Java sockets 101

Presented by developerWorks, your source for great tutorials

I bm com devel oper Wr ks

Table of Contents

If you're viewing this document online, you can click any of the topics below to link directly to that section.

N 0] £ = L 101 P 2
2. SOCKEt DASICS ..t 3
3. An undercover SOCKEetoviiiiiii i 7
4. A simple example 11
5. A multithreaded example ... 18
6. Apooled example ... 21
7.50cketsinreal life. ... 27
8. SUMMAIY e 31
0. APPENAIX. ettt ettt 33

Java sockets 101 Page 1 of 38

Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Section 1. Tutorial tips

Should | take this tutorial?

Sockets, which provide a mechanism for communication between two computers, have been
around since long before the Java language was a glimmer in James Gosling's eye. The
language simply lets you use sockets effectively without having to know the details of the
underlying operating system. Most books that focus on Java coding either fail to cover the
topic, or leave a lot to the imagination. This tutorial will tell you what you really need to know
to start using sockets effectively in your Java code. Specifically, we'll cover:

* What sockets are

* Where they fit into the structure of programs you're likely to write

* The simplest sockets implementation that could possibly work -- to help you understand
the basics

* A detailed walkthrough of two additional examples that explore sockets in multithreaded
and pooled environments

* A brief discussion of an application for sockets in the real world

If you can describe how to use the classes in the j ava. net package, this tutorial is probably
a little basic for you, although it might be a good refresher. If you have been working with
sockets on PCs and other platforms for years, the initial sections might bore you. But if you
are new to sockets, and simply want to know what they are and how to use them effectively
in your Java code, this tutorial is a great place to start.

Getting help

For questions about the content of this tutorial, contact the authors, Roy Miller (at
rmiller@rolemodelsoft.com) or Adam Williams (at awilliams@rolemodelsoft.com).

Roy Miller and Adam Williams are Software Developers at RoleModel Software, Inc. They
have worked jointly to prototype a socket-based application for the TINI Java platform from
Dallas Semiconductor. Roy and Adam are currently working on porting a COBOL financial
transaction system to the Java platform, using sockets.

Prior to joining RoleModel, Roy spent six years with Andersen Consulting (now Accenture)

developing software and managing projects. He co-authored Extreme Programming Applied:
Playing to Win (Addison-Wesley XP Series) scheduled for publication in October 2001.

Java sockets 101 Page 2 of 38

mailto:rmiller@rolemodelsoft.com
mailto:awilliams@rolemodelsoft.com

Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Section 2. Socket basics

Introduction

Most programmers, whether they're coding in the Java language or not, don't want to know
much about low-level details of how applications on different computers communicate with
each other. Programmers want to deal with higher-level abstractions that are easier to
understand. Java programmers want objects that they can interact with via an intuitive
interface, using the Java constructs with which they are familiar.

Sockets live in both worlds -- the low-level details that we'd rather avoid and the abstract
layer we'd rather deal with. This section will explore just enough of the low-level details to
make the abstract application understandable.

Aplication Layer Computer networking 101

Presentation Layer

Computers operate and communicate with one
another in a very simple way. Computer chips are
a collection of on-off switches that store and
TransportLayer | TcP transmit data in the form of 1s and 0s. When
computers want to share data, all they need to do
is stream a few million of these bits and bytes back
and forth, while agreeing on speed, sequence,
timing, and such. How would you like to worry
Physical Layer about those details every time you wanted to
communicate information between two
applications?

Session Layer

Network Layer | IP

Data Layer

To avoid that, we need a set of packaged protocols
that can do the job the same way every time. That
would allow us to handle our application-level work
without having to worry about the low-level
networking details. These sets of packaged
protocols are called stacks. The most common
stack these days is TCP/IP. Most stacks (including
TCP/IP) adhere roughly to the International
Standards Organization (ISO) Open Systems
Interconnect Reference Model (OSIRM). The
OSIRM says that there are seven logical layers in

Java sockets 101 Page 3 of 38

Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

a reliable framework for computer networking (see
the diagram). Companies all over have contributed
something that implements some of the layers in
this model, from generating the electrical signals
(pulses of light, radio frequency, and so on) to
presenting the data to applications. TCP/IP maps
to two layers in the OSI model, as shown in the
diagram.

We won't go into the details of the layers too much,
but we want you to be aware of where sockets fit.

Application Layer

Presentation Layer

Session Layer

Data Layer

ALl

Physical Layer

Data communication-level layers

Transport Layer |

Sockets

Where sockets fit

Sockets reside roughly at the Session Layer of the
OSI model (see the diagram). The Session Layer
is sandwiched between the application-oriented
upper layers and the real-time data communication
lower layers. The Session Layer provides services
for managing and controlling data flow between
two computers. As part of this layer, sockets
provide an abstraction that hides the complexities
of getting the bits and bytes on the wire for
transmission. In other words, sockets allow us to
transmit data by having our application indicate
that it wants to send some bytes. Sockets mask
the nuts and bolts of getting the job done.

When you pick up your telephone, you provide
sound waves to a sensor that converts your voice
into electrically transmittable data. The phone is a
human's interface to the telecommunications
network. You aren't required to know the details of
how your voice is transported, only the party to
whom you would like to connect. In the same
sense, a socket acts as a high-level interface that
hides the complexities of transmitting 1s and Os
across unknown channels.

Java sockets 101

Page 4 of 38

Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Application-level layers

Application Layer
Presentation Layer

Transport Layer |

Network Layer

Physical Layer

Sockets

Exposing sockets to an
application

When you write code that uses sockets, that code
does work at the Presentation Layer. The
Presentation Layer provides a common
representation of information that the Application
Layer can use. Say you are planning to connect
your application to a legacy banking system that
understands only EBCDIC. Your application
domain objects store information in ASCII format.
In this case, you are responsible for writing code at
the Presentation Layer to convert data from
EBCDIC to ASCII, and then (for example) to
provide a domain object to your Application Layer.
Your Application Layer can then do whatever it
wants with the domain object.

The socket-handling code you write lives only at
the Presentation Layer. Your Application Layer
doesn't have to know anything about how sockets
work.

What are sockets?

Now that we know the role sockets play, the question remains: What is a socket? Bruce
Eckel describes a socket this way in his book Thinking in Java:

The socket is the software abstraction used to represent the "terminals" of a connection
between two machines. For a given connection, there's a socket on each machine, and you
can imagine a hypothetical "cable" running between the two machines with each end of the
"cable" plugged into a socket. Of course, the physical hardware and cabling between

machines is completely unknown. The whole point of the abstraction is that we don't have to

know more than is necessary.

In a nutshell, a socket on one computer that talks to a socket on another computer creates a

communication channel. A programmer can use that channel to send data between the two
machines. When you send data, each layer of the TCP/IP stack adds appropriate header

information to wrap your data. These headers help the stack get your data to its destination.

The good news is that the Java language hides all of this from you by providing the data to
your code on streams, which is why they are sometimes called streaming sockets.

Think of sockets as handsets on either side of a telephone call -- you and | talk and listen on
our handsets on a dedicated channel. The conversation doesn't end until we decide to hang

up (unless we're using cell phones). And until we hang up, our respective phone lines are

busy.

If you need to communicate between two computers without the overhead of higher-level
mechanisms like ORBs (and CORBA, RMI, IIOP, and so on), sockets are for you. The
low-level details of sockets get rather involved. Fortunately, the Java platform gives you

Java sockets 101

Page 5 of 38

Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

some simple yet powerful higher-level abstractions that make creating and using sockets
easy.

Types of sockets

Generally speaking, sockets come in two flavors in the Java language:

* TCP sockets (implemented by the Socket class, which we'll discuss later)
* UDP sockets (implemented by the Dat agr anSocket class)

TCP and UDP play the same role, but they do it differently. Both receive transport protocol
packets and pass along their contents to the Presentation Layer. TCP divides messages into
packets (datagrams) and reassembles them in the correct sequence at the receiving end. It
also handles requesting retransmission of missing packets. With TCP, the upper-level layers
have much less to worry about. UDP doesn't provide these assembly and retransmission
requesting features. It simply passes packets along. The upper layers have to make sure that
the message is complete and assembled in correct sequence.

In general, UDP imposes lower performance overhead on your application, but only if your
application doesn't exchange lots of data all at once and doesn't have to reassemble lots of
datagrams to complete a message. Otherwise, TCP is the simplest and probably most
efficient choice.

Because most readers are more likely to use TCP than UDP, we'll limit our discussion to the
TCP-oriented classes in the Java language.

Java sockets 101 Page 6 of 38

Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Section 3. An undercover socket

Introduction

The Java platform provides implementations of sockets in the j ava. net package. In this
tutorial, we'll be working with the following three classes in j ava. net :

* URLConnecti on
* Socket
* Server Socket

There are more classes in j ava. net , but these are the ones you'll run across the most
often. Let's begin with URLConnect i on. This class provides a way to use sockets in your
Java code without having to know any of the underlying socket details.

Using sockets without even trying

The URLConnect i on class is the abstract superclass of all classes that create a
communications link between an application and a URL. URLConnect i ons are most useful
for getting documents on Web servers, but can be used to connect to any resource identified
by a URL. Instances of this class can be used both to read from and to write to the resource.
For example, you could connect to a servlet and send a well-formed XML St ri ng to the
server for processing. Concrete subclasses of URLConnect i on (such as

Ht t pURLConnect i on) provide extra features specific to their implementation. For our
example, we're not doing anything special, so we'll make use of the default behaviors
provided by URLConnect i on itself.

Connecting to a URL involves several steps:

Create the URLConnecti on

Configure it using various setter methods
Connect to the URL

Interact with it using various getter methods

* X x *

Next, we'll look at some sample code that demonstrates how to use a URLConnect i on to
request a document from a server.

The URLCIient class

We'll begin with the structure for the URLC i ent class.

i mport java.io.*;

i mport java.net.*;

public class URLd ient {
prot ected URLConnecti on connecti on;
public static void main(String[] args) {

}
public String getDocunent At (String url String) {
}

Java sockets 101 Page 7 of 38

Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

The first order of business is to import j ava. net andj ava. i o.
We give our class one instance variable to hold a URLConnect i on.
Our class has a nai n() method that handles the logic flow of surfing for a document. Our

class also has a get Docunent At () method that connects to the server and asks it for the
given document. We will go into the details of each of these methods next.

Surfing for a document

The mai n() method handles the logic flow of surfing for a document:

public static void main(String[] args) {
URLC ient client = new URLClient();
String yahoo = client. get Docunent At ("http://ww. yahoo. coni);
System out . printl n(yahoo);

Our mai n() method simply creates a new URLC i ent and calls get Docunent At () with a
valid URL St ri ng. When that call returns the document, we store itin a St ri ng and then
print it out to the console. The real work, though, gets done in the get Docunent At ()
method.

Requesting a document from a server

The get Docurnent At () method handles the real work of getting a document over the Web:

public String getDocunment At (String url String) {
StringBuffer document = new StringBuffer();
try {
URL url = new URL(url String);
URLConnection conn = url.openConnection();
Buf f er edReader reader = new BufferedReader (new | nput St r eanReader (conn. get | nput
String line = null;
while ((line = reader.readLine()) !'= null)
docunent . append(line + "\ n");
reader. cl ose();
} catch (Mal formredURLException e) {
Systemout.println("Unable to connect to URL: " + url String);
} catch (1 CException e) {
System out. println("lOExcepti on when connecting to URL: " + url String);
}

return docunent.toString();

The get Docunent At () method takes a St r i ng containing the URL of the document we
want to get. We start by creating a St ri ngBuf f er to hold the lines of the document. Next,
we create a new URL with the ur| St ri ng we passed in. Then we create a URLConnect i on
and open it:

URLConnection conn = url.openConnection();

Java sockets 101 Page 8 of 38

Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Once we have a URLConnect i on, we get its | nput St r eamand wrap it in an

| nput St r eanReader , which we then wrap in a Buf f er edReader so that we can read
lines of the document we're getting from the server. We'll use this wrapping technique often
when dealing with sockets in Java code, but we won't always discuss it in detail. You should
be familiar with it before we move on:

Buf f er edReader reader =
new Buf f er edReader (new | nput St r eanReader (conn. get I nput Streamn()));

Having our Buf f er edReader makes reading the contents of our document easy. We call
readLi ne() onreader inawhil e loop:

String line = null;
while ((line = reader.readLine()) != null)
docunent . append(line + "\ n");

The call to r eadLi ne() is going to block until in reaches a line termination character (for
example, a newline character) in the incoming bytes on the | nput St r eam If it doesn't get
one, it will keep waiting. It will return nul | only when the connection is closed. In this case,
once we get a line, we append it to the St ri ngBuf f er called docunent , along with a
newline character. This preserves the format of the document that was read on the server
side.

When we're done reading lines, we close the Buf f er edReader :

reader. cl ose();

If the ur | St ri ng supplied to a URL constructor is invalid, a Mal f or mredURLExcepti on is
thrown. If something else goes wrong, such as when getting the | nput St r eamon the
connection, an | OExcept i on is thrown.

Wrapping up

Beneath the covers, URLConnect i on uses a socket to read from the URL we specified
(which just resolves to an IP address), but we don't have to know about it and we don't care.
But there's more to the story; we'll get to that shortly.

Before we move on, let's review the steps to create and use a URLConnect i on:

1. Instantiate a URL with a valid URL St ri ng of the resource you're connecting to (throws
a Mal f or mredURLExcept i on if there's a problem).

2. Open a connection on that URL.

3. Wrap the | nput St r eamfor that connection in a Buf f er edReader so you can read
lines.

4. Read the document using your Buf f er edReader .

Java sockets 101 Page 9 of 38

Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

5. Close your Buf f er edReader .

You can find the complete code listing for URLCl i ent at Code listing for URLClient on page 33

Java sockets 101 Page 10 of 38

Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Section 4. A simple example

Background

The example we'll cover in this section illustrates how you can use Socket and

Ser ver Socket in your Java code. The client uses a Socket to connect to a server. The
server listens on port 3000 with a Ser ver Socket . The client requests the contents of a file
on the server's C: drive.

For the sake of clarity, we split the example into the client side and the server side. At the
end, we'll put it all together so you can see the entire picture.

We developed this code in IBM VisualAge for Java 3.5, which uses JDK 1.2. To create this
example for yourself, JDK 1.1.7 or greater should be fine. The client and the server will run
on a single machine, so don't worry about having a network available.

Creating the RemoteFileClient class

Here is the structure for the Renpt eFi | ed i ent class:

i mport java.io.*;
i mport java.net.*;
public class RenoteFiledient {
protected String hostlp;
protected int hostPort;
prot ect ed Buf f eredReader socket Reader;
protected PrintWiter socketWiter;
public RenmpteFileCdient(String aHostlp, int aHostPort) {
hostlp = aHost | p;
host Port = aHost Port;

public static void main(String[] args) {
public void setUpConnection() {

}

public String getFile(String fileNanmeToGet) {

public void tear DownConnection() {

}

First we import j ava. net andj ava. i o. The j ava. net package gives you the socket tools
you need. The j ava. i 0 package gives you tools to read and write streams, which is the
only way you can communicate with TCP sockets.

We give our class instance variables to support reading from and writing to socket streams,
and to store details of the remote host to which we will connect.

The constructor for our class takes an IP address and a port number for a remote host and
assigns them to instance variables.

Our class has a nai n() method and three other methods. We'll go into the details of these
methods later. For now, just know that set UpConnect i on() will connect to the remote

Java sockets 101 Page 11 of 38

Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

server, get Fi | e() will ask the remote server for the contents of f i | eNameToCet , and
t ear DownConnect i on() will disconnect from the remote server.

Implementing main()

Here we implement the mai n() method, which will create the Renot eFi | eCl i ent, use it to
get the contents of a remote file, and then print the result:

public static void nmain(String[] args) {
RemoteFileCient renpteFileCient = new RenoteFileCient("127.0.0.1", 3000);
renoteFil eCli ent. set UpConnecti on();
String fileContents =
renoteFileClient.getFile("C\\WNNT\\Tenmp\\RenoteFile.txt");
renot eFi |l ed i ent.tear DownConnection();
Systemout.println(fileContents);

The mai n() method instantiates a new Renot eFi | eC i ent (the client) with an IP address
and port number for the host. Then, we tell the client to set up a connection to the host (more
on this later). Next, we tell the client to get the contents of a specified file on the host. Finally,
we tell the client to tear down its connection to the host. We print out the contents of the file
to the console, just to prove everything worked as planned.

Setting up a connection

Here we implement the set UpConnect i on() method, which will set up our Socket and
give us access to its streams:

public void setUpConnection() {

try {
Socket client = new Socket (hostlp, hostPort);

socket Reader = new BufferedReader (
new | nput St reanReader (client.getlnputStrean()));

socketWiter = new PrintWiter(client.getQutputStreanm));
} catch (UnknownHost Exception e) {

Systemout.println("Error setting up socket connection: unknown host at " + ho:
} catch (1 CException e) {

Systemout.println("Error setting up socket connection: " + e);
}

}

The set UpConnecti on() method creates a Socket with the IP address and port number
of the host:

Socket client = new Socket (hostlp, hostPort);

We wrap the Socket 's | nput St r eamin a Buf f er edReader so that we can read lines
from the stream. Then, we wrap the Socket 's Qut put St reamina Pri nt Wi t er so that
we can send our request for a file to the server:

socket Reader
socket Wi ter

new Buf f er edReader (new | nput St reanReader (client.getlnputStream()));
new PrintWiter(client.getQutputStream));

Java sockets 101 Page 12 of 38

Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Remember that our client and server simply pass bytes back and forth. Both the client and
the server have to know what the other is going to be sending so that they can respond
appropriately. In this case, the server knows that we'll be sending it a valid file path.

