
MYcsvtu Notes

www.mycsvtunotes.in

 Unit - 1

An Operating system is a program that manages the computer
hardware. It also provides a basis for application programs and acts

as an intermediary between a user of a computer and the computer

hardware.
 O.S. are designed to provide an environment in which a user

can easily interface with the computer to execute programs.

Components of a computer system : Computer system can be

divided roughly into four components : the hardware,the operating

system,the application programs and the users.

MYcsvtu Notes

www.mycsvtunotes.in

 The hardware - the central processing unit(CPU),the

memory and the input/output devices - provides the basic

computing resources. The application programs-such as word
processor,spreadsheets,compilers and web browsers.

The O.S. controls and coordinates the use of the hardware among
the various application programs for the various users.

The O.S. provides the means for the proper use of these resources
in the operation of the computer system.

Each O.S. is discussed with regard to the following aspects :

MYcsvtu Notes

www.mycsvtunotes.in

I. Processor scheduling

II. Memory management
III. I/O management

IV. File management

Types of O.S. :-

(a.) Batch Operating Systems: - Batch processing generally

requires the program, data and appropriate system commands to be

submitted together in the form of a job.
 Programs that do not require interaction and program with

long execution times may be served well by a batch operating

system. Ex :-payroll, forecasting, statistical analysis.

Scheduling in batch system is very simple. Jobs are typically

processed in the order of submission that is first-come first-served
fashion.

Memory Management in batch systems is also very simple.
Memory is usually divided into two areas. One of them is

permanently occupied by the resident portion of the operating

system, and the other is used to load transient programs for
execution. When the transient program terminates, a new program

is loaded into the same area of memory.

Batch systems often provide simple form of file management.
Since access to files is also serial, little protection and no

concurrency control of file access is required.

(b.) Multiprogramming Operating Systems :-

A multitasking operating system is distinguished by its ability to

support concurrent execution of two or more active processes.

MYcsvtu Notes

www.mycsvtunotes.in

Multitasking is usually implemented by maintaining code and data

of several processes in memory simultaneously.

Multiuser O.S. provides facilities for maintenance of individual

user environments, require user authentication for security and
protection, and provide per-user resource usage accounting.

Multitasking operation is one of the mechanisms that a
multiprogramming operating system employs in managing the

totality of computer-system resources, including processor,

memory and I/O devices. Multitasking operation without multiuse
support can be found in operating system of some advanced

personal computers and in real time system.

Multi-access O.S. allows simultaneous access to a computer

system through two or more terminals. An example is provided by

some dedicated transaction-processing system, such as airline
ticket reservation systems.

Multiprocessing or multiprocessor operating systems manage the
operation of computer systems that incorporate multiple

processors. Multiprocessor O.S. is multitasking system by

definition because they support simultaneous execution of multiple
tasks on different processors.

Time-Sharing Systems :- Time sharing is a logical extension of

multiprogramming. The CPU executes multiple jobs by switching
among them, but the switches occur so frequently that the users

can interact with each program while it is running.
 A time-shared OS allows many users to share the computer

simultaneously. Since each action or command in a time-shared

system tends to be short, only a little CPU time is needed for each
user. As the system switches rapidly from one user to the next,

each user is given the impression that the entire computer system is

dedicated to his use, even though it is being shared among many
users.

MYcsvtu Notes

www.mycsvtunotes.in

 Time-sharing systems must also provide a file system. The

file system resides on a collection of disks. Hence, disk
management must concurrent execution, which requires

sophisticated CPU-scheduling schemes.

Multiprocessor Systems :- multiprocessor system also known as

parallel systems have more than one processor in close
communication, sharing the computer bus, the clock, and

sometimes memory and peripheral devices.

multiprocessor systems have three main advantages :-

1. Increased throughput: By increasing the number of
processors, we hope to get more work done in less time.

2. Economy of scale : multiprocessor systems can save more

money than multiple single-processor systems, because they
can share peripherals, mass storage, and power supplies. If

several programs operate on the same set of data, it is

cheaper to store those data on one disk and to have all the
processor share them.

3. Increased reliability: If functions can be distributed properly

among several processors, then the failure of one processor
will not halt the system, only slow it down. If we have ten

processors and one fails, then each of the remaining

processors must pick up a share of the work of the failed
processor.

Distributed Operating Systems: A distributed computer system

is a collection of autonomous computer systems capable of
communication and cooperation via their hardware and software

interconnections. Distributed computer systems evolved from

computer networks in which a number of largely independent hosts
are connected by communication links and protocols.

MYcsvtu Notes

www.mycsvtunotes.in

Distributed OS usually provide the means for system-wide

sharing of resources, such as computational capacity, files, and I/O
devices. A distributed OS may facilitate access to remote

resources, communication with remote processes and distribution

of computations.
 Advantages:

• resource sharing

• computation speed-up

• reliability

• communication - e.g. email
 Applications - digital libraries, digital multimedia

Real-Time Systems: - A real time system is used when rigid

(inflexible) time requirements have been placed on the operation of

a processor or the flow of data. Thus, it is often used as a control
device in a dedicated application. Processing must be done within

the defined constraints or the system will fail.

 A primary objective of real-time system is to provide quick
response times. Sensors bring data to the computer. The computer

must analyze the data and possibly adjust controls to modify the

sensor inputs.
System that control scientific experiments, flight control,

medical imaging systems, industrial control system and certain

display systems are real-time systems.

Operating-system provides following functions that are helpful

to the user:

a. User interface - Almost all operating systems have a
user interface (UI) - Varies between Command-Line

(CLI), Graphics User Interface (GUI)

MYcsvtu Notes

www.mycsvtunotes.in

b. Program execution - The system must be able to load a

program into memory and to run that program.
c. I/O operations - A running program may require I/O,

which may involve a file or an I/O device.

d. File-system manipulation - The file system is of
particular interest. Obviously, programs need to read

and write files and directories, create and delete them,

search them.
e. Communications – Processes may exchange

information, on the same computer or between

computers over a network

 Communications may be via shared memory

or through message passing.
f. Error detection – OS needs to be constantly aware of

possible errors.

 May occur in the CPU and memory hardware, in

I/O devices, in user program

 For each type of error, OS should take the

appropriate action to ensure correct and

consistent computing

 Debugging facilities can greatly enhance the

user’s and programmer’s abilities to efficiently
use the system

g. Resource allocation - When multiple users or multiple
jobs running concurrently, resources must be allocated

to each of them

h. Accounting - To keep track of which users use how
much and what kinds of computer resources

i. Protection and security - The owners of information

stored in a multiuser or networked computer system
may want to control use of that information, concurrent

processes should not interfere with each other

MYcsvtu Notes

www.mycsvtunotes.in

 Protection involves ensuring that all access to
system resources is controlled

 Security of the system from outsiders, requires

user authentication.

TYPE OF SERVICES

User View

Operating system services are provided in many different ways.

Two method of providing services are
• system calls and

• system programs.

System Calls:

System calls provide the interface between a running program and
the operating system.

– Generally available as assembly-language instructions.

– Languages defined to replace assembly language for
systems programming allow system calls to be made

directly (e.g., C, C++)

Types of System Calls

• Process control
• File management

• Device management

• Information maintenance
• Communications

System Programs

MYcsvtu Notes

www.mycsvtunotes.in

• System programs provide a convenient environment for

program development and execution. The can be divided
into:

– File manipulation

– Status information
– File modification

– Programming language support

– Program loading and execution
– Communications

– Application programs

• Most users’ view of the operation system is defined by
system programs, not the actual system calls.

Operating System View

• The view of an operating system seen by the user is defined

mainly by the system programs particularly the command
interpreter.

• The interrupt driven nature of an operating system defines the

general structure. When an interrupt occurs, the hardware
transfers control to the operating system.

• Several different types of interrupts may occur:

• A system call
• An I/O device interrupt

• A program error

MYcsvtu Notes

www.mycsvtunotes.in

 Unit - 2

Process Scheduling :- A scheduler is an O.S. program that
selects the next job to be admitted for execution. The main

objective of scheduling is to increase CPU utilization and higher

throughput.
[throughput - is the amount of work accomplished in a given time

interval]

CPU scheduling is the basis of O.S. which supports
multiprogramming concepts.

Nonpreemptive Scheduling

A scheduling discipline is nonpreemptive if, once a process has

been given the CPU, the CPU cannot be taken away from that
process.

Preemptive Scheduling

A scheduling discipline is preemptive if, once a process has been

given the CPU can taken away.

Types of Scheduler :-

MYcsvtu Notes

www.mycsvtunotes.in

 Long-term scheduler (or job scheduler) –

 selects which processes should be brought into the ready

queue.
 load processes from secondary storage device into the

memory.

 invoked very infrequently (seconds, minutes); may be slow.
 controls the “degree of multiprogramming”(the no of

processes in memory).

 Short term scheduler (or CPU scheduler) -

 selects which process should execute next and allocates

CPU.
 invoked very frequently (milliseconds) - must be very fast

 Its main objective is maximize cpu requirement.

 Medium Term Scheduler

 swaps out process temporarily
 Balances load for better throughput.

MYcsvtu Notes

www.mycsvtunotes.in

Scheduling and Performance Criteria :-

 CPU utilization – keep the CPU as busy as possible

 Throughput – no of processes that complete their

execution per time unit

 Turnaround time – amount of time to execute a particular
process, It is sum of the periods spent waiting to get into

memory, waiting in the ready queue, CPU time and I/O
operations.

 (Turnaround Time = waiting time + processing time)

 Waiting time – amount of time a process has been waiting
in the ready queue

 (waiting time = Turnaround Time - processing time)

 Response time – amount of time it takes from when a

request was submitted until the first response is produced.
(not output for time-sharing environment)

Scheduling Algorithms :- CPU Scheduling deals with the

problem of deciding which of the processes in the ready queue is to

be allocated the CPU. A major division among scheduling
algorithms is that whether they support preemptive or non-

preemptive scheduling discipline.

Following are some scheduling algorithms : -

 FCFS Scheduling.

 SJF Scheduling.
 SRTF or SRTN Scheduling.

 Priority Scheduling.

 Round Robin Scheduling.
 Multilevel Queue Scheduling.

 Multilevel Feedback Queue Scheduling.

FCFS Scheduling :-

MYcsvtu Notes

www.mycsvtunotes.in

First-Come-First-Served algorithm is the simplest scheduling

algorithm. Processes are dispatched according to their arrival time
on the ready queue. Being a non-preemptive discipline, once a

process has a CPU, it runs to completion.

 FCFS scheduling is non-preemptive, there is a low rate of

components utilization and system throughput. Consider the
following example of three processes :

Process Burst Time

 P1 24

 P2 3

 P3 3

Suppose that the processes arrive in the order: P1 , P2 , P3

The Gantt Chart for the schedule is:

Waiting time for P1 = 0; P2 = 24; P3 = 27

Average waiting time: (0 + 24 + 27)/3 = 17

Avg. Turn around time = [(0+24) + (24+3) + (27+3)]/3

 = 81 / 3 = 27

Suppose that the processes arrive in the order : P2 , P3 , P1

The Gantt chart for the schedule is:

P1 P2 P3

24 27 30 0

MYcsvtu Notes

www.mycsvtunotes.in

* Waiting time for P1 = 6; P2 = 0; P3 = 3

* Average waiting time: (6 + 0 + 3)/3 = 3

Avg turn around time = [(6+24) + (0+3) + (3+3)]/3

 = 39/3 = 13

* Much better than previous case

Shortest-Job-First(SJF) Scheduling :- In SJF scheduling a

process is done on the basis of its having shortest execution time.

If two processes have the same CPU time, FCFS is used.

Threre are two schemes:

* nonpreemptive – once CPU given to the process it
cannot be preempted until completes its CPU burst

* preemptive – if a new process arrives with CPU burst

length less than remaining time of current executing

process, preempt. This scheme is know as the
Shortest-Remaining-Time-First (SRTF)

Example of Non-Preemptive SJF :

Process Arrival Time Burst Time

 P1 0.0 7

 P2 2.0 4

P1 P3 P2

6 3 30 0

MYcsvtu Notes

www.mycsvtunotes.in

 P3 4.0 1

 P4 5.0 4

Average waiting time =(0 + (8-2) + (7-4) + (12-5))/4

 = (0 + 6 + 3 + 7)/4 = 4

Avg turn around time = (7+ 10+4+11) / 4 = 32/4 = 8

Shortest Remaining Time First(SRTF or SRTN) Scheduling :

 The SRT is the preemtive counterpart(equal) of SJF and useful

in time-sharing environment.

 In SRT scheduling, the process with the smallest estimated run-
time to completion is run next, including new arrivals.

 The algorithm SRT has higher overhead than its counterpart

SJF.
 In this scheme, arrival of small processes will run almost

immediately. However, longer jobs have even longer mean

waiting time.

Example of Preemptive SJF or SRTF :

Process Arrival Time Burst Time

P1 0.0 7

P2 2.0 4

P1 P3 P2

7 3 16 0

P4

8 12

MYcsvtu Notes

www.mycsvtunotes.in

P3 4.0 1

P4 5.0 4

Average waiting time =((11-2) + (5-4) + 0 + (7-5))/4

 = (9 + 1 + 0 +2)/4 = 3

Avg turn around time = (16+5+1+6)/4 = 28/4 = 7

Question : consider four processes with the length of the CPU

burst time given in milliseconds :

Process Arrival Time Burst Time

P1 0 8

P2 1 4

P3 2 9

P4 3 5

 P1 p2 p4 p1 p3

 0 1 5 10 17
26

P1 P3 P2

4 2 11 0

P4

5 7

P2 P1

16

MYcsvtu Notes

www.mycsvtunotes.in

Average waiting time =((10-1) + (1-1) + (17-2) + (5-3))/4 =

(9+0+15+2)/4

 = 26/4 = 6.5 milliseconds

Avg turn around time = (17+4+24+7) / 4 = 52/4 = 13

Question : consider four processes with the length of the CPU
burst time given in milliseconds :

Process Arrival Time Burst Time

P1 0 20

P2 15 25

P3 30 10

P4 45 15

 P1 p2 p3 p2 p4

 0 20 30 40 55

70

waiting time for p1 = 0

waiting time for p2 = (20 – 15) + (40 – 30) = 15

waiting time for p3 = 0

waiting time for p4 = 10

Avg waiting time = (0 + 15 + 0 + 10) / 4 = 25/4 = 6.25

MYcsvtu Notes

www.mycsvtunotes.in

Priority Scheduling :- A priority is associated with each process

and the scheduler always picks up the highest priority process for
execution from the ready queue. Equal priority processes are

scheduled FCFS.

