
Netprog: Chat 1

Chat
Issues and Ideas for Service Design

Refs: RFC 1459 (IRC)

Netprog: Chat 2

Service Design Issues

• Pretend we are about to design a chat

system.

• We will look at a number of questions

that would need to be answered during

the design process.

• We will look at some possible system

architectures.

Netprog: Chat 3

Multi-user Chat Systems

Functional Issues

– Message types.

– Message destinations (one vs. many groups)

– Scalability (how many users can be
supported)

– Reliability?

– Security
• authentication

• authorization

• privacy

Netprog: Chat 4

Message Types

• Some options:

–text only

–audio

– images

–anything (MIME)?

Netprog: Chat 5

Scalability

• How large a group do we want to
support?

• How many groups?

• What kind of service architecture will
provide efficient message delivery?

• What kind of service architecture will
allow the system to support many
users/groups?

Netprog: Chat 6

Message Destinations

• Each message goes to a group (multi-
user chat).

– Can we also send to individuals?

– Should we support more than one group?
• Are groups dynamic or static?

• What happens when there is nobody in a
group?

• Can groups communicate?

• Can groups merge or split?

Netprog: Chat 7

Reliability

• Does a user need to know (reliably) all

the other users that receive a message?

• What happens if a message is lost?

– resend? application level or at user level?

• What happens when a user quits?

– Does everyone else need to know?

Netprog: Chat 8

Security

• Authentication: do we need to know
who each user is?

• Authorization: do some users have
more privileges than others?

• Privacy:

– Do messages need to be secure?

– Do we need to make sure messages
cannot be forged?

Netprog: Chat 9

Peer-to-Peer Service

Architecture

Client

Client

Client

Client

Client

Client

Client

Client

Netprog: Chat 10

Peer-to-Peer Service

Architecture (cont.)

Each client talks to many other clients.

• Who’s on first? Is there a well known

address for the service?

• How many peers can we keep track of?

• If 2 peers (clients) are on the same

machine, do we need to send a

message to the machine twice?

Netprog: Chat 11

Client/Server

Client

Client

Client

Client

Client

Client

Client

Client

Server

Netprog: Chat 12

Client/Server

• Server is well known.

• Life is easier for clients - don’t need to

know about all other clients.

• Limited number of clients?

• Security is centralized.

• Server might get overloaded?

Netprog: Chat 13

Hybrid Possibility

Client

Client

Client

Client

Client

Client

Client

Client

Server

CONTROL

MESSAGES

Netprog: Chat 14

Hybrid

• Clients connect to server and gather

control information:

– List of other clients.

– List of chat groups.

• Messages are sent directly (not through

server).

– Could use connectionless protocol (UDP or

transaction based TCP).

Netprog: Chat 15

Internet Relay Chat

• IRC is a widely used multi-user chat

system.

– Supports many chat groups (channels).

– Extensive administrative controls.

– Distributed service architecture.

– Still in use today, although WWW based

chat is now more common.

Netprog: Chat 16

Client

IRC Architecture

Client

Client

Client

Client

Client

Client

Client

Server Client

Client

Client

Client

Client

Client

Client

Server Server

Server Server
Client

Client
Client

Netprog: Chat 17

Server Topology

• Servers are connected in a spanning tree

– Single path between any 2 servers.

– New servers can be added dynamically

• support for preventing cycles in the server graph.

• A collection of servers operates as a unified

system, users can view the system as a

simple client/server system.

Netprog: Chat 18

Server Databases

• Each server keeps track of

– all other servers

– all users (yes, really all users!)

– all channels (chat groups)

• Each time this information changes, the

change is propagated to all participating

servers.

Netprog: Chat 19

Clients

• A client connects to the system by

establishing a TCP connection to any

server.

• The client registers by sending:

– (optional) password command

– a nickname command

– a username command.

Netprog: Chat 20

Nicknames and user names

• A nickname is a user supplied identifier that

will accompany any messages sent.

– Wizard, kilroy, gargoyle, death_star, gumby

• The username could be faked, some

implementations use RFC931 lookup to

check it.

• Users can find out the username associated

with a nickname.

Netprog: Chat 21

Collisions

• If a client requests a nickname that is
already in use, the server will reject it.

• If 2 clients ask for the same nickname
on 2 different servers, it is possible that
neither server initially knows about the
other.

• In this case both requests for the
nickname are rejected.

Netprog: Chat 22

Nickname Collision

Server

A
Server

B

IRC Network

Client

I want to be satan

Client

I want to be satan

Netprog: Chat 23

Nickname Propagation

• The command used to specify a nickname is

forwarded from the server to all other servers

(using the spanning tree topology).

• The command is the same, but extra

information is added by the original server:

– server name connected to client with nickname.

– Hop count* from the server connected to the

client.

*hop count is IRC server count (not IP!)

Netprog: Chat 24

Channels

• 2 kinds of channels

– local to a server - start with ‘&’ character

– global, span the entire IRC network -start with the

‘#’ character.

• Users can JOIN or PART from a channel.

• A channel is created when the first user

JOINS, and destroyed when the last user

PARTS.

Netprog: Chat 25

Channel Operators

• The user that creates a channel

becomes the channel operator and can

set various channel properties (modes):

– invite-only

– moderated

– private

– secret

Netprog: Chat 26

Channel Op commands

• A Channel Op can:

– give away channel op privileges

– set channel topic (just a string)

– kick users out of the channel.

– Invite a client to a channel

– change channel mode

Netprog: Chat 27

Messages

• All messages are text.

• A message can be sent to nicknames,
channels, hosts or servers.

• There are two commands for sending
messages:

– PRIVMSG: response provided.

– NOTICE: no response (reply) generated.
Avoids loops when clients are automatons

Netprog: Chat 28

Other Stuff

• Special class of users known as Operators.

– Operators can remove users!

• Servers can be told to connect to another

server (operators create the spanning tree).

• The tree can be split if a node or network fails

- there are commands for dealing with this.

Netprog: Chat 29

Problems

• Scalability: works well with quite a large
IRC network, but needs to be changed
to get much bigger.

– Currently every server needs to know
about every other server, every channel
and every user.

– Path length is determined by operators, an
optimal tree could be generated
automatically.

Netprog: Chat 30

Problems

• Supporting a cyclic network (instead of a tree)

could minimize disruptions.

• Need a better scheme for nicknames, too

many collisions (everyone wants to be satan!)

• Current protocol means that each server

must assume neighbor server is correct. Bad

guys could screw things up.

1

Sockets Programming
Introduction

© Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 1

CS4254

Computer Network Architecture and
Programming

Dr. Ayman A. Abdel-Hamid
Computer Science Department

Virginia Tech

Sockets Programming Introduction

Sockets Programming
Introduction

© Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 2

Outline

•Sockets API and abstraction

•Simple Daytime client

•Wrapper functions

•Simple Daytime Server

Sockets Programming
Introduction

© Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 3

Sockets API
API is Application Programming Interface
•Sockets API defines interface between application and
•transport layer

two processes communicate by sending data into socket,
reading data out of socket

•Socket interface gives a file system like abstraction to the
capabilities of the network
•Each transport protocol offers a set of services

The socket API provides the abstraction to access these
services

•The API defines function calls to create, close, read and write
to/from a socket

Sockets Programming
Introduction

© Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 4

Sockets Abstraction
The socket is the basic abstraction for network communication in
the socket API

Defines an endpoint of communication for a process
Operating system maintains information about the socket and

its connection
Application references the socket for sends, receives, etc

2

Sockets Programming
Introduction

© Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 5

Simple Daytime Client 1/5

•Source code available from http://www.unpbook.com
•Read README file first!
•Source file is daytimetcpcli.c

•Include “unp.h”
Textbook’s header file
Includes system headers needed by most network programs
Defines various constants such as MAXLINE

•Create TCP Socket
sockfd = socket (AF_INET, SOCK_STREAM, 0)
Returns a small integer descriptor used to identify socket
If returned value < 0 then error

Sockets Programming
Introduction

© Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 6

Simple Daytime Client 2/5

Socket Descriptors
•Operating system maintains a set of socket descriptors for each
process Note that socket descriptors are shared by threads
•Three data structures

Socket descriptor table Socket data structure Address data structure

AF_INET

Sockets Programming
Introduction

© Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 7

Simple Daytime Client 3/5

•Specify Server IP Address and Port
•Fill an Internet socket address structure with server’s IP address and
port

•Set entire structure to zero first using bzero

•Set address family to AF_INET

•Set port number to 13 (well-known port for daytime server on host
supporting this service)

•Set IP address to value specified as command line argument (argv[1])

•IP address and port number must be in specific format

•htons host to network short

•inet_pton presentation to numeric, converts ASCII dotted-decimal
command line argument (128.82.4.66) to proper format

Sockets Programming
Introduction

© Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 8

Simple Daytime Client 4/5

•Establish connection with server
•Connect (sockfd, (SA *) &servaddr, sizeof(servaddr))

•Establish a TCP connection with server specified by socket address
structure pointed to by second argument

•Specify length of socket address structure as third argument

•SA is #defined to be struct sockaddr in unp.h

•Read and Display server reply
Server reply normally a 26-byte string of the form

Mon May 26 20:58:40 2003\r\n

TCP a byte-stream protocol, always code the read in a loop and
terminate loop when read returns 0 (other end closed connection) or value
less than 0 (error)

3

Sockets Programming
Introduction

© Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 9

Simple Daytime Client 5/5

•Terminate program
Exit terminates the program exit (0)

Unix closes all open descriptors when a process terminates

TCP socket closed

•Program protocol dependent on IPv4, will see later how to
change to IPv6 and even make it protocol independent

Sockets Programming
Introduction

© Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 10

Error Handling: Wrapper Functions
•Check every function call for error return

•In previous example, check for errors from socket, inet_pton,
connect, read, and fputs

•When error occurs, call textbook functions err_quit and err_sys
to print an error message and terminate the program

•Define wrapper functions in lib/wrapsock.c

•Unix errno value
When an error occurs in a Unix function, global variable errno is set to

a positive value indicating the type of error and the function normally
returns -1

err_sys function looks at errno and prints corresponding error message
(e.g., connection timed out)

Sockets Programming
Introduction

© Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 11

Simple Daytime Server 1/2

•Source code in daytimetcpsrv.c

•Create a TCP Socket
Identical to client code

•Bind server well-known port to socket
Fill an Internet socket address structure
Call Bind (wrapper function) local protocol address bound to socket
Specify IP address as INADDR_ANY: accept client connection on any

interface (if server has multiple interfaces)

•Convert socket to listening socket
Socket becomes a listening socket on which incoming connections

from clients will be accepted by the kernel
LISTENQ (defined in unp.h) specifies the maximum number of client

connections the kernel will queue for this listening descriptor
Sockets Programming
Introduction

© Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 12

Simple Daytime Server 2/2

•Accept client connection, send reply
Server is put to sleep (blocks) in the call to accept

After connection accepted, the call returns and the return value is a new
descriptor called the connected descriptor

New descriptor used for communication with the new client

•Terminate connection
Initiate a TCP connection termination sequence

Some Comments
Server handles one client at a time

If multiple client connections arrive at about the same time, kernel
queues them up, up to some limit, and returns them to accept one at a
time (An example of an iterative server, other options?)