When you instantiate a Socket , an UnknownHost Except i on may be thrown. We don't do
anything special to handle it here, but we print some information out to the console to tell us
what went wrong. Likewise, if a general | OExcept i on is thrown when we try to get the

| nput St r eamor Cut put St r eamon a Socket , we print out some information to the
console. This is our general approach in this tutorial. In production code, we would be a little
more sophisticated.

Talking to the host

Here we implement the get Fi | e() method, which will tell the server what file we want and
receive the contents from the server when it sends the contents back:

public String getFile(String fil eNaneToCet) ({
StringBuffer fileLines = new StringBuffer();

try {
socketWiter.println(fil eNaneToGet);

socketWiter.flush();
String line = null;
while ((line = socket Reader.readLine()) !'= null)
fileLines.append(line + "\n");
} catch (1 CeException e) {
Systemout.printin("Error reading fromfile: " + fil eNameToGet);
}

return fileLines.toString();

A call to the get Fi | e() method requires a valid file path St ri ng. It starts by creating the
StringBuffer calledfil eLi nes for storing each of the lines that we read from the file on
the server:

StringBuffer filelLines = new StringBuffer();

Inthe t ry{} cat ch{} block, we send our request to the host using the Pri nt Wi t er that
was established during connection setup:

socketWiter.println(fil eNaneToGet);
socket Witer.flush();

Note that we f | ush() the Pri nt Wi t er here instead of closing it. This forces data to be
sent to the server without closing the Socket .

Once we've written to the Socket , we are expecting some response. We have to wait for it
on the Socket 's | nput St r eam which we do by calling r eadLi ne() on our

Buf f er edReader inawhi | e loop. We append each returned line to the fi | eLi nes

St ri ngBuf f er (with a newline character to preserve the lines):

String line = null;
while ((line = socket Reader.readLine()) !'= null)
fileLines.append(line + "\n");

Java sockets 101 Page 13 of 38

Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Tearing down a connection

Here we implement the t ear DownConnect i on() method, which will "clean up" after we're
done using our connection:

public void tear DownConnection() {

try {
socket Witer.close();

socket Reader . cl ose();
} catch (1 Cexception e) {

Systemout.println("Error tearing down socket connection: " + e);
}

The t ear DownConnect i on() method simply closes the Buf f er edReader and

Print Witer we created on our Socket 's | nput St r eamand Qut put St r eam
respectively. Doing this closes the underlying streams that we acquired from the Socket , so
we have to catch the possible | OExcept i on.

Wrapping up the client

Our class is done. Before we move on to the server end of things, let's review the steps to
create and use a Socket :

1. Instantiate a Socket with the IP address and port of the machine you're connecting to
(throws an Except i on if there's a problem).

2. Get the streams on that Socket for reading and writing.

3. Wrap the streams in instances of Buf f er edReader /Pri nt Wi t er, if that makes
things easier.

4. Read from and write to the Socket .

5. Close your open streams.

You can find the complete code listing for Renot eFi | ed i ent at Code listing for
RemoteFileClient on page 33.

Creating the RemoteFileServer class

Here is the structure for the Renot eFi | eSer ver class:

i mport java.io.*;
i mport java.net.*;
public class RenoteFil eServer {
protected int listenPort = 3000;
public static void main(String[] args) {

Java sockets 101 Page 14 of 38

Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

}

public void accept Connections() {

public void handl eConnecti on(Socket inconi ngConnection) ({

}

As with the client, we first import j ava. net and j ava. i 0. Next, we give our class an
instance variable to hold the port to listen to for incoming connections. By default, this is port
3000.

Our class has a nai n() method and two other methods. We'll go into the details of these
methods later. For now, just know that accept Connecti ons() will allow clients to connect
to the server, and handl eConnecti on() interacts with the client Socket to send the
contents of the requested file to the client.

Implementing main()

Here we implement the mai n() method, which will create a Renot eFi | eSer ver and tell it
to accept connections:

public static void main(String[] args) {
Renot eFi | eServer server = new RenoteFil eServer();
server. accept Connecti ons();

The mai n() method on the server side is even simpler than on the client side. We
instantiate a new Renot eFi | eSer ver , which will listen for incoming connection requests on
the default listen port. Then we call accept Connect i ons() to tell the server to listen.

Accepting connections

Here we implement the accept Connect i ons() method, which will set up a
Ser ver Socket and wait for connection requests:

public void accept Connections() {

try {
Server Socket server = new Server Socket (listenPort);
Socket i ncom ngConnection = null;
while (true) {
i ncom ngConnection = server.accept();
handl eConnecti on(i nconm ngConnecti on);

}
} catch (BindException e) {

Systemout.println("Unable to bind to port " + listenPort);
} catch (I Oexception e) {

Systemout.println("Unable to instantiate a Server Socket on port: " + |istenPol
}

The accept Connecti ons() method creates a Ser ver Socket with the port number to
listen to. We then tell the Ser ver Socket to start listening by calling accept () onit. The

Java sockets 101 Page 15 of 38

Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

accept () method blocks until a connection request comes in. At that point, accept ()
returns a new Socket bound to a randomly assigned port on the server, which is passed to
handl eConnecti on() . Notice that this accepting of connections is in an infinite loop. No
shutdown supported here.

Whenever you create a Ser ver Socket , Java code may throw an error if it can't bind to the
specified port (perhaps because something else already has control of that port). So we have
to catch the possible Bi ndExcept i on here. And just like on the client side, we have to
catch an | OExcept i on that could be thrown when we try to accept connections on our

Ser ver Socket . Note that you can set a timeout on the accept () call by calling

set SoTi meout () with number of milliseconds to avoid a really long wait. Calling

set SoTi meout () will cause accept () to throw an | CExcept i on after the specified
elapsed time.

Handling connections

Here we implement the handl eConnect i on() method, which will use streams on a
connection to receive input and write output:

public void handl eConnecti on(Socket incom ngConnection) {
try {
Qut put St r eam out put ToSocket
| nput St ream i nput Fr onSocket
Buf f er edReader streanReader =
new Buf f er edReader (new | nput St r eanReader (i nput Fr onSocket));
Fil eReader fil eReader = new Fil eReader (new Fil e(streanReader.readLine()));
Buf f er edReader bufferedFil eReader = new BufferedReader (fil eReader);
PrintWiter streanWiter =
new PrintWiter(incon ngConnection. getCutputStrean());
String line = null;
while ((line = bufferedFil eReader.readLine()) !'= null) {
streamWiter.println(line);

i ncom ngConnecti on. get Qut put Stream) ;
i ncom ngConnecti on. getl nput Strean();

fil eReader. cl ose();

streanWiter.close();

st reanReader. cl ose();
} catch (Exception e) {

Systemout.println("Error handling a client: " + e);
}

As with the client, we get the streams associated with the Socket we just made, using

get Qut put St rean() and get | nput Stream() . As on the client side, we wrap the

| nput St r eamin a Buf f er edReader and the Qut put Streamina Print Wi ter. On the
server side, we need to add some code to read the target file and send the contents to the
client line by line. Here's the important code:

Fi |l eReader fil eReader = new Fil eReader (new Fil e(streanReader.readLine()));

Buf f er edReader bufferedFil eReader = new BufferedReader (fil eReader);

String line = null;

while ((line = bufferedFil eReader.readLine()) !'= null) {
streamWiter.println(line);

}

This code deserves some detailed explanation. Let's look at it bit by bit:

Java sockets 101 Page 16 of 38

Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Fi |l eReader fil eReader = new Fil eReader (new Fil e(streanReader. readLine()));

First, we make use of our Buf f er edReader on the Socket 's | nput St r eam We should be
getting a valid file path, so we construct a new Fi | e using that path name. We make a new
Fi | eReader to handle reading the file.

Buf f er edReader bufferedFi | eReader = new BufferedReader (fil eReader);

Here we wrap our Fi | eReader in a Buf f er edReader to let us read the file line by line.

Next, we call r eadLi ne() on our Buf f er edReader . This call will block until bytes come in.
When we get some bytes, we put them in our local | i ne variable, and then write them out to
the client. When we're done reading and writing, we close the open streams.

Note that we closed st reamW i t er and st r eanReader after we were done reading from
the Socket . You might ask why we didn't close st r eanReader immediately after reading in
the file name. The reason is that when you do that, your client won't get any data. If you
close the st r eanmrReader before you close stream/ it er, you can write to the Socket all
you want but no data will make it across the channel (it's closed).

Wrapping up the server

Before we move on to another, more practical example, let's review the steps to create and
use a Ser ver Socket :

1. Instantiate a Ser ver Socket with a port on which you want it to listen for incoming
client connections (throws an Except i on if there's a problem).

2. Callaccept () onthe Server Socket to block while waiting for connection.
3. Get the streams on that underlying Socket for reading and writing.

4. Wrap the streams as necessary to simplify your life.

5. Read from and write to the Socket .

6. Close your open streams (and remember, never close your Reader before your Writer).

You can find the complete code listing for Renot eFi | eSer ver at Code listing for
RemoteFileServer on page 34.

Java sockets 101 Page 17 of 38

Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Section 5. A multithreaded example

Introduction

The previous example gives you the basics, but that won't take you very far. If you stopped
here, you could handle only one client at a time. The reason is that handl eConnecti on()
is a blocking method. Only when it has completed its dealings with the current connection
can the server accept another client. Most of the time, you will want (and need) a
multithreaded server.

There aren't too many changes you need to make to Renot eFi | eSer ver to begin handling
multiple clients simultaneously. As a matter of fact, had we discussed backlogging earlier, we
would have just one method to change, although we'll need to create something new to
handle the incoming connections. We will show you here also how Ser ver Socket handles
lots of clients waiting (backing up) to use our server. This example illustrates an inefficient
use of threads, so be patient.

Accepting (too many?) connections

Here we implement the revised accept Connecti ons() method, which will create a
Ser ver Socket that can handle a backlog of requests, and tell it to accept connections:

public void accept Connections() {

try {
Server Socket server = new Server Socket (listenPort, 5);

Socket i ncom ngConnection = null;

while (true) {
i ncom ngConnection = server.accept();
handl eConnecti on(i ncom ngConnecti on);

}
} catch (BindException e) {
Systemout.println("Unable to bind to port " + listenPort);
} catch (1 CeException e) {
Systemout.println("Unable to instantiate a Server Socket on port: " + listenPort);

}

Our new server still needs to accept Connecti ons() so this code is virtually identical. The
highlighted line indicates the one significant difference. For this multithreaded version, we
now specify the maximum number of client requests that can backlog when instantiating the
Server Socket . If we don't specify the max number of client requests, the default value of
50 is assumed.

Here's how it works. Suppose we specify a backlog of 5 and that five clients request
connections to our server. Our server will start processing the first connection, but it takes a
long time to process that connection. Since our backlog is 5, we can have up to five requests
in the queue at one time. We're processing one, so that means we can have five others
waiting. That's a total of six either waiting or being processed. If a seventh client asks for a
connection while our server is still busy accepting connection one (remember that 2-6 are still
in queue), that seventh client will be refused. We will illustrate limiting the number of clients
that can be connected simultaneously in our pooled server example.

Java sockets 101 Page 18 of 38

Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Handling connections: Part 1

Here we'll talk about the structure of the handl eConnecti on() method, which spawns a
new Thr ead to handle each connection. We'll discuss this in two parts. We'll focus on the
method itself in this panel, and then examine the structure of the Connect i onHandl er
helper class used by this method in the next panel.

public voi d handl eConnecti on(Socket connecti onToHandl e) {
new Thread(new Connecti onHandl er (connecti onToHandl e)).start();
}

This method represents the big change to our Renpt eFi | eSer ver . We still call

handl eConnecti on() after the server accepts a connection, but now we pass that
Socket to an instance of Connect i onHandl er, which is Runnabl e. We create a new
Thr ead with our Connect i onHandl er and start it up. The Connect i onHandl er'srun()
method contains the Socket reading/writing and Fi | e reading code that used to be in
handl eConnecti on() on Renot eFi | eServer.

Handling connections: Part 2

Here is the structure for the Connect i onHandl er class:

i mport java.io.*;
i mport java. net.*;
public class Connecti onHandl er inpl enents Runnabl e{
Socket socket ToHandl e;
publ i c Connecti onHandl er (Socket aSocket ToHandl e) {
socket ToHandl e = aSocket ToHandl e;

iaublic void run() {
}

This helper class is pretty simple. As with our other classes so far, we import j ava. net and
j ava. i 0. The class has a single instance variable, socket ToHandl e, that holds the
Socket handled by the instance.

The constructor for our class takes a Socket instance and assigns it to socket ToHandl e.

Notice that the class implements the Runnabl e interface. Classes that implement this
interface must implement the r un() method, which our class does. We'll go into the details
of run() later. For now, just know that it will actually process the connection using code
identical to what we saw before in our Renot eFi | eSer ver class.

Implementing run()

Here we implement the r un() method, which will grab the streams on our connection, use
them to read from and write to the connection, and close them when we are done:

public void run() {
try {

Java sockets 101 Page 19 of 38

Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

PrintWiter streanWiter = new PrintWiter(socket ToHandl e. get Qut put St r ean(]
Buf f er edReader streanReader =
new Buf f er edReader (new | nput St r eanReader (socket ToHandl e. get | nput St r ean
String fil eToRead = streanReader.readLi ne();
Buf f eredReader fil eReader = new BufferedReader (new Fi |l eReader (fil eToRead));
String line = null;
while ((line = fil eReader.readLine()) != null)
streamWiter.println(line);
fil eReader. cl ose();
streamWiter.cl ose();
streanReader. cl ose();
} catch (Exception e) {
Systemout.printin("Error handling a client: " + e);
}

The run() method on Connecti onHandl er does what handl eConnecti on() on

Renot eFi | eSer ver did. First, we wrap the | nput St r eamand Qut put St r eamin a

Buf f eredReader anda Print Wit er, respectively (using get Qut put St rean() and
get I nput St ream() on the Socket). Then we read the target file line by line with this code:

Fil eReader fil eReader = new Fil eReader (new Fil e(streanReader.readLine()));
Buf f er edReader bufferedFil eReader = new BufferedReader (fil eReader);
String line = null;
while ((line = bufferedFil eReader.readLine()) != null) {
streamWiter.println(line);
}

Remember that we should be getting a valid file path from the client, so we construct a new
Fi | e using that path name, wrap it in a Fi | eReader to handle reading the file, and then
wrap that in a Buf f er edReader to let us read the file line by line. We call r eadLi ne() on
our Buf f er edReader in a whi | e loop until we have no more lines to read. Remember that
the call to r eadLi ne() will block until bytes come in. When we get some bytes, we put them
in our local | i ne variable, and then write them out to the client. When we're done reading
and writing, we close the open streams.

Wrapping up the multithreaded server

Our multithreaded server is done. Before we move on to the pooled example, let's review the
steps to create and use a multithreaded version of the server:

1. Modify accept Connect i ons() to instantiate a Ser ver Socket with a default
50-connection backlog (or whatever specific number you want, greater than 1).

2. Modify handl eConnecti on() onthe Server Socket to spawn a new Thr ead with
an instance of Connect i onHandl er.

3. Implement the Connect i onHandl er class, borrowing code from the
handl eConnecti on() method on Renot eFi | eSer ver.

You can find the complete code listing for Mul t i t hr eadedRenot eFi | eSer ver at Code

listing for MultithreadedRemoteFileServer on page 35, and the complete code listing for
Connect i onHandl er at Code listing for ConnectionHandler on page 35.

Java sockets 101 Page 20 of 38

Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Section 6. A pooled example

Introduction

The Mul ti t hreadedSer ver we've got now simply creates a new Connect i onHandl er in
a new Thr ead each time a client asks for a connection. That means we have potentially a
bunch of Thr eads lying around. Creating a Thr ead isn't trivial in terms of system overhead,
either. If performance becomes an issue (and don't assume it will until it does), being more
efficient about handling our server would be a good thing. So, how do we manage the server
side more efficiently? We can maintain a pool of incoming connections that a limited number
of ConnectionHandlers will service. This design provides the following benefits:

* |t limits the number of simultaneous connections allowed.
* We only have to start up Connect i onHandl er Thr eads one time.

Fortunately, as with our multithreaded example, adding pooling to our code doesn't require
an overhaul. In fact, the client side of the application isn't affected at all. On the server side,
we create a set number of Connect i onHandl er s when the server starts, place incoming
connections into a pool and let the Connect i onHandl er s take care of the rest. There are
many possible tweaks to this design that we won't cover. For instance, we could refuse
clients by limiting the number of connections we allow to build up in the pool.

Note: We will not cover accept Connect i ons() again. This method is exactly the same as
in earlier examples. It loops forever calling accept () on a Ser ver Socket and passes the
connection to handl eConnecti on().

Creating the PooledRemoteFileServer class

Here is the structure for the Pool edRenot eFi | eSer ver class:

i mport java.io.*;
i mport java.net.*;
import java.util.*;
public class Pool edRenot eFi | eServer {
protected i nt maxConnecti ons;
protected int |istenPort;
protected Server Socket serverSocket;
publ i c Pool edRenot eFi | eServer (i nt aListenPort, int maxConnections) {
listenPort = aListenPort;
t hi s. maxConnecti ons = naxConnecti ons;

}

public static void main(String[] args) {
}

public void setUpHandl ers() {

public void accept Connections() {

protected void handl eConnecti on(Socket incom ngConnection) ({

}

Note the i mport statements that should be familiar by now. We give our class the following
instance variables to hold:

Java sockets 101 Page 21 of 38

Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

* The maximum number of simultaneous active client connections our server can handle

* The port to listen to for incoming connections (we didn't assign a default value, but feel
free to do that if you want)

* The Ser ver Socket that will accept client connection requests

The constructor for our class takes the port to listen to and the maximum number of
connections.

