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Syllabus

CHHATTISGARH SWAMI VIVEKANAND TECHNICAL UNIVERSITY,

BHILAI (C.G.)
Semester-B.E. V Branch-Computer Science & Engineering.
Subject: Theory of Computation Code -322514 (22)
Total theory periods-40 Total Tutorial Periods: 12

Total marks in end semester exam = 80
Minimum number of class tests to be conducted = 02

UNIT-1. THE THEORY OF AUTOMATA : |
Introduction to automata theory, Examples of automata machine, Finite automata as a |
language  acceptor and translator. Deterministic finite automata. Non deterministic finite |
automata, finite automata with output (Mealy Machine. Moore machine). Finite automata
with ? moves, Conversion of NFA to DFA by Arden's method, Minimizing number of
states of a DFA. My hill Nerode theorem, Properties and limitation of FSM. Two way finite
automata. Application of finite automata.

UNIT-2. REGULAR EXPRESSIONS :
Regular expression, Properties of Regular Expression. Finite automata and Regular
expressions. Regular Expression to DFA conversion & vice versa. Pumping lemma for
regular sets. Application of pumping lemma, Regular sets and Regular grammar. Closure
properties of regular sets. Decision algorithm for regular sets and regular grammar.



Syllabus

UNIT-3. GRAMMARS.
Definition and types of grammar. Chomsky hierarchy of grammar. Relation between types
of grammars. Role and application areas of grammars. Context free grammar. Left most
linear & right most derivation trees. Ambiguity in grammar. Simplification of context free
grammar. Chomsky normal from. Greibach normal form, properties of context free
language. Pumping lemma from context free language. Decision algorithm for context tree
language.
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UNIT-4. PUSH DOWN AUTOMATA AND TURING MACHINE.

Basic definitions. Deterministic push down automata and non deterministic push down
automata. Acceptance of push down automata. Push cdown automata and context free
language. Turing machine model. Representation of Turing Machine Construction of
Turing Machine for simple problem’s. Universal Turing machine and other modifications.
Church’s Hypothesis. Post correspondence problem. Halting problem of Turing Machine

Www.mycsvtunotes.in

UNIT-5 COMPUTABILITY

Introduction and Basic concepts. Recursive function. Partial recursive function. Partial
recursive function. Initial functions, computability, A Turing model for computation. Turing
computable functions, Construction of Turing machine for computation. Space and time

complexity. Recursive enumerable language and sets.




Text Books
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(1) Theory of Computer Science (Automata Language & Computation), K.L.P. Mishra
and N. Chandrasekran, PHI.

(2)  Introduction to Automata theory. Language and Computation, John E. Hopcropt &
Jeffery D. Ullman, Narosa Publishing House.
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Reference Books

(1) Theory of Automata and Formal Language, R.B. Patel & P. Nath, Umesh
Publication.

(2)  AnlIndtroduction and finite automata theory, Adesh K. Pandey, TMH.

(3)  Theory of Computation, AM Natrajan. Tamilarasi, Bilasubramani, New Age
International Publishers.
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Unit-]
Theory of Automata

Introduction to automata theory, Examples of automata machine, Finite automata as a
language  acceptor and translator. Deterministic finite automata. Non deterministic finite
automata, finite automata with output (Mealy Machine. Moore machine). Finite automata
with 7 moves, Conversion of NFA to DFA by Arden’s method, Minimizing number of
states of a DFA. My hill Nerode theorem, Properties and limitation of FSM. Two way finite
automata. Application of finite automata.
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Introduction to Automata Theory

DEFINITION OF AN AUTOMATON

e shall give the most general definition of an automaton and later modify it to
puter applications.(/An automaton is defined as a system where energy, materials .
d information are transform itted and used for performing some functions
i “%lcs are automatic machine (0ols, automatic
king machines, and automatic photo printing machines, i
"Tn Computer Science the term ‘automaton._means “discrete automaton” and is

rfined in a more abstract way as shown in Fig. 2.1.
f———————— ————————————————— -— Mee—
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Automaton
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Q4,92 - Qn — Oq

Fig. 2.1 Model of a discrete automaton.




Introduction to Automata Theory

Its characteristics are now described.

(i) Input. At each of the discrete instants of time fy, f2 ..., inpul values
i, 17 ..., each of which can take a finitc number of fixed values from the input

Iphabet Z, are applied to the input side of model shown in Fig. 2.1,

(1) Quiput. Oy, 0, ..., O, are the outputs of the model, each of which can

e BTl smsasenBeis s l'lr nl-‘l. “n'.ln-_ r""n un “..lm‘. ()-

~ () States.  Atany instant of time the automaton can be tn one ol Lhe states
P FUREREPR Y ' - i

(V) State relation. The next state of an automaton at any instant of ume is
mined by the present state and the present inpul.
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) Outpw! relation.  Output is related to either state only or to both the input
(he state. [t should be noted that at any instant of time the automaton is in
state, On ‘reading’ an input symbol, the automaton moves [0 a next state
I8 given by the state relation,
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‘Q\n automaton in which the output depends only on the input is called an
alon without a memoryYAn automaton in which the output depends on the
alss is called automaton with a finite memoryYAn automaton in which the
pends only on the states of the m&gégjg,e_' is called a Moore mg_fu@(ﬁn
aton in which the output cfepends on the state. and }he input at any instant -
¢ Is cailed a Mealy machine.’) =




Introduction to Automata Theory

finition 2.1  Analytically, a finite automaton can be represented by a 5-tuple
» z' 89 QO. F). WhCl‘C

|- v T e—————

V(SQ is a finite nonempty set cf states;
(i1) X is a finite nonempty set of inputs called input alphabet;
Aiii) &1is a function which maps O x T into Q and is usually called direct
nsition function, This is the funcuon which describes the change of states
ring the transition. This mapping is usually represented by a transition table
a transition diagram.
_(iv) go € QO is the initial state; and
(v) F < O is the set of final states. It is assumed here that there may be
re than one final state.

1€: The transition function which maps Q x Z* into Q (i.e. maps a state and
tring of input symbols including the empty string into a state) is called indirect
jnsition function. We shall use the same symbol 8 to represent both types of
nsition functions and the difference can be easily identified by nature of mapping
mbol or a string), i.e. by the argument. d is also called the next state function.
¢ above model can be represented graphically by Fig. 2.4,




Introduction to Automata Theory

o String being processed
v R’ g)
nput
¢ $ |l

> Reading head
O €2

;L'Finite
control
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Fig. 2.4 Block diagram of a finite automaton,

Figure 2.4 is the block diagram for a finite automaton, The various components
b explained as follows:




Introduction to Automata Theory

B

single sym m_the input alphabel £ The end squares of the tape contain
(hbmarkers ¢ at the left end and $ at the right end. Absence of end-markers
Iates that the tape is of infinite length. The left-to-right sequence of symbols
ween the end-markers is the input siring to be processed.

() Input tape. f‘n)g: input tape is divided into squares, each square containing
ibol Tro

Reading head. The head examines only one square at a time and can
one square either to the Jeft or to the right. For further analysis, we restrict
ovement of R-head only to the right side.

1) Finite control. The input to the finite control will be usually: symbol

¢ R-head, say a, or the present state of the machine, say ¢, 1o give the
Ing outputs: (a) A motion of R-head along the tape to the next square (In
0 4 null move, i.e. R-head remaining to the same square is permitted); (b) the
Mate of the finite state machine given by 8(q, a).
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Transition System

Asition graph or a transition system is a finite directed labelled graph in
euch vertex (or node) represents a state and the directed edges indicate the
Wition of a state and the edges are labelled with input/output.

lypical transition system is shown in Fig. 2.5. In the figure, the initial state
fesented by a circle with an arrow pointing towards it, the final state by two
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Fig. 2.5 A ransition system.
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finc circles, and the other states are represented by just a circle. The edges

labelled by input/output (e.g. by 1/0 or 1/1). For example, if the system is in
o and the input 1 is applied, the system moves to state ¢, as there is a
d edge from gy 10 gy with label 1/0. It outputs 0.




Property of Transition Function

perty 1 &8(g, A) = ¢ in a finite automaton. This means the state of the
m can be changed only by an input symbol.

perty 2 For all strings w and input symbols a,
8(q, aw) = 8(8 (g, @), w)
6(q, wa) = 6(d(g, w), @)

s property gives the state after the automaton consumes or reads the first
1ibol of a string aw and the state after the automaton consumes a prefix of the

ng wa.
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Acceptability of String by FA

Mition 2.4 A string x is accepted by 4 finite automaton M = (Q, I, 8, gy, F)

l'(q... t) = ¢ for some ¢ € F. This is basically the acceplability of a string by the
state. '



Example

Inputs
States 0. 1
--)@" q2 d1 ?
g1 93 do’ g
g2 do q3 E
qs q1 g2 7
S
ILUTION =
d 4 =
8 (qo, 110101) = 8(q,, 10101) <
. “T 3 2
= 8(qo. 0101) =
L S
i
Taaih
-~ a(qlt l)
= 8(qo, A) = qo
ance,

00‘1—’4: —l')Qo '9*612 i*Qa 2"11—1?”?0

e symbol ! indicates the current input symbol bzing processed by the machine.




Types of Automata

Two Types
1.Automata without output
|. DFA (Deterministic Finite Automata)
Il. NFA(Nondeterministic Finite Automata)
a. NFA without e(or A )
b. NFA with €(or A)
2. Automata with output
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l. Mealy Machine
IIl. Moore Machine




DFA

}finition 2.1 ~ Analytically, a finite automaton can be represented by a S-tuple
2 d, qO, F), where

V(/Q i a finite nonempty set of states;

(i1) Z is a finitc nonempty set of inputs called input alphabet;

Aiii) &1is a function which maps Q x Z into Q and is usually called direct
nsition function, This is the function which describes the change of states
ring the transition. This mapping is usually represented by a transition table
a Lransition diagram,

_Aiv) go € O 1s the initial state; and
(v) F ¢ O is the set of final states. It is assumed here that there may be
re than one final state.
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NFA(NFA without e )

(1) Qs a finite nonempty set of states;

) X is a finite;nonemipty set of inputs:

1) 01s the transition function mapping from Q x  into 22 which is the
power set of @, the set of all subsets of 0;

(V) ¢o€ Q s the initial state; and

F ¢ (is the set of final states.

———
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NFA(NFA withoute€ )
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Fig. 2.8 Transition system for a nondeterministic automaton.

Ihe sequence of states for the input

string 0100 is given in Fig. 2.9.
e,

_0(gp, 0100) = {qq, g3, g4)

¢4 18 an accepting state, the mput string 0100 will be accepted by the
doterministic automaton.




Acceptability in NFA
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finftion 2,6 A string w € I* is accepted b
O lnal sae, R ___L@FAM it 5( ~lﬁ(_){l_t'zl)_l}_s
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Acceptability in NFA

Fig. 2.9 States reached while processing 0100.

iccepted by M if a final state is one among the possible states M can reach

application of w.

ted by an automaton M (deterministic or nondeter-

finition 2.7 The setaccep
y M. It is denoted by T(M).

nistic) is the set of all input strings accepted b
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Equivalence of DFA and NFA

_THE EQUIVALENCE OF DFA AND NDFA

N -~ — -

f
rd
s naturally try to find the relation between DFA and NDFA. Intuitively we
w feel that:

~(i) A DFA can simulate the behaviour of NDFA | by increasing the number.
states, (In other words, a DFA (Q, Z, 8, qo, F) can be viewed as an NDFA
), £, 8', qo, F) by defining 8'(¢, @) = (8 (9. a)}.)
L/(ii) /:.P_y. NDFA is a more géhcral machine without being more powq;ful.

'e now give a thcorem oOn equivalence of DFA and NDFA.
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heorem 2.1 For every NDFA, there exists a DFA which simulates the behaviour
F NDFA. Alternatively, if L is the set accepted by NDFA, then there exists a

FA which also accepts L.

:00F LetM = (0, L, 8, qo, F) be an NDFA acce
{’ as follows:
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pting L. We construct a DFA

M’ =(Q.% 8.4q0F)

vhere
(i) Q' =29 (any state in Q' is denoted by (41, G2 --- 41, Where gy, g2 ---

g€ Q)
(i) 4’0 = [qol;
(iii) F’ is the set of all subsets of O conlaining an element of F.




Equivalence of DFA and NFA

W) 8" (1q1, G20 s @), @) = 8 (g1, 0) U 8 (g2, @) v ... W S(gi a).
wlently, 8°(lgy. 92 --- qi), @) = [py ... p;] if and only if
8({gu ... @i}, @ = (p1, P22 -u Py
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Example

Table 2.2 State Table for Example 2.6

State/Z 0 1
—* qo0 q1
4 q do. 91

XAMPLE 2.6 Construct a deterministic antomaton equivalent to M = ({go, g1},
D, 1), 8. go. [go)). 8 is given by its state table (Table 2.2).

OLUTION For the deterministic automaton M,,

(i) the states are subsets of {gp. 1), L.e. D, [gol, [0, @11, [g1];

(i1) [go) is the initial state;
(iii) [qo) and [go, ¢1] are the final states as these are the only states containing

Qo> and
(iv) & is defined by the state table given by Table 2.3.

