
Department of Computer Science, UMass Amherst Andrew H. Fagg

Announcements/Reminders

• HW 4 due Friday at 19:30

• Lab 3 due Wednesday, April 16

CMPSCI 377: Operating Systems Lecture 17, Page 1

Department of Computer Science, UMass Amherst Andrew H. Fagg

Memory Management

• Where is the executing process?

• How do we allow multiple processes to use main memory simultaneously?

• What is an address and how is one interpreted?

CMPSCI 377: Operating Systems Lecture 17, Page 2

Department of Computer Science, UMass Amherst Andrew H. Fagg

Background: Computer Architecture

• Program executable
starts out on disk

• The OS loads the
program into memory

• CPU fetches
instructions and
data from memory
while executing the
program

Disk
Controller

disk disk

Physical

System Bus

Memory Controller

Data

Processor

Address
Virtual Trap

CPU

Cache

Virtual
Address

TLB/MMU

Memory

Control

Address

CMPSCI 377: Operating Systems Lecture 17, Page 3

Department of Computer Science, UMass Amherst Andrew H. Fagg

Memory Management: Terminology

• Segment: A chunk of
memory assigned to a
process.

• Physical Address:
a real address in
memory

• Virtual Address: an
address relative to the
start of a process’s
address space.

Addresses
Virtual
Addresses

OS

A

C

Physical

B
400

Memory
0

2400

2000

1400

900

400

1100

Segments

500

0

0

300

0

CMPSCI 377: Operating Systems Lecture 17, Page 4

Department of Computer Science, UMass Amherst Andrew H. Fagg

Where do addresses come from?

How do programs generate instruction and data addresses?

• Compile time: The compiler generates the exact physical location in
memory starting from some fixed starting position k. The OS does
nothing.

• Load time: Compiler generates an address, but at load time the OS
determines the process’ starting position. Once the process loads, it does
not move in memory.

• Execution time: Compiler generates an address, and OS can place it any
where it wants in memory.

CMPSCI 377: Operating Systems Lecture 17, Page 5

Department of Computer Science, UMass Amherst Andrew H. Fagg

Uniprogramming

• OS gets a fixed part of memory (highest memory in DOS).

• One process executes at a time.

• Process is always loaded starting at address 0.

• Process executes in a contiguous section of memory.

• Compiler can generate physical addresses.

• Maximum address = Memory Size - OS Size

• OS is protected from process by checking addresses used by process.

CMPSCI 377: Operating Systems Lecture 17, Page 6

Department of Computer Science, UMass Amherst Andrew H. Fagg

Uniprogramming

Memory
0

2400OS

Memory
0

2400OS

Memory
0

2400OS

A
B

C

2200 22002200

Processes A, B, C

⇒Simple, but does not allow for overlap of I/O and computation.

CMPSCI 377: Operating Systems Lecture 17, Page 7

Department of Computer Science, UMass Amherst Andrew H. Fagg

Multiple Programs Share Memory

Transparency:

• We want multiple processes to coexist in memory.
• No process should be aware that memory is shared.
• Processes should not care what physical portion of memory to which
they are assigned.

Safety:

• Processes must not be able to corrupt each other.
• Processes must not be able to corrupt the OS.

Efficiency:

• Performance of CPU and memory should not be degraded badly due to
sharing.

CMPSCI 377: Operating Systems Lecture 17, Page 8

Department of Computer Science, UMass Amherst Andrew H. Fagg

Relocation

• Put the OS in the highest
memory.

• Assume at compile/link time
that the process starts at 0
with a maximum address =
memory size - OS size.

C C

A

Memory
0

2400

2000

900
A

Memory
0

2400

2000

900

B

OS

B

OS

400 400

1200

• Load a process by allocating a contiguous segment of memory in which
the process fits.

• The first (smallest) physical address of the process is the base address and
the largest physical address the process can access is the limit address.

CMPSCI 377: Operating Systems Lecture 17, Page 9

Department of Computer Science, UMass Amherst Andrew H. Fagg

Relocation

• Static Relocation:

– At load time, the OS adjusts the addresses in a process to reflect its
position in memory.

