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Unit-|
Theory of Automata

Introduction to automata theory, Examples of automata machine, Finite automata as a
language  acceptor and translator. Deterministic finite automata. Non deterministic finite
automata, finite automata with output (Mealy Machine. Moore machine). Finite automata
with 7 moves, Conversion of NFA to DFA by Arden’s method, Minimizing number of

states of a DFA. My hill Nerode theorem, Properties and limitation of FSM. Two way finite
automata. Application of finite automata.
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Introduction to Automata Theory

DEFINITION OF AN AUTOMATON

e shall give the most general definition of an automaton and later modify it to
puter applications.(An automaton is defined as a system where energy, materials .
d information are transformeg. transmitted and used for performing some functions
ithout direct participation of man, Examples are automatc machine 10ols, automatic
king machines, and automatic photo printing machines,
Wc the term ‘automator’ means “discrete automaton” and is

fined in a more abstract way as shown in Fig. 2.1.

.___50‘

Automaton

Q1’QZ'°'qn F____,)oq

Fig. 2.1 Model of a discrete automaton.
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Introduction to Automata Theory

lls characteristics are now described.

7

(i) Inpus. At cach of the discrete instants of time ¢y, f ..., input values
PO ST each of which can take a finite number of fixed values from the input

Iphabet X, are applied to the input side of model shown in Fig, 2.1

(is) Omput Oy, 03, ..., O, are the outputs of the maodel, each of which can

) States. At any instant of umc the automaton can be in o_ne Ot the states
. qo' Ada! qﬂ'

(V) State relation. The next state of an automaton at any instant of ume 1s
mined by the present state and the present inpul.

¥) OQuipw: relation.  Output is related to either state only or to both the input
Ahe state. It should be noted that at any instant of time the automaton is in
glate. On ‘reading’ an input symbol, the automaton moves 0 a next state
h 1% given by the state relation.

An automaton in which the output depends only on the input is called an
ton without a memoryyAn automaton in which the ¢ output dcpends on the
also is calied automaton with a finite memquAn autematon in which the
pends only on the states of the machine is called a W@}n
aton in which the output depends on the. state. and the input at any instant ~
4 Oh unlc.d a Meal)’ machm__) MYcsvtu Notes  ww.mycsvturmetes.in :



Introduction to Automata Theory

/ Minition 2.1 Analytically, a finite automaton can be represented by a S-tuple
' z' 8’ qO. F"). thrc

V(SQ is a finite nonempty set ¢f states;

(i1) X is a finite nonempty set of inputs called input alphabet;

Aiii) &is a function which maps O x T into Q and is usually called direct
nsition function, This is the funcuon which describes the change of states
ring the transition. This mapping is usually represented by a transition table
a transition diagram.

_(iv) go € Q is the iniual state; and
(v) F < O is the set of final states. It is assumed here that there may be
bre than one final state.

TE: The transition function which maps Q x £* into Q (i.e. maps a state and
tring of input symbols including the empty string into a state) is called indirect
jnsition function. We shall use the same symbol & to represent both types of
nsition functions and the difference can be easily identified by nature of mapping
mbol or a string), i.e. by the argument. & is also called the next state function.
¢ above model can be represented graphically by Fig. 2.4,
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Introduction to Automata Theory

v ¥

String being processed

¢ $

> Reading head
0 €2

(};‘/‘;Finite
~ control

——————

Fig. 2.4 Block diagram of a finite automaton,

b explained as follows:

L
Input
tape

Figure 2.4 is the block diagram for a finite automaton. The various components



Y

Initroduction to Automata Theory

A (1) Input tape. (The input tape is divided into squares, cach square containing
single symbol Trom the input alphabel £.The end squares of the tape contain
‘markers ¢ at the left end and $ at the right end. Absence of end-markers
Jies that the tape is of infinite length. The left-to-right sequence of symbols
een the end-markers is the input string to be processed.

Reading head. The head examines only one square at a time and can
¢ one square either (o the Jeft or 1o the right. For further analysis, we restrict
ovement of R-head only to the right side. .

Finite control. The input to the finite control will be usually: symbol
he R-ficad, say a, or the present state of the machine, say g, o give the
Wing outputs: (a) A motion of R-head along the tape to the next square (In
# null move, i.e. R-head remaining to the same square is permitted); (b) the
Mate of the finite state machine given by 8(g, a).
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- Transition System

Nsition graph or a transition system is a finite directed labelled graph in
each vertex (or node) represents a state and the directed edges indicate the

llon of a state and the edges are labelled with input/output.