Our class has a mai n() method and three other methods. We'll go into the details of these
methods later. For now, just know that set UpHandl er s() creates a number of

Pool edConnect i onHandl er instances equal to maxConnect i ons and the other two
methods are like what we've seen before: accept Connecti ons() listens on the

Ser ver Socket for incoming client connections, and handl eConnect i on actually handles
each client connection once it's established.

Implementing main()

Here we implement the revised mai n() method, which will create a
Pool edRenot eFi | eSer ver that can handle a given number of client connections, and tell
it to accept connections:

public static void nmain(String[] args) {
Pool edRenot eFi | eServer server = new Pool edRenot eFi | eServer (3000, 3);
server. set UpHandl ers();
server. accept Connecti ons();

Our mai n() method is straightforward. We instantiate a new Pool edRenot eFi | eSer ver,
which will set up three Pool edConnect i onHandl er s by calling set UpHandl er s() . Once
the server is ready, we tell it to accept Connecti ons() .

Setting up the connection handlers

public void setUpHandl ers() {
for (int i = 0; i < maxConnections; i++) {
Pool edConnecti onHandl er current Handl er = new Pool edConnecti onHandl er () ;
new Thread(currentHandl er, "Handler " + i).start();

The set UpHandl er s() method creates maxConnect i ons worth of

Pool edConnect i onHandl er s (three) and fires them up in new Thr eads. Creating a

Thr ead with an object that implements Runnabl e allows us to call st art () on the Thr ead
and expect run() to be called on the Runnabl e. In other words, our

Pool edConnect i onHandl er s will be waiting to handle incoming connections, each in its
own Thr ead. We create only three Thr eads in our example, and this cannot change once
the server is running.

Java sockets 101 Page 22 of 38

Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Handling connections

Here we implement the revised handl eConnect i ons() method, which will delegate
handling a connection to a Pool edConnect i onHandl er:

protected voi d handl eConnecti on(Socket connecti onToHandl e) {
Pool edConnecti onHandl er . processRequest (connecti onToHandl e) ;

}

We now ask our Pool edConnect i onHandl er s to process all incoming connections
(pr ocessRequest () is a static method).

Here is the structure for the Pool edConnect i onHandl er class:

i mport java.io.*;

i nport java. net.*;

i mport java.util.*;

public class Pool edConnecti onHandl er inplements Runnabl e {
protected Socket connection
protected static List pool = new LinkedList();
publ i ¢ Pool edConnecti onHandl er () {

public void handl eConnection() {
public static void processRequest (Socket request ToHandl e) {

}
public void run() {
}

This helper class is very much like Connect i onHandl er, but with a twist to handle
connection pooling. The class has two single instance variables:

* connecti on, the Socket that is currently being handled
* A static Li nkedLi st called pool that holds the connections that need to be handled

Filling the connection pool

Here we implement the pr ocessRequest () method on our
Pool edConnect i onHandl er, which will add incoming requests to the pool and tell other
objects waiting on the pool that it now has some contents:

public static void processRequest (Socket request ToHandl e) {
synchroni zed (pool) {
pool . add(pool . si ze(), requestToHandl e);
pool . noti fyAll ();

This method requires some background on how the Java keyword synchr oni zed works.
We will attempt a short lesson on threading.

Java sockets 101 Page 23 of 38

Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

First, some definitions:

* Atomic method. Methods (or blocks of code) that cannot be interrupted mid-execution
* Mutex lock. A single "lock" that must be obtained by a client wishing to execute an
atomic method

So, when object A wants to use synchr oni zed method doSonet hi ng() on object B,
object A must first attempt to acquire the mutex from object B. Yes, this means that when
object A has the mutex, no other object may call any other synchr oni zed method on object
B.

A synchr oni zed block is a slightly different animal. You can synchronize a block on any
object, not just the object that has the block in one of its methods. In our example, our

pr ocessRequest () method contains a block synchr oni zed on the pool object
(remember it's a Li nkedLi st that holds the pool of connections to be handled). The reason
we do this is to ensure that nobody else can modify the connection pool at the same time we
are.

Now that we've guaranteed that we're the only ones wading in the pool, we can add the
incoming Socket to the end of our Li nkedLi st . Once we've added the new connection,
we notify other Thr eads waiting to access the pool that it's now available, using this code:

pool . noti fyA I ();

All subclasses of Obj ect inherit the noti f yAl | () method. This method, in conjunction
with the wai t () method that we'll discuss in the next panel, allows one Thr ead to let
another Thr ead know that some condition has been met. That means that the second
Thr ead must have been waiting for that condition to be satisfied.

Getting connections from the pool

Here we implement the revised r un() method on Pool edConnect i onHandl er, which will
wait on the connection pool and handle the connection once the pool has one:

public void run() {
while (true) {
synchroni zed (pool) {

while (pool.isEmty()) {

try {
pool .wait();

} catch (InterruptedException e) {
return,
}
}

connection = (Socket) pool.renove(0);

handl eConnecti on();

Recall from the previous panel that a Thr ead is waiting to be notified that a condition on the
connection pool has been satisfied. In our example, remember that we have three

Java sockets 101 Page 24 of 38

Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Pool edConnect i onHandl er s waiting to use connections in the pool. Each of these

Pool edConnect i onHandl er s is running in its own Thr ead and is blocked on the call to
pool . wai t (). When our processRequest () method called noti fyAl | () onthe
connection pool, all of our waiting Pool edConnect i onHandl| er s were notified that the pool
was available. Each one then continues past the call to pool . wai t (), and rechecks the
whi | e(pool . i sEnmpty()) loop condition. The pool will be empty for all but one handler, so
all but one handler will block again on the call to pool . wai t () . The one that encounters a
non-empty pool will break out of the whi | e(pool . i sEnpty()) loop and will grab the first
connection from the pool:

connection = (Socket) pool.renove(0);

Once it has a connection to use, it calls handl eConnecti on() to handle it.

In our example, the pool probably won't ever have more than one connection in it, simply
because things execute so fast. If there were more than one connection in the pool, then the
other handlers wouldn't have to wait for new connections to be added to the pool. When they
checked the pool . i sEnpt y() condition, it would fail, and they would proceed to grab a
connection from the pool and handle it.

One other thing to note. How is the pr ocessRequest () method able to put connections in
the pool when the r un() method has a mutex lock on the pool? The answer is that the call
towai t () on the pool releases the lock, and then grabs it again right before it returns. This
allows other code synchronized on the pool object to acquire the lock.

Handling connections: One more time

Here we implement the revised handl eConnecti on() method, which will grab the streams
on a connection, use them, and clean them up when finished:

public void handl eConnection() {
try {
PrintWiter streanWiter = new PrintWiter(connection. getQutputStrean());
Buf f er edReader streanReader =
new Buf f er edReader (new | nput St r eanReader (connecti on. getl nput Stream()));
String fil eToRead = streanReader.readLine();
Buf f eredReader fil eReader = new Buf f eredReader (new Fi | eReader (fil eToRead));
String line = null;
while ((line = fil eReader.readLine()) != null)
streamWiter.println(line);
fil eReader. cl ose();
streanWiter.cl ose();
streanReader . cl ose();
} catch (Fil eNot FoundException e) {
Systemout.println("Could not find requested file on the server.");
} catch (1 CException e) {
Systemout.printin("Error handling a client: " + e);
}

Unlike in our multithreaded server, our Pool edConnect i onHandl er has a
handl eConnecti on() method. The code within this method is exactly the same as the
code in the r un() method on our non-pooled Connect i onHandl er . First, we wrap the

Java sockets 101 Page 25 of 38

Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Qut put St reamand | nput Streamina Print Wi ter and a Buf f er edReader,
respectively (using get Qut put St rean() and get | nput Streanm() on the Socket). Then
we read the target file line by line, just as we did in the multithreaded example. Again, when
we get some bytes, we put them in our local | i ne variable, and then write them out to the
client. When we're done reading and writing, we close our Fi | eReader and the open
streams.

Wrapping up the pooled server

Our pooled server is done. Let's review the steps to create and use a pooled version of the
server:

1. Create a new kind of connection handler (we called it Pool edConnect i onHandl er)
to handle connections in a pool.

2. Modify the server to create and use a set of Pool edConnect i onHandl ers.
You can find the complete code listing for Pool edRenot eFi | eSer ver at Code listing for

PooledRemoteFileServer on page 36, and the complete code listing for
Pool edConnect i onHandl er at Code listing for PooledConnectionHandler on page 37.

Java sockets 101 Page 26 of 38

Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Section 7. Sockets in real life

Introduction

The examples we've talked about so far cover the mechanics of sockets in Java
programming, but how would you use them on something "real?" Such a simple use of
sockets, even with multithreading and pooling, would not be appropriate in most applications.
Instead, it would probably be smart to use sockets within other classes that model your
problem domain.

We did this recently in porting an application from a mainframe/SNA environment to a
TCP/IP environment. The application's job is to facilitate communication between a retail
outlet (such as a hardware store) and financial institutions. Our application is the middleman.
As such, it needs to communicate with the retail outlet on one side and the financial outlet on
the other. We had to handle a client talking to a server via sockets, and we had to translate
our domain objects into socket-ready stuff for transmission.

We can't cover all the detail of this application in this tutorial, but let us take you on a tour of
some of the high points. You can extrapolate from here to your own problem domain.

The client side

On the client side, the key players in our system were Socket , i ent Socket Facade, and
St r eamAdapt er . The UML is shown in the following diagram:

Runnahle

T

CliemtSocketF acade

hostd ddress: Sting

aninpiStrearm. read(byie]y, hostPort:int
aStreamddapter. buildF acadeCbject{aStreamObject, =
abarrginAdapter. buildDomainOhject{aF acadeChject); connectd)
anApplication.receiv el essagedaDomainObject; sendiaF acadeOhject)
T rECEh e
1
I 1 StreamAdapter
Socket huildF acade Object(aStreamObject)
huildStreamohject{aF acade Object)

We created a Cl i ent Socket Facade, which is Runnabl e and owns an instance of

Socket . Our application can instantiate a Cl i ent Socket Facade with a particular host IP
address and port number, and run it in a new Thr ead. The run() method on

Cl i ent Socket Facade calls connect (), which lazily initializes a Socket . With Socket
instance in hand, our i ent Socket Facade calls r ecei ve() on itself, which blocks until
the server sends some data over the Socket . Whenever the server sends some data, our

C i ent Socket Facade will wake up and handle the incoming data. Sending data is just as
direct. Our application can simply tell its C i ent Socket Facade to send data to its server by

Java sockets 101 Page 27 of 38

Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

calling the send() method with a St r eanCbj ect .

The only piece missing from the discussion above is St r eamAdapt er . When an application
tells the C i ent Socket Facade to send data, the Facade delegates the operation to an
instance of St r eamAdapt er. The C i ent Socket Facade delegates receiving data to the
same instance of St r eamAdapt er . A St r eamAdapt er handles the final formatting of
messages to put on the Socket 's Qut put St r eam and reverses the process for messages
coming in on the Socket 's | nput St r eam

For example, perhaps your server needs to know the number of bytes in the message being
sent. St r eamAdapt er could handle computing and prepending the length to the message
before sending it. When the server receives it, the same St r eamAdapt er could handle
stripping off the length and reading the correct number of bytes for building a

St reamReadybj ect .

The server side

The picture is similar on the server side:

Runnahle

ServerSocketF acade

listenPart:int
; o
hackiog:int

pn’gate acceptConnections)

1

wdile (frue) {
Socket client = serverSocket accept(); 1
socketHandler. handleSocketiclient); SocketHandler
h
ServerSocket handleS ocketiSacket)

We wrapped our Ser ver Socket in a Ser ver Socket Facade, which is Runnabl e and
owns an instance of a Ser ver Socket . Our applications can instantiate a

Ser ver Socket Facade with a particular server-side port to listen to and a maximum number
of client connections allowed (the default is 50). The application then runs the Facade in a
new Thr ead to hide the Ser ver Socket interaction details.

The run() method on Ser ver Socket Facade calls accept Connecti ons(), which
makes a new Ser ver Socket and calls accept () on it to block until a client requests a
connection. Each time that happens, our Ser ver Socket Facade wakes up and hands the
new Socket returned by accept () to an instance of Socket Handl er by calling

Java sockets 101 Page 28 of 38

Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

handl eSocket () . The Socket Handl er does what it needs to do in order to handle the
new channel from client to server.

The business logic

Once we had these Socket Facades in place, it became much easier to implement the
business logic of our application. Our application used an instance of

d i ent Socket Facade to send data over the Socket to the server and to get responses
back. The application was responsible for handling conversion of our domain objects into
formats understood by Cl i ent Socket Facade and for building domain objects from
responses.

Sending messages to the server

The following diagram shows the UML interaction diagram for sending a message in our
application:

anfApplication aDomainAdapter aC lientSocketF acade aStreamAdapter anOutputStream

buildF acade Obje o al omain O bject)

T
|
1
I
L -
I

1

: aF acadeObject
I":':"'"“""""'"'"""'"'"""'

sendlaF acade Object)

¥

aStreamObject - N

T
|
1
I
I
I
1
I
I
I
I
1
I
: build Stre am O bje offaF acade Object)
L
I
I
I
1
1
I
I
I
1
1
I
I
I
1

T
I
putlz eck etOuput Stream :
e

wurite] to Bytes()

¥

For simplicity's sake, we didn't show the piece of the interaction where

ad i ent Socket Facade asks its Socket instance for its Qut put St r eam(using the

get Qut put St rean() method). Once we had a reference to that Qut put St r eam we
simply interacted with it as shown in the diagram. Notice that our Cl i ent Socket Facade hid
the low-level details of socket interaction from our application. Our application interacted with
ad i ent Socket Facade, not with any of the lower-level classes that facilitate putting bytes
on Socket Qut put Streans.

Receiving messages from the server

The following diagram shows the UML interaction diagram for receiving a message in our
application:

Java sockets 101 Page 29 of 38

Presented by developerWorks, your source for great tutorials i bm com devel oper Wor ks

B
o

bruildF acadeObje n::tl(a Stream Objech
]

anApplication aCliemSocketr acade aninputStream aStreamidapter aDomainAdapter
T T T
rurQ I I I
Ll I !
1 1 1
| | |
1 | |
receive) : :
| |
readibyte : :
1 1
| |
|
|
>

buildComain O bje cif aF acade Object)
T T =

Lot

recepre ess age al om ain O bje of) : : :
1 1 1

Notice that our application runs aCl i ent Socket Facade in a Thr ead. When

ad i ent Socket Facade starts up, it tells itself to r ecei ve() onits Socket instance's

| nput St ream The recei ve() method calls r ead(byt e[]) onthe | nput St r eamitself.
Theread([]) method blocks until it receives data, and puts the bytes received on the

| nput St r eaminto a byte array. When data comes in, aCl i ent Socket Facade uses

aSt r eamAdapt er and aDormai nAdapt er to construct (ultimately) a domain object that our
application can use. Then it hands that domain object back to the application. Again, our

Cl i ent Socket Facade hides the lower-level details from the application, simplifying the
Application Layer.

Java sockets 101 Page 30 of 38

Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Section 8. Summary

Wrapup

The Java language simplifies using sockets in your applications. The basics are really the
Socket and Ser ver Socket classes in the j ava. net package. Once you understand
what's going on behind the scenes, these classes are easy to use. Using sockets in real life
is simply a matter of using good OO design principles to preserve encapsulation within the
various layers within your application. We showed you a few classes that can help. The
structure of these classes hides the low-level details of Socket interaction from our
application -- it can just use pluggable Cl i ent Socket Facades and

Ser ver Socket Facades. You still have to manage the somewhat messy byte details
somewhere (within the Facades), but you can do it once and be done with it. Better still, you
can reuse these lower-level helper classes on future projects.

Resources

* Download the source code for this article.

* "Thinking in Java, 2nd Edition" (Prentice Hall, 2000) by Bruce Eckel provides an
excellent approach for learning Java inside and out.

* Sun has a good tutorial on Sockets. Just follow the "All About Sockets" link.

* We used VisualAge for Java, version 3.5 to develop the code in this tutorial. Download
your own copy of VisualAge for Java (now in release 4) or, if you already use VAJ,
check out the VisualAge Developer Domain for a variety of technical assistance.

* Now that you're up to speed with sockets programming with Java, this article on the
Visual Age for Java Developer Domain will teach you to set up access to sockets
through the company firewall.

* Allen Holub's Java Toolbox column (on JavaWorld) provides an excellent series on
Java Threads that is well worth reading. Start the series with "A Java programmer's
guide to threading architectures ." One particularly good article, "Threads in an
object-oriented world, thread pools, implementing socket ‘accept' loops, " goes into
rather deep detail about Thr ead pooling. We didn't go into quite so much detail in this
tutorial, and we made our Pool edRenot eFi | eSer ver and
Pool edConnect i onHandl er a little easier to follow, but the strategies Allen talks
about would fit nicely. In fact, his treatment of Ser ver Socket via a Java
implementation of a callback mechanism that supports a multi-purpose, configurable
server is powerful.

* For technical assistance with multithreading in your Java applications, visit the
Multithreaded Java programming discussion forum on developerWorks, moderated by
Java threading expert Brian Goetz.

* Siva Visveswaran explains connection pooling in detail in "Connection pools"
(developerWorks, October 2000).