– Once a process is assigned a place in memory and starts executing it,
the OS cannot move it. (Why?)

CMPSCI 377: Operating Systems Lecture 17, Page 10

Department of Computer Science, UMass Amherst Andrew H. Fagg

Relocation

• Dynamic Relocation:

– Hardware adds relocation register (base) to virtual address to get a
physical address;

– Hardware compares address with limit register (address must be less
than limit).

– If test fails, the MMU generates an address trap and ignores the
physical address.

register
limit

CPU

relocation
register

+

logical address

physical address

trap: addressing error

>

CMPSCI 377: Operating Systems Lecture 17, Page 11

Department of Computer Science, UMass Amherst Andrew H. Fagg

Relocation

• Advantages:

– OS can easily move a process during execution.

– OS can allow a process to grow over time.

– Simple, fast hardware: two special registers, an add, and a compare.

• Disadvantages:

–

–

–

–

–

CMPSCI 377: Operating Systems Lecture 17, Page 12

Department of Computer Science, UMass Amherst Andrew H. Fagg

Relocation

• Advantages:

– OS can easily move a process during execution.

– OS can allow a process to grow over time.

– Simple, fast hardware: two special registers, an add, and a compare.

• Disadvantages:

– Slows down hardware due to the add on every memory reference.

– Can’t share memory (such as program text) between processes.

– Process is still limited to physical memory size.

– Degree of multiprogramming is very limited since all memory of all
active processes must fit in memory.

– Complicates memory management.

CMPSCI 377: Operating Systems Lecture 17, Page 13

Department of Computer Science, UMass Amherst Andrew H. Fagg

Relocation: Properties

• Transparency: processes are largely unaware of sharing.

• Safety: each memory reference is checked.

• Efficiency: memory checks and virtual to physical address translation are
fast as they are done in hardware, BUT if a process grows, it may have to
be moved which is very slow.

CMPSCI 377: Operating Systems Lecture 17, Page 14

Department of Computer Science, UMass Amherst Andrew H. Fagg

Memory Management: Memory Allocation

As processes enter the system, grow, and terminate, the OS must keep track
of which memory is available and utilized.

Allocate D A terminates

OS

A

B terminates

0

1500

900

400

B

C
2100

1800

OS

A

0

900

400

C
2100

1800

OS

A

0

900

400

C
2100

1800

OS
0

900

400

C
2100

1800

2400 2400 2400 2400

D

1500

D

• Holes: pieces of free memory (shaded above in figure)

• Given a new process, the OS must decide which hole to use for the
process

CMPSCI 377: Operating Systems Lecture 17, Page 15

Department of Computer Science, UMass Amherst Andrew H. Fagg

Memory Allocation Policies

• First-Fit: allocate the first one in the list in which the process fits. The
search can start with the first hole, or where the previous first-fit search
ended.

• Best-Fit: Allocate the smallest hole that is big enough to hold the
process. The OS must search the entire list or store the list sorted by size
hole list.

• Worst-Fit: Allocate the largest hole to the process (so as to leave as
large a hole as possible). Again – the OS must search the entire list or
keep the list sorted.

• Simulations show first-fit and best-fit usually yield better storage
utilization than worst-fit; first-fit is generally faster than best-fit.

CMPSCI 377: Operating Systems Lecture 17, Page 16

Department of Computer Science, UMass Amherst Andrew H. Fagg

Fragmentation

• External Fragmentation

– Frequent loading and unloading programs causes free space to be
broken into little pieces

– External fragmentation exists when there is enough memory to fit a
process in memory, but the space is not contiguous

– 50-percent rule: Simulations show that for every 2N allocated blocks,
N blocks are lost due to fragmentation (i.e., 1/3 of memory space is
wasted)

– We want an allocation policy that minimizes wasted space.

