Fourier Series

Reference

- Chapter 2.1, Carlson, Communication Systems

Example

A signal f(t) is defined as

$$f(t) = \begin{cases} 1 & 0 < t < 1 & -1 + \\ -1 & 1 < t < 2 \end{cases}$$

Now, we use a set of sinusoidal functions $\phi_n(t)$ to approximate the signal,

$$\phi_n(t) = \sin(n\pi t) \qquad n > 0$$

$$f(t) = \sum_{n=0}^{\infty} f_n \sin(n\pi t) \qquad (1)$$

The unknown coefficients can be found using the orthogonal property of the sinusoidal functions.

$$\int_0^2 \sin(n\pi t) \sin(m\pi t) dt = \begin{cases} 1 & n=m \\ 0 & n\neq m \end{cases}$$

multiplying $sin(m\pi t)$ to (1) and integrating from 0 to 2, we get

$$f(t) = \sum_{n=1}^{\infty} f_n \sin(n\pi t)$$

$$\Rightarrow \int_0^2 f(t)\sin(m\pi t)dt = \int_0^2 \left[\sum_{n=1}^\infty f_n\sin(n\pi t)\right]\sin(m\pi t)dt$$

$$\Rightarrow \int_0^2 f(t)\sin(m\pi t)dt = f_1 \int_0^2 \sin(\pi t)\sin(m\pi t)dt + f_2 \int_0^2 \sin(2\pi t)\sin(m\pi t)dt + \dots + f_m \int_0^2 \sin(m\pi t)\sin(m\pi t)dt + \dots$$
$$\Rightarrow \int_0^2 f(t)\sin(m\pi t)dt = f_m$$

$$\Rightarrow \int_0^1 \sin(m\pi t) dt - \int_1^2 \sin(m\pi t) dt = f_m$$

$$\Rightarrow -\frac{\cos(m\pi t)}{m\pi}\bigg|_{0}^{1} + \frac{\cos(m\pi t)}{m\pi}\bigg|_{1}^{2} = f_{m}$$

$$\therefore f_n = \begin{cases} \frac{4}{n\pi} & \text{for } n \text{ odd} \\ 0 & \text{for } n \text{ even} \end{cases}$$

mier series.3

Finally, we have

$$f(t) = \frac{4}{\pi} \left(\sin(\pi t) + \frac{1}{3} \sin(3\pi t) + \frac{1}{5} \sin(5\pi t) + \dots + \frac{1}{n} \sin(n\pi t) + \dots \right)$$

$$\frac{4}{\pi}\sin(\pi t)$$

$$\frac{4}{\pi} \left(\sin(\pi t) + \frac{1}{3} \sin(3\pi t) \right)$$

$$\frac{4}{\pi} \left(\sin(\pi t) + \frac{1}{3} \sin(3\pi t) + \frac{1}{5} \sin(5\pi t) \right)$$

$$f(t) = \frac{4}{\pi} \left(\sin(\pi t) + \frac{1}{3} \sin(3\pi t) + \frac{1}{5} \sin(5\pi t) + \dots + \frac{1}{99} \sin(99\pi t) \right)$$

The example shows that the signal f(t) can be considered as a infinite sum of sinusoidal signals.

Exponential Fourier series

 $e^{j\omega t}$

In circuit analysis, the phasor form ($v(t)=Re[Ve^{j\omega t}]$) is often used to represent a sinusoidal voltage source ($v(t)=V\cos(\omega t)$) because differentiating $e^{j\omega t}$ remains as an exponential function.

In signal analysis, the exponential functions are also used to expand a signal.

$$f(t) = \sum_{n = -\infty}^{\infty} F_n e^{jn\omega_o t} \qquad t_1 < t < t_2$$
where
$$F_n = \frac{1}{t_2 - t_1} \int_{t_1}^{t_2} f(t) e^{-jn\omega_o t} dt \qquad \omega_o = \frac{2\pi}{t_2 - t_1}$$

Founer senes 6

Exponential Fourier series

Proof:

Consider a signal f(t) represented by a linear combination of complex exponential functions over an finite interval (t_1, t_2) .

$$f(t) = \sum_{n=0}^{\infty} F_n e^{jn\omega_o t} \qquad t_1 < t < t_2$$

Multiplying $e^{-jm\omega_o t}$ to both sides and integrating from t_1 to t_2 , we have

$$\int_{t_1}^{t_2} f(t)e^{-jm\omega_o t}dt = \sum_{n=-\infty}^{\infty} F_n \int_{t_1}^{t_2} e^{jn\omega_o t}e^{-jm\omega_o t}dt$$
 (2)