Java sockets 101 Page 31 of 38

practicalsockets.zip
practicalsockets.zip
http://www.amazon.com/exec/obidos/ASIN/0130273635/qid=998260274/sr=1-1/ref=sc_b_1/102-7489359-5392147
http://www.amazon.com/exec/obidos/ASIN/0130273635/qid=998260274/sr=1-1/ref=sc_b_1/102-7489359-5392147
http://www.amazon.com/exec/obidos/ASIN/0130273635/qid=998260274/sr=1-1/ref=sc_b_1/102-7489359-5392147
http://www.amazon.com/exec/obidos/ASIN/0130273635/qid=998260274/sr=1-1/ref=sc_b_1/102-7489359-5392147
http://www.amazon.com/exec/obidos/ASIN/0130273635/qid=998260274/sr=1-1/ref=sc_b_1/102-7489359-5392147
http://www.amazon.com/exec/obidos/ASIN/0130273635/qid=998260274/sr=1-1/ref=sc_b_1/102-7489359-5392147
http://java.sun.com/docs/books/tutorial/networking/index.html
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www7.software.ibm.com/vad.nsf/webdlvajava4?OpenView&Count=5&TargetFrame=webdlvajava4&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www7.software.ibm.com/vad.nsf/webdlvajava4?OpenView&Count=5&TargetFrame=webdlvajava4&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www7.software.ibm.com/vad.nsf/webdlvajava4?OpenView&Count=5&TargetFrame=webdlvajava4&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=www7.software.ibm.com/vad.nsf/&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=www7.software.ibm.com/vad.nsf/&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=www7.software.ibm.com/vad.nsf/&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=www7.software.ibm.com/vad.nsf/Data/Document2979?OpenDocument&p=1&BCT=3&Footer=1&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=www7.software.ibm.com/vad.nsf/Data/Document2979?OpenDocument&p=1&BCT=3&Footer=1&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=www7.software.ibm.com/vad.nsf/Data/Document2979?OpenDocument&p=1&BCT=3&Footer=1&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=www7.software.ibm.com/vad.nsf/Data/Document2979?OpenDocument&p=1&BCT=3&Footer=1&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=www7.software.ibm.com/vad.nsf/Data/Document2979?OpenDocument&p=1&BCT=3&Footer=1&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=www7.software.ibm.com/vad.nsf/Data/Document2979?OpenDocument&p=1&BCT=3&Footer=1&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=www7.software.ibm.com/vad.nsf/Data/Document2979?OpenDocument&p=1&BCT=3&Footer=1&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=www7.software.ibm.com/vad.nsf/Data/Document2979?OpenDocument&p=1&BCT=3&Footer=1&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=www7.software.ibm.com/vad.nsf/Data/Document2979?OpenDocument&p=1&BCT=3&Footer=1&origin=j
http://www.javaworld.com/columns/jw-toolbox-index.shtml
http://www.javaworld.com/columns/jw-toolbox-index.shtml
http://www.javaworld.com/columns/jw-toolbox-index.shtml
http://www.javaworld.com/javaworld/jw-09-1998/jw-09-threads.html
http://www.javaworld.com/javaworld/jw-09-1998/jw-09-threads.html
http://www.javaworld.com/javaworld/jw-09-1998/jw-09-threads.html
http://www.javaworld.com/javaworld/jw-09-1998/jw-09-threads.html
http://www.javaworld.com/javaworld/jw-09-1998/jw-09-threads.html
http://www.javaworld.com/javaworld/jw-09-1998/jw-09-threads.html
http://www.javaworld.com/javaworld/jw-09-1998/jw-09-threads.html
http://www.javaworld.com/javaworld/jw-09-1998/jw-09-threads.html
http://www.javaworld.com/jw-05-1999/jw-05-toolbox.html
http://www.javaworld.com/jw-05-1999/jw-05-toolbox.html
http://www.javaworld.com/jw-05-1999/jw-05-toolbox.html
http://www.javaworld.com/jw-05-1999/jw-05-toolbox.html
http://www.javaworld.com/jw-05-1999/jw-05-toolbox.html
http://www.javaworld.com/jw-05-1999/jw-05-toolbox.html
http://www.javaworld.com/jw-05-1999/jw-05-toolbox.html
http://www.javaworld.com/jw-05-1999/jw-05-toolbox.html
http://www.javaworld.com/jw-05-1999/jw-05-toolbox.html
http://www.javaworld.com/jw-05-1999/jw-05-toolbox.html
http://www.javaworld.com/jw-05-1999/jw-05-toolbox.html
http://www.javaworld.com/jw-05-1999/jw-05-toolbox.html
http://www-105.ibm.com/developerworks/java_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=23
http://www-105.ibm.com/developerworks/java_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=23
http://www-105.ibm.com/developerworks/java_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=23
http://www-105.ibm.com/developerworks/java_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=23
http://www-105.ibm.com/developerworks/java_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=23
http://www-106.ibm.com/developerworks/java/library/j-pool/
http://www-106.ibm.com/developerworks/java/library/j-pool/

Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Your feedback

Please let us know whether this tutorial was helpful to you and how we could make it better.
We'd also like to hear about other tutorial topics you'd like to see covered. Thanks!

Java sockets 101 Page 32 of 38

Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Section 9. Appendix
Code listing for URLClient

i mport java.io.*;
i mport java.net.*;
public class URLO ient {
protected Htt pURLConnecti on connecti on;
public String getDocunent At (String url String) {
StringBuffer docunent = new StringBuffer();
try {
URL url = new URL(url String);
URLConnection conn = url.openConnection();
Buf f er edReader reader = new BufferedReader (new | nput St r eanReader (conn. get ||
String line = null;
while ((line = reader.readLine()) != null)
docunent . append(line + "\n");
reader. cl ose();
} catch (Mal formredURLException e) {
Systemout.println("Unable to connect to URL: " + url String);
} catch (1 CException e) {
System out. println("l CExcepti on when connecting to URL: " + url String);

return docunent.toString();

public static void main(String[] args) {
URLClient client = new URLClient();
String yahoo = client. get Docunent At ("http://ww. yahoo. coni);
System out . printl n(yahoo);

Code listing for RemoteFileClient

i mport java.io.*;
i mport java.net.*;
public class RenoteFileCient {
protected BufferedReader socket Reader;
protected PrintWiter socketWiter;
protected String hostlp;
protected int hostPort;
public RenmoteFileCient(String aHostlp, int aHostPort) ({
hostl p = aHost | p;
host Port = aHost Port ;

}
public String getFile(String fil eNaneToCet) ({
StringBuffer filelLines = new StringBuffer();
try {
socketWiter.println(fil eNaneToGet);
socketWiter.flush();
String line = null;
while ((line = socket Reader.readLine()) !'= null)
fileLines.append(line + "\n");
} catch (1 CeException e) {
Systemout.printin("Error reading fromfile: " + fil eNameToGet);

return fileLines.toString();

public static void main(String[] args) {

Java sockets 101 Page 33 of 38

Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

RenmoteFiledient renpoteFileCient = new RenoteFileCient("127.0.0.1", 3000);
renoteFil eCli ent. set UpConnecti on();

String fileContents = renoteFileCient.getFile("C \\WNNT\\Tenp\\Renot eFi | e. t xt
renmot eFil e i ent.tear DownConnecti on();

Systemout.println(fileContents);

}
public void setUpConnection() {
try {
Socket client = new Socket (hostlp, hostPort);
socket Reader = new BufferedReader (new I nput St reanReader (client. getl nput Stre
socketWiter = new PrintWiter(client.getCQutputStrean());
} catch (UnknownHost Exception e) {
Systemout.printin("Error setting up socket connection: unknown host at
} catch (1 CException e) {

Systemout.println("Error setting up socket connection: " + e);
}
public void tear DownConnection() {
try {

socket Witer.close();

socket Reader. cl ose();
} catch (1 CException e) {

Systemout.println("Error tearing down socket connection: " + e);
}

Code listing for RemoteFileServer

i mport java.io.*;
i mport java.net.*;
public class RenoteFileServer {
int listenPort;
public RenoteFileServer(int aListenPort) ({
listenPort = alListenPort;

public void accept Connections() {
try {
Server Socket server = new Server Socket (listenPort);
Socket i ncom ngConnection = null;
while (true) {
i ncom ngConnection = server.accept();
handl eConnecti on(i nconm ngConnecti on);

}
} catch (BindException e) {
Systemout.println("Unable to bind to port
} catch (1 CeException e) {

+ listenPort);

Systemout.println("Unable to instantiate a Server Socket on port: " + |iste
}
public void handl eConnecti on(Socket inconi ngConnection) {
try {

Qut put St r eam out put ToSocket = i ncom ngConnecti on. get Qut put Stream);

I nput St ream i nput Fr onSocket = i ncom ngConnecti on. getl nput Stream();

Buf f er edReader streanReader = new Buf f er edReader (new I nput St reanReader (i npt

Fil eReader fil eReader = new Fil eReader (new Fil e(streanReader.readLine()));

Buf f er edReader bufferedFil eReader = new BufferedReader (fil eReader);

PrintWiter streamiWiter = new PrintWiter(incom ngConnecti on. get Qutput Str

String line = null;

while ((line = bufferedFil eReader.readLine()) != null) {
streanWiter.println(line);

Java sockets 101 Page 34 of 38

Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

}

fil eReader. cl ose();

streamWiter.close();

streanReader. cl ose();
} catch (Exception e) {

Systemout.println("Error handling a client: " + e);
}

public static void nmain(String[] args) {
Renot eFi | eServer server = new Renot eFi |l eServer (3000);
server. accept Connecti ons();

Code listing for MultithreadedRemoteFileServer

i mport java.io.*;
i mport java. net.*;
public class MiltithreadedRenot eFil eServer {
protected int |istenPort;
public MiltithreadedRenoteFileServer(int aListenPort) {
listenPort = alListenPort;

public void accept Connections() {
try {
Server Socket server = new Server Socket (listenPort, 5);
Socket i ncom ngConnection = null
while (true) {
i ncom ngConnection = server.accept();
handl eConnecti on(i ncom ngConnecti on);

}
} catch (Bi ndException e) {

Systemout.println("Unable to bind to port " + listenPort);
} catch (1 CException e) {

Systemout.println("Unable to instantiate a Server Socket on port: " + |iste
}

public voi d handl eConnecti on(Socket connecti onToHandl e) {
new Thr ead(new Connecti onHandl er (connecti onToHandl e)).start();

public static void main(String[] args) {
Mul tithreadedRenot eFi | eServer server = new MiltithreadedRenot eFil eServer (3000);
server. accept Connecti ons();

Code listing for ConnectionHandler

i mport java.io.*;
i mport java. net.*;
public class ConnectionHandl er inplenents Runnable {
protected Socket socket ToHandl e;
publ i c Connecti onHandl er (Socket aSocket ToHandl e) {
socket ToHandl e = aSocket ToHandl e;

}
public void run() {

try {
PrintWiter streanWiter = new PrintWiter(socket ToHandl e. get Qut put St r eant]

Java sockets 101 Page 35 of 38

Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Buf f er edReader streanReader = new Buf f er edReader (new | nput St reanReader (socl
String fil eToRead = streanReader.readLine();
Buf f eredReader fil eReader = new BufferedReader (new Fi |l eReader (fil eToRead));
String line = null;
while ((line = fileReader.readLine()) != null)
streamWiter.println(line);
fil eReader. cl ose();
streanWiter.close();
streanReader. cl ose();
} catch (Exception e) {
Systemout.printin("Error handling a client: " + e);
}

Code listing for PooledRemoteFileServer

i mport java.io.*;
i mport java.net.*;
i mport java.util.*;
public class Pool edRenot eFi | eServer {
protected int nmaxConnecti ons;
protected int |istenPort;
protected Server Socket server Socket;
publ i ¢ Pool edRenot eFi | eServer (i nt aListenPort, int maxConnections) {
listenPort = alListenPort;
t hi s. maxConnecti ons = naxConnecti ons;

public void accept Connections() {
try {
Server Socket server = new Server Socket (listenPort, 5);
Socket i ncom ngConnection = null
while (true) {
i ncom ngConnection = server.accept();
handl eConnecti on(i nconm ngConnecti on);

}
} catch (BindException e) {

Systemout.println("Unable to bind to port " + listenPort);
} catch (1 CeException e) {

Systemout.println("Unable to instantiate a Server Socket on port: " + |iste
}

protected voi d handl eConnecti on(Socket connecti onToHandl e) {
Pool edConnect i onHandl er . processRequest (connecti onToHandl e) ;

public static void main(String[] args) {
Pool edRenot eFi | eServer server = new Pool edRenot eFi | eServer (3000, 3);
server. set UpHandl ers();
server. accept Connecti ons();

}
public void setUpHandl ers() {
for (int i =0; i < maxConnections; i++) {
Pool edConnecti onHandl er current Handl er = new Pool edConnecti onHandl er () ;
new Thread(currentHandl er, "Handler " + i).start();

Java sockets 101 Page 36 of 38

Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

Code listing for PooledConnectionHandler

i mport java.io.*;

i mport java.net.*;

i mport java.util.*;

public cl ass Pool edConnecti onHandl er inpl enments Runnabl e {
protected Socket connection;
protected static List pool = new LinkedList();
publ i ¢ Pool edConnecti onHandl er () {

public void handl eConnection() {

try {
PrintWiter streanWiter = new PrintWiter(connection. getQutputStrean());
Buf f er edReader streanReader = new Buf f er edReader (new | nput St reanReader (coni
String fil eToRead = streanReader.readLine();
Buf f eredReader fil eReader = new BufferedReader (new Fi |l eReader (fil eToRead));
String line = null;
while ((line = fileReader.readLine()) != null)

streamWiter.println(line);

fil eReader. cl ose();
streanWiter.close();
streanReader. cl ose();

} catch (Fil eNot FoundException e) {
Systemout.println("Could not find requested file on the server.");

} catch (1 Cexception e) {
Systemout.printin("Error handling a client: " + e);

}

public static void processRequest (Socket request ToHandl e) {
synchroni zed (pool) {
pool . add(pool . si ze(), request ToHandl e);
pool . noti fyAl I ();
}

}
public void run() {
while (true) {
synchroni zed (pool) {
whil e (pool.isEmpty()) {

try {
pool . wait();
} catch (InterruptedException e) {
return;
}
}

connection = (Socket) pool.renove(0);

handl eConnecti on();

Colophon

This tutorial was written entirely in XML, using the developerWorks Toot-O-Matic tutorial
generator. The open source Toot-O-Matic tool is an XSLT stylesheet and several XSLT
extension functions that convert an XML file into a number of HTML pages, a zip file, JPEG
heading graphics, and two PDF files. Our ability to generate multiple text and binary formats
from a single source file illustrates the power and flexibility of XML. (It also saves our
production team a great deal of time and effort.)

Java sockets 101 Page 37 of 38

Presented by developerWorks, your source for great tutorials i bm com devel oper Wr ks

You can get the source code for the Toot-O-Matic at
www6.software.ibm.com/dl/devworks/dw-tootomatic-p. The tutorial Building tutorials with the
Toot-O-Matic demonstrates how to use the Toot-O-Matic to create your own tutorials.
developerWorks also hosts a forum devoted to the Toot-O-Matic; it's available at
www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11.
We'd love to know what you think about the tool.

Java sockets 101 Page 38 of 38

http://www6.software.ibm.com/dl/devworks/dw-tootomatic-p
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11

page 1

Chapter 2: Java Sockets

Aswe saw in the last chapter Socket is an abstraction of an |P Port. Sockets are a concept that have been around
in programming languages for some time. They first appeared in early Unix systemsin the 1970s and are now
the “standard' low-level communication primitive. Prior to Java, they were fairly painful to use - but now you can
build applications using them quite straightforwardly.

Actually, there are two kinds of sockets - connection-oriented sockets, almost always based on TCP, and
connectionless sockets, usually based on User Datagram Protocol (UDP). The difference isthat TCP-type
sockets guarantee data arrives, and in the correct order whereas UDP-type ones do not.

In addition to distinguishing TCP-type and UDP-type sockets, we must also distinguish - in Java - between client
and server sockets. It might seem obvious that “server sockets run on servers and client sockets on clients' but
thisis not always true - servers can be both servers and clients, and clients can legitimately run server sockets.
Thered differenceisthat server sockets wait for connections to be initiated by client sockets - the naming is not
particularly helpful.

2.1. Client Sockets

We will start off by looking at how we can create a simple client socket. The class that handles client socketsis
Socket inthejava.net package. Y ou would generally include the line:

i mport java. net. Socket ;

in your code to allow you to use the “short' names of the package methods. A complete description of the
methods and constructors of Socket can be found here. Asyou can see, there are arange of constructors that
can be used to create a new [client] socket - the one we would use would depend on our particular circumstances.
Probably the simplest from our point of view is

Socket (String host, int port)

which simply connectsto port on machine host . For example,
Socket s = new Socket ("t his.doesnt.exist.conl', 1024);

Note that you must not use socket number less than 1024 in your own applications. These are reserved for well-
known services (though if you are actually trying to connect to a specific well-known service, then you should
of course use the appropriate port number). On systems with a well-developed notion of access priviledges (e.g.
linux), “ordinary' users - i.e. you - cannot create server sockets (below) on well-known ports (you need superuser
- e.g. ‘root' - access).

How do you read and write from/to the socket? Y ou simply use standard Java /O methods. For example, the
following code opens a socket and attaches appropriate input/output streamsto it:

i mport java.net.*;
i mport java.io.*;

Socket s = new Socket ("t his.doesnt. exist.cont, 1024);
Buf f eredReader in = new BufferedReader (
new | nput St r eanReader (s. get |l nput Stream()));
PrintStream out =
new Print Strean(s. getQutputStream());

(Lines of codes between thei mport statement and the Socket declaration have been omitted.) The key
bitsare(@) s = new Socket (.. .),which createsanew sockets; (b) s. get | nput Stream(),

which returns the input stream associated with the socket s; and (¢) s. get Qut put St r ean() which
returns the corresponding output stream. The other stuff (Buf f er edReader, | nput St reanReader,
Pri nt St r eam) are exactly the same methods we would use if we wished to do line-based IO from files:
they “wrap' the raw input stream with something more convenient and useable. So we can make socket-based
communication look more-or-less exactly like file-based communication.