CMPSCI 377: Operating Systems Lecture 17, Page 17

Department of Computer Science, UMass Amherst Andrew H. Fagg

Fragmentation (cont)

• Internal Fragmentation:

– Consider a process of size 8846 bytes and a block of size 8848 bytes

⇒ it is more efficient to allocate the process the entire 8848 block than it
is to keep track of 2 free bytes

– Internal fragmentation exists when memory internal to a partition goes
unused

CMPSCI 377: Operating Systems Lecture 17, Page 18

Department of Computer Science, UMass Amherst Andrew H. Fagg

Compaction

(needs 600)

(needs 600)

Alternative 1:

Alternative 2:

OS
0

400

2400

D

1000
C

1300

E

E

OS
0

400

2400

D

1000

1800
C

1600

2100

OS
0

400

2400

D

1000

1800
C 2100

E

OS
0

900

400

C
2100

1800

2400

D

1500

OS
0

900

400

C
2100

1800

2400

D

1500

Compaction

OS
0

400

2400

D

1000
C

1300

1900

E

• How much memory is moved?

• How big a block is created?

• Any other choices?

CMPSCI 377: Operating Systems Lecture 17, Page 19

Department of Computer Science, UMass Amherst Andrew H. Fagg

Swapping

• Roll out a process to disk, releasing all the memory it holds.

• When process becomes active again, the OS must reload it in memory.

– With static relocation, the process must be put in the same position.
– With dynamic relocation, the OS finds a new position in memory for
the process and updates the relocation and limit registers.

• If swapping is part of the system, compaction is easy to add.

• How could or should swapping interact with CPU scheduling?

CMPSCI 377: Operating Systems Lecture 17, Page 20

Department of Computer Science, UMass Amherst Andrew H. Fagg

Summary

• Processes must reside in memory in order to execute.

• Processes generally use virtual addresses which are translated into
physical addresses just before accessing memory.

• Segmentation allows multiple processes to share main memory, but makes
it expensive for processes to grow over time.

• Swapping allows the total memory being used by all processes to exceed
the amount of physical memory available, but increases context switch
time.

CMPSCI 377: Operating Systems Lecture 17, Page 21

Department of Computer Science, UMass Amherst Andrew H. Fagg

Next Time

• Monday: Paging

• Wednesday: Paging

CMPSCI 377: Operating Systems Lecture 17, Page 22

Department of Computer Science, UMass Amherst Andrew H. Fagg

Announcements/Reminders

• Lab 3 due Wednesday

• Lab 3 demos are due no later than 1 week from Wednesday

• I am out of town next week (so this is the week to ask questions in
preparation for the exam)

CMPSCI 377: Operating Systems Lecture 18, Page 1

Department of Computer Science, UMass Amherst Andrew H. Fagg

Last Class: Memory Management

• Uniprogramming

• Static Relocation

• Dynamic Relocation

• Monolithic memory
segments

Addresses
Virtual
Addresses

OS

A

C

Physical

B
400

Memory
0

2400

2000

1400

900

400

1100

Segments

500

0

0

300

0

CMPSCI 377: Operating Systems Lecture 18, Page 2

Department of Computer Science, UMass Amherst Andrew H. Fagg

Next: Paging

Observation: Processes typically do not use their entire space in memory all
the time.

Paging:

1. Divides and assigns processes to fixed sized pages (logical blocks of
memory),

2. then selectively allocates pages to frames in the physical memory, and

3. manages (moves, removes, reallocates) pages in memory.

CMPSCI 377: Operating Systems Lecture 18, Page 3

Department of Computer Science, UMass Amherst Andrew H. Fagg

Paging: Motivation & Features

90/10 rule: Processes spend 90% of their time accessing 10% of their space
in memory.

⇒ Keep only those parts of a process in memory that are actually being used

• Pages greatly simplify the hole fitting problem: all pages are
interchangeable

• The logical memory of the process is contiguous, but pages need not be
allocated contiguously in memory.

• By dividing memory into fixed size pages, we can eliminate external
fragmentation.

• Paging does not eliminate internal fragmentation (∼ 1/2 page per
process)

CMPSCI 377: Operating Systems Lecture 18, Page 4

Department of Computer Science, UMass Amherst Andrew H. Fagg

Paging: Example

5

A4

A3

A2

A 1

A 1

A5

A4

A3

A2f11

f10

f9
f8

f7

f6

f5

f4

f3

f2

f1
f 0

A

A

 in 6 pages

0

A 0

2400

400

800

Memory

OS

1200

1600

2000

0

OS

Process A

Frames in
logical

memory

CMPSCI 377: Operating Systems Lecture 18, Page 5

Department of Computer Science, UMass Amherst Andrew H. Fagg

Paging Hardware

• Problem: How do we find addresses when pages are not allocated
contiguously in memory?

