
1

Process State

• As a process executes, it changes state

– new: The process is being created.

– running: Instructions are being executed.

– waiting: The process is waiting for some event to
occur.

– ready: The process is waiting to be assigned to a
process.

– terminated: The process has finished execution

2

Diagram of Process State

3

Process Control Block (PCB)

Information associated with each process.

• Process state

• Program counter

• CPU registers

• CPU scheduling information

• Memory-management information

• Accounting information

• I/O status information

4

Process Control Block (PCB)

5

CPU Switch From Process to Process

6

Scheduling Queues

• Job queue – set of all processes in the system.

• Ready queue – set of all processes residing in
main memory, ready and waiting to execute.

• Device queues – set of processes waiting for
an I/O device.

• Process migration between the various
queues.

7

Ready Queue And Various I/O Device Queues

8

Representation of Process Scheduling

9

Schedulers

• Long-term scheduler (or job scheduler) –
selects which processes should be brought
into the ready queue.

• Short-term scheduler (or CPU scheduler) –
selects which process should be executed next
and allocates CPU.

• The mid-term scheduler, present in all systems with virtual
memory, temporarily removes processes from main
memory and places them on secondary memory (such as a
disk drive) or vice versa. This is commonly referred to as
"swapping out" or "swapping in" (also incorrectly as
"paging out" or "paging in"). The mid-term scheduler may
decide to swap out a process which has not been active for
some time, or a process which has a low priority, or a
process which is page faulting frequently, or a process
which is taking up a large amount of memory in order to
free up main memory for other processes, swapping the
process back in later when more memory is available, or
when the process has been unblocked and is no longer
waiting for a resource. [Stallings, 396] [Stallings, 370]

• In many systems today (those that support mapping virtual
address space to secondary storage other than the swap
file), the mid-term scheduler may actually perform the role
of the long-term scheduler.

http://en.wikipedia.org/wiki/Virtual_memory
http://en.wikipedia.org/wiki/Virtual_memory
http://en.wikipedia.org/wiki/Paging
http://en.wikipedia.org/wiki/Page_fault

11

Addition of Medium Term Scheduling

12

Schedulers (Cont.)

• Short-term scheduler is invoked very frequently
(milliseconds) (must be fast).

• Long-term scheduler is invoked very infrequently
(seconds, minutes) (may be slow).

• The long-term scheduler controls the degree of
multiprogramming.

• Processes can be described as either:
– I/O-bound process – spends more time doing I/O than

computations, many short CPU bursts.

– CPU-bound process – spends more time doing
computations; few very long CPU bursts.

5: CPU-Scheduling 13

What Is In This Chapter?

• This chapter is about how to get a process attached to a processor.

• It centers around efficient algorithms that perform well.

• The design of a scheduler is concerned with making sure all users get their fair

share of the resources.

CPU Scheduling

5: CPU-Scheduling 14

What Is In This Chapter?

• Basic Concepts

• Scheduling Criteria

• Scheduling Algorithms

• Multiple-Processor Scheduling

• Real-Time Scheduling

• Thread Scheduling

• Operating Systems Examples

• Java Thread Scheduling

• Algorithm Evaluation

CPU Scheduling

5: CPU-Scheduling 15

CPU SCHEDULING Scheduling
Concepts

Multiprogramming A number of programs can be in

memory at the same time. Allows overlap of CPU and I/O.

Jobs (batch) are programs that run

without user interaction.

User (time shared) are programs that

may have user interaction.

Process is the common name for both.

CPU - I/O burst cycle Characterizes process execution,

which alternates, between CPU and I/O activity. CPU times

are generally much shorter than I/O times.

Preemptive Scheduling An interrupt causes currently

running process to give up the CPU and be replaced by

another process.

