
MYcsvtu Notes

 1

DATA REPRESENTATION

Data Types

Complements

Fixed Point Representations

Floating Point Representations

Other Binary Codes

Error Detection Codes

Hamming Codes

1. DATA REPRESENTATION

Information that a Computer is dealing with

 * Data

 - Numeric Data

 Numbers(Integer, real)

 - Non-numeric Data

 Letters, Symbols

 * Relationship between data elements

 - Data Structures

 Linear Lists, Trees, Rings, etc

 * Program (Instruction)

NUMERIC DATA REPRESENTATION

Data

 Numeric data – numbers (integer, real)

 Non-numeric data - symbols, letters

Number System

 Nonpositional number system

 - Roman number system

MYcsvtu Notes

 2

 Positional number system

 - Each digit position has a value called a weight associated with it

 - Decimal, Octal, Hexadecimal, Binary

Base (or radix) R number

 - Uses R distinct symbols for each digit

 - Example AR = an-1 an-2 ... a1 a0 .a-1…a-m

REPRESENTATION OF NUMBERS - POSITIONAL NUMBERS

Decimal Binary Octal Hexadecimal

 00 0000 00 0

 01 0001 01 1

 02 0010 02 2

 03 0011 03 3

 04 0100 04 4

 05 0101 05 5

 06 0110 06 6

 07 0111 07 7

 08 1000 10 8

 09 1001 11 9

 10 1010 12 A

 11 1011 13 B

 12 1100 14 C

 13 1101 15 D

 14 1110 16 E

 15 1111 17 F

Convert 41.687510 to base 2

 Fraction = 0.6875

0.6875

x 2

1.3750

x 2

0.7500

x 2

1.5000

 x 2

1.0000

Integer = 41

41

20 1

MYcsvtu Notes

 3

10 0

 5 0

 2 1

 1 0

 0 1

(41)10 = (101001)2 (0.6875)10 = (0.1011)2

(41.6875)10 = (101001.1011)2

2. COMPLEMENT OF NUMBERS

Two types of complements for base R number system:

 - R's complement and (R-1)'s complement

The (R-1)'s Complement

 Subtract each digit of a number from (R-1)

 Example

 - 9's complement of 83510 is 16410

 - 1's complement of 10102 is 01012(bit by bit complement operation)

The R's Complement

 Add 1 to the low-order digit of its (R-1)'s complement

Example

 - 10's complement of 83510 is 16410 + 1 = 16510

 - 2's complement of 10102 is 01012 + 1 = 01102

3. FIXED POINT NUMBERS

Numbers: Fixed Point Numbers and Floating Point Numbers

Binary Fixed-Point Representation

 X = xnxn-1xn-2 ... x1x0. x-1x-2 ... x-m

 Sign Bit(xn): 0 for positive - 1 for negative

 Remaining Bits(xn-1xn-2 ... x1x0. x-1x-2 ... x-m)

SIGNED NUMBERS

Need to be able to represent both positive and negative numbers

 - Following 3 representations

MYcsvtu Notes

 4

Signed magnitude representation

 Signed 1's complement representation

 Signed 2's complement representation

Example: Represent +9 and -9 in 7 bit-binary number

 Only one way to represent +9 ==> 0 001001

 Three different ways to represent -9:

 In signed-magnitude: 1 001001

 In signed-1's complement: 1 110110

 In signed-2's complement: 1 110111

In general, in computers, fixed point numbers are represented

 either integer part only or fractional part only.

CHARACTERISTICS OF 3 DIFFERENT REPRESENTATIONS

Complement

 Signed magnitude: Complement only the sign bit

 Signed 1's complement: Complement all the bits including sign bit

 Signed 2's complement: Take the 2's complement of the number,

 including its sign bit.

Maximum and Minimum Representable Numbers and Representation of Zero

Signed Magnitude

 Max: 2n - 2-m 011 ... 11.11 ... 1

 Min: -(2n - 2-m) 111 ... 11.11 ... 1

 Zero: +0 000 ... 00.00 ... 0

 -0 100 ... 00.00 ... 0

Signed 1’s Complement

 Max: 2n - 2-m 011 ... 11.11 ... 1

 Min: -(2n - 2-m) 100 ... 00.00 ... 0

MYcsvtu Notes

 5

 Zero: +0 000 ... 00.00 ... 0

 -0 111 ... 11.11 ... 1

Signed 2’s Complement

 Max: 2n - 2-m 011 ... 11.11 ... 1

 Min: -2n 100 ... 00.00 ... 0

 Zero: 0 000 ... 00.00 ... 0

ARITHMETIC ADDITION: SIGNED MAGNITUDE

1] Compare their signs

[2] If two signs are the same ,

 ADD the two magnitudes - Look out for an overflow

[3] If not the same, compare the relative magnitudes of the numbers and

 then SUBTRACT the smaller from the larger --> need a subtractor to add

[4] Determine the sign of the result

Add the two numbers, including their sign bit, and discard any carry out of leftmost (sign) bit - Look out for