Iy pical transition system is shown in Fig, 2.5. In the figure, the initial state

ented by a circle with an arrow pointing towards if, the final state by two

070 1/0 171
i

O

0/0
Fig. 2.5 A _transition system.

I¢ circles, and the other states are represented by just a circle. The edges
lled by input/output (e.g. by 1/0 or 1/1). For example, if the system is in
@o and the input 1 is applied, the system moves 1o state ¢, as there is a
wd edge from g4 to gy with label 1/0. It outputs 0.
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Property of Transition Function

~jperty 1 (g, A) = ¢ in a finite automaton. This means the state of the
. lem can be changed only by an input symbol.

jperty 2 For all strings w and input symbols a,
8(g, aw) = 6(8 (g, @), w)
6(q, wa) = 6(6(gq, w), a)

s property gives the state after the automaton consumes or reads the first
ibol of a string aw and the state after the automaton consumes a prefix of the

hg wa.
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Acceptability of String by FA

finition 2.4 A string x is accepted by a finite automaton M = (Q.%,0 g0, F)

:m:. ) = ¢ for some ¢ € F. This is basically the acceptability of a string by the
slate, '
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Inputs
States 0. 1
—@ 22 @
g1 q3 do’
q2 do q3
g3 g1 a2
LUTION
17 d
5(qo, 110101) = 8((7;.}01.()1)
-
0
= 6(Q3v Ql)
ad
= 6(ql' l)
= 5(‘]0- A) e qO
2nce,

Go > @1 > o ~> g2 > g3 > g1 qo
e symbol 1 indicates the current input symbol bezing processed by the machine.
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Types of Automata

Two Types
| . Automata without output
|. DFA (Deterministic Finite Automata)
ll. NFA(Nondeterministic Finite Automata)
a. NFA without €(or A )
b. NFA with €(or A)
2.Automata with output
|. Mealy Machine
ll. Moore Machine



DFA

> 1 |iinitenaid Analytically, a finite automaton can be represented by a S-tuple
: ' 2' 5g 40. F). Whm -

V({Q i a finite nonempty set of states;
|~(ii) Z is a finitc nonempty set of inputs called input alphabet;
Aiii) d'is a function which maps 0 x E jnto @ and is usually called direct
nsition function, This is the function which describes the change of states
Jring the transition. This mapping is usually represented by a transition table
a transition diagram,
_Aiv) go € Q is the initial state; and

_(v) FgQ is the set of final states. It is assumed here that there may be
bre than one final state,
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- NFA(NFA without € )

Wtion 2.5 A nondeterministic finite automaton (NDFA) is a 5-tuple (0, £,
! —_—-—N

1) @ is a finite nonempty set of states:

) %15 a finite;nonempty set of inputs:

) 0is the transition function mapping from @ x £ into 22 which is the
power set of Q, the set of all subsets of 0;

: V) g€ Q is‘the initial state; and

f’ C ( is the set of final states,
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NFA(NFA without € )

D . —

Fig. 2.8  Transition system for a nondeterministic automaton.

PV — 4y

A S ——

W sequence of states for the

e input string 0100 is given in Fig. 2.9.
¢,

_0(go, 0100) = (g0, g3, 95 4

I 4 18 an accepting state, the in
Ileterministic automaton.

put string 0100 will be accepted by the
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o Acgceptability in NFA

tion 2.6 A string we I* ic aor | |
mﬂmA g € £ i cceped by NDFA M i § g, ) coti
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Acceptability in NFA

K \ \ \

0

q4
Fig. 2.9 States reached while processing 0100.

wccepted by M if a final state is one among the possible states M can reach
application of w.

an automaton M (deterministic or nondeter-

finition 2.7 The setaccepted by
is denoted by T(M).

nistic) is the set of all input strings accepted by M. It
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Equivalence of DFA and NFA

' THE EQUIVALENCE OF DFA AND NDFA

v——

™ NG / e
g [ naturally try to find the relation between DFA and NDFA. Intuitively we
~w feel that:

< (i) A DFA can simulate the behaviour of NDFA by increasing the number.

states. (In In other words, a DFA (Q, X, &, go, F) can be viewed as an NDFA
), £, &, go, F) by defining 5'(g, @) = (89, a)).).
k/(n) Any NDFA is a more gcneral machine without bcmg more powcrfuL

'e now give a thcorem oOn equivalence of DFA and NDFA.

heorem 2.1 For every NDFA, there exists a DFA which simulates the behaviour
" NDFA. Alternatively, if L is the set accepted by NDFA, then there exists a

