cover acceptConnections() again. This method is exactly the same as
in earlier examples. It loops forever calling accept() on a ServerSocket and passes the
connection to handleConnection().

Creating the PooledRemoteFileServer class
Here is the structure for the PooledRemoteFileServer class:

import java.io.*;
import java.net.*;
import java.util.*;
public class PooledRemoteFileServer {

protected int maxConnections;
protected int listenPort;
protected ServerSocket serverSocket;
public PooledRemoteFileServer(int aListenPort, int maxConnections) {

listenPort = aListenPort;
this.maxConnections = maxConnections;

}
public static void main(String[] args) {
}
public void setUpHandlers() {
}
public void acceptConnections() {
}
protected void handleConnection(Socket incomingConnection) {
}

}

Note the import statements that should be familiar by now. We give our class the following
instance variables to hold:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java sockets 101 Page 21 of 38

* The maximum number of simultaneous active client connections our server can handle

* The port to listen to for incoming connections (we didn't assign a default value, but feel
free to do that if you want)

* The ServerSocket that will accept client connection requests

The constructor for our class takes the port to listen to and the maximum number of
connections.

Our class has a main() method and three other methods. We'll go into the details of these
methods later. For now, just know that setUpHandlers() creates a number of
PooledConnectionHandler instances equal to maxConnections and the other two
methods are like what we've seen before: acceptConnections() listens on the
ServerSocket for incoming client connections, and handleConnection actually handles
each client connection once it's established.

Implementing main()
Here we implement the revised main() method, which will create a
PooledRemoteFileServer that can handle a given number of client connections, and tell
it to accept connections:

public static void main(String[] args) {
PooledRemoteFileServer server = new PooledRemoteFileServer(3000, 3);
server.setUpHandlers();
server.acceptConnections();

}

Our main() method is straightforward. We instantiate a new PooledRemoteFileServer,
which will set up three PooledConnectionHandlers by calling setUpHandlers(). Once
the server is ready, we tell it to acceptConnections().

Setting up the connection handlers
public void setUpHandlers() {

for (int i = 0; i < maxConnections; i++) {
PooledConnectionHandler currentHandler = new PooledConnectionHandler();
new Thread(currentHandler, "Handler " + i).start();

}
}

The setUpHandlers() method creates maxConnections worth of
PooledConnectionHandlers (three) and fires them up in new Threads. Creating a
Thread with an object that implements Runnable allows us to call start() on the Thread
and expect run() to be called on the Runnable. In other words, our
PooledConnectionHandlers will be waiting to handle incoming connections, each in its
own Thread. We create only three Threads in our example, and this cannot change once
the server is running.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java sockets 101 Page 22 of 38

Handling connections
Here we implement the revised handleConnections() method, which will delegate
handling a connection to a PooledConnectionHandler:

protected void handleConnection(Socket connectionToHandle) {
PooledConnectionHandler.processRequest(connectionToHandle);
}

We now ask our PooledConnectionHandlers to process all incoming connections
(processRequest() is a static method).

Here is the structure for the PooledConnectionHandler class:

import java.io.*;
import java.net.*;
import java.util.*;
public class PooledConnectionHandler implements Runnable {

protected Socket connection;
protected static List pool = new LinkedList();
public PooledConnectionHandler() {
}
public void handleConnection() {
}
public static void processRequest(Socket requestToHandle) {
}
public void run() {
}

}

This helper class is very much like ConnectionHandler, but with a twist to handle
connection pooling. The class has two single instance variables:

* connection, the Socket that is currently being handled
* A static LinkedList called pool that holds the connections that need to be handled

Filling the connection pool
Here we implement the processRequest() method on our
PooledConnectionHandler, which will add incoming requests to the pool and tell other
objects waiting on the pool that it now has some contents:

public static void processRequest(Socket requestToHandle) {
synchronized (pool) {

pool.add(pool.size(), requestToHandle);
pool.notifyAll();

}
}

This method requires some background on how the Java keyword synchronized works.
We will attempt a short lesson on threading.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java sockets 101 Page 23 of 38

First, some definitions:

* Atomic method. Methods (or blocks of code) that cannot be interrupted mid-execution
* Mutex lock. A single "lock" that must be obtained by a client wishing to execute an

atomic method

So, when object A wants to use synchronized method doSomething() on object B,
object A must first attempt to acquire the mutex from object B. Yes, this means that when
object A has the mutex, no other object may call any other synchronized method on object
B.

A synchronized block is a slightly different animal. You can synchronize a block on any
object, not just the object that has the block in one of its methods. In our example, our
processRequest() method contains a block synchronized on the pool object
(remember it's a LinkedList that holds the pool of connections to be handled). The reason
we do this is to ensure that nobody else can modify the connection pool at the same time we
are.

Now that we've guaranteed that we're the only ones wading in the pool, we can add the
incoming Socket to the end of our LinkedList. Once we've added the new connection,
we notify other Threads waiting to access the pool that it's now available, using this code:

pool.notifyAll();

All subclasses of Object inherit the notifyAll() method. This method, in conjunction
with the wait() method that we'll discuss in the next panel, allows one Thread to let
another Thread know that some condition has been met. That means that the second
Thread must have been waiting for that condition to be satisfied.

Getting connections from the pool
Here we implement the revised run() method on PooledConnectionHandler, which will
wait on the connection pool and handle the connection once the pool has one:

public void run() {
while (true) {

synchronized (pool) {
while (pool.isEmpty()) {

try {
pool.wait();

} catch (InterruptedException e) {
return;

}
}
connection = (Socket) pool.remove(0);

}
handleConnection();

}
}

Recall from the previous panel that a Thread is waiting to be notified that a condition on the
connection pool has been satisfied. In our example, remember that we have three

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java sockets 101 Page 24 of 38

PooledConnectionHandlers waiting to use connections in the pool. Each of these
PooledConnectionHandlers is running in its own Thread and is blocked on the call to
pool.wait(). When our processRequest() method called notifyAll() on the
connection pool, all of our waiting PooledConnectionHandlers were notified that the pool
was available. Each one then continues past the call to pool.wait(), and rechecks the
while(pool.isEmpty()) loop condition. The pool will be empty for all but one handler, so
all but one handler will block again on the call to pool.wait(). The one that encounters a
non-empty pool will break out of the while(pool.isEmpty()) loop and will grab the first
connection from the pool:

connection = (Socket) pool.remove(0);

Once it has a connection to use, it calls handleConnection() to handle it.

In our example, the pool probably won't ever have more than one connection in it, simply
because things execute so fast. If there were more than one connection in the pool, then the
other handlers wouldn't have to wait for new connections to be added to the pool. When they
checked the pool.isEmpty() condition, it would fail, and they would proceed to grab a
connection from the pool and handle it.

One other thing to note. How is the processRequest() method able to put connections in
the pool when the run() method has a mutex lock on the pool? The answer is that the call
to wait() on the pool releases the lock, and then grabs it again right before it returns. This
allows other code synchronized on the pool object to acquire the lock.

Handling connections: One more time
Here we implement the revised handleConnection() method, which will grab the streams
on a connection, use them, and clean them up when finished:

public void handleConnection() {
try {

PrintWriter streamWriter = new PrintWriter(connection.getOutputStream());
BufferedReader streamReader =

new BufferedReader(new InputStreamReader(connection.getInputStream()));
String fileToRead = streamReader.readLine();
BufferedReader fileReader = new BufferedReader(new FileReader(fileToRead));
String line = null;
while ((line = fileReader.readLine()) != null)

streamWriter.println(line);
fileReader.close();
streamWriter.close();
streamReader.close();

} catch (FileNotFoundException e) {
System.out.println("Could not find requested file on the server.");

} catch (IOException e) {
System.out.println("Error handling a client: " + e);

}
}

Unlike in our multithreaded server, our PooledConnectionHandler has a
handleConnection() method. The code within this method is exactly the same as the
code in the run() method on our non-pooled ConnectionHandler. First, we wrap the

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java sockets 101 Page 25 of 38

OutputStream and InputStream in a PrintWriter and a BufferedReader,
respectively (using getOutputStream() and getInputStream() on the Socket). Then
we read the target file line by line, just as we did in the multithreaded example. Again, when
we get some bytes, we put them in our local line variable, and then write them out to the
client. When we're done reading and writing, we close our FileReader and the open
streams.

Wrapping up the pooled server
Our pooled server is done. Let's review the steps to create and use a pooled version of the
server:

1. Create a new kind of connection handler (we called it PooledConnectionHandler)
to handle connections in a pool.

2. Modify the server to create and use a set of PooledConnectionHandlers.

You can find the complete code listing for PooledRemoteFileServer at Code listing for
PooledRemoteFileServer on page 36, and the complete code listing for
PooledConnectionHandler at Code listing for PooledConnectionHandler on page 37.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java sockets 101 Page 26 of 38

Section 7. Sockets in real life

Introduction
The examples we've talked about so far cover the mechanics of sockets in Java
programming, but how would you use them on something "real?" Such a simple use of
sockets, even with multithreading and pooling, would not be appropriate in most applications.
Instead, it would probably be smart to use sockets within other classes that model your
problem domain.

We did this recently in porting an application from a mainframe/SNA environment to a
TCP/IP environment. The application's job is to facilitate communication between a retail
outlet (such as a hardware store) and financial institutions. Our application is the middleman.
As such, it needs to communicate with the retail outlet on one side and the financial outlet on
the other. We had to handle a client talking to a server via sockets, and we had to translate
our domain objects into socket-ready stuff for transmission.

We can't cover all the detail of this application in this tutorial, but let us take you on a tour of
some of the high points. You can extrapolate from here to your own problem domain.

The client side
On the client side, the key players in our system were Socket, ClientSocketFacade, and
StreamAdapter. The UML is shown in the following diagram:

We created a ClientSocketFacade, which is Runnable and owns an instance of
Socket. Our application can instantiate a ClientSocketFacade with a particular host IP
address and port number, and run it in a new Thread. The run() method on
ClientSocketFacade calls connect(), which lazily initializes a Socket. With Socket
instance in hand, our ClientSocketFacade calls receive() on itself, which blocks until
the server sends some data over the Socket. Whenever the server sends some data, our
ClientSocketFacade will wake up and handle the incoming data. Sending data is just as
direct. Our application can simply tell its ClientSocketFacade to send data to its server by

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java sockets 101 Page 27 of 38

calling the send() method with a StreamObject.

The only piece missing from the discussion above is StreamAdapter. When an application
tells the ClientSocketFacade to send data, the Facade delegates the operation to an
instance of StreamAdapter. The ClientSocketFacade delegates receiving data to the
same instance of StreamAdapter. A StreamAdapter handles the final formatting of
messages to put on the Socket's OutputStream, and reverses the process for messages
coming in on the Socket's InputStream.

For example, perhaps your server needs to know the number of bytes in the message being
sent. StreamAdapter could handle computing and prepending the length to the message
before sending it. When the server receives it, the same StreamAdapter could handle
stripping off the length and reading the correct number of bytes for building a
StreamReadyObject.

The server side
The picture is similar on the server side:

We wrapped our ServerSocket in a ServerSocketFacade, which is Runnable and
owns an instance of a ServerSocket. Our applications can instantiate a
ServerSocketFacade with a particular server-side port to listen to and a maximum number
of client connections allowed (the default is 50). The application then runs the Facade in a
new Thread to hide the ServerSocket interaction details.

The run() method on ServerSocketFacade calls acceptConnections(), which
makes a new ServerSocket and calls accept() on it to block until a client requests a
connection. Each time that happens, our ServerSocketFacade wakes up and hands the
new Socket returned by accept() to an instance of SocketHandler by calling

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java sockets 101 Page 28 of 38

handleSocket(). The SocketHandler does what it needs to do in order to handle the
new channel from client to server.

The business logic
Once we had these Socket Facades in place, it became much easier to implement the
business logic of our application. Our application used an instance of
ClientSocketFacade to send data over the Socket to the server and to get responses
back. The application was responsible for handling conversion of our domain objects into
formats understood by ClientSocketFacade and for building domain objects from
responses.

Sending messages to the server
The following diagram shows the UML interaction diagram for sending a message in our
application:

For simplicity's sake, we didn't show the piece of the interaction where
aClientSocketFacade asks its Socket instance for its OutputStream (using the
getOutputStream() method). Once we had a reference to that OutputStream, we
simply interacted with it as shown in the diagram. Notice that our ClientSocketFacade hid
the low-level details of socket interaction from our application. Our application interacted with
aClientSocketFacade, not with any of the lower-level classes that facilitate putting bytes
on Socket OutputStreams.