If we choose
$$\omega_o = 2\pi/(t_2 - t_1)$$

For $m \neq n$

$$\int_{t_1}^{t_2} e^{jn\omega_o t} e^{-jm\omega_o t} dt = \int_{t_1}^{t_2} e^{\frac{j(n-m)2\pi}{t_2-t_1}t} dt$$

$$dt = \int_{t_1} e^{-t_2 t_1} dt$$

$$= \frac{1}{\frac{j(n-m)2\pi}{t_2 - t_1}} \left[e^{\frac{j(n-m)2\pi}{t_2 - t_1} t_1} - e^{\frac{j(n-m)2\pi}{t_2 - t_1} t_2} \right]$$

$$t_2 - t_1$$

$$=0$$

For m = n

$$\int_{t_1}^{t_2} e^{jn\omega_o t} e^{-jm\omega_o t} dt = \int_{t_1}^{t_2} 1 dt$$
$$= t_2 - t_2$$

Fourier series.8

$$\int_{t_1}^{t_2} f(t)e^{-jm\omega_o t} dt = F_m(t_2 - t_1)$$

or
$$F_m = \frac{1}{(t_2 - t_1)} \int_{t_1}^{t_2} f(t) e^{-jm\omega_o t} dt$$

$$f(t) = \sum_{n=-\infty}^{\infty} F_n e^{jn\omega_o t} \qquad t_1 < t < t_2$$

where
$$F_n = \frac{1}{t_2 - t_1} \int_{t_1}^{t_2} f(t) e^{-jn\omega_o t} dt$$

$$\omega_o = \frac{2\pi}{t_2 - t_1}$$

known as the **exponential Fourier series** representation of f(t) over the interval (t_1,t_2)

Example

Expand the signal in B.1 using the exponential Fourier series,

$$F_{n} = \frac{1}{(t_{2} - t_{1})} \int_{t_{1}}^{t_{2}} f(t)e^{-jn\omega_{o}t} dt$$

$$= \frac{1}{2} \int_{0}^{2} f(t)e^{-jn\pi t} dt$$

$$= \begin{cases} 2/jn\pi & n \text{ odd} \\ 0 & n \text{ even} \end{cases}$$

$$f(t) = \begin{cases} 1 & 0 < t < 1 \\ -1 & 1 < t < 2 \end{cases}$$

$$f(t) = \begin{cases} 1 & 0 < t < 1 \\ -1 & 1 < t < 2 \end{cases}$$

$$f(t) = \sum_{n=-\infty}^{\infty} F_n e^{jn\omega_o t}$$

$$= \frac{2}{j\pi} \left(e^{j\pi t} + \frac{1}{3} e^{j3\pi t} + \dots - e^{-j\pi t} - \frac{1}{3} e^{-j3\pi t} - \dots \right)$$

$$= \frac{4}{\pi} \left(\sin(\pi t) + \frac{1}{3} \sin(3\pi t) + \dots \right)$$

$$\therefore \sin x = \frac{e^{jx} - e^{-jx}}{2j}$$

Fourier series.11

Fourier series expansion of periodic signals

If a periodic signal has only <u>finite</u> average power, it can be represented by as series of complex exponential functions.

$$f(t) = \sum_{n=-\infty}^{\infty} F_n e^{jn\omega_o t} \qquad t_o < t < T + t_o$$
where
$$F_n = \frac{1}{T} \int_{t_o}^{t_o + T} f(t) e^{-jn\omega_o t} dt \qquad \omega_o = \frac{2\pi}{T}$$

Fourier series expansion of periodic signals

 The complex exponential functions are periodic with period T

$$e^{jn\omega_o(t+T)} \equiv e^{jn\omega_o t} \cdot e^{jn\omega_o T}$$

$$= e^{jn\omega_o t} \cdot e^{jn\left(\frac{2\pi}{T}\right)T}$$

$$= e^{jn\omega_o t}$$

$$= e^{jn\omega_o t}$$

- The lower limit t_0 is arbitrary.
- It is often convenient to take t_0 equal to -T/2.
- The representation of the periodic signal converges in a mean square sense.

