MY csvtu Notes

Unit-1

An Operating system is a program that manages the computer
hardware. It also provides a basis for application programs and acts
as an intermediary between a user of a computer and the computer
hardware.

O.S. are designed to provide an environment in which a user
can easily interface with the computer to execute programs.

Components of a computer system : Computer system can be

divided roughly into four components : the hardware,the operating
system,the application programs and the users.

WWW.mycsvtunotes.in

MY csvtu Notes

user user user user
1 2 3 e n
F Y f 3 Y F
Y Y Y Y
compiler assembler text editor L database
system

system and application programs

operating system

computer hardware

The hardware - the central processing unit(CPU),the
memory and the input/output devices - provides the basic
computing resources. The application programs-such as word
processor,spreadsheets,compilers and web browsers.

The O.S. controls and coordinates the use of the hardware among
the various application programs for the various users.

The O.S. provides the means for the proper use of these resources
in the operation of the computer system.

Each O.S. is discussed with regard to the following aspects :

WWW.mycsvtunotes.in

MY csvtu Notes

I. Processor scheduling
I1. Memory management
[11. 1/0 management
IV. File management

Types of O.S. :-

(a.) Batch Operating Systems: - Batch processing generally
requires the program, data and appropriate system commands to be
submitted together in the form of a job.

Programs that do not require interaction and program with
long execution times may be served well by a batch operating
system. Ex :-payroll, forecasting, statistical analysis.

Scheduling in batch system is very simple. Jobs are typically
processed in the order of submission that is first-come first-served
fashion.

Memory Management in batch systems is also very simple.
Memory is usually divided into two areas. One of them is
permanently occupied by the resident portion of the operating
system, and the other is used to load transient programs for
execution. When the transient program terminates, a new program
is loaded into the same area of memory.

Batch systems often provide simple form of file management.
Since access to files is also serial, little protection and no
concurrency control of file access is required.

(b.) Multiprogramming Operating Systems :-

A multitasking operating system is distinguished by its ability to
support concurrent execution of two or more active processes.

WWW.mycsvtunotes.in

MY csvtu Notes

Multitasking is usually implemented by maintaining code and data
of several processes in memory simultaneously.

Multiuser O.S. provides facilities for maintenance of individual
user environments, require user authentication for security and
protection, and provide per-user resource usage accounting.

Multitasking operation is one of the mechanisms that a
multiprogramming operating system employs in managing the
totality of computer-system resources, including processor,
memory and 1/O devices. Multitasking operation without multiuse
support can be found in operating system of some advanced
personal computers and in real time system.

Multi-access O.S. allows simultaneous access to a computer
system through two or more terminals. An example is provided by
some dedicated transaction-processing system, such as airline
ticket reservation systems.

Multiprocessing or multiprocessor operating systems manage the
operation of computer systems that incorporate multiple
processors. Multiprocessor 0O.S. is multitasking system by
definition because they support simultaneous execution of multiple
tasks on different processors.

Time-Sharing Systems :- Time sharing is a logical extension of
multiprogramming. The CPU executes multiple jobs by switching
among them, but the switches occur so frequently that the users
can interact with each program while it is running.

A time-shared OS allows many users to share the computer
simultaneously. Since each action or command in a time-shared
system tends to be short, only a little CPU time is needed for each
user. As the system switches rapidly from one user to the next,
each user is given the impression that the entire computer system is
dedicated to his use, even though it is being shared among many
users.

WWW.mycsvtunotes.in

MY csvtu Notes

Time-sharing systems must also provide a file system. The
file system resides on a collection of disks. Hence, disk
management must concurrent execution, which requires
sophisticated CPU-scheduling schemes.

Multiprocessor Systems :- multiprocessor system also known as
parallel systems have more than one processor in close
communication, sharing the computer bus, the clock, and
sometimes memory and peripheral devices.

multiprocessor systems have three main advantages :-

1. Increased throughput: By increasing the number of
processors, we hope to get more work done in less time.

2. Economy of scale : multiprocessor systems can save more
money than multiple single-processor systems, because they
can share peripherals, mass storage, and power supplies. If
several programs operate on the same set of data, it is
cheaper to store those data on one disk and to have all the
processor share them.

3. Increased reliability: If functions can be distributed properly
among several processors, then the failure of one processor
will not halt the system, only slow it down. If we have ten
processors and one fails, then each of the remaining
processors must pick up a share of the work of the failed
processor.

Distributed Operating Systems: A distributed computer system
Is a collection of autonomous computer systems capable of
communication and cooperation via their hardware and software
interconnections. Distributed computer systems evolved from
computer networks in which a number of largely independent hosts
are connected by communication links and protocols.

WWW.mycsvtunotes.in

MY csvtu Notes

Distributed OS usually provide the means for system-wide
sharing of resources, such as computational capacity, files, and I/O
devices. A distributed OS may facilitate access to remote
resources, communication with remote processes and distribution
of computations.

Advantages:
e resource sharing
e computation speed-up
e reliability
e communication - e.g. email
Applications - digital libraries, digital multimedia

Real-Time Systems: - A real time system is used when rigid
(inflexible) time requirements have been placed on the operation of
a processor or the flow of data. Thus, it is often used as a control
device in a dedicated application. Processing must be done within
the defined constraints or the system will fail.

A primary objective of real-time system is to provide quick
response times. Sensors bring data to the computer. The computer
must analyze the data and possibly adjust controls to modify the
sensor inputs.

System that control scientific experiments, flight control,
medical imaging systems, industrial control system and certain
display systems are real-time systems.

Operating-system provides following functions that are helpful
to the user:
a. User interface - Almost all operating systems have a

user interface (Ul) - Varies between Command-Line
(CLI), Graphics User Interface (GUI)

WWW.mycsvtunotes.in

MY csvtu Notes

b. Program execution - The system must be able to load a
program into memory and to run that program.

c. 1/0O operations - A running program may require /O,
which may involve a file or an 1/0 device.

d. File-system manipulation - The file system is of
particular interest. Obviously, programs need to read
and write files and directories, create and delete them,
search them.

e. Communications — Processes may exchange
information, on the same computer or between
computers over a network

e Communications may be via shared memory
or through message passing.

f. Error detection — OS needs to be constantly aware of
possible errors.

e May occur in the CPU and memory hardware, in
I/O devices, in user program

e For each type of error, OS should take the
appropriate action to ensure correct and
consistent computing

e Debugging facilities can greatly enhance the
user’s and programmer’s abilities to efficiently
use the system

g. Resource allocation - When multiple users or multiple
jobs running concurrently, resources must be allocated
to each of them

h. Accounting - To keep track of which users use how
much and what kinds of computer resources

I. Protection and security - The owners of information
stored in a multiuser or networked computer system
may want to control use of that information, concurrent
processes should not interfere with each other

WWW.mycsvtunotes.in

MY csvtu Notes

e Protection involves ensuring that all access to
system resources is controlled

e Security of the system from outsiders, requires
user authentication.

TYPE OF SERVICES

User View

Operating system services are provided in many different ways.
Two method of providing services are

 system calls and

* system programs.

System Calls:

System calls provide the interface between a running program and
the operating system.
— Generally available as assembly-language instructions.
— Languages defined to replace assembly language for
systems programming allow system calls to be made
directly (e.g., C, C++)

Types of System Calls

Process control

File management

Device management
Information maintenance
Communications

System Programs

WWW.mycsvtunotes.in

MY csvtu Notes

« System programs provide a convenient environment for
program development and execution. The can be divided
into:

— File manipulation

— Status information

— File modification

— Programming language support
— Program loading and execution
— Communications

— Application programs

* Most users’ view of the operation system is defined by
system programs, not the actual system calls.

Operating System View

« The view of an operating system seen by the user is defined
mainly by the system programs particularly the command
interpreter.

« The interrupt driven nature of an operating system defines the
general structure. When an interrupt occurs, the hardware
transfers control to the operating system.

 Several different types of interrupts may occur:

« A system call
« An I/O device interrupt
« A program error

WWW.mycsvtunotes.in

MY csvtu Notes

Unit - 2

Process Scheduling :- A scheduler is an O.S. program that
selects the next job to be admitted for execution. The main
objective of scheduling is to increase CPU utilization and higher
throughput.

[throughput - is the amount of work accomplished in a given time
interval]

CPU scheduling is the basis of O.S. which supports
multiprogramming concepts.

Nonpreemptive Scheduling

A scheduling discipline is nonpreemptive if, once a process has
been given the CPU, the CPU cannot be taken away from that
Process.

Preemptive Scheduling

A scheduling discipline is preemptive if, once a process has been
given the CPU can taken away.

Types of Scheduler :-

WWW.mycsvtunotes.in

MY csvtu Notes

swap In partially executed swap out
swapped out
processes
» ready queue cPU end
-

I/0 waiting
queues

M Long-term scheduler (or job scheduler) —
O selects which processes should be brought into the ready

queue.

O load processes from secondary storage device into the

memory.

O invoked very infrequently (seconds, minutes); may be slow.
O controls the “degree of multiprogramming”(the no of
processes in memory).

M Short term scheduler (or CPU scheduler) -
O selects which process should execute next and allocates

CPU.

O invoked very frequently (milliseconds) - must be very fast
O Its main objective is maximize cpu requirement.

B Medium Term Scheduler

O swaps out process temporarily

[Balances load for better throughput.

WWW.mycsvtunotes.in

MY csvtu Notes

Scheduling and Performance Criteria :-

e CPU utilization — keep the CPU as busy as possible
e Throughput — no of processes that complete their
execution per time unit
e Turnaround time — amount of time to execute a particular
process, It is sum of the periods spent waiting to get into
memory, waiting in the ready queue, CPU time and 1/O
operations.
(Turnaround Time = waiting time + processing time)
e \Waiting time — amount of time a process has been waiting
in the ready queue
(' waiting time = Turnaround Time - processing time)
e Response time — amount of time it takes from when a
request was submitted until the first response is produced.
(not output for time-sharing environment)

Scheduling Algorithms :- CPU Scheduling deals with the
problem of deciding which of the processes in the ready queue is to
be allocated the CPU. A major division among scheduling
algorithms is that whether they support preemptive or non-
preemptive scheduling discipline.

Following are some scheduling algorithms : -

. FCFS Scheduling.

. SJF Scheduling.

« SRTF or SRTN Scheduling.

. Priority Scheduling.

. Round Robin Scheduling.

« Multilevel Queue Scheduling.

. Multilevel Feedback Queue Scheduling.

FCES Scheduling :-

WWW.mycsvtunotes.in

MY csvtu Notes

First-Come-First-Served algorithm is the simplest scheduling
algorithm. Processes are dispatched according to their arrival time
on the ready queue. Being a non-preemptive discipline, once a
process has a CPU, it runs to completion.

FCFS scheduling is non-preemptive, there is a low rate of
components utilization and system throughput. Consider the
following example of three processes :

Process Burst Time

P1 24
P2 3
P3 3

Suppose that the processes arrive in the order. P1 , P2 , P3
The Gantt Chart for the schedule is:

P1 P2 P3

0 24 27 30
Waiting time for P1 =0; P2 =24; P3 =27
Average waiting time: (0 + 24 + 27)/3 = 17
Avg. Turn around time = [(0+24) + (24+3) + (27+3)]/3
=81/3=27
Suppose that the processes arrive in the order : P2, P3, P1

The Gantt chart for the schedule is:

WWW.mycsvtunotes.in

MY csvtu Notes

P2 P3 P1

o) 3 6 30
* Waiting time for P1 =6; P2=0; P3=3
* Average waiting time: (6+0+3)/3=3
Avg turn around time = [(6+24) + (0+3) + (3+3)]/3
= 39/3 = 13
* Much better than previous case

Shortest-Job-First(SJF) Scheduling :- In SJF scheduling a
process is done on the basis of its having shortest execution time.
If two processes have the same CPU time, FCFS is used.

Threre are two schemes:

* nonpreemptive — once CPU given to the process it
cannot be preempted until completes its CPU burst

* preemptive — if a new process arrives with CPU burst
length less than remaining time of current executing
process, preempt. This scheme is know as the
Shortest-Remaining-Time-First (SRTF)

Example of Non-Preemptive SJF :
Process Arrival Time Burst Time
Pl 0.0 7
P2 2.0 4

WWW.mycsvtunotes.in

MY csvtu Notes

P3 4.0 1
P4 5.0 4
P, P, P, P,
| | | | | | | | | | | |
| | | | | | | | | | | |
0 3 7 8 12 16

Average waiting time =(0 + (8-2) + (7-4) + (12-5))/4
= (0+6+3+7)/4 =4
Avg turn around time = (7+ 10+4+11) /4 =32/4 = 8

Shortest Remaining Time First(SRTF or SRTN) Scheduling :

. The SRT is the preemtive counterpart(equal) of SJF and useful
in time-sharing environment.

. In SRT scheduling, the process with the smallest estimated run-
time to completion is run next, including new arrivals.

. The algorithm SRT has higher overhead than its counterpart
SJF.

. In this scheme, arrival of small processes will run almost
immediately. However, longer jobs have even longer mean
waiting time.

Example of Preemptive SJF or SRTF :
Process Arrival Time Burst Time
Pl 0.0 7

P2 2.0 4

WWW.mycsvtunotes.in

MY csvtu Notes

P3 4.0 1
P4 5.0 4
P, | P, |Ps | P, P, P,
I I I || .
I I | b I |
0 2 4 5 7 11

Average waiting time =((11-2) + (5-4) + 0 + (7-5))/4
=(9+1+0+2)/4=3
Avg turn around time = (16+5+1+6)/4 = 28/4 = 7

Question : consider four processes with the length of the CPU
burst time given in milliseconds :

Process Arrival Time Burst Time

P1 0 8
P2 1 4
P3 2 9
P4 3 5

P1 Ip% I I Ip4I I || Ipll || p3
o + LT 5 TTTTlITTTTTE
26

WWW.mycsvtunotes.in

MY csvtu Notes

Average waiting time =((10-1) + (1-1) + (17-2) + (5-3))/4 =
(9+0+15+2)/4

= 26/4 = 6.5 milliseconds
Avg turn around time = (17+4+24+7)/4 = 52/4 =13

Question : consider four processes with the length of the CPU
burst time given in milliseconds :

Process Arrival Time Burst Time

P1 0 20
P2 15 25
P3 30 10
P4 45 15
P1 p2 n3 n2 p4
0 | 20 30 40 95
70

waiting time for p1 =0

waiting time for p2 = (20 -15)+ (40-30) = 15
waiting time for p3 =0

waiting time for p4 = 10

Avg waiting time=(0+15+0+10)/4 = 25/4 = 6.25

WWW.mycsvtunotes.in

MY csvtu Notes

Priority Scheduling :- A priority is associated with each process
and the scheduler always picks up the highest priority process for
execution from the ready queue. Equal priority processes are
scheduled FCFS.

