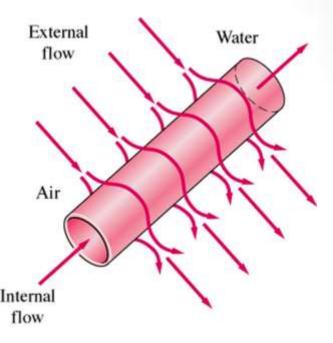
HEAT TRANSFER BY CONVECTION

CONDUCTION

Mechanism of heat transfer through a solid or fluid in the absence any fluid motion.

CONVECTION


Mechanism of heat transfer through a fluid in the presence of bulk fluid motion

- Natural (free) Convection
- Forced Convection

(depending on how the fluid motion is initiated)

CLASSIFICATION OF FLUID FLOWS

 Viscous-inviscid Internal flow-**External flow** Open-closed channel Compressible-**Incompressible** • Laminar-**Turbulent** Natural- Forced Steady- Unsteady One-,two-,threedimensional

VISCOSITY

When two fluid layers move relative to each other, a friction force develops between them and the slower layer tries to slow down the faster layer.

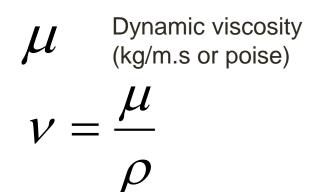
internal resistance to flow

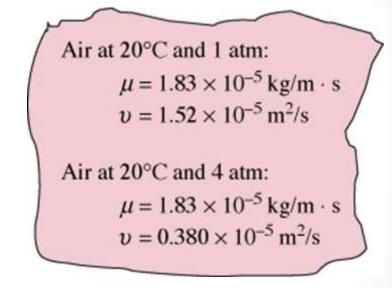
- cohesive forces between the molecules in liquid
- molecular collisions in gases.

Viscous flows: viscous effects are significant

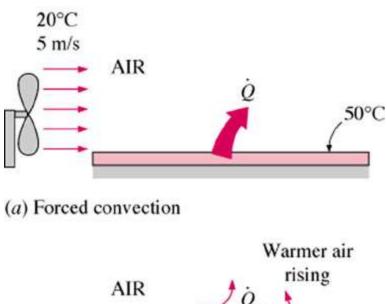
Inviscid flow regions: viscous forces are negligibly smal compared to inertial or pressure forces.

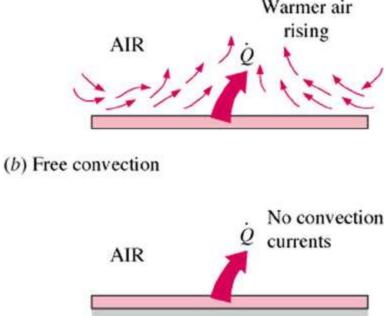
measure of stickness or resistance to deformation


- **1.** Kinematic viscosity
- **2.** Dynamic viscosity


VISCOSITY DEPENDS ON

• TEMPERATURE


• PRESSURE

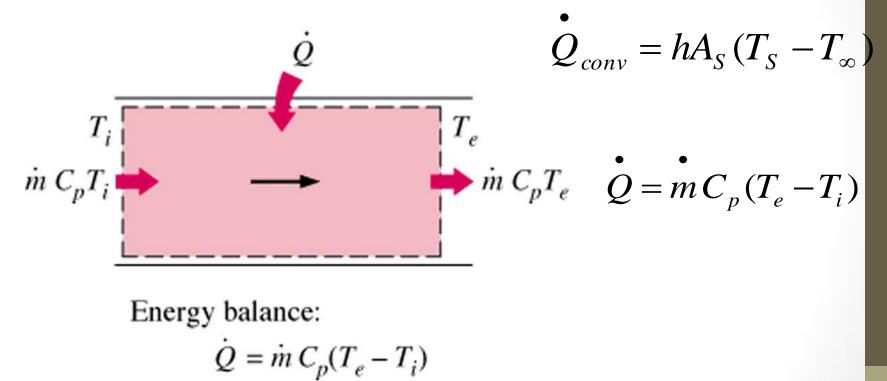

For liquids dependence of pressure is negligible For gases kinematic viscosity depends on pressure since its relation to density

Kinematic viscosity, m²/s or stroke

(c) Conduction

Convection heat transfer

- Dynamic viscosity
- Thermal conductivity
- Density
- Specific heat
- Fluid velocity
- Geometry
- Roughness
- Type of fluid flow


NEWTON'S LAW OF COOLING

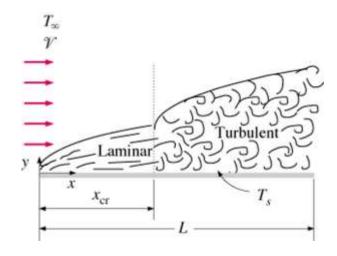
$$\dot{Q}_{conv} = hA_s (T_s - T_\infty)$$
 (W)