Periodic waveform

Symmetric square wave

$$f(t) = \begin{cases} 1 & |t| < T/4 \\ -1 & T/4 \le |t| < T/2 \end{cases}$$

Rectangular pulse train

$$f(t) = \begin{cases} 1 & |t| < \tau/2 \\ 0 & \tau/2 \le |t| < T/2 \end{cases}$$

$$Sa(x) = \sin(x) / x$$

$$F_n = \begin{cases} Sa(n\pi/2) & n \neq 0 \\ 0 & n = 0 \end{cases}$$

$$F_n = \frac{\tau}{T} Sa(n\pi\tau/T)$$

Symmetric triangular wave

$$f(t) = 1 - 4|t|/T$$
 $|t| < T/2$ $F_n = \begin{cases} Sa^2(n\pi/2) & n \neq 0 \\ 0 & n = 0 \end{cases}$

Half-wave rectified sinusoid

$$f(t) = \begin{cases} \sin \omega_o t & 0 \le t < T/2 \\ 0 & -T/2 \le t < 0 \end{cases} \qquad F_n = \begin{cases} \frac{1}{\pi(1-n^2)} & n \text{ even} \\ \frac{1}{\pi j/4} & n = \pm 1 \\ 0 & \text{otherwise} \end{cases}$$

Example

Consider a rectangular pulse train $f(t) = \begin{cases} 1 & |t| < 0.1 \\ 0 & 0.1 \le |t| < 0.5 \end{cases}$

$$f(t) = \sum_{n=-\infty}^{\infty} \frac{1}{5} Sa\left(\frac{n\pi}{5}\right) e^{j4n\pi t}$$

$$f(t) = \sum_{n=-2}^{2} \frac{1}{5} Sa\left(\frac{n\pi}{5}\right) e^{j4n\pi t}$$

$$f(t) = \sum_{n=-10}^{10} \frac{1}{5} Sa\left(\frac{n\pi}{5}\right) e^{j4n\pi t}$$

Fourier series.16

$$f(t) = \sum_{n=-100}^{100} \frac{1}{5} Sa\left(\frac{n\pi}{5}\right) e^{j4n\pi t}$$

Parseval's theorem

The average power of a signal can be calculated by summing the square of the magnitude of the Fourier coefficients.

The average power developed across a 1Ω resistance is

$$P = \frac{1}{T} \int_{-T/2}^{T/2} f(t) f^{*}(t) dt$$
 * denotes complex conjugate

$$= \frac{1}{T} \int_{-T/2}^{T/2} \left| \sum_{m=-\infty}^{\infty} F_m e^{jm\omega_o t} \right| \left| \sum_{n=-\infty}^{\infty} F_n^* e^{-jn\omega_o t} \right| dt$$

$$= \sum_{n=-\infty}^{\infty} F_n^* \left\{ \sum_{m=-\infty}^{\infty} F_m \left[\frac{1}{T} \int_{-T/2}^{T/2} e^{j(m-n)\omega_o t} dt \right] \right\}$$

$$=\sum_{n=-\infty}^{\infty}F_{n}^{*}F_{n} \qquad \qquad :: \int_{-T/2}^{T/2}e^{j(m-n)\omega_{o}t}dt = \begin{cases} 0 & m \neq n \\ T & m = n \end{cases}$$

Parseval's theorem

Therefore, we have

$$P = \frac{1}{T} \int_{-T/2}^{T/2} |f(t)|^2 dt = \sum_{n=-\infty}^{\infty} |F_n|^2$$

Example

Determine the average power of $f(t)=2\sin 100t+\sin 200t$.

$$P = \frac{1}{T} \int_{-T/2}^{T/2} |f(t)|^2 dt$$

$$= \frac{1}{(2\pi/100)} \int_{-\pi/100}^{\pi/100} |2\sin 100t + \sin 200t|^2 dt$$

$$= 2W + 0.5W = 2.5W$$

The Fourier coefficients of f(t) are $F_1=-j$, $F_{-1}=j$, $F_2=-j/2$, $F_{-2}=j/2$, $F_n=0$ for other n.

Using Parseval's theorem,

$$P = \sum_{n=-\infty}^{\infty} |F_n|^2 = |F_1|^2 + |F_{-1}|^2 + |F_2|^2 + |F_{-2}|^2 = 1 + 1 + 0.25 + 0.25 = 2.5W$$

Power contained in 2sin100*t*

Power contained in sin200t

Steady-state response

$$f(t) \longrightarrow H(\omega) \longrightarrow g(t)$$

If the input signal to a linear time-invariant system $H(\omega)$ is $f(t) = Ae^{j(\omega_1 t + \phi_1)}$

the output is $\alpha(t) = 4H(\alpha) e^{j(\omega t)}$

$$g(t) = AH(\omega_1)e^{j(\omega t_1 + \phi_1)}$$

If the input signal is written as an exponential Fourier series,

$$f(t) = \sum_{n=-\infty}^{\infty} F_n e^{jn\omega_o t}$$

the output is
$$g(t) = \sum_{n=-\infty}^{\infty} H(n\omega_o) F_n e^{jn\omega_o t}$$

Steady-state response

Similarly, the input and output average powers are

$$P_f = \sum_{n=-\infty}^{\infty} \left| F_n \right|^2$$

$$P_{g} = \sum_{n=-\infty}^{\infty} \left| H(n\omega_{o}) \right|^{2} \left| F_{n} \right|^{2}$$