4

Sockets Programming
Introduction

© Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 13

IPv4 Socket Address Structure
struct in_addr {

in_addr_t s_addr ; // 32-bit, IPv4 network byte order (unsigned)
}

struct sockaddr_in {
uint8_t sin_len; /*unsigned 8 bit integer*/
sa_family_t sin_family; /*AF_INET*/
in_port_t sin_ port ; /* 16 bit TCP or UDP port number */
struct in_addr sin_addr; /* 32 bit IPv4 address */
char sin _zero[8]; /*unused*/

}
struct sockaddr_in servaddr;
servaddr.sin_addr.s_addr = htonl(INADDR_ANY);

Sockets Programming
Introduction

© Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 14

Generic Socket Address Structure
•A socket address structure always passed by reference when passed
as an argument to any socket function
•How to declare the pointer that is passed?
•Define a generic socket address structure
struct sockaddr {

uint8_t sa_len; /*unsigned 8 bit integer*/
sa_family_t sa_family; /*AF_INET*/
char sa_data[14] ; /* protocol specific address*/

}
Prototype for bind
int bind (int, struct sockaddr * socklen_t)

struct sockaddr_in serv;
bind (sockfd, (struct sockaddr *) &serv,sizeof(serv));
Or #define SA struct sockaddr bind (sockfd, (SA *) &serv, sizeof(serv));

Sockets Programming
Introduction

© Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 15

Value-Result Arguments
•Length of socket passed as an argument
•Method by which length is passed depends on which direction the
structure is being passed (from process to kernel, or vice versa)

•Value-only: bind, connect, sendto (from process to kernel)
•Value-Result: accept, recvfrom, getsockname, getpeername (from
kernel to process, pass a pointer to an integer containing size)

Tells process how much information kernel actually stored

struct sockaddr_in clientaddr ;
socklen_t len;
int listenfd, connectfd;

len = sizeof (clientaddr);
connectfd = accept (listenfd, (SA *) &clientaddr, &len); Sockets Programming

Introduction
© Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 16

Byte Ordering Functions 1/4

•Two ways to store 2 bytes (16-bit integer) in memory
Low-order byte at starting address little-endian byte order
High-order byte at starting address big-endian byte order

•in a big-endian computer store 4F52
Stored as 4F52 4F is stored at storage address 1000, 52 will be

at address 1001, for example

•In a little-endian system store 4F52
it would be stored as 524F (52 at address 1000, 4F at 1001)

•Byte order used by a given system known as host byte order
•Network programmers use network byte order
•Internet protocol uses big-endian byte ordering for integers (port
number and IP address)

5

Sockets Programming
Introduction

© Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 17

Byte Ordering Functions 2/4

High-order byte low-order byte

MSB 16bit value LSB

High-order byte low-order byte

Increasing memory

address

Address A+1 Address A
Little-endian byte order:

big-endian byte order:

Address A+1Address A
Increasing memory

address
Sockets Programming
Introduction

© Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 18

Byte Ordering Functions 3/4

#include "unp.h"
int main(int argc, char **argv)
{

union {
short s;
char c[sizeof(short)];

} un;

un.s = 0x0102;
printf("%s: ", CPU_VENDOR_OS);
if (sizeof(short) == 2) {

if (un.c[0] == 1 && un.c[1] == 2)
printf("big-endian\n");

else if (un.c[0] == 2 && un.c[1] == 1)
printf("little-endian\n");

else
printf("unknown\n");

} else
printf("sizeof(short) = %d\n", sizeof(short));

exit(0);
}

•Sample program to figure out
little-endian or big-endian
machine

•Source code in byteorder.c

Sockets Programming
Introduction

© Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 19

Byte Ordering Functions 4/4

•To convert between byte orders
Return value in network byte order

htons (s for short word 2 bytes)
htonl (l for long word 4 bytes)

Return value in host byte order
ntohs
ntohl

•Must call appropriate function to convert between host and
network byte order
•On systems that have the same ordering as the Internet protocols,
four functions usually defined as null macros
servaddr.sin_addr.s_addr = htonl(INADDR_ANY);
servaddr.sin_port = htons(13);

Sockets Programming
Introduction

© Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 20

Byte Manipulation Functions
#include <strings.h>
void bzero (void *dest, size_t nbytes);
// sets specified number of bytes to 0 in the destination

void bcopy (const void *src,void * dest, size_t nbytes);
// moves specified number of bytes from source to destination

void bcmp (const void *ptr1, const void *ptr2,size_t nbytes)
//compares two arbitrary byte strings, return value is zero if two
byte strings are identical, otherwise, nonzero

6

Sockets Programming
Introduction

© Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 21

Address Conversion Functions 1/2

Convert an IPv4 address from a dotted-decimal string
“206.168.112.96” to a 32-bit network byte order binary value

#include <arpa/inet.h>
int inet_aton (const char* strptr, struct in_addr *addrptr);
// return 1 if string was valid, 0 on error. Address stored in *addrptr

in_addr_t inet_addr (const char * strptr);
// returns 32 bit binary network byte order IPv4 address, currently deprecated

char * inet_nota (struct in_addr inaddr);
//returns pointer to dotted-decimal string

Sockets Programming
Introduction

© Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 22

Address Conversion Functions 2/2

To handle both IPv4 and IPv6 addresses
#include <arpa/inet.h>
int inet_pton (int family, const char* strptr, void *addrptr);
// return 1 if OK, 0 on error. 0 if not a valid presentation, -1 on error, Address
stored in *addrptr

Const char * inet_ntop (int family, const void* addrptr, char *strptr,
size_t len);
// return pointer to result if OK, NULL on error

if (inet_pton(AF_INET, argv[1], &servaddr.sin_addr) <= 0)
err_quit("inet_pton error for %s", argv[1]);

ptr = inet_ntop (AF_INET,&addr.sin_addr,str,sizeof(str));

Sockets Programming
Introduction

© Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 23

Reading and Writing Functions 1/2

int send (int socket, char *message, int msg_len, int flags) (TCP)

int sendto (int socket, void *msg, int len, int flags, struct sockaddr *

to, int tolen); (UDP)

int write(int socket, void *msg, int len); /* TCP */

int recv (int socket, char *buffer, int buf_len, int flags) (TCP)

int recvfrom(int socket, void *msg, int len, int flags, struct sockaddr

*from, int *fromlen); (UDP)

int read(int socket, void *msg, int len); (TCP)

Sockets Programming
Introduction

© Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 24

Reading and Writing Functions 2/2

•Stream sockets (TCP sockets) exhibit a behavior with read and
write that differs from normal file I/O
•A read or write on a stream socket might input or output fewer
bytes than requested (not an error)

readn function
writen function
readline function

1

Unix Domain Protocols
when client and server are on the same host

• Unix domain socket address structure

• Socket functions

• Stream client-server

• Datagram client-server

• Passing descriptors

• Receiving sender credentials

2

Unix Domain Socket Address

Structure
 #include <sys/un.h>

 struct sockaddr_un {

 uint8_t sun_len;

 sa_family_t sun_family; /* AF_LOCAL */;

 char sun_path[104]; /* null-terminated pathname */

 };

3

Socket Functions

 #include <sys/socket.h>

 int socketpair (int family; int type, int protocol, int sockfd[2]);

 returns: nonzero if OK, -1 on error

 creates two sockets that are connected together

 family: AF_LOCAL, protocol: 0, type: SOCK_STREAM or SOCK_DGRAM

• All socket functions for TCP and UDP sockets can

be used, but several restrictions apply.

4

Passing Descriptors between

Related/Unrelated Processes

• Create a Unix domain socket, either stream

or datagram

• One process opens a descriptor

• The sending process builds a msghdr

structure containing the descriptor to be

passed, calls sendmsg

• The receiving process calls recvmsg

5

Receiving Sender Credentials

through a Unix domain socket

Include <sys/ucred.h>

Struct fcred{

 uid_t fc_ruid; /* real user ID */

 gid_t fc_rgid; /* real group ID */

 char fc_login[MAXLOGNAME]; /* setlogin() name */

 uid_t fc_uid; /* effective user ID */

 fc_ngroups; /* number of group */

 gid_t fc_groups[NGROUPS]; /* supplementary group IDs */

};

#define fc_gid fc_groups[0] /* effective group ID */

 1

Lecture 8:Advanced Sockets
References for Lecture 8:
1) Unix Network Programming, W.R. Stevens, 1990,Prentice-Hall, Chapter 6.
2) Unix Network Programming, W.R. Stevens, 1998,Prentice-Hall, Volume 1, Chapter 3-4.

It is also possible to obtain the well-known address of a service or the name of a service on a specialized port.
#include <netdb.h>
struct servent *getservbyname(const char *servname, const char *portname);
-- Returns NULL on error. servname = “ftp” for example.
struct servent *getservbyport(int port, const char *portname);
-- returns NULL on error.
stuct servent{

char *s_name; /* official server name*/
char **s_aliases; /* list of aliases */
int s_port; /*port number – network byte order */
char s_proto; /* protocol to use */

};

Socket Options
Like fcntl() for controlling file options, and msgctl/semctl/shmctl() for controlling message queue/semaphore/
shared memeory options, the following two functions are for controlling socket options.
#include <sys/socket.h>
int getsocketopt(int sockfd, int level, int optname, void *optval, socklen_t *optlen);
int setsocketopt(int sockfd, int level, int optname, const void *optval, socklen_t optlen);
-- returns 0 if OK, -1 on error.

sockfd – an open socket descriptor;
level – who gets/sets the option: socket code, TCP/IP or XNS.
optname – predefined option name.
optval – pointer to the value to set or get. Most option values are integer type.
optlen – length of the option (size of the value), value-result for getsockopt(); only useful for IP_OPTIONS.

An option can be either a flag (on/off) or a value that can be set or retrieved. Some options can find their places
in TCP header or IP header such as TCP_MAXSEG and IP_TOS; some cannot such as TCP_NODELAY and
SO_MTU. Flag options use 0 for off and a nonzero value for on. If optval has a value of zero after a call to
getsockopt(), that option is currently off. See Figure 6.14 [Stevens ed1:p314].

For TCP/IP, possible levels are:
SOL_SOCKET – for socket option,
IPPROTO_IP – for Ipv 4 option,
IPPROTO_Ipv6 – for Ipv6 option,
IPPROTO_ICMPv6 – for ICMP version6 option,
IPPROTO_TCP – for TCP option,

 2

Socket level optons include:
SO_BROADCAST –f– enable/disable broadcasting. Datagrams only.
SO_DEBUG –f– used for TCP connection to return detailed information on packets
SO_ERROR –f– returns the “so_errno” (defined in <sys/socketvar.h>) value for a socket error. Same value is

also stored in Unix errono variable.
SO_KEEPALIVE –f– when no data has been transmitted over a socket for 2 hours, a keepalive probe is sent. If

no response is received after several probes are sent, the connection is closed. Used to
detect abnomal termination.

SO_LINGER –v– determines whether any unsent data should be sent or discarded when a socket is closed.
Close may block until data is sent. Most value options are integer type, but this one use

 struct <sys/socket.h>
 struct linger { int l_onoff; /* zero=off, nonzero=on */
 Int l_linger; /* linger time in seconds */ }
SO_OOBINLINE –f– specifies that OOB data also be placed int eh normal input queue.

Ipv4 level options include:
IP_OPTIONS –v–set or fetch options in the IP header.
IP_TOS –v– specifies the type-of-service field in the IP header.
IP_TTL –v– set or fetch the TTL(time-to-live) field – maximum number of hopes.

TCP level options includes:
TCP_MAXSEG –v– returns the maximum segment size. The value is set when the connection is established.
TCP_KEEPALIVE –v– changes the keepalive interval for this connection.
TCP_NODELAY –f– prevents TCP for buffering data to create larger packets. Used for interactive application
such as telnet.

#include < fcntl.h>
int fcntl(int fd, int cmd, int arg); /* See[Stvens ed 1: 41-43], here we only discuss socket-related cmds*/
-- returns 0 if OK, -1 on error.
fd – an open socket descriptor;
cmd – operation to be performed on fd.
val – the value to set or get.

Cmd:
� fcntl(fd, F_GETOWN / F_SETOWN, arg): get or set the associated process number (arg > 0) or the

associated process group number (arg <0) in order to receive SIGIO or SIGURG.. Only available for
terminals and sockets.

� fcntl(fd, F_GETFL / F_SETFL, FNDELAY / FASYNC): set or get file flag bits FNDELAY or FASYNC.
FNDELAY affects accept, connect, read, write, recv, send, sendto and recvfrom. FASYNC enables the
receipt of SIGIO.

Question: How many ways to set a nonblocking socket?

 3

Asynchronous I/O
Process can wait for the kernel to send signal SIGIO when a specified descriptor is ready for I/O. 3 things to do:
1) Establish a handler for SIGIO by calling signal(SIGIO, ???);
2) Set PID or PGID for the descriptor to receive SIGIO by calling fcntl(fd, F_SETOWN, getpid());
3) Enable asynchronous I/O by calling fcntl(fd, F_SETFL,FASYNC).

/* Copy standard input to standard output. */
#define BUFFSIZE 4096
main()
{ int n;
 char buff[BUFFSIZE];

 while ((n = read(0, buff, BUFFSIZE)) > 0) write(1, buff, n);
}

/* Copy standard input to standard output, using asynchronous I/O. */
#include <signal.h>
#include <fcntl.h>
#define BUFFSIZE 4096
int sigflag;
main()
{ int n;
 char buff[BUFFSIZE];
 int sigio_func();
 signal(SIGIO, sigio_func); /* Step 1: set up signal handler*/
 fcntl(0, F_SETOWN, getpid(); /* Step 2: set descriptor’s process ID*/
 fcntl(0, F_SETFL, FASYNC) ; /* Step 3: Enable Asynchronous I/O*/
 for (; ;) {
 sigblock(sigmask(SIGIO)); /* block signal SIGIO to avoid race condition */
 while (sigflag == 0) sigpause(0); /* release signals when waiting for a signal.

