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1.   DATA REPRESENTATION 

 

 

Information that a Computer is dealing with 

 

         * Data 

             - Numeric Data 

                   Numbers( Integer, real) 

             - Non-numeric Data 

                   Letters, Symbols 

 

         * Relationship between data elements 

             - Data Structures 

                   Linear Lists, Trees, Rings, etc 

 

         * Program (Instruction) 

                       

 

NUMERIC DATA REPRESENTATION 

 

 

Data  

 Numeric data – numbers (integer, real) 

        Non-numeric data - symbols, letters 

 

Number System 

 Nonpositional number system 

        - Roman number system 
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 Positional number system 

        - Each digit position has a value called a weight  associated with it 

        - Decimal, Octal, Hexadecimal, Binary 

Base (or radix) R number 

    - Uses R distinct symbols for each digit 

    - Example   AR  = an-1 an-2 ... a1 a0 .a-1…a-m 

 

 

 

REPRESENTATION OF  NUMBERS -  POSITIONAL  NUMBERS 

 

Decimal   Binary   Octal   Hexadecimal 

   00              0000            00                0 

    01              0001            01                1 

    02              0010            02                2 

    03              0011            03                3 

    04              0100            04                4 

    05              0101            05                5 

    06              0110            06                6 

    07              0111            07                7 

    08              1000            10                8 

    09              1001            11                9 

    10              1010            12                A 

    11              1011            13                B 

    12              1100            14                C 

    13              1101            15                D 

    14              1110            16                E 

    15              1111            17                F 

 

 

 

Convert 41.687510 to base 2 

                                                                          Fraction = 0.6875 

0.6875 

x       2 

1.3750 

x       2 

0.7500 

x       2 

1.5000 

 x      2 

1.0000 

 

Integer = 41 

41 

20   1 
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10   0 

  5   0 

  2   1 

  1   0 

  0   1 

(41)10    = (101001)2                                   (0.6875)10    = (0.1011)2 

 

(41.6875)10 = (101001.1011)2 

 

2.  COMPLEMENT OF  NUMBERS 

 

Two types of complements for base R number system:   

        -  R's complement and (R-1)'s complement 

 

The (R-1)'s Complement   

    Subtract each digit of a number from (R-1)  

 Example   

          - 9's complement of 83510 is 16410  

     - 1's complement of 10102 is 01012(bit by bit complement operation) 

 

The R's Complement  

 Add 1 to the low-order digit of its (R-1)'s complement 

 

              

Example 

      - 10's complement of 83510 is 16410 + 1 = 16510 

      - 2's complement of 10102 is 01012 + 1 = 01102 

 

 

3.  FIXED POINT  NUMBERS 

 

 

Numbers: Fixed Point Numbers and Floating Point Numbers 

 

Binary Fixed-Point Representation 

 

      X = xnxn-1xn-2 ... x1x0. x-1x-2 ... x-m 

 

      Sign Bit(xn):  0 for positive - 1 for negative 

 

      Remaining Bits(xn-1xn-2 ... x1x0. x-1x-2 ... x-m) 

 

SIGNED NUMBERS 

Need to be able to represent both positive and negative numbers 

 

 - Following 3 representations 
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Signed magnitude representation 

 Signed 1's complement representation 

 Signed 2's complement representation 

 

 

Example:  Represent +9 and -9 in 7 bit-binary number 

 

         Only one way to represent +9  ==> 0 001001 

         Three different ways to represent -9: 

              In signed-magnitude:           1 001001 

              In signed-1's complement:  1 110110 

              In signed-2's complement:  1 110111 

 

 

In general, in computers, fixed point numbers are represented  

 either integer part only or fractional part only. 

 

 

CHARACTERISTICS OF 3 DIFFERENT  REPRESENTATIONS 

 

 

Complement 

 Signed magnitude: Complement only the sign bit 

      Signed 1's complement: Complement all the bits including sign bit 

 Signed 2's complement: Take the 2's complement of the number,    

  

              

     including its sign bit. 

             

 

Maximum and Minimum Representable Numbers and Representation of Zero 

 

 

Signed Magnitude 

 

                 Max:  2n - 2-m     011 ... 11.11 ... 1 

                 Min: -(2n - 2-m)    111 ... 11.11 ... 1 

                 Zero:    +0          000 ... 00.00 ... 0 

                               -0          100 ... 00.00 ... 0 

 

Signed 1’s Complement 

 

                 Max:  2n - 2-m        011 ... 11.11 ... 1 

                 Min:  -(2n - 2-m)   100 ... 00.00 ... 0 
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                 Zero:    +0          000 ... 00.00 ... 0 

                               -0          111 ... 11.11 ... 1 

 

Signed 2’s Complement 

 

                 Max:  2n - 2-m        011 ... 11.11 ... 1 

                 Min:   -2n            100 ... 00.00 ... 0 

                 Zero:     0           000 ... 00.00 ... 0 

 