Note that scheduling in terms of high and low priority , there
IS no general agreement on whether 0 is the highest or lowest
priority. Here,we assume low numbers to represent high priority.

Comparison with SJF :

* SJF is a priority scheduling where priority is the predicted next
CPU burst time

* Problem = Starvation — low priority processes may never execute

* Solution = Aging — as time progresses increase the priority of the
process

Process Burst Time Priority
Pl 10 3
P2 1 1
P3 2 4

WWW.mycsvtunotes.in

MY csvtu Notes

P4 1 5
P5 5 2
P2 | |z|35| | pl p|3 p4
o 1111 1% 16| 18 19

Average waiting time =(6+0+ 16 + 18 + 1)/5 =41/5=8.2

Round Robin Scheduling :- This is designed especially for time-
sharing systems. It is similar to FCFS scheduling, but preemption
is added to switch between processes. A small unit of time, called a
“time quantum” is defined. A time quantum is generally from 10 to
100 milliseconds. The ready queue is treated as circular queue.

New processes are added to the tail of the ready queue. If the
CPU burst of the currently running processes is longer than 1 time
quantum, the timer will go off and will cause an interrupt to the
operating system. A context switch will be executed, and the
process will be put at the tail of the ready queue.

The performance of the RR algorithm depends heavily on the size
of the time quantum. If the time quantum is very large, the RR
policy is the same as FCFS policy. If the time quantum is very
small, the RR approach is called processor sharing.

Example of RR with Time Quantum =4
Process Burst Time

P1 24

WWW.mycsvtunotes.in

MY csvtu Notes

P2 3
P3 3

P1 p2 p3 pl pl pl pl

Average waiting time =(6 + 4 + 7)/3 = 5.66 milliseconds.

Question : Example of RR with Time Quantum = 20

Process Burst Time

P1 53
P2 17
P3 68
P4 24

The Gantt chart is:

WWW.mycsvtunotes.in

26

MY csvtu Notes

P, | P, | Ps | Ps| Py | Ps| Py| PL| Ps| Ps

O 20 37 57 77 97 117 121 134 154 162

waiting time for p1 = 17+20+20+20+4 = 81

waiting time for p2 = 20

waiting time for p3 = 37+20+20+4+13 = 94
waiting time for p4 = 20+17+20+20+20 = 97

So, Average waiting time = (81+20+94+97)/4 = 73]

Multilevel Queue Scheduling :-

[[A situation where processes are easily classified into different
groups . for example, a common division is made between
foreground(interactive) processes and background(batch)
processes. These two types of processes have different response-
time requirements and might have different scheduling needs.
Foreground processes may have priority over background
Processes

A multilevel queue-scheduling algorithm partitions the ready
queue into several separate queues. The processes are permanently
assigned to one queues. The processes are permanently assigned to
one queue, generally based on some property of the process, such
as memory size,process priority, or process type. Each queue has
its own scheduling algorithm, while the background queue is
scheduled by an FCFS algorithm.

WWW.mycsvtunotes.in

MY csvtu Notes

In addition, there must be scheduling among the queues, which is
commonly implemented as fixed-priority preemptive scheduling.
For example, the foreground queue may have absolute priority
over the background queue.]]

*Ready queue is partitioned into separate queues:
>>foreground(interactive)
>>packground (batch)
* Each queue has its own scheduling algorithm
>>foreground — RR
>>packground — FCFS
* Scheduling must be done between the queues
>>Fixed priority scheduling; (i.e., serve all from foreground
then from background). Possibility of starvation.
>>Time slice — each queue gets a certain amount of CPU
time which it can schedule amongst its processes; i.e., 80% to
foreground in RR
>>20% to background in FCFS

WWW.mycsvtunotes.in

MY csvtu Notes

Prlority
3

Batch 2PrI-:urIt',l'

1 | | &= —

Interactive 1Pr|orlty

Multilevel Feedback Queue :- [[It allows a process to move
between queues. If a process uses too much CPU time, it will be
moved to a lower-priority queue. This scheme leaves I/O bound
and interactive processes in the higher-priority queues. Similarly, a
process that waits too long in a lower priority queue may be moved
to a higher-priority queue. This form of aging prevents starvation.

1]

B Multilevel Queue with priorities
B A process can move between the queues.
O Aging can be implemented this way.
B Parameters for a multilevel feedback queue scheduler:

WWW.mycsvtunotes.in

MY csvtu Notes

O number of queues.

O scheduling algorithm for each queue.

0 method used to determine when to upgrade a process.

L method used to determine when to demote(move down) a
process.

0 method used to determine which queue a process will enter
when that process needs service.

Migrale CPU-Bound Jobs e,

Timesllce = 16 ms Priorty

Mfgra!e CPU—Bound Jobe "

Timesllce =8 ms 1P”°"“"5'

WWW.mycsvtunotes.in

MY csvtu Notes

Unit -4

Memory Management
Contiguous Allocation

Contiguous Allocation means that each logical object is
placed in a set of memory location with strictly consecutive
addresses.

The organization and management of main memory
has been one of the most important factors of O.S. design.

Memory management is concerned with allocation of
main memory of united capacity to requesting processes.
No process can ever run before a certain amount of
memory is allocated to it.

Two important features of Memory management
function are protection and sharing. An active process
should never attempt to access incorrectly and destroy the
contents of each other’s address space.

Bare Machine :- In this scheme, the user is provided with
the bare machine and has complete control over the entire
memory space. It provides maximum flexibility to the user.
The user can control the use of memory in whatever
manner desired.

There is no need for special hardware for this
approach to memory management, Nor is there a need for
O.S s/w. This system has its limitation also.

It is used only on dedicated systems where the users
require flexibility and simplicity.

WWW.mycsvtunotes.in

MY csvtu Notes

Resident Monitor (Single Process Monitor) :-

The next simplest scheme is to divide memory into two
sections, one for the user and one for the resident monitor
of the O.S.

It is more common to place the resident monitor in
low memory. It is primary approach for many current
microcomputer systems.

In this type of approach , O.S. only keeps the track of
the first and the last location available for allocation of user
program.

A new program is loaded only when the O.S.

Operating System

Passes a control to it. When this program is
Completed or terminated, the O.S. may load
Another program for execution.

Protection is hardly supported by a
Single process monitor because only one process
Is in memory-resident at a time. A register also
Called “fence register” is set to the highest address

User Area

Occupied by O.S. code. A memory address generated by
user program 1s first compared with fence register’s
content. If the address is below the fence, it will be trapped
and denied permission.

WWW.mycsvtunotes.in

MY csvtu Notes

Limitation : less utilization of memory and CPU.

fence register

Address
> fence

CPU Address

A 4

memory

v

Trap, Addressing Error

Multiprogramming with fixed partitions :-

Depending upon how and when partitions are created, there may
be two types of memory partitioning

(1) static

(i) Dynamic
Static partitioning implies that the division of memory into number
of partitions and its size is made in the beginning and remain fixed
there after.

In dynamic partitioning the size and the number of partitions
are decided during the run time by the O.S.

The basic approach here is to divide memory into several
fixed size partitions where each partition will accommodate only
one program for execution. The no. of programs (degree of

WWW.mycsvtunotes.in

MY csvtu Notes

multiprogramming) residing in memory will be bound by the no.
of partitions.

When a program terminates, that partition is free for another
program waiting in a queue.

Once partitions are defined, an O.S. needs to keep track of
their status. Such as free or in use, for allocation purpose. Current
partition status and attributes are often collect in a data structure
called the “partition description table”. Each partition is described
by its starting address, size and status.

The identity of the assigned partition may be recorded in the
process control block (PCB).

0 0| o K 100 K ALLOCATED
0.S.
100 1 100 K 300 K FREE
Free
2 400 K 100 K ALLOCATED
400
P; 3 500 K 250 K ALLOCATED
500
750 K 150 K ALLOCATED
750 P
900 5 900 K 100 K FREE
1000 Free
Static partition Partition

Description Table

Allocation of free partition :

The two most common strategies to allocate free partitions to ready
processes are :

(i) first fit
(i) best fit
First fit Best fit

The approach followed in | The best fit approach on the
1 |the first fit is to allocate | other hand allocates the
the first free partition large | smallest free partition that

WWW.mycsvtunotes.in

MY csvtu Notes

enough to accommodate | meets the requirement of the
the process. process.

The first fit terminates| The best fit continues
2 | after finding the first such | searching for the near exact

partition size
First fit execute faster The best fit achieves higher
3 utilization of memory by
searching the smallest free
partition.
Swapping :-

Def : Removing suspended or preempted processes from memory
and their subsequent bringing back is called swapping.

Wherever a new process is ready to be loaded into memory
and if no partition is free , swapping of processes between main
memory and secondary memory is done.

One important issue concerning swapping is whether
the process removed temporarily from any partition should be
brought back to the same partition or any other partition of
adequate size. This is dependent upon partitioning policy.

The swapper is an O.S. process whose major
responsibilities include

1. Selection of processes to swap out

2. Selection of processes to swap in

3. Allocation & management of swap space

Relocation :

The term program relocatability refers to the ability to load
and execute a given program into an arbitrary place in
memory, as opposed to a fixed set of locations specified at
program — translation time.

WWW.mycsvtunotes.in

MY csvtu Notes

There are two basic types of relocation
I. static relocation
il. dynamic relocation
. If the relocation is performed before or during the loading
of a program into memory by a relocating linker or a
relocating loader, the relocation approach is called static
relocation.

In system with static relocation a swapped-out process
must be swapped back into the same partition from which
it was evicted

ii. Dynamic relocation refers to run-time mapping of virtual
address into physical address with support of some
hardware mechanism such as base registers and limit
registers.

When a process is scheduled, the base register is loaded
with the starting address. Every memory address generated
automatically has the base register contents, added to it
before being sent to main memory.

The value of base register obtained from relevant entry
of the partition description table.

100000
100000
200 MOVE R1, 200
CPU >
— 100200
Virtual address Physical Address

WWW.mycsvtunotes.in

MY csvtu Notes

[Dynamic Relocation] Main Memory

Dynamic relocation makes it possible to move a partially executed
process from one area of memory into another without affecting its
ability to access instructions and data correctly in the new space.

Protection and Sharing :-

Multiprogramming introduces one essential problem of protection.
Not only that the O.S. must be protected from user processes but
each user process should also be protected from incorrectly
accessing the areas of other processes.

In system that uses base register for relocation, a common
approach is to use limit register for protection. The primary
function of a limit register is to detect attempts to access memory
location beyond the boundary assigned by the O.S. When a
process is scheduled, the limit register is loaded with the highest
virtual address in a program.

Base register 0

100000

User program address

v

CPU <= limit

register

No Permission to access

WWW.mycsvtunotes.in

MY csvtu Notes

Max Memory

A good memory management mechanism must also provide for
controlled sharing of data and code between cooperating processes.

There are three basic approaches to sharing in systems with fixed
partitioning of memory :-

1. Entrust shared objectsto O.S.

2. Maintain multiple copies, one per participating partition of
shared objects

3. Use shared common memory partition.

One traditional approach to sharing is to place data and code in
a dedicated common partition.

Fixed Partitioning imposes several restriction :-

1. No single process may exceed the size of the largest partition
in a given system.

2. It does not support a system having dynamically data
structure such as linked list, stack, queues etc.

3. It limits the degree of multiprogramming which in turn may
reduce the effectiveness of short-term scheduling.

Multiprogramming with dynamic partitions :-

The main problem with fixed size partition is the wastage of
memory by programs that are smaller than their partitions (i.e.
internal fragmentation)

WWW.mycsvtunotes.in

MY csvtu Notes

A different memory management approach known as
dynamic partitions which creates partitions dynamically to meet
the requirements of each requesting process.

When a process terminates or becomes swapped — out, the
memory manager can return the vacated space to the pool of free
memory areas from which partition allocations are made.

Dynamic memory allocation improves memory utilization
but it also complicates the process of allocation and de-allocation
of memory.

Example :- Assume that we have 640 K main memory available
in which 40 K is occupied by operating system program. There
are 5 jobs waiting for memory allocation in a job queue.

5 4 3 2 1 0
200(150 | 100 | 250 200 0.S.
40
User Program
640

Applying FCFS scheduling policy, process 1, process 2 and
process 3 can be immediately allocated in memory. Process 4 can
not be accommodated because there is only 600 — 550 = 50 left
for it.

0

0.S.
40

Process 1

MY csvtu Notes

Let us assume that Process 1

240
490
590
640

memory space, next process 4 is swapped in memory.

0K
40 K
240 K
490 K
590 K
640 K

O.S.

Free

Process 2

Process 3

Free 50 K

0
40
190
240
490
590
640

Is terminated, releasing 200 K

O.S.

Process 4

Free 50 K

Process 2

Process 3

Free

After process 1, Process 3 gets terminated releasing 100 K
Memory, but Process 5 can not be accommodated due to external
fragmentation.

After the swapping out of process 2, process 5 will be loaded
for execution.

0

0O.S.

O.S.

WWW.N

Process 4

Process 4

Free 50 K

Process 5

MY csvtu Notes

40 40
190 -> 190
240 390
490
640 640

One solution to this problem is compaction. It is possible to
combine all the free space into a large block by pushing all the
processes upward as far as possible.