FA which also accepts L.
00F LetM=(0, %, 8, qo, F) be an NDFA accepting L. We construct a DFA
{’ as follows:

M’'=(Q" % 6.90F)

vhere
(i) Q' =22 (any state in Q" is dcnoted by [41, ¢z --- 41, Where gy, g2 ..

g; € Q)

(i) 4% = [qol;

(iii) F’ is the set of all subsets of Q conlaining an element of F.
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Equivalence of DFA and NFA

P v 8 (1qy, @20 - @), @) = 8 (g1.a@) v (g2, @V ... V(g a)

wlently, 8°(lq1, g2 --- ), @) = [py ... pj] if and only if
5({q1, - @i}, @ = {(p1y P22 -0 P)
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Exéample

Table 2.2 State Table for Example 2.6

State/Z 0 1
'—’ qo0 q1
31 q do. 91

YAMPLE 2.6 Construct a deterministic automaton equivalent to M = ({qgo, g1},
D, 1), 8. go. [go)). 8 is given by its state table (Table 2.2).

OLUTION For the deterministic automaton M,

(i) the states are subsets of {gp. 1}, i-e. B, [ga), [0, @1], [g1):
(i1) [go] is the initial state;
(iii) lgo) and [qo, ¢1] are the final siates as these are the only states containing
Qo and
(iv) & is defined by the state table given by Table 2.3.

Table 2.3 State Table of M,

States/Z 0 1
(%] (%) (%]
[g0] [0l [g1]
[q1] (g1] (g0, 91l
[q0, 41l (g0, 41] [go. 1]

70 and g, appear in the rows corresponding 1o go and gy and the column corresponding
O 0. SO. 6([q0$ ql]v 0) = [qﬂl QI]-
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MPLE 2.7 Find a deterministic acceptor equivalent 1o

M = ({Q()' q1 q2)l [av b}- 6- 40-{421)
von in Table 2.4.

Table 2.4 State Table for Example 2.7

States/E a b
- qo- Go. 4 gz
91 qu q

qo. G

The deterministic automaton M, equivalent o M is defined as follows:
My = 2% (a, b). 8, (qul, )

F = {lq2], [g0. g2). (91, 42}, 190, g1, G21)

A the construction by considering [go] first. We get [g32] and |go, g;). Then
¢t 8 for [g2] and (g, q1). [91. 2] is a new state appearing under input
. Alter constructing & for [g,, ¢2], we do not get any new states and so
inate the construction of 8. The state table is given in Table 2.5,

Table 2.5 State Table of M,

States/X a b
(9ol [go. q1] [q2]
[q2] @ (g0, 1]

(40, q1] [qo. q1] g1, q2]

(41, g2] (90l (90, 411
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LE 2.8 Construct a deterministic finite automaton equivalent to
1 42 @v), 10, 1), 8, qo, [g3)). & is given in Tatle 2.6.

Table 2.6 State Table for Example 2.8

States/Z a b
- qo Gos ) qo
q q; G
2 q3 d3

72

ON Let Q = [qo. @1s 92, ¢3). Then the deterministic automaton
uivalent 1o M is given by M = (2%, (a, b, 8, [qq). ), where F consists
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" Solution

Gsl. (g0, q3)s [91, 93), (92 93): [90r @1 93l 1900 G2 1. (91, 92 93l and
g1, 42 qa)- O is given in Table 2.7.

Table 2.7 State Table of M,

Stales/% a b
' [40)
[40] (g0, g1l
(90, 1] (g0, 91+ 92) (90, 41] ]
(90, 41, 92 (90, 91, 92+ 93] g0, 91 q::]
[00v q1 qS] {QOo qlv qZ] [Qp- q1s q ]
(g0, 91» 92: 93) (90, 91+ 92+ 93] (g0, 91+ 92+ 93
'
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Finite Automata with Output

finite automata which we considered in the earlier sections have binary output,

. they accept the string or do not accept the string. This acceptability was

ided on the basis of reachability of the final state by the initial state. Now, we

knove this restriction and consider the model where the outpuls can be chosen

m some other alphabet. The value of the output function Z(¢) in the most general
se is a function of the present state g(t) and the present input x(1), 1.e.