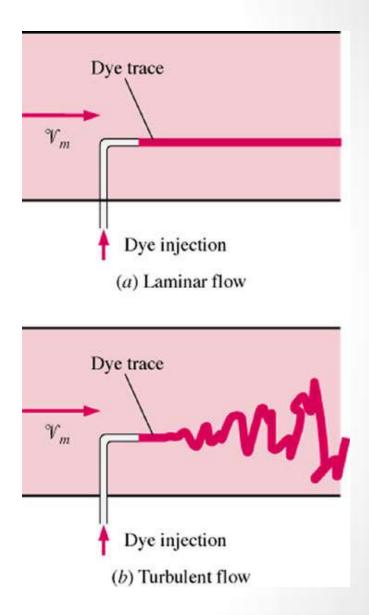
h Convection heat transfer coefficient (W/m^{2.0}C)

The rate of heat transfer between a solid surface and a fluid per unit surface area per unit temperature difference

GENERAL THERMAL ANALYSIS

FORCED CONVECTION


• LAMINAR FLOW


Smooth streamlines Highly- ordered motion (highly viscous fluids in small pipes)

TURBULENT FLOW

Velocity fluctuations Highly-disordered motion

TRANSITIONAL FLOW

MYcsvtu Notes

www.mycsvtunotes.in

REYNOLDS NUMBER

Flow Regime:

Geometry

Surface roughness

Flow velocity

Surface temperature type of fluid

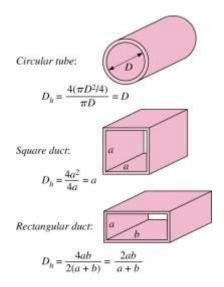
Ratio of the inertial forces to viscous forces in the fluid

$$\operatorname{Re} = \frac{\upsilon_m D}{\upsilon} = \frac{\rho \upsilon_m D}{\mu}$$

Mean flow velocity

D Characteristic length of the geometry

 $v = \mu / \rho$ Kinematic viscosity

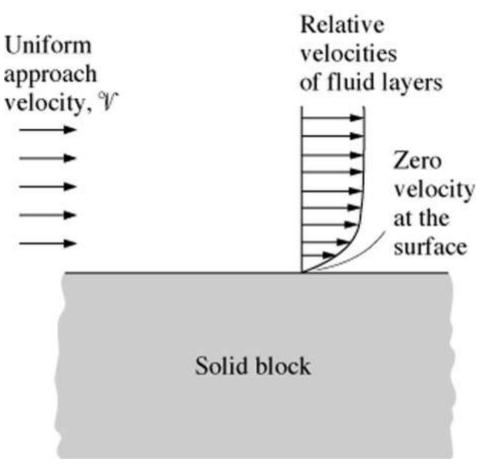

 \boldsymbol{U}_m

Definition of Reynolds number

Inertial forces Re = Viscous forces $ho V_{
m avg}^2 L^2$ $V_{\rm avg}$ $\mu V_{avg}L$ L

- Critical Reynolds number (Re_{cr}) for flow in a round pipe
 Re < 2300 ⇒ laminar
 2300 ≤ Re ≤ 4000 ⇒ transitional
 Re > 4000 ⇒ turbulent
- Note that these values are approximate.
- For a given application, Re_{cr} depends upon
 - Pipe roughness
 - Vibrations
 - Upstream fluctuations, disturbances (valves, elbows, etc. that may disturb the flow)

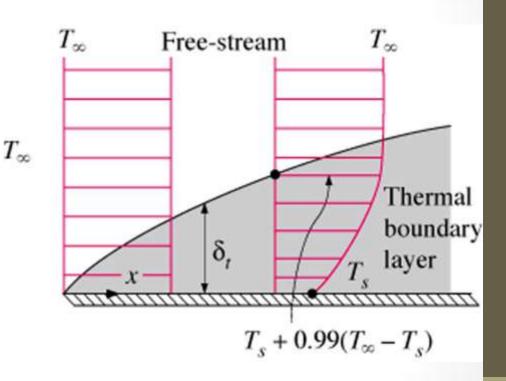
HYDRAULIC DIAMETER



- For <u>non-round</u> pipes,
- the hydraulic diameter $D_h = 4A_c/P$
 - A_c = cross-section area
 - *P* = wetted perimeter