O.S. O.S.
40 40
Process 1 (200 K) Process 1 (200 K)
240 240
Free 30 K Process 2 (100 K)
210 Process 2 (100 K) 340 Process 3 (70 K)
370 Free 20 K 410
Process 4 (120 K)
390 530
Process 3 (70 K)
460
Free 40 K
500 Free 110 K
Process 4 (120 K)
620
Free 20 K
640 640
() (b)

WWW.mycsvtunotes.in

MY csvtu Notes

In diagram (a) there are 4 free spaces 30 K, 20 K, 40 K and 20 K
which have been compacted into one large area of 110 K.

Compaction is usually not done because it consumes a lot of

CPU time. It is usually done on a large machine like mainframe or
super computer because they are supported with a special h/w to
perform this task.

Advantages of Dynamic Memory Allocation :-

Memory utilization is generally better than fixed size partitions
are created accordingly to the size of process.

It support processes whose memory requirement increase during
their execution. In that case O.S. creates a larger partition and
moves a process into it. If there is an adjacent free area it
simply expands it.

Disadvantages of D.M.A. :-

Dynamic memory management requires lots of O.S. space,
time, complex memory management algorithm and
bookkeeping operation.

Compaction time is very high.

Memory — Management (Non — Contiguous Allocation)

Non — Contiguous allocation means that memory is allocated in
such a way that parts of a single logical object may be placed in
non contiguous areas of physical memory.

WWW.mycsvtunotes.in

MY csvtu Notes

Paging :

Paging is a memory management scheme that removes the
requirement of contiguous allocation of physical memory.

The physical memory is conceptually divided into a number
of fixed-size slats, called page frames. The virtual-address space of
a process is also split into fixed-size blocks of the same size, called
pages. When a program is to be run, its pages are loaded into any
frame from the disk.

Each virtual address is divided into two parts : the page
number (p) and offset d within that page.

In paging system, address translation is performed with the
aid of a mapping table, called the page-ma table (PMT). [The
PMT is constructed at process loading time in order to establish the
correspondence between the virtual and physical addresses . for
convenience of mapping, page sizes are usually an integer power
of base 2, page sizes vary between 512 bytes and 8 K.B.]

The PMT contains the base address of each page in physical
memory. This base address is combined with the page offset to
define the physical memory address.

Logical address Physical

f d >

CPU p d address

A\ 4

A 4
—

WWW.mycsvtunotes.in

MY csvtu Notes

Hardware support for Paging :-

The main objectives for h/w support for paging is to store page
map table and make virtual to physical address translation. To
reduce the access time, the use of registers can be considered if the
no of entries in PMT is small. For keeping very large entries PMT
is kept in main memory and there is a “Page Table Base Register”

pointing to the beginning of PMT.

If we store PMT in Main Memory than problem with this
approach is memory access time. The standard solution to this
problem is to store the complete page-map-table into an associative
memory also called “content addressable memory” or “look aside

memory’.
Page table-
_ Base Address of
base register Page Map Table
{ b
P page
number Offset
b+p b
Page frame
! » Number Offset \
Physical
Address
PMT

WWW.mycsvtunotes.in

MY csvtu Notes

Sharing and Protection in a Paging system :-

In a multiprogramming environment, where several users want to
execute the same s/w, keeping a separate copy of the same for
individual users will cause wastage of much of primary memory.

To implement sharing each page is identified as a sharable or
non-sharable. We can add “‘access-bits” in PMT entries.

Sharing reduces the amount of primary storage needed for
several users to run efficiently and make it possible for a given
system to support more users.

Protection - Memory protection is usually done by protection bits
associated with each page. These bits are usually kept in the page
map table. One protection bit can define a page to be read/write or
a read only.

Thrashing :- The condition in which, process spends its more
time in paging than in execution, called thrashing. In order to
increasing CPU utilization, degree of multiprogramming is
increased, but if by increasing degree of multiprogramming, CPU
utilization is decreased then such a condition is called thrashing.

The main reason for occurring thrashing is O.S. requires CPU
utilization and other is global page replacement policy.

Minimization of Thrashing :-

A local replacement algorithm is used to limit the effect of
thrashing.

WWW.mycsvtunotes.in

MY csvtu Notes

Segmentation :-

Segmentation is a memory management scheme which supports
programmer’s view of memory. Programmer’s think of their
programs as a collection of logically related entities, such as
subroutines, functions, global or local data areas, stack etc.

subroutine

Global
data
area

function

stack

Local
data
area

Segments are formed at program translation time by grouping

together logically related entities.

Each segment in a program is numbered and referred to by a

segment number rather than a segment name.

WWW.mycsvtunotes.in

MY csvtu Notes

Virtual Address Segment - Table

Seg. No Offset Seg No Base Add Size

A 4

2 |500 01 4800 [1200
| » 1 | 2500|1500
2_176000 2000
3 [1000 [1000

4

CPU

4000 (800

N Yes l(') 6000 + 500 .
0.S.

1000
No 2000 Segment 3

2500 | ——-Free-—-
Segment 1

Segment Size 4000
violation Segment 4
4800 ["Segment 0

6000

6500 Segment 2

8000

Physical Memory

A virtual address consist of two parts : a setment number and an
offset into that setgment. Each row of the segment table contains
a starting address(base address)
of segment and size of the segment.

The offset of the virtual address must be within the size of
the segment.
If the offset of virtual address is not within the range, it is trapped
by the O.S. otherwise the offset is added to the base address of the
segment to produce physical address of the desired segment.

WWW.mycsvtunotes.in

MY csvtu Notes

H/W support for segmentation :-
e Segment Table Base Register
e Segment Table Limit Register

Sharing and Protection in a Segmented System :-

One of the advantage of segmentation over paging is that
segmentation over paging is that segments are allowed to be as
large as they require to be.

A segment may increase and decrease in size as the data
structure itself increases and decreases.

Protection of one segment from another segment is done
through protection bit.

In a segmentation system once the segment is declared as
shared, then the size of data structured may increase or decrease
without changing the logical fact that they reside on a shared
segment.

Virtual — Memory

If the size of a job is larger than the available memory than it can
not be executed. Since it can not be loaded into memory entirely.
In such a case, concept of virtual memory is used.

Virtual memory allows user to execute program larger than
size of available main memory.

Advantage of virtual Memory :-
1. Users would be able to write programs for very large virtual
address space.
2. Since each user utilizes less physical memory, more users
can keep their programs simultaneously which will cause
increase in CPU utilization and throughput.

WWW.mycsvtunotes.in

MY csvtu Notes

3. Since a process may be loaded into a space of arbitrary size,

(1)
(if)

which in turn reduce external fragmentation.

There are two major techniques of virtual memory
concept —

Demand Paging memory management

Demand segmentation memory management.

Demand Paging :-

In demand paging pages are loaded only on demand, not in
advance. It is similar to paging system with swapping feature.
Rather than swapping the entire program in memory, only those
pages are swapped which are required currently by the system.

What will happen if the program tries to access a page that

was not swapped in memory ? In that case, page fault trap occurs.

List of steps O.S. follows in handling a page fault :-

1.

w

If a process refers to a page which is not in the physical
memory, then an internal table kept with a process control
block is checked to verify whether a memory reference to a
page was valid or invalid.

If page was valid, but the page is missing, the process of
bringing a page into the physical memory starts.

Free Memory location is identified to bring a missing page
By reading a disk, the desired page is brought back into the
free memory location.

once a page is in the physical memory, the internal table kept
with the process and page map table is updated to indicate
that the page is now in memory.

Restart the instruction that was interrupted due to the missing

page.

WWW.mycsvtunotes.in

MY csvtu Notes

Q : When do page fault occur ? describe the action taken by

the O.S. when a page fault occurs.

secondary

memory

1 .memory ref.
Load P |, R
“oapage
6. Reltart
instruction
CPU

Free memory

WWW.mycsvtunotes.in

5. Update page map table

Page

Physical
Memory

location for
a page

MY csvtu Notes

Page Replacement Algorithm

The first-in, first-out (FIFO) page replacement algorithm is low-
overhead algorithm which requires little bookkeeping on the part
of the operating system.

The operating system keeps track of all the pages in memory in
a queue, with the most recent arrival at the back, and the earliest
arrival in front. When a page needs to be replaced, the page at the
front of the queue is selected, as it will be the oldest page.

reference string
7 01 2 0 83 0 42 3 03821201

7]
0

g
3
1

ESEESNESY

IS

l=linslie

=
(@ [m]o]

R =
ERE=]

5
0
1

4
0
1

page frames

[

[T

=T

Page Faults = 15

Number of pages (P) =20
Number of page faults F =15
Failure frequency = F/P = 15/20 = 75 %

WWW.mycsvtunotes.in

http://en.wikipedia.org/wiki/Operating_system

MY csvtu Notes

Belady’s Anomaly:

It is observed that the no. of page fault for four frames is greater
than the no of faults for three frames. This result is known as
“Belady’s Anomaly”.

Optimal Replacement Algorithm (OPT) :

Replace that page which will not be used for the longest period of
time. An optimal algorithm would never suffer from

Virtual Memory

If the size of a job is larger than the available memory than it can
not be executed. Since it can not be loaded into memory entirely.
In such a case, concept of virtual memory is used.

Virtual memory allows user to execute program larger than
size of available main memory.

Advantage of virtual Memory :-

4. Users would be able to write programs for very large virtual
address space.

5. Since each user utilizes less physical memory, more users
can keep their programs simultaneously which will cause
increase in CPU utilization and throughput.

6. Since a process may be loaded into a space of arbitrary size,
which in turn reduce external fragmentation.

WWW.mycsvtunotes.in

MY csvtu Notes

There are two major techniques of virtual memory
concept —

(iii) Demand Paging memory management

(iv) Demand segmentation memory management.

Demand Paging :-

In demand paging pages are loaded only on demand, not in
advance. It is similar to paging system with swapping feature.
Rather than swapping the entire program in memory, only those
pages are swapped which are required currently by the system.
What will happen if the program tries to access a page that
was not swapped in memory ? In that case, page fault trap occurs.

List of steps O.S. follows in handling a page fault :-

7. If a process refers to a page which is not in the physical
memory, then an internal table kept with a process control
block is checked to verify whether a memory reference to a
page was valid or invalid.

8. If page was valid, but the page is missing, the process of
bringing a page into the physical memory starts.

9. Free Memory location is identified to bring a missing page

10. By reading a disk, the desired page is brought back into
the free memory location.

11. once a page is in the physical memory, the internal
table kept with the process and page map table is updated to
indicate that the page is now in memory.

12. Restart the instruction that was interrupted due to the
missing page.

Q : When do page fault occur ? describe the action taken by
the O.S. when a page fault occurs.

WWW.mycsvtunotes.in

MY csvtu Notes

secondary

memory

1 .memory ref. fault
age
to a page is
Load P -
6. Restart
instructio
CPU PMT
3.
Free memory
location for
a page
Physical
Memory

5. Update page map table

WWW.mycsvtunotes.in

MY csvtu Notes

Unit - 3

Dead Lock

A deadlock is a situation where a group of processes are
permanently blocked as a result of each process having acquired a
subset of the resources needed for its completion and waiting for
release of the remaining resources held by others in the same
group.

There are four necessary conditions for a deadlock to occur :-

1. Mutual Exclusion — only one process may use a shared
resource at a time.

2. Hold and wait — each process continues to hold resources
already allocated to it while waiting to acquire other
resources.

3. No preemption — No resources can be forcibly removed from
a process holding it.

4. Circular waiting — Deadlocked processes are involved in a
circular chain such that each process holds one or more
resources being requested by the next process in the chain.

All four conditions must be present for a deadlock to occur.

Most of the practical deadlock handling technique fall into one of
these three categories :

A. deadlock prevention

B. deadlock avoidance and

C. deadlock detection and recovery

(A) Deadlock prevention :- The basic philosophy of deadlock

prevention is to deny at least one of the four conditions for
deadlock.

WWW.mycsvtunotes.in

MY csvtu Notes

Now we examine techniques related to each of the four
conditions.

(1) Mutual exclusion: - we can not prevent deadlocks by
denying the mutual-exclusion condition. So we should
prevent one or more of the remaining three conditions.

(2) Hold & wait: - the hold & wait condition can be eliminated
by requiring a process to release all resources held by it
whenever it requests a resource that is not available.

There are basically two possible implementations of
this strategy :

(i) The process requests all needed resources prior to
commencement of execution.

(if) The process requests resources incrementally in the
course of execution but releases all its resources
(holding upon encountering a denial) held by it
whenever it request a resource that is not available.

(3) No-preemption: - The no-preemption deadlock condition can
obviously be denied by allowing preemption. If the process
requests some resources, we first check whether they are
available. If they are, we allocate them. If they are not
available, we check whether they are allocated to some other
process that is waiting for additional resources. If so, we
preempt the desired resources from the waiting process and
allocate them to the requesting process.

(4) Circular wait: - one way to prevent the circular —wait
condition is by linear ordering of different types of system

resources.
In this approach, System resources are divided into
different classes C;, where j = 1, 2 ...n. Deadlocks are

prevented by requiring all processes to request and acquire
their resources in a strictly increasing order of the specified
system resource classes.

Once a process acquires a resource belonging to the
class Cj it can only request resources of class j+1 or higher
thereafter.

WWW.mycsvtunotes.in

MY csvtu Notes

Linear ordering of resource classes eliminates the
possibility of circular waiting.

(B) Deadlock Avoidance :- A method for avoiding deadlocks is
to require additional information about how resources are to
be requested. The most useful model requires that each
process declare the maximum number of resources of each
type that it may need. So it is possible to construct an
algorithm that ensures that the system will never enter a
deadlock state.

The resource — allocation state is defined by the number of
available and allocated resources and the maximum
demands of the processes.

Safe state : A state is safe if the system can allocate resources to
each process in some order and still avoid a deadlock.

Banker’s Algorithm :

The name banker’s algorithm was suggested because this
algorithm could be used in a banking system to ensure that the
bank never allocates its available cash such that it can no longer
satisfy the needs of all its customers.

When a new process enters the system, it must declare the
maximum number of instances of each resources type that it may
need. This number may not exceed the total no. of resources in the
system. When a user requests a set of resources, the system must
determine whether the allocation of these resources will leave the
system in a safe state. If it will safe, the resources are allocated;
otherwise the process must wait until some other process releases
enough resources.

