

What is awk ?7?

The word awk i1s derived from the names of Its
iInventors!!!

awk is actually Aho Weinberger and Kernighan .

From the original awk paper published by Bell Labs,
awk Is

“ Awk is a programming language designed to
make many common information retrieval and text
manipulation tasks easy to state and to perform.”

Simply put, awk is a programming language designed
to search for, match patterns, and perform actions on
files.

0
Q
fd
(@)
=
-
dd
S
0
O
>—
=
=
0
Q
hd
(@)
c
S
)
>
0
O
>
=
=
P
P2

Whatis Awk

Awk is a programming language used for manipulating data and
generating reports

The data may come from standard input, one or more files, or as
output from a process

Awk scans a file (or input) line by line, from the first to the last ling
searching for lines that match a specified pattern and performing
selected actions (enclosed in curly braces) on those lines.

If there Is a pattern with no specific action, all lines that match the
pattern are displayed;

If there is an action with no pattern, all input lines specified by the
action are executed upon.

%))
()
s
o
=
35
-+
>
()]
O
P
=
£
%)
()
=
o
=
3
-+
>
)]
O
>
€
=
=
=

awk Versions

awk — Original Bell Labs awk (Version 7 UNIX, around 1978) awk
awk — New awk (released with SVR4 around 1989)
gawk — GNU implementation of awk standard.
mawk — Michael’s awk.

......... and the list goes on.

www.mycsvtunotes.in MYcsvtu Notes

Basic about awk

- awk reads from a file or from its standard input,
and outputs to Its standard output.

- awk recognizes the concepts of "file",
and "field".

- Afile consists of records, which by default are
the lines of the file. One Ilne becomes one
record.

- awk operates on one record at a time.

« Arecord consists of fields, which by default are
separated by any number of spaces or tabs.

* Field number 1 is accessed with $1, field 2 with
$2, and so forth. $0 refers to the whole record.

record"

%))
()
s
o
=
35
-+
>
()]
O
P
=
£
%)
()
=
o
=
3
-+
>
)]
O
>
€
=
=
=

Awk’s format

An awk program consists of:
the awk command
the program instructions enclosed in quotes (or a file) , and
the name of the input file

If an input file is not specified, input comes from standard input
(stdin), the keyboard
Awk instructions consists of

patterns,

actions, or

a combination of patterns and actions

A pattern is a statement consisting of an expression of some tyg

MYcsvtu Notes

www.mycsvtunotes.in

Awk’s format (continue.)

* Actions consist of one or more statements separated by
semicolons or new lines and enclosed in curly braces

* Patterns cannot be enclosed in curly braces, and consist of
regular expressions enclosed in forward slashes or
expressions consisting of one or more of the many operato
provided by awk

%))
()
s
o
=
35
-+
>
()]
O
P
=
£
%)
()
=
o
=
3
-+
>
)]
O
>
€
=
=
=

* awk commands can be typed at the command line orin a
script files

* The input lines can come from files, pipes, or standard inp

Awk’s format (continue.)

* Format:
awk 'pattern' filename
awk '{action}' filename

awk 'pattern {action}' filename

0
Q
fd
(@)
=
-
dd
S
0
O
>—
=
=
0
Q
hd
(@)
c
S
)
>
0
O
>
=
=
P
P2

Running an AWK Program

* There are several ways to run an Awk program

awk ‘program’ input_file(s)

MYcsvtu Notes

program and input files are provided as command-line arguments
awk ‘program’

program is a command-line argument; input is taken from standard inp
awk is a filter!)

awk -f program_file_name input_files

=
%)
(]
s
o
=
3
4
>
)]
O
>
€
=
=
=

program is read from a file

Input from Files

* Example 1:

$ cat employees

Chen Cho 5/19/63 203-344-1234
Tom Billy 4/12/45 913-972-4536
Larry White 11/2/54 908-657-2389
Bill Clinton 1/14/60 654-576-4114
Steve Ann 9/15/71 202-545-8899

$ awk '/Tom/' employees
Tom Billy 4/12/45 913-972-4536
$

$76
$102
$54
$201
$58

$102

MYcsvtu Notes

=
%)
()
=
o
=
3
-+
>
)]
O
>
€
=
=
=

Input from Files (continue.)

%))
()
s
o
=
35
-+
>
()]
O
>
=

* Example 2:
$ cat employees =
Chen Cho 5/19/63 203-344-1234 576 g
Tom Billy 4/12/45 913-972-4536 $102 2
Larry White 11/2/54 908-657-2389 $54 7
Bill Clinton 1/14/60 654-576-4114 5201 =
Steve Ann 9/15/71 202-545-8899 $58 3
P2

$ awk '{print $1}' employees
Chen

Tom

Larry

Bill

Steve

Awk’s format (continue.)