We can now (say) input (i nString = in.readLi ne();)andoutput (out. println("blah");)
lines of text in the normal way. (It hasto be said though, that Java's stream-based 10, though very flexible and
capable, is not the easiest thing to come to grips with initially.)

page 2

2.2. Server Sockets

A key question you should have after the previous section is: who is listening to the other end of our socket?
The answer is, unless we set up a server socket or are connecting to a pre-existing service, nobody, and the
connection attempt will typically fail. (We must be alittle careful when trying to open sockets because if thereis
nobody listening, an exception can be thrown. We are generally required to catch and deal with such exceptions -
not arranging to catch most exceptions causes compilation errors). We will ook at exceptions some more in the
example.) The class that deals with server socketsis (no suprise) Ser ver Socket and you can find API details
here. The principal constructor from our point of view is

Server Socket (i nt port)

which creates a server socket that listens on the specified port. To set up a server socket and establish a
connection, we might use code like this:

i mport java.net.*;
Sever Socket sSoc = new Server Socket (1024);

Socket in = sSoc.accept();

We create anew server socket called sSoc and then call itsaccept () method. At this point, our code will
wait until some other process (probably on another machine, though this does not have to be the case) connects
to the server socket, by automatically creating a new client socket. Theaccept method blocks - that is, any
program invoking it will wait until a communication attempt occurs (there are other versions of accept that
specify amaximum waiting time). Once again, we should not use socket numbers less than 1024 because they
are reserved for well-known services.

2.2.1. Simple Example
Here is an example program that repeatedly waits until it is contacted on its server socket. When it is, it starts
up anew thread that outputs the first 100 Fibonacci Numbers (if you don't know what a Fibonacci number is, it
doesn't particularly matter).

i mport java. net.*;
i mport java.io.*;
i mport java.l ang. *;

public class Fibl {

public static void main(String argv[]) {

try {
Server Socket sSoc = new Server Socket (2001);

whil e(true) {
Socket inSoc = sSoc.accept();

Fi bThread Fi bT = new Fi bThread(i nSoc);
Fi bT.start();}
}
catch (Exception e) {
System out. println("Ch Dear!
e.toString());

"4

}

cl ass Fi bThread extends Thread {

}

page 3

Socket threadSoc;

int F1
int F2

1;
1;

Fi bThr ead(Socket inSoc) {
t hreadSoc = i nSoc;
}

public void run() {

try {
PrintStream Fi bQut = new

Print Strean(threadSoc. get Qut put Stream());

for (int i=0; i < 100; i++) {

int tenp;
tenmp = F1;
Fi bQut. println(Fl);
F1 = F2;
F2 = tenp + F2;
}
}
catch (Exception e) {
System out. printl n("Woops! " +
e.toString());
}
try {
t hreadSoc. cl ose();
}
catch (Exception e) {
Systemout.println("Ch no! " +
e.toString());
}

There are afew things to note about this code.

The chosen socket number. We have picked socket 2001 at random - in principle, it doesn't matter which
socket we pick, provided it is greater than 1023. Of course, thereis a possibility that 2001 isin use aready
- sockets above 1023 are free for anyone to use.

ExceptionsWe have used t r y - cat ch to make sure that any exceptions that are thrown are caught and
handled. In this case, "handling' is alittle basic - we have just specified that any exception should result in
amessage being printed, which will include the actual details of the exception. In practice, we might want
several different cat ch clauses to deal with the various different classes of exception that can be thrown.
For example, both the server socket constructor Ser ver Socket and the method accept can throw
exceptions of class| OExcept i on, which isasub-class of Except i on, and which in turn hasits own
subclasses - the most likely of which in this caseis Socket Except i on (which itself has subclasses).
Different sub-classes of exception may need to be handled in different ways - for example, it islikely that
not all exceptions will be terminal, and the cat ch clause can attempt some form of recovery. This might
happen if socket 2001 isin use - we could try another one and continue. However, thisistoo subtle for us
at the moment.

Threads. When Fi b1 actually receives some input, and hence creates a new socket, it passes off all
further work to anew thread called Fi bThr ead. ItisFi bThr ead that outputs the Fibonacci numbers.

page 4

Noticethat Fi bThr ead also hasto deal with exceptions - both get Qut put St r eam(which returns

an output stream connected to a socket) and ¢l ose (which closes a socket connection) can throw an

| OExcept i on. Why have we used a separate thread? Because our server then goes back to listening for
more communication attempts, and it is perfectly possible for it to serve multiple clients at once. That is
because each client will be served by a separate thread and socket, and multple sockets are able to “share' a
port.

page 5

2.3. Client-Side Code

Now we have seen what a server must do to communicate over sockets, we need to look at the client-side code.
Thefollowingisasimpleclient for Fi b1.

i mport java. net.*;
i mport java.io.*;

public class Fi bReader {

Socket appSoc;
Buf f er edReader in;
String nessage;

public static void main(String argv[]) {
try {
appSoc = new Socket ("wherever", 2001);
i n = new BufferedReader (new
| nput St r eanReader (appSoc. get I nput Stream())) ;
for (int i =0; i < 100; i++) {
message = in.readLine();
System out. println(nessage); }

}

catch (Exception e) {
Systemout.printin("Died... " +
e.toString());

}

}

This code creates a socket connection to some host (on which an appropriate server must be running), and sets
up an input stream connected to that socket. It then prints out 100 lines read from the server, using the socket.
Again, thisis not particularly good code - for example, we are relying on the server to send us 100 lines: what if
it doesn't? However, it doesillustrate the point.

2.4. Exercise

Hereisasimple exercise you can try to illustrate that socket communication can work. The java source code

file for the server is here. Download it to your machine. Then download the client. Y ou will probably have to
edit the hostname in the client code - try localhost to start with. Start up the server in aterminal, or command,
window. Y ou might want to do this as a background task - on windows type:

start java Fibl

and on linux:
java Fibl &

Then type:
j ava Fi bReader

and you should see Fibonacci numbers appearing (they will start to go horribly wrong eventually because of
arithmetic overflow).

For experiment two, try doing the same as above, but this time open an extra terminal/command window and
start the client up in both - you should see the Fibonacci numbers appearing more-or-less simultaneously on
both.

The next experiment to try is to use two machines. Start the server up on one, and the client on the other -
remember to edit the hostname in the client (or change the code so it takes command line parameters allowing
you to specify a host. How exactly you manage to use two machines will depend on your circumstances - if
you have access to the Linux laboratory, it is very straightforward. It might also be easy if you have access to

page 6

multiple machines at home (though beware that a firewall will aimost certainly stop it working - in this case you
can either disable the firewall or open up the port you are using - the safest option).

If you have internet access from outside the university, try the experiment again. (However, you will need to
start up the server process remotely, e.g. via TelNet, or better ssh - don't start it up in the lab and then go home!
This may seem obvious but it's been done.) Y ou may find that it doesn't work thistime. (I would like to say
that this is aconsistent security policy by the University to protect machines from suspicious communication
attempts - but it appearsto be purely random.)

Sockets Programming

Socket to me!

Network Application
Programming Interface (API)

* The services provided (often by the operating
system) that provide the interface between
application and protocol software.

Application

Network AP

Protocol A | Protocol B | Protocol C

Netprog: Sockets API

Network API wish list

Generic Programming Interface.

Support for message oriented and
connection oriented communication.

Work with existing I/O services (when
this makes sense).

Operating System independence.
Presentation layer services

Netprog: Sockets API

Generic Programming
Interface

» Support multiple communication
protocol suites (families).

» Address (endpoint) representation
iIndependence.

* Provide special services for Client and
Server?

Netprog: Sockets API

TCP/IP

 TCP/IP does not include an API
definition.

* There are a variety of APIs for use with

TCP/IP:

— Sockets

— TLI, XTI

— Winsock
— MacTCP

Netprog: Sockets API

Functions needed:

Specify local and remote
communication endpoints

Initiate a connection

Wait for incoming connection
Send and receive data

Terminate a connection gracefully
Error handling

Netprog: Sockets API

Berkeley Sockets

» (Generic:
— support for multiple protocol families.
— address representation independence

» Uses existing I/O programming
iInterface as much as possible.

Netprog: Sockets API

Socket

* A socket Is an abstract representation
of a communication endpoint.

« Sockets work with Unix I/O services
just like files, pipes & FIFOs.

» Sockets (obviously) have special needs:
— establishing a connection

— specifying communication endpoint
addresses

Netprog: Sockets API

Unix Descriptor Table

Descriptor Table

_’—' Data structure for file 0

Mture for file 2

= W N kB O

Netprog: Sockets API

Socket Descriptor Data
Structure

Descriptor Table

Family: PF_INET

— Service: SOCK_STREAM

— Local IP: 111.22.3.4

— Remote IP: 123.45.6.78
Local Port: 2249

Remote Port: 3726

= W N kB O

Netprog: Sockets API

10

Creating a Socket

int socket(int family,int type,int proto)

» family specifies the protocol family
(PF_INET for TCP/IP).

» type specifies the type of service
(SOCK STREAM, SOCK DGRAM).

 protocol specifies the specific protocol
(usually O, which means the default).

Netprog: Sockets API

11

socket ()

 The socket () system call returns a

socket descriptor (small integer) or -1
on error.

 socket () allocates resources needed

for a communication endpoint - but it
does not deal with endpoint addressing.

Netprog: Sockets API

12

Specifying an Endpoint
Address

Remember that the sockets APl Is
generic.

There must be a generic way to specify
endpoint addresses.

TCP/IP requires an |IP address and a
port number for each endpoint address.

Other protocol suites (families) may use
other schemes.

Netprog: Sockets API

13

Necessary Background Information:

POSIX data types
int8 t signed 8bit int
uint8 t unsigned 8 bit int
intlé t signed 16 bit int
uintl6é t unsigned 16 bit int
int32 t signed 32 bit int
uint32 t unsigned 32 bit int

u char, u short, u int, u long

Netprog: Sockets API

14

More POSIX data types

sa family t
socklen_t
in addr t

in_port_t

address family
length of struct

IPv4 address
IP port number

Netprog: Sockets API

15

. AN
Generic socket addresses @o"'

N3
struct sockaddr ({ Nl
uint8 t sa len; —
sa family t sa family;
char sa data[l4];

};

- sa_family specifies the address type.
- sa_data specifies the address value.

Netprog: Sockets API

16

sockaddr

* An address that will allow me to use
sockets to communicate with my kids.

 address type AF_DAVESKIDS
 address values:

Andrea 1 Mom 5
Jeff 2 Dad 6
Robert 3 Dog 7

Emily 4

Netprog: Sockets API

17

AF _DAVESKIDS

e Initializing a sockaddr structure to point
to Robert:

struct sockaddr robster;

robster.sa family = AF DAVESKIDS;
robster.sa data[0] = 3; /

Really old picture! mm—p
Netprog: Sockets API

AF INET

 For AF_DAVESKIDS we only needed 1
byte to specify the address.

W
« For AF INET we need: s, O

— 16 bit port numbe/
— 32 bit IP address

Netprog: Sockets API

19

struct sockaddr _in (IPv4)

struct sockaddr in {

};

uint8 t sin len;
sa family t sin family;
in port t sin port;
struct in addr sin addr;
char sin zero[8];

A special kind of sockaddr structure

Netprog: Sockets API

20

struct iIn addr

struct in addr {
in addr t s addr;

};

in addr just provides a name for the 'C’ type
associated with IP addresses.

Netprog: Sockets API

21

Network Byte Order

» All values stored in a sockaddr in
must be in network byte order.
—-sin port a TCP/IP port number.

—-sin _addr an IP address.

Byte Order -

Netprog: Sockets API

o

W‘W"Mo AW»,

22

Network Byte Order Functions

4

‘h’ : host byte order " network byte order
‘s’ : short (16bit) ‘1’ : long (32bit)

uintl6é t htons (uintlé t);
uintlé t ntohs(uint 16 t);

uint32 t htonl (uint32 t);
uint32 t ntohl (uint32 t);

Netprog: Sockets API

23

TCP/IP Addresses

« \We don’t need to deal with sockaddr

structures since we will only deal with a
real protocol family.

« We can use sockaddr in structures.

BUT: The C functions that make up the
sockets API expect structures of type
sockaddr.

Netprog: Sockets API

24

sockaddr

sa_family

sa_data

sockaddr_in

Netprog: Sockets API

xS

Assigning an address to a
socket

 The bind () system call is used to assign
an address to an existing socket.

int bind(int sockfd,
const struct sockaddr *myaddr,

const'/ int addrlen) ;

e bind returns O if successful or -1 on error.

Netprog: Sockets API

26

bind ()

« calling bind () assigns the address
specified by the sockaddr structure to
the socket descriptor.

» You can give bind () a sockaddr in
structure:
bind (mysock,

(struct sockaddr*) é&myaddr,
sizeof (myaddr)) ;

Netprog: Sockets API

27

bind () Example

int mysock,err;
struct sockaddr in myaddr;

mysock
myaddr
myaddr
myaddr

= socket (PF_INET,SOCK STREAM,O) ;
.sin_family = AF INET;
.sin port = htons(portnum);

.sin addr = htonl(ipaddress) ;

err=bind (mysock, (sockaddr *) &myaddr,

sizeof (myaddr)) ;

Netprog: Sockets API

28

Uses for bind ()

— Server would like to bind to a well known
address (port number).

— Client can bind to a specific port.

— Client can ask the O.S. to assign any
available port number.

Netprog: Sockets API

here are a number of uses for bind ():

AS

Port schmort - who cares ?
» Clients typically don’t care what port
they are assigned.
* When you call bind you can tell it to
assign you any available port:

myaddr .port = htons (0) ;

Netprog: Sockets API

30

What is my |IP address ?

 How can you find out what your IP address is
so you can tellbind () ?

* There is no realistic way for you to know the
right IP address to give bind() - what if the
computer has multiple network interfaces?

- specify the IP address as: INADDR ANY,
this tells the OS to take care of things.

Netprog: Sockets API

31

IPv4 Address Conversion

int inet aton(char *, struct in addr *);

Convert ASCI| dotted-decimal IP address to
network byte order 32 bit value. Returns 1
on success, 0 on fallure.

char *inet ntoa(struct in addr);

Convert network byte ordered value to
ASCII dotted-decimal (a string).

Netprog: Sockets API

32

Other socket system calls

Netprog: Sockets API

33

Java Tutorial Java Threads java-08.fm

Concurrent Programming using Threads

Threads are a control mechanism that enable you to write concurrent programs. You can think of a
thread in an object-oriented language as a special kind of “system object” that contains information
about the state of execution of a sequence of function calls that are said to “execute as a thread”.
Usually, a special “run” or “start” procedure starts a separate thread of control.

Normally, when you call a function or procedure, the compiler sets-up a stack frame (also called an
activation frame) on the run-time procedure call stack, pushes arguments (or puts them into
registers), and calls the function. The stack is also used as temporary storage for locally allocated
objects declared in the scope of a procedure.

In a sequential program, there is only one run-time stack and all activation frames are allocated in a
nested fashion on the same run-time stack, corresponding to each nested procedure call. In a multi-
threaded application, each “thread” represents a separate run-time stack, so you can have multiple
procedure call chains running at the same time, possibly on multiple processors. Java on Solaris
supports multi-processor threads.

In a sequential program, the main run-time stack is allocated at program start and all procedure
calls, including the initial call to “main” are made on this single run-time stack. In a multi-threaded
program, a program starts on the system run-time stack where the main procedures runs. Any
functions/procedures called by the main procedure have their activation frames allocated on this
run-time stack.

If the main procedure creates a new thread for run some procedure (usually calling a special “thread
creation or construction” procedure/method), then a new run-time stack is dynamically allocated
from the heap and the activation frames for the procedures are allocated on this new stack.

Greg Lavender Slide 1 of 12 6/17/99

Java Tutorial

Java Threads

java-08.fm

Question: How large should the heap allocated thread stack be?

Thread Stacks

A thread stack will contain the activation record of the “starting” thread procedure (e.g., called the

“run” method in Java), as well as any procedures that are called by the procedure that was first
started in the new thread of control. So, the thread stack needs to be large enough to hold the

maximum number of bytes required to hold all the activation records of the deepest procedure call

chain, as well as storage for all local variables allocated on the stack.

Main thread and run-time stack

Multiple thread run-time stacks, each a separate “thread of execution”

: thread_1 thread_2() thread_n()
main() { run() run()
for(i=0; i< n; i++) run()
thread_create(...) ho
fO
} 90
Stack
Activation
Frames
\/
Greg Lavender Slide 2 of 12

6/17/99

Java Tutorial Java Threads java-08.fm

Thread Stack Size

On operating systems that support processes with multiple threads of control, threads stacks are
typically set at 1MB, consisting of contiguous virtual memory pages, that are allocated incrementally
at run-time by the system. There may also be some extra pages at the “top” or “bottom” for some
thread book-keeping. There is also usually an extra pages allocated “above” the top and “below” the
bottom of the stack to detect overflow:

top

underflow stack frame raises exception if “popped”

starting procedure activation frame
1MB Thread Stack

nested procedure call activation frames

‘red-lined pages to generate memory segmentation violation (SIGSEGV)
\

if an overflow occurs from trying to create a frame beyond the end

Greg Lavender Slide 3 of 12 6/17/99

Java Tutorial Java Threads java-08.fm

Java Threads

In Java, the same concepts about threads, threads stacks, and starting threads applies. The primary
difference is that in Java, a thread is defined as a special class in the java.lang package. The thread
class implements an interface called the “Runnable” interface, which defines a single abstract
method called “run”.