WWW.mycsvtunotes.in

MY csvtu Notes

Some data structures must be maintained to implement the
banker’s algorithm. These data structures encode the state of the
resource-allocation system.

Available - A vector of length m indicating the number of
available resources of each type. If Available[j] = k, there are k
instances of resource type r; available.

Max - An n*m matrix defined the maximum demand of each
process. If Max[i,j] = k, then process p; may request at most k
instances of resource type r;.

Allocation — An n*m matrix defining the no of resources of each
type currently allocated to each process. If Allocation[i,j] = k, then
process p; is currently allocated k instances of resource type r;

Need — An n*m matrix indicating the remaining resource need of
each process. If Need[i,j] = k, then process p; may need k more
instances of resource type r;j in order to complete its task.

Note that
Need[i,j] = Max[i,j] — Allocation[i,j]

These data structure vary both in size and value as time progresses.
Resource — Request Algorithm :

Let Request ; be the request vector for process p ;. If Request; [j] =
k then process p; wants k instances of resource type r;. When a
request for resources is made by process pi, the following actions
are taken :
1. If Request; <= Need; then proceed to step 2. Otherwise we
have an error, since the process has exceeded its maximum
claim.

WWW.mycsvtunotes.in

MY csvtu Notes

2. If Request; <= Available then proceed to step3. Otherwise the
resources are not available, and pi must wait.

3. The system pretends to have allocated the requested
resources to process pi by modifying the state as follows

Available = Available - Request;
Allocation; = Allocation; — Request;
Need; = Need; — Request;

If the resulting resources allocation state is safe, the transaction is
completed and process pi is allocated its resources. However, if the
new state is unsafe, then pi must wait for Requesti and the old
resource allocation state is restored.

Safety Algorithm :

1. Let Work and Finish be vectors of length m and n
respectively.
Initialize Work = Available and
Finish[i] = false for i=1,2,3,......... n
2. Find an | such that
(@) Finish[i] = false, and
(b) Needi <= Work

If no such | exist, go to step 4
3. Work = Work + Allocationi
Finish[i] = true
Go to step 2

4. If Finish[i] = true for all I, then the system is in a safe state,
Otherwise system is in unsafe state.

WWW.mycsvtunotes.in

MY csvtu Notes

Question :

Allocation
ABC

PO 0
P1 2
P2 3
P3 2
P4 0

OPrLP OO

0
0
2
1
2

Question :

Allocation

Max

AN O wd
W NO DN Ol
WNDNDDNW

Max

=N
o wo
N =N

(i) What is the state of system

(a) Safe state

Available
ABC
332

Available
ABC

220
251
353
4 55

(b) Unsafe state (c) can’t determine

(i1) What will be the state if process pi request for one unit of B.
(@) will be allocated (b) will not be given (c) none

Deadlock detection

WWW.mycsvtunotes.in

MY csvtu Notes

If a system does not employ some protocol that ensures that no
deadlock will ever occur, then a detection & recovery scheme must
be implemented.

An algorithm that examines the state of the system is
invoked periodically to determine whether a deadlock has
occurred. If so, the system must attempt to recover from the
deadlock. In order to do so the system must

(@) Maintain information about the current allocation of
resources as well as any outstanding resource
allocation requests.

(b) Provide an algorithm that utilizes this information to
determine whether the system has entered a deadlock
state.

The detection algorithm employs several time-varying data
structures that are similar to those used in banker’s algorithm :
Available —

Allocation —

Request —

The algorithm simply investigates every possible allocation for
the processes that remain to be completed.

1. Let Work and Finish be vectors of length m and n
respectively.

Initialize Work = Available
For I=1.2,......... n. If AllocationI =/ 0
Then Finish[i] = false, Otherwise Finish[i] = true

2. Find an index | such that

a. Finish [i] = false and
b. Request | <= Work

WWW.mycsvtunotes.in

MY csvtu Notes

If no such i exists go to step 4

3. Work = Work + Allocation i
Finish [i] = true
go to step 2.

3. If Finish [i] = false, for some i, 1<=1i<=n, then the
system is in a deadlock state. Moreover, if Finish[i] = false
then process pi is deadlocked.

Recovery from deadlock

When a detection algorithm determines that a deadlock exists,
the system must recover from the deadlock. There are two
options for breaking a deadlock.

One solution would be to simply true, kill one or more
processes in oreder to break the circular wait.

The second option is to preempt some resources from
one or more of the deadlocked processes.

Process Termination :-

In order to eliminate the deadlock by killing a process, two
methods can be utilized.
4. Kill all deadlocked processes
5. Kill one process at a time until the deadlock cycle is
eliminated

Combined Approached to deadlock handling :-

It has been argued that none of the presented approaches is suitable
for use as an exclusive method of handling of deadlocks in a

WWW.mycsvtunotes.in

MY csvtu Notes

complex system. Instead, deadlock prevention, avoidance and
detection can be combined for maximum effectiveness. This can
be accomplished by dividing system resources into a collection of
disjoint classes, and by applying the most suitable method of
handling deadlocks to resources within each particular class.
Consider a system with the following classes of resources :

1. Swapping space — an area of secondary storage designated
for backing up blocks of main memory.

2. Job resources - Such as printers and drivers with removable
media (tapes, cartridge disk, floppies)

3. Main Memory — assignable on a block basis, such as pages
or segments

4. Internal resources — such as I/O channels and slots of the
pool of dynamic memory.

WWW.mycsvtunotes.in

MY csvtu Notes

Unit-2

Principles of Concurrency :

Concurrency refer to a parallel execution of a program. A
concurrent program specifies two or more sequential programs that
may be executed concurrently as parallel processes.

Concurrent processing is the basis of operating system which
supports multiprogramming.

) Concurrent access to shared data may result in data
inconsistency
) Maintaining data consistency requires mechanisms to ensure
the
orderly execution of cooperating processes.

Concurrency may arise in three different contexts :

« Multiple applications

— Multiprogramming
« Structured application

— Application can be a set of concurrent processes
 Operating-system structure

— Operating system is a set of processes or threads

Some key terms related to concurrency :

« Critical Section — The area of a program where a resource is
being used
« Deadlock — When two or more processes halt, unable to
proceed
« P1lisusing A, needs B
« P2 isusing B, needs A

WWW.mycsvtunotes.in

MY csvtu Notes

« Mutual Exclusion — Making sure two processes can’t both
have a resource
« Race Condition — A situation in which multiple threads or
processes wants to read and write a shared data item at the
same time.
« Starvation — A process waits indefinitely for a resource
« Pl using A, P2 and P3 wait for A
» P2 gets A when P1 done
 P1 comesin, P1and P3 wait for A

» InterProcess Communication — Concurrent cooperating
processes must communicate to each other for such purpose
as exchanging data, reporting progress etc. To prevent timing
errors, concurrent processes must synchronize their accessing
of shared memory.

Concurrency Requirements :-

« Mutual Exclusion must be enforced
— Only one process at a time may be accessing the critical
section

A process can halt outside the critical section without harm

» No deadlock or starvation

 If no process is in a critical section, a process requesting entry
must be allowed to enter without delay

« No assumptions are made about relative process speeds or
number of processes

« A process remains inside its critical section for a limited
period of time

The Critical-Section Problem :

M N processes all competing to use shared data.

WWW.mycsvtunotes.in

MY csvtu Notes

O Structure of process Pi ---- Each process has a code
segment, called the critical section, in which the
shared data is accessed.

repeat
entry section /* enter critical section */
critical section /* access shared variables */
exit section /* leave critical section */
remainder section /* do other work */
until false
B Problem

U Ensure that when one process is executing in its
critical section, no other process is allowed to execute
in its critical section.

Solution to Critical-Section Problem :

1. Mutual Exclusion - If process Pi is executing in its critical
section, then no other processes can be executing in their critical
sections.

2. Progress - If no process is executing in its critical section and
there exist some processes that wish to enter their critical section,
then the selection of the processes that will enter the critical
section next cannot be postponed indefinitely

3. Bounded Waiting - A bound must exist on the number of times
that other processes are allowed to enter their critical sections after
a process has made a request to enter its critical section and before
that request is granted.

Mutual Exclusion :-

WWW.mycsvtunotes.in

MY csvtu Notes

Some way of making sure that if one process is executing in its
critical section the other processes will be excluded from doing the
same thing.

Algorithm to support mutual exclusion, this is applicable for two
process only:

Dekker’s algorithm :

var flag : array [0..1] of bollean;
turn: 0..1

procedure PO;

begin
repeat
flag[0] := true;
while flag[1] do if turn = 1 then
begin
flag[0] := false;
while turn = 1 do {nothing};
flag[0] := true;
end;
<critical section>;
turn :=1;
flag[0] := false;
<remaining task>
forever
end;

procedure P1;
begin
repeat
flag[1] := true;
while flag[0] do if turn = 01 then

WWW.mycsvtunotes.in

MY csvtu Notes

begin
flag[1] := false;
while turn = 0 do {nothing};
flag[1] := true;
end;
<critical section>;
turn :=0;
flag[1] := false;
<remaining task>
forever
end;

/[parent process

begin
flag[0] := false;
flag[1] := false;
turn :=1;
parbegin

PO;P1

Parend

end.

Peterson’s algorithm for two processes :

var flag : array [0..1] of bollean;
turn: 0..1

procedure PO;
begin
repeat
flag[0] := true;
turn :=1;

WWW.mycsvtunotes.in

MY csvtu Notes

while flag[1] and turn = 1 do {nothing};
<critical section>;
flag[0] := false;
<remaining task>
forever
end;

procedure P1;

begin
repeat
flag[1] := true;
turn :=0;
while flag[0] and turn = 0 do {nothing};
<critical section>;
flag[1] := false;
<remaining task>
forever
end;

/[parent process

begin
flag[0] := false;
flag[1] := false;
turn :=1;
parbegin

PO;P1

Parend

end.

Semaphores :

In previous topic, we discussed the mutual exclusion problem. The
solution we presented did not solve all the problem of mutual
exclusion. These algorithms works for two processes only and it
cannot be extended beyond that number.

WWW.mycsvtunotes.in

MY csvtu Notes

To overcome this problem, a synchronization tool called
semaphore was proposed by Dijkstra which gained wide
acceptance in several OS.

Semaphore is a variable that has an integer value It may be
initialized to a nonnegative number.

A semaphore mechanism basically consists of the two primitive
operations SIGNAL and WAIT (originally defined as P and V by
Dijkstra), which operate on semaphore variable s.

We can implement semaphore in two ways :

1. Counting semaphore — integer value can range over an
unrestricted domain

2. Binary semaphore — integer value can range only between 0
and 1; Also known as mutex locks

Definition of counting semaphore primitives :
type semaphore = record

count : integer;

queue: list of processes;

end ;
var s : semaphore;

wait(s) :
s.count := s.count — 1;
if s.count< 0
then begin
place this process in s.queue;
block this process;
end,

signal(s) :

WWW.mycsvtunotes.in

MY csvtu Notes

s.count :=s.count + 1;
if s.count <=0
then begin
remove a process P from s.queue;
place process P on ready list
end;

Definition of binary semaphore primitives :

type binary semaphore = record
value : (0,1);
queue: list of processes;
end ;
var s : binary semaphore;

waitB(s) :
if s.value = 1 then
s.value =0
else begin

place this process in s.queue;
block this process;

end,
signalB(s) :
if s.queue is empty then
s.value :=1
else begin

remove a process P from s.queue;
place process P on ready list

end:

WWW.mycsvtunotes.in

MY csvtu Notes

Mutual Exclusion with Semaphore :

Module Sem-mutex
var bsem : semaphore; {binary semaphore}
process P1;
begin
while true do
begin
wait(bsem)
Critical_section
signal(bsem)
<remaining P1 task>
end
process P2;
begin
while true do
begin
wait(bsem)
Critical_section
signal(bsem)
<remaining P2 task>
end
process P3;
begin
while true do
begin
wait(bsem)
Critical_section
signal(bsem)
<remaining P3 task>
end
//parent process
begin {Sem-mutex}
bsem :=1 {free}

WWW.mycsvtunotes.in

MY csvtu Notes

initiate P1,P2,P3
end:

The Producer/Consumer Problem (Bounded Buffer Problem)

The general statement is this : One or more producers are
generating some type of data(records, characters) and placing these
in a buffer.

A single consumer is taking items out of the buffer one at a
time. The system is to be constrained to prevent the overlap of
buffer operations. That is only one agent (producer or consumer)
may access the buffer at any one time.

On the other words, a consumer may absorb only produced items,
and must wait when no items are available. Producers on the other
hand, may produce items only when there are empty buffer slots to
receive them.

** N buffers, each can hold one item

+* Semaphore mutex initialized to the value 1
¢ Semaphore full initialized to the value 0

+ Semaphore empty initialized to the value N.

The structure of the producer process

while (true)
{

I/l produce an item

wait (empty);
wait (mutex);

/I add the item to the buffer (critical section)

WWW.mycsvtunotes.in

MY csvtu Notes

signal (mutex);
signal (full);

The structure of the consumer process

while (true)

{
wait (full);
wait (mutex);

/I remove an item from buffer (critical section)

signal (mutex);
signal (empty);

/I consume the removed item

Reader/Writer Problem

A data object is to be shared among several concurrent processes.
Some of these processes may want only to read the content of the
shared object, while others may want to update the shared object.

WWW.mycsvtunotes.in

MY csvtu Notes

If two readers access the shared data object simultaneously,
no adverse effect will result, however, if a writer access the shared
object, problem may occur. This synchronization problem is
referred to as the reader-writer problem.

We now examine two solutions to the problem.

(a)Readers have priority

Here the semaphore “wsem” is used to enforce mutual
exclusion. So long as one writer is accessing the shared data area,
no other writers and no readers may access it. (The reader process
also makes use of wsem to enforce mutual exclusion.)

(4

To allow multiple readers, we require that when there are no
readers reading, subsequent readers need not wait before entering.