Z(t) = Alg(r), x(1))

here 4 is called the output function. This generalised model is usually called
ealy machine. 1f the outpul function Z(1) depends only on the present state and
independent of the current input, the outpul function may be wrillen as

Z(t) = Mg®)

is restricted model is called Moore machine. It is more convenient (O use Moore |
achine in automata theory. We now give the most general definitions of these

achines.
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oore Machine

Definition 2.8 The Moore machine is a _sij:ggp_le__gg, z 4 @_ A, qi). where

Ay Q is a finite set of states;
(ii) £ is the input alphabet;
(iii) A'is the output al : :

(iv) & is the transition _funcuonLE xQ,_m.LELQ;.. d
(v) A-is the output function mapping Q intc 4; anc_

(vi) go is the initial state.

>
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ealy Machine

g
a
a
|
g
a
u
/ M
/
/
f
|
|
\
A
\
a
a

Definition 2.9 A Mealy machine is a six-tuple (0, £, 4, B, A, go), where all

symbols except 4 have the same meaning as in the Moore machine. 4 is the ou
fnncnqn mapping £ x Q into A, i 0 AT T
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Example
Mealy Machine

S, Table 2.10 Mealy Machine of Example 2.9

Next state
Present input @ = 0 input a = 1
state sl output state  outpul
- 4 (e 0 (@2) g
. q2 ¢ 11. 34_ 3
4 D 1 Ofy .5
7 94 qa. L q3 0
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" Example
ore Machine

Table 2.13  Moore Machine of Example 2.9

Present state Next state Output

a=10 a=.1.

—» qo 43 G20 0
4 s d20 =17
q20 1 qs0 0
421 g a0 1
K G214 q1 0
qa0 qa1 7 0
Gay' Ga1 43 1
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Procedure for Transforming Moore
machine to Mealy machine

ily the acceptability of input string by a Moore machine by neglecting
sise of the Moore machine to input A. We thus define that Mealy Machine
Moore Machine M are equivalent if for all input strings w, bZy(w) = Zyw),

s the output of Moore machine for its initial state. We give the following
Lot My = (0, £, A, 8, A, qo) be a Moore machine. Then the following

ure may be adopted to construct an equivalent Mealy machine M.

"oy K

ruction

) We have to define the output function A’ for Mealy machine as a function
sent state and input symbol. We define A’ by

A'(q, a) = Mb(q, @)) for all states ¢ and inpul symbols a.

) the transition function is the same as that of the given Moore machine:
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Table 2.14 Moore Machine of Example 2.10

Present state Next state Output
a=10 a=1
= o @l 0
1) d 42 -1
2 42 43 0
qs qs qo 0

MYcsvtu Notes  www.mycsvtunotes.in



e |
-

Vs

" Mealy Machine

Table 2.15 Mealy Machine of Example 2.10

Next state
Present a=0 a=1
state statc  output state output
- qo g3 0 q1 1
1 q 1 42 0
q2 q2 0 qs 0
43 43 0 o 0
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Moore machine to Mealy Machine

Table 2.16 Moore Machine of Example 2.11

L 3

Present state Next state Output
a=0 a=1
- ) @ 92 0
a2 G 43 ¥
g3 g qs 1
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' Mealy Machine

Table 2.17 Transition Table of Example 2.11

Next state
Present a=10 a=1
state state output state output
-4 9 0 9 0
U ¢ 0 g3 1
- Q1 0 93 1

* Table 2.18 Mealy Machine of Example 2.11

Next state
Present a=10 a=1
state state output state output
“r d1 0 q2 0
P G 0 42 1
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Moore to Mealy machine
conversion-Example

EXAMPLE 2.11 Consider the Moore machine described by the transition table
given in Table 2.16. Construct the corresponding Mealy machine.

M) ) ven Table 2.16 Moore Machine of Example 2.11
Present state Next state Output
a=0 =1
- Q1 T 9 0
9 4 UES 4
43 q 93 !

SOLUTION We construct the transition table in Table 2.17 by associating the

output with the transitions.
In Table 2.17 the rows corresponding to g, and ¢4 are identical. So, we can.

delete one of the two states, i.e., g2 OF ¢s. Weé deiete gy Table 2,18 gives the
S — % o cmamn ——
reconstructed table. - >
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Moore to Mealy machine
conversion-Example

Table 2.17 Transition Table of Example 2.11

Next state
Present a=10 g="1
state state output state output
> ¢ ¢ 0 42 0
42 4 0 q 1
0 qi 0 93 1

Table 2.18 Mealy Machine of Example 2.11

Next state
Present a=0 a=1
state state output stale output
* q) q1 0 q2 0
G2 01 0 92 1

2.17. we have deleted gy-row and replaced g3 by gz in the other rows.
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Mealy to Moore Example