 Note that scheduling in terms of high and low priority , there

is no general agreement on whether 0 is the highest or lowest
priority. Here,we assume low numbers to represent high priority.

Comparison with SJF :

* SJF is a priority scheduling where priority is the predicted next

CPU burst time

* Problem Starvation – low priority processes may never execute

* Solution Aging – as time progresses increase the priority of the

process

Process Burst Time Priority

P1 10 3

P2 1 1

P3 2 4

MYcsvtu Notes

www.mycsvtunotes.in

P4 1 5

P5 5 2

 P2 p5 p1 p3 p4

 0 1 6 16 18 19

Average waiting time =(6 + 0 + 16 + 18 + 1)/5 = 41/5 = 8.2

Round Robin Scheduling :- This is designed especially for time-

sharing systems. It is similar to FCFS scheduling, but preemption
is added to switch between processes. A small unit of time, called a

“time quantum” is defined. A time quantum is generally from 10 to

100 milliseconds. The ready queue is treated as circular queue.

 New processes are added to the tail of the ready queue. If the
CPU burst of the currently running processes is longer than 1 time

quantum, the timer will go off and will cause an interrupt to the

operating system. A context switch will be executed, and the
process will be put at the tail of the ready queue.

The performance of the RR algorithm depends heavily on the size

of the time quantum. If the time quantum is very large, the RR

policy is the same as FCFS policy. If the time quantum is very
small, the RR approach is called processor sharing.

Example of RR with Time Quantum = 4

Process Burst Time

P1 24

MYcsvtu Notes

www.mycsvtunotes.in

P2 3

P3 3

 P1 p2 p3 p1 p1 p1 p1 p1

 0 4 7 10 14 18 22 26

30

Average waiting time =(6 + 4 + 7)/3 = 5.66 milliseconds.

Question : Example of RR with Time Quantum = 20

Process Burst Time

 P1 53

 P2 17

 P3 68

 P4 24

The Gantt chart is:

MYcsvtu Notes

www.mycsvtunotes.in

waiting time for p1 = 17+20+20+20+4 = 81

waiting time for p2 = 20

waiting time for p3 = 37+20+20+4+13 = 94
waiting time for p4 = 20+17+20+20+20 = 97

So, Average waiting time = (81+20+94+97)/4 = 73]]

Multilevel Queue Scheduling :-

[[A situation where processes are easily classified into different

groups . for example, a common division is made between
foreground(interactive) processes and background(batch)

processes. These two types of processes have different response-
time requirements and might have different scheduling needs.

Foreground processes may have priority over background

processes

A multilevel queue-scheduling algorithm partitions the ready
queue into several separate queues. The processes are permanently

assigned to one queues. The processes are permanently assigned to

one queue, generally based on some property of the process, such
as memory size,process priority, or process type. Each queue has

its own scheduling algorithm, while the background queue is

scheduled by an FCFS algorithm.

P1 P2 P3 P4 P1 P3 P4 P1 P3 P3

0 20 37 57 77 97 117 121 134 154 162

MYcsvtu Notes

www.mycsvtunotes.in

In addition, there must be scheduling among the queues, which is

commonly implemented as fixed-priority preemptive scheduling.
For example, the foreground queue may have absolute priority

over the background queue.]]

 *Ready queue is partitioned into separate queues:

 >>foreground(interactive)

 >>background (batch)
* Each queue has its own scheduling algorithm

>>foreground – RR

>>background – FCFS
* Scheduling must be done between the queues

>>Fixed priority scheduling; (i.e., serve all from foreground

then from background). Possibility of starvation.
>>Time slice – each queue gets a certain amount of CPU

time which it can schedule amongst its processes; i.e., 80% to

foreground in RR
>>20% to background in FCFS

MYcsvtu Notes

www.mycsvtunotes.in

Multilevel Feedback Queue :- [[It allows a process to move

between queues. If a process uses too much CPU time, it will be

moved to a lower-priority queue. This scheme leaves I/O bound
and interactive processes in the higher-priority queues. Similarly, a

process that waits too long in a lower priority queue may be moved

to a higher-priority queue. This form of aging prevents starvation.
]]

 Multilevel Queue with priorities

 A process can move between the queues.

 Aging can be implemented this way.
 Parameters for a multilevel feedback queue scheduler:

MYcsvtu Notes

www.mycsvtunotes.in

 number of queues.

 scheduling algorithm for each queue.
 method used to determine when to upgrade a process.

 method used to determine when to demote(move down) a

process.
 method used to determine which queue a process will enter

when that process needs service.

MYcsvtu Notes

www.mycsvtunotes.in

Unit - 4

Memory Management

Contiguous Allocation

Contiguous Allocation means that each logical object is

placed in a set of memory location with strictly consecutive

addresses.

 The organization and management of main memory

has been one of the most important factors of O.S. design.

 Memory management is concerned with allocation of

main memory of united capacity to requesting processes.

No process can ever run before a certain amount of

memory is allocated to it.

 Two important features of Memory management

function are protection and sharing. An active process

should never attempt to access incorrectly and destroy the

contents of each other’s address space.

Bare Machine :- In this scheme, the user is provided with

the bare machine and has complete control over the entire

memory space. It provides maximum flexibility to the user.

The user can control the use of memory in whatever

manner desired.

 There is no need for special hardware for this

approach to memory management, Nor is there a need for

O.S s/w. This system has its limitation also.

 It is used only on dedicated systems where the users

require flexibility and simplicity.

MYcsvtu Notes

www.mycsvtunotes.in

Resident Monitor (Single Process Monitor) :-

The next simplest scheme is to divide memory into two

sections, one for the user and one for the resident monitor

of the O.S.

 It is more common to place the resident monitor in

low memory. It is primary approach for many current

microcomputer systems.

 In this type of approach , O.S. only keeps the track of

the first and the last location available for allocation of user

program.

A new program is loaded only when the O.S.

Passes a control to it. When this program is

Completed or terminated, the O.S. may load

Another program for execution.

 Protection is hardly supported by a

Single process monitor because only one process

Is in memory-resident at a time. A register also

Called “fence register” is set to the highest address

Occupied by O.S. code. A memory address generated by

user program is first compared with fence register’s

content. If the address is below the fence, it will be trapped

and denied permission.

 Operating System

 User Area

MYcsvtu Notes

www.mycsvtunotes.in

Limitation : less utilization of memory and CPU.

 Address a

 Trap, Addressing Error

Multiprogramming with fixed partitions :-

Depending upon how and when partitions are created, there may

be two types of memory partitioning

(i) static
(ii) Dynamic

Static partitioning implies that the division of memory into number

of partitions and its size is made in the beginning and remain fixed
there after.

 In dynamic partitioning the size and the number of partitions

are decided during the run time by the O.S.
 The basic approach here is to divide memory into several

fixed size partitions where each partition will accommodate only

one program for execution. The no. of programs (degree of

 CPU
Address

> fence

 memory

fence register

MYcsvtu Notes

www.mycsvtunotes.in

multiprogramming) residing in memory will be bound by the no.

of partitions.
 When a program terminates, that partition is free for another

program waiting in a queue.

 Once partitions are defined, an O.S. needs to keep track of
their status. Such as free or in use, for allocation purpose. Current

partition status and attributes are often collect in a data structure

called the “partition description table”. Each partition is described
by its starting address, size and status.

 The identity of the assigned partition may be recorded in the

process control block (PCB).
 0 0

 100 1

 2

 400
 3

 500

 4
 750

900 5

1000
 Static partition Partition

Description Table

Allocation of free partition :

The two most common strategies to allocate free partitions to ready

processes are :
(i) first fit

(ii) best fit

 First fit Best fit

1

The approach followed in

the first fit is to allocate

the first free partition large

The best fit approach on the

other hand allocates the

smallest free partition that

 0 K 100 K ALLOCATED

 100 K 300 K FREE

 400 K 100 K ALLOCATED

 500 K 250 K ALLOCATED

 750 K 150 K ALLOCATED

 900 K 100 K FREE

 O.S.

 Free

 Pi

 Pj

 Pk

 Free

MYcsvtu Notes

www.mycsvtunotes.in

enough to accommodate

the process.

meets the requirement of the

process.

2
The first fit terminates
after finding the first such

partition

The best fit continues
searching for the near exact

size

3

First fit execute faster The best fit achieves higher

utilization of memory by
searching the smallest free

partition.

Swapping :-

Def : Removing suspended or preempted processes from memory

and their subsequent bringing back is called swapping.

Wherever a new process is ready to be loaded into memory
and if no partition is free , swapping of processes between main

memory and secondary memory is done.

 One important issue concerning swapping is whether
the process removed temporarily from any partition should be

brought back to the same partition or any other partition of

adequate size. This is dependent upon partitioning policy.
 The swapper is an O.S. process whose major

responsibilities include
1. Selection of processes to swap out

2. Selection of processes to swap in

3. Allocation & management of swap space

Relocation :

The term program relocatability refers to the ability to load
and execute a given program into an arbitrary place in

memory, as opposed to a fixed set of locations specified at

program – translation time.

MYcsvtu Notes

www.mycsvtunotes.in

 There are two basic types of relocation

i. static relocation
ii. dynamic relocation

i. If the relocation is performed before or during the loading

of a program into memory by a relocating linker or a
relocating loader, the relocation approach is called static

relocation.

In system with static relocation a swapped-out process
must be swapped back into the same partition from which

it was evicted

ii. Dynamic relocation refers to run-time mapping of virtual
address into physical address with support of some

hardware mechanism such as base registers and limit

registers.

When a process is scheduled, the base register is loaded

with the starting address. Every memory address generated
automatically has the base register contents, added to it

before being sent to main memory.

 The value of base register obtained from relevant entry
of the partition description table.

 100000
 200

 100200
 Virtual address Physical Address

 CPU
 +

 MOVE R1, 200

 100000

MYcsvtu Notes

www.mycsvtunotes.in

 [Dynamic Relocation] Main Memory

Dynamic relocation makes it possible to move a partially executed

process from one area of memory into another without affecting its
ability to access instructions and data correctly in the new space.

Protection and Sharing :-

Multiprogramming introduces one essential problem of protection.

Not only that the O.S. must be protected from user processes but

each user process should also be protected from incorrectly
accessing the areas of other processes.

 In system that uses base register for relocation, a common

approach is to use limit register for protection. The primary

function of a limit register is to detect attempts to access memory
location beyond the boundary assigned by the O.S. When a

process is scheduled, the limit register is loaded with the highest

virtual address in a program.

 Base register 0

 User program address Yes

 No

 No Permission to access

 CPU
 +

 100000

<= limit

register

MYcsvtu Notes

www.mycsvtunotes.in

 Max Memory

A good memory management mechanism must also provide for

controlled sharing of data and code between cooperating processes.

There are three basic approaches to sharing in systems with fixed
partitioning of memory :-

1. Entrust shared objects to O.S.

2. Maintain multiple copies, one per participating partition of

shared objects
3. Use shared common memory partition.

One traditional approach to sharing is to place data and code in

a dedicated common partition.

Fixed Partitioning imposes several restriction :-

1. No single process may exceed the size of the largest partition

in a given system.
2. It does not support a system having dynamically data

structure such as linked list, stack, queues etc.

3. It limits the degree of multiprogramming which in turn may
reduce the effectiveness of short-term scheduling.

Multiprogramming with dynamic partitions :-

The main problem with fixed size partition is the wastage of

memory by programs that are smaller than their partitions (i.e.

internal fragmentation)

MYcsvtu Notes

www.mycsvtunotes.in

 A different memory management approach known as

dynamic partitions which creates partitions dynamically to meet
the requirements of each requesting process.

 When a process terminates or becomes swapped – out, the

memory manager can return the vacated space to the pool of free

memory areas from which partition allocations are made.

 Dynamic memory allocation improves memory utilization
but it also complicates the process of allocation and de-allocation

of memory.

Example :- Assume that we have 640 K main memory available

in which 40 K is occupied by operating system program. There
are 5 jobs waiting for memory allocation in a job queue.

 5 4 3 2 1 0

 200 150 100 250 200 O.S.

 40

 User Program

 640

Applying FCFS scheduling policy, process 1, process 2 and

process 3 can be immediately allocated in memory. Process 4 can

not be accommodated because there is only 600 – 550 = 50 left
for it.

 0

 40

 O.S.

 Process 1

 Process 2

 Process 3

MYcsvtu Notes

www.mycsvtunotes.in

 240

 490

 590

 640

Let us assume that Process 1 is terminated, releasing 200 K

memory space, next process 4 is swapped in memory.

 0 K 0

 40 K 40

 240 K 190

490 K 240

590 K 490

640 K 590

 640

After process 1, Process 3 gets terminated releasing 100 K
Memory, but Process 5 can not be accommodated due to external

fragmentation.

 After the swapping out of process 2, process 5 will be loaded

for execution.

 0 0

 O.S.

 Free

 Process 2

 Process 3

 Free 50 K

 O.S.

 Process 4

 Free 50 K

 Process 2

 Process 3

 Free

 O.S.

 Process 4

 Free 50 K

 O.S.