5: CPU-Scheduling 16

CPU SCHEDULING The Scheduler

 Selects from among the processes in memory that are ready to execute, and allocates
the CPU to one of them

 CPU scheduling decisions may take place when a process:

1. Switches from running to waiting state

2. Switches from running to ready state

3. Switches from waiting to ready

4. Terminates

 Scheduling under 1 and 4 is nonpreemptive

 All other scheduling is preemptive

5: CPU-Scheduling 17

CPU SCHEDULING The Dispatcher

 Dispatcher module gives control of the CPU to the process selected by the short-

term scheduler; this involves:

switching context

switching to user mode

jumping to the proper location in the user program to restart that program

 Dispatch latency – time it takes for the dispatcher to stop one process and start

another running

5: CPU-Scheduling 18

Note usage of the words DEVICE, SYSTEM, REQUEST, JOB.

UTILIZATION The fraction of time a device is in use. (ratio of in-use time / total
observation time)

THROUGHPUT The number of job completions in a period of time. (jobs / second)

SERVICE TIME The time required by a device to handle a request. (seconds)

QUEUEING TIME Time on a queue waiting for service from the device. (seconds)

RESIDENCE TIME The time spent by a request at a device.

 RESIDENCE TIME = SERVICE TIME + QUEUEING TIME.

RESPONSE TIME Time used by a system to respond to a User Job. (seconds)

THINK TIME The time spent by the user of an interactive system to figure out the

next request. (seconds)

The goal is to optimize both the average and the amount of variation. (but beware the
ogre predictability.)

CPU SCHEDULING
Criteria For

Performance
Evaluation

19

Performance Criteria

• CPU utilization – keep the CPU as busy as possible

• Throughput – # of processes that complete their execution
per time unit

• Turnaround time – amount of time to execute a particular
process

• Waiting time – amount of time a process has been waiting in
the ready queue

• Response time – amount of time it takes from when a request
was submitted until the first response is produced, not output
(for time-sharing environment)

5: CPU-Scheduling 20

Most Processes Don’t Use Up Their Scheduling Quantum!

CPU SCHEDULING
Scheduling Behavior

5: CPU-Scheduling 21

FIRST-COME, FIRST SERVED:

 (FCFS) same as FIFO

 Simple, fair, but poor performance. Average queueing time may be long.

 What are the average queueing and residence times for this scenario?

 How do average queueing and residence times depend on ordering of these
processes in the queue?

CPU SCHEDULING Scheduling
Algorithms

22

First-Come, First-Served (FCFS) Scheduling

Process Burst Time
 P1 24
 P2 3
 P3 3

• Suppose that the processes arrive in the order: P1 , P2 , P3
The Gantt Chart for the schedule is:

• Waiting time for P1 = 0; P2 = 24; P3 = 27
• Average waiting time: (0 + 24 + 27)/3 = 17

P1 P2 P3

24 27 30 0

23

FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order

 P2 , P3 , P1 .

• The Gantt chart for the schedule is:

• Waiting time for P1 = 6; P2 = 0; P3 = 3

• Average waiting time: (6 + 0 + 3)/3 = 3

• Much better than previous case.

• Convoy effect short process behind long process

P1 P3 P2

6 3 30 0

24

Shortest-Job-First (SJR) Scheduling

• Associate with each process the length of its next
CPU burst. Use these lengths to schedule the
process with the shortest time.

• Two schemes:
– nonpreemptive – once CPU given to the process it cannot

be preempted until completes its CPU burst.
– preemptive – if a new process arrives with CPU burst

length less than remaining time of current executing
process, preempt. This scheme is know as the
Shortest-Remaining-Time-First (SRTF).

• SJF is optimal – gives minimum average waiting time
for a given set of processes.

25

Example of Non-Preemptive SJF

Process Arrival Time Burst Time

 P1 0.0 7

 P2 2.0 4

 P3 4.0 1

 P4 5.0 4

• SJF (non-preemptive)

• Average waiting time = (0 + 6 + 3 + 7)/4 - 4

P1 P3 P2

7 3 16 0

P4

8 12

26

Example of Preemptive SJF

Process Arrival Time Burst Time

 P1 0.0 7

 P2 2.0 4

 P3 4.0 1

 P4 5.0 4

• SJF (preemptive)

• Average waiting time = (9 + 1 + 0 +2)/4 - 3

P1 P3 P2

4 2 11 0

P4

5 7

P2 P1

16

27

Determining Length of Next CPU Burst

• Can only estimate the length.

