
Extended Surfaces/Fins 

Convection: Heat transfer between a solid surface and a moving 

fluid is governed by the Newton’s cooling law: q = hA(Ts-T).  

Therefore, to increase the convective heat transfer, one can 

  

• Increase the temperature difference (Ts-T) between the surface 

and the fluid.   

 

• Increase the convection coefficient h.  This can be 

accomplished by increasing the fluid flow over the surface since 

h is a function of the flow velocity and the higher the velocity, 

the higher the h.  Example: a cooling fan. 

 

• Increase the contact surface area A.  Example: a heat sink with 

fins. 
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Extended Surface Analysis 

x 

Tb 

q kA
dT

dx
x C  q q

dq

dx
dxx dx x

x

  

dq h dA T Tconv S  ( )( ),  where dA  is the surface area of the elementS

AC is the cross-sectional area 

Energy Balance:  

 if k,  A  are all constants.

x

C

q q dq q
dq

dx
dx hdA T T

kA
d T

dx
dx hP T T dx

x dx conv x

x

S

C

     

   

 
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( )

( ) ,
2

2
0

P:    the fin perimeter 

Ac:  the fin cross-sectional area 
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Extended Surface Analysis (cont.)  
d T

dx

hP

kA
T T

x T x T

d
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 A second - order,  ordinary differential equation

Define a new variable =  so that

 where m

Characteristics equation with two real roots:  + m &  - m

The general solution is of the form

To evaluate the two constants C  and C  we need to specify 

two boundary conditions:  

The first one is obvious:  the base temperature is known as T(0) = T

The second condition will depend on the end condition of the tip

2

1 2

b


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Extended Surface Analysis (cont.) 

For example: assume the tip is insulated and no heat transfer 

d/dx(x=L)=0 

The temperature distribution is given by

-

The fin heat transfer rate is

These results and other solutions using different end conditions are

tabulated in Table 3.4 in HT textbook,  p.  118.

T x T

T T

m L x

mL

q kA
dT

dx
x hPkA mL M mL

b b

f C C

( ) cosh ( )

cosh

( ) tanh tanh


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the following fins table 
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Temperature distribution for fins of different configurations 

Case Tip Condition Temp. Distribution Fin heat transfer 

A Convection heat 

transfer: 

h(L)=-k(d/dx)x=L mL
mk

hmL

xLm
mk

hxLm

sinh)(cosh

)(sinh)()(cosh





 

M
mL

mk
hmL

mL
mk

hmL

sinh)(cosh

cosh)(sinh




 

B Adiabatic 

(d/dx)x=L=0 mL

xLm

cosh

)(cosh 
 

mLM tanh
 

C Given temperature: 

(L)=L 

mL

xLmxLm
b

L

sinh

)(sinh)(sinh)( 




 
mL

mL

M b

L

sinh

)(cosh





 

D Infinitely long fin 

(L)=0 

mxe
 M  

 

bCbb

C

hPkAMTT

kA

hP
mTT













,)0(

, 2

Note: This table is adopted from Introduction to Heat Transfer  

by Frank Incropera and David DeWitt 
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Example 

An Aluminum pot is used to boil water as shown below.  The 

handle of the pot is 20-cm long, 3-cm wide, and 0.5-cm thick.  

The pot is exposed to room air at 25C, and the convection 

coefficient is 5 W/m2 C.  Question: can you touch the handle 

when the water is boiling? (k for aluminum is 237 W/m C)  

100 C 

T = 25 C 

h = 5 W/ m2 C 

x 
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Example (cont.) 

We can model the pot handle as an extended surface.  Assume that 

there is no heat transfer at the free end of the handle.  The 

condition matches that specified in the fins Table, case B.  

h=5 W/ m2 C, P=2W+2t=2(0.03+0.005)=0.07(m), k=237 W/m 

C, AC=Wt=0.00015(m2), L=0.2(m) 

Therefore, m=(hP/kAC)1/2=3.138,  

M=(hPkAC)(Tb-T)=0.111b=0.111(100-25)=8.325(W) 

T x T

T T

m L x

mL

T x

T x x

b b

( ) cosh ( )

cosh

cosh[ . ( . )]

cosh( . * . )
,

( ) . * cosh[ . ( . )]

- 
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
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

25

100 25

3138 0 2

3138 0 2

25 62 32 3138 0 2
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Example (cont.) 

Plot the temperature distribution along the pot handle 

0 0.05 0.1 0.15 0.2
85

90

95

100

T( )x

x

As shown, temperature drops off very quickly.  At the midpoint 

T(0.1)=90.4C.  At the end T(0.2)=87.3C. 

Therefore, it should not be safe to touch the end of the handle 
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Example (cont.) 

The total heat transfer through the handle can be calculated 

also.   qf=Mtanh(mL)=8.325*tanh(3.138*0.2)=4.632(W) 

Very small amount: latent heat of evaporation for water: 2257 

kJ/kg.  Therefore, the amount of heat loss is just enough to 

vaporize 0.007 kg of water in one hour. 