2.12 Consider a Mealy machine represented by Fig. 2.10. Construct
machine equivalent to this Mealy machine.

0/2
q, ‘ 8 @. 0/Z,

1724 0/Z4

1724

1722
Fig. 2.10 Mealy machine of Example 2.12.

UI1ON  Let us convert the transition diagram into the transition Table 2.19.
e given problem: ¢, i not associated With any ouiput. g is associated with.
iferent outputs Z, and Zy; gs is associated with two different outputs Z,
2, Thus we must split g3 into g1 and gz, with outputs Z, and 23, respectively
@y 1o gy and gy with outputs Z, and Z;, respectively. Table 2.19 may be
structed as Table 2,20,
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Mealy to Moore Example

~

"‘/' hoe ~
Table 2.19 Transition Table for Example 2.12

Next state
Present a=0 a=1
state state  output state  output
- ¢ /53 Z 9 Z,
@2 42 Z3 43 Z
43 92 2 4 Z,

Table 2.20 Transition Table of Moore Machine

Present state Next state Output

a=0 ar=

- 41 q21 dn .
421 dx g3 Z
422 G2 g3 Z;
g g2 43 Z,
932 42 93 Z

Figure 2.11 gives the transition diagram of the required Moore machine,
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Mealy to Moore Example

) SRy SRy,

0

Fig. 2.11 Moore machine of Example 2.12.
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- Minimization of Automata

MONSTRUCTION OF MINIMUM AUTOMATON

(Construction of 7). By definition of O-equivalence, 7, = (0, 03), where
w0t of all final states and QF = Q - Q).

(Construction of m,, from m). Let O be any subset in . If gy and
I Q' they are (k + 1)-equivalent provided 8(gy, a) and 8(gs, a) are k-
1, Find out whether 8(g,, @) and (g, a) are in the same equivalence

My for every a € L. 1f s0, ¢ and gp are (k + 1)-equivalent. In this way,
further divided into (k + 1)-equivalence classes. Repeat this for every QF
) ot all the clements of .

L Construct 7, forn =1, 2, ... until 7, = Zup.

(Construction of minimum automaton), For the required minimum state
slon, the states are the equivalence classes obtained in step 3, 1.¢. the

elements of ,. The state table is obtained by replacing a state g by the corresponding
equivalence class [¢]. xi
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Example — FA minimization

EXAMPLE 2.13 Construct a mini-ium state automaton equivalent to the finite
automaton given in Fig. 2.12.

(@) g o
o

1 @ !

Fig. 2.12 FA of Example 2.13.
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Example — FA minimization

: Table 2.21  Transition Table for Example 2.13

Stute/Z 0 1

* 4o G ds
el qs qs
@ : o 42
q 92 ds
{4 Q‘? qs.
qs q2 ds
do : do G4
4 96 q92

sep 1, we get
Q=F={g) 0=0-0f

7o = {{q2}, {90, 91+ @30 Q4s G5 G6» 47))

MYcsvtu Notes  www.mycsvtunotes.in



-

Example — FA minimization

cannot be further partitioned. So, Q7 = (gz}. Consider gy and ¢; € OF.
under O-column corresponding 0 gg and g, are q, and gg: Lhey
" The entries under 1-column are gs and g,. 92 € QP and g5 € 0F.
. 4o and g, are not l-equivalent. Similarly, go is not 1-equivalent to

' "idcr qo and g4. The entries under O-column are g, and g;. Both are
sntnes under 1-column are gs, gs. So g4 and gg are 1-equivalent. Similarly,
ivalent 10 g¢. (o, 94, g6} is a subset in &, So, 0% = {qo, 94, gs)-
the construction by considering ¢, and any one of the states ga, gs, g7.
1 wquivalent to g3 or gs but 1-equivalent to ¢7. Hence, Q% = (g1, ¢7).
s left over in Q2 are gy and gs. By considering the entries under O-
I-.column, we see that g3 and gs are 1-equivalent. So Q% = (g3, gs).

m = ((q2), (g0, 94, g6). (91, 47). 143, g5))

#lso in 7, as it cannot be partitioned further. Now the entries under O-
nding 10 go and g4 are g, and g7, and these lie in the same equivalence
. The entries under 1-column are gs, ¢s. SO ¢o and g4 are 2-equivalent.
Wy Wre not 2-cquivalent. Hence, {go. g4, g6} is partitioned into {gg, ¢4)
. ¥y and g4 are 2-equivalent. g3 and g¢s are also T-equivalent. Thus,

b (90, 94), (q6), (g1, @7}, (g3, g5)) go and ¢4 are 3-equivalent. g, and
wivalent. Also, gy and g5 are 3-cquivalent. Therefore,

Ty = [1q92). (go. 94). [q6), 191, 97). (43, 75})
W oy, oy pives the equivalence classes, the minimum state antomaton is

M = (Q'- [0, 1}, &, q'(h F’)
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Example — FA minimization

re

0’ = ([42), (90, qa), (g6, [a1, G7), 193, gs))

q;) - [qO’ Q4]o F’ = [‘IZI
8’ is given by Table 2.22.