* Example 3:

$ cat employees

Chen Cho 5/19/63
Tom Billy 4/12/45
Larry White 11/2/54
Bill Clinton 1/14/60
Steve Ann 9/15/71

203-344-1234
913-972-4536
908-657-2389
654-576-4114
202-545-8899

$76
$102
$54
$201
$58

$ awk '/Steve/{print $1, $2}' employees

Steve Ann

%))
()
s
o
=
35
-+
>
()]
O
P
=
£
%)
()
=
o
=
3
-+
>
)]
O
>
€
=
=
=

Some of the Built-In Variables

* NF - Number of fields in current record
* NR - Number of records read so far

* SO - Entire line

* Sn -Fieldn

* SNF - Last field of current record

%))
(]
s
o
=
3
s
>
()]
O
>_
=
£
%)
(]
-+
o
=
3
=
>
)]
O
>
€
=
=
=

The print function

The default action is to print the lines that are matched to the sc

The print function can also be explicitly used in the action part o
awk as {print}
The print function accepts arguments as
variables,
computed values, or

www.mycsvtunotes.in MYcsvtu Notes

string constants
String must be enclosed in double quotes

Commas are used to separate the arguments: if commas are not
provided, the arguments are concatenated together

The print function (continue.)

* The comma evaluates to the value of the output fie
separator (OFS), which is by default a space

* The output of the print function can be redirected ¢
piped to another program, and another program cz
be piped to awk for printing

www.mycsvtunotes.in MYcsvtu Notes

The print function (continue.)

* Example:

S date
Fri Feb 9 07:49:28 EST 2001

$ date | awk '{ print "Month: " $2
"\nYear: ", $6}'

Month: Feb

Year: 2001

Escape sequences

* Escape sequences are represented by a backslash
a letter or number

Escape sequence | Meaning ;
\b Backspace :qg
\f Form feed 2
\n Newline %
\r Carriage return

\t Tab

\047 Octal value 47, a single quote

\C c represents any other character, e.g., \"

Escape sequences (continue.)

* Example:

$ cat employees

Chen Cho 5/19/63 203-344-1234 $76
Tom Billy 4/12/45 913-972-4536 $102
Larry White 11/2/54 908-657-2389 $54
Bill Clinton 1/14/60 654-576-4114 $201
Steve Ann 9/15/71 202-545-8899 $58

$ awk '/Ann/{print "\t\tHave a nice day, " $1,
$2 "\'!'"}' employees
Have a nice day, Steve Ann!

The printf Function

* The printf function can be used for formatting fancy output

* The printf function returns a formatted string to standard ou
like the printf statement in C.

www.mycsvtunotes.in MYcsvtu Notes

* Unlike the print function, printf does not provide a newline.
escape, \n, must be provided if a newline is desired

* When an argument is printed, the place where the output is
printed is called the field, and when the width of the field is t
number of characters contained in that field

The printf Function (continue.)

* Example 1:

MYcsvtu Notes

$ echo "UNIX" | awk ' {printf "|%-15s|\n", $1}°
| UNIX |

$ echo "UNIX" | awk '{printf " |%15s|\n", $1}'

| UNIX |

$

The printf Function (continue.)

* Example 2: -
$ cat employees g
Chen Cho 5/19/63 203-344-1234 S76 _
Tom Billy 4/12/45 913-972-4536 $102 @
Larry White 11/2/54 908-657-2389 $54 g
Bill Clinton 1/14/60 654-576-4114 $S201 B
Steve Ann 9/15/71 202-545-8899 $58 3
$ awk '{printf "The name is: %-15s ID is s
$8d\n", $1, $3}' employees

The name 1s: Chen ID 1s 5

The name 1s: Tom ID 1s 4

The name 1s: Larry ID 1is 11

The name 1s: Bill ID 1s 1

The name 1s: Steve ID 1s 9

$

The printf Function (continue.)

Conversion Character Definition

C Character

S String

d Decimal number

Id Long decimal number

u Unsigned decimal number

lu Long unsigned decimal
number

The printf Function (continue.)

Conversion Character

Definition

X Hexadecimal number

IX Long hexadecimal number

0 Octal number

lo Long octal number

e Floating point number in
scientific notation (e-notation)

f Floating point number

g Floating point number using

either e or fconversion,
whichever takes the least space

AASFIEERAST AA

The printf Function (continue.)

Printf Format Specifier

What it Does

Given x="Aly=15,z=2.3, and $1 = Bob Smith:

%¢cC

Prints a single ASCII character.

printf("The character is %c|n’,x) prints: The
character is A

%d

Prints a decimal number
printf("The boy is %d years old|n’, y) prints:

%e

Prints the e notation of a number
printf("z is %f|n", z) prints: z is 2.3e+01

O%f

Prints a floating point number
printf('z is %¢ein’, zj prints: z is 4.600000

The boy is 15 years old

The printf Function (continue.)

