Syntax-Directed Translation

* Grammar symbols are associated with attributes to associate
information with the programming language constructs that they
represent.

* Values of these attributes are evaluated by the semantic rules
associated with the production rules.
* Evaluation of these semantic rules:
may generate intermediate codes
may put information into the symbol table
may perform type checking
may issue error messages
may perform some other activities
in fact, they may perform almost any activities.

* An attribute may hold almost any thing.
a string, a number, a memory location, a complex record.

(%2}
[<5]
4+
o
Z
>
+—
>
)
O
>
=
=
9]
[<5]
+—
o
=
=)
=
>
(%]
o
)
£

- Syntax-Directed Definitions and
Translation Schemes

* When we associate semantic rules with productions, we use two
notations:

Syntax-Directed Definitions

Translation Schemes

* Syntax-Directed Definitions:
give high-level specifications for translations

hide many implementation details such as order of evaluation of semantic
actions.

We associate a production rule with a set of semantic actions, and we do
not say when they will be evaluated.

* Translation Schemes:

indicate the order of evaluation of semantic actions associated with a
production rule.

In other words, translation schemes give a little bit information about
implementation details.

MY csvtu Notes

c
%)
Q
=
(@]
c
>
o
>
N
(&)
>
=

Syntax-Directed Definitions

A syntax-directed definition is a generalization of a context-free
grammar in which:

Each grammar symbol is associated with a set of attributes.

This set of attributes for a grammar symbol is partitioned into two
subsets called synthesized and inherited attributes of that grammar
symbol.

Each production rule is associated with a set of semantic rules.

* Semantic rules set up dependencies between attributes which can
be represented by a dependency graph.

* This dependency graph determines the evaluation order of these
semantic rules.

(%2}
[<5]
4+
o
Z
>
+—
>
)
O
>
=
=
9]
[<5]
+—
o
=
=)
=
>
(%]
o
)
£

* Evaluation of a semantic rule defines the value of an attribute. But a
semantic rule may also have some side effects such as printing a
value.

Annotated Parse Tree

* A parse tree showing the values of attributes at each node is called
an annotated parse tree.

* The process of computing the attributes values at the nodes is
called annotating (or decorating) of the parse tree.

* Of course, the order of these computations depends on the
dependency graph induced by the semantic rules.

(%2}
[<5]
+—
o
Z
>
+—
>
)
O
>
=
=
9]
[<5]
+—
o
=
=)
+—
>
(%]
o
)
£

Syntax-Directed Definition

* In a syntax-directed definition, each production A->a is associated
with a set of semantic rules of the form:

b=f(c,c,,....c,) where f is a function,
and b can be one of the followings:

=» bis a synthesized attribute of A and c,,c,,...,c, are attributes of
the grammar symbols in the production (A—>a).

OR

= bis aninherited attribute one of the grammar symbols in a (on
the

right side of the production), and c,,c,,...,c, are attributes of
the grammar symbols in the production (A—>a).

(%2}
[<5]
4+
o
Z
>
+—
>
)
O
>
=
=
9]
[<5]
+—
o
=
=)
=
>
(%]
o
)
£

Attribute Grammar

* So, a semantic rule b=f(c,,c,,...,c,) indicates that the attribute b
depends on attributes c,,c,,...,c,.

* In a syntax-directed definition, a semantic rule may just evaluate
a value of an attribute or it may have some side effects such as
printing values.

* An attribute grammar is a syntax-directed definition in which the
functions in the semantic rules cannot have side effects (they can
only evaluate values of attributes).

(%2}
[<5]
+—
o
Z
>
+—
>
)
O
>
=
=
9]
[<5]
+—
o
=
=)
+—
>
(%]
o
)
£

Syntax-Directed Definition --

Example
Production Semantic Rules)
L - E return print(E.val) S
E>E +T E.val = E,.val + T.val §
ES>T E.val = T.val =
T>T, *F T.val = T,.val * Fval g
T>F T.val = Fval :
F->(E) Fval = E.val £
F = digit F.val = digit.lexval %

* Symbols E, T, and F are associated with a synthesized attribute val.

* The token digit has a synthesized attribute /exval (it is assumed that
it is evaluated by the lexical analyzer).