The global variable “readcount” is used to keep track of the
number of readers, and the semaphore x is used to assure that
readcount is updated properly.

program readersandwriters

var readcount : integer;
X, wsem : semaphore (:=1)

procedure reader;

begin
repeat
wait(x);
readcount = readcount + 1;
if readcount =1 then wait(wsem);
signal(x);
READUNIT;
wait(x);
readcount = readcount - 1;

WWW.mycsvtunotes.in

MY csvtu Notes

if readcount = 0 then signal(wsem);
signal(x);
forever
end;

procedure writer;

begin
repeat
wait(wsem);
WRITEUNIT;
signal(wsem);
forever
end;

/[Parent process

begin
readcount = O;
parbegin
reader;
writer;
parend;
end;

“A solution to the reader/writer problem by using semaphores”

UNIT V

Design principle

Goals

WWW.mycsvtunotes.in

MY csvtu Notes

Based on market requirements and Microsoft's development strategy, the original
Microsoft NT design team established a set of prioritized goals. Note that from the outset,
the priority design objectives of the Windows NT operating system were robustness and
extensibility:

Robustness. The operating system must actively protect itself from internal malfunction
and external damage (whether accidental or deliberate), and must respond predictably to
software and hardware errors. The system must be straightforward in its architecture and
coding practices, and interfaces and behavior must be well- specified.

Extensibility and maintainability. Windows NT must be designed with the future in
mind. It must grow to meet the future needs of original equipment manufacturers (OEMs)
and Microsoft. And the system must be designed for maintainability, it must
accommodate changes and additions to the API sets it supports and the APIs should not
employ flags or other devices that drastically alter their functionality.

Portability. The system architecture must be able to function on a number of platforms
with minimal recoding.

Performance. Algorithms and data structures that lead to a high level of performance
and that provide the flexibility needed to achieve our other goals must be incorporated
into the design.

POSIX compliance and government certifiable C2 security. The POSIX standard calls
for operating system vendors to implement UNIX-style interfaces so that applications can
be moved easily from one system to another. U.S. government security guidelines specify
certain protections, such as auditing capabilities, access detection, per-user resource
quotas, and resource protection. Inclusion of these features would allow Windows NT to
be used in government operations.

Mechanisms and polices

A policy is a plan of action to guide decisions and actions. The term may apply to
government, private sector organizations and groups, and individuals. The policy process
includes the identification of different alternatives, such as programs or spending
priorities, and choosing among them on the basis of the impact they will have. Policies
can be understood as political, management, financial, and administrative mechanisms
arranged to reach explicit goals.

The separation of policy and mechanism is very important for flexibility. Policies are
likely to change from place to place or time to time. A general mechanism would be more
desirable.

Layered approach

WWW.mycsvtunotes.in

MY csvtu Notes

e The operating system is divided into a number of layers (levels), each built on top
of lower layers. The bottom layer (layer 0), is the hardware; the highest (layer N)
is the user interface.

e With modularity, layers are selected such that each uses functions (operations)
and services of only lower-level layers.

An Operating System Layer

new
operations

hidden
operations

existing
operations

OS/2 Layer Structure

Virtual Machines

e A virtual machine takes the layered approach to its logical conclusion. It treats
hardware and the operating system kernel as though they were all hardware.

e A virtual machine provides an interface identical to the underlying bare hardware.

e The operating system creates the illusion of multiple processes, each executing on
its own processor with its own (virtual) memory.

e The resources of the physical computer are shared to create the virtual machines.

e CPU scheduling can create the appearance that users have their own processor.

e Spooling and a file system can provide virtual card readers and virtual line
printers.

e A normal user time-sharing terminal serves as the virtual machine operator’s
console.

System Models

WWW.mycsvtunotes.in

MY csvtu Notes

Advantages/Disadvantages of Virtual Machines

The virtual-machine concept provides complete protection of system resources
since each virtual machine is isolated from all other virtual machines. This
isolation, however, permits no direct sharing of resources.

A virtual-machine system is a perfect vehicle for operating-systems research and
development. System development is done on the virtual machine, instead of on a
physical machine and so does not disrupt normal system operation.

The virtual machine concept is difficult to implement due to the effort required to
provide an exact duplicate to the underlying machine.

Multiprocessor

A multiprocessor computer is one with more than one CPU. The category of
multiprocessor computers can be divided into the following sub-categories:

shared memory multiprocessors have multiple CPUs, all with access to the
same memory. Communication between the the processors is easy to implement,
but care must be taken so that memory accesses are synchronized.

distributed memory multiprocessors also have multiple CPUs, but each CPU
has it's own associated memory. Here, memory access synchronization is not a
problem, but communication between the processors is often slow and
complicated.

Related to multiprocessors are the following:

networked systems consist of multiple computers that are networked together,
usually with a common operating system and shared resources. Users, however,
are aware of the different computers that make up the system.

distributed systems also consist of multiple computers but differ from networked
systems in that the multiple computers are transparent to the user. Often there are
redundant resources and a sharing of the workload among the different computers,
but this is all transparent to the user.

System Implementation

WWW.mycsvtunotes.in

MY csvtu Notes

1. Traditionally written in assembly language, operating systems can now be written
in higher-level languages.
2. Code written in a high-level language:

e can be written faster.
e is more compact.
e s easier to understand and debug.

3. An operating system is far easier to port (move to some other hardware) if it is
written in a high-level language.

System Generation (SYSGEN)

e Operating systems are designed to run on any of a class of machines; the
system must be configured for each specific computer site.

e SYSGEN program obtains information concerning the specific configuration
of the hardware system.

e Booting — starting a computer by loading the kernel.

e Bootstrap program — code stored in ROM that is able to locate the kernel,
load it into memory, and start its execution.

Distributed system

Motivation

1. Distributed system is collection of loosely coupled processors interconnected by
a communications network
2. Processors variously called nodes, computers, machines, hosts

e Site is location of the processor

3. Reasons for distributed systems
I Resource sharing
» sharing and printing files at remote sites
» processing information in a distributed database
» using remote specialized hardware devices
I Computation speedup — load sharing
| Reliability — detect and recover from site failure, function transfer,
reintegrate failed site
I Communication — message passing

Network Topology

1. Sites in the system can be physically connected in a variety of ways; they are
compared with respect to the following criteria:

WWW.mycsvtunotes.in

MY csvtu Notes

Basic cost - How expensive is it to link the various sites in the
system?

Communication cost - How long does it take to send a
message from site A to site B?

Reliability - If a link or a site in the system fails, can the
remaining sites still communicate with each other?

2. The various topologies are depicted as graphs whose nodes correspond to sites

» An edge from node A to node B corresponds to a direct
connection between the two sites

3. The following six items depict various network topologies

>y =)

-

fully connected network

L

=D

]

"

- =
1
e L =

partially connected network

7 \‘L<i§)
T Tsy

=ta

2
3
2
0
3

ring network

Communication Structure

The design of a communication network must address four basic issues:

4

Contention -

Naming and name resolution - How do two processes locate each other to

communicate?

Routing strategies - How are messages sent through the network?
Connection strategies - How do two processes send a sequence of messages?

The network is a shared resource, so how do we resolve
conflicting demands for its use?

Naming and Name Resolution

» Name systems in the network
» Address messages with the process-id
» ldentify processes on remote systems by

<host-name, identifier> pair

WWW.mycsvtunotes.in

MY csvtu Notes

» Domain name service (DNS) — specifies the naming structure of the hosts, as
well as name to address resolution (Internet)

Routing Strategies

1. Fixed routing - A path from A to B is specified in advance; path changes only if a
hardware failure disables it

» Since the shortest path is usually chosen, communication costs are
minimized

» Fixed routing cannot adapt to load changes

» Ensures that messages will be delivered in the order in which they were
sent

2. Virtual circuit - A path from A to B is fixed for the duration of one session.
Different sessions involving messages from A to B may have different paths
| Partial remedy to adapting to load changes
I Ensures that messages will be delivered in the order in which they were
sent

Dynamic routing - The path used to send a message form site A to site B is chosen only
when a message is sent

» Usually a site sends a message to another site on the link least used
at that particular time

» Adapts to load changes by avoiding routing messages on heavily
used path

» Messages may arrive out of order

» This problem can be remedied by appending a sequence number to
each message

Connection Strategies

1. Circuit switching - A permanent physical link is established for the duration of
the communication (i.e., telephone system)

2. Message switching - A temporary link is established for the duration of one
message transfer (i.e., post-office mailing system)

3. Packet switching - Messages of variable length are divided into fixed-length
packets which are sent to the destination

o Each packet may take a different path through the network
o The packets must be reassembled into messages as they arrive

4. Circuit switching requires setup time, but incurs less overhead for shipping each
message, and may waste network bandwidth

WWW.mycsvtunotes.in

MY csvtu Notes

e Message and packet switching require less setup time, but incur more
overhead per message

Contention

Several sites may want to transmit information over a link simultaneously.
Techniques to avoid repeated collisions include:

1. CSMAJ/CD - Carrier sense with multiple access (CSMA); collision detection
(CD)

e A site determines whether another message is currently being
transmitted over that link. If two or more sites begin transmitting at
exactly the same time, then they will register a CD and will stop
transmitting

e When the system is very busy, many collisions may occur, and thus
performance may be degraded

2. CSMAJCD is used successfully in the Ethernet system, the most common network
system

3. Token passing - A unique message type, known as a token, continuously
circulates in the system (usually a ring structure)

e A site that wants to transmit information must wait until the token arrives
¢ \When the site completes its round of message passing, it retransmits the token
e A token-passing scheme is used by some IBM and HP/Apollo systems

4. Message slots - A number of fixed-length message slots continuously circulate in
the system (usually a ring structure)

e Since a slot can contain only fixed-sized messages, a single logical
message may have to be broken down into a number of smaller
packets, each of which is sent in a separate slot

e This scheme has been adopted in the experimental Cambridge Digital
Communication Ring

Communication Protocol
The communication network is partitioned into the following multiple layers:

e Physical layer — handles the mechanical and electrical details of the physical
transmission of a bit stream

e Data-link layer — handles the frames, or fixed-length parts of packets,
including any error detection and recovery that occurred in the physical layer

e Network layer — provides connections and routes packets in the
communication network, including handling the address of outgoing packets,

WWW.mycsvtunotes.in

MY csvtu Notes

decoding the address of incoming packets, and maintaining routing
information for proper response to changing load levels

e Transport layer — responsible for low-level network access and for message
transfer between clients, including partitioning messages into packets,
maintaining packet order, controlling flow, and generating physical addresses

e Session layer — implements sessions, or process-to-process communications
protocols

e Presentation layer — resolves the differences in formats among the various
sites in the network, including character conversions, and half duplex/full
duplex (echoing)

e Application layer — interacts directly with the users’ deals with file transfer,
remote-login protocols and electronic mail, as well as schemas for distributed
databases

Communication Via 1SO Network Model

JHYMAAN

mmmmmas Uis
vy

f— - -

Py el vy ere

chmtm v twenarts
Pt ae e servvATTITITYSeTY Y .

L e et et

FER AR R e A O TR

The I1SO Protocol Layer

The ISO Network Message

WWW.mycsvtunotes.in

MY csvtu Notes

et —Divwho - leasyseary bresencden

rMestwvweasri< -laaysesry hwesaonclaos

traarysasgparcarrt —lzaysensr Frenszaclensr

rrneyesenicary—lowy e yesancles

prrersmerratanticor lawy < e

ragarfrliczzaticory laayenr

L R e e e ™ Ed

cldsatsn—lirshe — laasysenr trzaileasr

The TCP/IP Protocol Layers

| E=T) T O S) o3
AR tion \ T T.‘"-)M(?;\" .'-'.', l"t;‘.h T
Frreomomrytmticom ‘ Nt DOmtirmnect
Sossion NOot Doaofinaag
T raanspaot l TG -y
et ork ‘ ">
raston Lk I Not Do timnect
FPhiyasiooa) Not Dafinoeca
File Concept
1. Contiguous logical address space
2. Types:
e Data
» numeric
» character
» binary
e Program

File Structure

1. None - sequence of words, bytes
2. Simple record structure
e Lines
e Fixed length
e Variable length
3. Complex Structures
e Formatted document
e Relocatable load file
4. Can simulate last two with first method by inserting appropriate control characters

WWW.mycsvtunotes.in

MY csvtu Notes

5. Who decides:
e Operating system
e Program
Modes of computation

e Sequential Access

= read next

= write next

= reset

= no read after last write
e (rewrite)

e Direct Access

= readn

= write n

= positionton
e read next
e Wwrite next

= rewrite n

e n = relative block number

Sequential-access File

beginning

current position

end

< rewind

— read or write =l

Event Ordering

1. Happened-before relation (denoted by —)
e |If A and B are events in the same process, and A was executed before B, then A —

B

e If A is the event of sending a message by one process and B is the event of
receiving that message by another process, then A — B

e IfA>BandB —-> CthenA > C

Relative Time for Three Concurrent Processes

WWW.mycsvtunotes.in

MY csvtu Notes

4

Feg \

r=g T
o

Implementation of —»

1. Associate a timestamp with each system event
e Require that for every pair of events A and B, if A — B, then the
timestamp of A is less than the timestamp of B
2. Within each process Pi a logical clock, LCi is associated
e The logical clock can be implemented as a simple counter that is
incremented between any two successive events executed within a
process
» Logical clock is monotonically increasing
3. A process advances its logical clock when it receives a message whose timestamp
is greater than the current value of its logical clock
4. If the timestamps of two events A and B are the same, then the events are
concurrent
e We may use the process identity numbers to break ties and to create a
total ordering

Synchronization

e Implements a variety of locks to support multitasking, multithreading
(including real-time threads), and multiprocessing.

e Uses adaptive mutexes for efficiency when protecting data from short
code segments.

e Uses condition variables and readers-writers locks when longer
sections of code need access to data.

e Uses turnstiles to order the list of threads waiting to acquire either an
adaptive mutex or reader-writer lock.