• Virtual Address:

– Processes use a virtual (logical) address to name memory locations.

– Process generates contiguous, virtual addresses from 0 to size of the
process.

– The OS lays the process down on pages and the paging hardware
translates virtual addresses to actual physical addresses in memory.

– In paging, the virtual address identifies the page and the page offset.

– A page table keeps track of the frame in memory in which the page is
located.

CMPSCI 377: Operating Systems Lecture 18, Page 6

Department of Computer Science, UMass Amherst Andrew H. Fagg

Paging Hardware

CPU p

f

p

fd d

Page Table

virtual address

Memory

physical address

CMPSCI 377: Operating Systems Lecture 18, Page 7

Department of Computer Science, UMass Amherst Andrew H. Fagg

Paging Hardware

• Paging is a form of dynamic relocation, where each virtual address is
bound by the paging hardware to a physical address.

• Think of the page table as a set of relocation registers, one for each
frame.

• Mapping is invisible to the process; the OS maintains the mapping and
the hardware does the translation.

• Protection is provided with the same mechanisms as used in dynamic
relocation.

CMPSCI 377: Operating Systems Lecture 18, Page 8

Department of Computer Science, UMass Amherst Andrew H. Fagg

Paging Hardware: Practical Details

• Page size (frame sizes) are typically a power of 2 between 512 bytes and
8192 bytes per page.

• Powers of 2 make the translation of virtual addresses into physical
addresses easier. Why?

CMPSCI 377: Operating Systems Lecture 18, Page 9

Department of Computer Science, UMass Amherst Andrew H. Fagg

Paging Hardware: Practical Details

• Powers of 2 make the translation of virtual addresses into physical
addresses easier. For example, given:

1. virtual address space of size 2m bytes and a page of size 2n, then
2. the high order m− n bits of a virtual address select the page, and
3. the low order n bits select the offset in the page

p d p: page number
d: page offsetnm-n

CMPSCI 377: Operating Systems Lecture 18, Page 10

Department of Computer Science, UMass Amherst Andrew H. Fagg

Address Translation Example

A 0

A 1

A2

A3

f 0

f1
f2

f3

f5

f6
f7
f8

f9
f10

f11

0
1
2
3 9

11
6
2

table
page

f4

A2

A 0

A3

A 1

memory
Memory

0

Frames in

f
f
f
f

12

13

14

15

32 bytes

64 bytes

96 bytes

128 bytes

160 bytes

192 bytes

224 bytes

256 bytes

memory size = 256 bytes
page size = 16 bytes

virtual

CMPSCI 377: Operating Systems Lecture 18, Page 11

Department of Computer Science, UMass Amherst Andrew H. Fagg

Address Translation Example

• How big is the page table?

• How many bits for a physical address? Assume we can address in 1-byte
increments.

• What part is p, and d?

• Given virtual address 24 (0x18), what is the virtual to physical
translation?

CMPSCI 377: Operating Systems Lecture 18, Page 12

Department of Computer Science, UMass Amherst Andrew H. Fagg

Address Translation Example

• How big is the page table?

4 entries

• How many bits for a physical address? Assume we can address in 1-byte
increments.

8 bits: 4 for page, 4 for offset

• What part is p, and d?

p: most significant bits; d: least significant

• Given virtual address 24 (0x18), what is the virtual to physical
translation?

p = 1, d = 8 (virtual)

f = 6, d = 8 (physical)

CMPSCI 377: Operating Systems Lecture 18, Page 13

Department of Computer Science, UMass Amherst Andrew H. Fagg

Address Translation Example

• How many bits for an address? Assume we can only address in 1-word (4
byte) increments?

• What part is p, and d?

• Given virtual address 13 (0xD), what is the virtual to physical
translation?

• What needs to happen on a process context switch?