Receiving messages from the server
The following diagram shows the UML interaction diagram for receiving a message in our
application:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java sockets 101 Page 29 of 38

Notice that our application runs aClientSocketFacade in a Thread. When
aClientSocketFacade starts up, it tells itself to receive() on its Socket instance's
InputStream. The receive() method calls read(byte[]) on the InputStream itself.
The read([]) method blocks until it receives data, and puts the bytes received on the
InputStream into a byte array. When data comes in, aClientSocketFacade uses
aStreamAdapter and aDomainAdapter to construct (ultimately) a domain object that our
application can use. Then it hands that domain object back to the application. Again, our
ClientSocketFacade hides the lower-level details from the application, simplifying the
Application Layer.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java sockets 101 Page 30 of 38

Section 8. Summary

Wrapup
The Java language simplifies using sockets in your applications. The basics are really the
Socket and ServerSocket classes in the java.net package. Once you understand
what's going on behind the scenes, these classes are easy to use. Using sockets in real life
is simply a matter of using good OO design principles to preserve encapsulation within the
various layers within your application. We showed you a few classes that can help. The
structure of these classes hides the low-level details of Socket interaction from our
application -- it can just use pluggable ClientSocketFacades and
ServerSocketFacades. You still have to manage the somewhat messy byte details
somewhere (within the Facades), but you can do it once and be done with it. Better still, you
can reuse these lower-level helper classes on future projects.

Resources
* Download the source code for this article.

* "Thinking in Java, 2nd Edition" (Prentice Hall, 2000) by Bruce Eckel provides an
excellent approach for learning Java inside and out.

* Sun has a good tutorial on Sockets. Just follow the "All About Sockets" link.

* We used VisualAge for Java, version 3.5 to develop the code in this tutorial. Download
your own copy of VisualAge for Java (now in release 4) or, if you already use VAJ,
check out the VisualAge Developer Domain for a variety of technical assistance.

* Now that you're up to speed with sockets programming with Java, this article on the
Visual Age for Java Developer Domain will teach you to set up access to sockets
through the company firewall.

* Allen Holub's Java Toolbox column (on JavaWorld) provides an excellent series on
Java Threads that is well worth reading. Start the series with "A Java programmer's
guide to threading architectures ." One particularly good article, "Threads in an
object-oriented world, thread pools, implementing socket 'accept' loops, " goes into
rather deep detail about Thread pooling. We didn't go into quite so much detail in this
tutorial, and we made our PooledRemoteFileServer and
PooledConnectionHandler a little easier to follow, but the strategies Allen talks
about would fit nicely. In fact, his treatment of ServerSocket via a Java
implementation of a callback mechanism that supports a multi-purpose, configurable
server is powerful.

* For technical assistance with multithreading in your Java applications, visit the
Multithreaded Java programming discussion forum on developerWorks, moderated by
Java threading expert Brian Goetz.

* Siva Visveswaran explains connection pooling in detail in "Connection pools"
(developerWorks, October 2000).

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java sockets 101 Page 31 of 38

practicalsockets.zip
practicalsockets.zip
http://www.amazon.com/exec/obidos/ASIN/0130273635/qid=998260274/sr=1-1/ref=sc_b_1/102-7489359-5392147
http://www.amazon.com/exec/obidos/ASIN/0130273635/qid=998260274/sr=1-1/ref=sc_b_1/102-7489359-5392147
http://www.amazon.com/exec/obidos/ASIN/0130273635/qid=998260274/sr=1-1/ref=sc_b_1/102-7489359-5392147
http://www.amazon.com/exec/obidos/ASIN/0130273635/qid=998260274/sr=1-1/ref=sc_b_1/102-7489359-5392147
http://www.amazon.com/exec/obidos/ASIN/0130273635/qid=998260274/sr=1-1/ref=sc_b_1/102-7489359-5392147
http://www.amazon.com/exec/obidos/ASIN/0130273635/qid=998260274/sr=1-1/ref=sc_b_1/102-7489359-5392147
http://java.sun.com/docs/books/tutorial/networking/index.html
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www7.software.ibm.com/vad.nsf/webdlvajava4?OpenView&Count=5&TargetFrame=webdlvajava4&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www7.software.ibm.com/vad.nsf/webdlvajava4?OpenView&Count=5&TargetFrame=webdlvajava4&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www7.software.ibm.com/vad.nsf/webdlvajava4?OpenView&Count=5&TargetFrame=webdlvajava4&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=www7.software.ibm.com/vad.nsf/&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=www7.software.ibm.com/vad.nsf/&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=www7.software.ibm.com/vad.nsf/&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=www7.software.ibm.com/vad.nsf/Data/Document2979?OpenDocument&p=1&BCT=3&Footer=1&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=www7.software.ibm.com/vad.nsf/Data/Document2979?OpenDocument&p=1&BCT=3&Footer=1&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=www7.software.ibm.com/vad.nsf/Data/Document2979?OpenDocument&p=1&BCT=3&Footer=1&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=www7.software.ibm.com/vad.nsf/Data/Document2979?OpenDocument&p=1&BCT=3&Footer=1&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=www7.software.ibm.com/vad.nsf/Data/Document2979?OpenDocument&p=1&BCT=3&Footer=1&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=www7.software.ibm.com/vad.nsf/Data/Document2979?OpenDocument&p=1&BCT=3&Footer=1&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=www7.software.ibm.com/vad.nsf/Data/Document2979?OpenDocument&p=1&BCT=3&Footer=1&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=www7.software.ibm.com/vad.nsf/Data/Document2979?OpenDocument&p=1&BCT=3&Footer=1&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=www7.software.ibm.com/vad.nsf/Data/Document2979?OpenDocument&p=1&BCT=3&Footer=1&origin=j
http://www.javaworld.com/columns/jw-toolbox-index.shtml
http://www.javaworld.com/columns/jw-toolbox-index.shtml
http://www.javaworld.com/columns/jw-toolbox-index.shtml
http://www.javaworld.com/javaworld/jw-09-1998/jw-09-threads.html
http://www.javaworld.com/javaworld/jw-09-1998/jw-09-threads.html
http://www.javaworld.com/javaworld/jw-09-1998/jw-09-threads.html
http://www.javaworld.com/javaworld/jw-09-1998/jw-09-threads.html
http://www.javaworld.com/javaworld/jw-09-1998/jw-09-threads.html
http://www.javaworld.com/javaworld/jw-09-1998/jw-09-threads.html
http://www.javaworld.com/javaworld/jw-09-1998/jw-09-threads.html
http://www.javaworld.com/javaworld/jw-09-1998/jw-09-threads.html
http://www.javaworld.com/jw-05-1999/jw-05-toolbox.html
http://www.javaworld.com/jw-05-1999/jw-05-toolbox.html
http://www.javaworld.com/jw-05-1999/jw-05-toolbox.html
http://www.javaworld.com/jw-05-1999/jw-05-toolbox.html
http://www.javaworld.com/jw-05-1999/jw-05-toolbox.html
http://www.javaworld.com/jw-05-1999/jw-05-toolbox.html
http://www.javaworld.com/jw-05-1999/jw-05-toolbox.html
http://www.javaworld.com/jw-05-1999/jw-05-toolbox.html
http://www.javaworld.com/jw-05-1999/jw-05-toolbox.html
http://www.javaworld.com/jw-05-1999/jw-05-toolbox.html
http://www.javaworld.com/jw-05-1999/jw-05-toolbox.html
http://www.javaworld.com/jw-05-1999/jw-05-toolbox.html
http://www-105.ibm.com/developerworks/java_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=23
http://www-105.ibm.com/developerworks/java_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=23
http://www-105.ibm.com/developerworks/java_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=23
http://www-105.ibm.com/developerworks/java_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=23
http://www-105.ibm.com/developerworks/java_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=23
http://www-106.ibm.com/developerworks/java/library/j-pool/
http://www-106.ibm.com/developerworks/java/library/j-pool/

Your feedback
Please let us know whether this tutorial was helpful to you and how we could make it better.
We'd also like to hear about other tutorial topics you'd like to see covered. Thanks!

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java sockets 101 Page 32 of 38

Section 9. Appendix

Code listing for URLClient
import java.io.*;
import java.net.*;
public class URLClient {

protected HttpURLConnection connection;
public String getDocumentAt(String urlString) {

StringBuffer document = new StringBuffer();
try {

URL url = new URL(urlString);
URLConnection conn = url.openConnection();
BufferedReader reader = new BufferedReader(new InputStreamReader(conn.getInputStream()));
String line = null;
while ((line = reader.readLine()) != null)

document.append(line + "\n");
reader.close();

} catch (MalformedURLException e) {
System.out.println("Unable to connect to URL: " + urlString);

} catch (IOException e) {
System.out.println("IOException when connecting to URL: " + urlString);

}
return document.toString();

}
public static void main(String[] args) {

URLClient client = new URLClient();
String yahoo = client.getDocumentAt("http://www.yahoo.com");
System.out.println(yahoo);

}
}

Code listing for RemoteFileClient
import java.io.*;
import java.net.*;
public class RemoteFileClient {

protected BufferedReader socketReader;
protected PrintWriter socketWriter;
protected String hostIp;
protected int hostPort;
public RemoteFileClient(String aHostIp, int aHostPort) {

hostIp = aHostIp;
hostPort = aHostPort;

}
public String getFile(String fileNameToGet) {

StringBuffer fileLines = new StringBuffer();
try {

socketWriter.println(fileNameToGet);
socketWriter.flush();
String line = null;
while ((line = socketReader.readLine()) != null)

fileLines.append(line + "\n");
} catch (IOException e) {

System.out.println("Error reading from file: " + fileNameToGet);
}
return fileLines.toString();

}
public static void main(String[] args) {

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java sockets 101 Page 33 of 38

RemoteFileClient remoteFileClient = new RemoteFileClient("127.0.0.1", 3000);
remoteFileClient.setUpConnection();
String fileContents = remoteFileClient.getFile("C:\\WINNT\\Temp\\RemoteFile.txt");
remoteFileClient.tearDownConnection();
System.out.println(fileContents);

}
public void setUpConnection() {

try {
Socket client = new Socket(hostIp, hostPort);
socketReader = new BufferedReader(new InputStreamReader(client.getInputStream()));
socketWriter = new PrintWriter(client.getOutputStream());

} catch (UnknownHostException e) {
System.out.println("Error setting up socket connection: unknown host at " + hostIp + ":" + hostPort);

} catch (IOException e) {
System.out.println("Error setting up socket connection: " + e);

}
}
public void tearDownConnection() {

try {
socketWriter.close();
socketReader.close();

} catch (IOException e) {
System.out.println("Error tearing down socket connection: " + e);

}
}

}

Code listing for RemoteFileServer
import java.io.*;
import java.net.*;
public class RemoteFileServer {

int listenPort;
public RemoteFileServer(int aListenPort) {

listenPort = aListenPort;
}
public void acceptConnections() {

try {
ServerSocket server = new ServerSocket(listenPort);
Socket incomingConnection = null;
while (true) {

incomingConnection = server.accept();
handleConnection(incomingConnection);

}
} catch (BindException e) {

System.out.println("Unable to bind to port " + listenPort);
} catch (IOException e) {

System.out.println("Unable to instantiate a ServerSocket on port: " + listenPort);
}

}
public void handleConnection(Socket incomingConnection) {

try {
OutputStream outputToSocket = incomingConnection.getOutputStream();
InputStream inputFromSocket = incomingConnection.getInputStream();
BufferedReader streamReader = new BufferedReader(new InputStreamReader(inputFromSocket));
FileReader fileReader = new FileReader(new File(streamReader.readLine()));
BufferedReader bufferedFileReader = new BufferedReader(fileReader);
PrintWriter streamWriter = new PrintWriter(incomingConnection.getOutputStream());
String line = null;
while ((line = bufferedFileReader.readLine()) != null) {

streamWriter.println(line);

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java sockets 101 Page 34 of 38

}
fileReader.close();
streamWriter.close();
streamReader.close();

} catch (Exception e) {
System.out.println("Error handling a client: " + e);

}
}
public static void main(String[] args) {

RemoteFileServer server = new RemoteFileServer(3000);
server.acceptConnections();

}
}

Code listing for MultithreadedRemoteFileServer
import java.io.*;
import java.net.*;
public class MultithreadedRemoteFileServer {

protected int listenPort;
public MultithreadedRemoteFileServer(int aListenPort) {

listenPort = aListenPort;
}
public void acceptConnections() {

try {
ServerSocket server = new ServerSocket(listenPort, 5);
Socket incomingConnection = null;
while (true) {

incomingConnection = server.accept();
handleConnection(incomingConnection);

}
} catch (BindException e) {

System.out.println("Unable to bind to port " + listenPort);
} catch (IOException e) {

System.out.println("Unable to instantiate a ServerSocket on port: " + listenPort);
}

}
public void handleConnection(Socket connectionToHandle) {

new Thread(new ConnectionHandler(connectionToHandle)).start();
}
public static void main(String[] args) {

MultithreadedRemoteFileServer server = new MultithreadedRemoteFileServer(3000);
server.acceptConnections();