Printf Format Specifier

What it Does

Given x="A'y=15,z=2.3, and $1 = Bob Smith:

%0

Prints the octal value of a nhumber
printf("y is %o0|n”,y) prints: yis 16

%s

Prints a string of characters

printf("The name of the culprit is %s|n’,
$1) prints: The name of the culprit is
Bob Smith

%X

Prints the hex value of a number

ARARAFIEERASTA

awk commands from within a
file (continue.)

* If awk commands are placed in a file, the -f optio
used with the name of the awk file, followed by t
name of the input file to be processed

* A record is read into awk's buffer and each of the
commands in the awk file are tested and executec
for that record

www.mycsvtunotes.in MYcsvtu Notes

* If an action is not controlled by a pattern, the
default behavior is to print the entire record

awk commands from within a file
(continue.)

* If a pattern does not have an action associated w
it, the default is to print the record where the
pattern matches an input line

%))
(]
s
o
=
3
s
>
()]
O
>_
=
£
%)
(]
-+
o
=
3
=
>
)]
O
>
€
=
=
=

awk commands from within a
file (continue.)

* Example:
Chen Cho 5/19/63 203-344-1234 $76
Tom Billy 4/12/45 913-972-4536 $102
Larry White 11/2/54 908-657-2389 $54
Bill Clinton 1/14/60 654-576-4114 $201
Steve Ann 9/15/71 202-545-8899 $58

S cat awkfile

/Steve/{print "Hello Steve!"}
{print $1, $2, $3}

$ awk -f awkfile employees
Chen Cho 5/19/63

Tom Billy 4/12/45

Larry White 11/2/54

Bill Clinton 1/14/60

Hello Steve!

Steve Ann 9/15/71

Records

* By default, each line is called a record and is
terminated with a newline

%))
(]
s
o
=
3
s
>
()]
O
>_
=
£
%)
(]
-+
o
=
3
=
>
)]
O
>
€
=
=
=

The Record Separator

* By default, the output and input record separator
separator) is a carriage return, stored in the built-i
awk variables ORS and RS, respectively

* The ORS and RS values can be changed, but only in
limited fashion

%))
(]
s
o
=
D
=
>
()]
O
>_
=
£
%)
(]
-+
o
=
3
=
>
)]
O
>
€
=
=
=

The $0 Variable

* An entire record is referenced as SO by awk

* When S0 is changed by substitution or assighment,
value of NF, the number of fields, may be changed

* The newline value is stored in awk's built-in variable
RS, a carriage return by default

%))
()
s
o
=
35
s
>
()]
O
P
=
£
%)
()
-+
o
=
3
4
>
)]
O
>
€
=
=
=

The $0 Variable (continue)

* Example:
$ cat employees
Chen Cho 5/19/63 203-344-1234 $76
Tom Billy 4/12/45 913-972-4536 $102
Larry White 11/2/54 908-657-2389 $54
Bill Clinton 1/14/60 654-576-4114 $201
Steve Ann 9/15/71 202-545-8899 $58
$ awk '{print $0}' employees
Chen Cho 5/19/63 203-344-1234 $76
Tom Billy 4/12/45 913-972-4536 $102
Larry White 11/2/54 908-657-2389 $54
Bill Clinton 1/14/60 654-576-4114 $201

Steve Ann 9/15/71 202-545-8899 $58

The NR Variable

* The number of each record is stored in awk's built-i
variable, NR

* After a record has been processed, the value of NR i
incremented by one

%))
(]
s
o
=
3
s
>
()]
O
>_
=
£
%)
(]
-+
o
=
3
=
>
)]
O
>
€
=
=
=

The NR Variable (continue.)

* Example:
$ cat employees
Chen Cho 5/19/63 203-344-1234 $76
Tom Billy 4/12/45 913-972-4536 $102
Larry White 11/2/54 908-657-2389 $54
Bill Clinton 1/14/60 654-576-4114 $201
Steve Ann 9/15/71 202-545-8899 $58
$ awk '{print NR, $0}' employees
1 Chen Cho 5/19/63 203-344-1234 $76
2 Tom Billy 4/12/45 913-972-4536 $102
3 Larry White 11/2/54 908-657-2389 $54
4 Bill Clinton 1/14/60 654-576-4114 $201
5 Steve Ann 9/15/71 202-545-8899 $58

Fields

* Each record consists of words called fields which, b
default, are separated by white space, that is, blank
spaces or tabs. Each of these words is called a field,
an awk keeps track of the number of fields in its
built-in variable, NF

* The value of NF can vary from line to line, and the
limit is implementation-dependent, typically 100
fields per line