CMPSCI 377: Operating Systems Lecture 18, Page 14

Department of Computer Science, UMass Amherst Andrew H. Fagg

Address Translation Example

• How many bits for an address? Assume we can only address in 1-word (4
byte) increments?

6 bits: 4 for page, 2 for offset

• What part is p, and d?

(again): p is most significant, d is least.

• Given virtual address 13 (0xD), what is the virtual to physical
translation?

p = 3, d = 1 (virtual)

f = 9, offset = 1 (physical)

CMPSCI 377: Operating Systems Lecture 18, Page 15

Department of Computer Science, UMass Amherst Andrew H. Fagg

Address Translation Example (cont)

• What needs to happen on a process context switch?

Need to save page table in PCB, and then restore page table of the new
process.

CMPSCI 377: Operating Systems Lecture 18, Page 16

Department of Computer Science, UMass Amherst Andrew H. Fagg

Making Paging Efficient

How should we store the page table?

• Registers:

Advantages?

Disadvantages?

• Memory:

Advantages?

Disadvantages?

CMPSCI 377: Operating Systems Lecture 18, Page 17

Department of Computer Science, UMass Amherst Andrew H. Fagg

Making Paging Efficient

How should we store the page table?

• Registers:

Advantages? Fast.

Disadvantages? If lots of pages, need many registers. Context switch
would require saving/restoring registers which would be slow.

• Memory:

Advantages? Lots of memory. Could just save/restore a pointer to the
page table on context switch.

Disadvantages? Each memory address requires 2 memory accesses: one to
translate from virtual to physical memory, one to actually access memory.

CMPSCI 377: Operating Systems Lecture 18, Page 18

Department of Computer Science, UMass Amherst Andrew H. Fagg

Translation Look-aside Buffers (TLB)

A fast, fully associative memory that stores page numbers (the key) and the
frame (the value) in which they are stored.

• If memory accesses have locality, address translation has locality too.

• Typical TLB sizes range from 8 to 2048 entries.

CMPSCI 377: Operating Systems Lecture 18, Page 19

Department of Computer Science, UMass Amherst Andrew H. Fagg

TLB Implementation

v: valid bit that says
the entry is up-to-date

TLB
Miss

TLB
Miss

p

CPU p fd d

virtual address phsical address

Memory

TLB
Hit

vpage frame

load
TLB

(in Memory)

TLB

p

Page Table

f

CMPSCI 377: Operating Systems Lecture 18, Page 20

Department of Computer Science, UMass Amherst Andrew H. Fagg

Costs of Using The TLB

1. What is the effective memory access cost if the page table is in memory?

2. What is the effective memory access cost with a TLB?

CMPSCI 377: Operating Systems Lecture 18, Page 21

Department of Computer Science, UMass Amherst Andrew H. Fagg

Costs of Using The TLB

1. What is the effective memory access cost if the page table is in memory?

ema = 2 ∗ma

2. What is the effective memory access cost with a TLB?

ema = (ma + TLB) ∗ p + (1− p) ∗ (2ma + TLB)

A large TLB improves hit ratio, and thus decreases average memory cost.

CMPSCI 377: Operating Systems Lecture 18, Page 22

Department of Computer Science, UMass Amherst Andrew H. Fagg

Initializing Memory when Starting a Process

1. Process needing k pages arrives.

2. If k page frames are free, then allocate these frames to pages. Else free
frames that are no longer needed.

3. The OS puts each page in a frame and then puts the frame number in
the corresponding entry in the page table.

4. OS marks all TLB entries as invalid (flushes the TLB).

5. OS starts process.

6. As process executes, OS loads TLB entries as each page is accessed,
replacing an existing entry if the TLB is full.

CMPSCI 377: Operating Systems Lecture 18, Page 23

Department of Computer Science, UMass Amherst Andrew H. Fagg

Saving/Restoring Memory on a Context Switch

• The Process Control Block (PCB) must be extended to contain:

– The page table
– Possibly a copy of the TLB

• On a context switch:

1. Copy the page table base register value to the PCB.
2. Copy the TLB to the PCB (optional).
3. Flush the TLB.
4. Restore the page table base register.
5. Restore the TLB if it was saved.

• Multilevel Paging: If the virtual address space is huge, page tables get
too big. Many systems use a multilevel paging scheme...

