Fourier Series

Reference
— Chapter 2.1, Carlson, Communication Systems
Example

A signal f(7) 1s defined as 1
. 1 2 ’
(1 0<t<1 1+ B t

TO=11 1<r<2

Now, we use a set of sinusoidal functions ¢,(¢) to
approximate the signal,

¢ (f)=sm(nnt) >0

f(t)= i 1, sin(nnt) (1)
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The unknown coefficients can be found using the
orthogonal property of the siusoidal functions.

Ju si(nat)sm(mat)dt =
0 0 nzm

I n=m

multiplying sm(mmnt) to (1) and integrating from 0 to 2,
we get

1=, sinGnm

-~
i

= E—' f(t)sin(mnt)dt = L {i 1, Sill{:}'?ﬂ'f):| sin(m 7t )dt

n=1
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= E f(@O)sin(mz)d = f, | sin(zr)sin(mr)ds

2

+ f, J:;. sin(27) sin(m ) dt + ...

m

= [ f(@)sinmm)dt = f,

al 2
— ﬂsm(mm)dr —L si(m)de = f,

1 2

cos(mmt)|  cos(mt)
_ + =f
mm |, mi ‘1 "

U
+ — fornodd
' ﬂs =R
0 formeven

- J: sin(m st ) sin(m 7t )dt + ...
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Fimlh-' we have

f(t)= Elll(ﬂ) lFsin{jmf
T\ 3
'y
—sin()
T

)

1

S

. l .
+—sin(57 )+ ...+ —sin(n )+
H
3 s .
L III"-II -
.ﬁ ;
4 I_-'" | l . .. \
—| sin(a )+ —sin(377) [
T\ 3 )
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\ | 4 ( sin(777 )+ ! sin(fimf) + 1 sin(577)

\_-J 7\ g 5 .,f

f(t)= i] sin[ﬂ)+%si11(3m‘)+ 1 sin(57)+ ...+ i5ai11[99:-:n’] ]
T\ :

e __.'

The example shows that the signal f(7) can be
considered as a ifinite sum of sinusoidal signals.
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Exponential Fourier series

alof
In circuit analysis, the phasor form ( v(t)=Re|Ve&/¥] ) 1s
often used to represent a sinusoidal voltage source (
v(t)=Vcos(t) ) because differentiating & remains as an
exponential function.

In signal analysis, the exponential functions are also used to
expand a signal.

f(1)="Y Fe" t,<t<t,

H=—x

1 fy ¢ 2
where  F, :—J‘ f(He "™ dt M, =
rq - tfl Il IE - rl
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Exponential Fourier series

Proof:

Consider a signal f(7) represented by a linear
combination of complex exponential functions over an
finite mterval (z,,7,).

f(t)= Z:Fﬁe:'“’fm"lr L <t<t,

H=—00

— jma,t

Multiplymng e to both sides and integrating from

t, to t,, we have

a0

f_}_ f(r)g—;mmﬂrdr _ Z FH j‘fz e_;-,a,-mﬂrg—;mmﬂrdr (2)

I
. n=—x 1
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[f we choose o, =27/(t, 1)

o 2

For m#n

- B Y 2 I!a.
] = 4 o N !: b —F

J‘ = E"I”m':'le "J}Hmﬂldr J‘ E—_';' Iy —h df‘
N I

jn—m)n
f, =1

= ()
Form=n

h ¥ & ! — i F].
I' g!" % g (]t —I 1dt
1 |
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Therefore, (2) becomes

[* F0e™=dt~ F. (0,1

. | 5 -
or - t)e "o d
y (L_I_I)L 1)

(=Y Fe"™ 1 <t<t,

H=—00

1 . —ina
where F :—I f(t)e " dt ®
!r“| _F]. f-_

2T
Iz_fl

known as the exponential Fourier series
representation of f(7) over the mterval (#,.z,)
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Example

