MYcsvtu Notes

DATA REPRESENTATION

Data Types

Complements
Fixed Point Representations
Floating Point Representations
Other Binary Codes
Error Detection Codes

Hamming Codes

1. DATA REPRESENTATION

Information that a Computer is dealing with

* Data
- Numeric Data

Numbers(Integer, real)

- Non-numeric Data

Letters, Symbols

* Relationship between data elements
- Data Structures

Linear Lists, Trees, Rings, etc

* Program (Instruction)

NUMERIC DATA REPRESENTATION

Data
Numeric data - numbers (integer, real)
Non-numeric data - symbols, letters
Number System
Nonpositional number system

- Roman number system

Positional number system

- Each digit position has a value called a weight associated with it
- Decimal, Octal, Hexadecimal, Binary

Base (or radix) R number

- Uses R distinct symbols for each digit
- Example $A R=$ an-1 an-2 ... a1 a0 .a-1...a-m

REPRESENTATION OF NUMBERS - POSITIONAL NUMBERS

Decimal	Binary	Octal	Hexadecimal	
00	0000	00	0	
01	0001	01	1	
02	0010	02	2	
03	0011	03	3	
04	0100	04	4	
05	0101	05	5	
06	0110	06	6	
07	0111	07	7	
08	1000	10	8	
09	1001	11	9	
10	1010	12	A	
11	1011	13	B	
12	1100	14	C	
13	1101	15	D	
14	1110	16	E	
15	1111	17	F	

Convert 41.687510 to base 2
Fraction $=0.6875$
0.6875
x 2
1.3750
x $\quad 2$
0.7500
x 2
1.5000
x 2
1.0000

Integer $=41$
41
201

100
50
21
10
01
$(41) 10=(101001) 2 \quad(0.6875) 10=(0.1011) 2$
$(41.6875) 10=(101001.1011) 2$

2. COMPLEMENT OF NUMBERS

Two types of complements for base R number system:

- R's complement and (R-1)'s complement

The (R-1)'s Complement
Subtract each digit of a number from (R-1)
Example

- 9's complement of 83510 is 16410
- 1's complement of 10102 is 01012 (bit by bit complement operation)

The R's Complement
Add 1 to the low-order digit of its ($\mathrm{R}-1$)'s complement

Example

- 10's complement of 83510 is $16410+1=16510$
- 2 's complement of 10102 is $01012+1=01102$

3. FIXED POINT NUMBERS

Numbers: Fixed Point Numbers and Floating Point Numbers
Binary Fixed-Point Representation
$X=x n x n-1 x n-2 \ldots x 1 x 0 . x-1 x-2 \ldots x-m$
Sign $\operatorname{Bit}(\mathrm{xn})$: $\quad 0$ for positive -1 for negative
Remaining $\operatorname{Bits}(x n-1 x n-2 \ldots x 1 x 0 . x-1 x-2 \ldots x-m)$
SIGNED NUMBERS
Need to be able to represent both positive and negative numbers

- Following 3 representations

Signed magnitude representation
Signed 1's complement representation
Signed 2's complement representation

Example: Represent +9 and -9 in 7 bit-binary number
Only one way to represent $+9==>0001001$
Three different ways to represent -9 :
In signed-magnitude: 1001001
In signed-1's complement: 1110110
In signed-2's complement: 1110111

In general, in computers, fixed point numbers are represented either integer part only or fractional part only.

CHARACTERISTICS OF 3 DIFFERENT REPRESENTATIONS

Complement
Signed magnitude: Complement only the sign bit
Signed 1's complement: Complement all the bits including sign bit Signed 2's complement: Take the 2's complement of the number,
including its sign bit.