an overflow

ARITHMETIC SUBTRACTION

Arithmetic Subtraction in 2’s complement

Take the complement of the subtrahend (including the sign bit)

and add it to the minuend including the sign bits.

( A) - (- B) = ( A) + B

 ( A) - B = ( A) + (- B)

4. FLOATING POINT NUMBER REPRESENTATION

* The location of the fractional point is not fixed to a certain location

* The range of the representable numbers is wide

 F = EM

 mn ekek-1 ... e0 mn-1mn-2 … m0 . m-1 … m-m

sign exponent mantissa

- Mantissa

MYcsvtu Notes

 6

 Signed fixed point number, either an integer or a fractional number

- Exponent

 Designates the position of the radix point

Decimal Value

V(F) = V(M) * RV(E)

M: Mantissa

E: Exponent

R: Radix

 CHARACTERISTICS OF FLOATING POINT NUMBER REPRESENTATIONS

Normal Form

 - There are many different floating point number representations of

 the same number

 → Need for a unified representation in a given computer

 - the most significant position of the mantissa contains a non-zero digit

Representation of Zero

 - Zero

 Mantissa = 0

 - Real Zero

 Mantissa = 0

 Exponent

 = smallest representable number

 which is represented as

 00 ... 0

  Easily identified by the hardware

5. OTHER DECIMAL CODES

Decimal BCD (8421) 2421 84-2-1 Excess-3

 0 0000 0000 0000 0011

 1 0001 0001 0111 0100

 2 0010 0010 0110 0101

 3 0011 0011 0101 0110

MYcsvtu Notes

 7

 4 0100 0100 0100 0111

 5 0101 1011 1011 1000

 6 0110 1100 1010 1001

 7 0111 1101 1001 1010

 8 1000 1110 1000 1011

 9 1001 1111 1111 1100

Note: 8,4,2,-2,1,-1 in this table is the weight

associated with each bit position.

d3 d2 d1 d0: symbol in the codes

 BCD: d3 x 8 + d2 x 4 + d1 x 2 + d0 x 1

  8421 code.

 2421: d3 x 2 + d2 x 4 + d1 x 2 + d0 x 1

 84-2-1: d3 x 8 + d2 x 4 + d1 x (-2) + d0 x (-1)

 Excess-3: BCD + 3

GRAY CODE

Characterized by having their representations of the binary integers differ

 in only one digit between consecutive integers

* Useful in some applications

4-bit Gray codes

Decimal Gray Binary

 no g3 g2 g1 g0 b3 b2 b1 b0

0 0 0 0 0 0 0 0 0

 1 0 0 0 1 0 0 0 1

 2 0 0 1 1 0 0 1 0

 3 0 0 1 0 0 0 1 1

 4 0 1 1 0 0 1 0 0

 5 0 1 1 1 0 1 0 1

 6 0 1 0 1 0 1 1 0

 7 0 1 0 0 0 1 1 1

 8 1 1 0 0 1 0 0 0

 9 1 1 0 1 1 0 0 1

10 1 1 1 1 1 0 1 0

11 1 1 1 0 1 0 1 1

12 1 0 1 0 1 1 0 0

13 1 0 1 1 1 1 0 1

14 1 0 0 1 1 1 1 0

15 1 0 0 0 1 1 1 1

MYcsvtu Notes

 8

6. ERROR DETECTING CODES

Parity System

 - Simplest method for error detection

 - One parity bit attached to the information

 - Even Parity and Odd Parity

 Even Parity

 - One bit is attached to the information so that

 the total number of 1 bits is an even number

 1011001 0

 1010010 1

 Odd Parity

 - One bit is attached to the information so that

 the total number of 1 bits is an odd number

 1011001 1

 1010010 0

Error detection techniques

 ·Parity (VRC)

 ·Longitudinal Redundancy Checks (LRC)