}
}

Code listing for ConnectionHandler
import java.io.*;
import java.net.*;
public class ConnectionHandler implements Runnable {

protected Socket socketToHandle;
public ConnectionHandler(Socket aSocketToHandle) {

socketToHandle = aSocketToHandle;
}
public void run() {

try {
PrintWriter streamWriter = new PrintWriter(socketToHandle.getOutputStream());

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java sockets 101 Page 35 of 38

BufferedReader streamReader = new BufferedReader(new InputStreamReader(socketToHandle.getInputStream()));
String fileToRead = streamReader.readLine();
BufferedReader fileReader = new BufferedReader(new FileReader(fileToRead));
String line = null;
while ((line = fileReader.readLine()) != null)

streamWriter.println(line);
fileReader.close();
streamWriter.close();
streamReader.close();

} catch (Exception e) {
System.out.println("Error handling a client: " + e);

}
}

}

Code listing for PooledRemoteFileServer
import java.io.*;
import java.net.*;
import java.util.*;
public class PooledRemoteFileServer {

protected int maxConnections;
protected int listenPort;
protected ServerSocket serverSocket;
public PooledRemoteFileServer(int aListenPort, int maxConnections) {

listenPort = aListenPort;
this.maxConnections = maxConnections;

}
public void acceptConnections() {

try {
ServerSocket server = new ServerSocket(listenPort, 5);
Socket incomingConnection = null;
while (true) {

incomingConnection = server.accept();
handleConnection(incomingConnection);

}
} catch (BindException e) {

System.out.println("Unable to bind to port " + listenPort);
} catch (IOException e) {

System.out.println("Unable to instantiate a ServerSocket on port: " + listenPort);
}

}
protected void handleConnection(Socket connectionToHandle) {

PooledConnectionHandler.processRequest(connectionToHandle);
}
public static void main(String[] args) {

PooledRemoteFileServer server = new PooledRemoteFileServer(3000, 3);
server.setUpHandlers();
server.acceptConnections();

}
public void setUpHandlers() {

for (int i = 0; i < maxConnections; i++) {
PooledConnectionHandler currentHandler = new PooledConnectionHandler();
new Thread(currentHandler, "Handler " + i).start();

}
}

}

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java sockets 101 Page 36 of 38

Code listing for PooledConnectionHandler
import java.io.*;
import java.net.*;
import java.util.*;
public class PooledConnectionHandler implements Runnable {

protected Socket connection;
protected static List pool = new LinkedList();
public PooledConnectionHandler() {
}
public void handleConnection() {

try {
PrintWriter streamWriter = new PrintWriter(connection.getOutputStream());
BufferedReader streamReader = new BufferedReader(new InputStreamReader(connection.getInputStream()));
String fileToRead = streamReader.readLine();
BufferedReader fileReader = new BufferedReader(new FileReader(fileToRead));
String line = null;
while ((line = fileReader.readLine()) != null)

streamWriter.println(line);
fileReader.close();
streamWriter.close();
streamReader.close();

} catch (FileNotFoundException e) {
System.out.println("Could not find requested file on the server.");

} catch (IOException e) {
System.out.println("Error handling a client: " + e);

}
}
public static void processRequest(Socket requestToHandle) {

synchronized (pool) {
pool.add(pool.size(), requestToHandle);
pool.notifyAll();

}
}
public void run() {

while (true) {
synchronized (pool) {

while (pool.isEmpty()) {
try {

pool.wait();
} catch (InterruptedException e) {

return;
}

}
connection = (Socket) pool.remove(0);

}
handleConnection();

}
}

}

Colophon

This tutorial was written entirely in XML, using the developerWorks Toot-O-Matic tutorial
generator. The open source Toot-O-Matic tool is an XSLT stylesheet and several XSLT
extension functions that convert an XML file into a number of HTML pages, a zip file, JPEG
heading graphics, and two PDF files. Our ability to generate multiple text and binary formats
from a single source file illustrates the power and flexibility of XML. (It also saves our
production team a great deal of time and effort.)

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java sockets 101 Page 37 of 38

You can get the source code for the Toot-O-Matic at
www6.software.ibm.com/dl/devworks/dw-tootomatic-p. The tutorial Building tutorials with the
Toot-O-Matic demonstrates how to use the Toot-O-Matic to create your own tutorials.
developerWorks also hosts a forum devoted to the Toot-O-Matic; it's available at
www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11.
We'd love to know what you think about the tool.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java sockets 101 Page 38 of 38

http://www6.software.ibm.com/dl/devworks/dw-tootomatic-p
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11

page 1

Chapter 2: Java Sockets
As we saw in the last chapter Socket is an abstraction of an IP Port. Sockets are a concept that have been around
in programming languages for some time. They first appeared in early Unix systems in the 1970s and are now
the `standard' low-level communication primitive. Prior to Java, they were fairly painful to use - but now you can
build applications using them quite straightforwardly.

Actually, there are two kinds of sockets - connection-oriented sockets, almost always based on TCP, and
connectionless sockets, usually based on User Datagram Protocol (UDP). The difference is that TCP-type
sockets guarantee data arrives, and in the correct order whereas UDP-type ones do not.

In addition to distinguishing TCP-type and UDP-type sockets, we must also distinguish - in Java - between client
and server sockets. It might seem obvious that `server sockets run on servers and client sockets on clients' but
this is not always true - servers can be both servers and clients, and clients can legitimately run server sockets.
The real difference is that server sockets wait for connections to be initiated by client sockets - the naming is not
particularly helpful.

2.1. Client Sockets
We will start off by looking at how we can create a simple client socket. The class that handles client sockets is
Socket in the java.net package. You would generally include the line:

import java.net.Socket;

in your code to allow you to use the `short' names of the package methods. A complete description of the
methods and constructors of Socket can be found here. As you can see, there are a range of constructors that
can be used to create a new [client] socket - the one we would use would depend on our particular circumstances.
Probably the simplest from our point of view is

 Socket(String host, int port)

which simply connects to port on machine host. For example,

Socket s = new Socket("this.doesnt.exist.com", 1024);

Note that you must not use socket number less than 1024 in your own applications. These are reserved for well-
known services (though if you are actually trying to connect to a specific well-known service, then you should
of course use the appropriate port number). On systems with a well-developed notion of access priviledges (e.g.
linux), `ordinary' users - i.e. you - cannot create server sockets (below) on well-known ports (you need superuser
- e.g. `root' - access).

How do you read and write from/to the socket? You simply use standard Java I/O methods. For example, the
following code opens a socket and attaches appropriate input/output streams to it:

import java.net.*;
import java.io.*;

Socket s = new Socket("this.doesnt.exist.com", 1024);
BufferedReader in = new BufferedReader(
 new InputStreamReader(s.getInputStream()));
PrintStream out =
 new PrintStream(s.getOutputStream());

(Lines of codes between the import statement and the Socket declaration have been omitted.) The key
bits are (a) s = new Socket(...), which creates a new socket s; (b) s.getInputStream(),
which returns the input stream associated with the socket s; and (c) s.getOutputStream() which
returns the corresponding output stream. The other stuff (BufferedReader, InputStreamReader,
PrintStream) are exactly the same methods we would use if we wished to do line-based IO from files:
they `wrap' the raw input stream with something more convenient and useable. So we can make socket-based
communication look more-or-less exactly like file-based communication.

We can now (say) input (inString = in.readLine();) and output (out.println("blah");)
lines of text in the normal way. (It has to be said though, that Java's stream-based IO, though very flexible and
capable, is not the easiest thing to come to grips with initially.)

page 2

2.2. Server Sockets
A key question you should have after the previous section is: who is listening to the other end of our socket?
The answer is, unless we set up a server socket or are connecting to a pre-existing service, nobody, and the
connection attempt will typically fail. (We must be a little careful when trying to open sockets because if there is
nobody listening, an exception can be thrown. We are generally required to catch and deal with such exceptions -
not arranging to catch most exceptions causes compilation errors). We will look at exceptions some more in the
example.) The class that deals with server sockets is (no suprise) ServerSocket and you can find API details
here. The principal constructor from our point of view is

ServerSocket(int port)

which creates a server socket that listens on the specified port. To set up a server socket and establish a
connection, we might use code like this:

import java.net.*;

SeverSocket sSoc = new ServerSocket(1024);

Socket in = sSoc.accept();

We create a new server socket called sSoc and then call its accept() method. At this point, our code will
wait until some other process (probably on another machine, though this does not have to be the case) connects
to the server socket, by automatically creating a new client socket. The accept method blocks - that is, any
program invoking it will wait until a communication attempt occurs (there are other versions of accept that
specify a maximum waiting time). Once again, we should not use socket numbers less than 1024 because they
are reserved for well-known services.

2.2.1. Simple Example
Here is an example program that repeatedly waits until it is contacted on its server socket. When it is, it starts
up a new thread that outputs the first 100 Fibonacci Numbers (if you don't know what a Fibonacci number is, it
doesn't particularly matter).

import java.net.*;
import java.io.*;
import java.lang.*;

public class Fib1 {

 public static void main(String argv[]) {

 try {
 ServerSocket sSoc = new ServerSocket(2001);

 while(true) {
 Socket inSoc = sSoc.accept();

 FibThread FibT = new FibThread(inSoc);
 FibT.start();}
 }
 catch (Exception e) {
 System.out.println("Oh Dear! " +
 e.toString());
 }
 }
}

class FibThread extends Thread {

page 3

 Socket threadSoc;

 int F1 = 1;
 int F2 = 1;

 FibThread(Socket inSoc) {
 threadSoc = inSoc;
 }

 public void run() {
 try {
 PrintStream FibOut = new
 PrintStream(threadSoc.getOutputStream());

 for (int i=0; i < 100; i++) {
 int temp;

 temp = F1;
 FibOut.println(F1);

 F1 = F2;
 F2 = temp + F2;
 }
 }
 catch (Exception e) {
 System.out.println("Whoops! " +
 e.toString());
 }

 try {
 threadSoc.close();
 }
 catch (Exception e) {
 System.out.println("Oh no! " +
 e.toString());
 }
 }
}

There are a few things to note about this code.

· The chosen socket number. We have picked socket 2001 at random - in principle, it doesn't matter which
socket we pick, provided it is greater than 1023. Of course, there is a possibility that 2001 is in use already
- sockets above 1023 are free for anyone to use.

· Exceptions We have used try - catch to make sure that any exceptions that are thrown are caught and
handled. In this case, `handling' is a little basic - we have just specified that any exception should result in
a message being printed, which will include the actual details of the exception. In practice, we might want
several different catch clauses to deal with the various different classes of exception that can be thrown.
For example, both the server socket constructor ServerSocket and the method accept can throw
exceptions of class IOException, which is a sub-class of Exception, and which in turn has its own
subclasses - the most likely of which in this case is SocketException (which itself has subclasses).
Different sub-classes of exception may need to be handled in different ways - for example, it is likely that
not all exceptions will be terminal, and the catch clause can attempt some form of recovery. This might
happen if socket 2001 is in use - we could try another one and continue. However, this is too subtle for us
at the moment.

· Threads. When Fib1 actually receives some input, and hence creates a new socket, it passes off all
further work to a new thread called FibThread. It is FibThread that outputs the Fibonacci numbers.

page 4

Notice that FibThread also has to deal with exceptions - both getOutputStream (which returns
an output stream connected to a socket) and close (which closes a socket connection) can throw an
IOException. Why have we used a separate thread? Because our server then goes back to listening for
more communication attempts, and it is perfectly possible for it to serve multiple clients at once. That is
because each client will be served by a separate thread and socket, and multple sockets are able to `share' a
port.

page 5

2.3. Client-Side Code
Now we have seen what a server must do to communicate over sockets, we need to look at the client-side code.
The following is a simple client for Fib1.

import java.net.*;
import java.io.*;

public class FibReader {

 Socket appSoc;
 BufferedReader in;
 String message;

 public static void main(String argv[]) {
 try {
 appSoc = new Socket("wherever",2001);
 in = new BufferedReader(new
 InputStreamReader(appSoc.getInputStream()));
 for (int i = 0; i < 100; i++) {
 message = in.readLine();
 System.out.println(message); }

 }
 catch (Exception e) {
 System.out.println("Died... " +
 e.toString());
 }

 }

This code creates a socket connection to some host (on which an appropriate server must be running), and sets
up an input stream connected to that socket. It then prints out 100 lines read from the server, using the socket.
Again, this is not particularly good code - for example, we are relying on the server to send us 100 lines: what if
it doesn't? However, it does illustrate the point.

2.4. Exercise
Here is a simple exercise you can try to illustrate that socket communication can work. The java source code
file for the server is here. Download it to your machine. Then download the client. You will probably have to
edit the hostname in the client code - try localhost to start with. Start up the server in a terminal, or command,
window. You might want to do this as a background task - on windows type:

start java Fib1

and on linux:

java Fib1 &

Then type:

java FibReader

and you should see Fibonacci numbers appearing (they will start to go horribly wrong eventually because of
arithmetic overflow).

