UNIT -1V

Multirate DSP: Introduction, Sampling Rate Conversion,
Decimation of Sampling rate by an Integer factor,
Interpolation of sampling rate by an Integer Factor,
Sampling rate alteration or conversion by a rational factor.
Filter design and implementation for sampling rate
alteration or conversion: Direct form FIR digital filter
structures, Polyphase filter structure, Time varying digital
filter structures. Sampling rate conversion by an

arbitrary factor: First order approximation & Second order
approximation method. Applications of Multirate

Digital Signal Processing (MDSP).
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There are various areas in which MDSP 1s used. Some of few are given
i under:

1. Radar Systems

2. Antenna Systems

3. Speech and Audio Processing Systems

4. Communication Systems
Advantages of using MDSP

1. Computational requirements are less
9. Storage for filter coefficients are less

(%]
[V}
-
o
P
>
+
>
4]
>
=
=
n
[0}
4+
(@)
=
=)
+—
>
(%]
o
b
£
2
3
2

2. Finite arithmetic effects are less
4. Filter order required in Multirate application are low

5. Sensitivity to filter coefficient lengths are less,
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[Hampling Rate Conversion Methods ]

There are two sampling rate conversion methods that are used In

MIDSP :
i
D/A Converter, Linear Filter and A/D Converter.
Analog Signal
Digital D!glta!
Sgnal 1 DiA | Linear ap |59
F,) Converter Filter Converter (Fo)

Sampling Rate Conversion using D/4 Converter

and A/ D Converter,
Second Method :

In this method sampling rate conversion is perfoemed entirely in the
digital-domain. This method does not require any ADC or DAC. This
method uses interpolator or decimator or hoth depending upon the

sampling rate conversion factor. A I




Advantages

of first method is that the new sampling rate can be
arbitrarily selected and this new sampling rate has no
special relationship with the old sampling rate.

Disadvantages

of first method is that there is a signal distortion
introduced by the D/A convertor in the signal
reconstruction and by the quantization noise in the ADC.
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SAMPLING RATE CONVERSION

There are two cases of sampling rate conversion (01.DECHATIONAND 02, INTERPOLATION |

'I‘_he process of reducing the sampling rate by,

factor (D) is called Decimation of Sampling rate.
IT IS ALSO CALLED DOWN SAMPLING BY FACTOR INTEGER BY D

Ir!put — Output
Signal | Decimation | g/(n) Signal
) =  Fiter |——> Down-sampler ———py(n)

F) H(z) (F)

Block Diagram of a Decimator,
Decimation filter is used to band limit the signal before decimation operation. DOWN SAMPLER DECREASES THE
SAMPLING RATE BY INTEGER FACTOR(D).

Der;imatiﬂn filter is used to avoid aliasing caused by down-sampling signal s(n).

Prior to down-sampling the signal /(1) should be band limited

I
< m by means of a low pass filter (LPF), H(z), CALLED decimator filter.
agk-reet-bhilai
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_Interpolation. ,,, The process of increasing the sampling rate by

integer factor (1) is called interpolation of sampling rate.

ovcalled o sampling by factor (1)
Up-sampled signal
§,(n)
Input : . Output
Signal Up- Imergoiatmn Signal
s(n) -F——b-| Sampler , Filter ——— y{n)
(F) H(z) (F,)

Block diagram of an Interpolator.

The process of sampling rate conversion in the digital-domain can be
vewed as a linear filtering operation. It is shown in Fig,

|nput L OUIPUI
Sianal inear Signal
s(n) —2 Filer |—— s y(0)
Sampling rate h{n,m) Sampling rate

A

‘ . agk-rcet-bhilai
Linear Filter.




Signal in igna
i) —% R —a )
Sampling rate h(n,m) Sampling rate

"

input signal s(n) is characterised by sampling rate F= Ti

L]

output signal y(m) is characterised by sampling rate F,=

1

|
But for the case of ratio D ,bothIand D

should be prime integer.

Linear filter is characterised by a

time-varying impulse response, h(n, m).
Hence the input s(n) and output y(n) are related by

convolutionsum for 1 me-varying system.