Il in the java.lang.Runnable file you will find the following interface
package java.lang;

public interface Runnable {
public void run(); // just like a pure virtual function in C++

}

Since we are defining an interface, run is implicitly a “abstract” method. As we have seen, interfaces
in Java define a set of methods with NO implementation. Some class must “implement” the
Runnable interface and provide an implementation of the run method, which is the method that is
started by a thread. Java provides a “Thread” class, that implements the Runnable interface, but
does not implement the run

public class ConcurrentReader implements Runnable {

public void run() { /* code here executes concurrently with caller */ }

Greg Lavender Slide 4 of 12 6/17/99

Java Tutorial Java Threads java-08.fm

Defining a Thread in Java

To start this thread you need to first create an object of type MyOwnThreadObijects, bind it to a new
Thread object, and then start it. Calling start creates the thread stack for the thread, and then
invoked the run() method as the first procedure on that new thread stack.

ConcurrentReader readerThread = new ConcurrentReader();
Threa d t = new Thread(readerThread); // create thread using a Runnable object
readerThread.start();

The java.lang.Thread class has a constructor that takes an object of type Runnable:
Thread(Runnable object); // must provide an object that implements run
Alternatively, we can define a subclass of the class Thread directly.

class ConcurrentWriter extends Thread {
public void run() {
I/l 'you provide the code here to run as a separate thread of control
}
}

To start this thread you just need to do the following:

ConcurrentWriter writerThread = new ConcuirrentWriter();
writerThread.start(); // start calls run()

Greg Lavender Slide 5 of 12 6/17/99

Java Tutorial Java Threads java-08.fm

java.lang.Thread

public class Thread implements Runnable {
private char name([];
private Runnable target;

public final static int MIN_PRIORITY =1,
public final static int NORM_PRIORITY = 5;
public final static int MAX_PRIORITY = 10;

private void init(ThreadGroup g, Runnable target, String name) {...}

public Thread() { init(null, null, "Thread-" + nextThreadNum()); }
public Thread(Runnable target) {
init(null, target, "Thread-" + nextThreadNum());

public Thread(Runnable target, String name) { init(null, target, name); }
public synchronized native void start();

public void run 0{
if (target '= null) {
target.run();
}
}

Greg Lavender Slide 6 of 12 6/17/99

Java Tutorial Java Threads java-08.fm

java.lang.Thread
public class Thread implements Runnable {

public static native Thread currentThread();

public static native void yield();

public static native void sleep(long millis) throws InterruptedException;
public static int enumerate(Thread tarray[])

public static boolean interrupted() { ... }
public boolean isInterrupted() { ... }
public final native boolean isAlive();
public String toString() {
public void interrupt() { ... }
public void interrupt() { ... }
public final void stop() { ... }
public final void suspend() { ... }
public final void resume() { ... }
public final void setPriority(int newPriority) {
public final int getPriority() {
public final void setName(String name) { ... }
public final String getName() { return String.valueOf(name); }
public native int countStackFrames();
public final synchronized void join() throws InterruptedException {...}
public void destroy() { throw new NoSuchMethodError(); }

Greg Lavender Slide 7 of 12 6/17/99

Java Tutorial Java Threads java-08.fm

Extending Class Thread vs Implementing Interface Runnable

Q: Why does Java allow two different ways to provide thread objects? How do you decide
when to extend the Thread class versus implementing the Runnable interface?

Java only allows single class inheritance, so if we have a class that needs to inherit from another
class, but also needs to run as a thread, thenwe extend the other class and implement the Runnable
interface. So, it is quite common for a class X to extend some class Y and implement the Runnable
interface:

class X extends Y implements Runnable {

public synchronized void do_something() { ... }
public void run() { do_something(); } // can be run a thread if needed

}

By implementing the Runnable interface, rather than extending the Thread class, you are
communicating to the user of the class X that you expect that an object of type X will run as a thread,
but it does not HAVE TO run as a thread. Since all the run() method does, in this case, is call another
public method that could be called without running a thread, it gives the user the option of either
having an object of type X run concurrently, or sequentially. A synchronized method is one that
“locks” an object so that no other thread can execute inside the object while the method is active.

X obj = new X();

obj.do_something(); // runs sequentially in the current thread
Thread t = new Thread(new X()); // create an X and run as a thread
t.start(); // start() calls run() which calls do_something() as

Greg Lavender Slide 8 of 12 6/17/99

Java Tutorial Java Threads java-08.fm

Synchronized Methods, Wait, Notify, and NotifyAll

An very interesting features of Java objects is that they are all “lockable” objects. That is, the
java.lang.Object class implements an implicit locking mechanism that allows any Java object to be
locked during the execution of a synchronized method or synchronized block, so that the
thread that holds the lock gains exclusive access to the object for the duration of the method call or
scope of the bloc. No other thread can “acquire” the object until the thread that holds the lock
“releases” the object. This synchronization policy provides mutual exclusion.

Synchronized methods are methods that lock the object on entry and unlock the object on exit. The
Object class implements some special methods for allowing a thread to explicitly release the lock
while in the method, wait indefinitely or for some time interval, and then try to reacquire the lock
when some condition is true. Two other methods allow a thread to signal waiting thread(s) to tell
them to wakeup: the notify method signals one thread to wakeup and the notifyAll method signals
all threads to wakeup and compete to try to re-acquire the lock on the object. This type of
synchronized object is typically used to protect some shared resource, using two types of methods:

public synchronized void consume() {
while (!consumable()) {
wait (); // release lock and wait for resource

... Il have exclusive access to resource to consume

}

public synchronized void produce() {
... Il change of state must result in consumable condition being true
notifyAll (); // notify all waiting threads to try consuming

Greg Lavender Slide 9 of 12 6/17/99

Java Tutorial Java Threads java-08.fm

Synchronized Method vs Synchronized Block

The synchronized method declaration qualifier is syntactic sugar for the fact that the entire of scope
of the procedure is to be governed by the mutual exclusion condition obtained by acquiring the
object’s lock:

public void consume () {
synchronized (this) {
/I code for consuming

}
}

A synchronized block allows the granularity of a lock to be finer-grained than a procedure scope. The
argument given to the synchronized block is a reference to an object.

What about recursive locking of the same Object?

public class Foo {

public void synchronized f() { ... }
public void synchronized g() { ...; f(); ... }

}

If g() is called, and it then calls f(), what happens? What happens in the following case?

Foo f = new Foo;
synchronized(f) { ...; synchronized (f){ ... } ... }

Greg Lavender Slide 10 of 12 6/17/99

Java Tutorial Java Threads java-08.fm

Wait, Notify, and NotifyAll

Every object has acess to wait, notify, and notify methods, which are inherited from class Object.

public class Object {
public final native void notify();
public final native void notifyAll();
public final native void wait(long timeout) throws InterruptedException;
public final void wait() throws InterruptedException { wait(0); }
public final void wait(long timeout, int nanos)

throws InterruptedException{ ... }

The Object.wait() method implicitly releases the object’s lock and the thread then waits on an
internal queue associated with each object. The thread waits to be notified of when it can try to re-
acquire the lock and test the condition again.

The Object.notify() method signals the highest priority thread closest to the front of the wait queue
to wakeup. Object.notifyAll() wakes up all waiting threads, and they compete for the lock. The thread
actually gets the lock is non-deterministic and not necessarily “fair”. E.g., high priority threads in
the wait queue could always win-out over lower priority threads, resulting in starvation since low
priority threads never get access to the resource.

Greg Lavender Slide 11 of 12 6/17/99

Java Tutorial Java Threads java-08.fm

A Shared Queue Example

This is an example of a “Producer-Consumer” shared resource. Note that the wait() , wait(timeout),

notify(), and notifyAll() method can only be called from a synchronized method, or a method called
by a synchronized method. I.e., the object must be in the locked state.

class SharedQueue {
private Element head, tail;

public boolean empty() { return head == tail; }

public synchronized Element remove() {
try { while (empty()) wait (); }// wait for an element in the queue
catch (InterruptedException e) { return null; }
Element p = head; head = head.next;
if (head == null) tail == null;
return p;

}

public synchronized void insert(Element p)
if (tail == null) head = p;
else tail.next = p;

p.next = null;
tail = p;
notify (); // let one waiter know something is in the queue

Greg Lavender Slide 12 of 12 6/17/99

Berkeley Sockets (1)

O Socket primitives for TCP/IP

Berkeley Sockets (2)

Server

socket |-{_bind |-

listen

Primitive Meaning
Socket Create a new communication endpoint Synchronizat\an point
Bind Attach a local address to a socket
» 5
Listen Announce willingness to accept connections (queue) socket Freonnect write read close
") N Client
Accept Block caller until a connection request arrives
Connect Actively attempt to establish a connection
Send Send some data over the connection
O Connection-oriented communication pattern using sockets
Receive Receive some data over the connection
Close Release the connection
Transport Layer 2 Transport Layer 3
Host 1 Host 2 Host 1 Host 2
SYN SEQ =
' Blue 1 Blue
o
£ K=x+1)
E _y,AC
= SN (SEQ= Vs
White army J
(SEQ=x
*1ACK =y, 4
Transport Layer 4 Transport Layer 5
(star)
Sondor Gooshier Fscdiverd) CONNECTISYN (iop 1 of i 3-vay handshake)
Application buffer
doesa 2K ——
wiite
- [
Applcation (Data transter sate)
ACK:- SYN + ACKIACK
doesa 2K ——= ~-~| ESTABLISHED |~ ihe &-way Fandshake)
witl (2] sea=zom) cLoser
CLOSEFIN FINACK
Sender is e Application (. (Active close) : (Passive'iclose)
blocked = 0% — AR {
O _— i
— 209 WIN= H
ACK=* aon- | {cLosern
S e | i
FINACK }
’ (Timeout) ‘
m |
6 7

Stop-and-wait

O Notation SRC: S = no. of frame being sent by sender, R = no.

of

frame being expected by receiver, C = state of channel (frame O or
1,0r A= ACK, or "-" empty)

Who Frame Frame
Transition runs? accepted _emitted

(frame lost)

~o»a>o

A
1
A
0
A
A
(timeout) 0
(tmeout) 1

(b)

To
network
layer

Transport Layer

8

Reliable delivery in ARPAnet: Concurrent logical channels

O Multiplex 8 logical channels over a single link
O Run stop-and-wait on each logical channel
O Maintain three state bits per channel
O channel busy
O current sequence number out
O next sequence number in
O Header: 3-bit channel # and 1-bit sequence #
0 4 bits in total
O same as sliding window protocol
O Separates reliability from order
O ho errors and no packet loss, but not in order

Transport Layer 9

Berkeley Socket

Introduction

The following are some general information about Berkeley Sockets

1.

Developed in the early 1980s at the University of California at Berkeley.
There are no longer any major alternatives. Other major alternative was
TLI (Transport Layer Interface). There are communications tools that
are built on tool of Berkeley sockets. (E.g. RPC)

It is an API.

. Its implementation is usually requires kernel code.

It is the defacto standard for communications programming.

. There are higher level tools for programs that span more than one

machine. RPC, DCOM and windows remoting are examples.

. Used for point-to-point communications between computers through an

inter-systems pipe. Namely can use the UNIX read, write, close, select,
etc. system calls.

. Supports broadcast. This is where the same message may be delivered to

multiple systems on a network without additional overhead.

Available on every UNIX system that I know of and somewhat available
in WIN32.

. Build for client/server development. That is having one system provide

a service to other systems.

Berkeley sockets support two types of communications. These sit on top of the
TCP Internet datagrams.

TCP -

connection oriented, stream, reliable.

UDP - connectionless, record oriented, unreliable.

Question: Why would anyone use a form of communication that is not
reliable? Answer: speed. Answer: ability to broadcast.

Programming Aspects of Berkeley Sockets
Uses the TCP/IP protocol.

What are sockets? They represent end points for communications. In the
UNIX world, they are file descriptors. Thus we can use system calls like read
and write to receive and send data.

In order to communicate with a program on another computer, we have to
identify the computer and specify the program. We specify the computer by
giving its [P address. The program that we want to communicate with is
identified by a port number. The port number is a positive integer that is
advertised by the program that is waiting for a connection. More on this later.

The following are the major system calls supplied by Berkeley sockets and
UNIX to perform TCP communications. There are other calls that we will use
and calls to support UDP. These will be presented later.

1. socket - creates a socket for network communications. Returns a file
descriptor for the socket.

2. connect - called by the client process to establish a connection between it
and a server process. Need the server’s address and port number. The
file descriptor from the socket call is one of the arguments. Once the
connection is made, this file descriptor may be used for communications.

3. write - to send data on the connection. If connection broken your
program will receive a SIGPIPE signal or an error is returned. (The
SIGPIPE signal does not occur immediately. What is the implication of
this?)

4. read - to get data that was sent on the connection. It returns the number
of bytes read. 0 is returned if the connection broken. (NOTE: WIN32

gives an error return.).

. close - to de-allocate the socket.

. bind - used by server process to associate an end-point address with a

socket. Must include the port and server address with this call. This is
like advertising the service. This socket is called the listening socket.
Note: there are some port numbers that are referred to as well-known
ports. See /etc/services for a list. A good habit is to always select port
numbers that are greater than 7000.

listen - used by server process to indicate that it is ready to receive
connections. The listening socket must be specified in this call. Another
parameter is the queue length for those . Parameter values are not
always guaranteed to be used. At one time, regardless of the value of
this parameter SUN uses 5. Note: the select system call will consider a
listening socket with a connection waiting to be ready to read.

. accept - called by the server process to accept a connection. If no client

is trying to connect the call will block.

select - used to determine if there is data available on a socket or if there
is a client queued up for a connection to a server. Can also be used to
determine if a write is possible.

Use of socket calls in a program.

Client:

socket = connect = write = read = close

Server:

socket = bind - listen = accept = read > write > close

7AN N | |

Design idea
Talk of concurrent servers vs. Multiplex servers.

Talk of state vs. stateless servers. Stateless safer.

System Calls for Clients

We will start out by learning how to build a client. This is less complex and
has fewer issues then writing server code. Before looking at an example, [will
give you a list of some relevant system calls and their definitions.

getservbyname

Many standard services such as ECHO have predefined port numbers. This
function determines the port number for a service given its name.

#include <netdb.h>
struct servent *getservbyname(const char *name, const char *proto);
struct servent {

char *s name; /* official service name */
char **s aliases; /* alias list */

int s _port; /* port # */

char *s proto; /* protocol to use */

55

name - 1s the name of the service.
protocol - the protocol we are using. Choice between "TCP" or "UDP". Most
services have both a TCP and UDP version.

Returns - NULL if fails and a pointer to a servent struct is successful. From
this we can get the port number of the service.

NOTE: this function is not thread safe. Why? There is a thread safe version.
How do you think they fixed the problem?

htons, htonl, ntohs, and ntohl

These are functions to convert to and from network byte ordering. n means
network, h means host, s means short and 1 means long. Why do you think we
need this?

gethostbyname

The gethostbyname function allows you to get the IP address of a computer
given its full name. It has the following prototype:

#include <netdb.h>
struct hostent *gethostbyname(const char *name);
struct hostent {
char *h name; /* official name of host */
char **h_aliases; /* alias list */
int h_addrtype; /* host address type */

int h length; /* length of address */
char **h_addr list; /* list of addresses from name server */

#define h_addr h addr list[0] /* address, for backward compatibility */
s
name - the name of the host.

Returns NULL if fails. Otherwise, it returns the hostent structure. What we
care most about in this structure is the address list. It contains the addresses for
the host as a set of bytes in network order.

NOTE: this function is not thread safe. There is a thread safe version.

socket

This function returns a file descriptor that will eventually become the end of a
pipe between client and server or a point at which we listen for connections.
Note: the location of the include files my differ on various UNIX systems.

#include <sys/socket.h>
int socket (int domain, int type, int protocol);
domain - the family of addresses. The only one we care about is:
AF INET ARPA Internet addresses
There is also PF_INET6. What does this mean.
PF_UNIX for UNIX internal protocols.

type - specifies the semantics of communication. The sys/socket.h file defines
the socket types. The following types are the ones that we care about:

SOCK_STREAM

Provides sequenced, reliable, two-way byte streams with a transmission
mechanism for out-of-band data. We use this for TCP/IP communications.

SOCK_DGRAM

Provides datagrams, which are connectionless messages of a fixed maximum
length. We use this for UDP communications.

protocol - specifies the protocol. Since there is usually only one choice, we
use 0 for the default.

connect

The connect call establishes a link between to the client that calls it and a server
application. It has the following prototype.

int connect (int socket, const struct sockaddr *address, size t address len);

socket - a socket that we created using the socket call.

address - a pointer to a address that contains the port and IP address of the host
and our port and IP address. See example for details of how to fill in the
address.

Returns -1 if error and 0 if successful.
Notes on example:

1. There is a service provided by most computers called the DAYTIME
service. If you connect to a computer, it will return the date/time and
disconnect.

2. This is an easy way to allow us to test client code without writing a
server.

3. Not all computer will supply this service. In fact fewer supply it now
than 5 years ago.

The code requires the address/name of server computer and the port
number/service name as command-line arguments. User will be able to enter
the IP address in decimal notation, the domain name (e.g. phobos.ramapo.edu)
or if no entry the default address will be our computer. See /etc/hosts for local
list of hosts. User will be able to enter the name of the service (see
/etc/services), the port number, or if no entry, defaults to the DAYTIME
service.

Labé.