For experiment two, try doing the same as above, but this time open an extra terminal/command window and
start the client up in both - you should see the Fibonacci numbers appearing more-or-less simultaneously on
both.

The next experiment to try is to use two machines. Start the server up on one, and the client on the other -
remember to edit the hostname in the client (or change the code so it takes command line parameters allowing
you to specify a host. How exactly you manage to use two machines will depend on your circumstances - if
you have access to the Linux laboratory, it is very straightforward. It might also be easy if you have access to

page 6

multiple machines at home (though beware that a firewall will almost certainly stop it working - in this case you
can either disable the firewall or open up the port you are using - the safest option).

If you have internet access from outside the university, try the experiment again. (However, you will need to
start up the server process remotely, e.g. via TelNet, or better ssh - don't start it up in the lab and then go home!
This may seem obvious but it's been done.) You may find that it doesn't work this time. (I would like to say
that this is a consistent security policy by the University to protect machines from suspicious communication
attempts - but it appears to be purely random.)

Netprog: Sockets API
1

Sockets Programming
Socket to me!

Netprog: Sockets API
2

Network Application
Programming Interface (API)

• The services provided (often by the operating
system) that provide the interface between
application and protocol software.

Application

Network API

Protocol A Protocol B Protocol C

Netprog: Sockets API
3

Network API wish list

• Generic Programming Interface.
• Support for message oriented and

connection oriented communication.
• Work with existing I/O services (when

this makes sense).
• Operating System independence.
• Presentation layer services

Netprog: Sockets API
4

Generic Programming
Interface

• Support multiple communication
protocol suites (families).

• Address (endpoint) representation
independence.

• Provide special services for Client and
Server?

Netprog: Sockets API
5

TCP/IP

• TCP/IP does not include an API
definition.

• There are a variety of APIs for use with
TCP/IP:
– Sockets
– TLI, XTI
– Winsock
– MacTCP

Netprog: Sockets API
6

Functions needed:

• Specify local and remote
communication endpoints

• Initiate a connection
• Wait for incoming connection
• Send and receive data
• Terminate a connection gracefully
• Error handling

Netprog: Sockets API
7

Berkeley Sockets

• Generic:
– support for multiple protocol families.
– address representation independence

• Uses existing I/O programming
interface as much as possible.

Netprog: Sockets API
8

Socket

• A socket is an abstract representation
of a communication endpoint.

• Sockets work with Unix I/O services
just like files, pipes & FIFOs.

• Sockets (obviously) have special needs:
– establishing a connection
– specifying communication endpoint

addresses

Netprog: Sockets API
9

Unix Descriptor Table

Data structure for file 0

Data structure for file 1

Data structure for file 2

Descriptor Table

0
1
2
3
4

Netprog: Sockets API
10

Socket Descriptor Data
Structure

Family: PF_INET
Service: SOCK_STREAM
Local IP: 111.22.3.4
Remote IP: 123.45.6.78
Local Port: 2249
Remote Port: 3726

Descriptor Table

0
1
2
3
4

Netprog: Sockets API
11

Creating a Socket
int socket(int family,int type,int proto);

• family specifies the protocol family
(PF_INET for TCP/IP).

• type specifies the type of service
(SOCK_STREAM, SOCK_DGRAM).

• protocol specifies the specific protocol
(usually 0, which means the default).

Netprog: Sockets API
12

socket()

• The socket() system call returns a
socket descriptor (small integer) or -1
on error.

• socket() allocates resources needed
for a communication endpoint - but it
does not deal with endpoint addressing.

Netprog: Sockets API
13

Specifying an Endpoint
Address

• Remember that the sockets API is
generic.

• There must be a generic way to specify
endpoint addresses.

• TCP/IP requires an IP address and a
port number for each endpoint address.

• Other protocol suites (families) may use
other schemes.

Netprog: Sockets API
14

Necessary Background Information:
POSIX data types

int8_t signed 8bit int
uint8_t unsigned 8 bit int
int16_t signed 16 bit int
uint16_t unsigned 16 bit int
int32_t signed 32 bit int
uint32_t unsigned 32 bit int

u_char, u_short, u_int, u_long

Netprog: Sockets API
15

More POSIX data types

sa_family_t address family
socklen_t length of struct
in_addr_t IPv4 address
in_port_t IP port number

Netprog: Sockets API
16

Generic socket addresses

 struct sockaddr {
 uint8_t sa_len;
 sa_family_t sa_family;
 char sa_data[14];
 };

• sa_family specifies the address type.
• sa_data specifies the address value.

Use
d by k

ern
el

Netprog: Sockets API
17

sockaddr
• An address that will allow me to use

sockets to communicate with my kids.
• address type AF_DAVESKIDS
• address values:
 Andrea 1 Mom 5

 Jeff 2 Dad 6
 Robert 3 Dog 7
 Emily 4

Netprog: Sockets API
18

AF_DAVESKIDS
• Initializing a sockaddr structure to point

to Robert:

 struct sockaddr robster;

 robster.sa_family = AF_DAVESKIDS;
 robster.sa_data[0] = 3;

Really old picture!

Netprog: Sockets API
19

AF_INET

• For AF_DAVESKIDS we only needed 1
byte to specify the address.

• For AF_INET we need:
– 16 bit port number
– 32 bit IP address

IPv4 only!

Netprog: Sockets API
20

struct sockaddr_in (IPv4)

struct sockaddr_in {
 uint8_t sin_len;
 sa_family_t sin_family;
 in_port_t sin_port;
 struct in_addr sin_addr;
 char sin_zero[8];
 };

A special kind of sockaddr structure

Netprog: Sockets API
21

struct in_addr

struct in_addr {
 in_addr_t s_addr;
};

in_addr just provides a name for the ‘C’ type
associated with IP addresses.

Netprog: Sockets API
22

Network Byte Order
• All values stored in a sockaddr_in

must be in network byte order.
– sin_port a TCP/IP port number.
– sin_addr an IP address.

Common Mistake:
Ignoring Network

Byte Order

Netprog: Sockets API
23

Network Byte Order Functions

‘h’ : host byte order ‘n’ : network byte order
‘s’ : short (16bit) ‘l’ : long (32bit)

 uint16_t htons(uint16_t);
 uint16_t ntohs(uint_16_t);

 uint32_t htonl(uint32_t);
 uint32_t ntohl(uint32_t);

Netprog: Sockets API
24

TCP/IP Addresses

• We don’t need to deal with sockaddr
structures since we will only deal with a
real protocol family.

• We can use sockaddr_in structures.

BUT: The C functions that make up the
sockets API expect structures of type
sockaddr.

Netprog: Sockets API
25

AF_INET
sin_port

sin_addr

sin_zero

sockaddr sockaddr_in

sa_len
sa_family

sa_data

sin_len

Netprog: Sockets API
26

Assigning an address to a
socket

• The bind() system call is used to assign
an address to an existing socket.

int bind(int sockfd,
 const struct sockaddr *myaddr,
 int addrlen);

• bind returns 0 if successful or -1 on error.

const!

Netprog: Sockets API
27

bind()

• calling bind() assigns the address
specified by the sockaddr structure to
the socket descriptor.

• You can give bind() a sockaddr_in
structure:

 bind(mysock,
 (struct sockaddr*) &myaddr,
 sizeof(myaddr));

Netprog: Sockets API
28

bind() Example
int mysock,err;
struct sockaddr_in myaddr;

 mysock = socket(PF_INET,SOCK_STREAM,0);
 myaddr.sin_family = AF_INET;
 myaddr.sin_port = htons(portnum);
 myaddr.sin_addr = htonl(ipaddress);

 err=bind(mysock, (sockaddr *) &myaddr,
 sizeof(myaddr));

Netprog: Sockets API
29

Uses for bind()

• There are a number of uses for bind():
– Server would like to bind to a well known

address (port number).

– Client can bind to a specific port.

– Client can ask the O.S. to assign any
available port number.

Netprog: Sockets API
30

Port schmort - who cares ?

• Clients typically don’t care what port
they are assigned.

• When you call bind you can tell it to
assign you any available port:

 myaddr.port = htons(0);

Netprog: Sockets API
31

What is my IP address ?

• How can you find out what your IP address is
so you can tell bind() ?

• There is no realistic way for you to know the
right IP address to give bind() - what if the
computer has multiple network interfaces?

• specify the IP address as: INADDR_ANY,
this tells the OS to take care of things.

Netprog: Sockets API
32

IPv4 Address Conversion
int inet_aton(char *, struct in_addr *);

Convert ASCII dotted-decimal IP address to
network byte order 32 bit value. Returns 1
on success, 0 on failure.

char *inet_ntoa(struct in_addr);

Convert network byte ordered value to
ASCII dotted-decimal (a string).

Netprog: Sockets API
33

Other socket system calls

• General Use
– read()
– write()
– close()

• Connection-oriented
(TCP)
– connect()
– listen()
– accept()

• Connectionless (UDP)
– send()
– recv()

Java Tutorial Java Threads java-08.fm

Greg Lavender Slide 1 of 12 6/17/99

Concurrent Programming using Threads

Threads are a control mechanism that enable you to write concurrent programs. You can think of a
thread in an object-oriented language as a special kind of “system object” that contains information
about the state of execution of a sequence of function calls that are said to “execute as a thread”.
Usually, a special “run” or “start” procedure starts a separate thread of control.

Normally, when you call a function or procedure, the compiler sets-up a stack frame (also called an
activation frame) on the run-time procedure call stack, pushes arguments (or puts them into
registers), and calls the function. The stack is also used as temporary storage for locally allocated
objects declared in the scope of a procedure.

In a sequential program, there is only one run-time stack and all activation frames are allocated in a
nested fashion on the same run-time stack, corresponding to each nested procedure call. In a multi-
threaded application, each “thread” represents a separate run-time stack, so you can have multiple
procedure call chains running at the same time, possibly on multiple processors. Java on Solaris
supports multi-processor threads.

In a sequential program, the main run-time stack is allocated at program start and all procedure
calls, including the initial call to “main” are made on this single run-time stack. In a multi-threaded
program, a program starts on the system run-time stack where the main procedures runs. Any
functions/procedures called by the main procedure have their activation frames allocated on this
run-time stack.

If the main procedure creates a new thread for run some procedure (usually calling a special “thread
creation or construction” procedure/method), then a new run-time stack is dynamically allocated
from the heap and the activation frames for the procedures are allocated on this new stack.

Java Tutorial Java Threads java-08.fm

Greg Lavender Slide 2 of 12 6/17/99

Thread Stacks

Question: How large should the heap allocated thread stack be?

A thread stack will contain the activation record of the “starting” thread procedure (e.g., called the
“run” method in Java), as well as any procedures that are called by the procedure that was first
started in the new thread of control. So, the thread stack needs to be large enough to hold the
maximum number of bytes required to hold all the activation records of the deepest procedure call
chain, as well as storage for all local variables allocated on the stack.

Main thread and run-time stack

Stack

...

Multiple thread run-time stacks, each a separate “thread of execution”

main() {
thread_1 thread_2() thread_n()

f()
g()

h()

run()
run() run()

for(i=0; i< n; i++)
thread_create(...)
...

}

Activation
Frames

Java Tutorial Java Threads java-08.fm

Greg Lavender Slide 3 of 12 6/17/99

Thread Stack Size

On operating systems that support processes with multiple threads of control, threads stacks are
typically set at 1MB, consisting of contiguous virtual memory pages, that are allocated incrementally
at run-time by the system. There may also be some extra pages at the “top” or “bottom” for some
thread book-keeping. There is also usually an extra pages allocated “above” the top and “below” the
bottom of the stack to detect overflow:

underflow stack frame raises exception if “popped”

‘red-lined pages to generate memory segmentation violation (SIGSEGV)

nested procedure call activation frames

1MB Thread Stack

top

starting procedure activation frame

.

.

.

if an overflow occurs from trying to create a frame beyond the end

Java Tutorial Java Threads java-08.fm

Greg Lavender Slide 4 of 12 6/17/99

Java Threads

In Java, the same concepts about threads, threads stacks, and starting threads applies. The primary
difference is that in Java, a thread is defined as a special class in the java.lang package. The thread
class implements an interface called the “Runnable” interface, which defines a single abstract
method called “run”.

// in the java.lang.Runnable file you will find the following interface
package java.lang;

public interface Runnable {
 public void run(); // just like a pure virtual function in C++
}

Since we are defining an interface, run is implicitly a “abstract” method. As we have seen, interfaces
in Java define a set of methods with NO implementation. Some class must “implement” the
Runnable interface and provide an implementation of the run method, which is the method that is
started by a thread. Java provides a “Thread” class, that implements the Runnable interface, but
does not implement the run

public class ConcurrentReader implements Runnable {
...
public void run() { /* code here executes concurrently with caller */ }
...