Annotated Parse Tree -- Example

Input: 5+3*4 /L\
E.val=17 return %
E.val=5 + T.val=12 E
T.val=5 Tval=3 * Fval=4 g
| | | %‘
F.val=5 F.val=3 digit.lexval=4

digit.lexval=5 digit.lexval=3

Dependency Graph

Input: 5+3*4 /L
E.val=17
E.val=5 T.val=12 E
T.val=5 T.val=3 F.val=4 >
r T 1 %
F.val=5 F.val=3 digit.lexval=4
! !

digit.lexval=5 digit.lexval=3

Syntax-Directed Definition -
ExampleZ2

Production Semantic Rules

E>E +T E.loc=newtemp(), E.code = E;.code || T.code || add g

E,.loc,T.loc,E.loc =
E->T E.loc = T.loc, E.code=T.code §
T>T,*F T.loc=newtemp(), T.code =T,.code || F.code || mult =

T,.loc,F.loc,T.loc =
T>F T.loc = F.loc, T.code=F.code g
F->(E) F.loc = E.loc, F.code=E.code :
F->id F.loc =id.name, F.code="" g

* Symbols E, T, and F are associated with synthesized attributes /oc
and code.

* The token id has a synthesized attribute name (it is assumed that it
is evaluated by the lexical analyzer).

* |tis assumed that || is the string concatenation operator.

Syntax-Directed Definition -
Inherited Attributes

Production Semantic Rules)
D->TL L.in = T.type %
T int T.type = integer g
T - real T.type = real <
L->L,id L,.in = L.in, addtype(id.entry,L.in) ‘é
L - id addtype(id.entry,L.in) §>a

:

* Symbol T is associated with a synthesized attribute type.
* Symbol L is associated with an inherited attribute in.

A Dependency Graph - Inherited
Attributes

Input: real p g

‘ T /L\ T.type=real Ll.ir\=real addtype(q&al)

real ‘ L id addtype(p,real)id.entry=q
id id.entry=p

parse tree dependency graph

S-Attributed Definitions

* Syntax-directed definitions are used to specify syntax-directed translations.

* To create a translator for an arbitrary syntax-directed definition can be
difficult.

* We would like to evaluate the semantic rules during parsing (i.e. in a single
pass, we will parse and we will also evaluate semantic rules during the
parsing).

* We will look at two sub-classes of the syntax-directed definitions:

S-Attributed Definitions: only synthesized attributes used in the syntax-
directed definitions.

L-Attributed Definitions: in addition to synthesized attributes, we may also
use inherited attributes in a restricted fashion.

* To implement S-Attributed Definitions and L-Attributed Definitions are easy
(we can evaluate semantic rules in a single pass during the parsing).

* Implementations of S-attributed Definitions are a little bit easier than
implementations of L-Attributed Definitions

MY csvtu Notes

c
%)
Q
=
(@]
c
>
=
>
N
(&)
>
=

Bottom-Up Evaluation of S-
Attributed Definitions

* We put the values of the synthesized attributes of the grammar symbols
into a parallel stack.

When an entry of the parser stack holds a grammar symbol X (terminal
or non-terminal), the corresponding entry in the parallel stack will hold
the synthesized attribute(s) of the symbol X.

* We evaluate the values of the attributes during reductions.
A—XYZ A.a=f(X.x,Y.y,Z.2) where all attributes are synthesized.

stack parallel-stack
top H<£| |42
Y| | Yy
X| | Xx > top > Al [Aa

(%2}
[<5]
4+
o
Z
>
+—
>
)
O
>
=
=
9]
[<5]
+—
o
=
=)
=
>
(%]
o
)
£

Bottom-Up Eval. of S-Attributed
Definitions (cont.)

Production Semantic Rules)
L - E return print(val[top-1]) 2
E>E, +T val[ntop] = val[top-2] + val[top] §
E>T :
T>T,*F val[ntop] = val[top-2] * val[top] §
T>F :
F>(E) val[ntop] = val[top-1] :
F - digit ;

* At each shift of digit, we also push digit.lexval into val-stack.

* At all other shifts, we do not put anything into val-stack because
other terminals do not have attributes (but we increment the
stack pointer for val-stack).