 Process 4

 Process 5

MYcsvtu Notes

www.mycsvtunotes.in

 40 40

190 190

240 390

490

640 640

One solution to this problem is compaction. It is possible to

combine all the free space into a large block by pushing all the
processes upward as far as possible.

0 0

40 40

240 240

270 340

370 410

390 530

460

500

620

640 640

(a) (b)

 O.S.

 Process 1 (200 K)

 Free 30 K

 Process 2 (100 K)

 Free 20 K

 Process 3 (70 K)

 Free 40 K

 Process 4 (120 K)

 Free 20 K

 O.S.

 Process 1 (200 K)

 Process 2 (100 K)

 Process 3 (70 K)

 Process 4 (120 K)

 Free 110 K

MYcsvtu Notes

www.mycsvtunotes.in

In diagram (a) there are 4 free spaces 30 K, 20 K, 40 K and 20 K

which have been compacted into one large area of 110 K.

 Compaction is usually not done because it consumes a lot of
CPU time. It is usually done on a large machine like mainframe or

super computer because they are supported with a special h/w to

perform this task.

Advantages of Dynamic Memory Allocation :-

 Memory utilization is generally better than fixed size partitions
are created accordingly to the size of process.

 It support processes whose memory requirement increase during

their execution. In that case O.S. creates a larger partition and
moves a process into it. If there is an adjacent free area it

simply expands it.

Disadvantages of D.M.A. :-

 Dynamic memory management requires lots of O.S. space,

time, complex memory management algorithm and
bookkeeping operation.

 Compaction time is very high.

Memory – Management (Non – Contiguous Allocation)

Non – Contiguous allocation means that memory is allocated in

such a way that parts of a single logical object may be placed in

non contiguous areas of physical memory.

MYcsvtu Notes

www.mycsvtunotes.in

Paging :

Paging is a memory management scheme that removes the

requirement of contiguous allocation of physical memory.

 The physical memory is conceptually divided into a number
of fixed-size slats, called page frames. The virtual-address space of

a process is also split into fixed-size blocks of the same size, called

pages. When a program is to be run, its pages are loaded into any
frame from the disk.

 Each virtual address is divided into two parts : the page

number (p) and offset d within that page.

 In paging system, address translation is performed with the

aid of a mapping table, called the page-ma table (PMT). [The
PMT is constructed at process loading time in order to establish the

correspondence between the virtual and physical addresses . for

convenience of mapping, page sizes are usually an integer power
of base 2, page sizes vary between 512 bytes and 8 K.B.]

 The PMT contains the base address of each page in physical

memory. This base address is combined with the page offset to

define the physical memory address.

 Logical address Physical

 address

 CPU p d

 f

 f d

MYcsvtu Notes

www.mycsvtunotes.in

Page frame

Number Offset

page

number Offset

 Base Address of

 Page Map Table

Hardware support for Paging :-

The main objectives for h/w support for paging is to store page

map table and make virtual to physical address translation. To
reduce the access time, the use of registers can be considered if the

no of entries in PMT is small. For keeping very large entries PMT

is kept in main memory and there is a “Page Table Base Register”
pointing to the beginning of PMT.

 If we store PMT in Main Memory than problem with this

approach is memory access time. The standard solution to this

problem is to store the complete page-map-table into an associative
memory also called “content addressable memory” or “look aside

memory”.

Page table-

base register

 b

 p

 b + p b

 Physical

 Address

 PMT

MYcsvtu Notes

www.mycsvtunotes.in

Sharing and Protection in a Paging system :-

In a multiprogramming environment, where several users want to

execute the same s/w, keeping a separate copy of the same for
individual users will cause wastage of much of primary memory.

 To implement sharing each page is identified as a sharable or

non-sharable. We can add “access-bits” in PMT entries.

 Sharing reduces the amount of primary storage needed for

several users to run efficiently and make it possible for a given
system to support more users.

Protection - Memory protection is usually done by protection bits

associated with each page. These bits are usually kept in the page

map table. One protection bit can define a page to be read/write or
a read only.

Thrashing :- The condition in which, process spends its more

time in paging than in execution, called thrashing. In order to

increasing CPU utilization, degree of multiprogramming is
increased, but if by increasing degree of multiprogramming, CPU

utilization is decreased then such a condition is called thrashing.

 The main reason for occurring thrashing is O.S. requires CPU

utilization and other is global page replacement policy.

Minimization of Thrashing :-

 A local replacement algorithm is used to limit the effect of
thrashing.

MYcsvtu Notes

www.mycsvtunotes.in

Segmentation :-

Segmentation is a memory management scheme which supports

programmer’s view of memory. Programmer’s think of their
programs as a collection of logically related entities, such as

subroutines, functions, global or local data areas, stack etc.

Segments are formed at program translation time by grouping

together logically related entities.

 Each segment in a program is numbered and referred to by a
segment number rather than a segment name.

subroutine

 function

 Global

 data

 area stack

 Local

 data

 area

MYcsvtu Notes

www.mycsvtunotes.in

 Virtual Address Segment - Table

 Seg. No Offset Seg No Base Add Size

 0

 1

 2

 3

 4

 Yes 6000 + 500

 0

 1000

 No 2000

 2500

 Segment Size 4000

 violation

 4800

 6000

 6500

 8000

 Physical Memory

A virtual address consist of two parts : a setment number and an
offset into that setgment. Each row of the segment table contains

a starting address(base address)

of segment and size of the segment.
 The offset of the virtual address must be within the size of

the segment.

If the offset of virtual address is not within the range, it is trapped
by the O.S. otherwise the offset is added to the base address of the

segment to produce physical address of the desired segment.

 CPU 2 500

 < +

4800 1200

2500 1500

6000 2000

1000 1000

4000 800

 O.S.

Segment 3

---Free---

Segment 1

Segment 4

Segment 0

Segment 2

MYcsvtu Notes

www.mycsvtunotes.in

H/W support for segmentation :-

 Segment Table Base Register

 Segment Table Limit Register

Sharing and Protection in a Segmented System :-

One of the advantage of segmentation over paging is that
segmentation over paging is that segments are allowed to be as

large as they require to be.

 A segment may increase and decrease in size as the data
structure itself increases and decreases.

 Protection of one segment from another segment is done
through protection bit.

 In a segmentation system once the segment is declared as

shared, then the size of data structured may increase or decrease
without changing the logical fact that they reside on a shared

segment.

Virtual – Memory

If the size of a job is larger than the available memory than it can

not be executed. Since it can not be loaded into memory entirely.
In such a case, concept of virtual memory is used.

 Virtual memory allows user to execute program larger than

size of available main memory.

Advantage of virtual Memory :-

1. Users would be able to write programs for very large virtual
address space.

2. Since each user utilizes less physical memory, more users

can keep their programs simultaneously which will cause
increase in CPU utilization and throughput.

MYcsvtu Notes

www.mycsvtunotes.in

3. Since a process may be loaded into a space of arbitrary size,

which in turn reduce external fragmentation.
There are two major techniques of virtual memory

concept –

(i) Demand Paging memory management
(ii) Demand segmentation memory management.

Demand Paging :-

In demand paging pages are loaded only on demand, not in
advance. It is similar to paging system with swapping feature.

Rather than swapping the entire program in memory, only those

pages are swapped which are required currently by the system.
 What will happen if the program tries to access a page that

was not swapped in memory ? In that case, page fault trap occurs.

List of steps O.S. follows in handling a page fault :-

1. If a process refers to a page which is not in the physical

memory, then an internal table kept with a process control
block is checked to verify whether a memory reference to a

page was valid or invalid.

2. If page was valid, but the page is missing, the process of
bringing a page into the physical memory starts.

3. Free Memory location is identified to bring a missing page

4. By reading a disk, the desired page is brought back into the
free memory location.

5. once a page is in the physical memory, the internal table kept
with the process and page map table is updated to indicate

that the page is now in memory.

6. Restart the instruction that was interrupted due to the missing
page.

MYcsvtu Notes

www.mycsvtunotes.in

Q : When do page fault occur ? describe the action taken by

the O.S. when a page fault occurs.

 secondary

 memory

 1.memory ref. 2. Page fault

4. missing page

 to a page is

brought

 6. Restart

 instruction

 CPU PMT

 3.
Free memory

location for
a page

Physical

Memory
 5. Update page map table

 O.S.

Load P

MYcsvtu Notes

www.mycsvtunotes.in

Page Replacement Algorithm

The first-in, first-out (FIFO) page replacement algorithm is low-

overhead algorithm which requires little bookkeeping on the part
of the operating system.

 The operating system keeps track of all the pages in memory in

a queue, with the most recent arrival at the back, and the earliest
arrival in front. When a page needs to be replaced, the page at the

front of the queue is selected, as it will be the oldest page.

Page Faults = 15

Number of pages (P) = 20

Number of page faults F = 15

Failure frequency = F/P = 15/20 = 75 %

http://en.wikipedia.org/wiki/Operating_system

MYcsvtu Notes

www.mycsvtunotes.in

Belady’s Anomaly:

It is observed that the no. of page fault for four frames is greater

than the no of faults for three frames. This result is known as
“Belady’s Anomaly”.

Optimal Replacement Algorithm (OPT) :

Replace that page which will not be used for the longest period of

time. An optimal algorithm would never suffer from

Virtual Memory

If the size of a job is larger than the available memory than it can

not be executed. Since it can not be loaded into memory entirely.

In such a case, concept of virtual memory is used.
 Virtual memory allows user to execute program larger than

size of available main memory.

Advantage of virtual Memory :-

4. Users would be able to write programs for very large virtual

address space.
5. Since each user utilizes less physical memory, more users

can keep their programs simultaneously which will cause

increase in CPU utilization and throughput.
6. Since a process may be loaded into a space of arbitrary size,

which in turn reduce external fragmentation.

MYcsvtu Notes

www.mycsvtunotes.in

There are two major techniques of virtual memory

concept –
(iii) Demand Paging memory management

(iv) Demand segmentation memory management.

Demand Paging :-

In demand paging pages are loaded only on demand, not in
advance. It is similar to paging system with swapping feature.

Rather than swapping the entire program in memory, only those

pages are swapped which are required currently by the system.
 What will happen if the program tries to access a page that

was not swapped in memory ? In that case, page fault trap occurs.

List of steps O.S. follows in handling a page fault :-

7. If a process refers to a page which is not in the physical

memory, then an internal table kept with a process control
block is checked to verify whether a memory reference to a

page was valid or invalid.

8. If page was valid, but the page is missing, the process of
bringing a page into the physical memory starts.

9. Free Memory location is identified to bring a missing page

10. By reading a disk, the desired page is brought back into
the free memory location.

11. once a page is in the physical memory, the internal

table kept with the process and page map table is updated to
indicate that the page is now in memory.

12. Restart the instruction that was interrupted due to the
missing page.

Q : When do page fault occur ? describe the action taken by

the O.S. when a page fault occurs.

MYcsvtu Notes

www.mycsvtunotes.in

 secondary

 memory

 1.memory ref. 2. Page fault

4. missing page

 to a page is

brought

 6. Restart

 instruction

 CPU PMT

 3.
Free memory

location for
a page

Physical

Memory
 5. Update page map table

 O.S.

Load P

MYcsvtu Notes

www.mycsvtunotes.in

 Unit - 3

Dead Lock

A deadlock is a situation where a group of processes are

permanently blocked as a result of each process having acquired a

subset of the resources needed for its completion and waiting for
release of the remaining resources held by others in the same

group.

 There are four necessary conditions for a deadlock to occur :-
1. Mutual Exclusion – only one process may use a shared

resource at a time.

2. Hold and wait – each process continues to hold resources
already allocated to it while waiting to acquire other

resources.

3. No preemption – No resources can be forcibly removed from
a process holding it.

4. Circular waiting – Deadlocked processes are involved in a

circular chain such that each process holds one or more
resources being requested by the next process in the chain.

All four conditions must be present for a deadlock to occur.

Most of the practical deadlock handling technique fall into one of

these three categories :
A. deadlock prevention

B. deadlock avoidance and

C. deadlock detection and recovery

(A) Deadlock prevention :- The basic philosophy of deadlock

prevention is to deny at least one of the four conditions for
deadlock.

MYcsvtu Notes

www.mycsvtunotes.in

 Now we examine techniques related to each of the four

conditions.
(1) Mutual exclusion: - we can not prevent deadlocks by

denying the mutual-exclusion condition. So we should

prevent one or more of the remaining three conditions.
(2) Hold & wait: - the hold & wait condition can be eliminated

by requiring a process to release all resources held by it

whenever it requests a resource that is not available.
There are basically two possible implementations of

this strategy :

(i) The process requests all needed resources prior to
commencement of execution.

(ii) The process requests resources incrementally in the

course of execution but releases all its resources
(holding upon encountering a denial) held by it

whenever it request a resource that is not available.

(3) No-preemption: - The no-preemption deadlock condition can
obviously be denied by allowing preemption. If the process

requests some resources, we first check whether they are

available. If they are, we allocate them. If they are not
available, we check whether they are allocated to some other

process that is waiting for additional resources. If so, we

preempt the desired resources from the waiting process and
allocate them to the requesting process.

(4) Circular wait: - one way to prevent the circular –wait

condition is by linear ordering of different types of system
resources.

In this approach, System resources are divided into
different classes Cj, where j = 1, 2 …n. Deadlocks are

prevented by requiring all processes to request and acquire

their resources in a strictly increasing order of the specified
system resource classes.

Once a process acquires a resource belonging to the

class Cj it can only request resources of class j+1 or higher
thereafter.

MYcsvtu Notes

www.mycsvtunotes.in

Linear ordering of resource classes eliminates the

possibility of circular waiting.

(B) Deadlock Avoidance :- A method for avoiding deadlocks is

to require additional information about how resources are to
be requested. The most useful model requires that each

process declare the maximum number of resources of each

type that it may need. So it is possible to construct an
algorithm that ensures that the system will never enter a

deadlock state.