Table 2.3 State Table of M,

States/Z 0 1
& %) %)
(g0l [0l (4]
(1] (g1] (g0, 41]
(g0, 411 {90, 61] [go. g1]

70 and g, appear in the rows corresponding 1o go and g, and the column corresponding
O 0- so- 6([‘70. ‘h]- 0) - [qu QI]- <
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Example

AMPLE 2.7 Find a deterministic acceptor equivalent 1o

M = ({qo, 1, q2), la, b}, 8, qo,(g2))

given in Table 2.4.

Table 2.4 State Table for Example 2.7

(3]

States/E a b %
Z

- 4o - do. 4% q2 , =
9 qo G §

‘ >

9o. =

fON  The deterministic automaton M, equivalent 1o M is defined as follows:

M, = (‘59/; (a, b), 8, (qul, F*)

I;‘ - “‘h]- IQO' q2]' (Ql- ‘hj' lqu q|v qu]
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the construction by considering [go] first. We get [g3) and |go, @;1). Then
ruct & for [g,] and (g0, q1]. [g1. 2] 1s a new state appearing under input
. Alter constructing 8 for [g,, ¢2], we do not get any new states and so
inate the construction of 8. The state table is given in Table 2.5,

Table 2.5 State Table of M,

States/X a b
[qol (g0, q1] 2]
[q2] 7 [qo, q)]

[q0, q1] [qo. 1] g1, q2]

(41, q2] [qo] (90, 91]




Example

MPLE 2.8 Construct a deterministic finite automaton equivalent o
o 1. 92, g1}, [0, 1), 8, go, {g3)). & is given in Tatle 2.6.

Table 2.6 State Table for Example 2.8

States/Z a b
-2 Qo do, 9 q0
q aq; q
2 q3 d3

@ 92

HON Let Q = g0, q14 92, q3). Then the deterministic automaton
Suivalent 1o M is given by M, = (20. la, b), 8, [qa). F), where F consists

MYcsvtu Notes
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Solution

q3]' [QO' q3l’ [ql' ‘hl, [qu ‘h}- lth dis q3}v lQOo 42y 43]- lQh q2: Q3l and

g1, 42, q3). O is given in Table 2.7. )
Table 2.7 State Table of M, :

Stales/Z a b >

[40] (40, 41] [40) é

(g0, G1 [0 91+ G2] [0, ¢1] £

(90, 91, 92 (90, 91, 92: 93] (90 91, 93 i

(90, 41, 93] (90, 91, 92} (90, q1. 42 £

(90» 91+ 920 93) s

(g0, 41» 92 93) (90, 91+ 92+ 93]




Finite Automata with Output

finite automata which we considered in the earlier sections have binary output,
. they accept the string or do not accept the string. This acceptability was
.ided on the basis of reachability of the final state by the initial state. Now, we
ove this restriction and consider the model where the outputs can be chosen

m some other alphabet. The value of the output function Z(r) in the most general
se is a function of the present state g(t) and the present inpul x(1), 1.e.

Z(t) = Alg(1), x(¥)

here A is called the outpul function. This generalised model is usually called
ealy machine. 1f the outpul function Z(1) depends only on the present state and
independent of the current input, the outpul function may be wrillen as

Z(t) = Mq®)

ore machine. It1s more convenient to use Moore
ral definitions of these
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is restricted model is called Mo
achine in automata theory. We now give the most gene

achines,




Moore Machine

Definition 2.8 The Moore machine is a six-tuple (@, %, 4, 8, 4, ql)' where
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__4i) Q is a finite set of states;
(i) X is the input ‘a_fphap_eé .
(iii) Ais the output alphabel, : .
(iv) & is the transition function X x Q into 0;
(v) A“is the output function mapping Q into 4; and _
(vi) go is the initial state.
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Mealy Machine

Definition 2.9 A Mealy machine is a Six :
symbols except A have the same meaning as in
function mapping £ x Q into 4. T . sl

-tuple (Q, E, 4, 5, A, go), where all the
the Moore machine. A is the outp
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Example
Mealy Machine

S, Table 2.10 Mealy Machine of Example 2.9

Next stale
Present input @ = 0 input @ = 1
state siale  output state  oulput
- 4 93 0 d2) g
g4

- q1 L =
Zi > .1.'} @D

< 94 94" L q3 v
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Example
Moore Machine

Table 2.13 Moore Machine of Example 2.9

Present state Next state Output
a=90 a=:1

- qo 43 420 0
dr q3 420 =
420 q1 qa0 0
42 g a0 1

91 G214 q 0
420 g4 q3 (])

qay' Ga) 43
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Procedure for Transforming Moore
machine to Mealy machine

ily the acceptability of input string by a Moore machine by neglecting
e of the Moore machine to input A. We thus define that Mealy Machine
Moore Machine M” are equivalent if for all input strings w, bZy(w) = Zy(w),
1% the buth_uromoorc machine for its initial state. We give the following

 Let M, = (Q, L, A, 8, A, o) be a Moore machine. Then the following
ure may be adopted to construct an equivalent Mealy machine M.
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ruction

) We have to define the output function A’ for Mealy machine as a function
sent state and input symbol. We define 4° by
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A'(q, a) = Mé(g, @)) for all states ¢ and inpul symbols a.

) the transition function is the same as that of the given Moore machine;




Example

Table 2.14 Moore Machine of Example 2.10

Present state Next state Output
a=10 a=1
— qo qs @1] 0
ga g1 42 »(1)
q2 q3
: 0

qs3 q3 do
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Mealy Machine

Table 2.15 Mealy Machine of Example 2.10 g
Next state é
Present a=0 a=1 i
state state output state output g
— Gy 93 0 q 1 é
q a9 1 92 0 z
92 g2 0 qs 0 :

43 g3 0 4o 0




Moore machine to Mealy Machine

Table 2.16 Moore Machine of Example 2.11

Present state Next state Output
a=0 a=1
- q) @ 92 0
q2 G q3 i

qs 0 qa 1
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Mealy Machine

Table 2.17 Transition Table of Example 2.11

Next state
Present a=10 a=1
state state  output state  outpul
» ¢ 9 0 42 0
42 0 0 g3 1
¢ q 0 q3 1

Table 2.18 Mealy Machine of Example 2,11

Next state
Present a=10 a=1
state state  output state  output
'y d1 0 g2 0

2 4 0 42 1
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Moore to Mealy machine
conversion-Example

(%)
QO
O
pz
=)
EXAMPLE 2.11 Consider the Moore machine described by the transition table ‘US')
given in Table 2.16. Construct the corresponding Mealy machine. $
=
3 ven ¢ Table 2.16 Moore Machine of Example 2.11
i =
Present state Next state Output LG/)_;
a=0 a=1 §
=
- qQ a 92 0 o
P 1 q3 ) S
4 @ qs 1 %

SOLUTION We construct the transition table in Table 2.17 by associating the

output with the transitions.
In Table 2.17 the rows corresponding o g, and g, are identical. So, we can,

delete one of the two states, i.¢., gz or g3 Weé deiete gy Table 2.18 gives the
de e ———
reconstructed table. -




Moore to Mealy machine
conversion-Example

7p]
Table 2.17 Transition Table of Example 2.11 £
- z
Next state =)
>
Present a=0 a=1 <
state state  output state  output Z
“» q) q 0 42 0 c
42 G 0 9 1 %
VR q1 0 q3 1 %
C
>
Z
Table 2.18 Mealy Machine of Example 2.11 é
Next state %
Present a=10 as=1
state state output stale output
»q G 0 92 0
42 @ 0 92 1

217, we have deleted gs-row and replaced g3 by g3 in the other rows.




Mealy to Moore Example

L1 2,12 Consider a Mealy machine represented by Fig. 2.10. Construct
machine equivalent to this Mealy machine.

0/2Z4
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172,
Fig. 2.10 Mealy machine of Example 2.12.

LTION  Let us convert the transition diagram into the transition Table 2.19.
fhe given problem: ¢, is not associated with any oulpul. g2 i1s associated with.
| ifferent outputs Z; and Z;; gs is associated with two different outpuls Z,
7, Thus we must split g3 into g3y and g, with outputs Z, and 2y, respectively
s Into gy and gyy with outputs Z, and 2, respectively. Table 2.19 may be
wstructed as Table 2.20.




Mealy to Moore Example

(3]
) g
" Table 2.19 Transition Table for Example 2.12 >
Next state ‘Ug)
Present a=0 a=1 k&
state state  output state  output =
- q /) Z 93 Z =
Q2 42 Z; g3 Z @
qs 92 4 qs Z, 5
' 5
.~ Table 2.20 Transition Table of Moore Machine %
Present state Next state Output E‘
a=0 &= %
'} | q21 an .

Q21 dx g3 Zy

922 G2 g Z;

gs g2 a3 'Zl

932 42 g2 2

Figure 2.11 gives the transition diagram of the required Moore machine.




Mealy to Moore Example

D D D)

0

Fig. 2.11 Moore machine of Example 2.12.




Minimization of Automata

ONSTRUCTION OF MINIMUM AUTOMATON

{Construction of m). By definition of 0-equivalence, 7= {Ql", Qg}, where
%ot of all final states and Q5 = Q - Q).

(Construction of 7, from ). Let O be any subset in m,. If ¢; and
I Q! they are (k + 1)-equivalent provided (g, a) and &(gy, a) are k-
I, Find out whether 8(g,, @) and 8(g,, a) are in the same equivalence
W for every a € Z. If s0, g, and g, are (k + 1)-equivalent. In this way,
fher divided into (k + 1)-equivalence classes. Repeat this for every O
got all the elements of mgy,.

0
Q
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o
Z
S
=
>
0
O
>_
=
£
7
Q
S
o
c
S
=
>
0
o
)
=

Construct o, forn =1, 2, ... untl 7, = My

(Construction of minimum automaton). For the required minimum state
on, the states are the equivalence classes obtained in step 3, 1.e. the

elements of ,. The state table is obtained by replacing a state ¢ by the corresponding
equivalence class [g]. 1




Example — FA minimization

EXAMPLE 2.13 Construct a mini~ium state automaton equivalent to the finite
automaton given in Fig. 2.12.

0
Q
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o
Z
S
=
>
0
O
>_
=
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Q
S
o
c
S
=
>
0
o
)
=

Fig. 2.12 FA of Example 2.13,




Example - FA minimization

Table 2.21  Transition Table for Example 2.13

State/L 0 1 @
(@)

» do a1 gs E
4 s qs- 7
@ - Qo G2 Z
Ve 9 ds =

qa g1, qs. 8
ds 42 Qs 2

@ : 96 ) >

sep 1, we get

Q=F={qg) 0=0-0f

o = {{q2}: {90, 91, 93, 94+ @s. 460 G7) )




Example — FA minimization

cannot be further partitioned. So, Q7 = (g¢z). Consider gy and ¢; € OF.
under O-column corresponding o go and g, are g, and g they
. The entries under 1-column are gs and ¢,. g, € O and g5 € QY.
Wu and g, are not l-equivalent. Similarly, g¢ is not l-equivalent to
LA

suder go and g4. The entries under O-column are g, and ¢;. Both are
snines under 1-column are gs, ¢s. So g4 and gq are 1-equivalent. Similarly,
ivalent 10 g. (9o, 94, Ge) is a subset in &y, So, 0% = { g0, 94, Gs)-
the construction by considering ¢, and any one of the states ¢i, gs, 7.
| wquivalent o g3 or gs but 1-equivalent to ¢;. Hence, Q5% = (g1, ¢7).
s left over in QF are g5 and gs. By considering the entries under 0-
I-.column, we see that ¢; and gs are 1-equivalent. So Q% = (g1, gs).

MYcsvtu Notes

m = ({q2), (g0, 94, g6). (41, 47). 143, g5))

#lso in 7, as it cannot be partitioned further. Now the entries under 0-
mding to go and g4 are g, and ¢, and these lic in the same equivalence
M. The entries under 1-column are gs, ¢s. So ¢o and g4 are 2-equivalent.
Wl gy wre not 2-equivalent. Hence, (g, g4, ¢¢) is partitioned into (g0, 4]
. Wy and g, are 2-equivalent. g3 and gs are also Z-equivalent. Thus,
b (0. 94, [q6), (g1, @7}, (43, @5)) go and ¢, are 3-equivalent. g, and
wivalent. Also, g3 and ¢gs are 3-cquivalent. Therefore,

C
7p]
(O]
)
(@]
C
>
L~
>
7]
(@]
>
£

Ty = [192). (qo. 94). [g6). 191, 7). (93, 75))
=y, oy pives the equivalence classes, the minimum state antomaton is

M = (Q° (0, 1), 8, q0, ')




Example - FA minimization

re
0’ = ([42), [0, q4), (gs). [41, §7), 93, g5])
g0 = (90, s}, F' =142

8’ is given by Table 2.22.