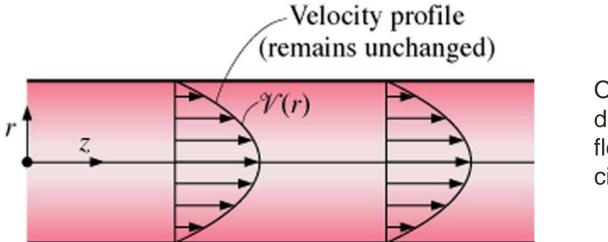
MYcsvtu Notes

Velocity



THERMAL BOUNDARY LAYER

Flow region over the surface in which the temperature variation in the direction normal to the surface

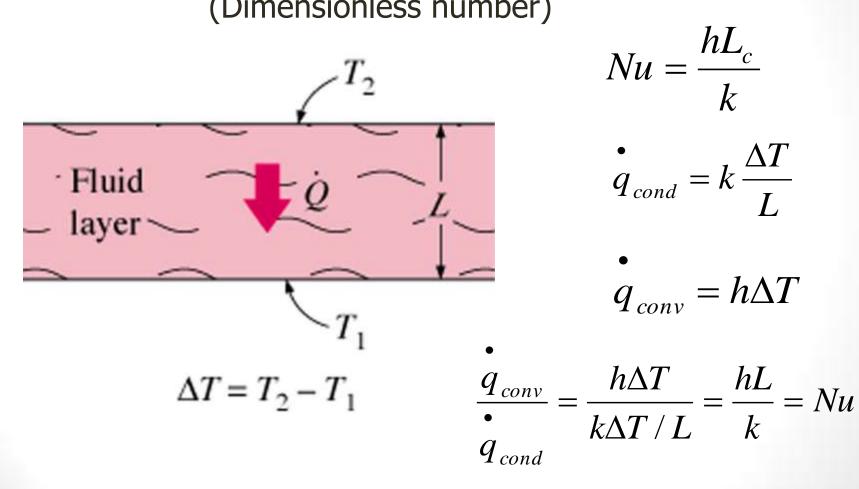

Velocity profile influences temperature profile

VELOCITY

A flow field is best characterized by the velocity distribution, and velocity may vary in three dimension

 $\vec{\upsilon}(x, y, z)$ in rectangular $\vec{\upsilon}(r, \theta, z)$ in cylinderical coordinates

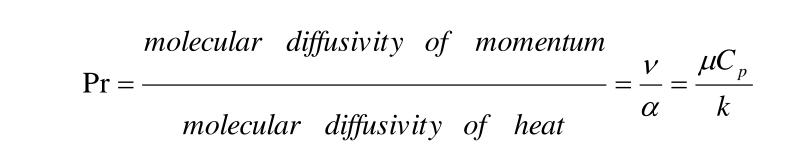
One dimensional flow in a circular pipe


In which direction does the velocity change in this figure???

MYcsvtu Notes

www.mycsvtunotes.in

NUSSELT NUMBER


(Dimensionless number)

 $\Pr = \frac{\mu C_p}{k}$

PRANDTL NUMBER

Boundary layer theory

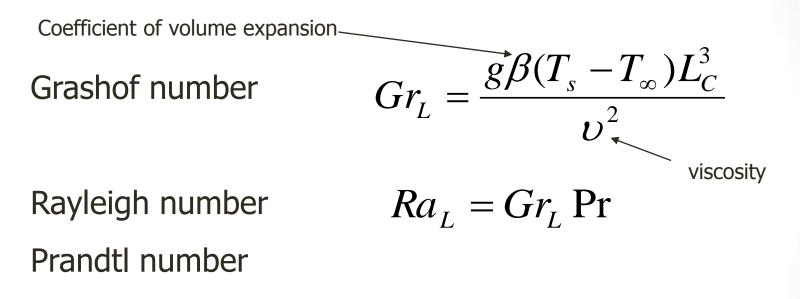
Pr<<1 heat diffuses very quickly in liquid metals, *tb*/thicker

Pr>>1 heat diffuses very slowly in oils relative to momentum, *tbl* thinner than *vbl*

PARALLEL FLOW OVER FLAT PLATES

$$\operatorname{Re}_{cr} = \frac{\rho \upsilon x_{cr}}{\mu} = 5 \times 10^5$$

$$Nu = \frac{hL}{k} = 0.664 \text{ Re}_{L}^{0.5} \text{ Pr}^{1/3}$$
 $\text{Re}_{L} < 5 \times 10^{5}$ laminar