}

Java Tutorial Java Threads java-08.fm

Greg Lavender Slide 5 of 12 6/17/99

Defining a Thread in Java

To start this thread you need to first create an object of type MyOwnThreadObjects, bind it to a new
Thread object, and then start it. Calling start creates the thread stack for the thread, and then
invoked the run() method as the first procedure on that new thread stack.

ConcurrentReader readerThread = new ConcurrentReader();
Threa d t = new Thread(readerThread); // create thread using a Runnable object
readerThread.start();

The java.lang.Thread class has a constructor that takes an object of type Runnable:

Thread(Runnable object); // must provide an object that implements run

Alternatively, we can define a subclass of the class Thread directly.

class ConcurrentWriter extends Thread {
 public void run() {
 // you provide the code here to run as a separate thread of control
 }
}

 To start this thread you just need to do the following:

ConcurrentWriter writerThread = new ConcuirrentWriter();
writerThread.start(); // start calls run()

Java Tutorial Java Threads java-08.fm

Greg Lavender Slide 6 of 12 6/17/99

java.lang.Thread

public class Thread implements Runnable {
private char name[];
private Runnable target;
...
public final static int MIN_PRIORITY = 1;
public final static int NORM_PRIORITY = 5;
public final static int MAX_PRIORITY = 10;

private void init(ThreadGroup g, Runnable target, String name) {...}

public Thread() { init(null, null, "Thread-" + nextThreadNum()); }
public Thread(Runnable target) {

init(null, target, "Thread-" + nextThreadNum());
 }

public Thread(Runnable target, String name) { init(null, target, name); }

public synchronized native void start();

public void run () {
 if (target != null) {
 target.run();
 }
 }

...
}

Java Tutorial Java Threads java-08.fm

Greg Lavender Slide 7 of 12 6/17/99

java.lang.Thread

public class Thread implements Runnable {
...
public static native Thread currentThread();
public static native void yield();
public static native void sleep(long millis) throws InterruptedException;
public static int enumerate(Thread tarray[])

public static boolean interrupted() { ... }
 public boolean isInterrupted() { ... }

public final native boolean isAlive();
public String toString() {
public void interrupt() { ... }
public void interrupt() { ... }
public final void stop() { ... }
public final void suspend() { ... }
public final void resume() { ... }
public final void setPriority(int newPriority) {
public final int getPriority() {
public final void setName(String name) { ... }
public final String getName() { return String.valueOf(name); }
public native int countStackFrames();
public final synchronized void join() throws InterruptedException {...}
public void destroy() { throw new NoSuchMethodError(); }

}

Java Tutorial Java Threads java-08.fm

Greg Lavender Slide 8 of 12 6/17/99

Extending Class Thread vs Implementing Interface Runnable

Q: Why does Java allow two different ways to provide thread objects? How do you decide
when to extend the Thread class versus implementing the Runnable interface?

Java only allows single class inheritance, so if we have a class that needs to inherit from another
class, but also needs to run as a thread, thenwe extend the other class and implement the Runnable
interface. So, it is quite common for a class X to extend some class Y and implement the Runnable
interface:

class X extends Y implements Runnable {

public synchronized void do_something() { ... }
public void run() { do_something(); } // can be run a thread if needed

}

By implementing the Runnable interface, rather than extending the Thread class, you are
communicating to the user of the class X that you expect that an object of type X will run as a thread,
but it does not HAVE TO run as a thread. Since all the run() method does, in this case, is call another
public method that could be called without running a thread, it gives the user the option of either
having an object of type X run concurrently, or sequentially. A synchronized method is one that
“locks” an object so that no other thread can execute inside the object while the method is active.

X obj = new X();
obj.do_something(); // runs sequentially in the current thread
Thread t = new Thread(new X()); // create an X and run as a thread
t.start(); // start() calls run() which calls do_something() as

Java Tutorial Java Threads java-08.fm

Greg Lavender Slide 9 of 12 6/17/99

Synchronized Methods, Wait, Notify, and NotifyAll

An very interesting features of Java objects is that they are all “lockable” objects. That is, the
java.lang.Object class implements an implicit locking mechanism that allows any Java object to be
locked during the execution of a synchronized method or synchronized block, so that the
thread that holds the lock gains exclusive access to the object for the duration of the method call or
scope of the bloc. No other thread can “acquire” the object until the thread that holds the lock
“releases” the object. This synchronization policy provides mutual exclusion.

Synchronized methods are methods that lock the object on entry and unlock the object on exit. The
Object class implements some special methods for allowing a thread to explicitly release the lock
while in the method, wait indefinitely or for some time interval, and then try to reacquire the lock
when some condition is true. Two other methods allow a thread to signal waiting thread(s) to tell
them to wakeup: the notify method signals one thread to wakeup and the notifyAll method signals
all threads to wakeup and compete to try to re-acquire the lock on the object. This type of
synchronized object is typically used to protect some shared resource, using two types of methods:

public synchronized void consume() {
while (!consumable()) {

wait (); // release lock and wait for resource
 }

... // have exclusive access to resource to consume
}
public synchronized void produce() {

... // change of state must result in consumable condition being true
notifyAll (); // notify all waiting threads to try consuming

}

Java Tutorial Java Threads java-08.fm

Greg Lavender Slide 10 of 12 6/17/99

Synchronized Method vs Synchronized Block

The synchronized method declaration qualifier is syntactic sugar for the fact that the entire of scope
of the procedure is to be governed by the mutual exclusion condition obtained by acquiring the
object’s lock:

public void consume () {
synchronized (this) {

// code for consuming
}

}

A synchronized block allows the granularity of a lock to be finer-grained than a procedure scope. The
argument given to the synchronized block is a reference to an object.

What about recursive locking of the same Object?

public class Foo {
...
public void synchronized f() { ... }
public void synchronized g() { ...; f(); ... }

}

If g() is called, and it then calls f(), what happens? What happens in the following case?

Foo f = new Foo;
synchronized(f) { ...; synchronized (f) { ... } ... }

Java Tutorial Java Threads java-08.fm

Greg Lavender Slide 11 of 12 6/17/99

Wait, Notify, and NotifyAll

Every object has acess to wait, notify, and notify methods, which are inherited from class Object.

public class Object {
...
public final native void notify();
public final native void notifyAll();

public final native void wait(long timeout) throws InterruptedException;
public final void wait() throws InterruptedException { wait(0); }
public final void wait(long timeout, int nanos)

throws InterruptedException { ... }
}

The Object.wait() method implicitly releases the object’s lock and the thread then waits on an
internal queue associated with each object. The thread waits to be notified of when it can try to re-
acquire the lock and test the condition again.

The Object.notify() method signals the highest priority thread closest to the front of the wait queue
to wakeup. Object.notifyAll() wakes up all waiting threads, and they compete for the lock. The thread
actually gets the lock is non-deterministic and not necessarily “fair”. E.g., high priority threads in
the wait queue could always win-out over lower priority threads, resulting in starvation since low
priority threads never get access to the resource.

Java Tutorial Java Threads java-08.fm

Greg Lavender Slide 12 of 12 6/17/99

A Shared Queue Example

This is an example of a “Producer-Consumer” shared resource. Note that the wait() , wait(timeout),
notify(), and notifyAll() method can only be called from a synchronized method, or a method called
by a synchronized method. I.e., the object must be in the locked state.

class SharedQueue {
private Element head, tail;

public boolean empty() { return head == tail; }

public synchronized Element remove() {
try { while (empty()) wait (); } // wait for an element in the queue
catch (InterruptedException e) { return null; }
Element p = head; head = head.next;
if (head == null) tail == null;
return p;

}

public synchronized void insert(Element p)
if (tail == null) head = p;
else tail.next = p;
p.next = null;
tail = p;
notify (); // let one waiter know something is in the queue

}
}

1

Transport Layer 2

Berkeley Sockets (1)

❒ Socket primitives for TCP/IP

Release the connectionClose

Receive some data over the connectionReceive

Send some data over the connectionSend

Actively attempt to establish a connectionConnect

Block caller until a connection request arrivesAccept

Announce willingness to accept connections (queue)Listen

Attach a local address to a socketBind

Create a new communication endpointSocket

MeaningPrimitive

Transport Layer 3

Berkeley Sockets (2)

❒ Connection-oriented communication pattern using sockets

Transport Layer 4

2-army problem

Transport Layer 5

3-way handshake

Normal Call collision

Transport Layer 6

TCP data transfer

Transport Layer 7

TCP FSM

2

Transport Layer 8

Stop-and-wait
❒ Notation SRC: S = no. of frame being sent by sender, R = no. of

frame being expected by receiver, C = state of channel (frame 0 or
1, or A = ACK, or “-” empty)

Transport Layer 9

Reliable delivery in ARPAnet: Concurrent logical channels

❒ Multiplex 8 logical channels over a single link
❒ Run stop-and-wait on each logical channel
❒ Maintain three state bits per channel

❍ channel busy
❍ current sequence number out
❍ next sequence number in

❒ Header: 3-bit channel # and 1-bit sequence #
❍ 4 bits in total
❍ same as sliding window protocol

❒ Separates reliability from order
❍ no errors and no packet loss, but not in order

 Berkeley Socket

Introduction

The following are some general information about Berkeley Sockets

1. Developed in the early 1980s at the University of California at Berkeley.
There are no longer any major alternatives. Other major alternative was
TLI (Transport Layer Interface). There are communications tools that
are built on tool of Berkeley sockets. (E.g. RPC)

2. It is an API.

3. Its implementation is usually requires kernel code.

4. It is the defacto standard for communications programming.

5. There are higher level tools for programs that span more than one
machine. RPC, DCOM and windows remoting are examples.

6. Used for point-to-point communications between computers through an
inter-systems pipe. Namely can use the UNIX read, write, close, select,
etc. system calls.

7. Supports broadcast. This is where the same message may be delivered to
multiple systems on a network without additional overhead.

8. Available on every UNIX system that I know of and somewhat available
in WIN32.

9. Build for client/server development. That is having one system provide

a service to other systems.

Berkeley sockets support two types of communications. These sit on top of the
TCP Internet datagrams.

TCP - connection oriented, stream, reliable.

UDP - connectionless, record oriented, unreliable.

Question: Why would anyone use a form of communication that is not
reliable? Answer: speed. Answer: ability to broadcast.

Programming Aspects of Berkeley Sockets

Uses the TCP/IP protocol.

What are sockets? They represent end points for communications. In the
UNIX world, they are file descriptors. Thus we can use system calls like read
and write to receive and send data.

In order to communicate with a program on another computer, we have to
identify the computer and specify the program. We specify the computer by
giving its IP address. The program that we want to communicate with is
identified by a port number. The port number is a positive integer that is
advertised by the program that is waiting for a connection. More on this later.

The following are the major system calls supplied by Berkeley sockets and
UNIX to perform TCP communications. There are other calls that we will use
and calls to support UDP. These will be presented later.

1. socket - creates a socket for network communications. Returns a file
descriptor for the socket.

2. connect - called by the client process to establish a connection between it
and a server process. Need the server’s address and port number. The
file descriptor from the socket call is one of the arguments. Once the
connection is made, this file descriptor may be used for communications.

3. write - to send data on the connection. If connection broken your
program will receive a SIGPIPE signal or an error is returned. (The
SIGPIPE signal does not occur immediately. What is the implication of
this?)

4. read - to get data that was sent on the connection. It returns the number
of bytes read. 0 is returned if the connection broken. (NOTE: WIN32

gives an error return.).

5. close - to de-allocate the socket.

6. bind - used by server process to associate an end-point address with a
socket. Must include the port and server address with this call. This is
like advertising the service. This socket is called the listening socket.
Note: there are some port numbers that are referred to as well-known
ports. See /etc/services for a list. A good habit is to always select port
numbers that are greater than 7000.

7. listen - used by server process to indicate that it is ready to receive
connections. The listening socket must be specified in this call. Another
parameter is the queue length for those . Parameter values are not
always guaranteed to be used. At one time, regardless of the value of
this parameter SUN uses 5. Note: the select system call will consider a
listening socket with a connection waiting to be ready to read.

8. accept - called by the server process to accept a connection. If no client
is trying to connect the call will block.

9. select - used to determine if there is data available on a socket or if there
is a client queued up for a connection to a server. Can also be used to
determine if a write is possible.

Use of socket calls in a program.

Client:

 socket  connect  write  read  close

 ^ |
 |______|

 Server:

 socket  bind  listen  accept  read  write  close

 ^ ^ | |
 |_______|______|______|

Design idea

Talk of concurrent servers vs. Multiplex servers.

 Talk of state vs. stateless servers. Stateless safer.

System Calls for Clients

We will start out by learning how to build a client. This is less complex and
has fewer issues then writing server code. Before looking at an example, I will
give you a list of some relevant system calls and their definitions.

getservbyname

Many standard services such as ECHO have predefined port numbers. This
function determines the port number for a service given its name.