 

ARITHMETIC ADDITION:  SIGNED MAGNITUDE 

 

 

1] Compare their signs 

[2] If two signs are the same ,  

     ADD the two magnitudes - Look out for an overflow 

[3] If not the same, compare the relative magnitudes of the numbers and  

      then SUBTRACT  the smaller from the larger --> need a subtractor to add 

[4] Determine the sign of the result 

 

 

 

Add the two numbers, including their sign bit, and discard any carry out of leftmost (sign) bit - Look out for 

an overflow 

 

ARITHMETIC SUBTRACTION 

 

Arithmetic Subtraction in 2’s complement 

 

Take the complement of the subtrahend (including the sign bit) 

and add it to the minuend including the sign bits. 

 

(  A ) - ( - B )  = (  A ) +  B  

               (  A ) -  B = (  A ) + (  - B ) 

 

4.  FLOATING POINT  NUMBER  REPRESENTATION 

 

* The location of the fractional point is not fixed to a certain location 

* The range of the representable numbers is wide 

    

    F = EM 

 

          mn  ekek-1 ... e0   mn-1mn-2    …   m0 . m-1   …   m-m 

sign  exponent              mantissa 

 

- Mantissa 
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      Signed fixed point number, either an integer or a fractional number 

 

- Exponent 

      Designates the position of the radix point 

          

 

Decimal Value 

 

V(F) = V(M) * RV(E) 

M:  Mantissa 

E:   Exponent 

R:  Radix 

 

 CHARACTERISTICS OF FLOATING POINT NUMBER REPRESENTATIONS 

 

Normal Form 

 

     - There are many different floating point number representations of  

 the same number 

       → Need for a unified representation in a given computer 

  

     - the most significant position of the mantissa contains a non-zero digit 

 

 

Representation of Zero 

 

     - Zero 

           Mantissa = 0 

 

     - Real Zero 

           Mantissa = 0 

           Exponent 

                         = smallest representable number 

                            which is represented as 

                            00 ... 0 

                             Easily identified by the hardware 

 

 

5.  OTHER DECIMAL CODES 

 

 

Decimal   BCD (8421)     2421      84-2-1    Excess-3 

      0        0000        0000    0000     0011 

      1        0001        0001    0111     0100 

      2        0010        0010    0110     0101 

      3        0011        0011    0101     0110 
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      4        0100        0100    0100     0111 

      5        0101        1011    1011     1000 

      6        0110        1100    1010     1001 

      7        0111        1101    1001     1010 

      8        1000        1110    1000     1011 

      9        1001        1111    1111     1100 

 

Note: 8,4,2,-2,1,-1 in this table is the weight  

associated with each bit position. 

 

d3 d2 d1 d0:  symbol in the codes 

 

    BCD:  d3 x 8  +  d2 x 4  +  d1 x 2  +  d0 x 1 

                        8421 code. 

    2421:   d3 x 2  +  d2 x 4  +  d1 x 2  +  d0 x 1 

    84-2-1: d3 x 8  +  d2 x 4  +  d1 x (-2)  +  d0 x (-1) 

    Excess-3:  BCD + 3     

 

GRAY CODE 

 

Characterized by having their representations of the binary integers differ  

 in only one digit between consecutive integers 

 

* Useful in some applications 

 

 

4-bit Gray codes 

Decimal              Gray                     Binary 

    no    g3   g2   g1   g0         b3   b2   b1   b0 

0           0    0    0    0            0    0    0    0 

  1          0    0    0    1            0    0    0    1 

  2          0    0    1    1            0    0    1    0 

  3          0    0    1    0            0    0    1    1 

  4          0    1    1    0            0    1    0    0 

  5          0    1    1    1            0    1    0    1 

  6          0    1    0    1            0    1    1    0   

  7          0    1    0    0            0    1    1    1 

  8          1    1    0    0            1    0    0    0 

  9          1    1    0    1            1    0    0    1 

10          1    1    1    1            1    0    1    0 

11          1    1    1    0            1    0    1    1 

12          1    0    1    0            1    1    0    0 

13          1    0    1    1            1    1    0    1 

14          1    0    0    1            1    1    1    0 

15          1    0    0    0            1    1    1    1 
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6.  ERROR  DETECTING  CODES 

 

 

Parity System 

 

      - Simplest method for error detection  

      - One parity  bit attached to the information  

      - Even Parity  and Odd Parity 

 

         Even Parity 

            - One bit is attached to the information so that 

               the total number of 1 bits is an even number 

 

                      1011001 0 

                      1010010 1 

 

         Odd Parity 

            - One bit is attached to the information so that 

               the total number of 1 bits is an odd number 

 

                      1011001 1 

                      1010010 0 

 

Error detection techniques 

 