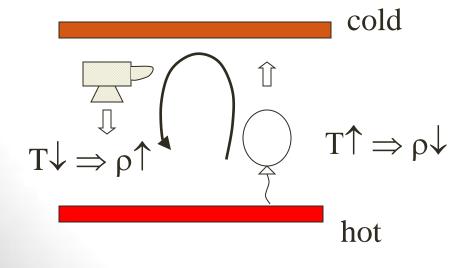

$$Nu = \frac{hL}{k} = 0.037 \text{ Re}_{L}^{0.8} \text{ Pr}^{1/3}$$

$$0.6 \le \Pr \le 60$$
 turbulent

 $5 \times 10^5 \leq \text{Re}_L \leq 10^7$

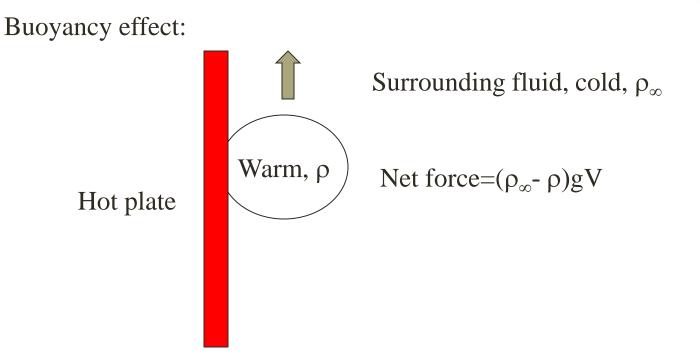
NATURAL CONVECTION

CONVECTIVE HEAT TRANSFER COEFFICIENT


Nusselt number

$$Nu = \frac{hL_C}{k} = CRa_L^n$$

Table 20-1


Free Convection

A free convection flow field is a self-sustained flow driven by the presence of a temperature gradient. (As opposed to a forced convection flow where external means are used to provide the flow.) As a result of the temperature difference, the density field is not uniform also. Buoyancy will induce a flow current due to the gravitational field and the variation in the density field. In general, a free convection heat transfer is usually much smaller compared to a forced convection heat transfer. It is therefore important only when there is no external flow exists.

Flow is unstable and a circulatory pattern will be induced.

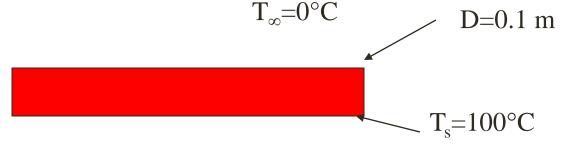
Basic Definitions

The density difference is due to the temperature difference and it can be characterized by ther volumetric thermal expansion coefficient, β :

$$\begin{split} \beta &= -\frac{1}{\rho} (\frac{\partial \rho}{\partial T})_{P} \approx -\frac{1}{\rho} \frac{\rho_{\infty} - \rho}{T_{\infty} - T} = -\frac{1}{\rho} \frac{\Delta \rho}{\Delta T} \\ \Delta \rho &\approx \beta \Delta T \end{split}$$

Grashof Number and Rayleigh Number

Define Grashof number, Gr, as the ratio between the buoyancy force and the viscous force: $Q(T, T, T) > L^3$


$$Gr = \frac{g\beta\Delta TL^3}{v^2} = \frac{g\beta(T_s - T_{\infty})L^3}{v^2}$$

• Grashof number replaces the Reynolds number in the convection correlation equation. In free convection, buoyancy driven flow sometimes dominates the flow inertia, therefore, the Nusselt number is a function of the Grashof number and the Prandtle number alone. Nu=f(Gr, Pr). Reynolds number will be important if there is an external flow. (see chapter 11.5, combined forced and free convection.

• In many instances, it is better to combine the Grashof number and the Prandtle number to define a new parameter, the Rayleigh number, Ra=GrPr. The most important use of the Rayleigh number is to characterize the laminar to turbulence transition of a free convection boundary layer flow. For example, when Ra>10⁹, the vertical free convection boundary layer flow over a flat plate becomes turbulent.

Example

Determine the rate of heat loss from a heated pipe as a result of natural (free) convection.

Film temperature (T_f): averaged boundary layer temperature T_f=1/2(T_s+T_{∞})=5 k_f=0.03 W/m.K, Pr=0.7, v=2×10⁻⁵ m²/s, β =1/T_f=1/(273+50)=0.0031(1/K)

$$Ra = \frac{g\beta(T_s - T_{\infty})L^3}{v^2} \operatorname{Pr} = \frac{(9.8)(0.0031)(100 - 0)(0.1)^3}{(2 \times 10^{-5})^2} (0.7) = 7.6 \times 10^6.$$

 $Nu_D = \{0.6 + \frac{0.387Ra^{1/6}}{[1 + (0.559 / \Pr)^{9/16}]^{8/27}}\}^2 = 26.0 \text{ (equation 11.15 in Table 11.1)}$

$$h = \frac{k_f}{D} N u_D = \frac{0.03}{0.1} (26) = 7.8(W / m^2 K)$$

$$q = hA(T_s - T_{\infty}) = (7.8)(\pi)(0.1)(1)(100 - 0) = 244.9(W)$$

Can be significant if the pipe are long.