 #include <netdb.h>

 struct servent *getservbyname(const char *name, const char *proto);

 struct servent {

 char *s_name; /* official service name */
 char **s_aliases; /* alias list */
 int s_port; /* port # */
 char *s_proto; /* protocol to use */

};

name - is the name of the service.
protocol - the protocol we are using. Choice between "TCP" or "UDP". Most
services have both a TCP and UDP version.

Returns - NULL if fails and a pointer to a servent struct is successful. From
this we can get the port number of the service.

NOTE: this function is not thread safe. Why? There is a thread safe version.
How do you think they fixed the problem?

htons, htonl, ntohs, and ntohl

These are functions to convert to and from network byte ordering. n means
network, h means host, s means short and l means long. Why do you think we
need this?

gethostbyname

The gethostbyname function allows you to get the IP address of a computer
given its full name. It has the following prototype:

#include <netdb.h>

struct hostent *gethostbyname(const char *name);

struct hostent {

 char *h_name; /* official name of host */
 char **h_aliases; /* alias list */
 int h_addrtype; /* host address type */
 int h_length; /* length of address */
 char **h_addr_list; /* list of addresses from name server */

#define h_addr h_addr_list[0] /* address, for backward compatibility */

};

name - the name of the host.

Returns NULL if fails. Otherwise, it returns the hostent structure. What we
care most about in this structure is the address list. It contains the addresses for
the host as a set of bytes in network order.

NOTE: this function is not thread safe. There is a thread safe version.

socket

This function returns a file descriptor that will eventually become the end of a
pipe between client and server or a point at which we listen for connections.
Note: the location of the include files my differ on various UNIX systems.

#include <sys/socket.h>

int socket (int domain, int type, int protocol);

domain - the family of addresses. The only one we care about is:

 AF_INET ARPA Internet addresses

There is also PF_INET6. What does this mean.

PF_UNIX for UNIX internal protocols.

type - specifies the semantics of communication. The sys/socket.h file defines
the socket types. The following types are the ones that we care about:

 SOCK_STREAM

Provides sequenced, reliable, two-way byte streams with a transmission
mechanism for out-of-band data. We use this for TCP/IP communications.

 SOCK_DGRAM

Provides datagrams, which are connectionless messages of a fixed maximum
length. We use this for UDP communications.

 protocol - specifies the protocol. Since there is usually only one choice, we
use 0 for the default.

connect

The connect call establishes a link between to the client that calls it and a server
application. It has the following prototype.

int connect (int socket, const struct sockaddr *address, size_t address_len);

socket - a socket that we created using the socket call.
address - a pointer to a address that contains the port and IP address of the host
and our port and IP address. See example for details of how to fill in the
address.

Returns -1 if error and 0 if successful.

Notes on example:

1. There is a service provided by most computers called the DAYTIME
service. If you connect to a computer, it will return the date/time and
disconnect.

2. This is an easy way to allow us to test client code without writing a
server.

3. Not all computer will supply this service. In fact fewer supply it now
than 5 years ago.

The code requires the address/name of server computer and the port
number/service name as command-line arguments. User will be able to enter
the IP address in decimal notation, the domain name (e.g. phobos.ramapo.edu)
or if no entry the default address will be our computer. See /etc/hosts for local
list of hosts. User will be able to enter the name of the service (see
/etc/services), the port number, or if no entry, defaults to the DAYTIME
service.

Lab6.

Time how long it takes to connect to an echo server and to send and receive
20,000 bytes in 100 byte packets. You should pick a far away site. We will
discuss this in class.

http://phobos.ramapo.edu/~vmiller/AdvancedUnix/networkCode/client.cpp

Elementary TCP SocketsElementary TCP Sockets

UNIX Network Programming
Vol. 1, Second Ed. Stevens

Chapter 4

Networks: TCP/IP Socket Calls 1

IPv4 Socket Address StructureIPv4 Socket Address Structure

Networks: TCP/IP Socket Calls 2

The Internet socket address structure is named sockaddr_in
and is defined by including <netinet/in.h> header.

struct in_addr {
in_addr_t s_addr /* 32-bit IP address */

}; /* network byte ordered */
struct sockaddr_in {

uint8_t sin_len; /* length of structure (16) */
sa_family_t sin_family; /* AF_INET */
in_port_t sin_port; /* 16-bit TCP or UDP port number */

/* network byte ordered */
struct in_addr sin_addr; /* 32-bit IPv4 address */

/* network byte ordered */
char sin_zero[8]; /* unused */

};

Networks: TCP/IP Socket Calls 3

Application 1

Socket

socket
interface

user

kernel

Application 2

user

kernel

Underlying
communication

Protocols

Underlying
communication

Protocols

Communications
network

Socket

socket
interface

The Socket InterfaceThe Socket Interface

Copyright ©2000 The McGraw Hill Companies Figure 2.16Leon-Garcia & Widjaja: Communication Networks

TCP Socket CallsTCP Socket Calls
socket()

bind()

listen()

read()

close()

socket()

connect()

read()

write()

close()

blocks until server receives
a connect request from client

data

data

Server

Client
accept()

write()

connect negotiation

Networks: TCP/IP Socket Calls 4

Figure 2.17Leon-Garcia & Widjaja: Communication NetworksCopyright ©2000 The McGraw Hill Companies

socket()

bind()

sendto()

close()

socket()

bind()

recvfrom()

sendto()

close()

blocks until server
receives data from client data

data

Server

Client

recvfrom()

Not needed

UDP Socket CallsUDP Socket Calls

Copyright ©2000 The McGraw Hill Companies

Networks: TCP/IP Socket Calls 5

Leon-Garcia & Widjaja: Communication Networks Figure 2.18

System Calls for Elementary TCP SocketsSystem Calls for Elementary TCP Sockets
#include <sys/types.h>
#include <sys/socket.h>

family: specifies the protocol family {AF_INET for TCP/IP}
type: indicates communications semantics

SOCK_STREAM stream socket TCP
SOCK_DGRAM datagram socket UDP
SOCK_RAW raw socket

protocol: set to 0 except for raw sockets
returns on success: socket descriptor {a small nonnegative integer}

on error: -1
Example:

if ((sd = socket (AF_INET, SOCK_STREAM, 0)) < 0)
err_sys (“socket call error”);

socket Function
int socket (int family, int type, int protocol);

Networks: TCP/IP Socket Calls 6

connect Functionconnect Function

intint connectconnect ((intint sockfdsockfd,, const const structstruct sockaddrsockaddr **servaddrservaddr, ,
socklen_tsocklen_t addrlenaddrlen));;

Networks: TCP/IP Socket Calls 7

sockfd: a socket descriptor returned by the socket function
*servaddr: a pointer to a socket address structure
addrlen: the size of the socket address structure

The socket address structure must contain the IP address and the port
number for the connection wanted.

In TCP connect initiates a three-way handshake. connect returns only when
the connection is established or when an error occurs.

returns on success: 0
on error: -1

Example:
if (connect (sd, (struct sockaddr *) &servaddr, sizeof (servaddr)) != 0)

err_sys(“connect call error”);

TCP Socket CallsTCP Socket Calls
socket()

bind()

listen()

read()

close()

socket()

connect()

read()

write()

close()

blocks until server receives
a connect request from client

data

data

Server

Client
accept()

write()

connect negotiation

Networks: TCP/IP Socket Calls 8

Figure 2.17Leon-Garcia & Widjaja: Communication NetworksCopyright ©2000 The McGraw Hill Companies

bind Functionbind Function

intint bindbind ((intint sockfdsockfd, , const const structstruct sockaddrsockaddr **myaddrmyaddr, , socklen_tsocklen_t
addrlenaddrlen));;

bind assigns a local protocol address to a socket.
protocol address: a 32 bit IPv4 address and a 16 bit TCP or UDP port

number.
sockfd: a socket descriptor returned by the socket function.
*myaddr: a pointer to a protocol-specific address.
addrlen: the size of the socket address structure.
Servers bind their “well-known port” when they start.
returns on success: 0

on error: -1
Example:

if (bind (sd, (struct sockaddr *) &servaddr, sizeof (servaddr)) != 0)
errsys (“bind call error”);

Networks: TCP/IP Socket Calls 9

listen Functionlisten Function

intint listen listen ((intint sockfdsockfd, , intint backlogbacklog));;

listen is called only by a TCP server and performs two actions:
1. Converts an unconnected socket (sockfd) into a passive

socket.
2. Specifies the maximum number of connections (backlog)

that the kernel should queue for this socket.
listen is normally called before the accept function.
returns on success: 0

on error: -1
Example:

if (listen (sd, 2) != 0)
errsys (“listen call error”);

Networks: TCP/IP Socket Calls 10

accept Functionaccept Function

intint acceptaccept ((intint sockfdsockfd,, structstruct sockaddrsockaddr **cliaddrcliaddr, , socklen_tsocklen_t
**addrlenaddrlen));;

accept is called by the TCP server to return the next completed
connection from the front of the completed connection queue.

sockfd: This is the same socket descriptor as in listen call.
*cliaddr: used to return the protocol address of the connected peer process

(i.e., the client process).
*addrlen: {this is a value-result argument}

before the accept call: We set the integer value pointed to by *addrlen
to the size of the socket address structure pointed to by *cliaddr;
on return from the accept call: This integer value contains the actual
number of bytes stored in the socket address structure.

returns on success: a new socket descriptor
on error: -1

Networks: TCP/IP Socket Calls 11

accept Function (cont.)accept Function (cont.)

intint acceptaccept ((intint sockfdsockfd,, structstruct sockaddrsockaddr **cliaddrcliaddr, , socklen_tsocklen_t
**addrlenaddrlen));;

Networks: TCP/IP Socket Calls 12

For accept the first argument sockfd is the listening socket
and the returned value is the connected socket.

The server will have one connected socket for each client
connection accepted.

When the server is finished with a client, the connected
socket must be closed.

Example:
sfd = accept (sd, NULL, NULL);
if (sfd == -1) err_sys (“accept error”);

close Functionclose Function

intint close close ((intint sockfdsockfd));;

Networks: TCP/IP Socket Calls 13

close marks the socket as closed and returns to the process
immediately.

sockfd: This socket descriptor is no longer useable.
Note – TCP will try to send any data already queued to the

other end before the normal connection termination
sequence.

Returns on success: 0
on error: -1

Example:

close (sd);

TCP Echo ServerTCP Echo Server

#include <stdio.h> /* for printf() and fprintf() */
#include <sys/socket.h> /* for socket(), bind(), and connect() */
#include <arpa/inet.h> /* for sockaddr_in and inet_ntoa() */
#include <stdlib.h> /* for atoi() and exit() */
#include <string.h> /* for memset() */
#include <unistd.h> /* for close() */

#define MAXPENDING 5 /* Maximum outstanding connection requests */
void DieWithError(char *errorMessage); /* Error handling function */
void HandleTCPClient(int clntSocket); /* TCP client handling function */

Networks: TCP/IP Socket Calls 14

D&C

Networks: TCP/IP Socket Calls 15

int main(int argc, char *argv[])
{ int servSock; /*Socket descriptor for server */

int clntSock; /* Socket descriptor for client */
struct sockaddr_in echoServAddr; /* Local address */
struct sockaddr_in echoClntAddr; /* Client address */
unsigned short echoServPort; /* Server port */
unsigned int clntLen; /* Length of client address data structure */

if (argc != 2) /* Test for correct number of arguments */
{

fprintf(stderr, "Usage: %s <Server Port>\n", argv[0]);
exit(1);

}
echoServPort = atoi(argv[1]); /* First arg: local port */

/* Create socket for incoming connections */
if ((servSock = socket (PF_INET, SOCK_STREAM, IPPROTO_TCP)) < 0)

DieWithError("socket() failed");
D&C

TCP Echo ServerTCP Echo Server

/* Construct local address structure */
memset(&echoServAddr, 0, sizeof(echoServAddr)); /* Zero out structure */
echoServAddr.sin_family = AF_INET; /* Internet address family */
echoServAddr.sin_addr.s_addr = htonl(INADDR_ANY); /* Any incoming interface */
echoServAddr.sin_port = htons(echoServPort); /* Local port */

/* Bind to the local address */
if (bind (servSock, (struct sockaddr *) &echoServAddr, sizeof(echoServAddr)) < 0)

DieWithError("bind() failed");

/* Mark the socket so it will listen for incoming connections */
if (listen (servSock, MAXPENDING) < 0)

DieWithError("listen() failed");

Networks: TCP/IP Socket Calls 16

D&C

TCP Echo ServerTCP Echo Server

for (;;) /* Run forever */
{

/* Set the size of the in-out parameter */
clntLen = sizeof(echoClntAddr); /* Wait for a client to connect */
if ((clntSock = accept (servSock, (struct sockaddr *) &echoClntAddr, &clntLen)) < 0)

DieWithError("accept() failed");