 ·Cyclic Redundancy Checks (CRC)

 Checksum

• Data transmission can contain errors

– Single-bit

– Burst errors of length n

(n: distance between the first and last errors in data block)

• How to detect errors

– If only data is transmitted, errors cannot be detected

 Send more information with data that satisfies a special relationship

 Add redundancy

• Vertical Redundancy Check (VRC)

MYcsvtu Notes

 9

– Append a single bit at the end of data block such that the number of ones is even

 Even Parity (odd parity is similar)

0110011  01100110

–

0110001  01100011

– VRC is also known as Parity Check

– Performance:

» Detects all odd-number errors in a data block

• Longitudinal Redundancy Check (LRC)
– Organize data into a table and create a parity for each column

 Cyclic Redundancy Check

Cyclic Redundancy Check (CRC)

• Parity check is based on addition; CRC is based on binary division

• A sequence of redundant bits (a CRC or CRC remainder) is appended to the end of the data unit

• These bits are later used in calculations to detect whether or not an error had occurred

CRC Steps

• On sender’s end, data unit is divided by a predetermined divisor; remainder is the CRC

11100111 11011101 00111001
10101001

11100111
11011101
00111001
10101001

10101010

11100111 11011101 00111001 10101001
10101010 Original Data LRC

MYcsvtu Notes

 10

• When appended to the data unit, it should be exactly divisible by a second predetermined binary

number

• At receiver’s end, data stream is divided by same number

• If no remainder, data unit is assumed to be error-free

CRC Steps

• On sender’s end, data unit is divided by a predetermined divisor; remainder is the CRC

• When appended to the data unit, it should be exactly divisible by a second predetermined binary

number

• At receiver’s end, data stream is divided by same number

• If no remainder, data unit is assumed to be error-free

CRC Generator

• Uses modulo-2 division

• Resulting remainder is the CRC

CRC Checker

• Performed by receiver

• Data is appended with CRC

• Same modulo-2 division

• If remainder is 0, data are accepted

MYcsvtu Notes

 11

• Otherwise, an error has occurred

CRC Checker

• Performed by receiver

• Data is appended with CRC

• Same modulo-2 division

• If remainder is 0, data are accepted

• Otherwise, an error has occurred

MYcsvtu Notes

 12

Polynomials

• Used to represent CRC generator

• Cost effective method for performing calculations quickly

CRC Performance

• Can detect all burst errors affecting an odd number of bits

• Can detect all burst errors of length less than or equal to degree of polynomial

• Can detect with high probability burst errors of length greater than degree of the polynomial

 Checksum

MYcsvtu Notes

 13

• Performed by higher-layer protocols

• Also based on concept of redundancy

Checksum Generator

• At sender, checksum generator subdivides data unit into k equal segments of n bits

• Segments are added together using one’s complement arithmetic to get the sum

• Sum is complemented and becomes the checksum, appended to the end of the data

Checksum Checker

• Receiver subdivides data unit in k sections of n bits

• Sections are added together using one’s complement to get the sum

• Sum is complemented

• If result is zero, data are accepted; otherwise, rejected

 Performance

• Detects all errors involving odd number of bits, most errors involving even number of bits

• Since checksum retains all carries, errors affecting an even number of bits would still change the

value of the next higher column and the error would be detected

• If a bit inversion is balanced by an opposite bit inversion, the error is invisible

Error Correction

• Requires more redundancy bits; must know not only that an error had occurred, but where the error

occurred in order to correct it

• Correction simply involves flipping the bit

• Hamming code may be applied to identify location where error occurred by strategically placed

redundancy bits

Redundancy Bits

Example Hamming Code

• For a seven-bit data sequence

r1: bits 1, 3, 5, 7, 9, 11

r2: bits 2, 3, 6, 7, 10, 11

r3: bits 4, 5, 6, 7

r4: bits 8, 9, 10, 11

MYcsvtu Notes

 14

Redundancy Bits

Example Hamming Code

Example Hamming Code

MYcsvtu Notes

 15

Redundancy in bit calculation

MYcsvtu Notes

 16

Error Detection using Hamming

MYcsvtu Notes

 17

Burst Error Correction

• By rearranging the order of bit transmission of the data units, the Hamming code can correct burst

errors

• Organize n units in a column and send first bit of each, followed by second bit of each, and so on

• Hamming scheme then allows us to correct the corrupted bit in each unit