• Can be done by using the length of previous CPU
bursts, using exponential averaging.

:Define 4.

10 , 3.

burst CPU next the for value predicted 2.

burst CPU of lenght actual 1.

 1n

th
n nt

28

Prediction of the Length of the Next CPU
Burst

29

Priority Scheduling

• A priority number (integer) is associated with each process

• The CPU is allocated to the process with the highest priority
(smallest integer highest priority).
– Preemptive

– nonpreemptive

• SJF is a priority scheduling where priority is the predicted next
CPU burst time.

• Problem Starvation – low priority processes may never
execute.

• Solution Aging – as time progresses increase the priority of
the process.

30

Round Robin (RR)

• Each process gets a small unit of CPU time (time quantum),
usually 10-100 milliseconds. After this time has elapsed, the
process is preempted and added to the end of the ready
queue.

• If there are n processes in the ready queue and the time
quantum is q, then each process gets 1/n of the CPU time in
chunks of at most q time units at once. No process waits
more than (n-1)q time units.

• Performance
– q large FIFO

– q small q must be large with respect to context switch, otherwise
overhead is too high.

31

Example of RR with Time Quantum = 20

Process Burst Time
 P1 53
 P2 17
 P3 68
 P4 24
• The Gantt chart is:

• Typically, higher average turnaround than SJF, but better response.

P1 P2 P3 P4 P1 P3 P4 P1 P3 P3

0 20 37 57 77 97 117 121 134 154 162

32

Time Quantum and Context Switch
Time

33

Turnaround Time Varies With The Time
Quantum

34

Multilevel Queue

• Ready queue is partitioned into separate queues:
foreground (interactive)
background (batch)

• Each queue has its own scheduling algorithm,
foreground – RR
background – FCFS

• Scheduling must be done between the queues.
– Fixed priority scheduling; (i.e., serve all from foreground then from

background). Possibility of starvation.

– Time slice – each queue gets a certain amount of CPU time which it
can schedule amongst its processes; i.e., 80% to foreground in RR

– 20% to background in FCFS

35

Multilevel Queue Scheduling

36

Multilevel Feedback Queue

• A process can move between the various queues;
aging can be implemented this way.

• Multilevel-feedback-queue scheduler defined by the
following parameters:
– number of queues

– scheduling algorithms for each queue

– method used to determine when to upgrade a process

– method used to determine when to demote a process

– method used to determine which queue a process will
enter when that process needs service

37

Example of Multilevel Feedback Queue

• Three queues:
– Q0 – time quantum 8 milliseconds
– Q1 – time quantum 16 milliseconds
– Q2 – FCFS

• Scheduling
– A new job enters queue Q0 which is served FCFS. When it

gains CPU, job receives 8 milliseconds. If it does not finish
in 8 milliseconds, job is moved to queue Q1.

– At Q1 job is again served FCFS and receives 16 additional
milliseconds. If it still does not complete, it is preempted
and moved to queue Q2.

38

Multilevel Feedback Queues

39

Algorithm Evaluation

• Deterministic modeling – takes a particular
predetermined workload and defines the
performance of each algorithm for that
workload.

• Queueing models

• Implementation

40

Evaluation of CPU Schedulers by Simulation

41

Solaris 2 Scheduling

42

Multiple-Processor Scheduling

• CPU scheduling more complex when multiple
CPUs are available.

• Homogeneous processors :Processors are
identical in their functionality.

• Load sharing is possible with homogenous
systems.

• Common ready queue for the processes and are scheduled
onto any available processor.

• Two scheduling approaches may be used:
• Each processor is self scheduling: Each processor examines

the common ready queue and selects a process to execute.
• Appoint one processor as a scheduler for the other

processor.
• Some system carry this structure one step further, by

having all scheduling decisions, I/O processing and other
system activities are handled by one single processor-the
master server. The other processors only execute user
code. This is asymmetric multiprocessing.

• Separate queue for each processor.

• In this case it may possible that one processor
is idle having empty queue while others are
very busy.