Table 2.22 Transition Table of Minimum
State Automaton

State/Z 0 1
[90. 94l (91, 47 (93, gs]
{41, 97 [46) (¢2)
(¢2] (G0, G4l [42)
(g3, gs] (g2] (6]
[g6) [q6) (90, g4l

41
[E: The transition diagram for the minimum state aulomaton is given in

. 2.13. The states go and g5 are identified and treated as one state. (So also
a1, g1 and g1, gs.) But the transitions in bath the diagrams (i.e. Figs. 2.12 and
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Example — FA minimization
o [\

Fig. 2.13 Minimum state automaton of Example 2.13.

13) are the same. If there is an arrow from g; 10 g; with label a, .th.en there 1§ |
h arrow from [g;] to [g;] with the same label in the diagram’'for minimum state

\tomaton. Symbolically, if & (¢i. @) = g;, then 8°([gi, @) = (g;].




Question

A
| e

P ——

S5 )4
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/A‘ssignment

irunsition table of a nondeterministic finite automaton M is given in
25, Construct a deterministic finite aulomaton equivalent to M.

Table 2,25 Transition Table for Exercise 2.7

State 0 1 2
—* 4o 194 94 4293
q1 qa
92 42493
@ qs
q4

fuct a DFA equivalent 1o the NDFA given in Fig. 2.8.

Uy 92, 94), 10, 1), 8, g1, [43)) is a nondeterministic finite automaton,
0 s given by

(g1, 0) = (g2, @3} 8(q1. 1) = {qu)
(g2 0) = {q1, q2) (g2, 1) =0
(g3, 0) = (g2} 6(qs, 1) = [q1, ¢2)

Construct an equivalent DFA,
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éssignment

Py wps SUBIMBIEUERE wwserm e

Congruct a Muly'mhhwwkkhhminlmw&unwcmnuu i

Fable 2.26.
Table 2.26 mmaamzu
Presenl state Next state Output
a=0 a=1
4490 0 4 1
Q g @z 0
9 @ 9 1
0 qo q 1

Lmtnmmwwwtwuwymuglm

wle 2.27.
Table 2.27 Mealy Machine of Exercise 112
Nexi state
Preseat a=0 a=1
sate stte  output siate  output
- ¢ i 1 Wz 0
1] 4 1 Ga 1
4 @ i @ 1
G4 LA 0 0 1

{3, Construct a Mcaly machine which can outpat EVEN, ODD according as
meal'ummkmmmmm:mmmow

14, Construct 2 minimum state automaton equivalent to & given gutomaton
whose transition table is given in Table 2.28.

Table 228 FA of Exercise 2.14

Sunes Inpat
a b
= Qo o 9@
0 @ LE}
L2 LAl 0
L) o LAl |
Ve o [ |
é Ll W
@ LAl
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Regular Set and Regular Grammer

R EXPRESSI®NS

lons are useful for representing certain sets of strings in an algebraic
Iy (hese describe the languages accepted by finite state autonmara.
i formal recursive definition of regular expressions over Z as follows:

Herminal symbol (i.e. an element of E), A and @ are regular expressions.
W a in X as a regular expression, we denote it by a.

unton of two regular expressions Ry and Ry, written as Ry + Ry, is
gapression, <K
poncatenation of two regular expressions R, and Ry, written as RyR,,
I expression. E P
Werntion (or closure) of a regular expression R, written as l_l_’: 1s also
AS10N,

In o regular expression, then (R) is also a regular expression,
popular expressions over £ are precisely those oblained recursively
ation of the rules 1-5 once or several umes.
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Regular Set

e —

6 Definition 4.1  Any set represented by a regular expression is called a regular set,
If, for example, @, b € Z, then (a) a denotes the set {a), (b) a + b denote
(a, b}, (c) ab denotes (ab), (d) a* denotes the set (A, a, aa, aaa, ...} and (¢
(a + b)* denotes {a, b)*,
Now we shall explain the evaluation procedure for the three basic operations