Table 2.22 Transition Table of Minimum
State Automaton

0
Q
')
o
Z
S
=
>
0
O
>_
=
£
7
Q
S
o
c
S
=
>
0
o
)
=

State/Z 0 1
[90. 94l (91, ¢7] (43, gs]
(g1, 7] (46! (¢2)
(¢2] (90, 44l [42)
(g3, gs] (2] [q6]
[q6] [q6) (90, g4l

1
rE: The transition diagram for the minimum siate automaton is given in
_2.13. The states go and g5 are identified and treated as one state. (So also
a1, g7 and ga, gs.) But the transitions in bath the diagrams (i.e. Figs. 2.12 and




Example — FA minimization

0
A
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Fig. 2.13 Minimum state automaton of Example 2.13.

13) are the same, If there is an arrow from g; to g; with label a, _lhf:n there 1§
arrow from [g;] to [g;] with the same label in the diagram for minimum state

tomaton. Symbolically, if & (¢, @) = g;, then &’ (lg:, a) = lgjl.




Question




Assignment

fransition table of a nondeterministic finite automaton M is given in
425, Construct a deterministic finite aulomaton equivalent to M.

Table 2,25 Transition Table for Exercise 2.7 <
©
State 0 1 2 <
>
—* 4o N9a 44 9293 >8.
q1 qs >
92 9293
@ a
qda

Mruct a DFA equivalent to the NDFA given in Fig. 2.8.

Uy, 92,91, (0, 1}, 8, g1, [¢3)) is a nondeterministic finite automaton,
& Iy given by

C
7p]
(O]
)
(@]
C
>
L~
>
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>
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(g, 0) = (g2, @3} 8(q1, 1) = (q)
(2. 0) = (g1, 2] (g2, 1) =0
(g3, 0) = {¢2) (g3, 1) = (4, q2)

Construct an equivalent DFA,




ssignment

J SUNIARISMBE wasem g

Congtruct a Mealy machine which is equivalent to the Moore machine given

Fable 2.26.
Table 2.26 Moore Machine of Exercise 211
Proscnt state  _ Nexisme  Oupot o
a=0 a=1 °
40 0 @ 1 <
@ e @ 0 é
9 @ @ 1
0 o q 1 8
>
1. Construict a Moore machine cquivalent Lo the Mealy machine M given >
wle 2.27.
Table 2.27 Mealy Machine of Exercise 112 =
Next state 8
Present a=0 a=1 6
sate stse  oulput sale  output c
>
-4 ' 1 LH 0 s
9 4 1 qa 1 8
@ L i H 1 =
9 N 0 @ 1 e
{3, Construct a Mcaly machine which can outpat EVEN, 0DD sccording as %

iotal sumber of 1°s encountered is even or odd. The inpot symbols are 0 and L

14, Construct & minimum state sutomaton equivalent 1o & given DUIDMALN

whose transition table is given in Table 2.28.

Table 2.28 FA of Exertise 2.4

Stunes Inpat
d b
- Jo do L L)
0O @ L]
L o d
L e LA
de do W
LAl Ll W
é LA

{ipe)




Regular Set and Regular
Grammer

R EXPRESSI®NS

lons are useful for representing certain sets of strings in an algebraic
/Iy these describe the languages accepted by finite state aufonmara.
i lormal recursive definition of regular expressions over Z as follows:

Herminal symbol (i.e. an element of Z), A and @ are regular expressions.
W a In X as a regular expression, we denote it by a.
unton of two regular expressions Ry and Ry, written as Ry + Ry, is
Il gapression, s £ '
poncatenation of two regular expressions R, and Ry, written as RyR,,
lar expression. 3 ..
leration (or closure) of a regular expression R, written as R*, is also
oRsion, |

Is o regular expression, then (R) is also a regular expression,
pepular expressions over E are precisely thosé oblained recursively
ation of the rules 1-5 once or several tmes.



Regular Set

Definition 4.1 ~ Any set represented by a regular expression is called a regular se

If, for example, a, b € I, then (2) a denotes the set (@], (b) a + b denote
(a, b}, (c) ab denotes (ab), (d) a* denotes the set (A, a, aa, aaa, ...} and (¢
(a + b)* denotes {a, b} *,

Now we shall explain the evaluation procedure for the three basic operation
Let Ry an¢ R; denote any two regular expressions, Then (a) a string in Ry + [
is a string from Ry or a string from R;; (b) a string in R|R; is a string from I
followed by a string from Ry, and (c) a string in R’ is a string obtained b
concatenating n elements for some n 2 0. Consequently, (a) the set represented &
R, +R; is the union of the sets represented by R, and R,, (b) the set represente
by RR; is the concatenation of the sets represented by R, and R, (Recall that thy
concatenation AB of sets A and B of strings over I is given by AB = {wwslw
A, wy € BJ, and (c) the set represented by R* is {ww, ... W, Iw; is in the s¢
represented by R and n 2 0},

www.mycsvtunotes.in - MYcsvtu Notes



Reg. Set to Regular Expression

EXAMPLE 4.1 Describe the following sets by regular expressions: (a) {101)

(b) (abba}, (¢} (01, 10}, (d) (A, ab), (¢) (abb, a, b, bba), () [A, 0, 00, 00C
..}, and (g) (1, 11, 111, ...}).

SOLUTION (a) Now, (1}, (0] are represented by 1 and 0, respectively. 10
is obtained by concatenating 1, 0 and 1. So, {101} is represented by 101.
(b) abba rcpresents {abba). J
(c} As {01, 10} is the union of {01} and (10], (01, 10) is represented by
01 + 10.
(d) The set {A, ab) is represented by A + ab.
(e) The set {abb, a, b, bba) is represented by abb + a + b + bba.
() As [A, 0, 00, 000, ...} is simply [0)*, it is represented by 0*, ,
(g) Any elementin {1,11, 111, ...} can be obtained by concatenating 1 ang
any element of {1)*. Hence 1(1)* represents (1, 11, 111, i)

www.mycsvtunotes.in - MYcsvtu Notes



Reg. Set to Regular Expression

MYcsvtu Notes

EXAMPLE 4.2 Describe the following sets by regular expressions:

(a) Ly = the set of all strings of 0's and 1's ending in 00.

(b) L = the set of all strings of 0’s and 1's beginning with 0 and endin
with 1.

(€) Ly = (A, 11, 1111, 111111, ...}.

SOLUTION (a) Any string in L, is‘obtained by concatenating any string o _
(0, 1} and the string 00. {0, 1} is represented by 0 + 1. Hence Ly is represente
by (0 + 1)* 00.
(b) As any element of L, is obtained by concatenating 0, any string over
(0, 1} and 1, L, can be represented by 0(0 + 1)* 1.
(¢) Any element of Ly is cither A or a string of even number of 1's, i.c. &
string of the form (11)", n > 0. So Ly can be represented by (11)*,

C
7p]
(O]
)
(@]
C
>
L~
>
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>
£




[dentities of RE

NITTTIES FOR REGULAR EXPRESSIONS

expressions P and Q are equivalent (we write P = Q) if P and Q
same set of sirings.

give the wdentities for regular expressions; thesc are useful for
gular expressions.

Il 0+R=R
I, DR=RO =0

MYcsvtu Notes

ls A* = A and @*
I« R+R=R

/s R*R* = R*

/5 RR* = R*R

Is (R*)* = R*

Iy A+ RR*=R*=A+ R*R

Iy (PQ)*P = P(QP)*

Iy (P +Q)* = (P*Q*)* = (P* + Q*)*

iz (P+ Q)R =PR + QR and R(P + Q) = RP + RQ

I
-

£
%)
(O]
)
(@]
C
=
>
7]
(@]
>
£




Arden’s Theorem

4.1 (Arden’s theorem) Let P and Q be two regular expressions over
% hot contain A, then the following equation in R, viz.

R=Q+RP (4.1)

We solution (i.e. one and only one solution) given by R = QP*,

Q + (QP*) P = Q(A + P*P) = QP* by

1) is satisfied when R = QP*. This means R = QP* is a solution of

prove uniqueness, consider (4.1). Here, replacing R by Q + RP on the
, We get the equation

Q+RP =+ (Q + RPP

MYcsvtu Notes
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Arden’s Theorem

=Q + QP + RPP
= Q + QP + RP?
=Q+QP+QP2+...+QP"+RP‘*‘,- g
=QA+P+P+ .. +P)+RPY %
From (4.1), ' =
R=QA+P+P?+ .. +P)+RP" foriz0

We now show that any solution of (4.1) is equivalent to QP*. Suppose R satist
(4.1), then it satisfies (4.2). Let w be a string of length i in the set R. Ther
belongs to the set Q(A + P+ P? + ... + P) + RP*!, As P does not contair
RP"™! has no string of length less than i + 1 and so w is not in the set RP*.LT
means w belongs to the set Q(A + P + P? + ..+ PY), and hence 10 QP*.

Consider a string w in the set QP*. Then w is in the set QP* for som
> 0, and hence in Q(A + P+ P + ... + PY. So w is on the R.H.S. of (4
Therefore, w is in R (L.H.S. of (4.2)). Thus R and QP* represent the same
This proves the uniqueness of the solution of (4.1). |

Www.mycsvtunotes.in



RE

EXAMPLE 4.3 (a) Give an r.e. for representing the set L of strings in wi
every 0 is immediately followed by at least two 1's.

(b) Prove that the regular expression R = A + 1*(011)*(1* (011)*)*
describes the same set of strings.
SOLUTION (a) If w is in L, then either (i) w does not contain any 0, or g‘

contains a 0 preceded by 1 and followed by 11. So w can be writien as wyw
w,, where each w; is either 1 or O11. So L is represented by the re. (1 +0

(b) R=A+PP,  where P, =1*(01D)*
=P using Iy
= (1*(011)%)*
= (P; P;)* letting P, = 1, P, = 011
= (P +PY*usingly
= (1+ 01D)*

C
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£
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FA to RE Conversion

n system given in Fig. 4.10. Prov 8
y*b)* a(b + aa)* a

EXAMPLE 4.8 Consider the transitio
/dic strings recognised are (a + a(b + aa

Fig. 4.10 Transition sysiem of Example 4.8.

y apply the above method since the graph do¢

only one initial state.
g, and g5 can be wrilten as

SOLUTION We can directl
contain any A-move and there i8

The three equations for gy,

G =qa+@b+A Q=03+ qzb + q3a,  Ga = QoA

[l is necessary to reduce the number of unknowns by repeated substitution
substituting gy in ¢p-cquation,we get

Gy = Qi + @b + qoan

www.mycsvtunotes.in - MYcsvtu Notes
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FA to RE Conversion

= @y + qo(b + aa)

= qa (b + aa)"~

Theorem 4.1, Substituting q; in q;, we get
gy = qa + quab + aa)*b + A
= q{a +alb+aa)*h) + A

qy = Ala + a(b + aa)*b)*
g; = (a + a(b + aa)*b)* a(b + aa)*

gy = (a + a(b + aa)*b)* a(b + aa)*a

final state, the set of strings recognised by the graph is given by

(a + a(b + aa)*b)a(b + aa)*a



FA to RE conversion

4.9 Prove that the FA whose transition diagram is given in Fig. 4.11
L ol all strings over the alphabet (a, b} with an equal number of

www.mycsvtunotes.in - MYcsvtu Notes

Fig. 4.11 FA of Example 4.9.

Such that each prefix has atmost one more a than b's and atmost one
"'



FA to RE conversion

We can apply the above method directly since the graph does not
ve und there 1s only one initial state, We get the following equations

LA _
Q =q@b+ga+ A é
0@ = g, s
Gy = qb g

Q4 = Qo8 + qib + qea + q4b

only Tinal state and the q,-equation involves only q; and qy, we use




FA to RE conversion

only q,- and gs-equations (the gg-equation is redundant for our purposes). Substituls
for q; and g3, we get

q; = qab + q;ba + A = q(ab + ba) + A
By applying Theorem 4.1, we get
q; = A(ab + ba)* = (ab + ba)*

As q, is the only final state, the strings accepted by the given FA arc strify
given by (ab + ba)*. As any such string is a string of ab’s and ba’s we get equ
number of a's and b's. If a prefix x of a sentence accepted by the FA has
number of symbols, then it should have equal number of a's and b's since X
a substring formed by ab’s and ba’s. If the prefix x has odd number of symbo
then we can write x as ya or yb. As y has even number of symbols, y has eqt
number of a's and b’s. Thus x has one more a than b or vice versa. |
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FA to RE conversion

0
-




FA to RE conversion
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_EXAMPLE 4.10 Describe in English the set accepted by FA whose transil
diagram is given in Fig. 4.12.
0 i 0,1

S
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Fig. 4.12 FA of Example 4.10.




RE to DFA
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']J Construct an FA equivalent to the regular expression.
(0 + D*00 + 110 + 1)*

Siep | (Construction of transition graph). First of all we construct
Wph with A-moves using the constructions of Theorem 4.2. Then
smoves as discussed in Section 4.2.2.

With Fig. 4.15(a).

I¢ the concatenations in the given r.e. by introducing new vertices
Fig. 4.15(b).

¢ * operations in Fig. 4.15(b) by introducing (wo new vertices
muves as shown in Fig. 4.15(c).

e concatenations and + in Fig. 4.15(c) and get Fig. 4.15(d).
Ie A-moves in Fig. 4.15(d) and get Fig. 4.15(¢) which gives the
Bt 1o the given re.