Time how long it takes to connect to an echo server and to send and receive
20,000 bytes in 100 byte packets. You should pick a far away site. We will
discuss this in class.

http://phobos.ramapo.edu/~vmiller/AdvancedUnix/networkCode/client.cpp

Elementary TCP Sockets

UNIX Network Programming
Vol. 1, Second Ed. Stevens
Chapter 4

Networks: TCP/IP Socket Calls

IPv4 Socket Address Structure

The Internet socket address structure is named sockaddr_in
and is defined by including <netinet/in.n> header.

struct in_addr {
In_addr t s addr [* 32-bit IP address */

}; /* network byte ordered */

struct sockaddr _in {
uint8 t sin_len; /* length of structure (16) */
sa_family t sin_family; /> AF_INET */
In_port_t sin_port; [* 16-bit TCP or UDP port number */

/* network byte ordered */
struct in_addr sin_addr; [* 32-bit IPv4 address */
/* network byte ordered */
sin_zero[8]; /* unused */

Networks: TCP/IP Socket Calls 2

The Socket Interface

ket
socket Application 1 Application 2 °0¢
interface - Interface
| user user | /
* kernel kernel *
Socket Socket
Underlying Underlying
communication communication
Protocols Protocols
‘ Communications
network
Copyright ©2000 The McGraw Hill Companies Leon-Garcia & Widjaja: Communication Networks Figure 2.16

Networks: TCP/IP Socket Calls

TCP Socket Calls

Server

socket()

v

bind()

v

listen()

v

accept()

v

blocks until server receives

read()

v

write()

v

close()

Copyright ©2000 The McGraw Hill Companies

Client

socket()

» connect()

v

__data __ _-----1 write(Q)
L

~data »| readQ
v

close()