Let R; an¢ R, denote any two regular expressions, Then (a) a string in R, + R
is a string from R; or a string from Ry; (b) a string in RyR; is a string from R
followed hy a string from R,, and (c) a string in R is a string obtained ¢
concatenating n elements for some n 2 0. Consequently, (a) the set represented &
R, +R; is the union of the sets represented by R, and Ry, (b) the set represente
by RyR; is the concatenation of the sets represented by R, and R, (Recall that th
concitenation AB of sets A and B of strings over I is given by AB = {wiwalw, |
A, wy € B, and (c) the set represented by R* is {Wiws ..o w,lw, is in the s¢
represented by R and n 2 0.
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Reg. Set to Regular Expression

~ EXAMPLE 4.1 Describe the following sets by regular expressions: (a) (101
(b) {abba}, (c) {01, 10}, (d) (A, ab), (e) (abb, a, b, bba), () {A, 0, 00,
..}, and (g) (1, 11, 111, ...).

SOLUTION (a) Now, (1}, (0] are represented by 1 and 0, respectively. 1
is obtained by concatenating 1, 0 and 1. So, {101} is represented by 101.
(b) abba represents {abba). J
(c) As {01, 10} is the union of {01) and (1€}, (01, 10} is represented
01 - 10.
(d) The set {A, ab) is represented by A + ab.
(e) The set {abb, a, b, bba) is represented by abb + a + b + bba.
(f) As [A, 0, 00, 000, ...) is simply {[0)*, it is represented by 0%, _
(g) Any elementin (1,11, 111, ...} can be obtained by concatenating 1 a
any element of {1}*. Hence 1(1)* represents (1, 11, 111, o)
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Reg. Set to Regular Expression

EXAMPLE 4.2 Describe the following sets by regular expressions:

(a) Ly = the set of all strings of 0's and 1's ending in 00,

(b) L = the set of all strings of 0s and 1's beginning with 0 and endin;
with 1.

(€) Ly = (A, 11, 1111, 111111, ...}.

SOLUTION (a) Any string in L, is‘obtained by concatenating any string o
(0, 1} and the string 00. {0, 1} is represented by 0 + 1. Hence Ly is represen
by (0 + 1)* 00.

(b) As any element of L, is obtained by concatenating 0, any string over
{0, 1} and 1, L, can be represented by 0(0 + 1)* 1.

(¢) Any element of Ly is cither A or a string of even number of 1's, i.c. 4
string of the form (11)", n > 0. So Ly can be represented by (11)*,
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|ldentities of RE

I

Iy

I

INTITIES FOR REGULAR EXPRESSIONS

expressions P and Q are equivalent (we write P = Q) if P and Q
same set of sirings.

give the wdentties for regular expressions; thesc are useful for
gular expressions.

A+ R=R
OR=RO =0
AR =RA=R

A* = Aand 9% = A
R+R=R
R*R* = R*
RR* = R*R
(R*)* = R*

A+ RR*=R*= A+ R*R
ho (PQ)*P = P(QP)*

(P + Q* = (P*Q*)* = (P* + Q*)*

liz (P+ Q)R =PR + QR and R(P + Q) = RP + RQ
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//JM 9
" Arden’s Theorem

| (Arden’s theorem) Let P and Q be two regular expressions over
not contain A, then the following equation in R, viz.

R=Q+RP (4.1)

We solution (i.e. one and only one solution) given by R = QP*,

Q + (QP*) P = Q(A + P*P) = QP* by

) s satisfied when R = QP*, This‘means R = QP* is a solution of

prove uniqueness, consider (4.1). Here, replacing R by Q + RP on the
we get the equation

Q+ RP=Q+(Q+ RPP
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Arden’s Theorem

=Q + QP + RPP

= Q + QP + RP?
=Q+QP+QP2+...+QP"+RP‘*‘,-
=Q(A+P+ P+ ... +P)+RPY

r

From (4.1),
R=QA+P+P?+ .. +P)+RP* foriz0 (

We now show that any solution of (4.1) is equivalent to QP*. Suppose R sati
(4.1), then it satisfies (4.2). Let w be a string of length i in the set R.
belongs to the set Q(A + P + P2 + ... + P) + RP*'. As P does not con
RP™*! has no string of length less than i + 1 and so w is not in the set RP*.
means w belongs to the set (A + P + P? + ..+ P, and hence to QP*.