= -
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RE to DFA

- -

» e *
4 (0+1) (oo+u)<o+n
0

(3]
() %
0+1)" (00+11) (o+1)* =
(b) S

o 0+
B s E
- AD B -oE D)
+ (@]
» (C) Y S— 5
@)
0.1, o 0 0, =
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Formal Language

§ —s (noun) {verb) (adverb)

§ — (noun) {verb)

{noun) — Sam

{(noun) — Ram

(noun} — Gita

{verb) — ran

{verb) — ate

{verb) — walked

(adverb) — slowly

{adverb) — quickly
ach arrow represents a rule meaning that the word on the right side
-ow can replace the word on the left side of the arrow.) Let us den
llection of the rules given above by P.

If our vocabulary is thus restricted to ‘Ram’, ‘Sam’, ‘Gita’, ‘ate’,
ralked’, ‘quickly’ and ‘slowly’. and our sentences are of the form (
erb) {adverb) and {noun) {verb). we can describe the grammar by i
v = P §). where

Vy = [{noun), {verb), (adverb)}

¥ = {Ram, Sam, Gita, ate, ran, walked, quickly. slowly}

P is the collection of rules described above (the rules may be

MYcsvtu Notes
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‘oducticns).
S is the special symbol denoting a sentence.




Grammar

| DIFINITION OF A GRAMMAR

&1 A phrase-structure grammar (or simply a grammar) is
L3, where

5 0 Himite nonempty set whose elements are called variables,

I8 0 lLinite nonempty set whose elements are called terminals,
b L = P,

# special variable (i.e. an element of Vy) called the start symbol,

MYcsvtu Notes

L0 finite set whose elements are « — B, where o and B are strings
Wy 1 X has at least one symbol from Vy. The elements of P are
 productions or production rules or rewriting rules.

£
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I ol productions is the kernel of grammars and language
We abserve the following regarding the production rules.

IS¢ substitution is not permitted, For example, if § = AB is a
Micton, then we can replace S by AB, but we cannot replace AB
I‘-
Iversion operation is permitted. For example, if § — AB is a
W, A0S not necessary that AB — § is a production.




Grammar

(= (Vy, X, P, §)is a grammar

{(wntence), (noun), {verb), (adverb)}
{Bam, Sam, ate. sang, well}
entence)

ol the tollowing productions:

t0) o (noun) (verb)

e (noun) {verb) (adverb)
) y Kam

)

R
oowin
e

B ani
o well
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Grammar

Chomsky Hierarchy

1. Phrase Structure Grammar (Unrestricted Grammar) or Type-0
2.Context Sensitive Grammar or Type-1

3.Context Free Grammar or Type-2

4.Regular Grammar or Type-3

(%]
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Phrase Structure Grammar
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n 41 A

phrase-structure  grammar (or simply a grammar) is
N, where

I Linite nonempty set whose elements are called variables,

A 0 linite nonempty set whose elements are called terminals,
nis=0,

i special variable (i.e. an element of V) called the start symbol,
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i finite set whose elements are & — f, where o and B are strings
Wy L X ahas at least one symbol from V. The elements of P are
productions or production rules or rewriting rules.




Derivation and Language Generated by Grammar

efinition 4.4 The language generated by a grammar G (denoted by £
tfined as {w € X*|S§ — w}. The elements of L(G) are called yent

Stated in another way. L(G) 1s the set of all terminal strings den
g start symbol §.
lefinition 4.5 If § = @ then @ s called a sentential form, We vl

(i
at the elements of L(G) are sentennal forms but not viee versa.
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Derivation and Language Generated by Grammar

L O R L K = AL S), find L(G).

N production, 8§ = ) IS 1
) (?‘» A. So A is in L(G). Also. for all n2=|
it 081 > 0°51° = .. = 0°51" = o
/- )

(s

V1" e 1(G) for n >0

e ubove denvation.

S — 051 15 applied at eve

: ' slep exce
apply § — A). Hence, {01 . Gk cxcept

(720} L((5).
art with w in L(G). The
ISt, we get A. In this cage
IS8 — 0S1. At any stage
Also, the terminal string is
the derivation of 1S of the

i the last stlep. we

it 14¢7) ¢ (0"1"| n > 0}, we st
pMans with 8. If § — A i« ;zpphcd‘ﬁ
W the first production to be applied
B A we Let a terminal String.
Iy applving § — A. Thus

C
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form

.\' 5 Nevy n ' o
= ('S (‘-'D () for some n > 1

G ¢ (01" | n > 0)




EXAMPLE 4.3
f G = ({8}, {a}, {S — S5} 9), find the language generated by G

Solution
[(G) = §. since the only production § — S in G has no terminal

right-hand side.

EXAMPLE 44
Let G = ({S, C}, {a, b}, P, 5), where P consists of § = aCa, € =%
Find L(G).

Solution
§ = aCa = aba. So aba € L(G)
§ = aCa (by application of § — aCa)
X a"Ca"  (by application of € — aCa (n = 1) |

= d'bad" (by application of C —> b)

Hence, a'bd” € L(G), where n 2 1. Therefore,
{d"ba"|n 2 1) = LG)
As the only S-production is § — aCa, this is the first production’
to apply in the derivation of any terminal string. If we apply C = b, W&
Otherwise we have to apply only C — aCa, either once or several
we get a’Ca” with a single variable C. To get a terminal string W
replace C by b, by applying C = b. So any derivation is of the fa

S = d'ba” withn 21

Therefore,
L(G) < {a"bd"|n = 1}

Thus,

L(G) = {a"bd"|n = 1}

EXERCISE Construct a grammar G so that L(G) = {a"ba" | n, m

=
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>
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Derivation and Language Generated by Grammar

S [ BN a | b, find LAC5).

‘l(‘.’ ‘(/, l’, ‘.
All productions

A

As we have only

are S-productions, an

i production in the grammar 6.
5

(WO terminals q, b,
d s0 A can be in 1{(;)
'l"lu.\.

MG) C (a, bi* — (A} = {a, b)*

B & L(G), consider any string aa; . |
st production in the deriy
Mg a8 @y = a or ay = b,

Fway, The last productio
b So ity

x5

MY csvtu Notes

- dy, Where each
aton of ayas . . . @, 1s § —
The subsequent productions yre
niIsSsaors —ph accordimg
« 4y € L(G). Thus, we have LG) = (a, b)',

=
%
(&)
)
o
(=
2
>
()
(@)
>
£

a8 | a, then show that LG) = {a}*,
follow ing examples illustrate the method
HOg o given subset of string
Hetions, We try to define th
S Beherating the strings

of constructing g
s over Z. The difficult part is the
¢ given set by recursion and then
in the given subset of =,




Derivation and Language Generated by Grammar

ot all palindromes over (@, b}. Construct a grammar (;
S < d x

N grammar ¢ eenerating the set of all palindromes, w

o crat € use
MO (given in Section 2.4) to observe the following:
Wndrome

Mlindiromes
palindrome axa, then bxb are palindromes
e the set consisting of:
il 5 )
Hoand S 5 hsh
'00 bloPS) I'hen
) = A, S =Da S-=3 b
Aoa, b e /.((:')
Wdiome ol even le
ength, then y =
g L E=R@ . aya, .. a;, where
D IR & By ey oo il by applying

DAL Thus, « ¢ 1)),
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Derivation and Language Generated by Grammar

AMPLE 47

Ltruct a grammar 4

' #
enerating L = fwew” | woe {a. b}¥y-

ution .. |
G = ({S}. {a b, c} P. S), where P is defined as § — add | b

www.mycsvtunotes.in - MYcsvtu Notes




Derivation and Language Generated by Grammar

AMPLE 4.8
piet|lnz 1, i 2 0k

d a grammar generating L = {a

lution

L=Lv La

L = {d'V'|n2 1}

L= {d"b"¢|n 2 1,121}
and L. by concatenating the element

We construct L; by recursion
f the following productions:

dc iz 1. We define P as the set 0
A — ab, A — aAb, S — S¢

0. we have

MYcsvtu Notes

S — A
Let G = ({5, A}, {a b, ¢}, P, S). Forn >1,i=

§ = S¢ = Acd = a’"'Ab”"("' = u”"(lhb””'(" = da"h'e

hus. |
(a'b'ct jnz 102 0} < LG)

jon. we note that the only S-pi
ith § = A, we have 10 apply

£
7p]
(O]
=
(@]
C
>
=
>
7]
(@]
>
£

To prove the reverse inclus
re § — Scand § — A If we start W

A= aAb = "B, and S0 da'b'd e 1UG)

if we start with § — S¢, we have to apply § = 5S¢ repeatedly 1o get
0 geta terminal string, we have 10 apply S — A. AS A = d"b", \he
terminal string is a"b'c’ Thus. we have shown that

1L(G) © ta'p'e | n 2 1. 1 2 0)
Therefore,

WUG) = {aW'e|n2 L i20)




Closure Properties of families of
languages

UAGES AND THEIR RELATION

we discuss the re

MYcsvtu Notes

lation between the classes of languages that we

der the Chomsky classification.

I 41 and £y denote the family of type 0 languages, context-
08, context-free languages and regular languages, respectively.

From the definition, it follows that In- G Loy Lt o

Wi & 7 The inclusion relation js not immediate as we allow
IONL free grammars even when A = S, but not in context-sensitive
Mlow only § — A in context-sensitive grammars). In Chapter 6
A vontext-free grammar G with productions of the form A4 — A
W o context-free grammar G, which has no productions of the
(except § — A). Also, when Gy has § — A, S does not appear
hind side of any production. So G, is context-sensitive. This

‘ Ill

£
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)
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C
=
>
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>
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Closure Properties of families
of languages

S Lo @ Lo © £y This follows from properties 1 and 2.
/cl . /(” —r /‘(\_'l C" I’;U'




Closure Properties of families
of languages

i OPERATIONS ON LANGUAGES

consider the effect of applying set operations on Lo Lesty LS
nd B be any two sets of strings. The concatenation AB of A &

ined by AB = {uv|u € A v e B} (Here, uv is the concatenation

ngs u and v.)
We define A' as A and A" as A"A for all n 2

The transpose set AT of A is defined by
AT = {u' |u € A}

0
Q
')
o
Z
S
=
>
0
O
>_
=
£
7
Q
S
o
c
S
=
>
0
o
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=




Closure Properties of families
of languages

Foye Lo 18 closed under
i. We can

eorem 4.5 [Each of the classes Lo, L
jof Let L; and L; be two languages of the same type
eorem 4.1 to get grammars

G| = (V'M E,. P, S;) and G: = (V’,'v Z:. P:. S:)

type i generating L, and L,, respectively. So any production in G
either ot — B, where o,  contain only variables or A — a, where A

€ Z.
We can further assume that Vi N Vy=
- variables of V* if they occur in V'\)
Define a new grammar G, as follows:
G,, = (V'N U V';\'u ‘SL Z| (& EQ, g S

MYcsvtu Notes

@ . (This is achieved by roni

f=
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Q
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here S is a new symbol, ie. § & Viy u V'
P; =Py Py \J {S — 8, § = 8




Closure Properties of families
of languages

e (G = L w L, as follows: If w e Ly W Ly then S| =5 w or
Gl
W Therelore,

»

b .
R S 2w oor S8 Dwiewe L(G,)
o, G, G, G,

MYcsvtu Notes

N ¢ LG

Ao that L(G,) < Ly U L,, consider a derivation of w. The first step
=S orS = 8. IfS = §, is the first step, in the subsequent steps
Il As Vi V5 = @, these steps should involve only the variables
the productions we apply are in P. So S ? w. Similarly, if the

3w 8, then § = §» = w. Thus, LG, =Ly v L, Also, L(G,)
G. (A

C
7p]
(O]
)
(@]
C
>
L~
>
7]
(@]
>
£

| or type 2 according as L, and L, are of type 0 or type 2. If A

L Ly, then L(G,) is of type 3 or type 1 according as L; and L,
AT type 1.

A ¢ L, In this case, define
Gu=(VyUV3ULS §) U, P, 8)

N 0 new symbol, ie. 8" e Vi U VE U {S}, and Gii) P, =
' = 5,855 85,5 8}, So. L(G,) is of type 1 or type 3
ly and L, are of type 1 or type 3. When A e L,, the proof is




Closure Properties of families
of languages

B Bach of the classes ¥, £, Zu. £, 1s closed under
\

£y and 1, be two languages of type i. Then, as in Theorem 4.5, we

A. }'l- s, S,) and (;2 — (V,,’\r 5 Z;.. Pz. S:) of the same type i. We
that 2,1, 1s of type i.

L new grammar G, as follows:

Creon = ‘V,.‘\' J V’.';' (o {S}. El v Zlv Pconv S)

f’u," =P, U P:o () {S — S]SQ}
{./ G IEw = wyws € LL,, then
S = wy, ) = Ws

'H (.