Note the difference between pause() and sigpause(0)*/
 /* We're here if (sigflag != 0). Also, we know that the SIGIO signal is currently blocked.*/
 if ((n = read(0, buff, BUFFSIZE)) > 0) write(1, buff, n) ; /* not a loop structure */
 else if (n == 0) exit(0); /* EOF */
 sigflag = 0; /* turn off our flag */
 sigsetmask(0); /* and reenable signals */
 }
}

int sigio_func()
{ sigflag = 1; /* just set flag and return */
 /* the 4.3BSD signal facilities leave this handler enabled for any further SIGIO signals. */
}

 4

Select()

When a server (or client) has multiple connections, it can be difficult to guess which clients(or servers) have
written data on a socket. One approach, called polling, is to use nonblocking recv() and loop through all the
connections. This is inefficient. Another approach, using fork(), is to fork a child process for each connections.
This is also inefficient. A better option is to wait on all the connections simultaneously. This can be done using
select() function.

#include <sys/select.h>
#include <sys/time.h>
int select (int maxfdp1, fd_set *readset, fd_set *writeset, fd_set *exceptset, const strut timeval *timeout);
-- returns # of ready descriptors, 0 if timeout occurs, -1 on error.

maxfdp1 – the maximum descriptor to test +1, the possible number of descriptors to test, ≤256.
readset – used to check which connections have data read.
writeset – used to check which connections have space for more output.
exceptset – used to check which connections have exceptions, such as OOB data.
timeout – specifies how long to block waiting for ready connction
There are three options;

= 0 means the call is nonblocking. Used for polling connections.
 > 0 means the call times out after this amount of time if there are no ready connection during this time.
NULL means the call blocks until a connection is ready for I/O.

The format of the timeval structure is:
struct timeval {
 long tv_sec; /*seconds*/
 long tv_usec; /*microseconds*/
};

select() is used to determine which socket are ready for reading, writing, or exception handling. Use
NULL for any fd_set that doesn’t need to be checked.

The fd_set detatype typically uses one bit per socket fd. The appropriate method for using fd_set is to zero
out all the bits and then set each one that is to be tested. The select() call modifies the readset, writeset, and
exceptset variables by clearing the bits that are not ready for I/O. The user then tests each bit to see which are
set and processes the corresponding sockets.

Operations on fd_sets should be performed using the following macros:
void FD_ZERO(fd_set *fdset); /* clear all bits in fdset**/
void FD_SET(int fd, fd_set *dset); /* turn on the bit for fd in fdset */
void FD_CLR(int fd, fd_set *fdset); /* clear off the bits in fdset*/
int FD_ISSET(int fd, fd_set *fdset); /* test the bit for fd in fdset */

See <sys/types.h> for definitions of sd_set and FD_XXX macros.

 5

Example1:
int i, n;
fd_set fdvar;

FD_ZERO(&fdvar); /* initilize the Set --- all bits off */
FD_SET(1, &fdvar); /* turn on bit for fd 1 */
FD_SET(4, &fdvar); /* turn on bit for fd 4 */
FD_SET(5, &fdvar); /* turn on bit for fd 5 */

If ((n=select(6, &fdvar, NULL, NULL, NULL))<0) printf(“Something wrong!\n”);

/* only want to check the readset.*/

for (i=0, i<6, i++) if (FD_ISSET(i, &fdvar)>0) handle(i); /* fd i had data for read, call handle(i) */

Example2:
#include "unp.h"
void str_cli(FILE *fp, int sockfd)
{ int maxfdp1;
 fd_set rset;
 char sendline[MAXLINE], recvline[MAXLINE];

 FD_ZERO(&rset);
 for (; ;) {
 FD_SET(fileno(fp), &rset);
 FD_SET(sockfd, &rset);
 maxfdp1 = max(fileno(fp), sockfd) + 1;
 Select(maxfdp1, &rset, NULL, NULL, NULL);

 if (FD_ISSET(sockfd, &rset)) { /* socket is readable */
 if (Readline(sockfd, recvline, MAXLINE) == 0)
 err_quit("str_cli: server terminated prematurely");
 fputs(recvline, stdout); }

 if (FD_ISSET(fileno(fp), &rset)) { /* input is readable */
 if (Fgets(sendline, MAXLINE, fp) == NULL)
 return; /* all done */
 writen(sockfd, sendline, strlen(sendline)); }
 }
}

Notes: select() can be used for a more accurate timer than sleep().

select() can be used for waiting for a connection request.

 6

Socket-related Signals:
1) SIGIO :
� sindicates that a socket is ready for asynchronous I/O as we have discussed.
� need to specify process ID or process group ID to receive the signal.
� Need to enable asynchronous I/O.

2) SIGURG:
� indicates urgent data is coming due to 1)OOB data or 2) control status information.
� need to specify process group ID to receive the signal,e.g., fcntl(sd,F_SETOWN, -getpgid()).
� Use flag=MSG_URG to send and receive the OOB data.
� If O_OOBINLINE is set, we must use STOCATMARK ioctl to read OOB data.

 setsockopt(sd, SOL_SOCKET, SO_OOBINLINE, &seton, sizeof(seton)); /*let seton=1*/
if ((n=ioctl(sd,STOCATMARK, &start)>0) read(sd, buf, n); /*OOB data is in buf with n bytes.*/

3) SIGPIPE:
� indicates socket, pipe, or FIFO can never be written to.
� Sent only to the associated process,

Internet Superserver --- inetd

How many typical network servers?
� telnet, ftp, tftp, remote login, remote shell
� started from /etc/rc
� did the same startup tasks: socket, bind, listen, accept, fork, …

How to use select() to combine them into one daemon?
� 4.3 BSD supersever: inetd
� reduce the number of processes
� simplify the writing of daemon processes since they have the same startup tasks and skeleton daemon tasks

(see Lecture 1 for skeleton daemon).

Flow chart of inetd (version2: section 12.5 or version1:section 6.16)

1) read /etc/inetd.conf to create one socket for each service in the file.
2) read /etc/services to bind well-known port numbers to each service.
3) Listen() only for TCP.
4) Select() can be used for connect requests that arrives at the socket for reading.
5) If it is TCP request, call accept().
6) Fork a child process to handle the request

6.1) close all files except socket
6.2) dup2(sd,0), dup2(sd,1), and dup2(sd, 2).
6.3) login program: a superuser can become any user. Must in the order of setgid() first and then setuid().
6.4) exec() to execute server_program accordingly.

7) Parent goes up to accept next request without wait.

 7

 1. socket()

 4. select()
for readability

 2. bind()

 3. listen()
(if TCP socket)

 5. accpet()
(if TCP socket)

 6. fork()

7.close connected
socket (if TCP)

close all files
other than socket

dup socket to
fds 0, 1, and 2;
close socket

setgid()
setuid()
(if user not root)

exec() server

child parent

for each service listed

in /etc/inetd.conf

Steps performed by inetdSteps performed by inetdSteps performed by inetdSteps performed by inetd

SAS/C & C++ Compiler R&D Slide 1

C Socket Programming Tutorial SHARE Session 5958

SASSAS Institute Inc. Institute Inc.
Cary, NCCary, NC Feb. 1998

Writing Client/Server Programs in CWriting Client/Server Programs in C
Using Sockets (A Tutorial)Using Sockets (A Tutorial)

Part IPart I

Session 5958Session 5958

Greg GrangerGreg Granger
grgrangrgran@@sassas.com.com

SAS/C & C++ SupportSAS/C & C++ Support
SASSAS Institute Institute

Cary, NCCary, NC

SAS/C & C++ Compiler R&D Slide 2

C Socket Programming Tutorial SHARE Session 5958

SASSAS Institute Inc. Institute Inc.
Cary, NCCary, NC Feb. 1998

Part I: Socket Programming OverviewPart I: Socket Programming Overview
�� Sockets (to me)Sockets (to me)
�� Networking (or what’s natural about natural logs)Networking (or what’s natural about natural logs)
�� TCP/IP (and what it means to your life)TCP/IP (and what it means to your life)
�� More Sockets (we didn’t get enough the first time)More Sockets (we didn’t get enough the first time)

SAS/C & C++ Compiler R&D Slide 3

C Socket Programming Tutorial SHARE Session 5958

SASSAS Institute Inc. Institute Inc.
Cary, NCCary, NC Feb. 1998

What is “Sockets”What is “Sockets”
�� An Application Programming Interface (API) usedAn Application Programming Interface (API) used

forfor InterProcess InterProcess Communications (IPC). [A well Communications (IPC). [A well
defined method of connecting two processes,defined method of connecting two processes,
locally or across a network]locally or across a network]

�� Protocol and Language IndependentProtocol and Language Independent
�� Often referred to as Berkeley Sockets or BSDOften referred to as Berkeley Sockets or BSD

SocketsSockets

SAS/C & C++ Compiler R&D Slide 4

C Socket Programming Tutorial SHARE Session 5958

SASSAS Institute Inc. Institute Inc.
Cary, NCCary, NC Feb. 1998

Connections and AssociationsConnections and Associations
�� In Socket terms a connections between twoIn Socket terms a connections between two

processes in called an association.processes in called an association.
�� An association can be abstractly defined as a 5-An association can be abstractly defined as a 5-

tupletuple which specifies the two processes and a which specifies the two processes and a
method of communication. For example:method of communication. For example:
• {protocol, local-addr, local-process, foreign-addr, foreign-process}

�� A half-association is a single “side” of anA half-association is a single “side” of an
association (a 3-association (a 3-tupletuple))
• {protocol, addr, process}

SAS/C & C++ Compiler R&D Slide 5

C Socket Programming Tutorial SHARE Session 5958

SASSAS Institute Inc. Institute Inc.
Cary, NCCary, NC Feb. 1998

Networking TermsNetworking Terms
�� packet - the smallest unit that can be transferredpacket - the smallest unit that can be transferred

“through” the network by itself“through” the network by itself
�� protocol - a set of rules and conventions betweenprotocol - a set of rules and conventions between

the communicating participantsthe communicating participants
�� A collection of protocol layers is referred to as aA collection of protocol layers is referred to as a

“protocol suite”, “protocol family” or “protocol“protocol suite”, “protocol family” or “protocol
stack”. TCP/IP is one such protocol suite.stack”. TCP/IP is one such protocol suite.

SAS/C & C++ Compiler R&D Slide 6

C Socket Programming Tutorial SHARE Session 5958

SASSAS Institute Inc. Institute Inc.
Cary, NCCary, NC Feb. 1998

Introduction to TCP/IPIntroduction to TCP/IP
�� What (the heck) is TCP/IP?What (the heck) is TCP/IP?
�� Internet Protocol (IP)Internet Protocol (IP)
�� UserUser Datagram Datagram Protocol (UDP) Protocol (UDP)
�� Transmission Control Protocol (TCP)Transmission Control Protocol (TCP)
�� TCP/IP ApplicationsTCP/IP Applications
�� Name Resolution ProcessingName Resolution Processing
�� TCP/IP Network DiagramTCP/IP Network Diagram

SAS/C & C++ Compiler R&D Slide 7

C Socket Programming Tutorial SHARE Session 5958

SASSAS Institute Inc. Institute Inc.
Cary, NCCary, NC Feb. 1998

What is TCP/IP?What is TCP/IP?
�� Transmission Control Protocol/Internet ProtocolTransmission Control Protocol/Internet Protocol
�� A network protocol suite forA network protocol suite for interprocess interprocess

communicationcommunication
�� The protocol of the InternetThe protocol of the Internet
�� Open, nonproprietaryOpen, nonproprietary
�� Integrated into UNIX operating systemsIntegrated into UNIX operating systems
�� Many popular networking applicationsMany popular networking applications
 • telnet • telnet • NFS (network file system) • NFS (network file system)

• X11 GUI• X11 GUI • SMTP (mail) • SMTP (mail)
• www • www • ftp (file transfer protocol) • ftp (file transfer protocol)

SAS/C & C++ Compiler R&D Slide 8

C Socket Programming Tutorial SHARE Session 5958

SASSAS Institute Inc. Institute Inc.
Cary, NCCary, NC Feb. 1998

TCPTCP

TCP/IP Architectural ModelTCP/IP Architectural Model

Ethernet Token-Ring FDDI X.25
SNA Hyperchannel Proprietary

ICMPICMP IPIP (R)ARP(R)ARP

UDPUDP

REXEC / SMTP / TELNET / FTPREXEC / SMTP / TELNET / FTP
 / DNS / RPC / Local Apps. / DNS / RPC / Local Apps.