Canonical LR(0) Collection for

,O:The_Gnammarr . -
]E:IIEE:-T E L1y /+:|8: z4

E—aT T—.TF |,
T —«T*F - T—aF d 5
T—)IF —>|3: F—)I(E)
F—)l(E) F—>ld
— 1.
lo: {»I _
(F—>|(E) 12-

I
’ E —sE+T E F—>ld —(>5
E—aT —d>6
T —oaT*F
T —aF T 1! %‘lm:
F—oa(E) [_ 3 +
F —ad L’4 8

_’IG: F —ds

(%2)
D
3
o
Z
S
=
>
0
O
>~
p=
=
7}
D
£
o
c
S
=
>
(%]
&)
P
=

Bottom-Up Evaluation -- Example

. At each shift of digit, we also push digit.lexval into val-stack.

stack val-stack

OE2+8 5-

OE2+8d6

OE2+8F4

OE2+8T11

OE2+8T11*9 5-3-

OE2+8T11*9d6 5-3-4

OE2+8T11*9F12 5-3-4

OE2+8T11

OE2

OE2r7 17-

oL1

5-3

5-12

17

17

input

3*4r

action

5+3%4r

+3*4r

+3*4r

+3*4r

+3*4r

s6

*4r

*4r

*4r

s6

F>d

TSTH

L->Er

semantic rule

s6

F>d

T>F

E->T

s8

d.lexval(3) into val-stack

F>d

T>F

s9

d.lexval(4) into val-stack

F.val=d.lexval — do nothing

T.val=T,.val*F.val

E>E+T

s7

d.lexval(5) into val-stack

F.val=d.lexval — do nothing

T.val=F.val — do nothing

E.val=T.val — do nothing

push empty slot into val-stack

F.val=d.lexval — do nothing

T.val=F.val — do nothing

push empty slot into val-stack

E.val=E,.val*T.val

push empty slot into val-stack

print(17), pop empty slot from val-stack

MY csvtu Notes

=
%)
Q
=
o
c
>
=
>
N
8]
>
£

Top-Down Evaluation (of S-
Attributed Definitions)

Productions Semantic Rules

A—->B print(B.n0), print(B.n1)
B—>0B, B.n0=B,.n0+1, B.n1=B,.nl
B—>1B, B.n0=B,.n0, B.n1=B,.n1+1
B—>¢ B.n0=0, B.n1=0

where B has two synthesized attributes (n0O and n1l).

(%2}
[<5]
+—
o
Z
>
+—
>
)
O
>
=
=
9]
[<5]
+—
o
=
=)
—
>
(%]
o
)
£

L-Attributed Definitions

* S-Attributed Definitions can be efficiently implemented.

* We are looking for a larger (larger than S-Attributed Definitions)
subset of syntax-directed definitions which can be efficiently
evaluated.

=» L-Attributed Definitions

* L-Attributed Definitions can always be evaluated by the depth first
visit of the parse tree.

(%2}
[<5]
+—
o
Z
>
+—
>
)
O
>
=
=
9]
[<5]
+—
o
=
=)
+—
>
(%]
o
)
£

* This means that they can also be evaluated during the parsing.

L-Attributed Definitions

* A syntax-directed definition is L-attributed if each inherited
attribute of X;, where 1<j<n, on the right side of A - X X,...X,
depends only on:

The attributes of the symbols X,,...,X; ; to the left of X;in
the production and

the inherited attribute of A

(%2}
[<5]
+—
o
Z
>
+—
>
)
O
>
=
=
9]
[<5]
+—
o
=
=)
+—
>
(%]
o
)
£

* Every S-attributed definition is L-attributed, the restrictions only
apply to the inherited attributes (not to synthesized attributes).

A Definition which is NOT L-
Attributed

Productions Semantic Rules
A—->LM L.in=l(A.i), M.in=m(L.s), A.s=f(M.s)
A= QR R.in=r(A.in), Q.in=qg(R.s), A.s=f(Q.s)

* This syntax-directed definition is not L-attributed because the
semantic rule Q.in=g(R.s) violates the restrictions of L-
attributed definitions.

* When Q.in must be evaluated before we enter to Q because it is an
inherited attribute.

* But the value of Q.in depends on R.s which will be available after we
return from R. So, we are not be able to evaluate the value of Q.in
before we enter to Q.