S S‘I 5‘2 _:> M'l H"_v

Ceon Ceon

L|Ir_‘ - I‘((;(‘Ull)

=
%
(O]
)
(@]
(=
2
>
()
(@)
>
£
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Pumping Lemma

/6 PUMPING LEMMA FOR REGULAR SETS

In this section we give a necessary condition for an input string (o belong
a regular set. The result is called pumping lemma__as it gives a method
pumping (generating) many input strings from a given string. As pumping lem

gives a necessary condition, it can be used to show that certain scts are |

regular,

~“Theorem 4.5 (Pumping Lemma) Let M= (0, Z, 8, gy, F) be a finite autom

..—.—-""“ — .~ 4 4 KA A < c -
with n states. Let L be the regular sct accepted by M. Let w € L and Iwl

.l._f m2n, then there exists x, y, z such that w = xyz, y # A and xy'z € L for @
i20. i

(g0, @@, - @) = 4i fori=12,...,m 01 = {40, q1, - r qm)

———

MYcsvtu Notes

W =413z ... O, mzn

——— L ———

That is, Q) is the sequence of states in the path with path value w = @,a@; ...
As there are only n distinct states, at least two states in 0, must coincide. 4
Various pairs of repeated states, we take the first pair. Let us take them as gji
qx (¢; = gu). Then j and k satisfy the condition 0 € j< k< nm '
~ The string w can be decomposed into three substrings a,a; ... a;
a; and @y, ... G Lel x, y, z denote these Srings @;@; ... Gj, @y --- A |
“... y respectively. As k< n, lxyl < nand w = xyz. The path with path
w in the transition diagram of M is shown in Fig. 424.
The automaton M starts from the initial state go. On applying the string
reaches g,(= gx). On applying the string y, it comes back 10 g(= qu). So after applical
of y' for each 1 > 0, the automaton is in the same state 2. On applying z, it reacl
dm, @ final state. Hence xy'z € L. As every state in Q',gfw obtained by applying

input symbol, y # A. 1

c
0
Q
i
o
c
=
=
>
7
O
)
S

A




Pumping Lemma

Fig. 4.24 String accepted by M.

eomposition is valid only for strings of length greater than or equal
{ of siates. For such a string w = xyz, we can 'iterate’ the substring &

Wy times as we like and get strings of the form xy'z which are longer

are in L. By considering the path from g, to g; and then the path
{without going through the loop), we get a path ending in a final
Wh value xz. (This corresponds to the case when i = (.)




Pumping Lemma

ATION OF PUMPING LEMMA

T S, - -
Lan be used to prove that certain sets are not regular. We now give

e for proving that a given set is not regular.

¢ 1. is regular. Let n be the number of states in the corresponding

we o string w such that lwl = n, Use pumping lemma to write
lxy! < n and |y|>0

A suitable integer i such that xy'z € L. This contradicts our assumption.
Mol regular,

icial part of the procedure is to find i such that xy'z ¢ L. In some
ve 1v'z ¢ L by considering |xy'zl. In some cases we may have to use
"ol strings n L.




Unit-111
CFG and PDA
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UNIT-3 Context free grammar and their properties, derivation tree, simplifying CFG, unambigufying
CFG, CNF and GNF of CFG, push down automata, Two way PDA, relation of PDA with
CFG, Determinism and Non determinism in PDA and related theorems.
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CFG

61 CONTEXT-FREE LANGUAGES AND DERI
TREES

Contexi-free languages are applied in parser d
describing block structures in programming languages. It 15 cony
derivations in context-free languages as we can represent derivall
structures.

et us recall the definition of a context-free grammar

context-free if every production is of the form A — ¢, whew
o€ (Vy u D)*

MYcsvtu Notes

esign. They are
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Derivation Tree

ON TREES

# CFG can be represented using trees. Such trees
i are called derivation trees, We give below a MEOrous
Yation free,

A derivation tree (also called a parse tree) for a CFG

(%)
\x . : o 2
}In o tree satisfying the following conditions: =
o hay o label which is a variable or terminal or A. =)
; >
‘ ()
s label S, | ?
L of an internal vertex is a variable. z
. - » 4 2
Wes ny, ny,LLomyg written with labels X, X5, .. Xy are
Ol vertex n with label A, then 4 — XiXs ... X, inn =
' ()
m / o)
. -
Wos o deal il its label is @ € X or A; n is the only son of =)
iy label 15 A, 2
] S %;
e ({5 A} la. b} P, S), where P consists of § —» =
P DA b Figure 6.1 1s an example of a derivation trec £
(1)
£

-~
\

(& AD) G
(7 ) b ('ﬂ a

Flg. 6.1 An example of a derivation tree

N\
\\
o

)




Ambiguity in Grammar

2 AMBIGUITY IN CONTEXT-FREE GRAMMARS

neces in the language we are usi
“In books selected informati

ymetimes we come across ambiguous sente

snsider the following sentence in English:

ven.” The word ‘selected” may refer to books or information. So the sen
ay be parsed in two different ways. The same situation may arise in co '
ge languages. The same terminal string may be the yield of two deri
ses. So there may be two different leftmost derivations of w by Theoren
his leads to the definition of ambiguous sentences in a context-free lang

| string w € L(G) is ambiguous if there exi
re leftmost den

MYcsvtu Notes

iefinition 6.6 A termina
r more derivation trees for w (or there exist two Or mo

f w)
Consider. for example, G = ({S}. {a, b, +, =}, P, S), where P
fS—>S+S|S+ Slalb. We have two derivation trees for a + a + b

a Fig. 6.10.

=
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>
£

Fig. 6.10 Two derivation trees fora + a = b

The leftmost derivations of a + a * b induced by the two derivati

arc

S=>S+S=>a+5=>a.+S-S=>a+a~S=a+aO’.

S=>S=3S=>S+S‘S=$a+S-S=>a+a-S=>a¢.

Therefore. a + a = b is ambiguous.




Ambiguity in Grammar
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EXAMPLE 6.4

If G is the grammar § — SbS|a. show that G is ambiguous.

Solution
To prove that G is ambiguous, we have to find a w € G 8
ambiguous, Consider w = abababa € L(G). Then we get two deriy
for w (see Fig. 0.11). Thus, G is ambiguous.
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Ambiguity in Grammar

MYcsvtu Notes

C
7p]
(O]
)
(@]
C
>
L~
>
7]
(@]
>
£

Flg. 6.11 Two derivation

trees of abababa for Example 6.4.




Useless Symbol

Useless symbols

We now undertake the task of eliminating useless symbols from a grammar. L
G=(V, T, P,S) be a grammar. A symbol X is useful if there is a derivatic
S% yXj3% w for some o, f, and w, where w is in T* (recall our conventi
regarding names of symbols and strings). Otherwise X is useless. There are tv
aspects to usefulness. First some terminal string must be derivable from X an
second. X must occur in some string derivable from S. These two conditions @
not. however, sufficient to guarantee that X is useful, since X may occur onl)
sentential forms that contain a variable from which no terminal string can

derived

www.mycsvtunotes.in = MYcsvtu Notes
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Simplification of Context Free Grammar

gD GRAMMARS

@, we can find an equiv.
erminal string.

G', S) as foll W

3.1 CONSTRUCTION OF REDUC

a CFG such that L(G) #
each variable in G’ derives some U

define G' = (Viw %

‘heorem 63 If G is
rammar G’ such that

woof Let G = (Vy, T, P, 8)- We
(a) Construction of V'x

We define W; < Vv by recursion:
w,=1{A € Vylthere exists a production A — W where w € Z*}
W, = @, some variable will remain after the application of any production, 2

so LG)=9.)
Wl’+l = W,-u {A 13 VN

MYcsvtu Notes

| there exists some production A — &
with @ € (& v W)*}
has only a finite nun

W, Wi for all i. As Vn
Te, Wk - WW fOl'j

By the definition of W;
for some k £ [Vl Therefo

of variables, Wi = Wi
We deﬁﬂe v:\v = Wk.
(b) Construction of Pl
p={A—> 0lA O € viv D'}
¥, P’, §). Sis in Vy (We are going to prove

We can define G' = (Vi
rminal string. So if § € Vy (G)

every variable in Vy derives some 1€

But LLG) # §)
Before proving that G’ is the required grammar, we apply

to an example.

£
7p]
(O]
=
(@]
C
>
=
>
7]
(@]
>
£

the cons

productions § — AB. A = & B -

. P, §) be given by the
G’ derives some U

Let G = (Vi
d G’ such that every variable in

B—C.E—c Fin
string.

Solution

(a) Construction of Viy:

W, = (A, B, E} since A = a4,
ermipal string on the R.H.S.

B—=-bE —c¢at productions




Simplification of Context Free Grammar

W,

]

Wiw (A € VylA, = a for some ¢ e (E u {A, B, E})*)

Wi u {S} = [A, B, E, §)

Wi=Wou (A € Vy|A, = a for some a e (T U {S, A, B, E})*)
=W, u =W,

Therefore,

Vv = (S, A, B, F}
| Construction of P’:
P'={A - alA, ae (Vyu Z)*)

={S-—>AB,A-—>a,B—>b,E->c}
refore,
G" = ({8, A, B, E}, {a, b, ¢}, P’. §)

MYcsvtu Notes
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Simplification of Context Free
Grammar

EXAMPLE 6.7
Find a reduced grammar equivalent to the grammar G whose

S — AB|CA, B — BC|AB. A — 4 C'=

Solution
W,={A, Clas A —a and C — b are productions wit

0
Q
')
o
Z
S
=
>
0
O
>_
=

Step 1
string on R.H.S.
Wa = {A, C} v {A|A; = o with @ € E w (A 2
= {A, C} v {5} as we have § — CA :%
Wi= {A, CS}U{A\A,—aawuhae().u (8. g
= (4. C. S v o :
As W3 = Wg-

V'N= W: = {S. A, C}
P'= (A, o a|A, ae ViV o)
(S —» CA, A — a, C — b)

Thus,
Gy = (1S, A, C). (a, b}, |S = CA, A = a C = B8N




Simplification of Context Free
Grammar

3 We have to apply Theorem 6.4 to G;. Thus,
Wy = {5}

huve production $ — CA and S € Wy, W, = {§} U {A, C})
s i and C — b are productions with A, C € Wy, W= {S, A, C, q, b}

As Wy = VYU ZE P’=(S§>alA e Ws} =P

(%)
(&)
Joi
(@]
zZ
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2
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=
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>
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>
£

U = (|5, A, C), {a, b}, {§ > CA, A = a, C — b}, §)

uced grammar.




Simplification of Context Free Grammar

i reduced grammar equivalent to the grammar
§ » ada, A — Sb|bCC|DaA, C — abb|DD,

E — aC, D — aDA %
O
Z
W, = |C} as C — abb is the only production with a terminal string é
s ?
s
W, (C} v {E A}
Wl und A — bCC are productions with RH.S. in (2 v (C}H* ﬁ
W« (C, E A} U (S} g
(=
A and aAa is I (2w Wi)* é
W WyU 9 §
£
Viv= Wy = {8, A,.C, E} %
P'={A = alae (Vy v 2)*}
= {§ = aAa. A = Sb|bCC, C — abb, E — aC}
("I = (v’,\\ {a. b}, P'. S)

We have to apply Theorem 6.4 to G|. We start with
W, = {5}

Wve S 9 aAa,
W, = {S} v {A, a}
YT

W, = (S, A, a}) W (S b, C} = {5 A, C, a b}

huve O > abb,



Simplification of Context Free Grammar

P’={A, — |A; € Wi}
= {§ = aAa, A = Sb|bCC. C — abb}

efore.
G’ = ({S, A, C}, {a. b}, P”, S)

¢ reduced grammar.
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Elimination of Null Production

inition 6.9 A variable A in a context-free grammar is nullable

borem 6.6 If G = (Vy. Z. P, §) is a context-free grammar, |
a context-free grammar G, having no null prodctions such 1

D — {A}.
of We construct G; = (Vy, Z, P’, §) as follows:
b 1 Construction of the set of nullable variables:

MYcsvtu Notes

find the nullable variables recursively:
i) W, = {A € Vy|A = Ais in P}
(i) W =W, U {Ae Vy| there exists a production A — & with &8
definition of W., W; W, for all i. As Vy is finite. Wy = W}
| Vi |- So, Wy, = W, for all j. Let W= W,. W is the set of all
ables.

p 2 (i) Construction of P':
i production whose R.H.S. does not have any nullable variable is
Pr.
(i) If A = X, X> ... X; is in P, the productions of the form A
oy are included in P, where o = X, if X; ¢ W, o = X, or A
el veve o A Actunllv. (i) sives several productions I8
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imination of Null Production

ol A = X X5 ... X, or by erasing some or all nullable variables
some symbol appears on the R.H.S. after erasing.

G = (Vi Z, P, S). G; has no null productions.

¢ proving that G, is the required grammar, we apply the construction
nple.

the grammar G whose productions are S — aS|AB. A — A,
» b. Construct a grammar G without null productions generating

0
Q
')
o
Z
S
=
>
0
O
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=

W, = “V: (S ¢= Wz

Al
: £
%)
wnstruction of the set W oof all nullable variables: %
W, = {A; € Vy|A; — A is a production in G} %
= (A, B} >
W, = (A, B} U {5} as § = AB is a production with AB € W3 g
= {5, A, B} S

W=W:=(S. A B}

oustruction of P':

v bis included in P’
» af gives rise to § — a8 and § - a.
» Al givesTise to § > AB, S > Aand § — B.