%))
()
s
o
=
35
-+
>
()]
O
P
=
£
%)
()
=
o
=
3
-+
>
)]
O
>
€
=
=
=

Fields (continue))

* Example 1:
$1 $2 $3 $4 $5
Chen Cho 5/19/63 203-344-1234 $76
Tom Billy 4/12/45 913-972-4536 $102
Larry White 11/2/54 908-657-2389 $54
Bill Clinton 1/14/60 654-576-4114 $201
Steve Ann 9/15/71 202-545-8899 $58
$ awk '{print NR, $1, $2, $5}' employees

1 Chen Cho $76
2 Tom Billy $102
3 Larry White $54
4 Bill Clinton $201
5 Steve Ann $58

Fields (continue))

* Example 2:

awk '{print $0, NF}' employees

Chen Cho 5/19/63 203-344-1234 $76 5
Tom Billy 4/12/45 913-972-4536 $102 5
Larry White 11/2/54 908-657-2389 $54 5
Bill Clinton 1/14/60 654-576-4114 $201 5

Steve Ann 9/15/71 202-545-8899 558 5

The Input Field Separator

« awk's built-in variable, FS, holds the value of the
Input field separator.

* When the default value of FS is used, awk separates
fields by spaces and/or tabs, stripping leading blank
and tabs

* The FS can be changed by assigning new value to I
either:

— In a BEGIN statement, or
— at the command line

MYcsvtu Notes

www.mycsvtunotes.in

The Input Field Separator (continue.)

MYcsvtu Notes

» To change the value of FS at the command line, the
option is used, followed by the character representin
the new separator

£
%)
(]
-
o
=
3
=
>
)]
O
>
€
=
=
=

The Input Field Separator (continue.)

« Example:

S cat employees

Chen Cho:5/19/63:203-344-1234:$76

Tom Billy:4/12/45:913-972-4536:5102
Larry White:11/2/54:908-657-2389:554
Bill Clinton:1/14/60:654-576-4114:5201
Steve Ann:9/15/71:202-545-8899:558

$ awk -F: '/Tom Billy/{print $1, $2}'
employees

Tom Billy 4/12/45

-F (FS Field Separator)-f (prog file)

B

The Output Field Separator

The default output field separator Is a single space and Is
stored in awk's internal variable, OFS
The OFS will not be evaluated unless the comma separat
the fields
Example:

$ cat employees

Chen Cho:5/19/63:203-344-1234:3576

Tom Billy:4/12/45:913-972-4536:5102

Larry White:11/2/54:908-657-2389:5$54

Bill Clinton:1/14/60:654-576-4114:$201

Steve Ann:9/15/71:202-545-8899:558

$ awk -F: '/Tom Billy/{print $1 $2 $3 $4}' employees
Tom Billy4/12/45913-972-45365$102

www.mycsvtunotes.in MYcsvtu Notes

Patterns

A pattern consists of
— a regular expression,
— an expression resulting in a true or false conditio
— a combination of these

* When reading a pattern expression, there is an impli
If statement

%))
(]
s
o
=
3
s
>
()]
O
>_
=
£
[0}
()]
s
o
=
3
=
>
)]
O
>
-
=
=
=

Actions

 Actions are statements enclosed within curly braces &
separated by semicolons

 Actions can be simple statements or complex groups
statements

 Statements are separated
— by semicolons, or
— by a newline If placed on their own line

%))
()
s
o
=
=
rus]
>
()]
O
P
=
-
7}
()
s
o
=
3
4
>
)]
O
>
€
=
=
=

Regular Expressions

* Aregular expression to awk Is a pattern that consists
characters enclosed in forward slashes

%))
()
s
o
=
3
s
>
()]
O
P
=
£
%)
()
=
o

« Example 1.

$ awk '/Steve/' employees

Steve Ann 9/15/71 202-545-8899 $58
« Example 2:

$ awk '/Steve/{print $1, $2}' employees
Steve Ann

Regular Expression
Meta characters

A Matches at the beginning of string
$ Matches at the end of string

Matches for a single character
& Matches zero or more of preceding character
+ Matches for one or more of preceding character
? Matches for zero or one of preceding character
[ABC] Matches for any one character in the set of

characters, i.e., A,B, or C

N

Regular Expression Meta characters (con

[MABC] | Matches characters not in the set of
characters, i.e.,A,Bor C

[A-Z] | Matches for any character in the range
from Ato Z

A/B Matches either Aor B

(AB)+ |Matches one or more sets of AB

| * Matches for a literal asterisk

& Used in the replacement to represent wh

_|was found in the search string

ﬂ

Regular Expressions (continue.)