Maximum and Minimum Representable Numbers and Representation of Zero

Signed Magnitude
Max: $2 \mathrm{n}-2-\mathrm{m} \quad 011 \ldots 11.11 \ldots 1$
Min: -(2n-2-m) 111 ... $11.11 \ldots 1$
Zero: +0 $000 \ldots 00.00 \ldots 0$
$-0 \quad 100 \ldots 00.00 \ldots 0$
Signed 1's Complement
Max: 2n-2-m 011 ... 11.11 ... 1
Min: -(2n-2-m) $100 \ldots 00.00 \ldots 0$

MYcsvtu Notes

```
Zero: +0 000 ... 00.00 ... 0
    -0 111 ... 11.11 ... 1
```

Signed 2's Complement

Max: $2 \mathrm{n}-2-\mathrm{m}$	$011 \ldots 11.11 \ldots 1$
Min:	-2 n
Zero:	0

ARITHMETIC ADDITION: SIGNED MAGNITUDE

1] Compare their signs
[2] If two signs are the same,
$A D D$ the two magnitudes - Look out for an overflow
[3] If not the same, compare the relative magnitudes of the numbers and then SUBTRACT the smaller from the larger --> need a subtractor to add
[4] Determine the sign of the result

Add the two numbers, including their sign bit, and discard any carry out of leftmost (sign) bit - Look out for an overflow

ARITHMETIC SUBTRACTION

Arithmetic Subtraction in 2's complement
Take the complement of the subtrahend (including the sign bit) and add it to the minuend including the sign bits.

```
\(( \pm \mathrm{A})-(-\mathrm{B})=( \pm \mathrm{A})+\mathrm{B}\)
    \(( \pm \mathrm{A})-\mathrm{B}=( \pm \mathrm{A})+(-\mathrm{B})\)
```


4. FLOATING POINT NUMBER REPRESENTATION

* The location of the fractional point is not fixed to a certain location
* The range of the representable numbers is wide

$\mathrm{F}=\mathrm{EM}$					
mn ekek-1	\ldots	e 0	$\mathrm{mn}-1 \mathrm{mn}-2$	\ldots	$\mathrm{~m} 0 . \mathrm{m}-1$

- Mantissa

Signed fixed point number, either an integer or a fractional number

- Exponent

Designates the position of the radix point

Decimal Value
$\mathrm{V}(\mathrm{F})=\mathrm{V}(\mathrm{M}) * \mathrm{RV}(\mathrm{E})$
M: Mantissa
E: Exponent
R: Radix

CHARACTERISTICS OF FLOATING POINT NUMBER REPRESENTATIONS

Normal Form

- There are many different floating point number representations of the same number
\rightarrow Need for a unified representation in a given computer
- the most significant position of the mantissa contains a non-zero digit

Representation of Zero

$$
\begin{aligned}
& \text { - Zero } \\
& \quad \text { Mantissa }=0 \\
& - \text { Real Zero } \\
& \quad \text { Mantissa }=0 \\
& \quad \text { Exponent } \\
& \quad=\text { smallest representable number } \\
& \quad \begin{array}{l}
\text { which is represented as } \\
\\
\quad 00 \ldots 0
\end{array}
\end{aligned}
$$

\leftarrow Easily identified by the hardware

5. OTHER DECIMAL CODES

Decimal	BCD	(8421)	2421	$84-2-1$	Excess-3
0	0000	0000	0000	0011	
1	0001	0001	0111	0100	
2	0010	0010	0110	0101	
3	0011	0011	0101	0110	

MYcsvtu Notes

4	0100	0100	0100	0111
5	0101	1011	1011	1000
6	0110	1100	1010	1001
7	0111	1101	1001	1010
8	1000	1110	1000	1011
9	1001	1111	1111	1100

Note: $8,4,2,-2,1,-1$ in this table is the weight associated with each bit position.
d3 d2 d1 d0: symbol in the codes

$$
\begin{aligned}
& \text { BCD: } \mathrm{d} 3 \times 8+\mathrm{d} 2 \times 4+\mathrm{d} 1 \times 2+\mathrm{d} 0 \times 1 \\
& \quad \Rightarrow 8421 \text { code. } \\
& 2421: \mathrm{d} 3 \times 2+\mathrm{d} 2 \times 4+\mathrm{d} 1 \times 2+\mathrm{d} 0 \times 1 \\
& 84-2-1: \mathrm{d} 3 \times 8+\mathrm{d} 2 \times 4+\mathrm{d} 1 \times(-2)+\mathrm{d} 0 \times(-1) \\
& \text { Excess-3: BCD }+3
\end{aligned}
$$