/* clntSock is connected to a client! */
printf("Handling client %s\n", inet_ntoa(echoClntAddr.sin_addr));
HandleTCPClient(clntSock);

}
/* NOT REACHED */

}

Networks: TCP/IP Socket Calls 17

D&C

TCP Echo ClientTCP Echo Client

#include <stdio.h> /* for printf() and fprintf() */
#include <sys/socket.h> /* for socket(), connect(), send(), and recv() */
#include <arpa/inet.h> /* for sockaddr_in and inet_addr() */
#include <stdlib.h> /* for atoi() and exit() */
#include <string.h> /* for memset() */
#include <unistd.h> /* for close() */

#define RCVBUFSIZE 32 /* Size of receive buffer */

void DieWithError(char *errorMessage); /* Error handling function */

Networks: TCP/IP Socket Calls 18

D&C

Networks: TCP/IP Socket Calls 19

int main(int argc, char *argv[])

{
int sock; /* Socket descriptor */
struct sockaddr_in echoServAddr; /* Echo server address */
unsigned short echoServPort; /* Echo server port */
char *servIP; /* Server IP address (dotted quad) */
char *echoString; /* String to send to echo server */
char echoBuffer[RCVBUFSIZE]; /* Buffer for echo string */
unsigned int echoStringLen; /* Length of string to echo */
int bytesRcvd, totalBytesRcvd; /* Bytes read in single recv()

and total bytes read */

if ((argc < 3) || (argc > 4)) /* Test for correct number of arguments */
{

fprintf(stderr, "Usage: %s <Server IP> <Echo Word> [<Echo Port>]\n",
argv[0]);

exit(1);
}

D&C

Networks: TCP/IP Socket Calls 20

servIP = argv[1]; /* First arg: server IP address (dotted quad) */
echoString = argv[2]; /* Second arg: string to echo */

if (argc == 4)
echoServPort = atoi(argv[3]); /* Use given port, if any */

else
echoServPort = 7; /* 7 is the well-known port for the echo service */

/* Create a reliable, stream socket using TCP */
if ((sock = socket (PF_INET, SOCK_STREAM, IPPROTO_TCP)) < 0)

DieWithError("socket() failed");

/* Construct the server address structure */
memset(&echoServAddr, 0, sizeof(echoServAddr)); /* Zero out structure */
echoServAddr.sin_family = AF_INET; /* Internet address family */
echoServAddr.sin_addr.s_addr = inet_addr(servIP); /* Server IP address */
echoServAddr.sin_port = htons(echoServPort); /* Server port */

D&C

TCP Echo ClientTCP Echo Client

/* Establish the connection to the echo server */
if (connect (sock, (struct sockaddr *) &echoServAddr, sizeof(echoServAddr)) < 0)

DieWithError("connect() failed");

echoStringLen = strlen(echoString); /* Determine input length */

/* Send the string to the server */
if (send (sock, echoString, echoStringLen, 0) != echoStringLen)

DieWithError("send() sent a different number of bytes than expected");

/* Receive the same string back from the server */
totalBytesRcvd = 0;
printf("Received: "); /* Setup to print the echoed string */

Networks: TCP/IP Socket Calls 21

D&C

TCP Echo ClientTCP Echo Client

while (totalBytesRcvd < echoStringLen)
{

/* Receive up to the buffer size (minus 1 to leave space for
a null terminator) bytes from the sender */

if ((bytesRcvd = recv(sock, echoBuffer, RCVBUFSIZE - 1, 0)) <= 0)
DieWithError("recv() failed or connection closed prematurely");

totalBytesRcvd += bytesRcvd; /* Keep tally of total bytes */
echoBuffer[bytesRcvd] = '\0'; /* Terminate the string! */
printf("%s", echoBuffer); /* Print the echo buffer */

}
printf("\n"); /* Print a final linefeed */
close (sock);
exit(0);

}

Networks: TCP/IP Socket Calls 22

D&C

Timekeeping

UNIX timekeeping is an untidy area, made more confusing by national and international laws
and customs. Broadly, there are two kinds of functions: one group is concerned with getting
and setting system times, and the other group is concerned with converting time representa-
tions between a bewildering number of formats.

Before we start, we’ll define some terms:

• A time zone is a definition of the time at a particular location relative to the time at other
locations. Most time zones are bound to political borders, and vary from one another in
steps of one hour, although there are still a number of time zones that are offset from
adjacent time zones by 30 minutes. Time zones tend to have three-letter abbreviations
(TLAs) such as PST (Pacific Standard Time), EDT (Eastern Daylight Time), BST (British
Summer Time), AET (Australian Eastern Time), MEZ (Mitteleuropäische Zeit). As the
example shows, you should not rely on the combination ST to represent Standard Time.

• UTC is the international base time zone, and has the distinction of being one of those
abbreviations which nobody can expand. It means Universal Coordinated Time, despite
the initials. It obviously doesn’t stand for the French Temps Universel Coordonné either.
It corresponds very closely, but not exactly, to Greenwich Mean Time (GMT), the local
time in England in the winter, and is the basis of all UNIX timestamps. The result is that
for most of us, UTC is not the current local time, though it might be close enough to be
confusing or far enough away to be annoying.

• From the standpoint of UNIX, you can consider the Epoch to be the beginning of
recorded history: it’s 00:00:00 UTC, 1 January 1970. All system internal dates are rela-
tive to the Epoch.

• Daylight Savings Time is a method of making the days appear longer in summer by set-
ting the clocks forward, usually by one hour. Thus in summer, the sun appears to set one
hour later than would otherwise be the case.

Even after clarifying these definitions, timekeeping remains a pain. We’ll look at the main
problems in the following sections:

269

5 February 2005 02:09

270

Difficult to use
The time functions are not easy to use: to get them to do anything useful requires a lot of
work. You’d think that UNIX would supply a primitive call upon which you could easily
build, but unfortunately there isn’t any such call, and the ones that are available do not operate
in an intuitively obvious way. For example, there is no standard function for returning the
current time in a useful format.

Implementations differ
There is no single system call that is supported across all platforms. Functions are imple-
mented as system calls in some systems and as library functions in others. As a result, it
doesn’t make sense to maintain our distinction between system calls and library functions
when it comes to timekeeping. In our discussion of the individual functions, we’ll note which
systems implement them as system calls and which as library calls.

Differing time formats
There are at least four different time formats:

• The system uses the time_t format, which represents the number of seconds since the
Epoch. This format is not subject to time zones or daylight savings time, but it is accu-
rate only to one second, which is not accurate enough for many applications.

• The struct timeval format is something like an extended time_t with a resolution of 1
microsecond:

#include <sys/time.h>

struct timeval
{
long tv_sec; /* seconds since Jan. 1, 1970 */
long tv_usec; /* and microseconds */
};

It is used for a number of newer functions, such as gettimeofday and setitimer.

• Many library routines represent the calendar time as a struct tm. It is usually defined in
/usr/include/time.h:

struct tm
{
int tm_sec; /* seconds after the minute [0-60] */
int tm_min; /* minutes after the hour [0-59] */
int tm_hour; /* hours since midnight [0-23] */
int tm_mday; /* day of the month [1-31] */
int tm_mon; /* months since January [0-11] */
int tm_year; /* years since 1900 */
int tm_wday; /* days since Sunday [0-6] */
int tm_yday; /* days since January 1 [0-365] */
int tm_isdst; /* Daylight Savings Time flag */

5 February 2005 02:09

Chapter 16: Timekeeping 271

long tm_gmtoff; /* offset from UTC in seconds */
char *tm_zone; /* timezone abbreviation */
};

Unlike time_t, a struct tm does not uniquely define the time: it may be a UTC time, or it
may be local time, depending on the time zone information for the system.

• Dates as a text string are frequently represented in a strange manner, for example Sat
Sep 17 14:28:03 1994\n. This format includes a \n character, which is seldom
needed — often you will have to chop it off again.

Daylight Savings Time
The support for Daylight Savings Time was rudimentary in the Seventh Edition, and the solu-
tions that have arisen since then are not completely compatible. In particular, System V han-
dles Daylight Savings Time via environment variables, so one user’s view of time could be
different from the next. Recent versions of BSD handle this via a database that keeps track of
local regulations.

National time formats
Printable representations of dates and times are very much a matter of local customs. For
example, the date 9/4/94 (in the USA) would be written as 4/9/94 in Great Britain and
04.09.94 in Germany. The time written as 4:23 pm in the USA would be written 16.23 in
France. Things get even worse if you want to have the names of the days and months. As a
result, many timekeeping functions refer to the locale kept by ANSI C. The locale describes
country-specific information. Since it does not vary from one system to the next, we won’t
look at it in more detail—see POSIX Programmer’s Guide, by Donald Lewine, for more
information.

Global timekeeping variables
A number of global variables define various aspects of timekeeping:

• The variable timezone, which is used in System V and XENIX, specifies the number of
minutes that the standard time zone is west of Greenwich. It is set from the environment
variable TZ, which has a rather bizarre syntax. For example, in Germany daylight sav-
ings time starts on the last Sunday of March and ends on the last Sunday of September
(not October as in some other countries, including the USA). To tell the system about
this, you would use the TZ string

MEZ-1MSZ-2;M3.5,M9.5

This states that the standard time zone is called MEZ, and that it is one hour ahead of
UTC, that the summer time zone is called MSZ, and that it is two hours ahead of UTC.
Summer time begins on the (implied Sunday of the) fifth week in March and ends in the
fifth week of September.

5 February 2005 02:09

272

The punctuation varies: this example comes from System V.3, which requires a semi-
colon in the indicated position. Other systems allow a comma here, which works until
you try to move the information to System V.3.

• The variable altzone, used in SVR4 and XENIX, specifies the number of minutes that
the Daylight Savings Time zone is west of Greenwich.

• The variable daylight, used in SVR4 and XENIX, indicates that Daylight Savings
Time is currently in effect.

• The variable tzname, used in BSD, SVR4 and XENIX, is a pointer to two strings, speci-
fying the name of the standard time zone and the Daylight Savings Time zone respec-
tively.

In the following sections we’ll look at how to get the current time, how to set the current time,
how to convert time values, and how to suspend process execution for a period of time.

Getting the current time
The system supplies the current time via the system calls time or gettimeofday—only one
of these is a system call, but the system determines which one it is.

time
#include <sys/types.h>
#include <time.h>

time_t time (time_t *tloc);

time returns the current time in time_t form, both as a return value and at tloc if this is not
NULL. time is implemented as a system call in System V and as a library function (which
calls gettimeofday) in BSD. Since it returns a scalar value, a call to time can be used as a
parameter to functions like localtime or ctime.

ftime
ftime is a variant of time that returns time information with a resolution of one millisecond.
It originally came from 4.2BSD, but is now considered obsolete.

#include <sys/types.h>
#include <sys/timeb.h>

typedef long time_t; /* (typically) */

struct timeb
{
time_t time; /* the same time returned by time */
unsigned short millitm; /* Milliseconds */
short timezone; /* System default time zone */
short dstflag; /* set during daylight savings time */

5 February 2005 02:09

Chapter 16: Timekeeping 273

};

struct timeb *ftime (struct timeb *tp);

The timezone returned is the system default, possibly not what you want. System V.4 depre-
cates* the use of this variable as a result. Depending on which parameters are actually used,
there are a number of alternatives to ftime. In many cases, time supplies all you need.
However, time is accurate only to one second.
On some systems, you may be able to define ftime in terms of gettimeofday, which
returns the time of the day with a 1 microsecond resolution—see the next section. On other
systems, unfortunately, the system clock does not have a finer resolution than one second, and
you are stuck with time.

gettimeofday
#include <sys/time.h>

struct timeval
{
long tv_sec; /* seconds since Jan. 1, 1970 */
long tv_usec; /* and microseconds */
};

int gettimeofday (struct timeval *tp,
struct timezone *tzp); /* (BSD) */

int gettimeofday (struct timeval *tp); /* (System V.4) */

gettimeofday returns the current system time, with a resolution of 1 microsecond, to tp.
The name is misleading, since the struct timeval representation does not relate to the time
of day. Many implementations ignore tzp, but others, such as SunOS 4, return time zone
information there.

In BSD, gettimeofday is a system call. In some versions of System V.4 it is emulated as a
library function defined in terms of time, which limits its resolution to 1 second. Other ver-
sions of System V appear to have implemented it as a system call, though this is not docu-
mented.

* The term deprecate is a religious term meaning “to seek to avert by prayer”. Nowadays used to indi-
cate functionality that the implementors or maintainers wish would go away. This term seems to have
come from Berkeley. To quote the “New Hackers Dictionary”:

:deprecated: adj. Said of a program or feature that is considered obsolescent and in the
process of being phased out, usually in favor of a specified replacement. Deprecated features
can, unfortunately, linger on for many years. This term appears with distressing frequency in
standards documents when the committees writing the documents realize that large amounts of
extant (and presumably happily working) code depend on the feature(s) that have passed out of
favor. See also {dusty deck}.