 ·Parity (VRC) 

 ·Longitudinal Redundancy Checks (LRC) 

 ·Cyclic Redundancy Checks (CRC) 

 Checksum 

 

• Data transmission can contain errors 

– Single-bit 

– Burst errors of length n  

(n: distance between the first and last errors in data block) 

• How to detect errors 

– If only data is transmitted, errors cannot be detected 

 Send more information with data that satisfies a special relationship 

 Add redundancy 

 

 

 

 

• Vertical Redundancy Check (VRC) 

 



MYcsvtu Notes 

 9 

– Append a single bit at the end of data block such that the number of ones is even 

 Even Parity (odd parity is similar) 

0110011  01100110 

–  

0110001  01100011 

– VRC is also known as Parity Check 

– Performance: 

» Detects all odd-number errors in a data block 

 

 

• Longitudinal Redundancy Check (LRC) 
– Organize data into a table and create a parity for each column 

 

 
 

 

 

 

 Cyclic Redundancy Check 
 

 

 

 

 

Cyclic Redundancy Check (CRC) 

• Parity check is based on addition; CRC is based on binary division 

• A sequence of redundant bits (a CRC or CRC remainder) is appended to the end of the data unit 

• These bits are later used in calculations to detect whether or not an error had occurred 

 

CRC Steps 

• On sender’s end, data unit is divided by a predetermined divisor; remainder is the CRC 

 

11100111  11011101  00111001  
10101001 

11100111 
11011101 
00111001 
10101001 

10101010 

11100111  11011101  00111001  10101001  
10101010 Original Data LRC 
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• When appended to the data unit, it should be exactly divisible by a second predetermined binary 

number 

• At receiver’s end, data stream is divided by same number 

• If no remainder, data unit is assumed to be error-free 

 

 

CRC Steps 

 

• On sender’s end, data unit is divided by a predetermined divisor; remainder is the CRC 

• When appended to the data unit, it should be exactly divisible by a second predetermined binary 

number 

• At receiver’s end, data stream is divided by same number 

• If no remainder, data unit is assumed to be error-free 

 

 

CRC Generator 

 

• Uses modulo-2 division 

• Resulting remainder is the CRC 

 

 
 

 

CRC Checker 

 

• Performed by receiver 

• Data is appended with CRC 

• Same modulo-2 division 

• If remainder is 0, data are accepted 
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• Otherwise, an error has occurred 

 

 

 
CRC Checker 

 

• Performed by receiver 

• Data is appended with CRC 

• Same modulo-2 division 

• If remainder is 0, data are accepted 

• Otherwise, an error has occurred 
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Polynomials 

• Used to represent CRC generator 

• Cost effective method for performing calculations quickly 

 

 
 

CRC Performance 

 

• Can detect all burst errors affecting an odd number of bits 

• Can detect all burst errors of length less than or equal to degree of polynomial 

• Can detect with high probability burst errors of length greater than degree of the polynomial 

 

 Checksum 
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• Performed by higher-layer protocols 

• Also based on concept of redundancy 

 

Checksum Generator 

 

• At sender, checksum generator subdivides data unit into k equal segments of n bits 

• Segments are added together using one’s complement arithmetic to get the sum 

• Sum is complemented and becomes the checksum, appended to the end of the data 

 

Checksum Checker 

 

• Receiver subdivides data unit in k sections of n bits 

• Sections are added together using one’s complement to get the sum 

• Sum is complemented 

• If result is zero, data are accepted; otherwise, rejected 

 

  Performance 

• Detects all errors involving odd number of bits, most errors involving even number of bits 

• Since checksum retains all carries, errors affecting an even number of bits would still change the 

value of the next higher column and the error would be detected 

• If a bit inversion is balanced by an opposite bit inversion, the error is invisible 

 

Error Correction 

 

• Requires more redundancy bits; must know not only that an error had occurred, but where the error 

occurred in order to correct it 

• Correction simply involves flipping the bit 

• Hamming code may be applied to identify location where error occurred by strategically placed 

redundancy bits 

 

Redundancy Bits 

 

 

 
Example Hamming Code 

 

• For a seven-bit data sequence 

 

r1: bits 1, 3, 5, 7, 9, 11 

r2: bits 2, 3, 6, 7, 10, 11 

r3: bits 4, 5, 6, 7 

r4: bits 8, 9, 10, 11 
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Redundancy Bits 

 

 
 

 

 

 

 

Example Hamming Code 

 

 

 
 

 

 

Example Hamming Code 
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Redundancy in bit calculation 
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Error Detection using Hamming  
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Burst Error Correction 

 

• By rearranging the order of bit transmission of the data units, the Hamming code can correct burst 

errors 

• Organize n units in a column and send first bit of each, followed by second bit of each, and so on 

• Hamming scheme then allows us to correct the corrupted bit in each unit 

 

 

 

 