Process (message)Process (message)

Transport (message)Transport (message)

Network (packets)Network (packets)

Data Link (frames)Data Link (frames)

SAS/C & C++ Compiler R&D Slide 9

C Socket Programming Tutorial SHARE Session 5958

SASSAS Institute Inc. Institute Inc.
Cary, NCCary, NC Feb. 1998

Internet Protocol (IP)Internet Protocol (IP)
�� Establishes a “virtual” network between hosts,Establishes a “virtual” network between hosts,

independent of the underlying network topologyindependent of the underlying network topology
�� Provides “routing” throughout the network, usingProvides “routing” throughout the network, using

IP addressing. For example: 149.173.70.9IP addressing. For example: 149.173.70.9
�� FeaturesFeatures

•• Best-effort packet deliveryBest-effort packet delivery
•• Connectionless (stateless)Connectionless (stateless)
•• UnreliableUnreliable

Physical NetworkPhysical Network

IPIP

TCPTCP UDPUDP

SAS/C & C++ Compiler R&D Slide 10

C Socket Programming Tutorial SHARE Session 5958

SASSAS Institute Inc. Institute Inc.
Cary, NCCary, NC Feb. 1998

�� Application Interface to IP - Packet OrientedApplication Interface to IP - Packet Oriented
�� Establishes a “port”, which allows IP to distinguishEstablishes a “port”, which allows IP to distinguish

among processes running on the same hostamong processes running on the same host
�� Features resemble IP semanticsFeatures resemble IP semantics

•• ConnectionlessConnectionless
•• UnreliableUnreliable
•• Checksums (optional)Checksums (optional)

UserUser Datagram Datagram Protocol (UDP) Protocol (UDP)

Physical NetworkPhysical Network

IPIP

TCPTCP UDPUDP

SAS/C & C++ Compiler R&D Slide 11

C Socket Programming Tutorial SHARE Session 5958

SASSAS Institute Inc. Institute Inc.
Cary, NCCary, NC Feb. 1998

Transmission Control Protocol (TCP)Transmission Control Protocol (TCP)
�� Connection-orientedConnection-oriented
�� Stream Data TransferStream Data Transfer
�� ReliableReliable
�� Flow-ControlFlow-Control
�� Full-DuplexFull-Duplex
�� Suited for critical data transfer applicationsSuited for critical data transfer applications

Physical NetworkPhysical Network

IPIP

TCPTCP UDPUDP

SAS/C & C++ Compiler R&D Slide 12

C Socket Programming Tutorial SHARE Session 5958

SASSAS Institute Inc. Institute Inc.
Cary, NCCary, NC Feb. 1998

The Importance of PortsThe Importance of Ports
�� Both the TCP and UDP protocols use 16 bitBoth the TCP and UDP protocols use 16 bit

identifiers called ports to uniquely identify theidentifiers called ports to uniquely identify the
processes involved in a socket.processes involved in a socket.

�� In UNIX the first 1024 ports for both protocols areIn UNIX the first 1024 ports for both protocols are
called “well known ports” and are defined in the filecalled “well known ports” and are defined in the file
/etc/services. Programs that bind to these ports/etc/services. Programs that bind to these ports
require “root” access.require “root” access.

�� These numbers are managed by the InternetThese numbers are managed by the Internet
Assigned Numbers Authority (IANA). A completeAssigned Numbers Authority (IANA). A complete
list of these assignments and more informationlist of these assignments and more information
about IANA can be found in RFC 1700about IANA can be found in RFC 1700

SAS/C & C++ Compiler R&D Slide 13

C Socket Programming Tutorial SHARE Session 5958

SASSAS Institute Inc. Institute Inc.
Cary, NCCary, NC Feb. 1998

How stuff gets around (routing)How stuff gets around (routing)
�� TCP/IP packets are routed based on theirTCP/IP packets are routed based on their

destination IP address (ex: 10.24.2.123)destination IP address (ex: 10.24.2.123)
�� Packets are passed from one network segment toPackets are passed from one network segment to

another by machines called “routers” until theanother by machines called “routers” until the
packet arrives at the network segment attached topacket arrives at the network segment attached to
the host with the destination IP address.the host with the destination IP address.

�� Routers that act as gates to larger networks areRouters that act as gates to larger networks are
called gateways.called gateways.

SAS/C & C++ Compiler R&D Slide 14

C Socket Programming Tutorial SHARE Session 5958

SASSAS Institute Inc. Institute Inc.
Cary, NCCary, NC Feb. 1998

Name Resolution ProcessingName Resolution Processing
�� Associates an IP address to a “name” (hostname)Associates an IP address to a “name” (hostname)
�� Structured method of identifying hosts within an internetStructured method of identifying hosts within an internet
�� The Domain Name System (DNS) implements a hierarchicalThe Domain Name System (DNS) implements a hierarchical

naming scheme which maps names like “naming scheme which maps names like “mvsmvs..sassas.com” to.com” to
an IP addressan IP address

�� DNS is implemented by a set of cooperating serversDNS is implemented by a set of cooperating servers
�� Machines that process DNS requests are calledMachines that process DNS requests are called nameservers nameservers
�� A set of library routines called “theA set of library routines called “the resolver resolver” provide the” provide the

logic to querylogic to query nameservers nameservers

SAS/C & C++ Compiler R&D Slide 15

C Socket Programming Tutorial SHARE Session 5958

SASSAS Institute Inc. Institute Inc.
Cary, NCCary, NC Feb. 1998

TCP/UDP/IP DiagramTCP/UDP/IP Diagram

TCP Ports

UDP Ports

0
0

64K

64K

1023

1023
Well-known Ports

Well-known Ports

REXEC
Server

port 512

IP RoutingIP Routing

internetinternet

Dev1.sas.com
(149.179.3.3)

REXEC clientREXEC client

Server1.net.sas.com
(149.193.2.194)

NameServer

Dev2.sas.com
(149.179.83.6)

REXEC client

SAS/C & C++ Compiler R&D Slide 16

C Socket Programming Tutorial SHARE Session 5958

SASSAS Institute Inc. Institute Inc.
Cary, NCCary, NC Feb. 1998

Back to SocketsBack to Sockets
�� Socket Definition and ComponentsSocket Definition and Components
�� Socket Library FunctionsSocket Library Functions
�� Primary Socket Header FilesPrimary Socket Header Files
�� Sample Client/Server DialogSample Client/Server Dialog
�� Ancillary Socket TopicsAncillary Socket Topics
�� Beyond SocketsBeyond Sockets

SAS/C & C++ Compiler R&D Slide 17

C Socket Programming Tutorial SHARE Session 5958

SASSAS Institute Inc. Institute Inc.
Cary, NCCary, NC Feb. 1998

Definition and ComponentsDefinition and Components
�� Socket - endpoint of communicationSocket - endpoint of communication
�� Sockets - An application programming interfaceSockets - An application programming interface

(API) for(API) for interprocess interprocess communication (IPC) communication (IPC)
�� Attributes:Attributes:

•• Protocol IndependentProtocol Independent
•• Language IndependentLanguage Independent
•• Sockets implies (not requires) TCP/IP and CSockets implies (not requires) TCP/IP and C

�� Socket and Connection AssociationSocket and Connection Association
•• A local host can be identified by it’s protocol, IP address and port.A local host can be identified by it’s protocol, IP address and port.
•• A connection adds the IP address & port of the remote host.A connection adds the IP address & port of the remote host.

SAS/C & C++ Compiler R&D Slide 18

C Socket Programming Tutorial SHARE Session 5958

SASSAS Institute Inc. Institute Inc.
Cary, NCCary, NC Feb. 1998

Socket Library FunctionSocket Library Function
�� System callsSystem calls

•• startup / closestartup / close
•• data transferdata transfer
•• options controloptions control
•• otherother

�� Network configuration lookupNetwork configuration lookup
•• host addresshost address
•• ports for servicesports for services
•• otherother

�� Utility functionsUtility functions
•• data conversiondata conversion
•• address manipulationaddress manipulation
•• error handlingerror handling

SAS/C & C++ Compiler R&D Slide 19

C Socket Programming Tutorial SHARE Session 5958

SASSAS Institute Inc. Institute Inc.
Cary, NCCary, NC Feb. 1998

Primary Socket CallsPrimary Socket Calls
�� socket() socket() - create a new socket and return its descriptor- create a new socket and return its descriptor
�� bind()bind() - associate a socket with a port and address- associate a socket with a port and address
�� listen()listen() - establish queue for connection requests- establish queue for connection requests
�� accept()accept() - accept a connection request- accept a connection request
�� connect()connect() - initiate a connection to a remote host- initiate a connection to a remote host
�� recv()recv() - receive data from a socket descriptor- receive data from a socket descriptor
�� send()send() - send data to a socket descriptor- send data to a socket descriptor
�� close()close() - “one-way” close of a socket descriptor- “one-way” close of a socket descriptor

SAS/C & C++ Compiler R&D Slide 20

C Socket Programming Tutorial SHARE Session 5958

SASSAS Institute Inc. Institute Inc.
Cary, NCCary, NC Feb. 1998

Network Database Administration functionsNetwork Database Administration functions
�� gethostbynamegethostbyname - given a hostname, returns a structure - given a hostname, returns a structure

which specifies its DNS name(s) and IP address(which specifies its DNS name(s) and IP address(eses))
�� getservbynamegetservbyname - given service name and protocol, returns a - given service name and protocol, returns a

structure which specifies its name(s) and its port addressstructure which specifies its name(s) and its port address
�� gethostnamegethostname - returns hostname of local host - returns hostname of local host
�� getservbynamegetservbyname,, getservbyport getservbyport,, getservent getservent
�� getprotobynamegetprotobyname,, getprotobynumber getprotobynumber,, getprotobyent getprotobyent
�� getnetbynamegetnetbyname,, getnetbyaddr getnetbyaddr,, getnetent getnetent

SAS/C & C++ Compiler R&D Slide 21

C Socket Programming Tutorial SHARE Session 5958

SASSAS Institute Inc. Institute Inc.
Cary, NCCary, NC Feb. 1998

Socket Utility FunctionsSocket Utility Functions
�� ntohsntohs//ntohlntohl - convert short/long from network byte order - convert short/long from network byte order

(big(big endian endian) to host byte order) to host byte order
�� htonshtons//htonlhtonl - convert short/long from host byte order to - convert short/long from host byte order to

network byte ordernetwork byte order
�� inetinet__ntoantoa//inetinet__addraddr - convert 32-bit IP address (network - convert 32-bit IP address (network

byte order to/from a dotted decimal string)byte order to/from a dotted decimal string)
�� perrorperror() - print error message (based on “() - print error message (based on “errnoerrno”) to”) to stderr stderr
�� herrorherror() - print error message for() - print error message for gethostbyname gethostbyname() to() to stderr stderr

(used with DNS)(used with DNS)

SAS/C & C++ Compiler R&D Slide 22

C Socket Programming Tutorial SHARE Session 5958

SASSAS Institute Inc. Institute Inc.
Cary, NCCary, NC Feb. 1998

Primary Header FilesPrimary Header Files
�� Include file sequence may affect processing (order isInclude file sequence may affect processing (order is

important!)important!)
•• <sys/types.h> <sys/types.h> - prerequisite- prerequisite typedefs typedefs
•• <<errnoerrno.h>.h> - names for “- names for “errnoerrno” values (error numbers)” values (error numbers)
•• <sys/socket.h><sys/socket.h> -- struct sockaddr struct sockaddr; system prototypes and constants; system prototypes and constants
•• <<netdbnetdb.h.h>.h.h> - network info lookup prototypes and structures- network info lookup prototypes and structures
•• <<netinetnetinet/in.h>/in.h> -- struct sockaddr struct sockaddr_in; byte ordering macros_in; byte ordering macros
•• <<arpaarpa//inetinet.h>.h> - utility function prototypes- utility function prototypes