Consider a string w in the set QP*. Then w is in the sct QP* for so
> 0, and hence in Q(A + P + P? + ... + P"). So w is on the R.H.S. of (4
Therefore, w is in R (L.H.S. of (4.2)). Thus R and QP* represent the same
This proves the uniqueness of the solution of (4.1). §
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EXAMPLE 4.3 (a) Give an r.e. for representing the set L of strings in
every 0 is immediately followed by at least two 1's.

(b) Prove that the regular expression R = A + 1*(011)*(1* (011)*)* &
describes the same set of strings.

SOLUTION (a) If w is in L, then either (i) w does not contain any 0, or
contains a 0 preceded by 1 and followed by 11. So w can be writien as ww
w,, Where each w; is either 1 or 011. So L is represented by the r.e. (1 + 0

(b) R=A+PP,  where P, =1*(011)*
=P using Iy
= (1*(011)*)*
= (P} P))* letting P, = 1, Py = 011
=P +P) usinghy
=(1+01D)*
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FA to RE Conversion

ystem given in Fig. 4.10. Prov :
a(b + aa)* a.

EXAMPLE 4.8 Consider the transition §
/tﬁc strings recognised are (a + a(b + aa)*b)*

Fig. 4.10 Transition system of Example 4.8.

y apply the above method since the graph d
only one initial state.
g, and g; can be wrilten as

SOLUTION We can directl
contain any A-move and there is

The three equations for g,
=qa+@b+A @+ qb+@a BT 28
[t is necessary to reduce the number of unknowns by repeated substituti

substituting ¢y in g;-cquation,we get
Gy = Qi+ @b + paa
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FA to RE Conversion

= i@ + qa(b + aa)

= qa (b + aa)™
Theorem 4.1, Substituting q, in q;, we get
gy = qa + qqab + aa)*b + A
= q{a +alb+ aa)*b) + A

q; = Ala + a(b + aa)*b)*
g; = (a + a(b + aa)*b)* a(b + aa)*
q: = (a + a(b + aa)*b)* a(b + aa)*a
final state, the set of strings recognised by the graph is given by

(a + a(b + aa)*b)a(b + aa)*a
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FA to RE conversion

¥ Prove that the FA whose transition diagram is given in Fig. 4.11
{ of all strings over the alphabet (a, b) with an equal number of

Fig. 4.11 FA of Example 4.9.

Such that each prefix has atmost one more a than b's and atmost one
"'
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" FA to RE conversion

= = ~

e —

We can apply the above method directly since the graph does not
ve und there 1s only one initial state, We get the following equations

v
Q =q@b+qga+ A
42 = qa,
G1 = b
Qu = Qa0 + @b + qqa + qqb
b only final state and the q,-equation involves only q; and qy, we use
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FA to RE conversion

~ only qp- and gs-equations (the gs-equation is redundant for our purposes). Substituli
for q; and ga, we get

q; = q,ab + q;ba + A = q,(ab + ba) + A
By applying Theorem 4.1, we get
q; = A(ab + ba)* = (ab + ba)*

As q, is the only final state, the strings accepted by the given FA are str
given by (ab + ba)*. As any such string is a string of ab’s and ba’s we get
number of a's and b's. If a prefix x of a sentence accepted by the FA has
number of symbols, then it should have equal number of a's and b’s since
a substring formed by ab’s and ba’s. If the prefix x has odd number of symb
then we can write x as ya or yb. As y has even number of symbols, y has
number of a's and b’s. Thus x has one more a than b or vice versa.
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o
- FA to RE conversion

S




FA to RE conversion

. |

_EXAMPLE 4.10 _Describe in English the set accepted by FA whose transil
diagram is given in Fig. 4.12.

Fig. 4.12 FA of Example 4.10.
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RE to DFA

M3 Construct an FA equivalent to the regular expression.
(0 + D*O00 + 11)(0 + 1)*

Siep | (Construction of transition graph). First of all we construct
ph with A-moves using the constructions of Theorem 4.2. Then
moves as discussed in Scection 4,22,

Wwith Fig. 4.15(a).

le the concatenations in the given r.e. by introducing new vertices
Fig. 4.15(b).

Mle * operations in Fig. 4.15(b) by introducing two new vertices
moves as shown in Fig. 4.15(c).

e concatenations and + in Fig. 4.15(c) and get Fig. 4.15(d).
I6 A-moves in Fig. 4.15(d) and get Fig. 4.15(e) which gives the
Bt Lo the given r.e.

- -
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» - *
0+1) (00 +11) (0+)
2
(a)
0+1)" (00+11) (o+1)* |
A (@)
(b)

om0 B
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