GRAY CODE

Characterized by having their representations of the binary integers differ in only one digit between consecutive integers

* Useful in some applications

4-bit Gray codes

6. ERROR DETECTING CODES

Parity System

- Simplest method for error detection
- One parity bit attached to the information
- Even Parity and Odd Parity

Even Parity

- One bit is attached to the information so that the total number of 1 bits is an even number

$$
\begin{aligned}
& 10110010 \\
& 10100101
\end{aligned}
$$

Odd Parity

- One bit is attached to the information so that the total number of 1 bits is an odd number

$$
\begin{aligned}
& 10110011 \\
& 10100100
\end{aligned}
$$

Error detection techniques

- •Parity (VRC)
- -Longitudinal Redundancy Checks (LRC)
- Cyclic Redundancy Checks (CRC)
- Checksum
- Data transmission can contain errors
- Single-bit
- Burst errors of length n
(n : distance between the first and last errors in data block)
- How to detect errors
- If only data is transmitted, errors cannot be detected
\diamond Send more information with data that satisfies a special relationship \diamond Add redundancy
- Vertical Redundancy Check (VRC)
- Append a single bit at the end of data block such that the number of ones is even \diamond Even Parity (odd parity is similar) $0110011 \diamond 01100110$
-

$0110001 \diamond 01100011$

- VRC is also known as Parity Check
- Performance:
» Detects all odd-number errors in a data block
- Longitudinal Redundancy Check (LRC)
- Organize data into a table and create a parity for each column

- Cyclic Redundancy Check

Cyclic Redundancy Check (CRC)

- Parity check is based on addition; CRC is based on binary division
- A sequence of redundant bits (a CRC or CRC remainder) is appended to the end of the data unit
- These bits are later used in calculations to detect whether or not an error had occurred

CRC Steps

- On sender's end, data unit is divided by a predetermined divisor; remainder is the CRC
- When appended to the data unit, it should be exactly divisible by a second predetermined binary number
- At receiver's end, data stream is divided by same number
- If no remainder, data unit is assumed to be error-free

CRC Steps

- On sender's end, data unit is divided by a predetermined divisor; remainder is the CRC
- When appended to the data unit, it should be exactly divisible by a second predetermined binary number
- At receiver's end, data stream is divided by same number
- If no remainder, data unit is assumed to be error-free

CRC Generator

- Uses modulo-2 division
- Resulting remainder is the CRC

CRC Checker

- Performed by receiver
- Data is appended with CRC
- Same modulo-2 division
- If remainder is 0 , data are accepted
- Otherwise, an error has occurred

CRC Checker

- Performed by receiver
- Data is appended with CRC
- Same modulo-2 division
- If remainder is 0 , data are accepted
- Otherwise, an error has occurred

Polynomials

- Used to represent CRC generator
- Cost effective method for performing calculations quickly

Polynomial

Divisor

CRC Performance

- Can detect all burst errors affecting an odd number of bits
- Can detect all burst errors of length less than or equal to degree of polynomial
- Can detect with high probability burst errors of length greater than degree of the polynomial
- Checksum
- Performed by higher-layer protocols
- Also based on concept of redundancy

Checksum Generator

- At sender, checksum generator subdivides data unit into k equal segments of n bits
- Segments are added together using one's complement arithmetic to get the sum
- Sum is complemented and becomes the checksum, appended to the end of the data

Checksum Checker

- Receiver subdivides data unit in k sections of n bits
- Sections are added together using one's complement to get the sum
- Sum is complemented
- If result is zero, data are accepted; otherwise, rejected