CMPSCI 377: Operating Systems Lecture 18, Page 24

Department of Computer Science, UMass Amherst Andrew H. Fagg

Sharing

Paging allows sharing of memory across processes, since memory used by a
process no longer needs to be contiguous.

• Shared code must be reentrant, that means the processes that are using it
cannot change it (e.g., no data in reentrant code).

• Sharing of pages is similar to the way threads share text and memory with
each other.

• A shared page may exist in different parts of the virtual address space of
each process, but the virtual addresses map to the same physical address.

• The user program (e.g., emacs) marks text segment of a program as
reentrant with a system call.

CMPSCI 377: Operating Systems Lecture 18, Page 25

Department of Computer Science, UMass Amherst Andrew H. Fagg

Sharing (cont)

• The OS keeps track of available reentrant code in memory and reuses
them if a new process requests the same program.

• Can greatly reduce overall memory requirements for commonly used
applications.

CMPSCI 377: Operating Systems Lecture 18, Page 26

Department of Computer Science, UMass Amherst Andrew H. Fagg

Summary

• Paging is a big improvement over segmentation:

– Eliminates the problem of external fragmentation and therefore the
need for compaction.

– Allows sharing of code pages among processes, reducing overall
memory requirements.

– Enables processes to run when they are only partially loaded in main
memory.

• However, paging has its costs:

– Translating from a virtual address to a physical address is more
time-consuming.

– Paging requires hardware support in the form of a TLB to be efficient
enough.

– Paging requires more complex OS to maintain the page table.

CMPSCI 377: Operating Systems Lecture 18, Page 27

Department of Computer Science, UMass Amherst Andrew H. Fagg

Next Time

• Segmented Paging

• Next Week:

– Monday: Holiday
– Wednesday: Discussion and exam review
– Friday: Exam 2 (same place, same time)

CMPSCI 377: Operating Systems Lecture 18, Page 28

Department of Computer Science, UMass Amherst Andrew H. Fagg

Announcements/Reminders

• Lab 3 due today

• Exam 2 is 1 week from Friday

• Lab 4, HW 4 solutions and HW 5 are available from the web page

CMPSCI 377: Operating Systems Lecture 19, Page 1

Department of Computer Science, UMass Amherst Andrew H. Fagg

Quiz

Who Said: “Operating Systems are Destined to be Free”?

What did he mean?

What was he arguing for?

CMPSCI 377: Operating Systems Lecture 19, Page 2

Department of Computer Science, UMass Amherst Andrew H. Fagg

Quiz

Who Said: “Operating Systems are Destined to be Free”?

Neal Stephenson in: “In the Beginning was the Command Line.”

also wrote: Snow Crash and Cryptonomicon

CMPSCI 377: Operating Systems Lecture 19, Page 3

Department of Computer Science, UMass Amherst Andrew H. Fagg

So Far: Paging

• Process generates virtual addresses from 0 to Max.

• OS divides the process onto pages; manages a page table for every
process; and manages the pages in memory.

• Hardware maps from virtual addresses to physical addresses.

• Sharing of pages is possible, but not very useful as implemented. Why?

CPU p

f

p

fd d

Page Table

virtual address

Memory

physical address

CMPSCI 377: Operating Systems Lecture 19, Page 4

Department of Computer Science, UMass Amherst Andrew H. Fagg

Today: Segmentation

Segments take the user’s view of the program.

• User views the program in logical segments, e.g., code, global variables,
stack, heap (dynamic data structures), not a single linear array of bytes.

• New idea: the compiler generates references that identify the segment
and the offset in the segment, e.g., a code segment with offset = 399

• Thus processes use virtual addresses that include both the segment and
segment offset.

⇒ Segments make it easier for the call stack and heap to grow dynamically.
Why?

⇒ Segments make both sharing and protection easier. Why?

CMPSCI 377: Operating Systems Lecture 19, Page 5

Department of Computer Science, UMass Amherst Andrew H. Fagg

Today: Segmentation

⇒ Segments make it easier for the call stack and heap to grow dynamically.
Why?