SAS/C & C++ Compiler R&D Slide 23

C Socket Programming Tutorial SHARE Session 5958

SASSAS Institute Inc. Institute Inc.
Cary, NCCary, NC Feb. 1998

Sample TCP Client / Server SessionSample TCP Client / Server Session

socket()

bind()

listen()

accept()

recv()/send()

close()

socket()

gethostbyname()

connect()

recv()/send()

close()

Iterative ServerIterative Server

Remote ClientRemote Client

SAS/C & C++ Compiler R&D Slide 24

C Socket Programming Tutorial SHARE Session 5958

SASSAS Institute Inc. Institute Inc.
Cary, NCCary, NC Feb. 1998

Ancillary Socket TopicsAncillary Socket Topics
�� UDP versus TCPUDP versus TCP
�� Controlling/managing socket characteristicsControlling/managing socket characteristics

•• get/get/setsockoptsetsockopt() -() - keepalive keepalive, reuse,, reuse, nodelay nodelay
•• fcntlfcntl() -() - async async signals, blocking signals, blocking
•• ioctlioctl() - file, socket, routing, interface options() - file, socket, routing, interface options

�� Blocking versus Non-blocking socketBlocking versus Non-blocking socket
�� Signal based socket programming (SIGIO)Signal based socket programming (SIGIO)
�� Implementation specific functionsImplementation specific functions

SAS/C & C++ Compiler R&D Slide 25

C Socket Programming Tutorial SHARE Session 5958

SASSAS Institute Inc. Institute Inc.
Cary, NCCary, NC Feb. 1998

Design ConsiderationsDesign Considerations
�� Data representation and conversionData representation and conversion
�� Server design alternativesServer design alternatives
�� Security IssuesSecurity Issues
�� Portability ConsiderationsPortability Considerations

SAS/C & C++ Compiler R&D Slide 26

C Socket Programming Tutorial SHARE Session 5958

SASSAS Institute Inc. Institute Inc.
Cary, NCCary, NC Feb. 1998

Data RepresentationData Representation
�� Transport Protocols detail data exchange/movement;Transport Protocols detail data exchange/movement;

applications must interpret the data!applications must interpret the data!
�� Byte order affects data - not just addressesByte order affects data - not just addresses
�� Text is often sent in ASCII, but ASCII versus EBCDIC isText is often sent in ASCII, but ASCII versus EBCDIC is

decided by the application-level protocoldecided by the application-level protocol
�� Structure alignment and floating point pose problemsStructure alignment and floating point pose problems
�� External Data Representation (XDR) can be used (evenExternal Data Representation (XDR) can be used (even

without RPC)without RPC)

SAS/C & C++ Compiler R&D Slide 27

C Socket Programming Tutorial SHARE Session 5958

SASSAS Institute Inc. Institute Inc.
Cary, NCCary, NC Feb. 1998

�� Single ThreadedSingle Threaded
•• more complex code (must track multiple concurrent requests)more complex code (must track multiple concurrent requests)
•• generally lower system overheadgenerally lower system overhead
•• crash of thread disables servicecrash of thread disables service

�� Multi-TaskingMulti-Tasking
•• less complex code (written only for handling only one connection)less complex code (written only for handling only one connection)
•• higher system overhead (each task requires it’s own process space)higher system overhead (each task requires it’s own process space)
•• highly crash resistant (one or more tasks can fail without losinghighly crash resistant (one or more tasks can fail without losing

service)service)

�� [Multi-]Threaded[Multi-]Threaded
•• shares less complex code of Multi-Tasking modelshares less complex code of Multi-Tasking model
•• system overhead between Single-Threaded and Multi-Tasking modelsystem overhead between Single-Threaded and Multi-Tasking model
•• crash resistant (but one badly behaved thread ‘can’ crash service)crash resistant (but one badly behaved thread ‘can’ crash service)

Server Design AlternativesServer Design Alternatives

SAS/C & C++ Compiler R&D Slide 28

C Socket Programming Tutorial SHARE Session 5958

SASSAS Institute Inc. Institute Inc.
Cary, NCCary, NC Feb. 1998

�� Socket semantics do NOT address security problems, suchSocket semantics do NOT address security problems, such
as:as:
•• IP and adapter addressesIP and adapter addresses
•• UseridUserid and passwords and passwords
•• data encryptiondata encryption
•• tracestraces

�� UNIX systems require “root” privilege when a program bindsUNIX systems require “root” privilege when a program binds
a “reserved” (<1024) porta “reserved” (<1024) port

�� getpeernamegetpeername() returns the peer’s port and IP-address:() returns the peer’s port and IP-address:
determine “privileged” peers and “trusted” hostsdetermine “privileged” peers and “trusted” hosts

�� TheThe Kerberos Kerberos protocol provides password and data protocol provides password and data
encryption, along with service authenticationencryption, along with service authentication

Security ConsiderationsSecurity Considerations

SAS/C & C++ Compiler R&D Slide 29

C Socket Programming Tutorial SHARE Session 5958

SASSAS Institute Inc. Institute Inc.
Cary, NCCary, NC Feb. 1998

�� Limit applications to “standard” socket routines, BSD 4.xLimit applications to “standard” socket routines, BSD 4.x
�� Implement a portable transport moduleImplement a portable transport module
�� Mainframe Environment - Distribute existing applicationsMainframe Environment - Distribute existing applications

•• API Programmer’s Reference - DetailsAPI Programmer’s Reference - Details
•• SAS/C, C/370,SAS/C, C/370, Interlink Interlink, Open Connect, NSC, Open Connect, NSC

�� OS/2 - REXX Sockets, Programmer’s ToolkitOS/2 - REXX Sockets, Programmer’s Toolkit
�� MS Windows Sockets 1.1 - 2 WINSOCK.DLLMS Windows Sockets 1.1 - 2 WINSOCK.DLL

(http://www.stardust.com ftp.stardust.com:/pub/(http://www.stardust.com ftp.stardust.com:/pub/winsockwinsock))

Portability ConsiderationsPortability Considerations

SAS/C & C++ Compiler R&D Slide 30

C Socket Programming Tutorial SHARE Session 5958

SASSAS Institute Inc. Institute Inc.
Cary, NCCary, NC Feb. 1998

�� Basic networking and features of TCP/IP protocolsBasic networking and features of TCP/IP protocols
�� Socket library organizationSocket library organization
�� Socket library coding techniquesSocket library coding techniques
�� Awareness of more advanced topicsAwareness of more advanced topics

What’s NextWhat’s Next
�� Session 5959 - Part II - Client/Server ApplicationSession 5959 - Part II - Client/Server Application

SummarySummary

SAS/C & C++ Compiler R&D Slide 31

C Socket Programming Tutorial SHARE Session 5958

SASSAS Institute Inc. Institute Inc.
Cary, NCCary, NC Feb. 1998

�� Internetworking with TCP/IP: Volumes I, II & III, DouglasInternetworking with TCP/IP: Volumes I, II & III, Douglas
Comer, Prentice Hall, 1991 (ISBN Comer, Prentice Hall, 1991 (ISBN VolVol I: 0134685059, I: 0134685059, VolVol
III: 0138487146)III: 0138487146)

�� The Whole Internet User’s Guide & Catalog by EdThe Whole Internet User’s Guide & Catalog by Ed Kroll Kroll;;
O’Reilly & AssociatesO’Reilly & Associates

�� UNIX Network Programming by W. Richard Stevens;UNIX Network Programming by W. Richard Stevens;
Prentice Hall, 1990 (ISBN 0139498761)Prentice Hall, 1990 (ISBN 0139498761)

�� Socket API Programmer’s ReferenceSocket API Programmer’s Reference
�� UNIX “man” pagesUNIX “man” pages
�� TCP/IP Illustrated: Volumes 1 & 2, W. Richard Stevens (v2TCP/IP Illustrated: Volumes 1 & 2, W. Richard Stevens (v2

with Gary R. Wright); Addison-Wesley Publishing Company,with Gary R. Wright); Addison-Wesley Publishing Company,
19941994

BibliographyBibliography

Network Programming: Clients 1

1 © 2001-2003 Marty Hall, Larry Brown http://www.corewebprogramming.com

Web
core

programming

Network Programming:
Clients

Network Programming: Clients2 www.corewebprogramming.com

Agenda
• Creating sockets
• Implementing a generic network client
• Parsing data using StringTokenizer
• Retrieving files from an HTTP server
• Retrieving Web documents by using the

URL class

Network Programming: Clients 2

Network Programming: Clients3 www.corewebprogramming.com

Client vs. Server
• Traditional definition

– Client: User of network services
– Server: Supplier of network services

• Problem with traditional definition
– If there are 2 programs exchanging data, it seems unclear
– Some situations (e.g., X Windows) seem reversed

• Easier way to remember distinction
– Server starts first. Server doesn't specify host (just port).
– Client starts second. Client specifies host (and port).

• Analogy: Company phone line
– Installing phone is like starting server
– Extension is like port
– Person who calls is the client: he specifies both host

(general company number) and port (extension)

Network Programming: Clients4 www.corewebprogramming.com

Client vs. Server (Continued)
• If server has to start first, why are we

covering clients before we cover servers?
– Clients are slightly easier.
– We can test clients by connecting to existing servers that

are already on the internet.
• Point: clients created in Java need not

communicate with servers written in Java.
– They can communicate with any server that accepts

socket connections (as long as they know the proper
communication protocol).

– Exception: ObjectInputStream and ObjectOutputStream
allow Java programs to send complicated data structures
back and forth. Only works in Java, though.

Network Programming: Clients 3

Network Programming: Clients5 www.corewebprogramming.com

Steps for Implementing a Client
1. Create a Socket object

Socket client = new Socket("hostname", portNumber);

2. Create an output stream that can be used to send
info to the Socket
// Last arg of true means autoflush -- flush stream
// when println is called
PrintWriter out =
new PrintWriter(client.getOutputStream(), true);

3. Create an input stream to read the response from
the server
BufferedReader in =

new BufferedReader
(new InputStreamReader(client.getInputStream()));

Network Programming: Clients6 www.corewebprogramming.com

Steps for Implementing a Client
(Continued)

4. Do I/O with the input and output Streams
– For the output stream, PrintWriter, use print and println, similar to

System.out.println
• The main difference is that you can create

PrintWriters for different Unicode
characters sets, and you can’t with
PrintStream (the class of System.out).

– For the input stream, BufferedReader, you can call read to get a
single character or an array of characters, or call readLine to get a
whole line
• Note that readLine returns null if the

connection was terminated (i.e. on EOF),
but waits otherwise

5. Close the socket when done

Network Programming: Clients 4

Network Programming: Clients7 www.corewebprogramming.com

A Generic Network Client
import java.net.*;
import java.io.*;

/** A starting point for network clients. */

public class NetworkClient {
protected String host;
protected int port;

public NetworkClient(String host, int port) {
this.host = host;
this.port = port;

}

public String getHost() {
return(host);

}

public int getPort() {
return(port);

}
...

Network Programming: Clients8 www.corewebprogramming.com

A Generic Network Client
(Continued)
...

/** Establishes the connection, then passes the socket
* to handleConnection. */

public void connect() {
try {
Socket client = new Socket(host, port);
handleConnection(client);

} catch(UnknownHostException uhe) {
System.out.println("Unknown host: " + host);
uhe.printStackTrace();

} catch(IOException ioe) {
System.out.println("IOException: " + ioe);
ioe.printStackTrace();

}
}
...