(%2}
[<5]
4+
o
Z
>
+—
>
)
O
>
=
=
9]
[<5]
+—
o
=
=)
=
>
(%]
o
)
£

Translation Schemes

* In a syntax-directed definition, we do not say anything about the
evaluation times of the semantic rules (when the semantic rules
associated with a production should be evaluated?).

* A translation scheme is a context-free grammar in which:
attributes are associated with the grammar symbols and

semantic actions enclosed between braces {} are inserted
within the right sides of productions.

(%2}
[<5]
4+
o
Z
>
+—
>
)
O
>
=
=
9]
[<5]
+—
o
=
=)
=
>
(%]
o
)
£

* Ex: A>{.. . IX{...}1Y{..}

Semantic Actions

Translation Schemes

* When designing a translation scheme, some restrictions should be
observed to ensure that an attribute value is available when a
semantic action refers to that attribute.

* These restrictions (motivated by L-attributed definitions) ensure
that a semantic action does not refer to an attribute that has not
yet computed.

* In translation schemes, we use semantic action terminology
instead of semantic rule terminology used in syntax-directed
definitions.

(%2}
[<5]
4+
o
Z
>
+—
>
)
O
>
=
=
9]
[<5]
+—
o
=
=)
=
>
(%]
o
)
£

* The position of the semantic action on the right side indicates when
that semantic action will be evaluated.

Translation Schemes for S-
attributed Definitions

* If our syntax-directed definition is S-attributed, the construction of
the corresponding translation scheme will be simple.

* Each associated semantic rule in a S-attributed syntax-directed
definition will be inserted as a semantic action into the end of the
right side of the associated production.

Production Semantic Rule
E>E +T E.val = E,.val + T.val =» a production of

a syntax directed

E—>E, +T{Eval=E, val +Tval} =>» the production of the
corresponding

(%2)
D
3
o
Z
S
=
>
0
O
>~
p=
=
7}
D
£
o
c
S
=
>
(%]
&)
P
=

definition

translation scheme

A Translation Scheme Example

* A simple translation scheme that converts infix expressions to the
corresponding postfix expressions.

E->TR

R >+ T{print(“+”) } R,
R—->¢

T - id { print(id.name) }

(%2}
[<5]
+—
o
Z
>
+—
>
)
O
>
=
=
9]
[<5]
+—
o
=
=)
—
>
(%]
o
)
£

atb+c =P abic+

/ N\

infix expression postfix expression

A Translation Scheme Example
(cont.)
/\E\

id{pri;t(“a”)}

;T {pri;it(”+”)} R

{print(“+”)} R

/{prlnt “”)} € ‘

The depth first traversal of the parse tree (executing the semantic actions in
that order)

will produce the postfix representation of the infix expression.

id {prin’é(”b”)} + T

(%2}
[<5]
+—
o
Z
>
+—
>
)
O
>
=
=
9]
[<5]
+—
o
=
=)
—
>
(%]
o
)
£

A Translation Scheme with
Inherited Attributes

D->Tid L
T - int

T = real

L - id L,
L—>¢

* This is a translation scheme for an L-attributed definitions.

- Eliminating Left Recursion from
Translation Scheme

* A translation scheme with a left recursive grammar.

E>E +T :
E>E,-T =
E>T 3
TST,*F -
T>F :
F—>(E) :
F = digit

* When we eliminate the left recursion from the grammar (to get a
suitable grammar for the top-down parsing) we also have to change
semantic actions

Eliminating Left Recursion (cont.)

inherﬁ%‘attribute syntkesized attribute

E->T A

A-> +T A,
A-> -T A,
A-c¢

T>F B

B> *F B,
B->¢

F->(E)

F > digit

MY csvtu Notes

=
%)
Q
=
o
c
>
=
>
N
8]
>
£

SOION NIASOAIN UI'S810UNIASIALL MMM

Eliminating Left Recursion (in
general)

A->AY a left recursive grammar with
A—->X synthesized attributes (a,y,x).

‘U’ eliminate left recursion

inherited attribute of the new non-terminal

sthtribute of the new non-terminal

A = X R
R—=>Y R,
R—>¢

(%2}
[<5]
+—
o
Z
>
+—
>
)
O
>
=
=
9]
[<5]
+—
o
=
=)
—
>
(%]
o
)
£