– Without segmentation, the stack and the heap grow toward each other.
– With segmentation, each segment is managed separately, so if the
stack or the heap grows, the OS can increase the segment size.

⇒ Segments make both sharing and protection easier. Why?

– The OS manages these logical units separately (instead of managing a
fixed-size page).

CMPSCI 377: Operating Systems Lecture 19, Page 6

Department of Computer Science, UMass Amherst Andrew H. Fagg

Implementing Segmentation

• Segment table: each entry contains a base address in memory, length of
segment, and protection information (can this segment be shared, read,
modified, etc.).

• Hardware support: multiple base/limit registers.

• How is this different than a TLB?

limitbase

limitbase
limitbase

CPU >d
virtual address

yes

no

 trap

physical address+

s

s

CMPSCI 377: Operating Systems Lecture 19, Page 7

Department of Computer Science, UMass Amherst Andrew H. Fagg

Implementing Segmentation

• Compiler needs to generate virtual addresses whose higher-order bits are a
segment number.

• Segmentation can be combined with a dynamic or static relocation
system,

– Each segment is allocated a contiguous piece of physical memory.
– External fragmentation can be a problem again

• Similar memory mapping algorithm as paging. We need something like
the TLB if programs can have lots of segments

Let’s combine the ease of sharing we get from segments with efficient
memory utilization we get from pages.

CMPSCI 377: Operating Systems Lecture 19, Page 8

Department of Computer Science, UMass Amherst Andrew H. Fagg

Combining Segments and Paging

• Treat virtual address space as a collection of segments (logical units) of
arbitrary sizes.

• Treat physical memory as a sequence of fixed size page frames.

• Segments are typically larger than page frames,

⇒ Map a logical segment onto multiple page frames by paging the
segments

CMPSCI 377: Operating Systems Lecture 19, Page 9

Department of Computer Science, UMass Amherst Andrew H. Fagg

Combining Segments and Paging

Shared library

Constant data

Physical MemoryVirtual Address Space

Local data

Code

Heap

Stack

CMPSCI 377: Operating Systems Lecture 19, Page 10

Department of Computer Science, UMass Amherst Andrew H. Fagg

Addresses in a Segmented Paging System

base

limitbase
limitbase frame

frame

s
limit

p

CPU
virtual address

s p d

>? trap

+ physical address

Segment Table

Page Table

CMPSCI 377: Operating Systems Lecture 19, Page 11

Department of Computer Science, UMass Amherst Andrew H. Fagg

Addresses in a Segmented Paging System

• A virtual address becomes a segment number, a page within that
segment, and an offset within the page.

• The segment number indexes into the segment table which yields the
base address of the page table for that segment.

• Check the remainder of the address (page number and offset) against the
limit of the segment.

• Use the page number to index the page table. The entry is the frame.
(The rest of this is just like paging.)

• Add the frame and the offset to get the physical address.

CMPSCI 377: Operating Systems Lecture 19, Page 12

Department of Computer Science, UMass Amherst Andrew H. Fagg

Addresses in a Segmented Paging System: Example

• Given a memory size of 256 addressable words,

• a page table indexing 8 pages,

• a page size of 32 words, and

• 8 logical segments

1. How many bits is a physical address?

2. How many bits for the segment number, page table, and offset?

3. How many bits is a virtual address?

4. How many segment table entries do we need?

CMPSCI 377: Operating Systems Lecture 19, Page 13

Department of Computer Science, UMass Amherst Andrew H. Fagg

Addresses in a Segmented Paging System: Example

• Given a memory size of 256 addressable words,

• a page table indexing 8 pages,

• a page size of 32 words, and

• 8 logical segments

1. How many bits is a physical address? 8 bits

2. How many bits for the segment number, page table, and offset? 3 3 5

3. How many bits is a virtual address? 11 bits

4. How many segment table entries do we need? 8

CMPSCI 377: Operating Systems Lecture 19, Page 14

Department of Computer Science, UMass Amherst Andrew H. Fagg

Sharing Pages and Segments

• Share individual pages by copying page table entries.

• Share whole segments by sharing segment table entries, which is the same
as sharing the page table for that segment.

• Need protection bits to specify and enforce read/write permission.