The resource – allocation state is defined by the number of
available and allocated resources and the maximum

demands of the processes.

Safe state : A state is safe if the system can allocate resources to

each process in some order and still avoid a deadlock.

Banker’s Algorithm :

The name banker’s algorithm was suggested because this

algorithm could be used in a banking system to ensure that the

bank never allocates its available cash such that it can no longer
satisfy the needs of all its customers.

When a new process enters the system, it must declare the
maximum number of instances of each resources type that it may

need. This number may not exceed the total no. of resources in the
system. When a user requests a set of resources, the system must

determine whether the allocation of these resources will leave the

system in a safe state. If it will safe, the resources are allocated;
otherwise the process must wait until some other process releases

enough resources.

MYcsvtu Notes

www.mycsvtunotes.in

Some data structures must be maintained to implement the

banker’s algorithm. These data structures encode the state of the
resource-allocation system.

Available - A vector of length m indicating the number of
available resources of each type. If Available[j] = k, there are k

instances of resource type rj available.

Max - An n*m matrix defined the maximum demand of each

process. If Max[i,j] = k, then process pi may request at most k

instances of resource type rj.

Allocation – An n*m matrix defining the no of resources of each

type currently allocated to each process. If Allocation[i,j] = k, then
process pi is currently allocated k instances of resource type rj.

Need – An n*m matrix indicating the remaining resource need of
each process. If Need[i,j] = k, then process pi may need k more

instances of resource type rj, in order to complete its task.

Note that

 Need[i,j] = Max[i,j] – Allocation[i,j]

These data structure vary both in size and value as time progresses.

Resource – Request Algorithm :

Let Request i be the request vector for process p i. If Requesti [j] =
k then process pi wants k instances of resource type rj. When a

request for resources is made by process pi, the following actions

are taken :
1. If Requesti <= Needi then proceed to step 2. Otherwise we

have an error, since the process has exceeded its maximum

claim.

MYcsvtu Notes

www.mycsvtunotes.in

2. If Requesti <= Available then proceed to step3. Otherwise the

resources are not available, and pi must wait.
3. The system pretends to have allocated the requested

resources to process pi by modifying the state as follows

Available = Available - Requesti

Allocationi = Allocationi – Requesti

Needi = Needi – Requesti

If the resulting resources allocation state is safe, the transaction is

completed and process pi is allocated its resources. However, if the
new state is unsafe, then pi must wait for Requesti and the old

resource allocation state is restored.

Safety Algorithm :

1. Let Work and Finish be vectors of length m and n

respectively.
Initialize Work = Available and

 Finish[i] = false for i = 1,2,3,………n

2. Find an I such that
(a) Finish[i] = false, and

(b) Needi <= Work

If no such I exist, go to step 4

3. Work = Work + Allocationi
Finish[i] = true

Go to step 2

4. If Finish[i] = true for all I, then the system is in a safe state,

Otherwise system is in unsafe state.

MYcsvtu Notes

www.mycsvtunotes.in

Question :

 Allocation Max Available
 A B C A B C A B C

P0 0 1 0 7 5 3 3 3 2

P1 2 0 0 3 2 2
P2 3 0 2 9 0 2

P3 2 1 1 2 2 2

P4 0 0 2 4 3 3

Question :

 Allocation Max Available
 A B C A B C A B C

P0 4 1 2 1 0 2 2 2 0

P1 1 5 1 0 3 1 2 5 1
P2 1 2 3 1 0 2 3 5 3

4 5 5

(i) What is the state of system
 (a) Safe state (b) Unsafe state (c) can’t determine

(ii) What will be the state if process pi request for one unit of B.

(a) will be allocated (b) will not be given (c) none

Deadlock detection

MYcsvtu Notes

www.mycsvtunotes.in

If a system does not employ some protocol that ensures that no

deadlock will ever occur, then a detection & recovery scheme must
be implemented.

 An algorithm that examines the state of the system is

invoked periodically to determine whether a deadlock has
occurred. If so, the system must attempt to recover from the

deadlock. In order to do so the system must

(a) Maintain information about the current allocation of

resources as well as any outstanding resource

allocation requests.
(b) Provide an algorithm that utilizes this information to

determine whether the system has entered a deadlock

state.

The detection algorithm employs several time-varying data

structures that are similar to those used in banker’s algorithm :
Available –

Allocation –

Request –

The algorithm simply investigates every possible allocation for

the processes that remain to be completed.

1. Let Work and Finish be vectors of length m and n

respectively.

 Initialize Work = Available
 For I = 1,2,………n. If Allocation I =/ 0

 Then Finish[i] = false, Otherwise Finish[i] = true

2. Find an index I such that

a. Finish [i] = false and

b. Request I <= Work

MYcsvtu Notes

www.mycsvtunotes.in

 If no such i exists go to step 4

 3. Work = Work + Allocation i

 Finish [i] = true

 go to step 2.

3. If Finish [i] = false, for some i, 1<= i <= n, then the

system is in a deadlock state. Moreover, if Finish[i] = false
then process pi is deadlocked.

Recovery from deadlock

When a detection algorithm determines that a deadlock exists,

the system must recover from the deadlock. There are two
options for breaking a deadlock.

 One solution would be to simply true, kill one or more

processes in oreder to break the circular wait.
 The second option is to preempt some resources from

one or more of the deadlocked processes.

Process Termination :-

 In order to eliminate the deadlock by killing a process, two
methods can be utilized.

4. Kill all deadlocked processes
5. Kill one process at a time until the deadlock cycle is

eliminated

Combined Approached to deadlock handling :-

It has been argued that none of the presented approaches is suitable
for use as an exclusive method of handling of deadlocks in a

MYcsvtu Notes

www.mycsvtunotes.in

complex system. Instead, deadlock prevention, avoidance and

detection can be combined for maximum effectiveness. This can
be accomplished by dividing system resources into a collection of

disjoint classes, and by applying the most suitable method of

handling deadlocks to resources within each particular class.
 Consider a system with the following classes of resources :

1. Swapping space – an area of secondary storage designated
for backing up blocks of main memory.

2. Job resources - Such as printers and drivers with removable

media (tapes, cartridge disk, floppies)
3. Main Memory – assignable on a block basis, such as pages

or segments

4. Internal resources – such as I/O channels and slots of the
pool of dynamic memory.

MYcsvtu Notes

www.mycsvtunotes.in

Unit - 2

Principles of Concurrency :

Concurrency refer to a parallel execution of a program. A

concurrent program specifies two or more sequential programs that

may be executed concurrently as parallel processes.
Concurrent processing is the basis of operating system which

supports multiprogramming.

 Concurrent access to shared data may result in data

inconsistency

 Maintaining data consistency requires mechanisms to ensure

the
 orderly execution of cooperating processes.

Concurrency may arise in three different contexts :

• Multiple applications

– Multiprogramming
• Structured application

– Application can be a set of concurrent processes

• Operating-system structure
– Operating system is a set of processes or threads

Some key terms related to concurrency :

• Critical Section – The area of a program where a resource is

being used
• Deadlock – When two or more processes halt, unable to

proceed

• P1 is using A, needs B
• P2 is using B, needs A

MYcsvtu Notes

www.mycsvtunotes.in

• Mutual Exclusion – Making sure two processes can’t both

have a resource
• Race Condition – A situation in which multiple threads or

processes wants to read and write a shared data item at the

same time.
• Starvation – A process waits indefinitely for a resource

• P1 using A, P2 and P3 wait for A

• P2 gets A when P1 done
• P1 comes in, P1 and P3 wait for A

• InterProcess Communication – Concurrent cooperating
processes must communicate to each other for such purpose

as exchanging data, reporting progress etc. To prevent timing

errors, concurrent processes must synchronize their accessing
of shared memory.

Concurrency Requirements :-

• Mutual Exclusion must be enforced

– Only one process at a time may be accessing the critical
section

• A process can halt outside the critical section without harm

• No deadlock or starvation
• If no process is in a critical section, a process requesting entry

must be allowed to enter without delay

• No assumptions are made about relative process speeds or
number of processes

• A process remains inside its critical section for a limited
period of time

The Critical-Section Problem :

 N processes all competing to use shared data.

MYcsvtu Notes

www.mycsvtunotes.in

 Structure of process Pi ---- Each process has a code

segment, called the critical section, in which the
shared data is accessed.

 repeat
 entry section /* enter critical section */
 critical section /* access shared variables */

 exit section /* leave critical section */

 remainder section /* do other work */
 until false

 Problem

 Ensure that when one process is executing in its
critical section, no other process is allowed to execute

in its critical section.

Solution to Critical-Section Problem :

1. Mutual Exclusion - If process Pi is executing in its critical

section, then no other processes can be executing in their critical
sections.

2. Progress - If no process is executing in its critical section and
there exist some processes that wish to enter their critical section,

then the selection of the processes that will enter the critical

section next cannot be postponed indefinitely

3. Bounded Waiting - A bound must exist on the number of times
that other processes are allowed to enter their critical sections after

a process has made a request to enter its critical section and before

that request is granted.

Mutual Exclusion :-

MYcsvtu Notes

www.mycsvtunotes.in

Some way of making sure that if one process is executing in its

critical section the other processes will be excluded from doing the
same thing.

Algorithm to support mutual exclusion, this is applicable for two
process only:

Dekker’s algorithm :

var flag : array [0..1] of bollean;

 turn : 0..1

procedure P0;

begin

 repeat

 flag[0] := true;

 while flag[1] do if turn = 1 then

 begin

 flag[0] := false;

 while turn = 1 do {nothing};
 flag[0] := true;

 end;

 <critical section>;
 turn := 1;

 flag[0] := false;

 <remaining task>
 forever

end;

procedure P1;

begin

 repeat

 flag[1] := true;
 while flag[0] do if turn = 01 then

MYcsvtu Notes

www.mycsvtunotes.in

 begin

 flag[1] := false;
 while turn = 0 do {nothing};

 flag[1] := true;

 end;
 <critical section>;

 turn := 0;

 flag[1] := false;
 <remaining task>

 forever

end;

// parent process

begin

 flag[0] := false;
 flag[1] := false;

 turn := 1;

 parbegin
 P0;P1

 Parend

end.

Peterson’s algorithm for two processes :

var flag : array [0..1] of bollean;
 turn : 0..1

procedure P0;

begin

 repeat

 flag[0] := true;
 turn := 1;

MYcsvtu Notes

www.mycsvtunotes.in

 while flag[1] and turn = 1 do {nothing};

 <critical section>;
 flag[0] := false;

 <remaining task>

 forever
end;

procedure P1;

begin

 repeat

 flag[1] := true;
 turn := 0;

 while flag[0] and turn = 0 do {nothing};

 <critical section>;
 flag[1] := false;

 <remaining task>

 forever
end;

// parent process

begin

 flag[0] := false;

 flag[1] := false;
 turn := 1;

 parbegin

 P0;P1
 Parend

end.

Semaphores :

In previous topic, we discussed the mutual exclusion problem. The
solution we presented did not solve all the problem of mutual

exclusion. These algorithms works for two processes only and it

cannot be extended beyond that number.

MYcsvtu Notes

www.mycsvtunotes.in

To overcome this problem, a synchronization tool called

semaphore was proposed by Dijkstra which gained wide
acceptance in several OS.

Semaphore is a variable that has an integer value It may be
initialized to a nonnegative number.

A semaphore mechanism basically consists of the two primitive

operations SIGNAL and WAIT (originally defined as P and V by
Dijkstra), which operate on semaphore variable s.

We can implement semaphore in two ways :

1. Counting semaphore – integer value can range over an

unrestricted domain

2. Binary semaphore – integer value can range only between 0
and 1; Also known as mutex locks

Definition of counting semaphore primitives :

type semaphore = record

 count : integer;
 queue: list of processes;

end ;

var s : semaphore;

wait(s) :

 s.count := s.count – 1;
 if s.count < 0

 then begin
 place this process in s.queue;

 block this process;

 end;

signal(s) :

MYcsvtu Notes

www.mycsvtunotes.in

 s.count := s.count + 1;

 if s.count <=0
 then begin

 remove a process P from s.queue;

 place process P on ready list
 end;

Definition of binary semaphore primitives :

type binary semaphore = record
 value : (0,1);

 queue: list of processes;

end ;
var s : binary semaphore;

waitB(s) :

 if s.value = 1 then

 s.value = 0
 else begin

 place this process in s.queue;

 block this process;
 end;

signalB(s) :

 if s.queue is empty then
 s.value := 1

 else begin

 remove a process P from s.queue;
 place process P on ready list

 end;

MYcsvtu Notes

www.mycsvtunotes.in

Mutual Exclusion with Semaphore :

Module Sem-mutex

var bsem : semaphore; {binary semaphore}
process P1;

 begin

 while true do
 begin

 wait(bsem)

 Critical_section
 signal(bsem)

 <remaining P1 task>

 end
process P2;

 begin

 while true do
 begin

 wait(bsem)

 Critical_section
 signal(bsem)

 <remaining P2 task>

 end
process P3;

 begin

 while true do
 begin

 wait(bsem)
 Critical_section

 signal(bsem)

 <remaining P3 task>
 end

//parent process

 begin {Sem-mutex}
 bsem := 1 {free}

MYcsvtu Notes

www.mycsvtunotes.in

 initiate P1,P2,P3

 end;

The Producer/Consumer Problem (Bounded Buffer Problem)
:-

The general statement is this : One or more producers are
generating some type of data(records, characters) and placing these

in a buffer.

 A single consumer is taking items out of the buffer one at a
time. The system is to be constrained to prevent the overlap of

buffer operations. That is only one agent (producer or consumer)

may access the buffer at any one time.

On the other words, a consumer may absorb only produced items,

and must wait when no items are available. Producers on the other
hand, may produce items only when there are empty buffer slots to

receive them.