Deadlock handling

Deadlock Prevention
1. Resource-ordering deadlock-prevention — define a global ordering among the
system resources

e Assign a unique number to all system resources

e A process may request a resource with unique number i only if it is not
holding a resource with a unique number grater than i

WWW.mycsvtunotes.in

MY csvtu Notes

e Simple to implement; requires little overhead
2. Banker’s algorithm — designate one of the processes in the system as the process
that maintains the information necessary to carry out the Banker’s algorithm
o Also implemented easily, but may require too much overhead

Timestamped Deadlock-Prevention Scheme

=

Each process Pi is assigned a unique priority number

2. Priority numbers are used to decide whether a process Pi should wait for a process
Pj; otherwise Pi is rolled back

3. The scheme prevents deadlocks

o For every edge Pi — Pj in the wait-for graph, Pi has a higher priority than
Pj

o Thus a cycle cannot exist

Wait-Die Scheme

=

Based on a nonpreemptive technique
2. If Pi requests a resource currently held by Pj, Pi is allowed to wait only if it has a
smaller timestamp than does Pj (Pi is older than Pj)
a. Otherwise, Pi is rolled back (dies)
3. Example: Suppose that processes P1, P2, and P3 have timestamps t, 10, and 15
respectively
a. if P1 request a resource held by P2, then P1 will wait
b. If P3 requests a resource held by P2, then P3 will be rolled back

Would-Wait Scheme

1) Based on a preemptive technique; counterpart to the wait-die system

2) If Pi requests a resource currently held by Pj, Pi is allowed to wait only if it has a
larger timestamp than does Pj (Pi is younger than Pj). Otherwise Pj is rolled back (Pj
is wounded by Pi)

3) Example: Suppose that processes P1, P2, and P3 have timestamps 5, 10, and 15
respectively
a) If P1 requests a resource held by P2, then the resource will be preempted from P2

and P2 will be rolled back

b) If P3 requests a resource held by P2, then P3 will wait

Two Local Wait-For Graphs

WWW.mycsvtunotes.in

MY csvtu Notes

(V.F)',) { IT’_../> C P) K)
CPs) CPa) P

site 5, site S

Global Wait-For Graph

Deadlock Detection — Centralized Approach

1) Each site keeps a local wait-for graph
a) The nodes of the graph correspond to all the processes that are currently either
holding or requesting any of the resources local to that site
2) A global wait-for graph is maintained in a single coordination process; this graph is
the union of all local wait-for graphs
3) There are three different options (points in time) when the wait-for graph may be
constructed:

=

Whenever a new edge is inserted or removed in one of the local wait-for graphs

Periodically, when a number of changes have occurred in a wait-for graph

3. Whenever the coordinator needs to invoke the cycle-detection algorithm

e Unnecessary rollbacks may occur as a result of false cycles

e Append unique identifiers (timestamps) to requests form different sites

e When process Pi, at site A, requests a resource from process Pj, at site
B, a request message with timestamp TS is sent

e The edge Pi — Pj with the label TS is inserted in the local wait-for of
A. The edge is inserted in the local wait-for graph of B only if B has
received the request message and cannot immediately grant the
requested resource

N

The Algorithm

The controller sends an initiating message to each site in the system

2. On receiving this message, a site sends its local wait-for graph to the coordinator
3. When the controller has received a reply from each site, it constructs a graph as
follows:

WWW.mycsvtunotes.in

MY csvtu Notes

@ The constructed graph contains a vertex for every process in the system
(b) The graph has an edge Pi — Pj if and only if
(1) there is an edge Pi — Pj in one of the wait-for graphs, or
(2) an edge Pi — Pj with some label TS appears in more than one
wait-for graph
If the constructed graph contains a cycle = deadlock

Local and Global Wait-For Graphs

site S, site S, coordinator

Election Algorithms

e Determine where a new copy of the coordinator should be restarted

e Assume that a unique priority number is associated with each active process in the
system, and assume that the priority number of process Pi is i

e Assume a one-to-one correspondence between processes and sites

e The coordinator is always the process with the largest priority number. When a
coordinator fails, the algorithm must elect that active process with the largest
priority number

e Two algorithms, the bully algorithm and a ring algorithm, can be used to elect a
new coordinator in case of failures

Bully Algorithm

e Applicable to systems where every process can send a message to every other
process in the system

e |If process Pi sends a request that is not answered by the coordinator within a time
interval T, assume that the coordinator has failed; Pi tries to elect itself as the new
coordinator

e Pisends an election message to every process with a higher priority number, Pi
then waits for any of these processes to answer within T

e If no response within T, assume that all processes with numbers greater than i
have failed; Pi elects itself the new coordinator

e If answer is received, Pi begins time interval T°, waiting to receive a message that
a process with a higher priority number has been elected

WWW.mycsvtunotes.in

MY csvtu Notes

e If no message is sent within T", assume the process with a higher number has
failed; Pi should restart the algorithm

e If Pi is not the coordinator, then, at any time during execution, Pi may receive one
of the following two messages from process Pj

e Pjis the new coordinator (j >1). Pi, in turn, records this information

e Pj started an election (j > i). Pi, sends a response to Pj and begins its own
election algorithm, provided that Pi has not already initiated such an election

e After a failed process recovers, it immediately begins execution of the same
algorithm

e If there are no active processes with higher numbers, the recovered process forces
all processes with lower number to let it become the coordinator process, even if
there is a currently active coordinator with a lower number

Ring Algorithm

e Applicable to systems organized as a ring (logically or physically)
e Assumes that the links are unidirectional, and that processes send their messages
to their right neighbors
e Each process maintains an active list, consisting of all the priority numbers of all
active processes in the system when the algorithm ends
e If process Pi detects a coordinator failure, 1 creates a new active list that is
initially empty. It then sends a message elect(i) to its right neighbor, and adds the
number i to its active list
e If Pi receives a message elect(j) from the process on the left, it must respond in
one of three ways:
o Ifthis is the first elect message it has seen or sent, Pi creates a new active
list with the numbers i and j
= |t then sends the message elect(i), followed by the message elect(j)
o Ifi = j, then the active list for Pi now contains the numbers of all the
active processes in the system
= Pi can now determine the largest number in the active list to
identify the new coordinator process
o Ifi=j, then Pi receives the message elect(i)
= The active list for Pi contains all the active processes in the system
e Pi can now determine the new coordinator process.

Reaching Agreement

1) There are applications where a set of processes wish to agree on a common “value”
2) Such agreement may not take place due to:
a) Faulty communication medium
b) Faulty processes
i) Processes may send garbled or incorrect messages to other processes
i) A subset of the processes may collaborate with each other in an attempt to
defeat the scheme

WWW.mycsvtunotes.in

MY csvtu Notes

Faulty Communications

1) Process Pi at site A, has sent a message to process Pj at site B; to proceed, Pi needs to
know if Pj has received the message
2) Detect failures using a time-out scheme
a) When Pi sends out a message, it also specifies a time interval during which it is
willing to wait for an acknowledgment message form Pj
b) When Pj receives the message, it immediately sends an acknowledgment to Pi
c) If Pi receives the acknowledgment message within the specified time interval, it
concludes that Pj has received its message
i) If a time-out occurs, Pj needs to retransmit its message and wait for an
acknowledgment
d) Continue until Pi either receives an acknowledgment, or is notified by the system
that B is down
3) Suppose that Pj also needs to know that Pi has received its acknowledgment message,
in order to decide on how to proceed
a) In the presence of failure, it is not possible to accomplish this task
b) It is not possible in a distributed environment for processes Pi and Pj to agree
completely on their respective states

Faulty Processes (Byzantine Generals Problem)

1) Communication medium is reliable, but processes can fail in unpredictable ways
2) Consider a system of n processes, of which no more than m are faulty
a) Suppose that each process Pi has some private value of Vi
3) Devise an algorithm that allows each nonfaulty Pi to construct a vector Xi = (Ai,1,
Ai,2, ..., Ai,n) such that::
a) If Pj is a nonfaulty process, then Aij = Vj.
b) If Pi and Pj are both nonfaulty processes, then Xi = Xj.
4) Solutions share the following properties
a) A correct algorithm can be devised only ifn>3xm +1
b) The worst-case delay for reaching agreement is proportionate to m + 1 message-
passing delays

UNIX SYSTEM

History

First developed in 1969 by Ken Thompson and Dennis Ritchie of the Research Group at
Bell Laboratories; incorporated features of other operating systems, especially
MULTICS.The third version was written in C, which was developed at BellLabs
specifically to support UNIX.The most influential of the non-Bell Labs and non-AT&T
UNIX development groups — University of California at Berkeley (Berkeley Software
Distributions).

— 4BSD UNIX resulted from DARPA funding to develop a standard UNIX system for
government use.

WWW.mycsvtunotes.in

MY csvtu Notes

— Developed for the VAX, 4.3BSD is one of the most influential versions, and has been
ported to many other platforms.

UNIX Design Principles

Designed to be a time-sharing system.

Has a simple standard user interface (shell) that can be replaced.

File system with multilevel tree-structured directories.

Files are supported by the kernel as unstructured sequences of bytes.

Supports multiple processes; a process can easily create new processes.

High priority given to making system interactive, and providing facilities for
program development.

Programmer Interface

Like most computer systems, UNIX consists of two separable parts:

1) Kernel: everything below the system-call interface and above the physical hardware.

2) Provides file system, CPU scheduling, memory management, and other OS functions
through system calls.

3) System programs: use the kernel-supported system calls to provide useful functions,
such as compilation and file manipulation.

User Interface

Programmers and users mainly deal with already existing systems programs: the needed
system calls are embedded within the program and do not need to be obvious to the user.
The most common systems programs are file or directory

— Directory: mkdir, rmdir, cd, pwd

— File: Is, cp, mv, rm
Other programs relate to editors (e.g., emacs, vi) text formatters
(e.g., troff, TEX), and other activities.

File Manipulation

1) Afile is a sequence of bytes; the kernel does not impose a structure on files.

2) Files are organized in tree-structured directories.

3) Directories are files that contain information on how to find other files.

4) Path name: identifies a file by specifying a path through the directory structure to the
file.

5) Absolute path names start at root of file system

6) Relative path names start at the current directory

7) System calls for basic file manipulation: create, open, read, write, close, unlink, trunc.

8) The UNIX file system supports two main objects: files and directories.

9) Directories are just files with a special format, so the representation of a file is the
basic UNIX concept.

WWW.mycsvtunotes.in

MY csvtu Notes

Blocks and Fragments

Mos of the file system is taken up by data blocks.
4.2BSD uses two block sized for files which have no indirect blocks:

— All the blocks of a file are of a large block size (such as 8K), except the last.

— The last block is an appropriate multiple of a smaller fragment size (i.e., 1024) to fill
out the file.

— Thus, a file of size 18,000 bytes would have two 8K blocks and one 2K fragment
(which would not be filled completely).

The block and fragment sizes are set during file-system creation according to the ntended
use of the file system:

— If many small files are expected, the fragment size should be small.

— If repeated transfers of large files are expected, the basic block size should be large.
The maximum block-to-fragment ratio is 8 : 1; the minimum block size is 4K (typical
choices are 4096 : 512 and 8192 :

1024).

Process Management

e Representation of processes is a major design problem for operating system.
e UNIX is distinct from other systems in that multiple processes can be created and
manipulated with ease.
These processes are represented in UNIX by various control blocks.
— Control blocks associated with a process are stored in the kernel.
— Information in these control blocks is used by the kernel for process control and CPU
scheduling.

Memory Management

e The initial memory management schemes were constrained in size by the
relatively small memory resources of the PDP machines on which UNIX was
developed.

e Pre 3BSD system use swapping exclusively to handle memory contention among
processes: If there is too much contention, processes are swapped out until
enough memory is available.

e Allocation of both main memory and swap space is done first-fit.

e required for multiple processes using the same text segment.

e The scheduler process (or swapper) decides which processes to swap in or out,
considering such factors as time idle, time in or out of main memory, size, etc.

e In f.3BSD, swap space is allocated in pieces that are multiples of power of 2 and
minimum size, up to a maximum size determined by the size or the swap-space
partition on the disk.

WWW.mycsvtunotes.in

MY csvtu Notes

I/0O System

The 1/0 system hides the peculiarities of 1/0 devices from the bulk of the kernel.

Consists of a buffer caching system, general device driver code, and drivers for specific
hardware devices.

Only the device driver knows the peculiarities of a specific device.

Interprocess Communication

e Most UNIX systems have not permitted shared memory because the PDP-11
hardware did not encourage it.
e The pipe is the IPC mechanism most characteristic of UNIX.
— Permits a reliable unidirectional byte stream between two processes.
— A benefit of pipes small size is that pipe data are seldom written to disk; they usually
are kept in memory by the normal block buffer cache.
e In 4.3BSD, pipes are implemented as a special case of the socket mechanism
which provides a general interface not only to facilities such as pipes, which are
local to one machine, but also to networking facilities.

Linux operating system
History
n Linux is a modern, free operating system based on UNIX standards
n First developed as a small but self-contained kernel in 1991 by Linus Torvalds,
with the major design goal of UNIX compatibility
n Its history has been one of collaboration by many users from all around the world,
corresponding almost exclusively over the Internet
n It has been designed to run efficiently and reliably on common PC hardware, but
also runs on a variety of other platforms
n The core Linux operating system kernel is entirely original, but it can run much
existing free UNIX software, resulting in an entire UNIX-compatible operating
system free from proprietary code
n Many, varying Linux Distributions including the kernel, applications, and
management tools

The Linux System

n Linux uses many tools developed as part of Berkeley’s BSD operating system,
MIT’s X Window System, and the Free Software Foundation's GNU project

n The min system libraries were started by the GNU project, with improvements
provided by the Linux community

n Linux networking-administration tools were derived from 4.3BSD code; recent
BSD derivatives such as Free BSD have borrowed code from Linux in return

n The Linux system is maintained by a loose network of developers collaborating
over the Internet, with a small number of public ftp sites acting as de facto
standard repositories

Design Principles

WWW.mycsvtunotes.in

MY csvtu Notes

n Linux is a multiuser, multitasking system with a full set of UNIX-compatible
tools

n Its file system adheres to traditional UNIX semantics, and it fully implements the
standard UNIX networking model

n Main design goals are speed, efficiency, and standardization

n Linux is designed to be compliant with the relevant POSIX documents; at least
two Linux distributions have achieved official POSIX certification

n The Linux programming interface adheres to the SVR4 UNIX semantics, rather
than to BSD behavior

Components of a Linux System

system- user
management = utilit compilers
9 processes > 2
programs programs

system shared libraries

Linux kernel

loadable kernel modules

n Like most UNIX implementations, Linux is composed of three main bodies of
code; the most important distinction between the kernel and all other components
n The kernel is responsible for maintaining the important abstractions of the
operating system
I Kernel code executes in kernel mode with full access to all the physical
resources of the computer
I All kernel code and data structures are kept in the same single address
space

WWW.mycsvtunotes.in

MY csvtu Notes

UNIT V

Design principle

Goals

Based on market requirements and Microsoft's development strategy, the original
Microsoft NT design team established a set of prioritized goals. Note that from the outset,
the priority design objectives of the Windows NT operating system were robustness and
extensibility:

Robustness. The operating system must actively protect itself from internal malfunction
and external damage (whether accidental or deliberate), and must respond predictably to
software and hardware errors. The system must be straightforward in its architecture and
coding practices, and interfaces and behavior must be well- specified.