Network Programming: Clients 5

Network Programming: Clients9 www.corewebprogramming.com

A Generic Network Client
(Continued)
/** This is the method you will override when
* making a network client for your task.
* This default version sends a single line
* ("Generic Network Client") to the server,
* reads one line of response, prints it, then exits.
*/

protected void handleConnection(Socket client)
throws IOException {

PrintWriter out =
SocketUtil.getPrintWriter(client);

BufferedReader in =
SocketUtil.getBufferedReader(client);

out.println("Generic Network Client");
System.out.println
("Generic Network Client:\n" +
"Made connection to " + host +
" and got '" + in.readLine() + "' in response");

client.close();
}

}

Network Programming: Clients10 www.corewebprogramming.com

SocketUtil – Simplifying
Creation of Reader and Writer

import java.net.*;
import java.io.*;

public class SocketUtil {
/** Make a BufferedReader to get incoming data. */
public static BufferedReader getBufferedReader

(Socket s) throws IOException {
return(new BufferedReader(
new InputStreamReader(s.getInputStream())));

}

/** Make a PrintWriter to send outgoing data.
* This PrintWriter will automatically flush stream
* when println is called.
*/
public static PrintWriter getPrintWriter(Socket s)

throws IOException {
// 2nd argument of true means autoflush
return(new PrintWriter(s.getOutputStream(), true));

}
}

Network Programming: Clients 6

Network Programming: Clients11 www.corewebprogramming.com

Example Client
public class NetworkClientTest {
public static void main(String[] args) {
String host = "localhost";
if (args.length > 0)
host = args[0];

int port = 8088;
if (args.length > 1)
port = Integer.parseInt(args[1]);

NetworkClient nwClient
= new NetworkClient(host, port);

nwClient.connect();
}

}

Network Programming: Clients12 www.corewebprogramming.com

Example Client, Result
> java NetworkClientTest ftp.netscape.com 21
Generic Network Client:
Made connection to ftp.netscape.com and got
‘220 ftp26 FTP server (UNIX(r) System V Release 4.0)
ready.’ in response
>

Network Programming: Clients 7

Network Programming: Clients13 www.corewebprogramming.com

Aside: Parsing Strings Using
StringTokenizer

• Idea
– Build a tokenizer from an initial string
– Retrieve tokens one at a time with nextToken
– You can also see how many tokens are remaining

(countTokens) or simply test if the number of tokens
remaining is nonzero (hasMoreTokens)

StringTokenizer tok
= new StringTokenizer(input, delimiters);

while (tok.hasMoreTokens()) {
doSomethingWith(tok.nextToken());

}

Network Programming: Clients14 www.corewebprogramming.com

StringTokenizer
• Constructors

– StringTokenizer(String input, String delimiters)
– StringTokenizer(String input, String delimiters,

boolean includeDelimiters)
– StringTokenizer(String input)

• Default delimiter set is " \t\n\r\f" (whitespace)
• Methods

– nextToken(), nextToken(String delimiters)
– countTokens()
– hasMoreTokens()

• Also see methods in String class
– substring, indexOf, startsWith, endsWith, compareTo, …
– JDK 1.4 has regular expressions in java.util.regex!

Network Programming: Clients 8

Network Programming: Clients15 www.corewebprogramming.com

Interactive Tokenizer: Example
import java.util.StringTokenizer;

public class TokTest {
public static void main(String[] args) {
if (args.length == 2) {
String input = args[0], delimiters = args[1];
StringTokenizer tok
= new StringTokenizer(input, delimiters);

while (tok.hasMoreTokens()) {
System.out.println(tok.nextToken());

}
} else {
System.out.println
("Usage: java TokTest string delimiters");

}
}

}

Network Programming: Clients16 www.corewebprogramming.com

Interactive Tokenizer: Result
> java TokTest http://www.microsoft.com/~gates/ :/.
http
www
microsoft
com
~gates

> java TokTest "if (tok.hasMoreTokens()) {" "(){. "
if
tok
hasMoreTokens

Network Programming: Clients 9

Network Programming: Clients17 www.corewebprogramming.com

A Client to Verify Email
Addresses

• Talking to a mail server
– One of the best ways to get comfortable with a

network protocol is to telnet to the port a server is
on and try out commands interactively

• Example talking to apl.jhu.edu’s server
> telnet apl.jhu.edu 25
Trying 128.220.101.100 ...Connected … Escape character …
220 aplcenmp.apl.jhu.edu Sendmail SMI-8.6/SMI-SVR4 ready …
expn hall
250 Marty Hall <hall@aplcenmp.apl.jhu.edu>
expn root
250 Gary Gafke <…>
250 Tom Vellani <…>
quit
221 aplcenmp.apl.jhu.edu closing connection
Connection closed by foreign host.

Network Programming: Clients18 www.corewebprogramming.com

Address Verifier
/** Given an email address of the form user@host,
* connect to port 25 of the host and issue an
* 'expn' request for the user. Print the results.
*/

public class AddressVerifier extends NetworkClient {
private String username;

public static void main(String[] args) {
MailAddress address = new MailAddress(args[0]);
AddressVerifier verifier
= new AddressVerifier(address.getUsername(),

address.getHostname(),
25);

verifier.connect();
}
...

Network Programming: Clients 10

Network Programming: Clients19 www.corewebprogramming.com

Address Verifier (Continued)
protected void handleConnection(Socket client) {

try {
PrintWriter out =

SocketUtil.getPrintWriter(client);
InputStream in = client.getInputStream();
byte[] response = new byte[1000];
// Clear out mail server's welcome message.
in.read(response);
out.println("EXPN " + username);
// Read the response to the EXPN command.
// May be multiple lines!
int numBytes = in.read(response); // Can't use readLine!
// The 0 means to use normal ASCII encoding.
System.out.write(response, 0, numBytes);
out.println("QUIT");
client.close();

} catch(IOException ioe) {
System.out.println("Couldn't make connection: "

+ ioe);
}

}
...}

Network Programming: Clients20 www.corewebprogramming.com

MailAddress
// Takes a string of the form "user@host" and
// separates it into the "user" and "host" parts.

public class MailAddress {
private String username, hostname;

public MailAddress(String emailAddress) {
StringTokenizer tokenizer
= new StringTokenizer(emailAddress, "@");

this.username = getArg(tokenizer);
this.hostname = getArg(tokenizer);

}

private static String getArg(StringTokenizer tok) {
try { return(tok.nextToken()); }
catch (NoSuchElementException nsee) {
System.out.println("Illegal email address");
return(null);

}
}...

}

Network Programming: Clients 11

Network Programming: Clients21 www.corewebprogramming.com

Address Verifier: Result

> java AddressVerifier tbl@w3.org
250 <timbl@hq.lcs.mit.edu>

> java AddressVerifier timbl@hq.lcs.mit.edu
250 Tim Berners-Lee <timbl>

> java AddressVerifier gosling@mail.javasoft.com
550 gosling... User unknown

Network Programming: Clients22 www.corewebprogramming.com

Brief Aside: Using the HTTP
GET Command

• For the URL http://www.apl.jhu.edu/~lmb/
Unix> telnet www.apl.jhu.edu 80
Trying 128.220.101.100 ...
Connected to aplcenmp.apl.jhu.edu.
Escape character is '^]'.
GET /~lmb/ HTTP/1.0

HTTP/1.0 200 Document follows
Date: Sat, 30 Jun 2001 14:34:58 GMT
Server: NCSA/1.5.2
Last-modified: Tue, 11 Jul 2001 15:13:56 GMT
Content-type: text/html
Content-length: 50479

<!DOCTYPE HTML PUBLIC
"-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>
...
</HTML>Connection closed by foreign host.
Unix>

Network Programming: Clients 12

Network Programming: Clients23 www.corewebprogramming.com

Talking to Web Servers
Interactively

• WebClient
– Simple graphical user interface to communicate with

HTTP servers
– User can interactively specify:

• Host
• Port
• HTTP request line
• HTTP request headers

– HTTP request is performed in a separate thread
– Response document is placed in a scrollable text area
– Download all source files for WebClient from

http://archive.corewebprogramming.com/Chapter17.html

Network Programming: Clients24 www.corewebprogramming.com

WebClient: Example

Network Programming: Clients 13

Network Programming: Clients25 www.corewebprogramming.com

A Class to Retrieve a Given URI
from a Given Host

import java.net.*;
import java.io.*;

public class UriRetriever extends NetworkClient {
private String uri;

public static void main(String[] args) {
UriRetriever uriClient
= new UriRetriever(args[0],

Integer.parseInt(args[1]),
args[2]);

uriClient.connect();
}

public UriRetriever(String host, int port,
String uri) {

super(host, port);
this.uri = uri;

}
...

Network Programming: Clients26 www.corewebprogramming.com

A Class to Retrieve a Given URI
from a Given Host (Continued)
// It is safe to use blocking IO (readLine) since
// HTTP servers close connection when done,
// resulting in a null value for readLine.

protected void handleConnection(Socket uriSocket)
throws IOException {

PrintWriter out =
SocketUtil.getPrintWriter(uriSocket);

BufferedReader in =
SocketUtil.getBufferedReader(uriSocket);

out.println("GET " + uri + " HTTP/1.0\n");
String line;
while ((line = in.readLine()) != null) {
System.out.println("> " + line);

}
}

}

Network Programming: Clients 14

Network Programming: Clients27 www.corewebprogramming.com

A Class to Retrieve a Given
URL

public class UrlRetriever {
public static void main(String[] args) {
checkUsage(args);
StringTokenizer tok = new StringTokenizer(args[0]);
String protocol = tok.nextToken(":");
checkProtocol(protocol);
String host = tok.nextToken(":/");
String uri;
int port = 80;
try {
uri = tok.nextToken("");
if (uri.charAt(0) == ':') {
tok = new StringTokenizer(uri);
port = Integer.parseInt(tok.nextToken(":/"));
uri = tok.nextToken("");

}
} catch(NoSuchElementException nsee) {
uri = "/";

}

Network Programming: Clients28 www.corewebprogramming.com

A Class to Retrieve a Given
URL (Continued)

UriRetriever uriClient =
new UriRetriever(host, port, uri);

uriClient.connect();
}

/** Warn user if they forgot the URL. */
private static void checkUsage(String[] args) {
if (args.length != 1) {
System.out.println("Usage: UrlRetriever <URL>");
System.exit(-1);

}
}

/** Tell user that this can only handle HTTP. */
private static void checkProtocol(String protocol) {
if (!protocol.equals("http")) {
System.out.println("Don't understand protocol "

+ protocol);
System.exit(-1);

}
}}

Network Programming: Clients 15

Network Programming: Clients29 www.corewebprogramming.com

UrlRetriever in Action
• No explicit port number

Prompt> java UrlRetriever
http://www.microsoft.com/netscape-beats-ie.html

> HTTP/1.0 404 Object Not Found
> Content-Type: text/html
>
> <body><h1>HTTP/1.0 404 Object Not Found
> </h1></body>

Network Programming: Clients30 www.corewebprogramming.com

UrlRetriever in Action
(Continued)

• Explicit port number
Prompt> java UrlRetriever

http://home.netscape.com:80/ie-beats-netscape.html
> HTTP/1.0 404 Not found
> Server: Netscape-Enterprise/2.01
> Date: Wed, 11 Jul 2001 21:17:50 GMT
> Content-length: 207
> Content-type: text/html
>
> <TITLE>Not Found</TITLE><H1>Not Found</H1> The requested

object does not exist on this server. The link you
followed is either outdated, inaccurate, or the server
has been instructed not to let you have it.