« Example 3:
$ awk '/~Steve/' employees
Steve Ann 9/15/71 202-545-8899 $58

« Example 4:
$ awk '/*[A-Z][a-z]+ /' employees
Chen Cho 5/19/63 203-344-1234 $76
Tom Billy 4/12/45 913-972-4536 $102
Larry White 11/2/54 908-657-2389 $54
Bill Clinton 1/14/60 654-576-4114 $201

Steve Ann 9/15/71 202-545-8899 $58

The Match Operator

« The match operator, the tilde (~), Is used to match an
expression within a record or a field

%))
()
s
o
=
35
-+
>
()]
O
P
=
£
%)
()
=
O
»

« Example 1.
$ cat employees
Chen Cho 5/19/63 203-344-1234 $76
Tom Billy 4/12/45 913-972-4536 $102
Larry White 11/2/54 908-657-2389 $54
Bill Clinton 1/14/60 654-576-4114 $201
Steve Ann 9/15/71 202-545-8899 $58

$ awk '$1l ~ /[Bb]ill/' employees
Bill Clinton 1/14/60 654-576-4114 $201

The Match Operator (continue.)

« Example 2:

$ awk 'Sl '~ /lee$/' employees

Chen Cho 5/19/63 203-344-1234 $76
Tom Billy 4/12/45 913-972-4536 $102
Larry White 11/2/54 908-657-2389 $54
Bill Clinton 1/14/60 654-576-4114 $201

Steve Ann 9/15/71 202-545-8899 $58

0
Q
fd
(@)
=
-
dd
S
0
O
>—
=
=
0
Q
hd
(@)
c
S
)
>
0
O
>
=
=
P
P2

awk Commands in a Script File

When you have multiple awk pattern/action statemen
It Is often easier to put the statements in a script

The script file is a file containing awk comments and
statements

If statements and actions are on the same line, they a
separated by semicolons

Comments are preceded by a pound (#) sign

MYcsvtu Notes

£
%)
()
)
o
=
3
=
>
)]
O
>
€
=
=
=

awk Commands in a Script File
(continue.)

« Example:

$ cat employees

Chen Cho:5/19/63:203-344-1234:576

Tom Billy:4/12/45:913-972-4536:5102

Larry White:11/2/54:908-657-2389:554

Bill Clinton:1/14/60:654-576-4114:5201

Steve Ann:9/15/71:202-545-8899:558

$ cat info

My first awk script by Abdelshakour Abuzneid
Script name: info; Date: February 09, 2001
/Tom/{print "Tom's birthday is "$3}
/Bill/{print NR, $0}

/"Steve/{print "Hi Steve. " S$1 " has a salary of "

"."}

#End of info script

$4

=

awk Commands in a Script File
(continue.)

« Example (continue.):

$ awk -F: -f info employees

Tom's birthday 1s 913-972-4536

2 Tom Billy:4/12/45:913-972-4536:5$102

4 Bill Clinton:1/14/60:654-576-4114:5201
Hi Steve. Steve Ann has a salary of $58.

Comparison Expressions

« Comparison expressions match lines where if the
condition is true, the action is performed
» The value of the expression evaluates true, and O if fa

MYcsvtu Notes

£
[0}
()
-
o
=
3
=
>
)]
O
>
€
=
=
=

Relational Operators

Operator | Meaning Example
< Less than X <Yy
<= Less than or equal to X<=Y
== Equal to X==Y
= Not equal to X!=y
>= Greater than or equal to X>=Yy
> Greater than X >y

~ Matched by regular expression X~ [y]
/v Not matched by regular expression |x !~ /y/

Relational Operators (continue.)

» Example:

$ cat employees

Chen Cho 5/19/63 203-344-1234
Tom Billy 4/12/45 913-972-4536
Larry White 11/2/54 908-657-2389
Bill Clinton 1/14/60 654-576-4114
Steve Ann 9/15/71 202-545-8899
S awk 'S5 == 201' employees

Bill Clinton 1/14/60 654-576-4114
S awk 'S5 > 100' employees

Tom Billy 4/12/45 913-972-4536

$ awk '$2 ~ /Ann/ ' employees
Steve Ann 9/15/71 202-545-8899

76
102
54
201
58

201

102

58

Relational Operators (continue.)

« Example (continue):

$ awk '$2 '~ /Ann/ ' employees

Chen Cho 5/19/63 203-344-1234 76
Tom Billy 4/12/45 913-972-4536 102
Larry White 11/2/54 908-657-2389 54

Bill Clinton 1/14/60 654-576-4114 201

%))
(]
s
o
=
3
s
>
()]
O
>_
=
£
%)
(]
-+
o
=
3
=
>
)]
O
>
€
=
=
=

Conditional Expressions

A conditional expression uses two symbols, the
question mark and the colon, to evaluate expression

e Format:;

conditional expressionl ? expressionZ2 : expressions

Conditional Expressions (continue.)