 

If a stainless steel handle is used instead, what will happen: 

For a stainless steel, the thermal conductivity k=15 W/m°C. 

Use the same parameter as before: 

0281.0,47.12

2/1


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Example (cont.) 

)](47.12cosh[3.1225)(

cosh

)(cosh)(

xLxT

mL

xLm

TT

TxT

b














0 0.05 0.1 0.15 0.2
0

25

50

75

100

T x( )

x

Temperature at the handle (x=0.2 m) is only 37.3 °C, not hot at 

all.  This example illustrates the important role played by the 

thermal conductivity of the material in terms of conductive heat 

transfer. 
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{ 
Transient Conduction 



 Basic Concepts of Transient 

Conduction 



),,,( zyxft 

1. Characteristics and Types of Unsteady-State Conduction 

•  A heat transfer process for which the temperature 

varies with time, as well as location within a solid. 

•  It is initiated whenever a system experiences a 

change in operating conditions and proceeds until a 

new steady state  (thermal equilibrium) is achieved. 



1. Characteristics and Types of Unsteady-State Conduction 

•  Solution Techniques 

—The Lumped Capacitance Method 

—Exact Solutions 

—The Finite-Difference Method 

—a surface temperature or heat flux, and/or 

—internal energy generation. 

 It can be induced by changes in: 

   —surface convection conditions ( h, t∞),  

 —surface radiation conditions ( hr, t sur ), 



•  Types: 

1) Recurrent  

2) Transient 

•  regime of transient: 

1) Non-regular regime  

2) Regular regime 
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2.The Law of Exclusive Solution of 

Conductive Differential Equation 

•  Based on the assumption of a spatially uniform 

temperature  distribution throughout the 

transient process. 

•  The Initial Condition: 



2.The Law of Exclusive Solution of 

Conductive Differential Equation 

  It can be certificated that if a function t (x, y, z, τ) 

can fit the equation and the conditions above at the 

same time, it is the exclusive solution of this problem. 

•  The Boundary Condition (Convection Condition): 
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3. Influence of  Biot Number on Temperature 

Distribution of Plane Wall Under the 3rd Boundary 

Condition 

  Biot Number, The first of many dimensionless 

parameters to be considered. 

dimensionless thermal 
resistance 
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Problem: draw out the following temperature 

distributions according the situations, respectively.                

λ is constant. The right side of the body is insulated.  



3.2 The Lumped Capacitance 

 Method 



1. The Lumped Parameter Method 

•  Based on the assumption of a spatially uniform 

temperature distribution throughout the transient 

process.  t ( r, τ) ≈ t (τ) . 

•  Why is the assumption never fully realized in practice? 



1. The Lumped Parameter Method 

•  General Lumped Capacitance Analysis: 

     Consider a general case, 

which includes convection,     

radiation and/or an 

applied heat flux at 

specified surfaces (As,c, As,r, 

As,h) as well as internal 

energy   generation. 
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 The Differential Equation of Transient Conduction 

with Thermal Energy Generation: 

 Assuming energy outflow due to combined convection 

and radiation. 

0)0( tt 



 The Differential Equation of Transient Conduction 

with Thermal Energy Generation: 

•  Is this expression applicable in situations for 

which convection and/or radiation provide for 

energy inflow? 

•  May h and hr be assumed to be constant 

throughout the transient process? 

•  How must such an equation be solved? 



 tt





d

cV

hAd





 


d

cV

hAd
 
00

The Excess 

Temperature: 

 Using the Method of Separation of Variables and 

then integral: 

The Differential 

Equation: 
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2. Heat Rate, Time Constant, and the Fourier Number 

Total heat from τ = 0 to τ 

Heat Rate 
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The Fourier Number 

Time Constant 

dimensionless time 

A

V
lc  —— Characteristic Length of the solid 
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3. The Application Condition of Lumped Method 

Plane wall with thickness 2δ 

Cylinder with radius R 

Sphere with radius R 



Problem 1:    Charging a thermal energy storage system 

consisting of a packed bed of aluminum spheres. 

KNOWN:  Diameter, density, specific heat and thermal conductivity of aluminum spheres used in 

packed bed thermal energy storage system.  Convection coefficient and inlet gas temperature. 

FIND:  Time required for sphere at inlet to acquire 90% of maximum possible thermal energy and the 

corresponding center temperature. 

Aluminum sphere
  D = 75 mm, 
    

T = 25 Ci 
oGas

  T Cg,i 
o= 300

h = 75 W/m -K2

= 2700 kg/m   3

k = 240 W/m-K
c = 950 J/kg-K

Schematic: 



Problem 2:   Heating of coated furnace wall during start-up. 

KNOWN:  Thickness and properties of furnace wall.  Thermal resistance of ceramic coating 

on surface of wall exposed to furnace gases.  Initial wall temperature. 