– When would segments containing code be shared?
– When would segments containing data be shared?

CMPSCI 377: Operating Systems Lecture 19, Page 15

Department of Computer Science, UMass Amherst Andrew H. Fagg

Sharing Pages and Segments

• When would segments containing code be shared?

– Read-only sharing of common applications or common libraries.

• When would segments containing data be shared?

– Read-only sharing of constant data used by an application.
– Read-write sharing of heap data used by multiple threads within a
process.

CMPSCI 377: Operating Systems Lecture 19, Page 16

Department of Computer Science, UMass Amherst Andrew H. Fagg

Sharing Pages and Segments: Implementation Issues

• Where are the segment table and page tables stored?

1. Store segment tables in a small number of associative registers; page
tables are in main memory with a TLB
(faster but limits the number of segments a program can have)

2. Both the segment tables and page tables can be in main memory with
the segment index and page index combined & used in the TLB lookup
(slower but no restrictions on the number of segments per program)

• Protection and valid bits can go either on the segment or the page table
entries

• Note: Just like recursion, we can do multiple levels of paging and
segmentation when the tables get too big.

CMPSCI 377: Operating Systems Lecture 19, Page 17

Department of Computer Science, UMass Amherst Andrew H. Fagg

Segmented Paging: Costs and Benefits

• Benefits: faster process start times, faster process growth, memory
sharing between processes.

• Costs: somewhat slower context switches, slower address translation.

• Pure paging system ⇒(virtual address space)/(page size) entries in page
table. How many entries in a segmented paging system?

• What is the performance of address translation of segmented paging
compared to contiguous allocation with relocation? Compared to pure
paging?

• How does fragmentation of segmented paging compare with contiguous
allocation? With pure paging?

CMPSCI 377: Operating Systems Lecture 19, Page 18

Department of Computer Science, UMass Amherst Andrew H. Fagg

Segmented Paging: Costs and Benefits

• How many entries in a segmented paging system?

There are as many page tables as there are segments. The total number
of page table entries for a process is <= the number required in a pure
paging scheme.

• What is the performance of address translation of segmented paging
compared to contiguous allocation with relocation? Compared to pure
paging?

– Slower than contiguous allocation since need to index through segment
table AND page table. If TLB miss, much slower.

– Slower than pure paging because index through segment table. But:
normally done in hardware, so not a big problem

CMPSCI 377: Operating Systems Lecture 19, Page 19

Department of Computer Science, UMass Amherst Andrew H. Fagg

Segmented Paging: Costs and Benefits

• How does fragmentation of segmented paging compare with contiguous
allocation? With pure paging?

– No external fragmentation, so no need for compaction.
– Internal fragmentation: 1/2 page per segment on average, so worse
than pure paging.

CMPSCI 377: Operating Systems Lecture 19, Page 20

Department of Computer Science, UMass Amherst Andrew H. Fagg

Putting it All Together: A Historical View

• Relocation using Base and Limit registers

– simple, but inflexible

• Segmentation:

– compiler’s view presented to OS
– segment tables tend to be small
– memory allocation is expensive and complicated (first fit, worst fit,
best fit).

– compaction is needed to resolve external fragmentation.

CMPSCI 377: Operating Systems Lecture 19, Page 21

Department of Computer Science, UMass Amherst Andrew H. Fagg

Putting it all together

• Paging:

– simplifies memory allocation since any page can be allocated to any
frame

– page tables can be very large (especially when virtual address space is
large and pages are small)

• Segmentation & Paging

– only need to allocate as many page table entries as we need (large
virtual address spaces are not a problem).

– easy memory allocation, any frame can be used
– sharing at either the page or segment level
– increased internal fragmentation over paging
– two lookups per memory reference

CMPSCI 377: Operating Systems Lecture 19, Page 22

Department of Computer Science, UMass Amherst Andrew H. Fagg

Next Time

• Friday: Exam Review and start Virtual Memory

• Wednesday: Discussion (hw 3/4 and Memory Management)

• Next Friday: Exam 2

• Following Monday: Virtual Memory and Demand Paging (Chapter 10)

CMPSCI 377: Operating Systems Lecture 19, Page 23