% Cannot erase both the nullable variables A and B in S — AB as we
¥+ A in that case.)
the required grammar without null productions is

G, = ({S. A, B, D}.{a, b}, P. )

Lonsists of

D b §—>aS.8 5AB.S—>a, S —> A §S—> B




Elimination of Unit Production

ELIMINATION OF UNIT PRODUCTIONS

f lree grammar may have productions of the form A — B, A, B

et, for example, G as the grammar § —» A, A —» B, B — C,
| s casy to see that L(G) = {a}. The productions S — A, A — B,
useful just to replace S by C. To get a terminal string, we need
Il ¢, is § = a, then L(G)) = L(G).

Beat construction eliminates productions of the form A — B.

MYcsvtu Notes

6,10 A unit production (or a chain rule) in a context-free
£/ is u production of the form A — B, where A and B are variables
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B 67 If G is a context-free grammar,we can find a context-free
£/, which has no null productions or unit productions such that
L)




Elimination of Unit Production
[ EXAMPLE 6.10]

let Gbe S = AB.A > a, B> C|b.C— D.D— Eand E
unit productions and get an equivalent grammar.

Solution
Step 1 Wo(S = (S} Wi(S) = Wo(S) © @
Hence W(S) = {S}. Similarly,
W(A) = {A} W(E) = {E}
Wo(B)= (B},  Wi(B) = (B} v {C} = {B. C}
W»(B) = {B, C} w {D}, W.(B) = {B, C. D} Y (E}, W

0
Q
')
o
Z
S
=
>
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=

Therefore, ﬁ
: Q
W(B) = {B, C. D. E} ‘g’
Similarly, g
Wi = (Cl,  Wi(© = (C. D). WalC) = {C, D ] S
Therefore, =
wW(C) = {C. D, E}. Wo(D) = (D} %

Hence,

WD) = {D, E} = WiD)
Thus,

W(D) = {D, E}
Step 2 The productions in G, are
S — AB. A — a, E— a
B> bla, C—a D - a

By construction, Gy has no unit productions.
To complete the proof we have to show that L(G") = L{G),




Normal Form of Grammar
Chomsky Normal Form

NORMAL FORMS FOR CONTEXT-FREE GRAMMARS

miext-free grammar, the R.H.S. of a production can be any string of
+ and terminals. When the productions in G satisfy certain restrictions.
I wid to be in a “normal form’. Among several ‘normal forms’ we study
them in this section—the Chomsky normal form (CNF) and the
I normal form.
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CHOMSKY NORMAL FORM
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thomsky normal form (CNF), we have restrictions on the length of
wid the nature of symbols in the R.H.S. of productions.

Hon 6,11 A context-free grammar G is in Chomsky normal form if
production s of the foom A = a, or A — BC, and S - A is in G if




CNF

[ (G). When A is in IAG). we assu
| of any production.
br example, consider
). Then G is in Chomsky normal form.

the derivation tree has the
descendants—=either two inu

me that S does not appear

G whose productions are S — AB\ AL

irk For a grammar in CNF,
rty: Every node has atmost two
tingle leaf.

Vhen a grammar is in

cr.

uction to Chomsky Normal Form
we develop a method of constructing a graminar in CNF
h context-free gramanar. Let us first consider an example.
'|aC,A——>a.B——>b.C—~)c. Except S — aC | ABC., Wl
uctions are in the form required for CNF. The terminal a in &
placed by a new variable D. By adding a new production 2 —%
pplying S — aC ¢an be achieved by S — D
he required form. and hence this production can
|, BC. Thus. an equivalent grammar is S — AE
s b, C —> ¢, D — a.

The techniques applied in this ex

(Reduction to Chomsky
lent grammar G> in Cho

CNE. some of the proofs and cons
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ample are used in the followl

normal form). For every

eorem 6.8
msky normal

mmar, there is an equiva
bof (Construction of a gramimar in CNF)
bp 1 Elimination of null productions and unit productions:

6 to eliminate null productions. We
to eliminate chain product

=
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e apply Theorem 6.
lcorem 6.7 to the resulting grammar
L mmar thus obtained be G—= (Man 2 55)-

ep 2 Elimination of terminals on R.H.S.:
e define G, = (Ve . P1. S7), where P, and V’y are constructed

(i) All the productions in P of the form A — a or A — BC
in P;. All the variables in V,y arc included in V.

(ii) Consider A — X X> - .- X, with some terminal on R.H
terminal, say «;, add a new variable C, to V'y and (.’,,'
In production A —> X X3 - - - X,, every terminal on R.H.S.
by the corresponding new variable and the variables on the
retained. The resulung production is added to P;. Th

Gy, = (Vn. =, Py, 5).
Restricting the number of variables on R.H.S.:

Step 3
consists of either a single

Sor any production in P;, the R.H.S.




CNF

A o two or more variables. We define Gy = (V. Z. P3 §) as

fuctions in P, are added to P, if they are in the required form.
variables in V' are added to Vg

f A -+ AAs ... A,, where m =2 3. We introduce new
e A = A Cy, Cp = ACs ovw Ca = Ay, and
ubles €, Ca, ..., C, o These are added to P and Vg
ly.

{/: in Chomsky normal torm.

g that G, is the required equivalent grammar, we apply the
gontext-free grammar given m Example 6.11.

C
7p]
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=
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CNF

Wi grammar G o CNF. G is § = aAD, A — aB | bAB,

)l productions or unit productions, we can proceed o step 2.

w (V. la, b. d}, Py, S). where P, and V}, are constructed

B o d wre included in Py,

) gives rise to § = C,AD and C, — a.
ghvos nse 1o A — C.B.

B gives rise to A = C,AB and C, — b.
A, 8. D, C,. C,}-

s b D - d, C, = a. C, — b are added to P,
W replaced by § — C,C, and C; = AD.
I teplaced by A — C,C» and C; — AB.

s A, B, D. C,. C, (\1. C:}. la, b. d}, P, S)

v 4, ), = b. G5 is in CNF and equivalent to G.

My ol 8 C,AD, A - C,B|CyAB. B = b. D - d, C, > a,

c
0
Q
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o
c
=
=
>
7
O
)
S

Bof § - C,Ci, A > CB|CG,. C; &' AD, C; — AB,
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CNE

e i ONFE equivalent to the grammar

P

SIS 2 Sl plg (5 being the only variable)

! mmar has no unit or null productions, we omit step 1 and
o
o (Vi X, Py, S), where P, and V', are constructed as follows:
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ply are added o P,
- S induces § 5 ASand A — ~,
2 15 0 5] induces § — BSCSD, B — [.C — D, D -]

Vi = (8. A, B, C. D}

RIS of 5 = plg, S = A5, A = ~. B> [,C - >, D =],
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BESD 1 replaced by § — BC), C, — SCs C: — CCs, C: — SD.

by = ({5, A, B, C, D, Cy; Cs5,°C3}, Z, P», S)

By of § — Plg|AS|BC, A - ~ B = [.C—= > D -],
3 P 0 Oy = 8D, Gy is in CNF and equivalent to the given




Greibach Normal Form(GNF)

4.2 GREIBACH NORMAL FORM

[eibach normal form (GNF) is another normal form quite uselul
hofs and constructions. A context-free grammar generating the sel
a pushdown automaton is in Greibach normal form as will

lcorem 7.4.
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Minition 6.12 A context-free grammar is in Greibach normal fog
sduction is of the form A — ao. where o€ Vi and a € S )
S - Aisin G if A € L{(G). When A € L(G), we s
les not appear on the R.H.S. of any production. For example; €
— aAB|A, A = BC, B — b, C — c is in GNE.

WwWw.mycsvtunotes.in




Greibach Normal Form(GNF)

The lemma is useful to eliminate A from the R.H.S. of A

mma 6.2 Let & = (V,, Z, P, §) be a context-free grammar,
A-productions be A — Aagy | ... Ao, [ ... |8, (J's do not sti

0 new variable. Let Gy = (Vyu {Z), . Py, 5),

ALY

|y

where P, 1s defined

wbob A-productions in P, are A — BBl ... |B
A= BZ|Bz| ... |Bz

W el of A-productions in P are Z - o lenl . .. | e

Z = oZlwZ ... |aZ

oductions for the other variabies are as in P. Then G, is a CFG
equivalent 1o G, .

A

C
7p]
(O]
)
(@]
C
>
L~
>
7]
(@]
>
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GNF

« l L’.l v

.' ”””"” '\ l'l ( | I . I\ d I A
. ' ( ' . L ! | /“ /l‘l‘ A/ .

in ONF we need nit

1 grammar has no null productions and 18

1. So we proceed to step 2.
are in the required form. They are Ay
ived form. Apply Lemma 6.1 1

- A:A:A\. A: — Gl

2 (i) A-productions
(i) A, — b is in the requ
resulting productions are A

yroductions are

As — AxAAL Ay = aAy. Ay = b
p 3 We have 10 apply Lemma 6.2 to Ax-productic
— AAA Let Zo he the new variable. The resulung p
As — aAy, A — b
Ay — aAZa. As — bZs

Z: - A'_\_A‘. Z: -3 A:A|Z:.
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GNF

ep 4 (i) The A--productions. are A, — aA | bl aA 25| by

(ii) Among the A,-productions W€ retain Ay — d
| = AaA; using Lemma 6.1. The resulting productions are Ay s
|bZ>As. The set of all (modified) A -production

A: \ b/\:‘ aA |Z:A:\ })Z)_A_\

1 —> (’A‘Z:f‘:

A, — alaA;
are Z» — A

MYcsvtu Notes

tep 5 The Z,-productions 10 be modified

Ne apply Lemma 6.1 and get
23 —) (IAlAl l b/\| la»‘l,Z:fh \ ,?Z-IA‘

Z: = (l/\‘A |Z:\ IJ'A‘Z: \ aA |23A ‘,Z_v \' I)Zg/\‘z_w

Hence the equivalent grammar 18
G = ‘«LAI A:. Z:}. {ll. b} P!. Al’

£
0
Q
i
o
c
=
=
S
7
O
)
S

where P, consists of
Ay — al
A, = aA, \b|aAZz\ b2,
7> —» aA Ayl PAy | @A ZaA1 | BZ2A
Zn —> aA‘AIZ;lbA,Z;\aA,Z;A.Z;\h

aA As | bA2| aAZaA | BZAA

/ _\A 12,




GNF

EXAMPLE 6.16

Convert the grammar

¢ 5 AB. A = BS|b. B = SA|a o

Solution Cstep | and pro

ar 1< in CNF, we can omi
nmar 1s 1n B

As the given grai
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‘ / sqpectively.
after renaming S, A, B as Ay, Ass As, TESPEC )
/\ |/\ W /\_s ’ A ;A‘ \h. .‘\; —) /\ |A"' | (.

. ) The Approduction A;p — AsA5 15 in the required form.
e A productions Ay = AsA | b are in the required form.
y » aasoan the required form.
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MO oAy AAL The resulting productions are A; — A>AzA.
lemma once again 10 Ay — A-A3A,. we get

."1 —> .’1:;/\|Av‘2 le}A:.

pproductions are Ay — a| bAzA, and Ay — AsA 4245, As we
WA AL we have to apply Lemma 6.2 to As-productions. Let
virable. The resulting productions are

Ay = a|bAA, Ay = aZ;| bAALZ,
ly = AAA, Zy = A|.43A:Z3




GNF

Ay-productions are
Ay & a | bA;A:l 023 l bA'f,A:Zz (69)

the A.-productions, we retain Ay — b and eliminate A, —
mu O.1. The resulting productions are

A, > aA | I bA ;A 3A | I(IZ;A | 1)A3A:Z3A |

| A productions are

Ay = blaA | | bAASA | | aZ-A | | BASASZAA, (6.10)
pply Lemma 0.1 to A; = A-A; to get

v DAL @A Ar | BPASASA A4 | aZ:A 1A+ | BASASZA As (6.11)

MYcsvtu Notes

2 productions to be modified are
Zy = AjAzA | A 1AASZ,
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e 6.1 and get

Zy = bAAA; | bASALZ,

Zy = A AA3A s | aA 1 AA5ALZ;

2y < bAAA | A3ALAS | BA1ASA | ASASASZ, (6.12)
2y = aZ;A 1 AAzAs | aZAA [ AsASASZS

2y r bAAZA AsA3A | BAALZAA 1A3A3AZ;




GNF

Find a grammar in GNF equivalent to the grammar
E = E%F T T TeE|EBi? (E)|a

Solution
Step 1 We first eliminate unit productions. Hence

Wo(E) = {(E). Wi(B) = {E} V (1T} = B
Wo(E) = (E, T} v (F} = {E. T. F}

So,
W(E) = |E, T, F)
So,
Wo(T) = (T}, wyT) = (T} v {F} = (T, Kl
Thus,
W(T) = {T. F}
Wo(F) = {F}, W, (F) = {F} = W(F)

The equivalent grammar without unit productions 18, therefor

%, P, S), where P, consists of
(i) E—> E + T|T*F|(E)|a
i) T — T+F|(E)|a, and
(iii) F = (B)|a

c
7
Q
S
o
c
S
=
>
0
o
>
S

MYcsvtu Notes




GNF

\resy o= .