I and T, are corresponding sampling intervals. ’
F, Sampling frequency of output signal e,
F,  Sampling frequency of input signal
Ty
] Prime Integer (I) R S —
D Prime Integer (D)
Where [ is the integer factor by which interpolation of sampling rate agk-rcet-bhilai

D is the integer factor by which decimation of the «impling rate is performed.
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‘Decimation of Sampling Rate By a Integer Factor (D)
The process of reducing the sampling rate of a signal is called Decimation,
Let us assume that the discrete-time signal s(n) with spectrum S(0) W
to be down sampled by an integer factor D.

The block diagram of decimation process is given in Fig.

Signal | Decimation | y(n) Sar Signa
s(n) —g—--—h- Filter L7 Down-Sampler

( 1) hin) or Hyfo) w ( 1 F

Fig. . Block Diagram of Decimation process.
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INTIRPOLATION OF SAMPLING RATE BY A INTEGER
FACTOR (I)

Increasing of sampling rate of a signal is called Interpolation. Anincrease
in the sampling rate by an integer factor I can be accomplished by
interpolating ([-1) new samples between successive valuesof the signals.
The interpolation process can be accomplished by various types of methods.
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SAMPLING RATE ALTERNATION OR CONVERSION BY

I
A RATIONAL FACTOR [5]

We now consider the general case of sampling rate conversion by first
erforming interpolation by the factor [and decimating the output ofthe
iterpolator by the factor D. In other words, a sampling rate conversion

|
by therhonal factor == 15 accomphished by caseadug an terpolator witl

/)

A ddecmeton 10 lustrated m “I}:.




i' il PP L T
| Intarpolator | Decimator |
Input | | I
| | | | — IDUIPUI
S(H)Sequence Upsampler Filler 1, : Filter Down ,'Eﬂquuncu
Sa‘_-_*_mpling : | h() : hdl) [~ sampler —sp yim) £
fate ) v D \Sampling ralg
- | —_— |
F, il T T SU e e e : F = lr

Sampling Rate = IF,

Block diagram of a method for sampling

|

Rate Conversion by a factor ( EJ




H(w,) = I, 0<lw,| min. of (E’ T)

0, otherwise

2nl  2nF o,

where W, =

F, IF T
Input | Output
sequence { Up sampler | o(k LiF of) | Down |sequence
s(m) - h(i) sampler >y (m)
Sampling rate vy D Sampling rate
s F,=—F
¥ D, ¥
Sampling rate = IF, = Fu .

Block diagram of a method for sampling rate conversion

I
by a factor [ J Here two filters h «D and h, (1) are

combined in a single LPF h(l).
In the time- domain, the output of the Up-

sampler is given as

{

-1 =01 %2] ..
v(l) = s(f]

o, otherwise

-



SIGNAL FLOW GRAPHS

.

’

(a) Unit DE“ﬂy (b) M*Sﬂmp|9 delﬂy
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SIGNAL FLOW GRAPH ...
Branch Operations in Signal Flow Graphs

€) Samplingrate compressordown sampe () Sampling rate expander/up sample
— b > yim=(x(m)
T T m = | m=0,4L42L,.
m 0 otherwise
Xe Y(E -mZX[lew zﬂh‘M
X2 L
(g) Modulator
(E EX(z
=g RN x(n) () = () Sin)

s(n)




Manipulation of Signal Flow Graphs

> () > ) ——> y()

x(n) 3 o

= hyln) > M) > y(n)
x(n)

(a) Commutatior of LTI systems




Manipulation of Signal Flow Graphs

x(n) TL :;c: y(n) = x(n) E-" TL _x{n} W
x(n) . x(n) |
E # v ¥1(n) - ¢ "
l' M S
¥a(n)
x(n) yin) = x(n) 2
; k I yi{n)
s(n) k:s{n}

(b) Scalar commutation




Manipulation of Signal Flow Graphs

a LM
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x(n) z7¥
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(c) Identites in decimators and interpolators




Manipulation of Signal Flow Graphs

— = L o M=l = —
x(n) L x(n) v(n)
|
— M — _1L=M - vin == 1-"/?———:-—
x(n) x(n) \1) y{n)
|
1 n=0+tM +2M
s =7 0, otherwise
Ry Ty ey N
MzMEMD
- "'-La o .#I.Lﬁ I Jp— - TL |:_:"'_
L=LELD