FIND:  (a) Time required for surface of wall to reach a prescribed temperature, (b) 

Corresponding value of coating surface temperature. 

Schematic: 
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3.3 Analytical 
Solutions of Typical 
One-Dimensional 
Transient Conduction 

  



1.Analytical Solutions of Temperature Field 

 of Three Kinds of Solids 

•  If the lumped capacitance 

approximation can not be 

made, consideration must 

be given to spatial, as well 

as temporal, variations in 

temperature during the 

transient process. 

(1) Plane Wall 
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•  For a plane wall with symmetrical convection 

conditions and constant properties, the heat equation 

and initial/boundary  conditions are: 
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•  The Heat Equation and Initial/Boundary 

Conditions described using θ: 

•  Excess temperature difference: 
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•  Exact Solution (with the separation of variables) : 

  The eigenvalue μn is positive roots of the 

transcendental equation. 
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•  Exact Solution: 

(2) Cylinder 

    The eigenvalue μn is positive roots of the 

transcendental equation. 



•  Exact Solution: 

(3) Sphere 
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  The eigenvalue μn is positive roots of the 

transcendental equation. 
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•  Conclusion:  The distribution θ/θ0 is a 

function of Fo, Bi, and η. 
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2. The One-Term Approximation of Analytical 

Solution of  Regular Regime of Transient Conduction 

When Fo>0.2 

For plane wall 
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The total heat transferred from initial to τ and the 

maximum heat: 

For plane wall 
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3. Graphical Representation of the One-Term Approximation 

•  Midplane Temperature for Plane Wall with thickness  

    2δ(Heisler Charts ): 



•  Temperature Distribution: 



•  Change in Thermal Energy Storage: 



3.4 Transient Conduction of  

The Semi-Infinite Solid 
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1. Analytical Solutions under Three Boundary Conditions 

•  A solid that is initially of uniform temperature t0  

and is assumed to extend to infinity from a surface 

at which thermal conditions are altered. 

One of Three Kinds Cases 
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Case 3: Convection Heat Transfer (h, t ∞) 
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3.5 Analytical Solutions 

 of Multidimensional Transient 

Conduction 



1. Production Solution Method  

•  Solutions for multidimensional transient conduction can often 

   be expressed as a product of related one-dimensional solutions 

   for a plane wall, an infinite cylinder, and/or a semi-infinite solid.   

•  Consider superposition of solutions for two-, or three-dimensional  

    conduction in a infinite column, short cylinder, and short column: 



for a two-dimensional infinite column:  
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for a three-dimensional short column:  
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Θp,Θc are the dimensionless temperature solution of 

plane wall and infinite cylinder under the 3rd 

boundary condition, respectively.  

for a short cylinder:  
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For the two-dimensional Transient Conduction: 

2. Heat Quantity in the Transient Conduction 

Process 
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Problem 3:  Charging a thermal energy storage system  

                    consisting of a packed bed of Pyrex spheres. 

KNOWN:  Diameter, density, specific heat and thermal conductivity of Pyrex 

spheres in packed bed thermal energy storage system.  Convection coefficient and 

inlet gas temperature. 

FIND:  Time required for sphere to acquire 90% of maximum possible thermal 

energy and the corresponding center and surface temperatures. 
SCHEMATIC:   

 

Pyrex sphere
  D = 75 mm, 
    

T = 25 Ci 
o

Gas

  T Cg,i 
o= 300

h = 75 W/m -K2

= 2225 kg/m   3

k = 1.4 W/m-K
c = 835 J/kg-K

 
 



Problem:  4:       Use of radiation heat transfer from high intensity lamps 

                               for a prescribed duration (t=30 min) to assess 

 ability of firewall to meet safety standards corresponding to 

 maximum allowable temperatures at the heated (front) and 

 unheated (back) surfaces. 

 4 210  W/msq 

KNOWN:  Thickness, initial temperature and thermophysical properties of 

concrete firewall.  Incident radiant flux and duration of radiant heating.  

Maximum allowable surface temperatures at the end of heating. 

FIND:  If maximum allowable temperatures are exceeded. 

q  s = 10  W/m24

  L = 0.25 m   x

Concrete, T  = 25i
oC

= 2300 kg/m   3

c = 880 J/kg-K

k = 1.4 W/m-K
s  = 1.0

  T Cmax 
o= 325   T Cmax 

o= 25

SCHEMATIC:   



Problem:  5:       Microwave heating of a spherical piece of frozen 

 ground beef using microwave-absorbing packaging 

 material. 

KNOWN:  Mass and initial temperature of frozen ground beef.  Rate of 

microwave power absorbed in packaging material. 

FIND:  Time for beef adjacent to packaging to reach 0°C. 

SCHEMATIC:   

Beef, 1kg

Ti = -20°C

Packaging material, q

Beef, 1kg

Ti = -20°C

Packaging material, q