« Example:

$ awk '{max=($1 > $2) ? $1 : $2; print max}' employees
Cho

Tom
White
Clinton
Steve

Computation

« awk performs all arithmetic in floating point

Operator |Meaning Example
+ Add X+Yy

- Substract X—YV

* Multiply X *y

/ Divide X[y

% Modulus X%y

A Exponentiation |x y

MYcsvtu Notes

£
%)
()
)
o
=
3
=
>
)]
O
>
€
=
=
=

Computation (continue.)

0
)
4
@]
=
>
4=
>
0
O
P

« Example:
S awk 'S5 * §5 > 3500' data.txt

Compound Patterns

« Compounds patterns are expressions that combine
patterns with logical operators

0
Q
)
(@)
=
>
)
>
0
O
P
=

Operator Meaning Example ;
&& Logical AND a&&b g
|| Logical OR allb

! NOT la

Compound Patterns (continue.)

« Example :

S awk 'S2 > 5 && $2 <= 15' employees

$

S awk 'S5 == 1000 || $3 > 50' employees
Steve Ann 9/15/71 202-545-8899 58
$

Range Patterns

» Range patterns match from the first occurrence of one
pattern to the first occurrence of the second pattern, the
match for the next occurrence of the second pattern, etc

« |If the first pattern is matched and the second pattern is
not found, awk will display all lines to the end of the fi

« Example :

ww.mycsvtunotes.in MYcsvtu Notes

$ awk '/Tom/,/Steve/' employees

Tom Billy 4/12/45 913-972-4536 102
Larry White 11/2/54 908-657-2389 54
Bill Clinton 1/14/60 654-576-4114 201
Steve Ann 9/15/71 202-545-8899 58

$

The Awk Utility:
Awk Programming §

Numeric and String Constants

« Numeric constants can be represented as
— Integer like 243
— Floating point numbers like 3.14, or
— Numbers using scientific notation like .723E-1 0
3.4
 Strings, such as Hello are enclosed in double quotes

MYcsvtu Notes

=
%)
(]
-+
o
=
3
4
>
)]
O
>
€
=
=
=

User-Defined Variables

User-defined variables consist of letters, digits, and
underscores, and cannot begin with a digit

Variables in awk are not declared

If the variable is not initialized, awk initializes string
variables to null and numeric variables to zero
Variables are assigned values with awk's assignment
operators

Example :
$ awk '$1 ~ /Tom/ {wage = $5 * 40; print wagel}'

employees
4080

www.mycsvtunotes.in MYcsvtu Notes

Increment and Decrement
Operators

» The expression x++ Is equivalent to x=x+1
* The expression x— Is equivalent to x=x-1
* You can use the increment and decrement operators eit

preceding operator, as in ++x, or after the operator, as X
{x = 1;y = x++,; print x, y}

%))
(]
s
o
=
3
s
>
()]
O
>_
=
=
%)
(]
-+
o
=
3
=
>
)]
O
>
€
=
=
=

name="Nancy” name 1S string

X++ X 1S a number; X 1S
initialized to zero and
incremented by 1

number=35 number 1S a number

Built-in Variables

* Built-in variables have uppercase names. They can
used In expressions and can be reset

Variable Name | Variable Contents

ARGC Number of command line argument
ARGV Array of command line arguments
FILENAME Name of current input file

FNR Record number in current file

FS The input field separator, by default a space

Built-in Variables (continue.)

Variable Name

Variable Contents

NF Number of fields in current record

NR Number of record so far

OFMT Output format for numbers

OFS Output field separator

ORS Output record separator

RLENGTH Length of string matched by match function
RS Input record separator

RSTART Offset of string matched by match function
SUBSEP Subscript separator

Built-in Variables (continue.)

« Example:

$ awk -F: 'Sl == "Steve Ann"{print NR, $1, $2,
SNF}' employees2
5 Steve Ann 9/15/71 $58

BEGIN Patterns

» The BEGIN pattern is followed by an action block t
IS executed before awk processes any lines from the
Input file

» The BEGIN action is often used to change the value
the built-in variables, OFS, RS, FS, and so forth, to
assign initial values to user-defined variables, and to
print headers or titles as part of the output

MYcsvtu Notes

=
%)
()
=
o
=
>
4
>
)]
O
>
€
=
=
=

BEGIN Patterns (continue.)

« Example 1:

$ awk 'BEGIN{FS=":"; OFS="\t"; ORS="\n\n"}{print
$1,$2,$3}' employees?2

Chen Cho 5/19/63 203-344-1234

Tom Billy 4/12/45 913-972-4536

Larry White 11/2/54 908-657-2389

Bill Clinton 1/14/60 654-576-4114

Steve Ann 9/15/71 202-545-8899

$

BEGIN Patterns (continue.)