Expand the signal in B.1 using the exponential Fourier

Series. -
I O<r<l

1 ﬂr}:{—1 1<t<2

F = e a1 ) |
(TE—II)J.-’: -l'jl—é t
LT e
{Efjﬂﬁ n odd

0 n  even
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0= 3R

-.-'I. -3.-1 - 1.!' - -3.-'
— — TP —p ”T—?:? e

jr\ 3

4( . 1 . | Sl
= —( sin(r) + —sin(3ar) + ] siny=—°

7\ 3 2]
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Fourier series expansion of periodic signals

If a periodic signal has only finite average power, 1t can be
represented by as series of complex exponential
functions.

ft)= > Fe" t<t<T+t,

H=—0C

' +I 2
where J.F f(He "™ dt @ ~
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Fourier series expansion of periodic signals

— The complex exponential functions are periodic with
period 7

Ejﬂmﬂ (14+T) jna,t e;’ﬂmﬂi’

€

(27
jne,t jﬁ[_?JT

— € €

—y jne.t
— The lower limut 7, 1s arbitrary.
— It 1s often convenient to take 7, equal to -772.

— The representation of the periodic signal converges m a
mean square sense.
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Examples
Periodic waveform
Symmetric square wave
)= (1 |]<T/4
-1 T/4<||<T/2

Rectangular pulse train

(1 |]<z/2
fo-|.

r/2< M <T/2

Sa(x)=sm(x)/x
F /

1l s
/

/

-

0 n=>0

F - {Sﬂ(}?ﬂ" /2) nz0

F = L Sa(nxt/T)
T
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Symmetric triangular wave

-

P Sa*(nw/2) n=0
=14t/ /2 n
f)=1-4|/T 1<T/2 o .
Halt-wave rectified sinusoid
" l
. | — 1 even
[sinet 0<7<T/2 (1-n?)

fm_l 0 _T/2<t<0 F =1 ¥j/4 n==+1

| 0 otherwise
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Example

Consider a rectangular pulse tramn 7(7) = 1 ‘f ‘ <0.1

| | St | 10 0.1<|]<05
21 (nm) ,

f(t)= Z —Sa E}gﬁ”m
o d  \ D

0.1 05 t
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Parseval’s theorem

The average power of a signal can be calculated by
summing the square of the magnitude of the Fourier
coefficients.

The average power developed across a 1Q) resistance 1s

P= %J‘_T J@)f (2)dt * denotes complex conjugate

_ % J_i" qu|: i EHEJ,-mmpr:H: i E:‘E-jﬂmﬂr (ff

= - T2 o (0 m=n
=Y FF, J e’ ”:'”“dr:{
" T2 T

= ”E
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Parseval’s theorem

Therefore. we have

1
P——
T

T2

oo

f@olde=>

n=—

F.F‘!
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Example

Determine the average power of
fH)=2sm100#+s1m2007.

] p1/2 3
== ] ol

1
" (272/100)
— 2 +0.5W =2.5W

J "7’ sin 1007 + sin 200!‘ dt
- /100
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The Fourer coefficients of f(¢) are F,=-j, F ,=j, F,=-

72, F ,=j/2, F =0 for other n.
Using Parseval’s theorem,

F,

P=Y|E| =|F[ +|F.| +|R[ +|F,

A=—0

Power contained in
251n100¢

2

1 +11H0.25+0.25F2.5W

Power contained 1n sm200¢
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Steady-state response

0 —— H(o) — g

[f the input signal to a linear fime-nvariant system H(w) 1s

£(1) = A/

the output 1s |
g(t)= AH(FL?I )E?.."{mfl+.!1‘:|]]

[f the input signal 1s written as an exponential Fourier

Series,

HOE i EIEJ.-M:;

the output is  g(1) = > H(nw,)F,e"*
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Steady-state response

Similarly, the mput and output average powers are

g

R-*’ = i‘ﬂ

n=—

N 5 |

F,

P, = E‘H(Hmﬂ) ]

N=—0C
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Example

Determine the oufput of a linear time-invariant system
(lowpass filter) whose mput and frequency transter
function are

£(@) i

1/

2
-
1

The Fourler series of the input is f(#) = Z
(refer to B.9) be

sim(na/2) o
Eu’
(nm/2)
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and then the output 1s
o(f) = ZH(?I{J )F e/""

- }s;c H(zm'i} (”’T )
sin((0)z/2)

sin(n/ 2) 5,
( men o, =27

0

sin((1)z/2) o /02

= H(27(0)) /O L H(27(1)) ._
((0)7/2) (D7 /2)
+ Hr(1)SMEDZ12) enm g
(=D7/2)

=1+ E{?“T + Ee_ﬂm

T ..