Network Programming: Clients 16

Network Programming: Clients31 www.corewebprogramming.com

Writing a Web Browser

• Wow! We just wrote a Web browser in 3
pages of code.
– Didn't format the HTML, but still not bad for 3 pages
– But we can do even better…

Network Programming: Clients32 www.corewebprogramming.com

Browser in 1 Page: Using URL
public class UrlRetriever2 {

public static void main(String[] args) {
try {
URL url = new URL(args[0]);
BufferedReader in = new BufferedReader(

new InputStreamReader(
url.openStream()));

String line;
while ((line = in.readLine()) != null) {
System.out.println("> " + line);

}
in.close();

} catch(MalformedURLException mue) { // URL c'tor
System.out.println(args[0] + "is an invalid URL: "

+ mue);
} catch(IOException ioe) { // Stream constructors
System.out.println("IOException: " + ioe);

}
}

}

Network Programming: Clients 17

Network Programming: Clients33 www.corewebprogramming.com

UrlRetriever2 in Action

Prompt> java UrlRetriever2 http://www.whitehouse.gov/
> <HTML>
> <HEAD>
> <TITLE>Welcome To The White House</TITLE>
> </HEAD>
> ... Remainder of HTML document omitted ...
> </HTML>

Network Programming: Clients34 www.corewebprogramming.com

Useful URL Methods
• openConnection

– Yields a URLConnection which establishes a connection to
host specified by the URL

– Used to retrieve header lines and to supply data to the HTTP
server

• openInputStream
– Returns the connection’s input stream for reading

• toExernalForm
– Gives the string representation of the URL

• getRef, getFile, getHost, getProtocol, getPort
– Returns the different components of the URL

Network Programming: Clients 18

Network Programming: Clients35 www.corewebprogramming.com

Using the URL Methods:
Example

import java.net.*;

public class UrlTest {
public static void main(String[] args) {

if (args.length == 1) {
try {

URL url = new URL(args[0]);
System.out.println

("URL: " + url.toExternalForm() + "\n" +
" File: " + url.getFile() + "\n" +
" Host: " + url.getHost() + "\n" +
" Port: " + url.getPort() + "\n" +
" Protocol: " + url.getProtocol() + "\n" +
" Reference: " + url.getRef());

} catch(MalformedURLException mue) {
System.out.println("Bad URL.");

}
} else

System.out.println("Usage: UrlTest <URL>");
}

}

Network Programming: Clients36 www.corewebprogramming.com

Using the URL Methods, Result

> java UrlTest http://www.irs.gov/mission/#squeezing-them-dry
URL: http://www.irs.gov/mission/#squeezing-them-dry

File: /mission/
Host: www.irs.gov
Port: -1
Protocol: http
Reference: squeezing-them-dry

Note: If the port is not explicitly stated in the URL, then the
standard port for the protocol is assumed and getPort returns –1

Network Programming: Clients 19

Network Programming: Clients37 www.corewebprogramming.com

A Real Browser Using Swing
• The JEditorPane class has builtin support for

HTTP and HTML

Network Programming: Clients38 www.corewebprogramming.com

Browser in Swing: Code
import javax.swing.*;
import javax.swing.event.*;
...

public class Browser extends JFrame implements HyperlinkListener,
ActionListener {

private JEditorPane htmlPane;
...

public Browser(String initialURL) {
...
try {

htmlPane = new JEditorPane(initialURL);
htmlPane.setEditable(false);
htmlPane.addHyperlinkListener(this);
JScrollPane scrollPane = new JScrollPane(htmlPane);
getContentPane().add(scrollPane, BorderLayout.CENTER);

} catch(IOException ioe) {
warnUser("Can't build HTML pane for " + initialURL

+ ": " + ioe);
}

Network Programming: Clients 20

Network Programming: Clients39 www.corewebprogramming.com

Browser in Swing (Continued)
...
Dimension screenSize = getToolkit().getScreenSize();
int width = screenSize.width * 8 / 10;
int height = screenSize.height * 8 / 10;
setBounds(width/8, height/8, width, height);
setVisible(true);

}

public void actionPerformed(ActionEvent event) {
String url;
if (event.getSource() == urlField)

url = urlField.getText();
else // Clicked "home" button instead of entering URL

url = initialURL;
try {

htmlPane.setPage(new URL(url));
urlField.setText(url);

} catch(IOException ioe) {
warnUser("Can't follow link to " + url + ": " + ioe);

}
}

Network Programming: Clients40 www.corewebprogramming.com

Browser in Swing (Continued)

...
public void hyperlinkUpdate(HyperlinkEvent event) {
if (event.getEventType() ==

HyperlinkEvent.EventType.ACTIVATED) {
try {
htmlPane.setPage(event.getURL());
urlField.setText(event.getURL().toExternalForm());

} catch(IOException ioe) {
warnUser("Can't follow link to "

+ event.getURL().toExternalForm() +
": " + ioe);

}
}

}

Network Programming: Clients 21

Network Programming: Clients41 www.corewebprogramming.com

Summary
• Opening a socket requires a hostname

(or IP address) and port number
• A PrintWriter lets you send string data

– Use autoflush to send the full line after each println
• A BufferedReader allows you to read the input

one line at a time (readLine)
– The readLine method blocks until a response is sent
– For a typical GET request, after the HTTP server sends

the response the connection is closed and readLine
returns null

• StringTokenizer provides simple parsing
• The URL and URLConnection classes simplify

communication with Web servers

42 © 2001-2003 Marty Hall, Larry Brown http://www.corewebprogramming.com

Web
core

programming

Questions?

Network Programming: Servers 1

1 © 2001-2003 Marty Hall, Larry Brown http://www.corewebprogramming.com

Web
core

programming

Network Programming:
Servers

Network Programming: Servers2 www.corewebprogramming.com

Agenda
• Steps for creating a server

1. Create a ServerSocket object
2. Create a Socket object from ServerSocket
3. Create an input stream
4. Create an output stream
5. Do I/O with input and output streams
6. Close the socket

• A generic network server
• Accepting connections from browsers
• Creating an HTTP server
• Adding multithreading to an HTTP server

Network Programming: Servers 2

Network Programming: Servers3 www.corewebprogramming.com

Steps for Implementing a
Server

1. Create a ServerSocket object
ServerSocket listenSocket =
new ServerSocket(portNumber);

2. Create a Socket object from ServerSocket
while(someCondition) {
Socket server = listenSocket.accept();
doSomethingWith(server);

}
• Note that it is quite common to have

doSomethingWith spin off a separate thread
3. Create an input stream to read client input

BufferedReader in =
new BufferedReader
(new InputStreamReader(server.getInputStream()));

Network Programming: Servers4 www.corewebprogramming.com

Steps for Implementing a
Server

4. Create an output stream that can be used
to send info back to the client.

// Last arg of true means autoflush stream
// when println is called
PrintWriter out =
new PrintWriter(server.getOutputStream(), true)

5. Do I/O with input and output Streams
– Most common input: readLine
– Most common output: println

6. Close the socket when done
server.close();

– This closes the associated input and output streams.

Network Programming: Servers 3

Network Programming: Servers5 www.corewebprogramming.com

A Generic Network Server
import java.net.*;
import java.io.*;

/** A starting point for network servers. */

public class NetworkServer {
protected int port, maxConnections;

/** Build a server on specified port. It will continue
* to accept connections (passing each to
* handleConnection) until an explicit exit
* command is sent (e.g. System.exit) or the
* maximum number of connections is reached. Specify
* 0 for maxConnections if you want the server
* to run indefinitely.
*/

public NetworkServer(int port, int maxConnections) {
this.port = port;
this.maxConnections = maxConnections;

}
...

Network Programming: Servers6 www.corewebprogramming.com

A Generic Network Server
(Continued)
/** Monitor a port for connections. Each time one
* is established, pass resulting Socket to
* handleConnection.
*/

public void listen() {
int i=0;
try {

ServerSocket listener = new ServerSocket(port);
Socket server;
while((i++ < maxConnections) ||

(maxConnections == 0)) {
server = listener.accept();
handleConnection(server);

}
} catch (IOException ioe) {

System.out.println("IOException: " + ioe);
ioe.printStackTrace();

}
}

Network Programming: Servers 4

Network Programming: Servers7 www.corewebprogramming.com

A Generic Network Server
(Continued)
...
protected void handleConnection(Socket server)

throws IOException{
BufferedReader in =

SocketUtil.getBufferedReader(server);
PrintWriter out =

SocketUtil.getPrintWriter(server);
System.out.println

("Generic Network Server:\n" +
"got connection from " +
server.getInetAddress().getHostName() + "\n" +
"with first line '" +
in.readLine() + "'");

out.println("Generic Network Server");
server.close();

}
}

– Override handleConnection to give your server the
behavior you want.

Network Programming: Servers8 www.corewebprogramming.com

Using Network Server
public class NetworkServerTest {
public static void main(String[] args) {
int port = 8088;
if (args.length > 0) {
port = Integer.parseInt(args[0]);

}
NetworkServer server = new NetworkServer(port, 1);
server.listen();

}
}

Network Programming: Servers 5

Network Programming: Servers9 www.corewebprogramming.com

Network Server: Results
• Accepting a Connection from a WWW

Browser
– Suppose the above test program is started up on port 8088

of server.com:
server> java NetworkServerTest

– Then, a standard Web browser on client.com
requests http://server.com:8088/foo/,
yielding the following back on server.com:

Generic Network Server:
got connection from client.com
with first line 'GET /foo/ HTTP/1.0'

Network Programming: Servers10 www.corewebprogramming.com

HTTP Requests and Responses
• Request

GET /~gates/ HTTP/1.0
Header1: …
Header2: …
…
HeaderN: …
Blank Line

– All request headers are
optional except for Host
(required only for HTTP/1.1
requests)

– If you send HEAD instead of
GET, the server returns the
same HTTP headers, but no
document

• Response
HTTP/1.0 200 OK
Content-Type: text/html
Header2: …
…
HeaderN: …
Blank Line
<!DOCTYPE …>
<HTML>
…
</HTML>

– All response headers are
optional except for
Content-Type

Network Programming: Servers 6

Network Programming: Servers11 www.corewebprogramming.com

A Simple HTTP Server
• Idea

1. Read all the lines sent by the browser, storing them in
an array
• Use readLine a line at a time until an empty line

– Exception: with POST requests you have to read
some extra data

2. Send an HTTP response line (e.g. "HTTP/1.0 200 OK")
3. Send a Content-Type line then a blank line

• This indicates the file type being returned
(HTML in this case)

4. Send an HTML file showing the lines that were sent
5. Close the connection

Network Programming: Servers12 www.corewebprogramming.com

EchoServer
import java.net.*;
import java.io.*;
import java.util.StringTokenizer;

/** A simple HTTP server that generates a Web page
* showing all of the data that it received from
* the Web client (usually a browser). */

public class EchoServer extends NetworkServer {
protected int maxInputLines = 25;
protected String serverName = "EchoServer 1.0";

public static void main(String[] args) {
int port = 8088;
if (args.length > 0)

port = Integer.parseInt(args[0]);
EchoServer echoServer = new EchoServer(port, 0);
echoServer.listen();

}

public EchoServer(int port, int maxConnections) {
super(port, maxConnections);

}

Network Programming: Servers 7

Network Programming: Servers13 www.corewebprogramming.com

EchoServer (Continued)
public void handleConnection(Socket server)

throws IOException{
System.out.println(serverName + ": got connection from " +

server.getInetAddress().getHostName());
BufferedReader in = SocketUtil.getBufferedReader(server);
PrintWriter out = SocketUtil.getPrintWriter(server);
String[] inputLines = new String[maxInputLines];
int i;
for (i=0; i<maxInputLines; i++) {

inputLines[i] = in.readLine();
if (inputLines[i] == null) // Client closes connection

break;
if (inputLines[i].length() == 0) { // Blank line

if (usingPost(inputLines)) {
readPostData(inputLines, i, in);
i = i + 2;

}
break;

}
}
...

Network Programming: Servers14 www.corewebprogramming.com

EchoServer (Continued)
printHeader(out);
for (int j=0; j<i; j++)

out.println(inputLines[j]);
printTrailer(out);
server.close();

}

private void printHeader(PrintWriter out) {
out.println("HTTP/1.0 200 Document follows\r\n" +

"Server: " + serverName + "\r\n" +
"Content-Type: text/html\r\n" +
"\r\n" +
"<!DOCTYPE HTML PUBLIC " +

"\"-//W3C//DTD HTML 4.0//EN\">\n" +
"<HTML>\n" +

...
"</HEAD>\n");

}
...

}

Network Programming: Servers 8

Network Programming: Servers15 www.corewebprogramming.com

EchoServer in Action

EchoServer shows data sent by the browser

Network Programming: Servers16 www.corewebprogramming.com

Adding Multithreading
import java.net.*;
import java.io.*;

/** A multithreaded variation of EchoServer. */

public class ThreadedEchoServer extends EchoServer
implements Runnable {

public static void main(String[] args) {
int port = 8088;
if (args.length > 0)
port = Integer.parseInt(args[0]);

ThreadedEchoServer echoServer =
new ThreadedEchoServer(port, 0);

echoServer.serverName = "Threaded Echo Server 1.0";
echoServer.listen();

}

public ThreadedEchoServer(int port, int connections) {
super(port, connections);

}

Network Programming: Servers 9

Network Programming: Servers17 www.corewebprogramming.com

Adding Multithreading
(Continued)
public void handleConnection(Socket server) {
Connection connectionThread =
new Connection(this, server);

connectionThread.start();
}

public void run() {
Connection currentThread =
(Connection)Thread.currentThread();

try {
super.handleConnection(currentThread.serverSocket);

} catch(IOException ioe) {
System.out.println("IOException: " + ioe);
ioe.printStackTrace();

}
}

}

Network Programming: Servers18 www.corewebprogramming.com

Adding Multithreading
(Continued)

/** This is just a Thread with a field to store a
* Socket object. Used as a thread-safe means to pass
* the Socket from handleConnection to run.
*/

class Connection extends Thread {
protected Socket serverSocket;

public Connection(Runnable serverObject,
Socket serverSocket) {

super(serverObject);
this.serverSocket = serverSocket;

}
}

Network Programming: Servers 10

Network Programming: Servers19 www.corewebprogramming.com

Summary
• Create a ServerSocket; specify port number
• Call accept to wait for a client connection

– Once a connection is established, a Socket object is
created to communicate with client

• Browser requests consist of a GET, POST, or
HEAD line followed by a set of request headers
and a blank line

• For the HTTP server response, send the status
line (HTTP/1.0 200 OK), Content-Type, blank
line, and document

• For improved performance, process each
request in a separate thread

20 © 2001-2003 Marty Hall, Larry Brown http://www.corewebprogramming.com

Web
core

programming

Questions?