« Example 2 :

%))
(]
s
o
=
3
s
>
()]
O
>

S awk 'BEGIN{print "Make Year"}'

Make Year

END Patterns

« END patterns do not match any input lines, but executes an
actions that are associated with the END pattern. END patter
are handled after all lines of input have been processed

« Examples:

$ awk 'END{print "The number of records is " NR }'
employees

The number of records 1s 5

$ awk '/Steve/{count++}END{print "Steve was found

" count " times."}' employees
Steve was found 1 times.

$

www.mycsvtunotes.in MYcsvtu Notes

Output Redirection

» When redirecting output from within awk to a UNIX file, the
shell redirection operators are used

 The filename must be enclosed in double quotes

 Once the file is opened, it remains opened until explicitly clo
or the awk program terminates

« Example:

%))
()
s
o
=
35
-+
>
()]
O
P
=
£
%)
(]
e
o
=
3
-+
>
)]
O
>
€
=
=
=

$ awk '$5 >= 70 {print $1, $2 > "'passing_file"" }' employees
$ cat passing_file

Chen Cho

Tom Billy

Bill Clinton

The getline Function

 Reads input from

— The standard input,

—a pipe, or

—a file other than from the current file being process
* |t gets the next line of input and sets the NF, NR and the
FNR built-in variables

%))
(]
s
o
=
3
s
>
()]
O
>
=

www.mycsvtunotes.in

The getline Function (continue.)

« Examples :

$ awk 'BEGIN{ "date" | getline d; print d}' employees2
Fri Feb 9 09:39:53 EST 2001

$ awk 'BEGIN{ "date" | getline d; split(d, mon); print
mon[2]}' employees

Feb

$ awk 'BEGIN{while("ls" | getline) print}’

$ awk 'BEGIN{for (i=0;i<=NR ;i++) {getline ; print }}’
data. txt

UNIX

varfile

varfile?

varfile3

varfiled

varfileb

varfileo6

_l

Pipes

* |f you open a pipe in an awk program, you must clos
It before opening another one

» The command on the right-hand side of the pipe
symbol is enclosed in double quotes

MYcsvtu Notes

=
0
Q
hd
(@)
c
S
)
>
0
O
>
=
=
P
P2

If Statement

 Format:;

If (expression) {
Statement, statement, ...

}

%))
(]
s
o
=
3
s
>
()]
O
>_
=
£
%)
(]
-+
o
=
3
=
>
)]
O
>
€
=
=
=

If/else Statement

 Format:
{If (expression) {
Statement, statement, ...

}

else {
Statement, statement, ...

}
}

%))
(]
s
o
=
3
s
>
()]
O
>_
=
£
%)
(]
-+
o
=
3
=
>
)]
O
>
€
=
=
=

If/else Statement

« Example:

$ awk '{if($6 > 50) print $1 "Too high"; \
> else print "Range is OK"}' names

Range 1s OK

Range 1s OK

Range 1s OK

Range 1s OK

Range 1s OK

$

%))
()
s
o
=
35
-+
>
()]
O
P
=
£
%)
()
=
o
=
3
-+
>
)]
O
>
€
=
=
=

If/else else if Statement

MYcsvtu Notes

www.mycsvtunotes.in

Loops

 Loops are used to iterate through the field within a
record and to loop through the elements of an array in
the END block

MYcsvtu Notes

£
%)
(]
-
o
=
3
=
>
)]
O
>
€
=
=
=

While Loop

 The first step in using a while loop is to set a variab
to an initial value

 The do/while loop is similar to the while loop, excej
that the expression is not tested until the body of the
loop Is executed at least once

MYcsvtu Notes

www.mycsvtunotes.in

While Loop (continue.)

« Example:

S awk '{ i = 1; while (i <= NF) { print NF,
$i; i++}}' names
2 Jhon

smith

alice

cheba

tony

tram

dan

savage

eliza

goldborg

LoD DD DNDDND

for Loop

 for loop requires three expressions within the
parentheses: the initialization expression, the test
expression and the expression to update the variables
within the test expression

« The first statement within the parentheses of the for
loop can perform only one initialization

MYcsvtu Notes

=
5
()
=
o
=
3
-+
>
)]
O
>
€
=
=
=

for LOOP (continue.)