We apply step 2 of reduction to CNF. We introduce new ¥
C corresponding to +, *.)- The modified productions are

(i) E > EAT|TBF|(EC|a
(ii) T — TBF|(EC|a
(iii) F — (EC|a
(iv)A—-)+,B——>s.C—->)
The variables A, B, C, F. T and E are renamed as Ay, Ay Aw
Then the productions become
Al — + Ay — %, Ay = ) Ay — (A(,Axlu
As = AsAA4| (AcAs|a
Ag = AdAAs|AsArAs|(AeAs|a

Step 2 We have to modify only the As- and Ag-productions. Ay
can be modified by using Lemma 6.2. The resulting productions

A5 —. (A6A3|a. A5 et (A(A325|c125
Zs — ArA4|AxALs
Ay — AsAAg can be modified by using Lemma 0.1, The

productions are
Ag = (AAAAg| aAsAs| (AeAZsAA | aZsA A4

A, — (AgA|a are in the proper form.
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Voo AgAs can be modified by using Lemma 6.2, The resulting
i pive all the Ag-productions:

A, » (AAA :/\4 I aA :A4 | (AA 3Z5A :A4

Ay = aZsA Ay | (AgAq | a (6.15)
Ap > (AA3AAZg | aArAZg | (AGA3ZsALALZ
/‘,, » (17,5/‘ 1A4Z(, l (:‘\(,A:;Z(, | (IZﬁ ((). l()) :

A, AAsIAASZ

—
-
-

Mlep s not necessary as A—productions for i = 5, 4, 3, 2, 1 are
form.

productions are Zs — A>A;|A.A4Zs. These can be modified

Zs — «Ay|+ AyZs (6.17)
lons are 7, — AAz|AAsZ, These can be modified as

Ze = + As |+ AsZg (6.18)
pramimar in GNF is given by (6.13)—(6.18).



Exercise

EXERCISES

b given that d .

mee of arb+a*
S|S« 8 8

6.1 Find 2 derivation
given by §—->85+

1(G), where G is
6.2 A context-free grammar

§ — 080|181 |A, A
be the language generatcd by the paramelers.

Descri
{ form of a grammit

63 A derivation tree of a sententia

Fig. 6.15.
X

Fig. 6.15 Derivation tree for Exercise 6.3

necessarily in Va?
be in X7

(a) What symbols are
rings are sentential

(b) What symbols are likely to
(c) Determine if the following st
(i1) X;X:X;XgX;X;. and (11i) X3X4X4X3.

6.4 Find (1) a leftmost derivation, (ii) a rightmost derivati
Jderivation which is neither leftmost nor rightmost §
given that abababa 15 0 L(G), where G 18 the gram

£
0
Q
i
o
c
=
=
>
7
O
)
S
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Exercise

Eonider the following productions:

S = aB | bA

A — aS|bAA | a
B — bS|aBB|b

string aacabbabbba, find

leftmost derivation,

fghtmost derivation, and

parse tree.

the grammar § — a|abSh | aAb. A — bS|aAAb is ambiguous.
| the grammar § — aB|ab, A — aAB|a, B — ABb|b is
K,

MYcsvtu Notes

that 1l we apply Theorem 6.4 first and then Theorem 6.3 to a
f (4, we may not get a reduced grammar.
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teduced grammar equivalent to the grammar § — ada, A —
» ab, C — aB.

[ the grammar § — AB, A - a, B - C|b, C —» D, D — E,
W, lind an equivalent grammar which is reduced and has no unit
Hons

that for getting an equivalent grammar in the most simplified
we have to eliminate unit productions first and then the
nt symbols.




Exercise

the following grammars to Chomsky normal form:

» 1A|0B, A —> 1AA|0S|0, B —>0BB|1S|1
» (|S), la, b, ¢}, {§ — a|b|cSS}, S)

» ubSh | a | aAb, A — bS | aAAb.

¥ the grammars given in Exercises 6.1, 6.2, 6.6, 6.7, 6.9, 6.10
wisky normal form.

¢ the following grammars to Greibach normal form:

4+ 55, S — 08101

¥ »AB, A—>BSB, A—> BB, B—>aAb, B—a, A—b
¥ + A0, A—->08B B—A) B—-1

¢ the grammars given in Exercises 6.1, 6.2, 6.6, 6.7, 6.9, 6.10
vibach normal form.

tuct the grammars in Chomsky normal form generating the
WwWing

[wen! | w e 0 {a. b}*},

he ser of all strings over {a, b} consisting of equal number of a’s
al bs,




Exercise

(c) (@"b" | m # M m. n
(d) (""" | m, n 2 1}.
Construct grammars in Greibach pormal form

in Exercise 6.16.

if we LG) and |w
(i1) Greibach normal
in the derivation of w?
guage

> 1}, and

penerui

s in (1) Chotms

| = k where U
ou say about &

form, what can ¥

(a" (n2 1} is not ¢

p Show that the lan
following

WWW,
.mycsvtunotes.in  MYcsvtu Notes

t-free lan i\

are not conte
c}

0 Show that the
(a) The set of all strings OVET {a, b

oCCurrences of a, b, € is the same.
(b) (a@"p"c" | m < n < 2m}.
(cy ld™" | n = m"}.
= ra “1lad r-‘ﬂh‘-r‘“o ‘



Relationship between Languages

UAGES AND THEIR RELATION

We discuss the relation between the classes of languages that we
’ rthe Chomsky classification.

o and 7 denote the family of type 0 languages, context-
S context-free languages and regular languages, respectively,
o the definition, it follows that Lo © £

MYcsvtu Notes

oty Lot & Lo

Wi & 7 The inclusion relation is not immediate as we allow
Modree grammars even when A = S, but not in context-sensitive
Mlow (nly § = A in context-sensitive grammars). In Chapter 6
A niest-ree grammar G with productions of the form A4 —s A
0 context-free grammar G, which has no productions of the
AP 5 5 A). Also, when Gy has § — A, § does not appear

hand sude of any production. So G, is context-sensitive. This

=
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S Lo @ Ly This follows from properties | and 2.

/'” G jl’ﬂ C, )’n,




Properties of Language(Operation on
language)

consider the effect of applying set operations on Lo Loty Letlt
md B be any wo sets of strings. The concatenation AB of A
ined by AB = wv |u € A vE B). (Here, uv is the concatenation |
pgs « and v.)

We define A' as A and A" as A"A for all n 2 1.
The transpose szt A™ of A is defined by

AT = (o' |u € A}

eorem 4.5 Fach of the classes Zg. oLeats Loy L is closed undef |

sof Let L, ard L, be two languages of the same type . We can’
eorem 4.1 (0 get grammars
Gl = ("".\, Z.. P|. S-,) and G: = (V',’\'. }:1. P:. S'_',

respectively. So any production in €y

type i generatng L and Ly
variables or A — a, where A

either @@ — J, where ¢, 3 contain only
€ .
We can further assume that Vi N V'y
e variables of V'y if they occur in Vn)
Define @ new grammar G, as follows:
G" - (V'N (& V",\-U {S}. }:| A E'\. Pu' S)

= (. (This is achieved by re

here § is a new symbol, i.e. S € Viy L vy
P,=P U Pru[S— 5.5 5

f=
0
Q
i
o
c
=
=
>
7
O
)
S
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Properties of Language(Operation on
language)

0

Q

et

©

Z

=]

o +

e Ll = Ly Ly as follows: If w e Ly Ly then S| = w or 5)
G, O

W Therelore, >
=

* N =owoor S 85 S wiewe G,
« G, o, G,

that L4G,) Ly W Ly, consider a derivation of w. The first step
8 8 or 5 =2 50 IS = 8, is the first step, in the subsequent steps
A Vo Vi # @, these steps should involve only the variables
Mhe productions we apply are in Py So § ::7 w. Similarly, if the
e 8. then S = S» 2w Thus, L(G,) = L; U Ly. Also, L(G,)
G, G.

L type 2 according s Ly and Ly are of type O or type 2. If A
A Ly then L(G) is of type 3 or type 1 according as L, and L.
N o type 1.

A ¢ Ly In this case, define

C
7p]
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)
(@]
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>
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>
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= (Vo ViU (8 55 Ul, P, 5

Ik 4 new symbol, iec. 8¢ Viy u V5 U {S), and (ii) P
¥ 485 558,55 83). So, L(G,) is of type 1 or type 3
Fy ond 1, are of type 1 or type 3. When A & L, the proof is




Properties of Language(Operation
on language)

Fach of the classes £, #.,. L g1 L4 18 closed under

0
Q
£y a1 be two languages of type i. Then, as in Theorem 4.5, we =
‘ » ' g - =3 - ’ 3
B X Pl S .mfi Ga = (V7 , X3, P;, S,) of the same type i. We >
thut Y | v 15 of tvpe I. >L'>
S new grammar G, as follows: =
. = ; S £
€ (s v ViU ‘b}- & I L.‘v Pcun- 5) 9
QO
. IS)
;A 5
>
3
Pin =Py I P S = 5:55) 3
/(fc“,“l I w = Winwas £ L|L1, then %

351 => w;y. Sy = wh

o G. .

> =2 5,5 = wyw,
('l ! <on =

I.|I.} L - l.‘(; )



Pumping Lemma for Context free
Language

(iily |vwx]| =

(iv) wwrty € L for all k= 0.

0

Q

=

©

=z

=)

=

>

7]

O

>_

=

R =

Theorem 6.10 (Pumping lemma for contexi-free Janguages) ‘an.;
context-free language. Then we can find a natural number 2 =
(i) Every z € L with | z| 2 n can be wnten 45 oy 1o =

W, v, Wi X W =

Gi) || 2 1. a

)

=

LR




Pumping Lemma for Context free
kanguace.

jemma we get a contradiction. 4 out by uSng the following W€

ocedure can be carne
Ll rfree. Let o be the

Step 1 Assu

using the pumping 5 2] 2 n Write = = uywxy Using §
+ e L SO that \Z :

Step 2 Choose 2

lemima. oy € L. This 1s d contrad

Step 3 Find a suitable k so that @
L 13 not context-free.

» . . ‘c
34 ) <t-free but contes
m.ud’]n > 1} is not context

natural number §

www.mycsvtunotes.in - MYcsvtu Notes




Decision Algorithm for Context Free
Language

don we give some decision algonthms for context-free languages and
L

Myorithm for deciding whether a context-free language L is empty.
We can apply the construction given in Theorem 6.3 for getting
Voo W Lis nonempty if and only if § € W
Alporithm for deciding whether a context-free language L is finite,
L onutruct o non-redundant context-free grammar G in CNF generating
I [A)]. We draw a directed graph whose vertices are variables in
A = BC s a production, there are directed edges from A 10 B
wd Ao €0 Lo finste of and only if the directed graph has no cycles.



Decision Algorithm for Context Free
Language

(iil) Algorithm for deciding whetaer a regular language I 1
Construct a deterministic finite astomaton M accepting L. We ¢
the set of all states reachable from the itial state g We
states which are reachable from g, by applying a single inpul
These states are arranged as o row under columns corres
every input symbol. The construction is repeated for o
appearing in an earlier row, The construction terminates
number of steps. If a final stae appedars in this tubular ¢
L is nonempty. (Actually, we can terminate the constructi
as some final state is obtained in the tabular column.)
1S empty. _

(iv) Algorithm for deciding whether a regular language &
Construct a deterministic finitz automaton M accepting L
if and only if M has a cycle, '

MYcsvtu Notes
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PDA

y'mDOIS I FAAS: A ZEwWsw 37— T
We now give a formal definition O

~ s -

f a pushdown auto

Finite store r4 Storing
control diraction 8
o
=z
2
>
)
(]
>_
=

Pushdown store

Fig. 7.1 Model of a pushdown automaton

Definition 7.1 A pushdown automaton consists of
(i) a finite norempty set of states denoted by ©.
(i) a finite norempty set of input symbols denoted by X,
(iii) a finite noremply set of pushdown symbols denoted by
(iv) a special s@ate called the initial state denoted by o
(v) a special pashdown symbol called the initial symbol on
store dencted by Zg,
(vi) a set of final states.
(vil) @ transinom function
subsets of @ X I'*®
Symbolically. a pda is a 7-tuple, namely (Q, . 8 qo &

Note: When 84, a. £) = @ for (9. a,. Z) € Q% (T v [A)) = !’.‘.

mention it
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4 subset of Q denoted by F. and
S from Q x (£ w {A}) X I w the




PDA
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Let

A=(0. 5T & a Z F)

where

0O = lqo. @ W)+ ¥ = {a, b}. I' = la. Zl. Fw

C
7p]
(O]
=
(@]
C
>
=
>
7]
(@]
>
£




s given by

Oy, . Zy) = {(qo. aZy)), 8(¢gy. b, a) = (e, A))
M @, a)= ((qp, aa))l, Slgy. A, Zy) = {(q1. A}
i b, a)= (g, A))

ol the form (§', @), where ¢ & Q. @ e I'* oq, a, Z) may
Ml

¥ e the pda is in some state ¢ and the PDS has some symbaols
Wl reads an imput symbol a and the topmost symbol Z in PDS.
on tuncuon O, the pda makes a transition to a state q  and
# alter removing Z. The elements in PDS which were below
ol disturbed. Here (g7, @) 1s one of the elements of the finite
When « = A, the wopmost symbol, Z, is erased.

haviour of a pda is nondeterministic as the transition is given
ol Mg, a, Z).

s defined on QO x (X U [{A)) x T, the pda may make transition
B oy input symbol (when 8(q. A, Z) is defined as a nonempty
& and Z & T). Such transitions are called A-moves.