ATIJ 2: Accessing Web Resources using URL Connections 2-1/18

Chapter 2

Accessing Web Resources
using

URL Connections

Advanced Topics in Java

Khalid Azim Mughal
khalid@ii.uib.no

http://www.ii.uib.no/~khalid/atij/

Version date: 2003-10-01

ATIJ 2: Accessing Web Resources using URL Connections 2-2/18

Overview
• HTTP-support for Client-Side Applications through the following classes:

– URL
– URLConnection
– HttpURLConnection

• Usefulness of URLEncoder/ URLDecoder classes.

ATIJ 2: Accessing Web Resources using URL Connections 2-3/18

URL Connections
• Client-side support for accessing and retrieving web resources.

• Encapsulate much of the low-level (TCP/IP stack) complexity involved in accessing
web resources.

• Support for URL connections is provided in the java.net package by the following
important classes:
– URL
– URLConnection
– HttpURLConnection

ATIJ 2: Accessing Web Resources using URL Connections 2-4/18

Universal Resource Identifier: URI
• A URI is a superset of URL and URN. It is an identifier that identifies a resource. The

resource may or may not exist. Neither does it imply how we can retrieve the
resource.
ATIJ/lecture-notes-kam/atij-application-protocols

Universal Resource Locator: URL
• A URL specifies a unique address/location for a resource on the Web.

• Common form:

<protocol>://<hostname>[:<TCP port number>]/<pathname>[?<query>][#<reference>]
http://www.ii.uib.no:80/~khalid/pgjc2e/
mailto:khalid@ii.uib.no?Subject=Urgent%20Message
http://www.w3.org/TR/REC-html32#intro <--- Tag to indicate particular part of a document.

Universal Resource Name: URN
• A URN is a unique identifier that identifies a resource, irrespective of its location and

mode of retrieval.
ISBN: 0-201-72828-1

ATIJ 2: Accessing Web Resources using URL Connections 2-5/18

The URL class
• Represents a URL (Uniform Resource Locator), i.e. a unique address/location to

access a web resource.

<protocol>://<hostname>[:<port>]/<pathname>[?<query>][#<reference>]

• A web resource can be:
– a file
– a directory
– a query to a database or to a search engine

Note that an URL instance need not represent a valid resource, but it must contain the
following components: protocol, hostname and pathname.

ATIJ 2: Accessing Web Resources using URL Connections 2-6/18

URL Constructors
• All constructors throw a java.net.MalformedURLException if the protocol is missing

or unknown.

• If the port is not specified, the default port for the protocol is assumed.

• When constructing a URL, an appropriate stream protocol handler
(URLStreamHandler) is automatically loaded.

Constructor Example
URL(String urlStr)
throws
MalformedURLException

URL url3 = new URL("http://www.bond.edu.au" +
 "/it/subjects/subs-pg.htm#inft718");

URL(String protocol,
 String hostname,
 String filename)
throws
MalformedURLException

URL url4 = new URL("ftp",
 "www.javaworld.com",
 "javaforums/ubbthreads.txt");

ATIJ 2: Accessing Web Resources using URL Connections 2-7/18

URL(String protocol,
 String hostname,
 int portNumber,
 String filename)
throws
MalformedURLException

URL url9 = new URL("http",
 "java.sun.com",
 80,
 "/j2se/1.4.2/docs/api/index.html");

URL(URL context,
 String spec)
throws
MalformedURLException

URL url5 = new URL("http://www.ii.uib.no");
URL url6 = new URL(url5, "undervisning");
//Final URL: "http://www.ii.uib.no/undervisning"

URL url10 = new URL(null, // Same as first constructor.
 "http://java.sun.com" +
 "/j2se/1.4.2/docs/api/index.html");

Constructor Example

ATIJ 2: Accessing Web Resources using URL Connections 2-8/18

 Misc. URL Methods
• Get the different components of the URL instance (See URLParser.java).

• Compare URL instances.

• Convert a URL to a string.

String getProtocol()
String getHost()
String getPort()
String getFile()
String getPath()
String getQuery()
String getRef()

If no port is present, -1 is returned by the getPort()
method.
If no file name or path is present, empty string is
returned.
The string returned by the getFile() method has the
query, if any, but the getPath() method excludes the
query.
If no query or reference is present, null is returned.

boolean equals(Object obj)

boolean sameFile(URL url)

The equal() method can block as it requires name
resolution.
The sameFile() method excludes the reference
component.

String toString()
String toExternal()

Both methods give identical results.

ATIJ 2: Accessing Web Resources using URL Connections 2-9/18

Retrieving a Resource via an URL
• Open an input stream to retrieve the resource identified by the URL instance.

• Retrieve the contents of resource identified by the URL instance.

• Return an URLConnection instance which can be used to retrieve the contents of
resource identified by the URL instance.

• The URL class only provides an input stream to retrieve the contents of the resource.
– Other information about the request sent or the response received is not accessible.

InputStream openStream() Establishes a connection with the server and returns
an input stream to retrieve the source.
See FetchResourceViaURL.java.

Object getContent()
 throws IOException

The method is equivalent to
openConnection().getContent().
See FetchResourceViaMethodgetContent.java.
See also class URLConnection.

URLConnection openConnection() The method does not establish any connection to
retrieve the resource.
See class URLConnection.

ATIJ 2: Accessing Web Resources using URL Connections 2-10/18

The URLConnection Class
• A URLConnection represents a communications link between the application and a

URL.

• A URLConnection allows access to all pertinent information about the requests it
sends and the responses it receives.
– Allows interaction with the resource and makes querying of requests and

responses possible.

• The class is abstract, and a concrete URLConnection is obtained via an URL instance.

URL url = new URL(urlStr);
URLConnection connection = url.openConnection();
// No connection established so far.

ATIJ 2: Accessing Web Resources using URL Connections 2-11/18

Misc. URLConnection Methods
• Customizing setup parameters for the connection.

• Customizing general request header fields

The set-methods above have corresponding get-methods.

void setIfModifiedSince(long time) Only fetches data that has been modified since the
specified time (in seconds, from midnight, GMT,
1970-01-01).

void setUseCaches(boolean permit) If permit is true (default), the connection can
cache documents.

void setDoInput(boolean status) If status is true (default), then the connection can
be used to receive a response.

void setDoOutput(boolean status) If status is true, then the connection can be used
to send a request. The default status is false.

void setAllowUserInteraction(
 boolean allow)

If allow is true, then the user can be password
authenticated.

void setRequestProperty(
 String key, String value)

The key/value pair must be permissible according
to the protocol.

ATIJ 2: Accessing Web Resources using URL Connections 2-12/18

• Establishing a connection to the remote resource.

• Querying response header information.

void connect()
 throws IOException

Establishes connection and retrieves response header
fields.
The call is ignored if the connection is already
established.

String getHeaderFieldKey(int n) Returns header field key at index n (n>=0), or null for
invalid n.

String getHeaderField(int n) Returns header field value at index n (n>=0), or null
for invalid n.

String getHeaderField(
 String field)

Returns the value of the field.

Map getHeaderFields() Returns an unmodifiable Map of header field name -
value entries.

String getContentLength()
String getContentType()
String getContentEncoding()
String getDate()
String getExpiration()
String getLastModified()

Return the value of a specific response header field.

ATIJ 2: Accessing Web Resources using URL Connections 2-13/18

• Obtaining the input and output streams of the connection.

• Obtaining the contents of the requested resource.

InputStream getInputStream()
 throws IOException

OutputStream getOutputStream()
 throws IOException

Object getContent()
 throws IOException

A suitable content handler is chosen depending on the
content type.

ATIJ 2: Accessing Web Resources using URL Connections 2-14/18

Retrieving a Resource via an URLConnection
• See FetchResourceViaURLConnection.java.

1. Create an URL instance with the address of the resource.
 url = new URL(urlStr);

2. Obtain an URLConnection from the URL instance.
 URLConnection connection = url.openConnection();

3. Customize any request fields.
 connection.setRequestProperty("User-Agent",
 "Mozilla/4.0 (compatible; JavaApp)");
 connection.setRequestProperty("Referer",
 "http://www.ii.uib.no/");
 connection.setUseCaches(false);

4. Establish a connection to the remote resource, which also sends the request.
– A response will be issued by the server.
 connection.connect();

ATIJ 2: Accessing Web Resources using URL Connections 2-15/18

5. Query the response header information.
 System.out.println("Content-Type: "
 + connection.getContentType());
 System.out.println("Content-Length: "
 + connection.getContentLength());
 System.out.println("Content-Encoding: "
 + connection.getContentEncoding());
 System.out.println("Date: "
 + connection.getDate());
 System.out.println("Expiration-Date: "
 + connection.getExpiration());
 System.out.println("Last-modified: "
 + connection.getLastModified());

– Alternatively, header fields can also be looked up using a map.
Following code prints all the header fields:

 Map allFields = connection.getHeaderFields();
 System.out.println("No. of field headers: " + allFields.size());
 System.out.println(allFields);

ATIJ 2: Accessing Web Resources using URL Connections 2-16/18

6. Obtain an input stream to access the resource content.
 InputStream input = connection.getInputStream();
 reader = new BufferedReader(
 new InputStreamReader(input));
 System.out.println("Reading the contents ...");
 for(;;) {
 String line = reader.readLine();
 if (line == null) break;
 System.out.println(line);
 }

– Alternatively, we use the getContent() method.
See FetchResourceViaMethodgetContent.java.

ATIJ 2: Accessing Web Resources using URL Connections 2-17/18

The HttpURLConnection Class
• The HttpURLConnection class is a subclass of the URLConnection class.

• It provides HTTP-specific functionality for dealing with HTTP requests and responses.

• The class defines constants for the HTTP response codes that can occur is a response
status line.
HttpURLConnection.HTTP_OK // HTTP Status-Code 200: OK
HttpURLConnection.HTTP_NOT_FOUND // HTTP Status-Code 404: Not Found
HttpURLConnection.HTTP_NOT_IMPLEMENTED // HTTP Status-Code 501: Not Implemented

• As the class does not have a public constructor, a HttpURLConnection is often
obtained as follows:

URL url = new URL(urlStr); // Create a URL.
URLConnection connection = url.openConnection(); // Get an URLConnection.
if (connection instanceof HttpURLConnection) { // Is it a HttpURLConnection?
 HttpURLConnection httpConnection = (HttpURLConnection) connection;
 // Can access http-functionality of the connection.
}

– If the protocol of the URL is HTTP then the URLConnection returned is a
HttpURLConnection.

ATIJ 2: Accessing Web Resources using URL Connections 2-18/18

Misc. HttpURLConnection Methods
• In addition to inheriting methods from the URLConnection class, the

HttpURLConnection overrides some methods from the superclass and also defines
some HTTP-specific methods of its own.

• The procedure for retrieving a resource using a HttpURLConnection is very similar to
that of using a URLConnection, with the added functionality of accessing HTTP
features.

See FetchResourceViaHttpURLConnection.java.

void setRequestMethod(
 String method)
 throws ProtocolException

Sets the request method to use for the connection.
The request method is be subject to the protocol
restrictions. Default method is GET.

String getRequestMethod() Returns the request method that will be used.

void connect() Inherited from the superclass URLConnection. It
establishes a connection and sends the request,
with the server subsequently issuing the response.

int getResponseCode()
 throws IOException

Returns the response code in the status line.

String getResponseMessage()
 throws IOException

Returns the status message from the status line.

void disconnect() Future requests are unlikely on this connection.

		brown@corewebprogramming.com
	2003-01-03T22:57:20-0500
	Lawrence M. Brown
	Copyright 2001-2003 Core Web Programming

		brown@corewebprogramming.com
	2003-01-03T22:56:49-0500
	Lawrence M. Brown
	Copyright 2001-2003 Core Web Programming