 N buffers, each can hold one item

 Semaphore mutex initialized to the value 1

 Semaphore full initialized to the value 0
 Semaphore empty initialized to the value N.

The structure of the producer process

 while (true)
 {

 // produce an item

 wait (empty);

 wait (mutex);

 // add the item to the buffer (critical section)

MYcsvtu Notes

www.mycsvtunotes.in

 signal (mutex);
 signal (full);

 }

The structure of the consumer process

while (true)

 {
 wait (full);

 wait (mutex);

 // remove an item from buffer (critical section)

 signal (mutex);
 signal (empty);

 // consume the removed item
 }

Reader/Writer Problem

A data object is to be shared among several concurrent processes.

Some of these processes may want only to read the content of the

shared object, while others may want to update the shared object.

MYcsvtu Notes

www.mycsvtunotes.in

 If two readers access the shared data object simultaneously,

no adverse effect will result, however, if a writer access the shared
object, problem may occur. This synchronization problem is

referred to as the reader-writer problem.

 We now examine two solutions to the problem.

(a) Readers have priority

Here the semaphore “wsem” is used to enforce mutual
exclusion. So long as one writer is accessing the shared data area,

no other writers and no readers may access it. (The reader process

also makes use of wsem to enforce mutual exclusion.)

To allow multiple readers, we require that when there are no
readers reading, subsequent readers need not wait before entering.

The global variable “readcount” is used to keep track of the

number of readers, and the semaphore x is used to assure that
readcount is updated properly.

program readersandwriters

var readcount : integer;

 x, wsem : semaphore (:=1)

procedure reader;

begin

 repeat
 wait(x);

 readcount = readcount + 1;

 if readcount = 1 then wait(wsem);
 signal(x);

 READUNIT;

 wait(x);
 readcount = readcount - 1;

MYcsvtu Notes

www.mycsvtunotes.in

 if readcount = 0 then signal(wsem);

 signal(x);
 forever

end;

procedure writer;

begin

 repeat

 wait(wsem);
 WRITEUNIT;

 signal(wsem);

 forever
end;

// Parent process

begin

 readcount = 0;
 parbegin

 reader;

 writer;
 parend;

end;

“A solution to the reader/writer problem by using semaphores”

UNIT V

Design principle

Goals

MYcsvtu Notes

www.mycsvtunotes.in

Based on market requirements and Microsoft's development strategy, the original

Microsoft NT design team established a set of prioritized goals. Note that from the outset,

the priority design objectives of the Windows NT operating system were robustness and

extensibility:

Robustness. The operating system must actively protect itself from internal malfunction

and external damage (whether accidental or deliberate), and must respond predictably to

software and hardware errors. The system must be straightforward in its architecture and

coding practices, and interfaces and behavior must be well- specified.

Extensibility and maintainability. Windows NT must be designed with the future in

mind. It must grow to meet the future needs of original equipment manufacturers (OEMs)

and Microsoft. And the system must be designed for maintainability, it must

accommodate changes and additions to the API sets it supports and the APIs should not

employ flags or other devices that drastically alter their functionality.

Portability. The system architecture must be able to function on a number of platforms

with minimal recoding.

Performance. Algorithms and data structures that lead to a high level of performance

and that provide the flexibility needed to achieve our other goals must be incorporated

into the design.

POSIX compliance and government certifiable C2 security. The POSIX standard calls

for operating system vendors to implement UNIX-style interfaces so that applications can

be moved easily from one system to another. U.S. government security guidelines specify

certain protections, such as auditing capabilities, access detection, per-user resource

quotas, and resource protection. Inclusion of these features would allow Windows NT to

be used in government operations.

Mechanisms and polices

A policy is a plan of action to guide decisions and actions. The term may apply to

government, private sector organizations and groups, and individuals. The policy process

includes the identification of different alternatives, such as programs or spending

priorities, and choosing among them on the basis of the impact they will have. Policies

can be understood as political, management, financial, and administrative mechanisms

arranged to reach explicit goals.

The separation of policy and mechanism is very important for flexibility. Policies are

likely to change from place to place or time to time. A general mechanism would be more

desirable.

Layered approach

MYcsvtu Notes

www.mycsvtunotes.in

 The operating system is divided into a number of layers (levels), each built on top

of lower layers. The bottom layer (layer 0), is the hardware; the highest (layer N)

is the user interface.

 With modularity, layers are selected such that each uses functions (operations)

and services of only lower-level layers.

An Operating System Layer

OS/2 Layer Structure

Virtual Machines

 A virtual machine takes the layered approach to its logical conclusion. It treats

hardware and the operating system kernel as though they were all hardware.

 A virtual machine provides an interface identical to the underlying bare hardware.

 The operating system creates the illusion of multiple processes, each executing on

its own processor with its own (virtual) memory.

 The resources of the physical computer are shared to create the virtual machines.

 CPU scheduling can create the appearance that users have their own processor.

 Spooling and a file system can provide virtual card readers and virtual line

printers.

 A normal user time-sharing terminal serves as the virtual machine operator’s

console.

System Models

MYcsvtu Notes

www.mycsvtunotes.in

Advantages/Disadvantages of Virtual Machines

 The virtual-machine concept provides complete protection of system resources

since each virtual machine is isolated from all other virtual machines. This

isolation, however, permits no direct sharing of resources.

 A virtual-machine system is a perfect vehicle for operating-systems research and

development. System development is done on the virtual machine, instead of on a

physical machine and so does not disrupt normal system operation.

 The virtual machine concept is difficult to implement due to the effort required to

provide an exact duplicate to the underlying machine.

Multiprocessor

A multiprocessor computer is one with more than one CPU. The category of

multiprocessor computers can be divided into the following sub-categories:

 shared memory multiprocessors have multiple CPUs, all with access to the

same memory. Communication between the the processors is easy to implement,

but care must be taken so that memory accesses are synchronized.

 distributed memory multiprocessors also have multiple CPUs, but each CPU

has it's own associated memory. Here, memory access synchronization is not a

problem, but communication between the processors is often slow and

complicated.

Related to multiprocessors are the following:

 networked systems consist of multiple computers that are networked together,

usually with a common operating system and shared resources. Users, however,

are aware of the different computers that make up the system.

 distributed systems also consist of multiple computers but differ from networked

systems in that the multiple computers are transparent to the user. Often there are

redundant resources and a sharing of the workload among the different computers,

but this is all transparent to the user.

System Implementation

MYcsvtu Notes

www.mycsvtunotes.in

1. Traditionally written in assembly language, operating systems can now be written

in higher-level languages.

2. Code written in a high-level language:

 can be written faster.

 is more compact.

 is easier to understand and debug.

3. An operating system is far easier to port (move to some other hardware) if it is

written in a high-level language.

System Generation (SYSGEN)

 Operating systems are designed to run on any of a class of machines; the

system must be configured for each specific computer site.

 SYSGEN program obtains information concerning the specific configuration

of the hardware system.

 Booting – starting a computer by loading the kernel.

 Bootstrap program – code stored in ROM that is able to locate the kernel,

load it into memory, and start its execution.

Distributed system

Motivation

1. Distributed system is collection of loosely coupled processors interconnected by

a communications network

2. Processors variously called nodes, computers, machines, hosts

 Site is location of the processor

3. Reasons for distributed systems

l Resource sharing

 sharing and printing files at remote sites

 processing information in a distributed database

 using remote specialized hardware devices

l Computation speedup – load sharing

l Reliability – detect and recover from site failure, function transfer,

reintegrate failed site

l Communication – message passing

Network Topology

1. Sites in the system can be physically connected in a variety of ways; they are

compared with respect to the following criteria:

MYcsvtu Notes

www.mycsvtunotes.in

o Basic cost - How expensive is it to link the various sites in the

system?

o Communication cost - How long does it take to send a

message from site A to site B?

o Reliability - If a link or a site in the system fails, can the

remaining sites still communicate with each other?

2. The various topologies are depicted as graphs whose nodes correspond to sites

 An edge from node A to node B corresponds to a direct

connection between the two sites

3. The following six items depict various network topologies

Communication Structure

The design of a communication network must address four basic issues:

 Naming and name resolution - How do two processes locate each other to

communicate?

 Routing strategies - How are messages sent through the network?

 Connection strategies - How do two processes send a sequence of messages?

 Contention - The network is a shared resource, so how do we resolve

conflicting demands for its use?

Naming and Name Resolution

 Name systems in the network

 Address messages with the process-id

 Identify processes on remote systems by

<host-name, identifier> pair

MYcsvtu Notes

www.mycsvtunotes.in

 Domain name service (DNS) – specifies the naming structure of the hosts, as

well as name to address resolution (Internet)

Routing Strategies

1. Fixed routing - A path from A to B is specified in advance; path changes only if a

hardware failure disables it

 Since the shortest path is usually chosen, communication costs are

minimized

 Fixed routing cannot adapt to load changes

 Ensures that messages will be delivered in the order in which they were

sent

2. Virtual circuit - A path from A to B is fixed for the duration of one session.

Different sessions involving messages from A to B may have different paths

l Partial remedy to adapting to load changes

l Ensures that messages will be delivered in the order in which they were

sent

Dynamic routing - The path used to send a message form site A to site B is chosen only

when a message is sent

 Usually a site sends a message to another site on the link least used

at that particular time

 Adapts to load changes by avoiding routing messages on heavily

used path

 Messages may arrive out of order

 This problem can be remedied by appending a sequence number to

each message

 Connection Strategies

1. Circuit switching - A permanent physical link is established for the duration of

the communication (i.e., telephone system)

2. Message switching - A temporary link is established for the duration of one

message transfer (i.e., post-office mailing system)

3. Packet switching - Messages of variable length are divided into fixed-length

packets which are sent to the destination

o Each packet may take a different path through the network

o The packets must be reassembled into messages as they arrive

4. Circuit switching requires setup time, but incurs less overhead for shipping each

message, and may waste network bandwidth

MYcsvtu Notes

www.mycsvtunotes.in

 Message and packet switching require less setup time, but incur more

overhead per message

Contention

Several sites may want to transmit information over a link simultaneously.

Techniques to avoid repeated collisions include:

1. CSMA/CD - Carrier sense with multiple access (CSMA); collision detection

(CD)

 A site determines whether another message is currently being

transmitted over that link. If two or more sites begin transmitting at

exactly the same time, then they will register a CD and will stop

transmitting

 When the system is very busy, many collisions may occur, and thus

performance may be degraded

2. CSMA/CD is used successfully in the Ethernet system, the most common network

system

3. Token passing - A unique message type, known as a token, continuously

circulates in the system (usually a ring structure)

 A site that wants to transmit information must wait until the token arrives

 When the site completes its round of message passing, it retransmits the token

 A token-passing scheme is used by some IBM and HP/Apollo systems

4. Message slots - A number of fixed-length message slots continuously circulate in

the system (usually a ring structure)

 Since a slot can contain only fixed-sized messages, a single logical

message may have to be broken down into a number of smaller

packets, each of which is sent in a separate slot

 This scheme has been adopted in the experimental Cambridge Digital

Communication Ring

Communication Protocol

The communication network is partitioned into the following multiple layers:

 Physical layer – handles the mechanical and electrical details of the physical

transmission of a bit stream

 Data-link layer – handles the frames, or fixed-length parts of packets,

including any error detection and recovery that occurred in the physical layer

 Network layer – provides connections and routes packets in the

communication network, including handling the address of outgoing packets,

MYcsvtu Notes

www.mycsvtunotes.in

decoding the address of incoming packets, and maintaining routing

information for proper response to changing load levels

 Transport layer – responsible for low-level network access and for message

transfer between clients, including partitioning messages into packets,

maintaining packet order, controlling flow, and generating physical addresses

 Session layer – implements sessions, or process-to-process communications

protocols

 Presentation layer – resolves the differences in formats among the various

sites in the network, including character conversions, and half duplex/full

duplex (echoing)

 Application layer – interacts directly with the users’ deals with file transfer,

remote-login protocols and electronic mail, as well as schemas for distributed

databases

Communication Via ISO Network Model

The ISO Protocol Layer

The ISO Network Message

MYcsvtu Notes

www.mycsvtunotes.in

The TCP/IP Protocol Layers

File Concept

1. Contiguous logical address space

2. Types:

 Data

 numeric

 character

 binary

 Program

File Structure

1. None - sequence of words, bytes

2. Simple record structure

 Lines

 Fixed length

 Variable length

3. Complex Structures

 Formatted document

 Relocatable load file

4. Can simulate last two with first method by inserting appropriate control characters

MYcsvtu Notes

www.mycsvtunotes.in

5. Who decides:

 Operating system

 Program

Modes of computation

 Sequential Access

 read next

 write next

 reset

 no read after last write

 (rewrite)

 Direct Access

 read n

 write n

 position to n

 read next

 write next

 rewrite n

 n = relative block number

Sequential-access File

Event Ordering

1. Happened-before relation (denoted by)

 If A and B are events in the same process, and A was executed before B, then A

B

 If A is the event of sending a message by one process and B is the event of

receiving that message by another process, then A B

 If A B and B C then A C

Relative Time for Three Concurrent Processes

MYcsvtu Notes

www.mycsvtunotes.in

Implementation of

1. Associate a timestamp with each system event

 Require that for every pair of events A and B, if A B, then the

timestamp of A is less than the timestamp of B

2. Within each process Pi a logical clock, LCi is associated

 The logical clock can be implemented as a simple counter that is

incremented between any two successive events executed within a

process

 Logical clock is monotonically increasing

3. A process advances its logical clock when it receives a message whose timestamp

is greater than the current value of its logical clock

4. If the timestamps of two events A and B are the same, then the events are

concurrent

 We may use the process identity numbers to break ties and to create a

total ordering

Synchronization

 Implements a variety of locks to support multitasking, multithreading

(including real-time threads), and multiprocessing.