Isla cannot take a transition when PDS is empty (We can apply

the pls reads an input symbol and the topmaost pushdown symbol
Wis case the pda halts.,

We wnile o = Z,7; ... Z,, in PDS, Z, is the topmost element,
£ e and Z,, is below Z

1) m—1-

L My, a, Z) is a finite subset of Q x I'" The elements of

MYcsvtu Notes
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C
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>
7]
(@]
>
£




PDA

02 letA=(Q X T, 6 gy Z. F) bea pda. An instantaneous
() s (g, &, @), where g€ Q. x e S*and e '+
W, g, may ... a, ZiZ> .., Z.) is an ID. This describes the
Wvurrent state 18 g, the imput string to be processed is aya .. .a,
W process iyay .. .oa, i that order. The PDS has Z,. Rty ere ba Zm

the top. Z, is the second elerent from the top, ctc. and Z, is the
Wit in PDS,

2 An initial 1D is (g, 4, Zo). This means that imitially the pda

Wil state gy, the input string to be processed is x. and the PDS has
bl namely Z,.



PDA

PTANCE BY pda

il

wies Ilkc u n«
mdeterminist
Rture. naume Isic fini
namely PDS. So we can defi:'lcc e e
acce

e "' ".‘u' =
states or in
terms of PDS

; also the
ptance of input strings

"v“ ' (‘. \
) o — (Q" z. r
Bonl stite is defined b).- S. qo. Zy. F) be a pda. The set ac
s Cepted

® L% w. Z
A . .") '-°_. (qf’ A. a) f
or some
q.’ = F a-nd & = r*

The next definiton describes the socond type OT auvEprm
F.&aﬂ-zo.l-')bcnpda.

Definition 7.7 et A = (Q, By

accepted by null store (or empty store) 1S defined by
N(A) = {w € T*|(gg. W- Zy) +— ‘4 A. A) for some §

in mitial 1D (Go. W, Z0)

So in definin

Tow i

WWWw.mycsvtunotes.in

r words, w 18 1D N(A) if A s
essing all the symbols of w.
brought about on PDS by applicanon o

In othe
the PDS after proc
consider the change
transition of states



PDA and CFG

'3 PUSHDOWN AUTOMATA AND CONTEXT:
LANGUAGES

n this section we prove that the sets accepted by pda (by null
tate) are precisely the context-free languages.

If L is a context-free language, then we can ¢t
= N(A)

Fheorem 7.3
4 accepting L by empty Stoee, 1.6 L

0
Q
')
o
Z
S
=
>
0
O
>_
=
£
7
Q
S
o
c
S
=
>
0
o
)
=




PDA and CFG
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We construct A by making use of productions in 6.

(L omstruction of Ay Let L = I(G), where G = (Vi . P, S) is a
grammar. We construct a pda A as

A=(ghZ VyUZ §g 5 ®
telined by the following rules:

Ry Mg A A) = l{g. @ |A = ais in P)

C
7p]
(O]
)
(@]
C
>
L~
>
7]
(@]
>
£

Ry 8(q, a. a) = ((g. A)) for every a in T




Example
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I A cquivalent to the following context-free grammar. § —
S| 1510, Test whether 010* is in N(A).

A s follows

\ = (lgh {0, 1}, (S, B, 0. 1}, &, ¢, 5, B)
by the following rules:

My, A S = (4. 0BBY)

=
%
(&)
)
o
(=
2
>
()
(@)
>
£

o A B = (g, 05). (q. 05). (q, 0)}
Mg, 0, 0 = {(qg. A)}
Mg, LD = [(g. A))




Cont.

(g, 010% 5)
— (g olo®, OBB) by Rule R

— (4. 3¢, BB) by Rule Ri g
— (g. 10, 1SB) by Rule R» since (g, 15) 8 :
— (4. (*, SB) by Rule Ry ;8.
— (4. 0. OBBB) by Rule R, -
\— (g. 0", BBB) by Rule Ry :
i 0, 000) by Rule R- since (¢, 0) g
1= (g A A) by Rule R; %
[hus.
010* = N(A)



PDA to CFG

Theorem 7.4 If A = (0O, X, I, 8. gy, Zy F) 15 & pelis, then |
context-free grammar G such that LUG) = N(A)

Proof We first give the construction of G and then prove th
Step 1 (Construction of G). We define G = (V. X P, S
Vi = {5) w {lg. 4. gllg. @ € @, Z € )

i.e. any element of Vy is either the new symbol § acting as
for G or an ordered riple whose first and third elements Wi
second element is a pushdown symbol.

The productions in P are induced by moves of pda as fol

MYcsvtu Notes

R,: S-productions are given by 5 — [qo. Zo. gl tor every

R~: Each move emsing a pushdown symbol given by (¢,
induces the production [¢, Z. ¢'] — a.

R+: Each move not erasing a pushdown symbol given by {
e 8(qg. a. Z) induces many productions of the larm

Www.mycsvtunotes.in

lg- Z, q'| = alqy. Zi- gl 2o qa) - - [dne G

where cach of the states ¢, §a, - -« §,, can be any state in € I
many productions because of Ri. We apply this constructiion
before proving that L{G) = N(A)



Example

EXAMPLE 7.8

Construct a cootext-free grammar G which accepts NA), whe
A = (g0 91 ). e b}, {74, Z1, 0. i L 0

and & is givam by

MYcsvtu Notes

St b Zo) = L(ge Z2))

Mgy N Zo) = o M)
Mgo. b. Z) = gy ZZ))
Mge, a, Z)y= g D}
Mai, b. L) = (g, A}
g, a. Zy)= qgw Zo))

c
0
Q
2
o
c
=
=
>
7
O
P
S

Solution

[el
G = (Vs la. B}, P.Y)




Cont.

"Q s ot S lgae Zoe qol lgoe 2o gl oo Z. qub lan Z. g
‘ "’l '/’.' ',ll' l'll /' ‘.I”l' l‘!l' Z' ‘,ll
WAt ons ure

Py = Ifln' Lo ‘Iu'
Py § = lgs Zen q)
Wgu 27201 yields

N

Py logw 2oy qu) — bl qollau. Zow 4ol

i kg Zo. 40l
qollgs. Zas a1
q\1lgy. Z. N

N

I.l- l‘fu- zu- ‘lnl I ,’I(Iﬂo
P
'.h: l‘f(l- Zw "Ill vy ”(fln.

[0, %y @] — blgy,

~

NN

W A)) mives
Py \qu, Zo, ol = A



Cont.

Wi Z7)) gives
st e 2. qol = Bigo, Z, qollqe. Z. ol
Mo Ndoe Zs qol = blge. Z. qillgy. Z. qul
Pt Ao Zo il = blas. Z. qollge. Z. 4]
Mo lgo 2o i) = blay, Z. qllqy, 2, g4l

MYcsvtu Notes

My, )] yields
P lao Z, gol — algy, Z. qq)
Pis: lan Z, q] = algy. Z, ¢4l
® g, A gives

P lg. Z, q4] = b

C
7p]
(O]
)
(@]
C
>
L~
>
7]
(@]
>
£

® i, Za)) gives

,.;., llfl. Z”. ([”l - ul‘lﬂ' Zﬂ' qn'

P g 2o i — “l‘/(h 2o, "Ill

e the productions in P.




Example

s | m, n 2 1) by null store.

Construct a pda acceping |a
corresponding context-free grammart acceping the same el
Solution

1z 1} i defined as ToHowss

The pda A accepting (""" | m. 1

A = (g0 g} (a, O, o Zy B

b‘. {(J. ZU"

MYcsvtu Notes

where & is defined by
R|: 5((]0. (. 0= “_(l‘s. (l[{\”

Ry Olgo @ @'= o, aa))

Ry Olgy b @) = (g @)

R.: Olqy. b.oay= Wa, @l

Rs: Olqy- @ €)= gy M)

Re: 8(gy. N 2= {(g;. M}

£
7p]
(O]
=
(@]
C
>
=
>
7]
(@]
>
£

given in Exampte 7.2
| a b occurs (Rules R, and K3 When
but no change i PDS e
qre exhausted (USIR R
Zo 15 erased, S,

AA)

This is a modification of 0

We start storing d@'s unt
b. the state changes,
‘s in the inpul String
d (Rule R} Using Ry,

Zo) V= Gy A Zo) i

mput symbol 15

Once all the b
remaining @'s are Crase
(g0 a'h"a,

e NiA), We can show that

(his means thal a'va”

mom | .
im, n 2 1)

N(A) = {u"!- il



Cont.

G o (Vo lao b), 2o 8), where Vy consists ol

Lo Zoo ok tan Zoo qub. Lo @ qol. 1gn @ ol

W Lo gls gy Zoo ) laoe @l Ly @ i

w1 are constructed as follows:

LOns are

IS o lge Zoe ol Pi: 8 = lqo. Zo: il

Wt 17)) mduces
'y o 2o ol — alygg. a. qollgn Zg )
Py Lo Lo gol = alqy. o rnllq.. o ‘Inl
Py e Zon thi— algg, a. ‘!n"(h»- Zy ]
P lao 2 g0l = alay a, qillgy. Zo |

C
7p]
(O]
=
(@]
C
>
=
>
7]
(@]
>
£
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"1,-

» Ly

Por lage @ g1l — algo,

Ly, )| vields
P,
I,

l(h‘,, o, l].'|‘ —y “l‘,(!* o, f[q"q._'.

t. 114y

~

0. @, qol = algs.

-~

. <Ir_v“ e

P lagne @ g1 ] = algg. a, ai1llq.

i )| gaves

1.

.-
-

Py Lo 42, flnl — I’[‘ll-

Piat Lo ac qal = Olay 4,

‘“,. o”l \lk‘lllh

P gy, @ qol = blgy a:
P lge a. qy) = bla, a.
\)} ouives
P gy, a qu) = a
A} oyields
P 141 Zov 1] — A

.,

i

-

1,

"~

‘?h]
)

l{u‘
g1l

. 4ol

qol
vl
)

c
0
Q
i
o
c
=
=
>
7
O
)
S
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Exercise

SELF-TEST

Choose the correct answer Lo Questions 1-6.
1. If 8(g. ay. Z;) contans (g’ B). then

(@) (g, ayas Z722) — (g, ax BZ-)

(b) (q, axdz Z|Z/3) l-—’ (q'. o, ﬂZ:]

(¢) (g, ayas Z3) \— (q' a. Z)

(d) (q. ayiy, Z\Zﬂ }-" ‘q‘. . ZlZ:)
2. In a deterministic pda, | 6(q. 2| is

(a) equal to 1

(b) less than or equal o 1

(¢c) greater than |
(d) greater than or equal to 1

3. In o deterministic pda:

(a) 8lg, a. ) = P = g MD# [}
by 8q. a. D) # 9 = Sg. A D=0
©) 8g. A DH# 0= &g a.Zy # 0
(@) 8ig. A, D# 8= Xg. a. 2) = (U

4. {d'V'|nz1) 18 accepted hy a pda
final state.

(a) by null store and also by
(b) by null store but not by final state.
(¢) by final state but not by null store.

(d) by none of these.
5. {a""|n 2 1] 18 accepted by
(a) a fimte automaton
(h) a nondeterministic finite autor

{¢) a pda

(d) none ol these.

naton

£
7p]
(O]
=
(@]
C
>
=
>
7]
(@]
>
£
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Cont.

piet 0 pda accepting by empty store each of the following
LT

" " im. n 2 1)

W' | no2 1)

M\ meon 2 1)

{"\m>nzl)

et o pda accepting by final state cach of the languages given in
"o Fe

et o context-free grammar generatng cach ol the following
wges, and hence a pda acezpung each of them by empty store
[ (n 2 1} a" " m 2 1)

W' lm,on 2 1} U {a""|n 2 1)

W' \m, n 2 1)

Lo« "W < m). Construct (i) a context-free grammar accepting
(1 ou pda accepting L by empty store, and (1) a pda accepting L
fal stato.
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Cont.

SOIVINE EXCIVISG 7.
2 Show that (aB"|n 2 1} W 1 s
deterministic pda.

1} cannot be

(%)
(&)
Joi
(@]
zZ
=)
2
>
()
(&)
>_
=
=
=
(O]
ol
(@]
(=
>
2
>
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>
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