DATA REPRESENTATION

Data Types

Complements

Fixed Point Representations

Floating Point Representations

Other Binary Codes

Error Detection Codes

Hamming Codes

1. DATA REPRESENTATION

Information that a Computer is dealing with

- * Data
 - Numeric Data Numbers(Integer, real)
 Non-numeric Data
 - Letters, Symbols
- * Relationship between data elements - Data Structures Linear Lists, Trees, Rings, etc

* Program (Instruction)

NUMERIC DATA REPRESENTATION

Data

Numeric data – numbers (integer, real) Non-numeric data - symbols, letters

Number System

Nonpositional number system - Roman number system

Positional number system

- Each digit position has a value called a *weight* associated with it
- Decimal, Octal, Hexadecimal, Binary

Base (or radix) R number

- Uses R distinct symbols for each digit
- Example AR = an-1 an-2 ... a1 a0 .a-1...a-m

REPRESENTATION OF NUMBERS - POSITIONAL NUMBERS

Decimal	Binary Octal	Hexa	decimal
00	0000	00	0
01	0001	01	1
02	0010	02	2
03	0011	03	3
04	0100	04	4
05	0101	05	5
06	0110	06	6
07	0111	07	7
08	1000	10	8
09	1001	11	9
10	1010	12	А
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	E
15	1111	17	F

Convert 41.687510 to base 2

Fraction = 0.6875

x 2
0.7500
x 2
1.5000
x 2
1.0000
Integer $= 41$
41
20 1

0.6875 x 2

x 2 1.3750

(0.6875)10 = (0.1011)2

(41.6875)10 = (101001.1011)2

2. COMPLEMENT OF NUMBERS

Two types of complements for base R number system:

- R's complement and (R-1)'s complement

The (R-1)'s Complement

Subtract each digit of a number from (R-1)

Example

- 9's complement of 83510 is 16410

- 1's complement of 10102 is 01012(bit by bit complement operation)

The R's Complement

Add 1 to the low-order digit of its (R-1)'s complement

Example

- 10's complement of 83510 is 16410 + 1 = 16510

- 2's complement of 10102 is 01012 + 1 = 01102

3. FIXED POINT NUMBERS

Numbers: Fixed Point Numbers and Floating Point Numbers

Binary Fixed-Point Representation

 $X = xnxn-1xn-2 \dots x1x0. x-1x-2 \dots x-m$

Sign Bit(xn): 0 for positive - 1 for negative

Remaining Bits(xn-1xn-2 ... x1x0. x-1x-2 ... x-m)

SIGNED NUMBERS

Need to be able to represent both *positive* and *negative* numbers

- Following 3 representations

Signed magnitude representation Signed 1's complement representation Signed 2's complement representation

Example: Represent +9 and -9 in 7 bit-binary number

Only one way to represent +9 ==> 0 001001 Three different ways to represent -9: In signed-magnitude: 1 001001 In signed-1's complement: 1 110110 In signed-2's complement: 1 110111

In general, in computers, fixed point numbers are represented either integer part only or fractional part only.

CHARACTERISTICS OF 3 DIFFERENT REPRESENTATIONS

Complement

Signed magnitude:Complement only the sign bitSigned 1's complement:Complement all the bits including sign bitSigned 2's complement:Take the 2's complement of the number,

including its sign bit.

Maximum and Minimum Representable Numbers and Representation of Zero

Signed Magnitude

Max: 2n - 2-m 011 ... 11.11 ... 1 Min: -(2n - 2-m) 111 ... 11.11 ... 1 Zero: +0 000 ... 00.00 ... 0 -0 100 ... 00.00 ... 0

Signed 1's Complement

Max: 2n - 2-m 011 ... 11.11 ... 1 Min: -(2n - 2-m) 100 ... 00.00 ... 0

Zero:	+0	000 00.00 0
	-0	111 11.11 1

Signed 2's Complement

Max:	2n - 2-m	011 11.11 1
Min:	-2n	100 00.00 0
Zero:	0	000 00.00 0

ARITHMETIC ADDITION: SIGNED MAGNITUDE

1] Compare their signs

- [2] If two signs are the *same*,
 - ADD the two magnitudes Look out for an overflow
- [3] If *not the same*, compare the relative magnitudes of the numbers and then *SUBTRACT* the smaller from the larger --> need a subtractor to add
- [4] Determine the sign of the result

Add the two numbers, including their sign bit, and discard any carry out of leftmost (sign) bit - Look out for an *overflow*