 Uses adaptive mutexes for efficiency when protecting data from short

code segments.

 Uses condition variables and readers-writers locks when longer

sections of code need access to data.

 Uses turnstiles to order the list of threads waiting to acquire either an

adaptive mutex or reader-writer lock.

Deadlock handling

Deadlock Prevention

1. Resource-ordering deadlock-prevention – define a global ordering among the

system resources

 Assign a unique number to all system resources

 A process may request a resource with unique number i only if it is not

holding a resource with a unique number grater than i

MYcsvtu Notes

www.mycsvtunotes.in

 Simple to implement; requires little overhead

2. Banker’s algorithm – designate one of the processes in the system as the process

that maintains the information necessary to carry out the Banker’s algorithm

o Also implemented easily, but may require too much overhead

Timestamped Deadlock-Prevention Scheme

1. Each process Pi is assigned a unique priority number

2. Priority numbers are used to decide whether a process Pi should wait for a process

Pj; otherwise Pi is rolled back

3. The scheme prevents deadlocks

o For every edge Pi Pj in the wait-for graph, Pi has a higher priority than

Pj

o Thus a cycle cannot exist

Wait-Die Scheme

1. Based on a nonpreemptive technique

2. If Pi requests a resource currently held by Pj, Pi is allowed to wait only if it has a

smaller timestamp than does Pj (Pi is older than Pj)

a. Otherwise, Pi is rolled back (dies)

3. Example: Suppose that processes P1, P2, and P3 have timestamps t, 10, and 15

respectively

a. if P1 request a resource held by P2, then P1 will wait

b. If P3 requests a resource held by P2, then P3 will be rolled back

Would-Wait Scheme

1) Based on a preemptive technique; counterpart to the wait-die system

2) If Pi requests a resource currently held by Pj, Pi is allowed to wait only if it has a

larger timestamp than does Pj (Pi is younger than Pj). Otherwise Pj is rolled back (Pj

is wounded by Pi)

3) Example: Suppose that processes P1, P2, and P3 have timestamps 5, 10, and 15

respectively

a) If P1 requests a resource held by P2, then the resource will be preempted from P2

and P2 will be rolled back

b) If P3 requests a resource held by P2, then P3 will wait

Two Local Wait-For Graphs

MYcsvtu Notes

www.mycsvtunotes.in

Global Wait-For Graph

Deadlock Detection – Centralized Approach

1) Each site keeps a local wait-for graph

a) The nodes of the graph correspond to all the processes that are currently either

holding or requesting any of the resources local to that site

2) A global wait-for graph is maintained in a single coordination process; this graph is

the union of all local wait-for graphs

3) There are three different options (points in time) when the wait-for graph may be

constructed:

1. Whenever a new edge is inserted or removed in one of the local wait-for graphs

2. Periodically, when a number of changes have occurred in a wait-for graph

3. Whenever the coordinator needs to invoke the cycle-detection algorithm

 Unnecessary rollbacks may occur as a result of false cycles

 Append unique identifiers (timestamps) to requests form different sites

 When process Pi, at site A, requests a resource from process Pj, at site

B, a request message with timestamp TS is sent

 The edge Pi Pj with the label TS is inserted in the local wait-for of

A. The edge is inserted in the local wait-for graph of B only if B has

received the request message and cannot immediately grant the

requested resource

The Algorithm

The controller sends an initiating message to each site in the system

2. On receiving this message, a site sends its local wait-for graph to the coordinator

3. When the controller has received a reply from each site, it constructs a graph as

follows:

MYcsvtu Notes

www.mycsvtunotes.in

(a) The constructed graph contains a vertex for every process in the system

(b) The graph has an edge Pi Pj if and only if

(1) there is an edge Pi Pj in one of the wait-for graphs, or

(2) an edge Pi Pj with some label TS appears in more than one

wait-for graph

If the constructed graph contains a cycle deadlock

Local and Global Wait-For Graphs

Election Algorithms

 Determine where a new copy of the coordinator should be restarted

 Assume that a unique priority number is associated with each active process in the

system, and assume that the priority number of process Pi is i

 Assume a one-to-one correspondence between processes and sites

 The coordinator is always the process with the largest priority number. When a

coordinator fails, the algorithm must elect that active process with the largest

priority number

 Two algorithms, the bully algorithm and a ring algorithm, can be used to elect a

new coordinator in case of failures

Bully Algorithm

 Applicable to systems where every process can send a message to every other

process in the system

 If process Pi sends a request that is not answered by the coordinator within a time

interval T, assume that the coordinator has failed; Pi tries to elect itself as the new

coordinator

 Pi sends an election message to every process with a higher priority number, Pi

then waits for any of these processes to answer within T

 If no response within T, assume that all processes with numbers greater than i

have failed; Pi elects itself the new coordinator

 If answer is received, Pi begins time interval T´, waiting to receive a message that

a process with a higher priority number has been elected

MYcsvtu Notes

www.mycsvtunotes.in

 If no message is sent within T´, assume the process with a higher number has

failed; Pi should restart the algorithm

 If Pi is not the coordinator, then, at any time during execution, Pi may receive one

of the following two messages from process Pj

 Pj is the new coordinator (j > i). Pi, in turn, records this information

 Pj started an election (j > i). Pi, sends a response to Pj and begins its own

election algorithm, provided that Pi has not already initiated such an election

 After a failed process recovers, it immediately begins execution of the same

algorithm

 If there are no active processes with higher numbers, the recovered process forces

all processes with lower number to let it become the coordinator process, even if

there is a currently active coordinator with a lower number

Ring Algorithm

 Applicable to systems organized as a ring (logically or physically)

 Assumes that the links are unidirectional, and that processes send their messages

to their right neighbors

 Each process maintains an active list, consisting of all the priority numbers of all

active processes in the system when the algorithm ends

 If process Pi detects a coordinator failure, I creates a new active list that is

initially empty. It then sends a message elect(i) to its right neighbor, and adds the

number i to its active list

 If Pi receives a message elect(j) from the process on the left, it must respond in

one of three ways:

o If this is the first elect message it has seen or sent, Pi creates a new active

list with the numbers i and j

 It then sends the message elect(i), followed by the message elect(j)

o If i j, then the active list for Pi now contains the numbers of all the

active processes in the system

 Pi can now determine the largest number in the active list to

identify the new coordinator process

o If i = j, then Pi receives the message elect(i)

 The active list for Pi contains all the active processes in the system

 Pi can now determine the new coordinator process.

Reaching Agreement

1) There are applications where a set of processes wish to agree on a common “value”

2) Such agreement may not take place due to:

a) Faulty communication medium

b) Faulty processes

i) Processes may send garbled or incorrect messages to other processes

ii) A subset of the processes may collaborate with each other in an attempt to

defeat the scheme

MYcsvtu Notes

www.mycsvtunotes.in

Faulty Communications

1) Process Pi at site A, has sent a message to process Pj at site B; to proceed, Pi needs to

know if Pj has received the message

2) Detect failures using a time-out scheme

a) When Pi sends out a message, it also specifies a time interval during which it is

willing to wait for an acknowledgment message form Pj

b) When Pj receives the message, it immediately sends an acknowledgment to Pi

c) If Pi receives the acknowledgment message within the specified time interval, it

concludes that Pj has received its message

i) If a time-out occurs, Pj needs to retransmit its message and wait for an

acknowledgment

d) Continue until Pi either receives an acknowledgment, or is notified by the system

that B is down

3) Suppose that Pj also needs to know that Pi has received its acknowledgment message,

in order to decide on how to proceed

a) In the presence of failure, it is not possible to accomplish this task

b) It is not possible in a distributed environment for processes Pi and Pj to agree

completely on their respective states

Faulty Processes (Byzantine Generals Problem)

1) Communication medium is reliable, but processes can fail in unpredictable ways

2) Consider a system of n processes, of which no more than m are faulty

a) Suppose that each process Pi has some private value of Vi

3) Devise an algorithm that allows each nonfaulty Pi to construct a vector Xi = (Ai,1,

Ai,2, …, Ai,n) such that::

a) If Pj is a nonfaulty process, then Aij = Vj.

b) If Pi and Pj are both nonfaulty processes, then Xi = Xj.

4) Solutions share the following properties

a) A correct algorithm can be devised only if n 3 x m + 1

b) The worst-case delay for reaching agreement is proportionate to m + 1 message-

passing delays

UNIX SYSTEM

History

First developed in 1969 by Ken Thompson and Dennis Ritchie of the Research Group at

Bell Laboratories; incorporated features of other operating systems, especially

MULTICS.The third version was written in C, which was developed at BellLabs

specifically to support UNIX.The most influential of the non-Bell Labs and non-AT&T

UNIX development groups — University of California at Berkeley (Berkeley Software

Distributions).

 – 4BSD UNIX resulted from DARPA funding to develop a standard UNIX system for

government use.

MYcsvtu Notes

www.mycsvtunotes.in

 – Developed for the VAX, 4.3BSD is one of the most influential versions, and has been

ported to many other platforms.

UNIX Design Principles

 Designed to be a time-sharing system.

 Has a simple standard user interface (shell) that can be replaced.

 File system with multilevel tree-structured directories.

 Files are supported by the kernel as unstructured sequences of bytes.

 Supports multiple processes; a process can easily create new processes.

 High priority given to making system interactive, and providing facilities for

program development.

Programmer Interface

Like most computer systems, UNIX consists of two separable parts:

1) Kernel: everything below the system-call interface and above the physical hardware.

2) Provides file system, CPU scheduling, memory management, and other OS functions

through system calls.

3) System programs: use the kernel-supported system calls to provide useful functions,

such as compilation and file manipulation.

User Interface

Programmers and users mainly deal with already existing systems programs: the needed

system calls are embedded within the program and do not need to be obvious to the user.

The most common systems programs are file or directory

 – Directory: mkdir, rmdir, cd, pwd

 – File: ls, cp, mv, rm

Other programs relate to editors (e.g., emacs, vi) text formatters

(e.g., troff, TEX), and other activities.

File Manipulation

1) A file is a sequence of bytes; the kernel does not impose a structure on files.

2) Files are organized in tree-structured directories.

3) Directories are files that contain information on how to find other files.

4) Path name: identifies a file by specifying a path through the directory structure to the

file.

5) Absolute path names start at root of file system

6) Relative path names start at the current directory

7) System calls for basic file manipulation: create, open, read, write, close, unlink, trunc.

8) The UNIX file system supports two main objects: files and directories.

9) Directories are just files with a special format, so the representation of a file is the

basic UNIX concept.

MYcsvtu Notes

www.mycsvtunotes.in

Blocks and Fragments

Mos of the file system is taken up by data blocks.

4.2BSD uses two block sized for files which have no indirect blocks:

 – All the blocks of a file are of a large block size (such as 8K), except the last.

 – The last block is an appropriate multiple of a smaller fragment size (i.e., 1024) to fill

out the file.

 – Thus, a file of size 18,000 bytes would have two 8K blocks and one 2K fragment

(which would not be filled completely).

The block and fragment sizes are set during file-system creation according to the ntended

use of the file system:

 – If many small files are expected, the fragment size should be small.

 – If repeated transfers of large files are expected, the basic block size should be large.

The maximum block-to-fragment ratio is 8 : 1; the minimum block size is 4K (typical

choices are 4096 : 512 and 8192 :

1024).

Process Management

 Representation of processes is a major design problem for operating system.

 UNIX is distinct from other systems in that multiple processes can be created and

manipulated with ease.

These processes are represented in UNIX by various control blocks.

 – Control blocks associated with a process are stored in the kernel.

 – Information in these control blocks is used by the kernel for process control and CPU

scheduling.

Memory Management

 The initial memory management schemes were constrained in size by the

relatively small memory resources of the PDP machines on which UNIX was

developed.

 Pre 3BSD system use swapping exclusively to handle memory contention among

processes: If there is too much contention, processes are swapped out until

enough memory is available.

 Allocation of both main memory and swap space is done first-fit.

 required for multiple processes using the same text segment.

 The scheduler process (or swapper) decides which processes to swap in or out,

considering such factors as time idle, time in or out of main memory, size, etc.

 In f.3BSD, swap space is allocated in pieces that are multiples of power of 2 and

minimum size, up to a maximum size determined by the size or the swap-space

partition on the disk.

MYcsvtu Notes

www.mycsvtunotes.in

I/O System

The I/O system hides the peculiarities of I/O devices from the bulk of the kernel.

Consists of a buffer caching system, general device driver code, and drivers for specific

hardware devices.

Only the device driver knows the peculiarities of a specific device.

Interprocess Communication

 Most UNIX systems have not permitted shared memory because the PDP-11

hardware did not encourage it.

 The pipe is the IPC mechanism most characteristic of UNIX.

 – Permits a reliable unidirectional byte stream between two processes.

 – A benefit of pipes small size is that pipe data are seldom written to disk; they usually

are kept in memory by the normal block buffer cache.

 In 4.3BSD, pipes are implemented as a special case of the socket mechanism

which provides a general interface not only to facilities such as pipes, which are

local to one machine, but also to networking facilities.