Performance

- Detects all errors involving odd number of bits, most errors involving even number of bits
- Since checksum retains all carries, errors affecting an even number of bits would still change the value of the next higher column and the error would be detected
- If a bit inversion is balanced by an opposite bit inversion, the error is invisible

Error Correction

- Requires more redundancy bits; must know not only that an error had occurred, but where the error occurred in order to correct it
- Correction simply involves flipping the bit
- Hamming code may be applied to identify location where error occurred by strategically placed redundancy bits

Redundancy Bits

11	10	9	8	7	6	5	4	3	2	1
\mathbf{d}	\mathbf{d}	\mathbf{d}	r_{8}	\mathbf{d}	\mathbf{d}	\mathbf{d}	r_{4}	\mathbf{d}	r_{2}	r_{1}

Example Hamming Code

- For a seven-bit data sequence
r1: bits 1, 3, 5, 7, 9, 11
r2: bits $2,3,6,7,10,11$
r3: bits 4, 5, 6, 7
r4: bits $8,9,10,11$

MYcsvtu Notes

Redundancy Bits

11	10	9	7	6	5	4	3	$\mathbf{~}$	$\mathbf{4}$
\mathbf{d}	\mathbf{d}	\mathbf{d}	r_{8}	\mathbf{d}	\mathbf{d}	\mathbf{d}	r_{4}	\mathbf{d}	r_{2}

Example Hamming Code
r_{1} will take care of these bits.

$\mathbf{1 1}$	$\mathbf{9}$				$\mathbf{7}$	$\mathbf{5}$									$\mathbf{3}$	
\mathbf{d}	\mathbf{d}	\mathbf{d}	r_{8}	\mathbf{d}	\mathbf{d}	\mathbf{d}	r_{4}	\mathbf{d}	r_{2}	r_{1}						

r_{2} will take care of these bits.

$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{7}$	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{3}$				$\mathbf{2}$	
\mathbf{d}	\mathbf{d}	\mathbf{d}	r_{8}	\mathbf{d}	\mathbf{d}	\mathbf{d}	r_{4}	\mathbf{d}	r_{2}	r_{1}

r_{4} will take care of these bits.

$\mathbf{7}$	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$						
\mathbf{d}	\mathbf{d}	\mathbf{d}	r_{8}	\mathbf{d}	\mathbf{d}	\mathbf{d}	r_{4}	\mathbf{d}	r_{2}	r_{1}

r_{8} will take care of these bits.

$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{9}$	$\mathbf{8}$							
\mathbf{d}	\mathbf{d}	\mathbf{d}	r_{8}	\mathbf{d}	\mathbf{d}	\mathbf{d}	r_{4}	\mathbf{d}	r_{2}	r_{1}

Example Hamming Code
r_{1} will take care of these bits.

$\mathbf{1 1}$	$\mathbf{9}$									$\mathbf{7}$
\mathbf{d}	\mathbf{d}	\mathbf{d}	r_{8}	\mathbf{d}	\mathbf{d}	\mathbf{d}	r_{4}	\mathbf{d}	r_{2}	r_{1}

r_{2} will take care of these bits.

1110				7	6		3		2	
d	d	d	r_{8}	d	d	d	r_{4}	d	r_{2}	r_{1}

r_{4} will take care of these bits.

r_{8} will take care of these bits.

$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{9}$	$\mathbf{8}$							
\mathbf{d}	\mathbf{d}	\mathbf{d}	r_{8}	\mathbf{d}	\mathbf{d}	\mathbf{d}	r_{4}	\mathbf{d}	r_{2}	r_{1}

Redundancy in bit calculation

1	0	0		1	1	0		1		
$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{9}$	$\mathbf{8}$	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$

Error Detection using Hamming

The bit in position 7 is in error. 7
Burst Error Correction

- By rearranging the order of bit transmission of the data units, the Hamming code can correct burst errors
- Organize n units in a column and send first bit of each, followed by second bit of each, and so on
- Hamming scheme then allows us to correct the corrupted bit in each unit