ARITHMETIC SUBTRACTION

Arithmetic Subtraction in 2's complement

Take the complement of the subtrahend (including the sign bit) and add it to the minuend including the sign bits.

$$(\pm A) - (-B) = (\pm A) + B$$

 $(\pm A) - B = (\pm A) + (-B)$

4. FLOATING POINT NUMBER REPRESENTATION

* The location of the fractional point is not fixed to a certain location

* The range of the representable numbers is wide

F = EM

mn ekek-1 ... e0 mn-1mn-2 ... m0 . m-1 ... m-m sign exponent mantissa

- Mantissa

Signed fixed point number, either an integer or a fractional number

- Exponent

Designates the position of the radix point

Decimal Value

V(F) = V(M) * RV(E) M: Mantissa E: Exponent R: Radix

CHARACTERISTICS OF FLOATING POINT NUMBER REPRESENTATIONS

Normal Form

- There are many different floating point number representations of the same number
- \rightarrow Need for a unified representation in a given computer
- the most significant position of the mantissa contains a non-zero digit

Representation of Zero

- Zero Mantissa = 0

- Real Zero

Mantissa = 0

Exponent

 = smallest representable number which is represented as 00 ... 0
 ← Easily identified by the hardware

5. OTHER DECIMAL CODES

Decimal	BCD (8	3421)	2421	84-2-1	Excess-3
0	0000	0000	0000	0011	
1	0001	0001	0111	0100	
2	0010	0010	0110	0101	
3	0011	0011	0101	0110	

4	0100	0100	0100	0111
5	0101	1011	1011	1000
6	0110	1100	1010	1001
7	0111	1101	1001	1010
8	1000	1110	1000	1011
9	1001	1111	1111	1100

Note: 8,4,2,-2,1,-1 in this table is the weight associated with each bit position.

d3 d2 d1 d0: symbol in the codes

BCD: $d3 \ge 8 + d2 \ge 4 + d1 \ge 2 + d0 \ge 1$ $\Rightarrow 8421 \text{ code.}$ 2421: $d3 \ge 2 + d2 \ge 4 + d1 \ge 2 + d0 \ge 1$ 84-2-1: $d3 \ge 8 + d2 \ge 4 + d1 \ge (-2) + d0 \ge (-1)$ Excess-3: BCD + 3

GRAY CODE

Characterized by having their representations of the binary integers differ in only one digit between consecutive integers

* Useful in some applications

4-bit C	Bray	code	es						
Decim	al		C	bray		Binary			
no	g3	g2	g1	g0	b3	bź	2 b	1	b0
0	0	0	0	0	0	0	0	0	
1	0	0	0	1	0	0	0	1	
2	0	0	1	1	0	0	1	0	
3	0	0	1	0	0	0	1	1	
4	0	1	1	0	0	1	0	0	
5	0	1	1	1	0	1	0	1	
6	0	1	0	1	0	1	1	0	
7	0	1	0	0	0	1	1	1	
8	1	1	0	0	1	0	0	0	
9	1	1	0	1	1	0	0	1	
10	1	1	1	1	1	0	1	0	
11	1	1	1	0	1	0	1	1	
12	1	0	1	0	1	1	0	0	
13	1	0	1	1	1	1	0	1	
14	1	0	0	1	1	1	1	0	
15	1	0	0	0	1	1	1	1	

6. ERROR DETECTING CODES

Parity System

- Simplest method for error detection
- One *parity* bit attached to the information
- Even Parity and Odd Parity

Even Parity

- One bit is attached to the information so that the total number of 1 bits is an even number

 $\begin{array}{c} 1011001 \ 0 \\ 1010010 \ 1 \end{array}$

Odd Parity

- One bit is attached to the information so that the total number of 1 bits is an odd number

1011001 1 1010010 0

Error detection techniques

- •Parity (VRC)
- ·Longitudinal Redundancy Checks (LRC)
- •Cyclic Redundancy Checks (CRC)
- Checksum
- Data transmission can contain errors
 - Single-bit
 - Burst errors of length n
 (n: distance between the first and last errors in data block)
- How to detect errors
 - If only data is transmitted, detected errors cannot be \Diamond Send more information with that satisfies relationship data special a ♦ Add redundancy
- Vertical Redundancy Check (VRC)