Linux operating system
History

n Linux is a modern, free operating system based on UNIX standards

n First developed as a small but self-contained kernel in 1991 by Linus Torvalds,

with the major design goal of UNIX compatibility

n Its history has been one of collaboration by many users from all around the world,

corresponding almost exclusively over the Internet

n It has been designed to run efficiently and reliably on common PC hardware, but

also runs on a variety of other platforms

n The core Linux operating system kernel is entirely original, but it can run much

existing free UNIX software, resulting in an entire UNIX-compatible operating

system free from proprietary code

n Many, varying Linux Distributions including the kernel, applications, and

management tools

The Linux System

n Linux uses many tools developed as part of Berkeley’s BSD operating system,

MIT’s X Window System, and the Free Software Foundation's GNU project

n The min system libraries were started by the GNU project, with improvements

provided by the Linux community

n Linux networking-administration tools were derived from 4.3BSD code; recent

BSD derivatives such as Free BSD have borrowed code from Linux in return

n The Linux system is maintained by a loose network of developers collaborating

over the Internet, with a small number of public ftp sites acting as de facto

standard repositories

Design Principles

MYcsvtu Notes

www.mycsvtunotes.in

n Linux is a multiuser, multitasking system with a full set of UNIX-compatible

tools

n Its file system adheres to traditional UNIX semantics, and it fully implements the

standard UNIX networking model

n Main design goals are speed, efficiency, and standardization

n Linux is designed to be compliant with the relevant POSIX documents; at least

two Linux distributions have achieved official POSIX certification

n The Linux programming interface adheres to the SVR4 UNIX semantics, rather

than to BSD behavior

Components of a Linux System

n Like most UNIX implementations, Linux is composed of three main bodies of

code; the most important distinction between the kernel and all other components

n The kernel is responsible for maintaining the important abstractions of the

operating system

l Kernel code executes in kernel mode with full access to all the physical

resources of the computer

l All kernel code and data structures are kept in the same single address

space

MYcsvtu Notes

www.mycsvtunotes.in

UNIT V

Design principle

Goals

Based on market requirements and Microsoft's development strategy, the original

Microsoft NT design team established a set of prioritized goals. Note that from the outset,

the priority design objectives of the Windows NT operating system were robustness and

extensibility:

Robustness. The operating system must actively protect itself from internal malfunction

and external damage (whether accidental or deliberate), and must respond predictably to

software and hardware errors. The system must be straightforward in its architecture and

coding practices, and interfaces and behavior must be well- specified.

Extensibility and maintainability. Windows NT must be designed with the future in

mind. It must grow to meet the future needs of original equipment manufacturers (OEMs)

and Microsoft. And the system must be designed for maintainability, it must

accommodate changes and additions to the API sets it supports and the APIs should not

employ flags or other devices that drastically alter their functionality.

Portability. The system architecture must be able to function on a number of platforms

with minimal recoding.

Performance. Algorithms and data structures that lead to a high level of performance

and that provide the flexibility needed to achieve our other goals must be incorporated

into the design.

POSIX compliance and government certifiable C2 security. The POSIX standard calls

for operating system vendors to implement UNIX-style interfaces so that applications can

be moved easily from one system to another. U.S. government security guidelines specify

certain protections, such as auditing capabilities, access detection, per-user resource

quotas, and resource protection. Inclusion of these features would allow Windows NT to

be used in government operations.

Mechanisms and polices

A policy is a plan of action to guide decisions and actions. The term may apply to

government, private sector organizations and groups, and individuals. The policy process

includes the identification of different alternatives, such as programs or spending

priorities, and choosing among them on the basis of the impact they will have. Policies

can be understood as political, management, financial, and administrative mechanisms

arranged to reach explicit goals.

MYcsvtu Notes

www.mycsvtunotes.in

The separation of policy and mechanism is very important for flexibility. Policies are

likely to change from place to place or time to time. A general mechanism would be more

desirable.

Layered approach

 The operating system is divided into a number of layers (levels), each built on top

of lower layers. The bottom layer (layer 0), is the hardware; the highest (layer N)

is the user interface.

 With modularity, layers are selected such that each uses functions (operations)

and services of only lower-level layers.

An Operating System Layer

OS/2 Layer Structure

Virtual Machines

 A virtual machine takes the layered approach to its logical conclusion. It treats

hardware and the operating system kernel as though they were all hardware.

 A virtual machine provides an interface identical to the underlying bare hardware.

 The operating system creates the illusion of multiple processes, each executing on

its own processor with its own (virtual) memory.

 The resources of the physical computer are shared to create the virtual machines.

 CPU scheduling can create the appearance that users have their own processor.

MYcsvtu Notes

www.mycsvtunotes.in

 Spooling and a file system can provide virtual card readers and virtual line

printers.

 A normal user time-sharing terminal serves as the virtual machine operator’s

console.

System Models

Advantages/Disadvantages of Virtual Machines

 The virtual-machine concept provides complete protection of system resources

since each virtual machine is isolated from all other virtual machines. This

isolation, however, permits no direct sharing of resources.

 A virtual-machine system is a perfect vehicle for operating-systems research and

development. System development is done on the virtual machine, instead of on a

physical machine and so does not disrupt normal system operation.

 The virtual machine concept is difficult to implement due to the effort required to

provide an exact duplicate to the underlying machine.

Multiprocessor

A multiprocessor computer is one with more than one CPU. The category of

multiprocessor computers can be divided into the following sub-categories:

 shared memory multiprocessors have multiple CPUs, all with access to the

same memory. Communication between the the processors is easy to implement,

but care must be taken so that memory accesses are synchronized.

 distributed memory multiprocessors also have multiple CPUs, but each CPU

has it's own associated memory. Here, memory access synchronization is not a

problem, but communication between the processors is often slow and

complicated.

Related to multiprocessors are the following:

 networked systems consist of multiple computers that are networked together,

usually with a common operating system and shared resources. Users, however,

are aware of the different computers that make up the system.

 distributed systems also consist of multiple computers but differ from networked

systems in that the multiple computers are transparent to the user. Often there are

MYcsvtu Notes

www.mycsvtunotes.in

redundant resources and a sharing of the workload among the different computers,

but this is all transparent to the user.

System Implementation

1. Traditionally written in assembly language, operating systems can now be written

in higher-level languages.

2. Code written in a high-level language:

 can be written faster.

 is more compact.

 is easier to understand and debug.

3. An operating system is far easier to port (move to some other hardware) if it is

written in a high-level language.

System Generation (SYSGEN)

 Operating systems are designed to run on any of a class of machines; the

system must be configured for each specific computer site.

 SYSGEN program obtains information concerning the specific configuration

of the hardware system.

 Booting – starting a computer by loading the kernel.

 Bootstrap program – code stored in ROM that is able to locate the kernel,

load it into memory, and start its execution.

Distributed system

Motivation

1. Distributed system is collection of loosely coupled processors interconnected by

a communications network

2. Processors variously called nodes, computers, machines, hosts

 Site is location of the processor

3. Reasons for distributed systems

l Resource sharing

 sharing and printing files at remote sites

 processing information in a distributed database

 using remote specialized hardware devices

l Computation speedup – load sharing

l Reliability – detect and recover from site failure, function transfer,

reintegrate failed site

l Communication – message passing

MYcsvtu Notes

www.mycsvtunotes.in

Network Topology

1. Sites in the system can be physically connected in a variety of ways; they are

compared with respect to the following criteria:

o Basic cost - How expensive is it to link the various sites in the

system?

o Communication cost - How long does it take to send a

message from site A to site B?

o Reliability - If a link or a site in the system fails, can the

remaining sites still communicate with each other?

2. The various topologies are depicted as graphs whose nodes correspond to sites

 An edge from node A to node B corresponds to a direct

connection between the two sites

3. The following six items depict various network topologies

Communication Structure

The design of a communication network must address four basic issues:

 Naming and name resolution - How do two processes locate each other to

communicate?

 Routing strategies - How are messages sent through the network?

 Connection strategies - How do two processes send a sequence of messages?

 Contention - The network is a shared resource, so how do we resolve

conflicting demands for its use?

Naming and Name Resolution

MYcsvtu Notes

www.mycsvtunotes.in

 Name systems in the network

 Address messages with the process-id

 Identify processes on remote systems by

<host-name, identifier> pair

 Domain name service (DNS) – specifies the naming structure of the hosts, as

well as name to address resolution (Internet)

Routing Strategies

1. Fixed routing - A path from A to B is specified in advance; path changes only if a

hardware failure disables it

 Since the shortest path is usually chosen, communication costs are

minimized

 Fixed routing cannot adapt to load changes

 Ensures that messages will be delivered in the order in which they were

sent

2. Virtual circuit - A path from A to B is fixed for the duration of one session.

Different sessions involving messages from A to B may have different paths

l Partial remedy to adapting to load changes

l Ensures that messages will be delivered in the order in which they were

sent

Dynamic routing - The path used to send a message form site A to site B is chosen only

when a message is sent

 Usually a site sends a message to another site on the link least used

at that particular time

 Adapts to load changes by avoiding routing messages on heavily

used path

 Messages may arrive out of order

 This problem can be remedied by appending a sequence number to

each message

 Connection Strategies

1. Circuit switching - A permanent physical link is established for the duration of

the communication (i.e., telephone system)

2. Message switching - A temporary link is established for the duration of one

message transfer (i.e., post-office mailing system)

3. Packet switching - Messages of variable length are divided into fixed-length

packets which are sent to the destination

MYcsvtu Notes

www.mycsvtunotes.in

o Each packet may take a different path through the network

o The packets must be reassembled into messages as they arrive

4. Circuit switching requires setup time, but incurs less overhead for shipping each

message, and may waste network bandwidth

 Message and packet switching require less setup time, but incur more

overhead per message

Contention

Several sites may want to transmit information over a link simultaneously.

Techniques to avoid repeated collisions include:

1. CSMA/CD - Carrier sense with multiple access (CSMA); collision detection

(CD)

 A site determines whether another message is currently being

transmitted over that link. If two or more sites begin transmitting at

exactly the same time, then they will register a CD and will stop

transmitting

 When the system is very busy, many collisions may occur, and thus

performance may be degraded

2. CSMA/CD is used successfully in the Ethernet system, the most common network

system

3. Token passing - A unique message type, known as a token, continuously

circulates in the system (usually a ring structure)

 A site that wants to transmit information must wait until the token arrives

 When the site completes its round of message passing, it retransmits the token

 A token-passing scheme is used by some IBM and HP/Apollo systems

4. Message slots - A number of fixed-length message slots continuously circulate in

the system (usually a ring structure)

 Since a slot can contain only fixed-sized messages, a single logical

message may have to be broken down into a number of smaller

packets, each of which is sent in a separate slot

 This scheme has been adopted in the experimental Cambridge Digital

Communication Ring

Communication Protocol

The communication network is partitioned into the following multiple layers:

MYcsvtu Notes

www.mycsvtunotes.in

 Physical layer – handles the mechanical and electrical details of the physical

transmission of a bit stream

 Data-link layer – handles the frames, or fixed-length parts of packets,

including any error detection and recovery that occurred in the physical layer

 Network layer – provides connections and routes packets in the

communication network, including handling the address of outgoing packets,

decoding the address of incoming packets, and maintaining routing

information for proper response to changing load levels

 Transport layer – responsible for low-level network access and for message

transfer between clients, including partitioning messages into packets,

maintaining packet order, controlling flow, and generating physical addresses

 Session layer – implements sessions, or process-to-process communications

protocols

 Presentation layer – resolves the differences in formats among the various

sites in the network, including character conversions, and half duplex/full

duplex (echoing)

 Application layer – interacts directly with the users’ deals with file transfer,

remote-login protocols and electronic mail, as well as schemas for distributed

databases

Communication Via ISO Network Model

The ISO Protocol Layer

MYcsvtu Notes

www.mycsvtunotes.in

The ISO Network Message

The TCP/IP Protocol Layers

File Concept

1. Contiguous logical address space

2. Types:

 Data

 numeric

 character

 binary

 Program

File Structure

1. None - sequence of words, bytes

2. Simple record structure

 Lines

 Fixed length

 Variable length

3. Complex Structures

MYcsvtu Notes

www.mycsvtunotes.in

 Formatted document

 Relocatable load file

4. Can simulate last two with first method by inserting appropriate control characters

5. Who decides:

 Operating system

 Program

Modes of computation

 Sequential Access

 read next

 write next

 reset

 no read after last write

 (rewrite)

 Direct Access

 read n

 write n

 position to n

 read next

 write next

 rewrite n

 n = relative block number

Sequential-access File

Event Ordering

1. Happened-before relation (denoted by)

 If A and B are events in the same process, and A was executed before B, then A

B

 If A is the event of sending a message by one process and B is the event of

receiving that message by another process, then A B

 If A B and B C then A C

MYcsvtu Notes

www.mycsvtunotes.in

Relative Time for Three Concurrent Processes

Implementation of

1. Associate a timestamp with each system event

 Require that for every pair of events A and B, if A B, then the

timestamp of A is less than the timestamp of B

2. Within each process Pi a logical clock, LCi is associated

 The logical clock can be implemented as a simple counter that is

incremented between any two successive events executed within a

process

 Logical clock is monotonically increasing

3. A process advances its logical clock when it receives a message whose timestamp

is greater than the current value of its logical clock

4. If the timestamps of two events A and B are the same, then the events are

concurrent

 We may use the process identity numbers to break ties and to create a

total ordering

Synchronization

 Implements a variety of locks to support multitasking, multithreading

(including real-time threads), and multiprocessing.

 Uses adaptive mutexes for efficiency when protecting data from short

code segments.

 Uses condition variables and readers-writers locks when longer

sections of code need access to data.

 Uses turnstiles to order the list of threads waiting to acquire either an

adaptive mutex or reader-writer lock.