5 February 2005 02:09

274

Setting the current time
Setting the system time is similar to getting it, except that for security reasons only the supe-
ruser (root) is allowed to perform the function. It is normally executed by the date program.

adjtime
#include <sys/time.h>

int adjtime (struct timeval *delta, struct timeval *olddelta);

adjtime makes small adjustments to the system time, and is intended to help synchronize
time in a network. The adjustment is made gradually—the system slows down or speeds up
the passage of time by a fraction of a percent until it has made the correction, in order not to
confuse programs like cron which are watching the time. As a result, if you call adjtime
again, the previous adjustment might still not be complete; in this case, the remaining adjust-
ment is returned in olddelta. adjtime was introduced in 4.3BSD and is also supported by
System V. It is implemented as a system call in all systems.

settimeofday
#include <sys/time.h>

int gettimeofday (struct timeval *tp, struct timezone *tzp);
int settimeofday (struct timeval *tp, struct timezone *tzp);

settimeofday is a BSD system call that is emulated as a library function in System V.4. It
sets the current system time to the value of tp. The value of tzp is no longer used. In Sys-
tem V, this call is implemented in terms of the stime system call, which sets the time only to
the nearest second. If you really need to set the time more accurately in System V.4, you can
use adjtime.

stime
#include <unistd.h>

int stime (const time_t *tp);

stime sets the system time and date. This is the original Seventh Edition function that is still
available in System V. It is not supported in BSD—use settimeofday instead on BSD sys-
tems.

Converting time values
As advertised, there are a large number of time conversion functions, made all the more com-
plicated because many are supported only on specific platforms. All are library functions.
Many return pointers to static data areas that are overwritten by the next call. Solaris attempts
to solve this problem with versions of the functions with the characters _r (for reentrant)

5 February 2005 02:09

Chapter 16: Timekeeping 275

appended to their names. These functions use a user-supplied buffer to store the data they
return.

strftime
#include <sys/types.h>
#include <time.h>
#include <string.h>

size_t strftime (char *s, size_t maxsize, char *format, struct tm *tm);

strftime converts the time at tm into a formatted string at s. format specifies the format of
the resultant string, which can be no longer than maxsize characters. format is similar to
the format strings used by printf, but contains strings related to dates. strftime has a
rather strange return value: if the complete date string, including the terminating NUL charac-
ter, fits into the space provided, it returns the length of the string—otherwise it returns 0,
which implies that the date string has been truncated.

strftime is available on all platforms and is implemented as a library function. System V.4
considers ascftime and cftime to be obsolete. The man pages state that strftime should
be used instead.

strptime
#include <time.h>

char *strptime (char *buf, char *fmt, struct tm *tm);

strptime is a library function supplied with SunOS 4. It converts the date and time string
buf into a struct tm value at tm. This call bears the same relationship to scanf that strf-
time bears to printf.

ascftime
#include <sys/types.h>
#include <time.h>

int ascftime (char *buf, char *fmt, tm *tm);

ascftime converts the time at tm into a formatted string at buf. format specifies the format
of the resultant string. This is effectively the same function as strftime, except that there is
no provision to supply the maximum length of buf. ascftime is available on all platforms
and is implemented as a library function.

asctime and asctime_r
#include <sys/types.h>
#include <time.h>

char *asctime (const struct tm *tm);

5 February 2005 02:09

276

char *asctime_r (const struct tm *tm, char *buf, int buflen);

asctime converts a time in struct tm* format into the same kind of string that is returned
by ctime. asctime is available on all platforms and is always a library function.

asctime_r is a version of asctime that returns the string to the user-provided buffer res,
which must be at least buflen characters long. It returns the address of res. It is supplied as
a library function on Solaris systems.

cftime
#include <sys/types.h>
#include <time.h>

int cftime (char *buf, char *fmt, time_t *clock);

cftime converts the time at clock into a formatted string at buf. format specifies the for-
mat of the resultant string. This is effectively the same function as strftime, except that
there is no provision to supply the maximum length of buf, and the time is supplied in
time_t format. cftime is available on all platforms and is implemented as a library func-
tion.

ctime and ctime_r
#include <sys/types.h>
#include <time.h>
extern char *tzname[2];

char *ctime (const time_t *clock);
char *ctime_r (const time_t *clock, char *buf, int buflen);

ctime converts the time clock into a string in the form Sat Sep 17 14:28:03 1994\n,
which has the advantage of consistency: it is not a normal representation anywhere in the
world, and immediately brands any printed output with the word UNIX. It uses the environ-
ment variable TZ to determine the current time zone. You can rely on the string to be exactly
26 characters long, including the final \0, and to contain that irritating \n at the end. ctime
is available on all platforms and is always a library function.

ctime_r is a version of ctime that returns its result in the buffer pointed to by buf. The
length is limited to buflen bytes. ctime_r is available on Solaris platforms as a library
function.

dysize
#include <time.h>

int dysize (int year);

dysize return the number of days in year. It is supplied as a library function in SunOS 4.

5 February 2005 02:09

Chapter 16: Timekeeping 277

gmtime and gmtime_r
#include <time.h>

struct tm *gmtime (const time_t *clock);
struct tm *gmtime_r (const time_t *clock, struct tm *res);

gmtime converts a time in time_t format into struct tm* format, like localtime. As the
name suggests, however, it does not account for local timezones—it returns a UTC time (this
was formerly called Greenwich Mean Time, thus the name of the function). gmtime is avail-
able on all platforms and is always a library function.

gmtime_r is a version of gmtime that returns the string to the user-provided buffer res. It
returns the address of res. It is supplied as a library function on Solaris systems.

localtime and localtime_r
#include <time.h>

struct tm *localtime (const time_t *clock);
struct tm *localtime_r (const time_t *clock, struct tm *res);

localtime converts a time in time_t format into struct tm* format. Like ctime, it uses
the time zone information in tzname to convert to local time. localtime is available on all
platforms and is always a library function.

localtime_r is a version of localtime that returns the string to the user-provided buffer
res. It returns the address of res. It is supplied as a library function on Solaris systems.

mktime
#include <sys/types.h>
#include <time.h>
time_t mktime (struct tm *tm);

mktime converts a local time in struct tm format into a time in time_t format. It does not
use tzname in the conversion — it uses the information at tm->tm_zone instead. In addition
to converting the time, mktime also sets the members wday (day of week) and yday (day of
year) of the input struct tm to agree with day, month and year. tm->tm_isdst determines
whether Daylight Savings Time is applicable:

• if it is > 0, mktime assumes Daylight Savings Time is in effect.

• If it is 0, it assumes that no Daylight Savings Time is in effect.

• If it is < 0, mktime tries to determine whether Daylight Savings Time is in effect or not.
It is often wrong.

mktime is available on all platforms and is always a library function.

5 February 2005 02:09

278

timegm
#include <time.h>

time_t timegm (struct tm *tm);

timegm converts a struct tm time, assumed to be UTC, to the corresponding time_t value.
This is effectively the same thing as mktime with the time zone set to UTC, and is the con-
verse of gmtime. timegm is a library function supplied with SunOS 4.

timelocal
#include <time.h>

time_t timelocal (struct tm *tm);

timelocal converts a struct tm time, assumed to be local time, to the corresponding
time_t value. This is similar to mktime, but it uses the local time zone information instead
of the information in tm. It is also the converse of localtime. timelocal is a library func-
tion supplied with SunOS 4.

difftime
#include <sys/types.h>
#include <time.h>

double difftime (time_t time1, time_t time0);

difftime returns the difference in seconds between two time_t values. This is effectively
the same thing as (int) time1 - (int) time0. difftime is a library function available
on all platforms.

timezone
#include <time.h>

char *timezone (int zone, int dst);

timezone returns the name of the timezone that is zone minutes west of Greenwich. If dst
is non-0, the name of the Daylight Savings Time zone is returned instead. This call is obso-
lete — it was used at a time when time zone information was stored as the number of minutes
west of Greenwich. Nowadays the information is stored with a time zone name, so there
should be no need for this function.

tzset
#include <time.h>

void tzset ();

5 February 2005 02:09

Chapter 16: Timekeeping 279

tzset sets the value of the internal variables used by localtime to the values specified in
the environment variable TZ. It is called by asctime. In System V, it sets the value of the
global variable daylight. tzset is a library function supplied with BSD and System V.4.

tzsetwall
#include <time.h>

void tzsetwall ();

tzsetwall sets the value of the internal variables used by localtime to the default values
for the site. tzsetwall is a library function supplied with BSD and System V.4.

Suspending process execution
Occasionally you want to suspend process execution for a short period of time. For example,
the tail program with the -f flag waits until a file has grown longer, so it needs to relinquish
the processor for a second or two between checks on the file status.

Typically, this is done with sleep. Howev er, some applications need to specify the length of
time more accurately than sleep allows, so a couple of alternatives hav e arisen: nap suspends
execution for a number of milliseconds, and usleep suspends it for a number of microsec-
onds.

nap
nap is a XENIX variant of sleep with finer resolution:

#include <time.h>

long nap (long millisecs);

nap suspends process execution for at least millisecs milliseconds. In practice, the XENIX
clock counts in intervals of 20 ms, so this is the maximum accuracy with which you can spec-
ify millisecs. You can simulate this function with usleep (see page 281 for more details).

setitimer
BSD systems and derivatives maintain three (possibly four) interval timers:

• A real time timer, ITIMER_REAL, which keeps track of real elapsed time.

• A virtual timer, ITIMER_VIRTUAL, which keeps track of process execution time, in other
words the amount of CPU time that the process has used.

• A profiler timer, ITIMER_PROF, which keeps track of both process execution time and
time spent in the kernel on behalf of the process. As the name suggests, it is used to
implement profiling tools.

5 February 2005 02:09

280

• A real time profiler timer, ITIMER_REALPROF, used for profiling Solaris 2.X multi-
threaded processes.

These timers are manipulated with the system calls getitimer and setitimer:

#include <sys/time.h>

struct timeval
{
long tv_sec; /* seconds */
long tv_usec; /* and microseconds */
};

struct itimerval
{
struct timeval it_interval; /* timer interval */
struct timeval it_value; /* current value */
};

int getitimer (int which, struct itimerval *value);
int setitimer (int which, struct itimerval *value, struct itimerval *ovalue);

setitimer sets the value of a specific timer which to value, and optionally returns the pre-
vious value in ovalue if this is not a NULL pointer. getitimer just returns the current value
of the timer to value. The resolution is specified to an accuracy of 1 microsecond, but it is
really limited to the accuracy of the system clock, which is more typically in the order of 10
milliseconds. In addition, as with all timing functions, there is no guarantee that the process
will be able to run immediately when the timer expires.

In the struct itimerval, it_value is the current value of the timer, which is decremented
depending on type as described above. When it_value is decremented to 0, two things hap-
pen: a signal is generated, and it_value is reloaded from it_interval. If the result is 0,
no further action occurs; otherwise the system continues decrementing the counter. In this
way, one call to setitimer can cause the system to generate continuous signals at a specified
interval.

The signal that is generated depends on the timer. Here’s an overview:

Table 16−1: setitimer signals

Timer Signal

Real time SIGALRM

Virtual SIGVTALRM

Profiler SIGPROF

Real-time profiler1 SIGPROF

1 Only Solaris 2.x

The only timer you’re likely to see is the real time timer. If you don’t hav e it, you can fake it
with alarm. In System V.4, setitimer is implemented as a library function that calls an
undocumented system call. See The Magic Garden explained: The Internals of UNIX System

5 February 2005 02:09

Chapter 16: Timekeeping 281

V Release 4, by Berny Goodheart and James Cox, for more details.

setitimer is used to implement the library routine usleep.

sleep
#include <unistd.h>

unsigned sleep (u_int seconds);

The library routine sleep suspends program execution for approximately seconds seconds.
It is available on all UNIX platforms.

usleep
usleep is a variant of sleep that suspends program execution for a very short time:

#include <unistd.h>
void usleep (u_int microseconds);

usleep sleeps for at least microseconds microseconds. It is supplied on BSD and System
V.4 systems as a library function that uses the setitimer system call.

select and poll
If your system doesn’t supply any timing function with a resolution of less than one second,
you might be able to fake it with the functions select or poll. select can wait for nothing
if you ask it to, and since the timeout is specified as a struct timeval (see page 270), you
can specify times down to microsecond accuracy. You can use poll in the same way, except
that you specifies its timeout value in milliseconds.

For example,

void usleep (int microseconds)
{
struct timeval timeout;
timeout.tv_usec = microseconds % 1000000;
timeout.tv_sec = microseconds / 1000000;
select (0, NULL, NULL, NULL, &timeout);
}

or
void usleep (int microseconds)
{
poll (0, NULL, microseconds / 1000);
}

5 February 2005 02:09