B / BN YS "“x

=1+ icns 27t - { ’g'f(f

T ': f’
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Fourier spectrum

— The exponential Fourier series 1s composed of a
summation of complex exponentials with the F_
representing the magnitudes and 1nitial phase angles of
the harmonically related rotating phasors. The resultant
phasor 1s found by adding the mdividual phasors
vectorially. However, the addition of a series of phasors
of each mstant of tume turns out to be inconvenient way to
describe a signal.

— Instead of looking at every instant of a signal, the Fourier
coefficient 1s plot as a function of the frequency. This plot
1s called the Fourier spectrum (or simply spectrum) of f(1).
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Fourier spectrum

— For a periodic signal, the Fourier spectrum exists only at
w=0+m,+20,.... .Itis therefore a discrete spectrum,
sometimes referred to as a line spectrum.

— In general, the F, are complex-valued. To describe the
coefficients then requires two graphs, the magnitude
spectrum and phase spectrum.
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Example
Consider a rectangular pulse train (refer to B.16-17)

M—‘
1/2T/2 t

— The Fourier series of f(#) and F, are

- A r - oy ; :
f6)=72, ?Sﬁ(i’r’fﬂgff" ) F = %Sa[nmﬂr.-’ 2)
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— Sa(x) = sm(x)/x

» the amplitude of the function oscillates, decaying

in either direction of x and approaching zero as
x| > o0

* The maximum value of this function occurs as x
approaches zero, for sin(x)/x —>1 as x =0
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Spectrum

F :$Sﬁr(nmﬂr;ﬁ2)

:$SH(HFT;’IT ) v, =21/ T

The pulse duration 1 1s fixed. When the period of the
signal (7) increases,
» the amplitude of the spectrum decreases
(amplitude = At/T) and

» the spacing between lines decreases. (spacing =
27/T)

The shape of the spectrum 1s independent of the period
(T) ] Founer senes 30




T/ T

I
=
2

FH
AT, AT

g g

\ij J)/m\h. AT

)

r/T=0.1

M u’/ll“ L} N 1] | T

r/T =0.05
--l-h._._...ﬂllh..,.. .lr.“..-.--....-l-...

Founer senes 31




The period T 1s fixed. If the pulse duration increases,

» the amplitude of the spectrum increases
proportional to 1 (amplitude = A1/T) and

» the frequency content of the signal 1s compressed
within an mcreasingly narrower range of
frequencies (1nverse relationship between pulse
with i fume and the frequency ‘spread’ of the
spectrum)
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i, zr=01.

L] L]

r/T=0.05




" J
Frequency Spectrum of Electronic
Signals

m Nonrepetitive signals have continuous spectra often
occupying a broad range of frequencies

m Fourier theory tells us that repetitive signals are
composed of a set of sinusoidal sighals with distinct
amplitude, frequency, and phase.

m [he set of sinusoidal signals is known as a Fourier
series.

m The frequency spectrum of a signal is the amplitude and
phase components of the signal versus frequency.



Frequencies of Some Common Signals

m Audible sounds 20 Hz - 20 KHz
m Baseband TV 0-4.5 MHz
m FM Radio 88 - 108 MHz
m [elevision (Channels 2-6) 54 - 88 MHz
m [elevision (Channels 7-13) 174 - 216 MHz
m Maritime and Govt. Comm. 216 - 450 MHz
m Cell phones 1710 - 2690 MHz
m Satellite TV 3.7-4.2 GHz