Extensibility and maintainability. Windows NT must be designed with the future in
mind. It must grow to meet the future needs of original equipment manufacturers (OEMSs)
and Microsoft. And the system must be designed for maintainability, it must
accommodate changes and additions to the API sets it supports and the APIs should not
employ flags or other devices that drastically alter their functionality.

Portability. The system architecture must be able to function on a number of platforms
with minimal recoding.

Performance. Algorithms and data structures that lead to a high level of performance
and that provide the flexibility needed to achieve our other goals must be incorporated
into the design.

POSIX compliance and government certifiable C2 security. The POSIX standard calls
for operating system vendors to implement UNIX-style interfaces so that applications can
be moved easily from one system to another. U.S. government security guidelines specify
certain protections, such as auditing capabilities, access detection, per-user resource
quotas, and resource protection. Inclusion of these features would allow Windows NT to
be used in government operations.

Mechanisms and polices

A policy is a plan of action to guide decisions and actions. The term may apply to
government, private sector organizations and groups, and individuals. The policy process
includes the identification of different alternatives, such as programs or spending
priorities, and choosing among them on the basis of the impact they will have. Policies
can be understood as political, management, financial, and administrative mechanisms
arranged to reach explicit goals.

WWW.mycsvtunotes.in

MY csvtu Notes

The separation of policy and mechanism is very important for flexibility. Policies are
likely to change from place to place or time to time. A general mechanism would be more
desirable.

Layered approach

e The operating system is divided into a number of layers (levels), each built on top
of lower layers. The bottom layer (layer 0), is the hardware; the highest (layer N)
is the user interface.

e With modularity, layers are selected such that each uses functions (operations)
and services of only lower-level layers.

An Operating System Layer

layor M

Y

new
operations

hidden layar M—1

operations

existing
operations

\J V‘ ‘ \J

OS/2 Layer Structure

Virtual Machines

e A virtual machine takes the layered approach to its logical conclusion. It treats
hardware and the operating system kernel as though they were all hardware.

e A virtual machine provides an interface identical to the underlying bare hardware.

e The operating system creates the illusion of multiple processes, each executing on
its own processor with its own (virtual) memory.

e The resources of the physical computer are shared to create the virtual machines.

e CPU scheduling can create the appearance that users have their own processor.

WWW.mycsvtunotes.in

MY csvtu Notes

Spooling and a file system can provide virtual card readers and virtual line
printers.
A normal user time-sharing terminal serves as the virtual machine operator’s
console.

System Models

Advantages/Disadvantages of Virtual Machines

The virtual-machine concept provides complete protection of system resources
since each virtual machine is isolated from all other virtual machines. This
isolation, however, permits no direct sharing of resources.

A virtual-machine system is a perfect vehicle for operating-systems research and
development. System development is done on the virtual machine, instead of on a
physical machine and so does not disrupt normal system operation.

The virtual machine concept is difficult to implement due to the effort required to
provide an exact duplicate to the underlying machine.

Multiprocessor

A multiprocessor computer is one with more than one CPU. The category of
multiprocessor computers can be divided into the following sub-categories:

shared memory multiprocessors have multiple CPUs, all with access to the
same memory. Communication between the the processors is easy to implement,
but care must be taken so that memory accesses are synchronized.

distributed memory multiprocessors also have multiple CPUs, but each CPU
has it's own associated memory. Here, memory access synchronization is not a
problem, but communication between the processors is often slow and
complicated.

Related to multiprocessors are the following:

networked systems consist of multiple computers that are networked together,
usually with a common operating system and shared resources. Users, however,
are aware of the different computers that make up the system.

distributed systems also consist of multiple computers but differ from networked
systems in that the multiple computers are transparent to the user. Often there are

WWW.mycsvtunotes.in

MY csvtu Notes

redundant resources and a sharing of the workload among the different computers,
but this is all transparent to the user.

System Implementation

1. Traditionally written in assembly language, operating systems can now be written
in higher-level languages.
2. Code written in a high-level language:

e can be written faster.
e is more compact.
e s easier to understand and debug.

3. An operating system is far easier to port (move to some other hardware) if it is
written in a high-level language.

System Generation (SYSGEN)

e Operating systems are designed to run on any of a class of machines; the
system must be configured for each specific computer site.

e SYSGEN program obtains information concerning the specific configuration
of the hardware system.

e Booting — starting a computer by loading the kernel.

e Bootstrap program — code stored in ROM that is able to locate the kernel,
load it into memory, and start its execution.

Distributed system

Motivation

1. Distributed system is collection of loosely coupled processors interconnected by
a communications network
2. Processors variously called nodes, computers, machines, hosts

e Site is location of the processor

3. Reasons for distributed systems
I Resource sharing
» sharing and printing files at remote sites
» processing information in a distributed database
» using remote specialized hardware devices
I Computation speedup — load sharing
| Reliability — detect and recover from site failure, function transfer,
reintegrate failed site
I Communication — message passing

WWW.mycsvtunotes.in

MY csvtu Notes

Network Topology

1. Sites in the system can be physically connected in a variety of ways; they are
compared with respect to the following criteria:

o

o

o

Basic cost - How expensive is it to link the various sites in the
system?

Communication cost - How long does it take to send a
message from site A to site B?

Reliability - If a link or a site in the system fails, can the
remaining sites still communicate with each other?

2. The various topologies are depicted as graphs whose nodes correspond to sites

» An edge from node A to node B corresponds to a direct
connection between the two sites

3. The following six items depict various network topologies

[=

\/\
= <2

fully connmected Nnetwork

=
@=h)

T T

= &= =)
partially connected network
R
CFo—C c>< -
= =
=)\»
L =

ring Nnetwork

Communication Structure

The design of a communication network must address four basic issues:

» Naming and name resolution - How do two processes locate each other to

communicate?

» Routing strategies - How are messages sent through the network?
» Connection strategies - How do two processes send a sequence of messages?

» Contention -

The network is a shared resource, so how do we resolve
conflicting demands for its use?

Naming and Name Resolution

WWW.mycsvtunotes.in

MY csvtu Notes

» Name systems in the network

» Address messages with the process-id

» ldentify processes on remote systems by
<host-name, identifier> pair

» Domain name service (DNS) — specifies the naming structure of the hosts, as
well as name to address resolution (Internet)

Routing Strategies

1. Fixed routing - A path from A to B is specified in advance; path changes only if a
hardware failure disables it

» Since the shortest path is usually chosen, communication costs are
minimized

» Fixed routing cannot adapt to load changes

» Ensures that messages will be delivered in the order in which they were
sent

2. Virtual circuit - A path from A to B is fixed for the duration of one session.
Different sessions involving messages from A to B may have different paths
| Partial remedy to adapting to load changes
I Ensures that messages will be delivered in the order in which they were
sent

Dynamic routing - The path used to send a message form site A to site B is chosen only
when a message is sent

» Usually a site sends a message to another site on the link least used
at that particular time

» Adapts to load changes by avoiding routing messages on heavily
used path

» Messages may arrive out of order

» This problem can be remedied by appending a sequence number to
each message

Connection Strategies

1. Circuit switching - A permanent physical link is established for the duration of
the communication (i.e., telephone system)

2. Message switching - A temporary link is established for the duration of one
message transfer (i.e., post-office mailing system)

3. Packet switching - Messages of variable length are divided into fixed-length
packets which are sent to the destination

WWW.mycsvtunotes.in

MY csvtu Notes

o Each packet may take a different path through the network
o The packets must be reassembled into messages as they arrive

4. Circuit switching requires setup time, but incurs less overhead for shipping each
message, and may waste network bandwidth

e Message and packet switching require less setup time, but incur more
overhead per message

Contention

Several sites may want to transmit information over a link simultaneously.
Techniques to avoid repeated collisions include:

1. CSMAJ/CD - Carrier sense with multiple access (CSMA); collision detection
(CD)

e A site determines whether another message is currently being
transmitted over that link. If two or more sites begin transmitting at
exactly the same time, then they will register a CD and will stop
transmitting

e When the system is very busy, many collisions may occur, and thus
performance may be degraded

2. CSMAJCD is used successfully in the Ethernet system, the most common network
system

3. Token passing - A unique message type, known as a token, continuously
circulates in the system (usually a ring structure)

e A site that wants to transmit information must wait until the token arrives
¢ \When the site completes its round of message passing, it retransmits the token
¢ A token-passing scheme is used by some IBM and HP/Apollo systems

4. Message slots - A number of fixed-length message slots continuously circulate in
the system (usually a ring structure)

e Since a slot can contain only fixed-sized messages, a single logical
message may have to be broken down into a number of smaller
packets, each of which is sent in a separate slot

e This scheme has been adopted in the experimental Cambridge Digital
Communication Ring

Communication Protocol

The communication network is partitioned into the following multiple layers:

WWW.mycsvtunotes.in

MY csvtu Notes

e Physical layer — handles the mechanical and electrical details of the physical
transmission of a bit stream

e Data-link layer — handles the frames, or fixed-length parts of packets,
including any error detection and recovery that occurred in the physical layer

e Network layer — provides connections and routes packets in the
communication network, including handling the address of outgoing packets,
decoding the address of incoming packets, and maintaining routing
information for proper response to changing load levels

e Transport layer — responsible for low-level network access and for message
transfer between clients, including partitioning messages into packets,
maintaining packet order, controlling flow, and generating physical addresses

e Session layer — implements sessions, or process-to-process communications
protocols

e Presentation layer — resolves the differences in formats among the various
sites in the network, including character conversions, and half duplex/full
duplex (echoing)

e Application layer — interacts directly with the users’ deals with file transfer,
remote-login protocols and electronic mail, as well as schemas for distributed
databases

Communication Via 1SO Network Model

The I1SO Protocol Layer

WWW.mycsvtunotes.in

MY csvtu Notes

The ISO Network Message

cldenten ~lirsle — leasyscar brcossncldeca
Mestwvwveasri<-laaysesy Fywesanclos
traaryssgrcart—laayesr bFrenzaclens v

rmeyesenicary—lowyses r esanclaes

o rersnaerrtanticor lawys<r e

sagarfrliczzaticary laayenr

cdsatsn—~lirvhe — lasasyrenr trzailesr

The TCP/IP Protocol Layers

[E=a) - T = g =
TTP. DNS
Applicmtion | HT 'r’_.'\.nl}'l;_l.- 3 ;T‘-:A:Iv et

Frroomonmtmtion

Sosshon

ey ot |
NNetwoark
Dmte Link |

FPhiyasioal

PNt EOmtinmect

Not Darfinoag

TP -uor

Lo

ot Do finmect

Not Darfinoec

File Concept

1. Contiguous logical address space
2. Types:
e Data

» numeric

» character

» binary
e Program

File Structure

1. None - sequence of words, bytes
2. Simple record structure

e Lines
e Fixed length
e Variable length

3. Complex Structures

WWW.mycsvtunotes.in

MY csvtu Notes

e Formatted document
e Relocatable load file

4. Can simulate last two with first method by inserting appropriate control characters

5. Who decides:
e Operating system
e Program
Modes of computation

e Sequential Access

= read next

= write next

= reset

= no read after last write
o (rewrite)

e Direct Access

= readn

= write n

= positionton
e read next
e Wwrite next

= rewrite n

e n = relative block number

Sequential-access File

beginning

current position

end

< rewind

—— read or write =

Event Ordering

1. Happened-before relation (denoted by —)
e |If A and B are events in the same process, and A was executed before B, then A —

B

e If A is the event of sending a message by one process and B is the event of
receiving that message by another process, then A — B

e IfA>BandB —> CthenA - C

WWW.mycsvtunotes.in

MY csvtu Notes

Relative Time for Three Concurrent Processes

~ @

g L& 2

O TS Qs =

¥
N

l/
l

¥

r=g "R (=8
o 9o

Implementation of —»

1. Associate a timestamp with each system event
e Require that for every pair of events A and B, if A — B, then the
timestamp of A is less than the timestamp of B
2. Within each process Pi a logical clock, LCi is associated
e The logical clock can be implemented as a simple counter that is
incremented between any two successive events executed within a
process
» Logical clock is monotonically increasing
3. A process advances its logical clock when it receives a message whose timestamp
is greater than the current value of its logical clock
4. If the timestamps of two events A and B are the same, then the events are
concurrent
e We may use the process identity numbers to break ties and to create a
total ordering

Synchronization
e Implements a variety of locks to support multitasking, multithreading
(including real-time threads), and multiprocessing.

e Uses adaptive mutexes for efficiency when protecting data from short
code segments.

e Uses condition variables and readers-writers locks when longer
sections of code need access to data.

e Uses turnstiles to order the list of threads waiting to acquire either an
adaptive mutex or reader-writer lock.