{d) Identifies in cascades of decimators and interpolators




Example 1Obtainthe decima

: ted signal y(n) by a -
signal s(n) shown in Fig. Y(n) by a factor 3 from the Input
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Example  2|Obtain the two-fold expanded signal y(1) of the input

signal s(n).

n, n>0
s(n) = .
0, otherwise




soluton 01; - '
¥(n) = s(Dn), where D is the decimation

. . . factor and equal to 3.
e decimated signal (1) 1s shown

in "y,

y(n} 4
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Solution 02: Solution. The output signal »(12) is given by

s(}i') 7t = multiples of I

0, otherwise

y(n) =

where I = 2
stn) =0,1,2,3,4,5,6, ...
y¥n)=0,0,1,0,2,0,3,0,4,0,5, 0,6, 0, ...... ;

In general, to obtain the expanded signal v(n) by a factor I, (f — 1) zeros

are inserted between the samples of the original signal s(n). :q”_’,
— o
s{n) & E
s
. 8 =
i 3] .
o> . =
4
1 I ) =
=
[ E
L - n :
o 1 2 3 < S g
y(n) =
2
3
=2
i [
- -
C 2 4 5 6 n
s(n) -' T 2 I — y(n)




EXAMPLE: 03

s(n) for the mu

Find the expression for the output y(n) in terms of inpy
Iti sampling rate system given as follows

Input Out
(s H{ I -

.

EXAMPLEO4 N |
Find the polyphase decomposition of the /IR Digital System
with transfer function.
o - 147!
1+57°!

"

4
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Solution:03

Solution. The decimation with factor 20, can be represented as cascadd
of two di system is

P g1ven ad
[ X4(n) | xofn)
X~ ts -——:—f LY >y - tout
] i n

System 1 System 2 System 3 System 4

EFE'['-EIII.E 1 and 2 can be combined. The up-sampler operation of the
system 1 is cancelled by the down-sampler operation the system 2.
Therefore, s5(n) = s(n)

(%]
]
+—
o
=z
>S5
)
>
S
>
=

Now, Fig. reduces to Fig. below £
T Input S3(n) Output g

E{l‘l} — l 4 -_h- T | ———. l’l{n} g

Fig. g

.. =
Combining systems 3 and 4. The down sam pler operation of aysatem 3 BB

is cancelled by the up-sampler operation of aystem 4.
It rvesnnees thaant

sl ) = yir)

1, n=0+4 +£8 +12 .....
where s(n) =

0, otherwise
agk-rcet-bhilai




Hiz)=Ey(z*) +2 1 E %)
_ where E (z%), E,(z %) are polyphase components.
Solution. H(z)=H, (=) + z_lHl[z} A1)

Solution 04

Where H,(z) and Hz) are polyphase components of the IIR Digital
system Hiz).

(1-427") (-4z')@-627")

H(z) = (1+6z"" (Q+6zH -5z

MYcsvtu Notes

1-9z"1 420272
1-25z"2

1+20z*% +E_1( -9 )
1-25272 1-2527% -(2)

By comparing Eqns. (1) and (2), we get polyphase components of H(z).

www.mycsvtunotes.in

1+202"%
H (2)=
o(2) 1-25z"%
-9
H (z)=
! 1-252"¢
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FILTER DESIGN AND IMPLEMENTATION FOR
SAMPLING RATE ALTERNATION OR CONVERSION

. [ , ,
Sampling rate alternation by a factor [-D—) can be achieved by first |

Increasing the sampling rate by integer factor I then down-sampling the
filtered signal by the integer factor D. Interpolation is accomplished by |
inserting J-1 zeros between successive values of the nput signal S(n). Before
down-sampling, interpolated signal is linearly filtered to eliminate the :
unwanted images of S(w). Here, we discuss the design and implementation
of the linear filter. We discuss following types of linear filters - »

L. Direct-form FIR Digital Filter Structures,
2. Poly-phase Digital Filter Structures.
3. Time-varying Digital Filter Structures.
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Direct-form FIR Digital Filter Structures

Input sequence  Up-sampler

3{“} —

Thus we will have the filter parameters {h(k)}. These filter parameters

allow us to implement the FIR digital filter directly. It is shown in

Although this realization is simple but it is also very inefficient. The
mefficiency results from the fact that the Up-sampling process introduces
(I'= 1) zero.- between successive points of the input signal s(n)

