
DataPath Design

 An instruction set processor consist of two
important units:

 Data Processing Unit (DataPath)

 Program Control Unit

 Add & subtract instructions for fixed binary
numbers are found in the instruction set of
every computer.

 To implement the add ,microoperation with
hardware we need registers that hold the data
and the digital component that performs the
arithmetic addition .

 The digital circuit that forms the arithmetic
sum of 2 bits and a previous carry is called a
full adder.

 The digital circuit that generates the
arithmetic sum of two binary numbers of any
length is called a binary adder.

 The binary adder is constructed with full
adder circuits connected in cascade.

 For Eg: The below diag shows the
interconnections of 4 full adders to provide a
4 bit binary adder.

FA

B0 A0

S0

C0FA

B1 A1

S1

C1FA

B2 A2

S2

C2FA

B3 A3

S3

C3

C4

 By using only AND & OR gates

 By using XOR, AND & OR gates

 First AND= Ci-1, Yi,Xi

 Second AND = Xi’,Ci’-1,Yi

 Third AND =Yi’, Xi’,Ci-1

 Fourth AND = Ci’-1, Xi, Yi’

 Fifth AND = Xi, Ci-1

 Sixth AND = Yi, Xi

 Seventh AND = Yi, Ci-1

 The increment micro operation adds 1 to a
number in a register.

 This micro operation is easily implemented
with a binary counter & this can be
accomplished by means of Half Adders.

 The output carry of one half adder is
connected to one of the inputs of the next
higher order half adder.

HA

x y

C S

A0 1

S0

HA

x y

C S

A1

S1

HA

x y

C S

A2

S2

HA

x y

C S

A3

S3C4

 The addition & subtraction operations can be
combined into one common circuits by
including an XOR gate with each full adder.
This combinational circuit is known as Binary
Adder Subtractor.

 Here, a mode bit is used to find addition and
subtraction is done by the circuit. If the value
of mode bit is 0 it means addition is
performed and if it’s value is 1 it means
subtraction is performed.

FA

B0 A0

S0

C0C1FA

B1 A1

S1

C2FA

B2 A2

S2

C3FA

B3 A3

S3C4

M

 Overflow is indicated by a flag bit v in
operations involving signed numbers, this
flag is found in CPU status register.

 There V is indicated as:

 gi=xiyi

 pi=xi+yi

ci=xiyi+xici-1+yici-1

ci=gi+pi(ci-1)

co = g0+p0cin

c1= g1+p1g0+p1p0cin

c2= g2+p2g1+p2p1go+p2p1p0cin

c3=g3+p3g2+p3p2g1+p3p2p1g0+p3p2p1p0cin

 Fixed point multiplication requires substantially
more hardware than the fixed point addition.

 While first bit is multiplied then we have to shift
0 bit to the left, when second bit is multiplied
then there is a shift of 1 bit. Similarly for third,
fourth bit and so on.

 The value of Partial Product is P i+1=P i+ xj 2
i Y

 3

 So final product is P = ∑xj 2
i Y

 j=0

 James E Robertson Algorithm

 Booth’s Algorithm

 Checking the bits of the multiplier one at a
time and forming partial products is a
sequential operation that requires a sequence
of add and shift micro operations.

 The multiplication of two binary numbers can
be done with one micro operation by means
of a combinational circuit that forms the
product bits all at once . This is done by
making use of an array multiplier.

 Division is done by 2 methods

◦ Restoring Method

◦ Non-Restoring Method

 Step-1 Initialize the register with Dividend
◦ ASHL

◦ ADD B’+1

 Step-2 Check If E=1 or E=0

 E=1
◦ Reset Qn SC=SC-1 goto step-4

◦ ASHL EAQ

◦ Add B’+1

 E=0
◦ Leave Qn

 =0 & Add B

◦ Restore the Remainder SC=SC-1 goto step-4

◦ ASHL

◦ ADD B’+1

 Step- 4 For Termination When SC=0 Neglect E,
Remainder in A , Quotient in Q

 Dividend=01110 Divisor= 10001
◦ Quotient=11010 Remainder=00110

 Dividend=30 Divisor=3 size=4
◦ Quotient=1010 Remainder=0000

 Dividend =15 Divisor=2 size=4
◦ Quotient=0111 Remainder=0001

 Dividend=38 Divisor=5 size=3 bit
◦ Quotient=111 Remainder=011

 Step-1 Initialize the register with Dividend
◦ ASHL

◦ ADD M’+1

 If S=0
◦ Reset Q[0]