Deadlock handling

Deadlock Prevention
1. Resource-ordering deadlock-prevention — define a global ordering among the
system resources
e Assign a unique number to all system resources

WWW.mycsvtunotes.in

MY csvtu Notes

e A process may request a resource with unique number i only if it is not
holding a resource with a unique number grater than i
e Simple to implement; requires little overhead
2. Banker’s algorithm — designate one of the processes in the system as the process
that maintains the information necessary to carry out the Banker’s algorithm
o Also implemented easily, but may require too much overhead

Timestamped Deadlock-Prevention Scheme

=

Each process Pi is assigned a unique priority number

2. Priority numbers are used to decide whether a process Pi should wait for a process
Pj; otherwise Pi is rolled back

3. The scheme prevents deadlocks

o For every edge Pi — Pj in the wait-for graph, Pi has a higher priority than
Pj

o Thus a cycle cannot exist

Wait-Die Scheme

=

Based on a nonpreemptive technique
2. If Pi requests a resource currently held by Pj, Pi is allowed to wait only if it has a
smaller timestamp than does Pj (Pi is older than Pj)
a. Otherwise, Pi is rolled back (dies)
3. Example: Suppose that processes P1, P2, and P3 have timestamps t, 10, and 15
respectively
a. if P1 request a resource held by P2, then P1 will wait
b. If P3 requests a resource held by P2, then P3 will be rolled back

Would-Wait Scheme

1) Based on a preemptive technique; counterpart to the wait-die system

2) If Pi requests a resource currently held by Pj, Pi is allowed to wait only if it has a
larger timestamp than does Pj (Pi is younger than Pj). Otherwise Pj is rolled back (Pj
is wounded by Pi)

3) Example: Suppose that processes P1, P2, and P3 have timestamps 5, 10, and 15
respectively
a) If P1 requests a resource held by P2, then the resource will be preempted from P2

and P2 will be rolled back

b) If P3 requests a resource held by P2, then P3 will wait

Two Local Wait-For Graphs

WWW.mycsvtunotes.in

MY csvtu Notes

Deadlock Detection — Centralized Approach

1) Each site keeps a local wait-for graph
a) The nodes of the graph correspond to all the processes that are currently either
holding or requesting any of the resources local to that site
2) A global wait-for graph is maintained in a single coordination process; this graph is
the union of all local wait-for graphs
3) There are three different options (points in time) when the wait-for graph may be
constructed:

=

Whenever a new edge is inserted or removed in one of the local wait-for graphs

Periodically, when a number of changes have occurred in a wait-for graph

3. Whenever the coordinator needs to invoke the cycle-detection algorithm

e Unnecessary rollbacks may occur as a result of false cycles

e Append unique identifiers (timestamps) to requests form different sites

e When process Pi, at site A, requests a resource from process Pj, at site
B, a request message with timestamp TS is sent

e The edge Pi — Pj with the label TS is inserted in the local wait-for of
A. The edge is inserted in the local wait-for graph of B only if B has
received the request message and cannot immediately grant the
requested resource

N

The Algorithm

The controller sends an initiating message to each site in the system

2. On receiving this message, a site sends its local wait-for graph to the coordinator
3. When the controller has received a reply from each site, it constructs a graph as
follows:

WWW.mycsvtunotes.in

MY csvtu Notes

(a)

The constructed graph contains a vertex for every process in the system

(b) The graph has an edge Pi — Pj if and only if

(1) there is an edge Pi — Pj in one of the wait-for graphs, or
(2) an edge Pi — Pj with some label TS appears in more than one
wait-for graph

If the constructed graph contains a cycle = deadlock

Local and Global Wait-For Graphs

site S, site S, coordinator

Election Algorithms

Determine where a new copy of the coordinator should be restarted

Assume that a unique priority number is associated with each active process in the
system, and assume that the priority number of process Pi is i

Assume a one-to-one correspondence between processes and sites

The coordinator is always the process with the largest priority number. When a
coordinator fails, the algorithm must elect that active process with the largest
priority number

Two algorithms, the bully algorithm and a ring algorithm, can be used to elect a
new coordinator in case of failures

Bully Algorithm

Applicable to systems where every process can send a message to every other
process in the system

If process Pi sends a request that is not answered by the coordinator within a time
interval T, assume that the coordinator has failed; Pi tries to elect itself as the new
coordinator

Pi sends an election message to every process with a higher priority number, Pi
then waits for any of these processes to answer within T

If no response within T, assume that all processes with numbers greater than i
have failed; Pi elects itself the new coordinator

If answer is received, Pi begins time interval T*, waiting to receive a message that
a process with a higher priority number has been elected

WWW.mycsvtunotes.in

MY csvtu Notes

e If no message is sent within T", assume the process with a higher number has
failed; Pi should restart the algorithm

e If Pi is not the coordinator, then, at any time during execution, Pi may receive one
of the following two messages from process Pj

e Pjis the new coordinator (j >). Pi, in turn, records this information

e Pj started an election (j > i). Pi, sends a response to Pj and begins its own
election algorithm, provided that Pi has not already initiated such an election

e After a failed process recovers, it immediately begins execution of the same
algorithm

e If there are no active processes with higher numbers, the recovered process forces
all processes with lower number to let it become the coordinator process, even if
there is a currently active coordinator with a lower number

Ring Algorithm

e Applicable to systems organized as a ring (logically or physically)
e Assumes that the links are unidirectional, and that processes send their messages
to their right neighbors
e Each process maintains an active list, consisting of all the priority numbers of all
active processes in the system when the algorithm ends
e If process Pi detects a coordinator failure, 1 creates a new active list that is
initially empty. It then sends a message elect(i) to its right neighbor, and adds the
number i to its active list
e If Pi receives a message elect(j) from the process on the left, it must respond in
one of three ways:
o Ifthis is the first elect message it has seen or sent, Pi creates a new active
list with the numbers i and j
= |t then sends the message elect(i), followed by the message elect(j)
o Ifi = j, then the active list for Pi now contains the numbers of all the
active processes in the system
= Pi can now determine the largest number in the active list to
identify the new coordinator process
o Ifi=j, then Pi receives the message elect(i)
= The active list for Pi contains all the active processes in the system
e Pi can now determine the new coordinator process.

Reaching Agreement

1) There are applications where a set of processes wish to agree on a common “value”
2) Such agreement may not take place due to:
a) Faulty communication medium
b) Faulty processes
i) Processes may send garbled or incorrect messages to other processes
i) A subset of the processes may collaborate with each other in an attempt to
defeat the scheme

WWW.mycsvtunotes.in

MY csvtu Notes

Faulty Communications

1) Process Pi at site A, has sent a message to process Pj at site B; to proceed, Pi needs to
know if Pj has received the message
2) Detect failures using a time-out scheme
a) When Pi sends out a message, it also specifies a time interval during which it is
willing to wait for an acknowledgment message form Pj
b) When Pj receives the message, it immediately sends an acknowledgment to Pi
c) If Pi receives the acknowledgment message within the specified time interval, it
concludes that Pj has received its message
i) If a time-out occurs, Pj needs to retransmit its message and wait for an
acknowledgment
d) Continue until Pi either receives an acknowledgment, or is notified by the system
that B is down
3) Suppose that Pj also needs to know that Pi has received its acknowledgment message,
in order to decide on how to proceed
a) In the presence of failure, it is not possible to accomplish this task
b) It is not possible in a distributed environment for processes Pi and Pj to agree
completely on their respective states

Faulty Processes (Byzantine Generals Problem)

1) Communication medium is reliable, but processes can fail in unpredictable ways
2) Consider a system of n processes, of which no more than m are faulty
a) Suppose that each process Pi has some private value of Vi
3) Devise an algorithm that allows each nonfaulty Pi to construct a vector Xi = (Ai,1,
Ai,2, ..., Ai,n) such that::
a) If Pj is a nonfaulty process, then Aij = Vj.
b) If Pi and Pj are both nonfaulty processes, then Xi = Xj.
4) Solutions share the following properties
a) A correct algorithm can be devised only ifn>3xm +1
b) The worst-case delay for reaching agreement is proportionate to m + 1 message-
passing delays

UNIX SYSTEM

History

First developed in 1969 by Ken Thompson and Dennis Ritchie of the Research Group at
Bell Laboratories; incorporated features of other operating systems, especially
MULTICS.The third version was written in C, which was developed at BellLabs
specifically to support UNIX.The most influential of the non-Bell Labs and non-AT&T
UNIX development groups — University of California at Berkeley (Berkeley Software
Distributions).

— 4BSD UNIX resulted from DARPA funding to develop a standard UNIX system for
government use.

WWW.mycsvtunotes.in

MY csvtu Notes

— Developed for the VAX, 4.3BSD is one of the most influential versions, and has been
ported to many other platforms.

UNIX Design Principles

Designed to be a time-sharing system.

Has a simple standard user interface (shell) that can be replaced.

File system with multilevel tree-structured directories.

Files are supported by the kernel as unstructured sequences of bytes.

Supports multiple processes; a process can easily create new processes.

High priority given to making system interactive, and providing facilities for
program development.

Programmer Interface

Like most computer systems, UNIX consists of two separable parts:

1) Kernel: everything below the system-call interface and above the physical hardware.

2) Provides file system, CPU scheduling, memory management, and other OS functions
through system calls.

3) System programs: use the kernel-supported system calls to provide useful functions,
such as compilation and file manipulation.

User Interface

Programmers and users mainly deal with already existing systems programs: the needed
system calls are embedded within the program and do not need to be obvious to the user.
The most common systems programs are file or directory

— Directory: mkdir, rmdir, cd, pwd

— File: Is, cp, mv, rm
Other programs relate to editors (e.g., emacs, vi) text formatters
(e.g., troff, TEX), and other activities.

File Manipulation

1) Afile is a sequence of bytes; the kernel does not impose a structure on files.

2) Files are organized in tree-structured directories.

3) Directories are files that contain information on how to find other files.

4) Path name: identifies a file by specifying a path through the directory structure to the
file.

5) Absolute path names start at root of file system

6) Relative path names start at the current directory

7) System calls for basic file manipulation: create, open, read, write, close, unlink, trunc.

8) The UNIX file system supports two main objects: files and directories.

9) Directories are just files with a special format, so the representation of a file is the
basic UNIX concept.

WWW.mycsvtunotes.in

MY csvtu Notes

Blocks and Fragments

Mos of the file system is taken up by data blocks.
4.2BSD uses two block sized for files which have no indirect blocks:

— All the blocks of a file are of a large block size (such as 8K), except the last.

— The last block is an appropriate multiple of a smaller fragment size (i.e., 1024) to fill
out the file.

— Thus, a file of size 18,000 bytes would have two 8K blocks and one 2K fragment
(which would not be filled completely).

The block and fragment sizes are set during file-system creation according to the ntended
use of the file system:

— If many small files are expected, the fragment size should be small.

— If repeated transfers of large files are expected, the basic block size should be large.
The maximum block-to-fragment ratio is 8 : 1; the minimum block size is 4K (typical
choices are 4096 : 512 and 8192 :

1024).

Process Management

e Representation of processes is a major design problem for operating system.
e UNIX is distinct from other systems in that multiple processes can be created and
manipulated with ease.
These processes are represented in UNIX by various control blocks.
— Control blocks associated with a process are stored in the kernel.
— Information in these control blocks is used by the kernel for process control and CPU
scheduling.

Memory Management

e The initial memory management schemes were constrained in size by the
relatively small memory resources of the PDP machines on which UNIX was
developed.

e Pre 3BSD system use swapping exclusively to handle memory contention among
processes: If there is too much contention, processes are swapped out until
enough memory is available.

e Allocation of both main memory and swap space is done first-fit.

e required for multiple processes using the same text segment.

e The scheduler process (or swapper) decides which processes to swap in or out,
considering such factors as time idle, time in or out of main memory, size, etc.

e In f.3BSD, swap space is allocated in pieces that are multiples of power of 2 and
minimum size, up to a maximum size determined by the size or the swap-space
partition on the disk.

WWW.mycsvtunotes.in

MY csvtu Notes

I/0O System

The 1/0 system hides the peculiarities of 1/0 devices from the bulk of the kernel.

Consists of a buffer caching system, general device driver code, and drivers for specific
hardware devices.

Only the device driver knows the peculiarities of a specific device.

Interprocess Communication

e Most UNIX systems have not permitted shared memory because the PDP-11
hardware did not encourage it.
e The pipe is the IPC mechanism most characteristic of UNIX.
— Permits a reliable unidirectional byte stream between two processes.
— A benefit of pipes small size is that pipe data are seldom written to disk; they usually
are kept in memory by the normal block buffer cache.
e In 4.3BSD, pipes are implemented as a special case of the socket mechanism
which provides a general interface not only to facilities such as pipes, which are
local to one machine, but also to networking facilities.

Linux operating system
History
n Linux is a modern, free operating system based on UNIX standards
n First developed as a small but self-contained kernel in 1991 by Linus Torvalds,
with the major design goal of UNIX compatibility
n Its history has been one of collaboration by many users from all around the world,
corresponding almost exclusively over the Internet
n It has been designed to run efficiently and reliably on common PC hardware, but
also runs on a variety of other platforms
n The core Linux operating system kernel is entirely original, but it can run much
existing free UNIX software, resulting in an entire UNIX-compatible operating
system free from proprietary code
n Many, varying Linux Distributions including the kernel, applications, and
management tools

The Linux System

n Linux uses many tools developed as part of Berkeley’s BSD operating system,
MIT’s X Window System, and the Free Software Foundation's GNU project

n The min system libraries were started by the GNU project, with improvements
provided by the Linux community

n Linux networking-administration tools were derived from 4.3BSD code; recent
BSD derivatives such as Free BSD have borrowed code from Linux in return

n The Linux system is maintained by a loose network of developers collaborating
over the Internet, with a small number of public ftp sites acting as de facto
standard repositories

Design Principles

WWW.mycsvtunotes.in

MY csvtu Notes

n Linux is a multiuser, multitasking system with a full set of UNIX-compatible
tools

n Its file system adheres to traditional UNIX semantics, and it fully implements the
standard UNIX networking model

n Main design goals are speed, efficiency, and standardization

n Linux is designed to be compliant with the relevant POSIX documents; at least
two Linux distributions have achieved official POSIX certification

n The Linux programming interface adheres to the SVR4 UNIX semantics, rather
than to BSD behavior

Components of a Linux System

system- user
management = utilit compilers
g processes Y P
programs programs

system shared libraries

Linux kernel

loadable kernel modules

n Like most UNIX implementations, Linux is composed of three main bodies of
code; the most important distinction between the kernel and all other components
n The kernel is responsible for maintaining the important abstractions of the
operating system
I Kernel code executes in kernel mode with full access to all the physical
resources of the computer
I All kernel code and data structures are kept in the same single address

space

WWW.mycsvtunotes.in