- Append a single bit at the end of data block such that the number of ones is even
 ◊ Even Parity (odd parity is similar)
 0110011 ◊ 01100110
- _
 - 0110001 001100011
- VRC is also known as Parity Check
- Performance:
 - » Detects all odd-number errors in a data block
- Longitudinal Redundancy Check (LRC)
 - Organize data into a table and create a parity for each column

• Cyclic Redundancy Check

Cyclic Redundancy Check (CRC)

- Parity check is based on addition; CRC is based on binary division
- A sequence of redundant bits (a CRC or CRC remainder) is appended to the end of the data unit
- These bits are later used in calculations to detect whether or not an error had occurred

CRC Steps

• On sender's end, data unit is divided by a predetermined divisor; remainder is the CRC

- When appended to the data unit, it should be exactly divisible by a second predetermined binary number
- At receiver's end, data stream is divided by same number
- If no remainder, data unit is assumed to be error-free

CRC Steps

- On sender's end, data unit is divided by a predetermined divisor; remainder is the CRC
- When appended to the data unit, it should be exactly divisible by a second predetermined binary number
- At receiver's end, data stream is divided by same number
- If no remainder, data unit is assumed to be error-free

CRC Generator

- Uses modulo-2 division
- Resulting remainder is the CRC

CRC Checker

- Performed by receiver
- Data is appended with CRC
- Same modulo-2 division
- If remainder is 0, data are accepted

• Otherwise, an error has occurred

CRC Checker

- Performed by receiver
- Data is appended with CRC
- Same modulo-2 division
- If remainder is 0, data are accepted
- Otherwise, an error has occurred

Polynomials

- Used to represent CRC generator
- Cost effective method for performing calculations quickly

CRC Performance

- Can detect all burst errors affecting an odd number of bits
- Can detect all burst errors of length less than or equal to degree of polynomial
- Can detect with high probability burst errors of length greater than degree of the polynomial
 - Checksum

- Performed by higher-layer protocols
- Also based on concept of redundancy

Checksum Generator

- At sender, checksum generator subdivides data unit into k equal segments of n bits
- Segments are added together using one's complement arithmetic to get the sum
- Sum is complemented and becomes the checksum, appended to the end of the data

Checksum Checker

- Receiver subdivides data unit in k sections of n bits
- Sections are added together using one's complement to get the sum
- Sum is complemented
- If result is zero, data are accepted; otherwise, rejected

Performance

- Detects all errors involving odd number of bits, most errors involving even number of bits
- Since checksum retains all carries, errors affecting an even number of bits would still change the value of the next higher column and the error would be detected
- If a bit inversion is balanced by an opposite bit inversion, the error is invisible

Error Correction

- Requires more redundancy bits; must know not only that an error had occurred, but *where* the error occurred in order to correct it
- Correction simply involves flipping the bit
- Hamming code may be applied to identify location where error occurred by strategically placed redundancy bits

Redundancy Bits

Example Hamming Code

• For a seven-bit data sequence

r1: bits 1, 3, 5, 7, 9, 11 r2: bits 2, 3, 6, 7, 10, 11 r3: bits 4, 5, 6, 7 r4: bits 8, 9, 10, 11

Redundancy Bits

11	10	9	8	7	6	5	4	3	2
d	d	d	<i>r</i> ₈	d	d	d	r ₄	d	<i>r</i> ₂

Example Hamming Code

Example Hamming Code

r_1 will take care of these bits.										
11		9		7		5		3		1
d	d	d	<i>r</i> ₈	d	d	d	r ₄	d	<i>r</i> ₂	<i>r</i> ₁
r_2 will take care of these bits.										
11	10			7	6			3	2	
d	d	d	<i>r</i> ₈	d	d	d	<i>r</i> ₄	d	<i>r</i> ₂	<i>r</i> ₁
			r ₄ v	vill tak 7	te care 6	of the 5	ese bits. 4			
d	d	d	<i>r</i> ₈	d	d	d	r ₄	d	<i>r</i> ₂	<i>r</i> ₁
r_8 will take care of these bits.										
11	10	9	8							
d	d	d	<i>r</i> ₈	d	d	d	r ₄	d	<i>r</i> ₂	<i>r</i> ₁

Redundancy in bit calculation

Error Detection using Hamming

Burst Error Correction

- By rearranging the order of bit transmission of the data units, the Hamming code can correct burst errors
- Organize *n* units in a column and send first bit of each, followed by second bit of each, and so on
- Hamming scheme then allows us to correct the corrupted bit in each unit