◦ If Count=n-1 then goto step-4

◦ Else

◦ Count=count+1

◦ SHL SAQ

◦ ADD M’+1 then goto either step 2 or step-3

 If S=1
◦ Set Q[0]

◦ If Count=n-1 then goto step-4

◦ Else

◦ Count=count+1

◦ SHL SAQ

◦ ADD M then goto either step 2 or step-3

 Step-4 if s=1 then Add M
◦ Quotient in Q

◦ Remainder in R

 Dividend=1100001 Divisor=1010 Size=4 bits

 Dividend=30 Divisor=3 Size=4

 Dividend = 40 Divisor=2 Size=5

 Dividend = 25 Divisor=4 Size=4

 Dividend =15 Divisor=2 Size=4

 The various circuit that are used to execute
data processing instructions are usually
combined in a single circuit called ALU.

 There are 2 types of ALU are:
◦ Combinational ALU

◦ Sequential ALU

 Here the output of the whole circuit comes
form:

 In the above circuit
◦ When M=0 then arithmetic operation performs.

◦ When M=1 then logic operation is performed.

 A sequential ALU uses flip-flops. Sequential
circuits compute their output based on the
input and the state and the updation of state
is based on clock.

 Whereas combinational logic circuits
implement Boolean functions it means their
functions is only based on their input and
they are not based on clocks.

 A sequential circuit has inputs and outputs.

 A sequential logic circuit uses a clock.

 There is a box inside the circuit called state
and this box contains flip-flops and this flip-
flop basically store a k bit number for
representing the current state.

 Here, the output is computed based on the
input and state.

 The state may be updated at each positive
clock edge. When there is not a positive clock
edge, the state remains unchanged.

 The information needed to update to the
state comes from the current state and the
input which is fed through combinational
logic and fed back into the state box, telling
the state box how to update itself.

A Symbol

A Logic Diagram

 Let (Xm,XE
) be the floating point

representation of a number X which has
numerical value XM×BXE.

 Where Xm is the mantissa and the exponent
XE are fixed point numbers.

 The four basic arithmetic operations for
floating point numbers are:
◦ X+Y = (Xm

 2X
E

– Y
E +YM) × 2Y

E

◦ X-Y = (Xm
 2X

E
– Y

E -YM) × 2Y
E

◦ X × Y = (Xm
 × YM) × 2X

E
+Y

E

◦ X / Y = (Xm
 / YM) × 2X

E
-Y

E

 The floating point operation has 4 main
steps:
◦ Compare The Exponent

◦ Align The Mantissas

◦ Add The Mantissas

◦ Normalize The Result

 The Floating point addition and subtraction
has 3 main steps:
◦ Compute YE-XE

◦ Shift XM by YE-XE places to the right to obtain XM

2XE-YE.

◦ Compute (Xm
 2X

E
– Y

E +/-YM) × 2Y
E

 The first step of the algorithm is equalization
of the exponent which is done by subtracting
them and aligning the mantissa by shifting
one of them until the difference between the
exponent has been reduced to 0.

 The aligned mantissas are added.

 Finally the result is normalized, if it is
necessary by again shifting the mantissa and
making a compensating change in the
exponent.

 Note: The left most bit position of E indicates
the sign of the exponent if it is 0 then the
exponent is negative if it is 1 then it is
positive.

 Load E1, E2, AC & DR

 Compare E=E1-E2

 If E<0 Then Ac:=right-shift(Ac), E:=E+1

 If E>0 Then DR:= right-shift(DR), E:=E-1

 If E=0 Then AC:=AC+DR, E:= max(E1, E2)

 X = 0 01111111 10000000000…………

 Y = 0 10000111 0010101101000……..

 In the above example the number has 32 bit
floating point format of IEEE standard 754. In
this format each number N has 23 bit
fractional part with a hidden bit and an 8 bit
exponent E in excess-127 code.

