

Physics explains things that are

 very, very large.

Physics explains things that are very, very small.

Physics explains things that are right in front of us.

Newton's First Law

- Objects at rest remain at rest
- Objects in motion remain in motion

UNTIL YOU APPLY A FORCE

Objects tend to resist a change in motion. This is called:
Inertia

Newton's Second Law

$$
\mathrm{F}=\mathrm{ma}
$$

What is a force?

Amount of weight keeping board on ramp

Amount of weight making board move down ramp

Although weight doesn't change, the amount making the skateboard move does

A

Boards hit bottom at same time

Weight (force) goes up, but so does mass (inertia).

The two cancel out, so the two skateboards move at the same rate.

What do we expect to see with rings of the same size ?

Rods roll faster than rings

Rings of the same size move at the same rate

Rods roll faster than rings

In rolling cases, mass doesn't matter. Shape does.

Newton's Third Law

For every action there is an equal and opposite reaction.

Conservation of Momentum

momentum $=0$

$$
\text { If } \mathrm{m}_{1}=\mathrm{m}_{2} \text {, then } \mathrm{v}_{1}=\mathrm{v}_{2}
$$

Conservation of Energy

Potential Energy

Kinetic Energy

Compression Energy

MYcsvtu Notes
www.mycsvtunotes.in

Spins in Figure Skating

Things to Remember

- Inertia
- Moving things stay moving, stationary things stay stationary
- All objects moved by gravity accelerate the same
- Rotating objects act funny
- Some things don't change and that's very useful.
Grayjorajiors

Whasj was so clever abouj Newjon's conjribujion?

Amongst other things, Kepler had deduced that:-
1 Planets go around the Sun in ellipses
2 The periods of their orbits (planetary years) were related to the radii of their orbits.

$$
T^{2} \alpha r^{3}
$$

Newton attempted to fit these observations to ideas about gravity.

Facts available to Newton

1 Earth's circumference, originally estimated by Eratosthenes (about 200BCE) from shadow lengths, and improved by French surveyors during Newton's lifetime. Their best value, in today's units, 69.2miles/degree $=69$. $\times 360$ miles
$=24900 \mathrm{miles}: 40100 \mathrm{~km}$.
This implies a radius $\left(R_{e}\right)$ of 6380 km

Using the size of the shadows during a lunar

 eclipse, they found the Moon's distance, R to be about $60 \times$ Earth's radius, $60 \mathrm{R}_{e}$ ie. about $60 \times 6380=383000 \mathrm{~km}=3.83 \times 10^{8} \mathrm{~m}$ or 250000 miles
 ap k to Kop Ta $\overline{\pi n}$ wm $\overline{M E}$:

io p air my

Fact 3 Length of a lunar r month (time taken for Moon to make one complete orbit)
 $$
=27.32 \text { days }=27.32 \times 24 \times 3600 \mathrm{sec}
$$
 $=2.36 \times 10^{6}$ seconds

> This is easily measured by counting the number of days taken for several lunar months.

Fact 4

Acceleration of falling objects on Earth $=$ $9.8 \mathrm{~m} / \mathrm{s}^{2}$

Measured by Galileo, who died the year Newton was born.

Newton's ideas

Idea 1 The force used to keep an object rotating in circle depends on the object's speed and the circle's radius in this way:- $F=m v^{2} / r$
This implies that the centripetal acceleration (directed towards the centre on the circle)

$$
\text { is equal to } v^{2} / r
$$

This was proved in Newton's Princibia.

Idea 2

The Moon is in orbit around the Earth because gravity supplies this centripetal

 force.

This gravitational force is proportional to 1 / (distance from Earth's centre)².

This gravitational force is proportional to 1 / (distance from Earth's centre)².

Idea 3 - was possibly also suggested by Robert Hooke - with whom Newton had a continuing row for about 20 years

Newton had all the ingredients, now let's see how he made a good stew!

There are two places where we can compare the Earth's gravitational field:
one at the Earth's surface and the other at the orbit of the Moon.

This uses idea 3.

Idea 3

Gravitational acc n at the Earth's surface $\left(g_{e}\right)$ Grave. acc n at the distance of the Moon's orbit (g_{m})

$$
\begin{aligned}
g_{\underline{e}}= & \frac{1 /(\text { radius of Earth })^{2}}{1 /\left(\text { radius of Moon's orbit) }{ }^{2}\right.} \\
& =\frac{\left(\text { radius of Moon's orbit) }{ }^{2}\right.}{(\text { radius of Earth })^{2}} \\
& =R_{m o}^{2} / R_{e}^{2}
\end{aligned}
$$

Rearranging slightly

$g_{e}=\frac{R_{m o}^{2} \times \text { centripetal } \operatorname{acc}^{n} \text { of Moon }\left(g_{\underline{m}}\right)}{R_{e}^{2}}$

to get a numerical value for g_{e}, all we need to do is to insert the centripetal acceleration from Idea 1 and the known value of the ratio of the orbital sizes (60/1).

Idea 1

Centripetal accn of Moon $=v^{2} / R_{\text {mo }}$

First - the Moon's velocity, v,
= circumference of Moon's orbit
time for one revolution
$=2 \pi R_{m o} / 2.36 \times 10^{6}=1019 \mathrm{~m} / \mathrm{s}$
and, second, t'ne acch of Moon,

$$
\begin{aligned}
& g_{\mathrm{m}}=\frac{y^{2}}{R_{\mathrm{mo}}}=\frac{1019}{R_{\mathrm{mo}}}=\frac{1.038 \times 10^{6}}{R_{\mathrm{mo}}} \\
& =1.038 \times 10^{6} /\left(60 \times R_{2}\right) \\
& =1.038 \times 10^{\circ} /\left(60 \times 6.38 \times 10^{\sigma}\right)
\end{aligned}
$$

Now we can substitute this into our

 expression for $g_{e}$$$
g_{e}=\frac{R_{m 0}}{R_{e}{ }^{2}} \times g_{m}
$$

where $R_{m o}{ }^{2} / R_{e}{ }^{2}=60^{2}$

and so, finally,

$$
g_{e}=60^{2} \times 0.00271 \mathrm{rs} / \mathrm{s}^{2}
$$

$g_{e}=9.8 \mathrm{~m} / \mathrm{s}^{2}$

which agrees with Galileo's measured value!

and you say
"Wasn't that really neat of him to calculate g_{e} so accurately from all that data about the moon?"
or you s'sould, if you haven'f!

Conclusion

The next step was to extend this idea to the whole of the solar system and then to the rest of the universe. It has become the 'Universal Law of Gravitation'.

Newton's ideas are only superseded by those of Einstein under extreme conditions, so he was right to a high degree of approximation.