« Example:

S awk '{ i = 1; while (i <= NF) { print NF,
$i; i++}}' names
2 Jhon

smith

alice

cheba

tony

tram

dan

savage

eliza

goldborg

LoD DD DNDDND

break and continue Statement

« The break statement lets you break out of a loop if a ce
condition Is true

« The continue statement causes the loop to skip any
statement that follow if a certain condition is true, and retu
control to the top of the loop, starting at the next iteration
« Example:

0
]
4
@]
=
3
4
>
n
O
>
=
=
7
0]
S
o
c
3
)
>
n
O
>
£
=
s
=

(In Script)
{if ($1 Peter} {next}}
else {print}

¥

next Statement

* The next statement gets the next line of input from the In
file, restarting execution at the top of the awk script

« Example:

(In Script)

1 {for (x = 3; X <= NF; x++)
if ($x < 0) {print “Bottomed out!”’; break}
breaks out of the loop

}

2 {for (x=3; X <= NF; x++)
if ($x==0) { print “Get next item”; continue}
starts next iteration of the for loop

¥

%))
()
s
(@)
=
=}
s
>
()]
O
P
=
£
%)
()
-+
o
=
3
4
>
)]
O
>
€
=
=
=

exit Statement

« The exit statement Is used to terminate the awk
program. It stops processing records, but does not skip
over an END statement

 |f the exit statement is given a value between 0 and
as an argument (exit 1), this value can be printed at the
command line to indicate success or failure by typing:

MYcsvtu Notes

£
%)
()
)
o
N
~ |
=
>
)]
O
>
€
=
=
=

Arrays

« Arrays in awk are called associative arrays becaus
the subscripts can be either
—number, or
—string
* The keys and values are stored internally Is a table
where a hashing algorithm is applied to the value ¢
the key In question
* An array Is created by using it, and awk can infer
whether or not Is used to store numbers or strings

www.mycsvtunotes.in MYcsvtu Notes

Arrays (continue.)

« Array elements are initialized with
—numeric value, and
You do not have to declare the size of an array
« awk arrays are used to collect information from
records and may be used for accumulating totals,
counting words, tracking the number of times a
pattern occurred

%))
()
s
o
=
35
-+
>
()]
O
P
=
£
%)
()
=
o
=
3
-+
>
)]
O
>
€
=
=
=

Arrays (continue.)

« Example:

$ cat employees

Chen Cho 5/19/63 203-344-1234 76

Tom Billy 4/12/45 913-972-4536 102
Larry White 11/2/54 908-657-2389 54

Bill Clinton 1/14/60 654-576-4114 201
Steve Ann 9/15/71 202-545-8899 58

$ awk '{name[NR]=$2};END{for(i=1l; i<=5;i++)
print i1, name[i]}' data.txt

Cho

Billy

White

Clinton

Ann

g s w N

Arrays (continue.)

« Example:

S awk '{id[NR]=$3};END{for(x = 1; x<= NR;
x++)print id[x]}' data.txt

5/19/63

4/12/45

11/2/54

1/14/60

9/15/71

S

Using Field Values as Array
Subscripts (continue.)

« Example 2:
$ cat db

Tom Jones

Mary Adams

Sally Chang

Billy Black

Tom Savage

$ awk '{count[$2]++}END{for (name in count)print name,
count[name] }' db
Chang 1

Black 1

Jones 1

Savage 1

Adams 1

$

Arrays and the split Function

« awk’s built-in split function allows you to split string
Into words and store them In an array

* You can define the field separator or use the value
currently stored in FS

e Format:
split(string, array)

MYcsvtu Notes

=
%)
(]
-+
o
=
3
4
>
)]
O
>
€
=
=
=

The delete Function

» The delete function removes an array elements

MYcsvtu Notes

=
0
Q
hd
(@)
c
S
)
>
0
O
>
=
=
P
P2

ARGV

« Command line arguments are available to awk with
built-in array called ARGV

» These arguments include the command awk, but not
any of the options passed to awk

« The index of the ARGV array starts at zero

MYcsvtu Notes

www.mycsvtunotes.in

ARGC

« ARGC is a built-in variable that contains the numbe
command line arguments
« Example:

$ cat myscript
#This script is called myscript

www.mycsvtunotes.in MYcsvtu Notes

BEGIN({
for (1 = 0; i< ARGC; i++) {
printf ("argv[%d] is %s\n", i,
ARGVI[i])
}
printf ("The number of arguments, ARGC=%d\n",
ARGC)

}

ARGC (continue.)

« Example:

S awk -f ARGVS datafile "Peter Pan" 12
argv([0] 1s awk

argv[l] 1s datafile

argv[2] 1s Peter Pan

argv[3] 1s 12

The number of arguments, ARGC=4

$

The length Function

* The length function returns the number of characte
In a string

« Without an argument, the length function returns th
number of characters in a record

* Format:
length (string)
length

MYcsvtu Notes

=
0
Q
hd
(@)
c
S
)
>
0
O
>
=
=
P
P2

The length Function

« Example

$ awk ‘END{ print length("hello") }' data.txt
5

The match Function

* The match function returns the index where the
regular expression is found in the string, or zero if not
found

« The match function sets the built-in variable RSTAR
to the starting position of the substring within the string
and RLENGTH to the number of characters to the end ¢
the substring

e Format:
match (string, regular expression)

MYcsvtu Notes

www.mycsvtunotes.in