Leon-Garcia & Widjaja: Communication Networks

Networks: TCP/IP Socket Calls

Figure 2.17

UDP Socket Calls

Server
socket() "
Client
v socket()
bind()
bind()) *—— Not needed
recvfrom()
¢ Y
blocks until server
receives data from client _ fj‘i‘t? ________ sendtoO
sendto() 1-.____ data
~~~~~~~~~~~ » recvfromQ)
Y
close() '
close()

Copyright ©2000 The McGraw Hill Companies

Leon-Garcia & Widjaja: Communication Networks Figure 2.18

Networks: TCP/IP Socket Calls




System Calls for Elementary TCP Sockets

#include <sys/types.h>
#include <sys/socket.h>

socket Function
int socket (int family, int type, int protfocol ),

family: specifies the protocol family {AF_INET for TCP/IP}
type: Indicates communications semantics

SOCK_STREAM  stream socket TCP

SOCK_DGRAM datagram socket UDP
SOCK_RAW raw socket

protocol: set to O except for raw sockets
returns on success: socket descriptor {a small nonnegative integer}
on error: -1
Example:
If ((sd=socket (AF_INET, SOCK_STREAM, 0)) <0)
err_sys (“socket call error”);

WPI Networks: TCP/IP Socket Calls




connect Function

int connect (int sockfd, const struct sockaddr Z*servaddr,
socklen_t addrlen),

sockfd: a socket descriptor returned by the socket function
*servaddr: a pointer to a socket address structure
addrlen: the size of the socket address structure

The socket address structure must contain the IP address and the port
number for the connection wanted.

In TCP connect initiates a three-way handshake. connect returns only when
the connection is established or when an error occurs.

returns on success: 0
on error -1
Example:
If ( connect (sd, (struct sockaddr *) &servaddr, sizeof (servaddr)) !=0)
err_sys(“connect call error”);

Networks: TCP/IP Socket Calls 7




TCP Socket Calls

Server

socket()

v

bind()

v

listen()

v

accept()

v

blocks until server receives

read()

v

write()

v

close()

Copyright ©2000 The McGraw Hill Companies

Client

socket()

» connect()

v

__data __ _-----1 write(Q)
L

~data »| readQ
v

close()

Leon-Garcia & Widjaja: Communication Networks

Networks: TCP/IP Socket Calls

Figure 2.17



bind Function

int bind (int sockfd, const struct sockaddr *myaddr, socklen_t
addrlen),

bind assigns a local protocol address to a socket.

protocol address: a 32 bit IPv4 address and a 16 bit TCP or UDP port
number.

sockfd:  asocket descriptor returned by the socket function.
*myaddr: a pointer to a protocol-specific address.
addrlen: the size of the socket address structure.
Servers bind their “well-known port” when they start.
returns on success: 0
on error: -1
Example:
If (bind (sd, (struct sockaddr *) &servaddr, sizeof (servaddr)) !'= 0)
errsys (“bind call error”);

Networks: TCP/IP Socket Calls




listen Function

int listen (int sockfd, int backlog).

listen is called only by a TCP server and performs two actions:

1. Converts an unconnected socket (sockfd) into a passive
socket.

2. Specifies the maximum number of connections (backlog)
that the kernel should queue for this socket.

listen Is normally called before the accept function.
returns on success: 0
on error -1
Example:
If (listen (sd, 2) '=0)
errsys (“listen call error”);

ROMTEGH
“E onY) jl? Qx—/ PI Networks: TCP/IP Socket Calls
O "l.:._ ;'. .sé‘

1865

10




accept Function

int accept (int sockfd, struct sockaddr *c/iaddr, socklen_t
*addrlen),

accept is called by the TCP server to return the next completed
connection from the front of the completed connection queue.

sockfd:  This is the same socket descriptor as in listen call.

*cliaddr: used to return the protocol address of the connected peer process
(i.e., the client process).

*addrlen: {this is a value-result argument}

before the accept call: We set the integer value pointed to by *addrlen
to the size of the socket address structure pointed to by *cliaddr;

on return from the accept call: This integer value contains the actual
number of bytes stored in the socket address structure.

returns on success: a new socket descriptor
onerror: -1

Networks: TCP/IP Socket Calls 11




accept Function (cont.)

int accept (int sockfd, struct sockaddr *c/iaddr, socklen_t
*addrlen),

For accept the first argument sockfd is the listening socket
and the returned value Is the connected socket.

The server will have one connected socket for each client
connection accepted.

When the server is finished with a client, the connected
socket must be closed.

Example:
sfd = accept (sd, NULL, NULL);
If (sfd ==-1) err_sys (“accept error”);

Networks: TCP/IP Socket Calls 12




close Function

int close (int sockfad).

close marks the socket as closed and returns to the process
Immediately.

sockfd: This socket descriptor is no longer useable.

Note — TCP will try to send any data already queued to the
other end before the normal connection termination

seguence.
Returns on success: 0
on error: -1
Example:
close (sd);

Networks: TCP/IP Socket Calls

13



TCP Echo Server

#include <stdio.h> [* for printf() and fprintf() */

#include <sys/socket.h> /* for socket(), bind(), and connect() */
#include <arpa/inet.n> /* for sockaddr_in and inet_ntoa() */
#include <stdlib.h>  /* for atoi() and exit() */

#include <string.h>  /* for memset() */

#include <unistd.h>  /* for close() */

#define MAXPENDING 5 /* Maximum outstanding connection requests */
void DieWithError(char *errorMessage); /* Error handling function */
void HandleTCPClient(int cIntSocket); /* TCP client handling function */

D&C

Networks: TCP/IP Socket Calls 14




int main(int argc, char *argv[])

{

int servSock; [*Socket descriptor for server */
Int cIntSock; [* Socket descriptor for client */
struct sockaddr_in echoServAddr; /* Local address */
struct sockaddr_in echoCIntAddr; /* Client address */
unsigned short echoServPort;  /* Server port */

unsigned int cintLen; /* Length of client address data structure */

If (argc '=2) /* Test for correct number of arguments */

{
fprintf(stderr, "Usage: %s <Server Port>\n", argv[0]);

exit(1);
}

echoServPort = atoi(argv[1]); /* Firstarg: local port */

/* Create socket for incoming connections */

If ((servSock = socket (PF_INET, SOCK_STREAM, IPPROTO_TCP)) <0)

DieWithError("socket() failed™);

(e WPI Networks: TCP/IP Socket Calls

D&C

15




TCP Echo Server

/* Construct local address structure */

memset(&echoServAddr, 0, sizeof(echoServAddr)); [* Zero out structure */
echoServAddr.sin_family = AF_INET,; /[* Internet address family */
echoServAddr.sin_addr.s_addr = htonl(INADDR_ANY); /* Any incoming interface */
echoServAddr.sin_port = htons(echoServPort); /* Local port */

/* Bind to the local address */
If (bind (servSock, (struct sockaddr *) &echoServAddr, sizeof(echoServAddr)) < 0)

DieWithError("bind() failed");

/* Mark the socket so it will listen for incoming connections */
If (listen (servSock, MAXPENDING) < 0)
DieWithError("listen() failed™);

D&C

W) WPI Networks: TCP/IP Socket Calls 16




TCP Echo Server

for (;;) /* Run forever */
{
[* Set the size of the in-out parameter */
cintLen = sizeof(echoCIntAddr); [* Wait for a client to connect */
If ((cIntSock = accept (servSock, (struct sockaddr *) &echoClintAddr, &clntLen)) <0
DieWithError(*"accept() failed");

/[* cIntSock is connected to a client! */
printf("Handling client %s\n", inet_ntoa(echoCIntAddr.sin_addr));
HandleTCPClient(cIntSock);

¥
/* NOT REACHED */

D&C

Networks: TCP/IP Socket Calls 17




TCP Echo Client

#include <stdio.h> [* for printf() and fprintf() */

#include <sys/socket.h> /* for socket(), connect(), send(), and recv() */
#include <arpa/inet.h> /* for sockaddr_in and inet_addr() */

#include <stdlib.h> [* for atoi() and exit() */

#include <string.h>  /* for memset() */

#include <unistd.h>  /* for close() */

#define RCVBUFSIZE 32 /* Size of receive buffer */

void DieWithError(char *errorMessage); /* Error handling function */

Networks: TCP/IP Socket Calls

D&C

18




Int main(int argc, char *argv(])

{
Int sock; [* Socket descriptor */
struct sockaddr_in echoServAddr; /* Echo server address */
unsigned short echoServPort; [* Echo server port */
char *servlIP; [* Server IP address (dotted quad) */
char *echoString; [* String to send to echo server */
char echoBuffer[RCVBUFSIZE]; /* Buffer for echo string */
unsigned int echoStringLen; /* Length of string to echo */

Int bytesRcvd, totalBytesRcvd;  /* Bytes read in single recv()
and total bytes read */

If ((argc < 3) || (argc > 4)) [* Test for correct number of arguments */

{
fprintf(stderr, "Usage: %s <Server IP> <Echo Word> [<Echo Port>]\n",

argv[0]);

D&C

W) WPI Networks: TCP/IP Socket Calls 19




servIP = argv[1]; [* First arg: server IP address (dotted quad) */

echoString = argv[2]; [* Second arg: string to echo */
If (argc == 4)

echoServPort = atoi(argv[3]); /* Use given port, if any */
else

echoServPort =7; /* 7 is the well-known port for the echo service */

[* Create a reliable, stream socket using TCP */

If ((sock = socket (PF_INET, SOCK_STREAM, IPPROTO_TCP)) <0)
DieWithError(*'socket() failed");

[* Construct the server address structure */
memset(&echoServAddr, 0, sizeof(echoServAddr));  /* Zero out structure */

echoServAddr.sin_family = AF _INET; [* Internet address family */
echoServAddr.sin_addr.s_addr = inet_addr(servIP); /* Server IP address */
echoServAddr.sin_port = htons(echoServPort); /* Server port */

D&C

Networks: TCP/IP Socket Calls 20




TCP Echo Client

[* Establish the connection to the echo server */

If (connect (sock, (struct sockaddr *) &echoServAddr, sizeof(echoServAddr)) < 0)
DieWithError(*'connect() failed");

echoStringLen = strlen(echoString); [* Determine input length */

[* Send the string to the server */
If (send (sock, echoString, echoStringLen, 0) !=echoStringLen)
DieWithError(*'send() sent a different number of bytes than expected");

/* Receive the same string back from the server */
totalBytesRcvd = 0;

printf("Received: "); [* Setup to print the echoed string */

D&C

Networks: TCP/IP Socket Calls 21




TCP Echo Client

while (totalBytesRcvd < echoStringLen)

{
/* Receive up to the buffer size (minus 1 to leave space for

a null terminator) bytes from the sender */
If ((bytesRcvd = recv(sock, echoBuffer, RCVBUFSIZE - 1, 0)) <=0)
DieWithError("recv() failed or connection closed prematurely");

totalBytesRcvd += bytesRcvd; /* Keep tally of total bytes */
echoBuffer[bytesRcvd] = "\0'; /* Terminate the string! */
printf("%s", echoBuffer);  /* Print the echo buffer */

¥
printf("\n");  /* Print a final linefeed */

close (sock);
exit(0);

D&C

Networks: TCP/IP Socket Calls 22




5 February 2005 02:09

Timekeeping

UNIX timekeeping is an untidy area, made more confusing by national and international laws
and customs. Broadly, there are two kinds of functions: one group is concerned with getting
and setting system times, and the other group is concerned with converting time representa-
tions between a bewildering number of formats.

Before we start, we’ll define some terms:

A time zone is a definition of the time at a particular location relative to the time at other
locations. Most time zones are bound to political borders, and vary from one another in
steps of one hour, although there are still a number of time zones that are offset from
adjacent time zones by 30 minutes. Time zones tend to have three-letter abbreviations
(TLAs) such as PST (Pacific Standard Time), EDT (Eastern Daylight Time), BST (British
Summer Time), AET (Australian Eastern Time), MEZ (Mitteleuropaische Zeit). As the
example shows, you should not rely on the combination ST to represent Standard Time.

UTC is the international base time zone, and has the distinction of being one of those
abbreviations which nobody can expand. It means Universal Coordinated Time, despite
the initials. It obviously doesn’t stand for the French Temps Universel Coordonné either.
It corresponds very closely, but not exactly, to Greenwich Mean Time (GMT), the local
time in England in the winter, and is the basis of all UNIX timestamps. The result is that
for most of us, UTC is not the current local time, though it might be close enough to be
confusing or far enough away to be annoying.

From the standpoint of UNIX, you can consider the Epoch to be the beginning of
recorded history: it’s 00:00:00 UTC, 1 January 1970. All system internal dates are rela-
tive to the Epoch.

Daylight Savings Time is a method of making the days appear longer in summer by set-
ting the clocks forward, usually by one hour. Thus in summer, the sun appears to set one
hour later than would otherwise be the case.

Even after clarifying these definitions, timekeeping remains a pain. We’ll look at the main
problems in the following sections:

269



270

Difficult to use

The time functions are not easy to use: to get them to do anything useful requires a lot of
work. You'd think that UNIX would supply a primitive call upon which you could easily
build, but unfortunately there isn’t any such call, and the ones that are available do not operate
in an intuitively obvious way. For example, there is no standard function for returning the
current timein a useful format.

Implementations differ

There is no single system call that is supported across all platforms. Functions are imple-
mented as system calls in some systems and as library functions in others. As a result, it
doesn't make sense to maintain our distinction between system calls and library functions
when it comes to timekeeping. In our discussion of the individual functions, we'll note which
systems implement them as system calls and which aslibrary calls.

Differing time formats
There are at least four different time formats:

e The system uses the time_t format, which represents the number of seconds since the
Epoch. This format is not subject to time zones or daylight savings time, but it is accu-
rate only to one second, which is not accurate enough for many applications.

e The struct timeval format is something like an extended ti ne_t with a resolution of 1
microsecond:

#i ncl ude <sys/tinme. h>

struct tineval

{
| ong tv_sec; /* seconds since Jan. 1, 1970 */
| ong tv_usec; /* and m croseconds */
¥
It isused for anumber of newer functions, such asget ti meof day andsetiti ner.

e Many library routines represent the calendar time as a struct tm. It is usually defi ned in
{usr/include/time.h:

struct tm
{
int tmsec; /* seconds after the mnute [0-60] */
int  tmnn; /* mnutes after the hour [0-59] */
int  tmhour; /* hours since mdnight [0-23] */
int tmnday; /* day of the month [1-31] */
int  tmonon; /* nonths since January [0-11] */
int tmyear; /* years since 1900 */
int tmwday; /* days since Sunday [0-6] */
int tmyday; /* days since January 1 [0-365] */
int tmisdst; /* Daylight Savings Tine flag */

5 February 2005 02:09



5 February 2005 02:09

Chapter 16: Timekeeping 271

long tmgmoff; /* offset fromUICin seconds */
char *tmzone; /* tinezone abbreviation */

b
Unlike ti nme_t, a struct tmdoes not uniquely define the time: it may be a UTC time, or it
may be local time, depending on the time zone information for the system.

« Dates as a text string are frequently represented in a strange manner, for example Sat
Sep 17 14:28:03 1994\ n. This format includes a \ n character, which is seldom
needed—often you will have to chop it off again.

Daylight Savings Time

The support for Daylight Savings Time was rudimentary in the Seventh Edition, and the solu-
tions that have arisen since then are not completely compatible. In particular, System V han-
dles Daylight Savings Time via environment variables, so one user’s view of time could be
different from the next. Recent versions of BSD handle this via a database that keeps track of
local regulations.

National time formats

Printable representations of dates and times are very much a matter of local customs. For
example, the date 9/4/94 (in the USA) would be written as 4/9/94 in Great Britain and
04.09.94 in Germany. The time written as 4:23 pm in the USA would be written 16.23 in
France. Things get even worse if you want to have the names of the days and months. As a
result, many timekeeping functions refer to the locale kept by ANSI C. The locale describes
country-specific information. Since it does not vary from one system to the next, we won’t
look at it in more detail—see POS X Programmer’s Guide, by Donald Lewine, for more
information.

Global timekeeping variables
A number of global variables define various aspects of timekeeping:

«  The variable timezone, which is used in System V and XENIX, specifies the number of
minutes that the standard time zone is west of Greenwich. It is set from the environment
variable TZ, which has a rather bizarre syntax. For example, in Germany daylight sav-
ings time starts on the last Sunday of March and ends on the last Sunday of September
(not October as in some other countries, including the USA). To tell the system about
this, you would use the TZ string

MEZ- IMBZ- 2; MB. 5, M). 5
This states that the standard time zone is called MEZ, and that it is one hour ahead of
UTC, that the summer time zone is called MSZ, and that it is two hours ahead of UTC.
Summer time begins on the (implied Sunday of the) fifth week in March and ends in the
fifth week of September.



5 February 2005 02:09

272

The punctuation varies: this example comes from System V.3, which requires a semi-
colon in the indicated position. Other systems allow a comma here, which works until
you try to move the information to System V.3.

e Thevariableal t zone, used in SVR4 and XENIX, specifi es the number of minutes that
the Daylight Savings Time zone is west of Greenwich.

e The variable dayl i ght, used in SVR4 and XENIX, indicates that Daylight Savings
Timeis currently in effect.

e Thevariable tzname, used in BSD, SVR4 and XENIX, is a pointer to two strings, Speci-
fying the name of the standard time zone and the Daylight Savings Time zone respec-
tively.

In the following sections we'll ook at how to get the current time, how to set the current time,
how to convert time values, and how to suspend process execution for a period of time.

Getting the current time

The system supplies the current time via the system callst i ne or get t i meof day —only one
of these is a system call, but the system determines which oneit is.

time
#i ncl ude <sys/types. h>
#incl ude <tine. h>
time_t time (tine_t *tloc);

ti ne returns the current timeinti ne_t form, both as areturn value and at tloc if thisis not
NULL. tine isimplemented as a system call in System V and as a library function (which
callsget ti neof day) in BSD. Since it returns a scalar value, acall toti ne can be used asa
parameter to functionslikel ocal ti ne or cti ne.

ftime

ftine isavariant of ti nme that returns time information with a resolution of one millisecond.
It originally came from 4.2BSD, but is now considered obsol ete.

#i ncl ude <sys/types. h>
#i ncl ude <sys/tineb. h>

typedef long tine_t; [* (typically) */
struct tineb
{
tine_t tine; /* the sane tinme returned by tine */
unsigned short mllitm /* MIliseconds */
short ti mezone; /* Systemdefault tine zone */
short dstfl ag; /* set during daylight savings tine */



5 February 2005 02:09

Chapter 16: Timekeeping 273

b
struct tinmeb *ftime (struct tineb *tp);

The timezone returned is the system default, possibly not what you want. System V.4 depre-
cates” the use of this variable as a result. Depending on which parameters are actually used,
there are a number of alternatives to fti ne. In many cases, ti ne supplies all you need.

RGme ts'ys er'r?s?c)%trjatr%g{/]l%etoa%qg i%C%gine ftime in terms of getti neof day, which

returns the time of the day with a 1 microsecond resolution—see the next section. On other
systems, unfortunately, the system clock does not have a finer resolution than one second, and
you are stuck with ti re.

gettimeofday

#i ncl ude <sys/tine. h>

struct tineval

{

I ong tv_sec; /* seconds since Jan. 1, 1970 */
| ong tv_usec; /* and m croseconds */

1

int gettineofday (struct tineval *tp,
struct tinezone *tzp); /* (BSD */
int gettineofday (struct timeval *tp); /* (SystemV.4) */

getti nmeof day returns the current system time, with a resolution of 1 microsecond, to t p.
The name is misleading, since the struct tineval representation does not relate to the time
of day. Many implementations ignore t zp, but others, such as SunOS 4, return time zone
information there.

In BSD, get ti neof day is a system call. In some versions of System V.4 it is emulated as a
library function defined in terms of ti ne, which limits its resolution to 1 second. Other ver-
sions of System V appear to have implemented it as a system call, though this is not docu-
mented.

* The term deprecate is a religious term meaning “to seek to avert by prayer”. Nowadays used to indi-
cate functionality that the implementors or maintainers wish would go away. This term seems to have
come from Berkeley. To quote the “New Hackers Dictionary”:

:deprecated: adj. Said of a program or feature that is considered obsolescent and in the
process of being phased out, usually in favor of a specified replacement. Deprecated features
can, unfortunately, linger on for many years. This term appears with distressing frequency in
standards documents when the committees writing the documents realize that large amounts of
extant (and presumably happily working) code depend on the feature(s) that have passed out of
favor. See also {dusty deck}.



5 February 2005 02:09

274

Setting the current time

Setting the system time is similar to getting it, except that for security reasons only the supe-
ruser (root) is alowed to perform the function. It is normally executed by the date program.

adjitime
#i ncl ude <sys/tine. h>

int adjtine (struct tineval *delta, struct tineval *olddelta);

adj ti me makes small adjustments to the system time, and is intended to help synchronize
time in a network. The adjustment is made gradually—the system slows down or speeds up
the passage of time by a fraction of a percent until it has made the correction, in order not to
confuse programs like cron which are watching the time. As a result, if you call adj ti ne
again, the previous adjustment might still not be complete; in this case, the remaining adjust-
ment is returned in ol ddel ta. adjti ne was introduced in 4.3BSD and is also supported by
System V. It isimplemented asasystem call in al systems.

settimeofday

#i ncl ude <sys/tine. h>

int gettineofday (struct tineval *tp, struct timezone *tzp);
int settineofday (struct tinmeval *tp, struct timezone *tzp);

settineof day isaBSD system call that is emulated as a library function in System V.4. It
sets the current system time to the value of t p. The value of t zp is no longer used. In Sys-
tem V, this call isimplemented in terms of the st i ne system call, which sets the time only to
the nearest second. If you really need to set the time more accurately in System V.4, you can
useadj ti re.

stime
#i ncl ude <uni std. h>
int stine (const tine_t *tp);

st i ne sets the system time and date. Thisisthe original Seventh Edition function that is still
available in System V. It is not supported in BSD—use set t i neof day instead on BSD sys-
tems.

Converting time values

As advertised, there are a large number of time conversion functions, made all the more com-
plicated because many are supported only on specifi ¢ platforms. All are library functions.
Many return pointers to static data areas that are overwritten by the next call. Solaris attempts
to solve this problem with versions of the functions with the characters _r (for reentrant)



5 February 2005 02:09

Chapter 16: Timekeeping 275

appended to their names. These functions use a user-supplied buffer to store the data they
return.

strftime

#i ncl ude <sys/types. h>
#incl ude <tine. h>
#i ncl ude <string. h>

size_t strftine (char *s, size_t naxsize, char *format, struct tm*tn);

strftime convertsthetime at t minto aformatted string at s. f or nat specifi es the format of
the resultant string, which can be no longer than naxsi ze characters. format is similar to
the format strings used by printf, but contains strings related to dates. strftine has a
rather strange return value: if the complete date string, including the terminating NUL charac-
ter, fi ts into the space provided, it returns the length of the string—otherwise it returns 0O,
which implies that the date string has been truncated.

strftine isavailable on al platforms and is implemented as a library function. System V.4
considersascftine and cfti ne to be obsolete. The man pages state that strfti ne should
be used instead.

strptime
#incl ude <tine. h>
char *strptine (char *buf, char *fm, struct tm*tn);

strptine is alibrary function supplied with SunOS 4. It converts the date and time string
buf intoastruct tmvalueatt m Thiscall bearsthe samerelationship to scanf thatstrf -
tine bearstoprintf.

ascftime

#i ncl ude <sys/types. h>
#i ncl ude <tine. h>

int ascftine (char *buf, char *fm, tm*tn;

ascf ti me converts the time at t minto aformatted string at buf . f or mat specifi es the format
of the resultant string. Thisis effectively the same function asstrfti ne, except that there is
no provision to supply the maximum length of buf . ascfti ne is available on all platforms
and isimplemented as alibrary function.

asctime and asctime _r

#i ncl ude <sys/types. h>
#incl ude <tine. h>

char *asctine (const struct tm*tn);



5 February 2005 02:09

276

char *asctine_r (const struct tm*tm char *buf, int buflen);

ascti ne convertsatimeinstruct tnf format into the same kind of string that is returned
by cti ne. ascti ne isavailable on all platforms and is always alibrary function.
asctinme_r isaversion of ascti e that returns the string to the user-provided buffer r es,

which must be at least buf | en characterslong. It returns the address of res. It issupplied as
alibrary function on Solaris systems.

cftime

#i ncl ude <sys/types. h>
#incl ude <tine. h>

int cftime (char *buf, char *fm, tine_t *clock);

cfti ne converts the time at ¢l ock into a formatted string at buf . for mat specifi es the for-
mat of the resultant string. This is effectively the same function as strfti ne, except that
there is no provision to supply the maximum length of buf, and the time is supplied in
tine_t format. cftine isavailable on al platforms and is implemented as a library func-
tion.

ctimeand ctime r

#i ncl ude <sys/types. h>
# ncl ude <tinme. h>
extern char *tznane[2];

char *ctine (const tine_t *clock);
char *ctinme_r (const tine_t *clock, char *buf, int buflen);

cti ne converts the time cl ock into a string in the form Sat Sep 17 14: 28: 03 1994\ n,
which has the advantage of consistency: it is not a normal representation anywhere in the
world, and immediately brands any printed output with the word UNIX. It uses the environ-
ment variable TZ to determine the current time zone. You can rely on the string to be exactly
26 characters long, including the fi nal \ 0, and to contain that irritating \ n at the end. cti ne
isavailable on al platforms and is always alibrary function.

ctine_r isaversion of ctine that returns its result in the buffer pointed to by buf . The
length is limited to buf | en bytes. ctinme_r is available on Solaris platforms as a library
function.

dysize
#incl ude <tine. h>
int dysize (int year);

dysi ze return the number of daysinyear . Itissupplied asalibrary function in SunOS 4.



5 February 2005 02:09

Chapter 16: Timekeeping 277

gmtime and gmtime _r

#i ncl ude <tine. h>

struct tm*gmime (const time_t *clock);
struct tm*gmime_r (const time_t *clock, struct tm*res);

gnti ne convertsatimeintine_t formatintostruct tnt format, likel ocal tine. Asthe
name suggests, however, it does not account for local timezones—it returns a UTC time (this
was formerly called Greenwich Mean Time, thus the name of the function). gnti ne is avail-
ableon all platforms and is aways alibrary function.

gntine_r isaversion of gnti ne that returns the string to the user-provided buffer res. It
returns the address of res. Itissupplied asalibrary function on Solaris systems.

localtime and localtime r

#i ncl ude <tine. h>

struct tm*localtine (const tine_t *clock);
struct tm*localtine_r (const tinme_t *clock, struct tm*res);

| ocal ti nme convertsatimeintine_ t formatintostruct tnt format. Likecti ne, it uses
the time zone information in t znane to convert to local time. | ocal ti ne is available on all
platforms and is always a library function.

localtine r isaversion of | ocal ti ne that returns the string to the user-provided buffer
res. ltreturnsthe addressof res. Itissupplied asalibrary function on Solaris systems.

mktime

#i ncl ude <sys/types. h>
# ncl ude <tinme. h>
time_t nktine (struct tm*tn);

nkt i me convertsaloca timeinstruct tmformatintoatimeintine_t format. It does not
uset znare in the conversion—it uses the information at t m >t m zone instead. In addition
to converting the time, nkt i ne also sets the members wday (day of week) and yday (day of
year) of the input struct tm to agree with day, month and year. tm >t mi sdst determines
whether Daylight Savings Time is applicable;

e ifitis>0,nkti me assumes Daylight Savings Timeisin effect.
e IfitisQ, it assumesthat no Daylight Savings Timeisin effect.

e Ifitis<0, nktine triesto determine whether Daylight Savings Time isin effect or not.
It is often wrong.

nkt i me isavailable on all platforms and is always alibrary function.



5 February 2005 02:09

278

timegm
#incl ude <tine. h>
time_t tinmegm(struct tm*tn);

ti megmconvertsastruct t mtime, assumed to be UTC, to the correspondingti ne_t value.
This is effectively the same thing as nkt i me with the time zone set to UTC, and is the con-
verse of gmii ne. ti megmisalibrary function supplied with SunOS 4.

timelocal

#i ncl ude <tine. h>

time_t tinelocal (struct tm*tm;

tinel ocal converts a struct tmtime, assumed to be loca time, to the corresponding
tine_t value. Thisissimilar to nkti ne, but it uses the local time zone information instead
of theinformationint m It isalso the converse of | ocal ti ne. ti nel ocal isalibrary func-
tion supplied with SunOS 4.

difftime

#i ncl ude <sys/types. h>
#i ncl ude <tine. h>

double difftine (tine_t tinel, tine_t tinel);

di ffti ne returns the difference in seconds between two ti ne_t values. This is effectively
thesamethingas(int) tinel - (int) tine0. difftineisalibrary function available
on al platforms.

timezone

#i ncl ude <tine. h>

char *tinezone (int zone, int dst);

t i nezone returns the name of the timezone that is zone minutes west of Greenwich. If dst

is non-0, the name of the Daylight Savings Time zone is returned instead. This call is obso-
lete—it was used at a time when time zone information was stored as the number of minutes

west of Greenwich. Nowadays the information is stored with a time zone name, so there
should be no need for this function.

tzset

#i ncl ude <tine. h>

void tzset ();



5 February 2005 02:09

Chapter 16: Timekeeping 279

t zset sets the value of the internal variables used by | ocal ti ne to the values specified in
the environment variable TZ. It is called by ascti me. In System V, it sets the value of the
global variable dayl i ght . tzset is a library function supplied with BSD and System V.4,

tzsetwall
#i ncl ude <tinme. h>
void tzsetwall ();

tzsetwal | sets the value of the internal variables used by | ocal ti ne to the default values
for the site. tzsetwal | is a library function supplied with BSD and System V.4.

Suspending process execution

Occasionally you want to suspend process execution for a short period of time. For example,
the tail program with the - f flag waits until a file has grown longer, so it needs to relinquish
the processor for a second or two between checks on the file status.

Typically, this is done with sl eep. However, some applications need to specify the length of
time more accurately than sl eep allows, so a couple of alternatives have arisen: nap suspends
execution for a number of milliseconds, and usl eep suspends it for a number of microsec-
onds.

nap

nap is a XENIX variant of sl eep with finer resolution:
#incl ude <tine. h>
long nap (long mllisecs);

nap suspends process execution for at least m | | i secs milliseconds. In practice, the XENIX
clock counts in intervals of 20 ms, so this is the maximum accuracy with which you can spec-
ify m||isecs. You can simulate this function with usl eep (see page 281 for more details).

setitimer
BSD systems and derivatives maintain three (possibly four) interval timers:
«  Arreal time timer, | TI MER_REAL, which keeps track of real elapsed time.

« Avirtual timer, | TI MER M RTUAL, which keeps track of process execution time, in other
words the amount of CPU time that the process has used.

« A profiler timer, | TI MER_ PRCF, which keeps track of both process execution time and
time spent in the kernel on behalf of the process. As the name suggests, it is used to
implement profiling tools.



5 February 2005 02:09

280

e A real time profiler timer, | TI MR REALPRCF, used for profiling Solaris 2.X multi-
threaded processes.

These timers are manipulated with the system callsget i ti mer andsetiti ner:

#i ncl ude <sys/tine. h>

struct tineval

i{ong tv_sec; /* seconds */
long tv_usec; /* and m croseconds */
b
struct itinerval
{
struct tineval it_interval; /* timer interval */
struct tineval it_val ue; /* current value */
b

int getitiner (int which, struct itinerval *val ue);
int setitimer (int which, struct itinerval *value, struct itinerval *oval ue);

setitimer setsthe value of a specifi ¢ timer whi ch to val ue, and optionally returns the pre-
vious value in oval ue if thisisnot aNULL pointer. getiti mer just returns the current value
of the timer to val ue. The resolution is specifi ed to an accuracy of 1 microsecond, but it is
really limited to the accuracy of the system clock, which is more typically in the order of 10
milliseconds. In addition, as with all timing functions, there is no guarantee that the process
will be able to run immediately when the timer expires.

In the struct i ti merval , it_val ue isthe current value of the timer, which is decremented
depending on type as described above. Whenit val ue is decremented to O, two things hap-
pen: a signal is generated, and i t _val ue isreloaded fromit_interval . If the result is 0,
no further action occurs; otherwise the system continues decrementing the counter. In this
way, one call tosetitimer can cause the system to generate continuous signals at a specifi ed
interval.

The signal that is generated depends on the timer. Here'san overview:

Table 16—1: seti ti ner signals

Ti ner Signal
Real tine S GALRM
Virtual S| GVTALRV
Profiler S| GPRCF
Real -tine profiler' | SIGPRCF

1 Only Solaris 2.x

The only timer you're likely to see is the real time timer. If you don't have it, you can fake it
with al arm In System V.4, setitiner isimplemented as a library function that calls an
undocumented system call. See The Magic Garden explained: The Internals of UNIX System



5 February 2005 02:09

Chapter 16: Timekeeping 281

V Release 4, by Berny Goodheart and James Cox, for more details.
setitimer isusedtoimplement the library routine usl eep.

sleep

#i ncl ude <uni std. h>

unsi gned sl eep (u_int seconds);

The library routine sl eep suspends program execution for approximately seconds seconds.
Itisavailable on al UNIX platforms.

usleep
usl eep isavariant of sl eep that suspends program execution for a very short time:

#i ncl ude <uni std. h>
voi d usl eep (u_int m croseconds);

usl eep sleeps for at least m cr oseconds microseconds. It is supplied on BSD and System
V.4 systems as a library function that uses the setitimer system call.

select and poll

If your system doesn’t supply any timing function with a resolution of less than one second,
you might be able to fake it with the functions sel ect or pol | . sel ect can wait for nothing
if you ask it to, and since the timeout is specifi ed asastruct tineval (seepage 270), you
can specify times down to microsecond accuracy. You can use pol | in the same way, except
that you specifi es its timeout value in milliseconds.

For example,

voi d usl eep (int m croseconds)
{
struct tineval tineout;
tinmeout.tv_usec = mcroseconds % 1000000;
timeout.tv_sec = nicroseconds / 1000000;
select (0, NULL, NUL, NULL, &ineout);
}

or
voi d usl eep (int m croseconds)
{
pol I (O, NULL, mcroseconds / 1000);
}