Deadlock handling

Deadlock Prevention

1. Resource-ordering deadlock-prevention – define a global ordering among the

system resources

 Assign a unique number to all system resources

MYcsvtu Notes

www.mycsvtunotes.in

 A process may request a resource with unique number i only if it is not

holding a resource with a unique number grater than i

 Simple to implement; requires little overhead

2. Banker’s algorithm – designate one of the processes in the system as the process

that maintains the information necessary to carry out the Banker’s algorithm

o Also implemented easily, but may require too much overhead

Timestamped Deadlock-Prevention Scheme

1. Each process Pi is assigned a unique priority number

2. Priority numbers are used to decide whether a process Pi should wait for a process

Pj; otherwise Pi is rolled back

3. The scheme prevents deadlocks

o For every edge Pi Pj in the wait-for graph, Pi has a higher priority than

Pj

o Thus a cycle cannot exist

Wait-Die Scheme

1. Based on a nonpreemptive technique

2. If Pi requests a resource currently held by Pj, Pi is allowed to wait only if it has a

smaller timestamp than does Pj (Pi is older than Pj)

a. Otherwise, Pi is rolled back (dies)

3. Example: Suppose that processes P1, P2, and P3 have timestamps t, 10, and 15

respectively

a. if P1 request a resource held by P2, then P1 will wait

b. If P3 requests a resource held by P2, then P3 will be rolled back

Would-Wait Scheme

1) Based on a preemptive technique; counterpart to the wait-die system

2) If Pi requests a resource currently held by Pj, Pi is allowed to wait only if it has a

larger timestamp than does Pj (Pi is younger than Pj). Otherwise Pj is rolled back (Pj

is wounded by Pi)

3) Example: Suppose that processes P1, P2, and P3 have timestamps 5, 10, and 15

respectively

a) If P1 requests a resource held by P2, then the resource will be preempted from P2

and P2 will be rolled back

b) If P3 requests a resource held by P2, then P3 will wait

Two Local Wait-For Graphs

MYcsvtu Notes

www.mycsvtunotes.in

Global Wait-For Graph

Deadlock Detection – Centralized Approach

1) Each site keeps a local wait-for graph

a) The nodes of the graph correspond to all the processes that are currently either

holding or requesting any of the resources local to that site

2) A global wait-for graph is maintained in a single coordination process; this graph is

the union of all local wait-for graphs

3) There are three different options (points in time) when the wait-for graph may be

constructed:

1. Whenever a new edge is inserted or removed in one of the local wait-for graphs

2. Periodically, when a number of changes have occurred in a wait-for graph

3. Whenever the coordinator needs to invoke the cycle-detection algorithm

 Unnecessary rollbacks may occur as a result of false cycles

 Append unique identifiers (timestamps) to requests form different sites

 When process Pi, at site A, requests a resource from process Pj, at site

B, a request message with timestamp TS is sent

 The edge Pi Pj with the label TS is inserted in the local wait-for of

A. The edge is inserted in the local wait-for graph of B only if B has

received the request message and cannot immediately grant the

requested resource

The Algorithm

The controller sends an initiating message to each site in the system

2. On receiving this message, a site sends its local wait-for graph to the coordinator

3. When the controller has received a reply from each site, it constructs a graph as

follows:

MYcsvtu Notes

www.mycsvtunotes.in

(a) The constructed graph contains a vertex for every process in the system

(b) The graph has an edge Pi Pj if and only if

(1) there is an edge Pi Pj in one of the wait-for graphs, or

(2) an edge Pi Pj with some label TS appears in more than one

wait-for graph

If the constructed graph contains a cycle deadlock

Local and Global Wait-For Graphs

Election Algorithms

 Determine where a new copy of the coordinator should be restarted

 Assume that a unique priority number is associated with each active process in the

system, and assume that the priority number of process Pi is i

 Assume a one-to-one correspondence between processes and sites

 The coordinator is always the process with the largest priority number. When a

coordinator fails, the algorithm must elect that active process with the largest

priority number

 Two algorithms, the bully algorithm and a ring algorithm, can be used to elect a

new coordinator in case of failures

Bully Algorithm

 Applicable to systems where every process can send a message to every other

process in the system

 If process Pi sends a request that is not answered by the coordinator within a time

interval T, assume that the coordinator has failed; Pi tries to elect itself as the new

coordinator

 Pi sends an election message to every process with a higher priority number, Pi

then waits for any of these processes to answer within T

 If no response within T, assume that all processes with numbers greater than i

have failed; Pi elects itself the new coordinator

 If answer is received, Pi begins time interval T´, waiting to receive a message that

a process with a higher priority number has been elected

MYcsvtu Notes

www.mycsvtunotes.in

 If no message is sent within T´, assume the process with a higher number has

failed; Pi should restart the algorithm

 If Pi is not the coordinator, then, at any time during execution, Pi may receive one

of the following two messages from process Pj

 Pj is the new coordinator (j > i). Pi, in turn, records this information

 Pj started an election (j > i). Pi, sends a response to Pj and begins its own

election algorithm, provided that Pi has not already initiated such an election

 After a failed process recovers, it immediately begins execution of the same

algorithm

 If there are no active processes with higher numbers, the recovered process forces

all processes with lower number to let it become the coordinator process, even if

there is a currently active coordinator with a lower number

Ring Algorithm

 Applicable to systems organized as a ring (logically or physically)

 Assumes that the links are unidirectional, and that processes send their messages

to their right neighbors

 Each process maintains an active list, consisting of all the priority numbers of all

active processes in the system when the algorithm ends

 If process Pi detects a coordinator failure, I creates a new active list that is

initially empty. It then sends a message elect(i) to its right neighbor, and adds the

number i to its active list

 If Pi receives a message elect(j) from the process on the left, it must respond in

one of three ways:

o If this is the first elect message it has seen or sent, Pi creates a new active

list with the numbers i and j

 It then sends the message elect(i), followed by the message elect(j)

o If i j, then the active list for Pi now contains the numbers of all the

active processes in the system

 Pi can now determine the largest number in the active list to

identify the new coordinator process

o If i = j, then Pi receives the message elect(i)

 The active list for Pi contains all the active processes in the system

 Pi can now determine the new coordinator process.

Reaching Agreement

1) There are applications where a set of processes wish to agree on a common “value”

2) Such agreement may not take place due to:

a) Faulty communication medium

b) Faulty processes

i) Processes may send garbled or incorrect messages to other processes

ii) A subset of the processes may collaborate with each other in an attempt to

defeat the scheme

MYcsvtu Notes

www.mycsvtunotes.in

Faulty Communications

1) Process Pi at site A, has sent a message to process Pj at site B; to proceed, Pi needs to

know if Pj has received the message

2) Detect failures using a time-out scheme

a) When Pi sends out a message, it also specifies a time interval during which it is

willing to wait for an acknowledgment message form Pj

b) When Pj receives the message, it immediately sends an acknowledgment to Pi

c) If Pi receives the acknowledgment message within the specified time interval, it

concludes that Pj has received its message

i) If a time-out occurs, Pj needs to retransmit its message and wait for an

acknowledgment

d) Continue until Pi either receives an acknowledgment, or is notified by the system

that B is down

3) Suppose that Pj also needs to know that Pi has received its acknowledgment message,

in order to decide on how to proceed

a) In the presence of failure, it is not possible to accomplish this task

b) It is not possible in a distributed environment for processes Pi and Pj to agree

completely on their respective states

Faulty Processes (Byzantine Generals Problem)

1) Communication medium is reliable, but processes can fail in unpredictable ways

2) Consider a system of n processes, of which no more than m are faulty

a) Suppose that each process Pi has some private value of Vi

3) Devise an algorithm that allows each nonfaulty Pi to construct a vector Xi = (Ai,1,

Ai,2, …, Ai,n) such that::

a) If Pj is a nonfaulty process, then Aij = Vj.

b) If Pi and Pj are both nonfaulty processes, then Xi = Xj.

4) Solutions share the following properties

a) A correct algorithm can be devised only if n 3 x m + 1

b) The worst-case delay for reaching agreement is proportionate to m + 1 message-

passing delays

UNIX SYSTEM

History

First developed in 1969 by Ken Thompson and Dennis Ritchie of the Research Group at

Bell Laboratories; incorporated features of other operating systems, especially

MULTICS.The third version was written in C, which was developed at BellLabs

specifically to support UNIX.The most influential of the non-Bell Labs and non-AT&T

UNIX development groups — University of California at Berkeley (Berkeley Software

Distributions).

 – 4BSD UNIX resulted from DARPA funding to develop a standard UNIX system for

government use.

MYcsvtu Notes

www.mycsvtunotes.in

 – Developed for the VAX, 4.3BSD is one of the most influential versions, and has been

ported to many other platforms.

UNIX Design Principles

 Designed to be a time-sharing system.

 Has a simple standard user interface (shell) that can be replaced.

 File system with multilevel tree-structured directories.

 Files are supported by the kernel as unstructured sequences of bytes.

 Supports multiple processes; a process can easily create new processes.

 High priority given to making system interactive, and providing facilities for

program development.

Programmer Interface

Like most computer systems, UNIX consists of two separable parts:

1) Kernel: everything below the system-call interface and above the physical hardware.

2) Provides file system, CPU scheduling, memory management, and other OS functions

through system calls.

3) System programs: use the kernel-supported system calls to provide useful functions,

such as compilation and file manipulation.

User Interface

Programmers and users mainly deal with already existing systems programs: the needed

system calls are embedded within the program and do not need to be obvious to the user.

The most common systems programs are file or directory

 – Directory: mkdir, rmdir, cd, pwd

 – File: ls, cp, mv, rm

Other programs relate to editors (e.g., emacs, vi) text formatters

(e.g., troff, TEX), and other activities.

File Manipulation

1) A file is a sequence of bytes; the kernel does not impose a structure on files.

2) Files are organized in tree-structured directories.

3) Directories are files that contain information on how to find other files.

4) Path name: identifies a file by specifying a path through the directory structure to the

file.

5) Absolute path names start at root of file system

6) Relative path names start at the current directory

7) System calls for basic file manipulation: create, open, read, write, close, unlink, trunc.

8) The UNIX file system supports two main objects: files and directories.

9) Directories are just files with a special format, so the representation of a file is the

basic UNIX concept.

MYcsvtu Notes

www.mycsvtunotes.in

Blocks and Fragments

Mos of the file system is taken up by data blocks.

4.2BSD uses two block sized for files which have no indirect blocks:

 – All the blocks of a file are of a large block size (such as 8K), except the last.

 – The last block is an appropriate multiple of a smaller fragment size (i.e., 1024) to fill

out the file.

 – Thus, a file of size 18,000 bytes would have two 8K blocks and one 2K fragment

(which would not be filled completely).

The block and fragment sizes are set during file-system creation according to the ntended

use of the file system:

 – If many small files are expected, the fragment size should be small.

 – If repeated transfers of large files are expected, the basic block size should be large.

The maximum block-to-fragment ratio is 8 : 1; the minimum block size is 4K (typical

choices are 4096 : 512 and 8192 :

1024).

Process Management

 Representation of processes is a major design problem for operating system.

 UNIX is distinct from other systems in that multiple processes can be created and

manipulated with ease.

These processes are represented in UNIX by various control blocks.

 – Control blocks associated with a process are stored in the kernel.

 – Information in these control blocks is used by the kernel for process control and CPU

scheduling.

Memory Management

 The initial memory management schemes were constrained in size by the

relatively small memory resources of the PDP machines on which UNIX was

developed.

 Pre 3BSD system use swapping exclusively to handle memory contention among

processes: If there is too much contention, processes are swapped out until

enough memory is available.

 Allocation of both main memory and swap space is done first-fit.

 required for multiple processes using the same text segment.

 The scheduler process (or swapper) decides which processes to swap in or out,

considering such factors as time idle, time in or out of main memory, size, etc.

 In f.3BSD, swap space is allocated in pieces that are multiples of power of 2 and

minimum size, up to a maximum size determined by the size or the swap-space

partition on the disk.

MYcsvtu Notes

www.mycsvtunotes.in

I/O System

The I/O system hides the peculiarities of I/O devices from the bulk of the kernel.

Consists of a buffer caching system, general device driver code, and drivers for specific

hardware devices.

Only the device driver knows the peculiarities of a specific device.

Interprocess Communication

 Most UNIX systems have not permitted shared memory because the PDP-11

hardware did not encourage it.

 The pipe is the IPC mechanism most characteristic of UNIX.

 – Permits a reliable unidirectional byte stream between two processes.

 – A benefit of pipes small size is that pipe data are seldom written to disk; they usually

are kept in memory by the normal block buffer cache.

 In 4.3BSD, pipes are implemented as a special case of the socket mechanism

which provides a general interface not only to facilities such as pipes, which are

local to one machine, but also to networking facilities.

Linux operating system
History

n Linux is a modern, free operating system based on UNIX standards

n First developed as a small but self-contained kernel in 1991 by Linus Torvalds,

with the major design goal of UNIX compatibility

n Its history has been one of collaboration by many users from all around the world,

corresponding almost exclusively over the Internet

n It has been designed to run efficiently and reliably on common PC hardware, but

also runs on a variety of other platforms

n The core Linux operating system kernel is entirely original, but it can run much

existing free UNIX software, resulting in an entire UNIX-compatible operating

system free from proprietary code

n Many, varying Linux Distributions including the kernel, applications, and

management tools

The Linux System

n Linux uses many tools developed as part of Berkeley’s BSD operating system,

MIT’s X Window System, and the Free Software Foundation's GNU project

n The min system libraries were started by the GNU project, with improvements

provided by the Linux community

n Linux networking-administration tools were derived from 4.3BSD code; recent

BSD derivatives such as Free BSD have borrowed code from Linux in return

n The Linux system is maintained by a loose network of developers collaborating

over the Internet, with a small number of public ftp sites acting as de facto

standard repositories

Design Principles

MYcsvtu Notes

www.mycsvtunotes.in

n Linux is a multiuser, multitasking system with a full set of UNIX-compatible

tools

n Its file system adheres to traditional UNIX semantics, and it fully implements the

standard UNIX networking model

n Main design goals are speed, efficiency, and standardization

n Linux is designed to be compliant with the relevant POSIX documents; at least

two Linux distributions have achieved official POSIX certification

n The Linux programming interface adheres to the SVR4 UNIX semantics, rather

than to BSD behavior

Components of a Linux System

n Like most UNIX implementations, Linux is composed of three main bodies of

code; the most important distinction between the kernel and all other components

n The kernel is responsible for maintaining the important abstractions of the

operating system

l Kernel code executes in kernel mode with full access to all the physical

resources of the computer

l All kernel code and data structures are kept in the same single address

space