Example

Determine the output of a linear time-invariant system (lowpass filter) whose input and frequency transfer function are

The Fourier series of the input is
$$f(t) = \sum_{n=-\infty}^{\infty} \frac{\sin(n\pi/2)}{(n\pi/2)} e^{jn2\pi t}$$
 (refer to B.9)

and then the output is

$$g(t) = \sum_{n=-\infty}^{\infty} H(n\omega_o) F_n e^{jn2\pi t}$$

$$=\sum_{n=-\infty}^{\infty}H(2\pi n)\frac{\sin(n\pi/2)}{(n\pi/2)}e^{jn2\pi t}$$

$$\omega_{\circ} = 2\pi$$

$$=H(2\pi(0))\frac{\sin((0)\pi/2)}{((0)\pi/2)}e^{j(0)2\pi i}+H(2\pi(1))\frac{\sin((1)\pi/2)}{((1)\pi/2)}e^{j(1)2\pi i}$$

$$+H(2\pi(-1))\frac{\sin((-1)\pi/2)}{((-1)\pi/2)}e^{j(-1)2\pi t}+0$$

$$=1+\frac{2}{\pi}e^{j2\pi t}+\frac{2}{\pi}e^{-j2\pi t}$$

$$=1+\frac{4}{\pi}\cos 2\pi t$$

r series.25

Fourier spectrum

- The exponential Fourier series is composed of a summation of complex exponentials with the F_n representing the magnitudes and initial phase angles of the harmonically related rotating phasors. The resultant phasor is found by adding the individual phasors vectorially. However, the addition of a series of phasors of each instant of time turns out to be inconvenient way to describe a signal.
- Instead of looking at every instant of a signal, the Fourier coefficient is plot as a function of the frequency. This plot is called the Fourier spectrum (or simply spectrum) of f(t).

Fourier spectrum

- For a <u>periodic</u> signal, the Fourier spectrum exists only at $\omega = 0, \pm \omega_o, \pm 2\omega_o, \dots$. It is therefore a <u>discrete spectrum</u>, sometimes referred to as a <u>line spectrum</u>.
- In general, the F_n are complex-valued. To describe the coefficients then requires two graphs, the <u>magnitude</u> spectrum and phase spectrum.

Example

Consider a rectangular pulse train (refer to B.16-17)

– The Fourier series of f(t) and F_n are

$$f(t) = \sum_{n=-\infty}^{\infty} \frac{A\tau}{T} Sa(n\omega_o \tau/2) e^{jn\omega_o t} \qquad F_n = \frac{A\tau}{T} Sa(n\omega_o \tau/2)$$

$$-Sa(x) = \sin(x)/x$$

• the amplitude of the function oscillates, decaying in either direction of x and approaching zero as $|x| \to \infty$.

• The maximum value of this function occurs as x approaches zero, for $\sin(x)/x \to 1$ as $x \to 0$.

Spectrum

$$F_{n} = \frac{A\tau}{T} Sa(n\omega_{o}\tau/2)$$

$$= \frac{A\tau}{T} Sa(n\pi\tau/T) \qquad \because \omega_{o} = 2\pi/T$$

The pulse duration τ is fixed. When the period of the signal (T) increases,

- the amplitude of the spectrum decreases (amplitude = $A\tau/T$) and
- the spacing between lines decreases. (spacing = $2\pi/T$)

The shape of the spectrum is independent of the period (T).

Fourier series.30

The period *T* is fixed. If the pulse duration increases,

- the amplitude of the spectrum increases proportional to τ (amplitude = $A\tau/T$) and
- the frequency content of the signal is compressed within an increasingly narrower range of frequencies (inverse relationship between pulse with in time and the frequency 'spread' of the spectrum)

Frequency Spectrum of Electronic Signals

- Nonrepetitive signals have continuous spectra often occupying a broad range of frequencies
- Fourier theory tells us that repetitive signals are composed of a set of sinusoidal signals with distinct amplitude, frequency, and phase.
- The set of sinusoidal signals is known as a Fourier series.
- The frequency spectrum of a signal is the amplitude and phase components of the signal versus frequency.

Frequencies of Some Common Signals

	Auc	lible	sounds	ŝ
--	-----	-------	--------	---

Baseband TV

FM Radio

Television (Channels 2-6)

Television (Channels 7-13)

Maritime and Govt. Comm.

Cell phones

Satellite TV

20 Hz - 20 KHz

0 - 4.5 MHz

88 - 108 MHz

54 - 88 MHz

174 - 216 MHz

216 - 450 MHz

1710 - 2690 MHz

3.7 - 4.2 GHz