If I1s large, most of the signal components in the FIR digital filter are
zero. Consequently, most of the multiplications and additions result in
zeros. Furthermore, the down-sampling process at the output of the filter
mplies thatonly one outofevery Doutput samplesis required at the output
of the filtey Consequently, only one out of every D possible values ot the
output of the filter should be computed.

agk-rcet-bhilai

h(M -1)

Down
sampler

ln

Output
sequence

y(m)

Durect-form realization of FIR Digital Filter in

Sampling rate conversion by factor =

D




Decimation of a signal by a factor D. sin)

h(0) 2
5("} + :f:‘\ *U ﬂi
1-1
L J
z—'l
| hiM - 2) ’
‘D b [+
L hiM - 1}
‘0 >
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Efficient realisation of @ decimator. This decimator exploits the
property of symmetry in the FIR digital filter.
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Efficient Implementation of an Interpolator

h(0}
s(n). Up-sampler | (M) y(m)
— 1 1 l -
-1
Zz
h{1)
¥
2!
h(2)
! :
h{M = 2}
z-1
h(M — 1)
Fig. Direct Form Realisation of FIR filter in interpolation by a facto
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5(n)
Fs

kifficiont Realisation of Interpolator.

Uy sarnpler
T

h(0)

Fs

b

h(1)

+

h(2)

h(M-2)

h(M=1)

(a)

y(m

s(n) h{’m_ r
z-1
h(1)
> il +
2-1
h(2) -
T +
z-!
h(M - 1) i
P 1
(b)
agk-rcet-bhilai
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Qutput Input
o)
—» 4 — -— — H
Input Qutput Output ‘! Input :
- - L-_“ g
(0 (A ;

Fig, Duality relationships obtained through transposition.
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Polyphase Filter Structure

pyn)=h(k + nD), k=0,1,2,..,D~1
n=0,1,2 ., ,K-1

The computational efficiency of the filter structure given in Fig.
can also be achieved by reducing the large FIR digital filter of length M

1nto a set of smaller filters of length K = —T . where M is selected to be Where K :—'g is an integer when M is selected to be g multiple of D,
a multiple of [ pyn) = hinl - R,k =0 1,2 ..,1-1
pn) =hik+nl) k=0,1,2,.,1-1 Pim) = hnD - k), k =0,1,2, ., D -1
n=0,12 .,K-1
§(n) A
-
P(n) p,(n) Rale /0
— 5,0 Rate = Fy = IF, 1 py(n)
i B L ———— (N
s(n)
Rate=F =iF,
— ) p—————s —— Py}
Rate = F,
Rate = F, Rale = F, :
Fig (b) Decimation process by use of polyphase filters.
Fig. (a) Interpolation by use of polyphase filters.
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POLYPHASE DECOMPOSITION
The z-transform of a futer witn 1mpuise response n(n) 1s given by

Hiz) =h0)+27 ' h(1) + 272 h(2) +..
Rearranging the above equation we get,
Ho) =h0) +2 7 h(@) +27 h(d) + ..

$27 ) 427 B + 27 h(B) + )
Type | Polyphase Decomposition

Hi) =E,)+27" B, 2"
where E,(z*%) and Eiz ) are polyphase components for a factor of

x(m)—> h(n > M > y(m)
F F F=FIM




Type Il Polyphase Decomposition
H(z)=2z "Ry (z%)+ R, (z?)

where R.(z°) and R,(z®) are polyphase components for a factor

Lwo. x(ﬂ} . > ‘ E,;,I:ZZ}

=Y Y

|
1

Hiz) =

E1(2% . y(m)

(b) Type 2: Polyphase decomposition

x(n) ——e—— E ()

== | H{E] EE—

Y 2! -

- Ei(2) |- . — y(m)




Time-varying Digital Filter Structures

g(n, m) = hinl - (nD), ]

y(m) = z g _u m—!%;f_ S,- __”}DJ n}

gn, fﬂ—!EJI‘,IL=U, 1,2, .., K-1




s(n)

o

Input
buffer of
length D

!

Buffer
of .
lengthK 1 : N b oo

=1
i

I
-

Qutput
L/ buffer of ——-a- Rate = (-_)F
I&ngth I

Fig. Efficient Implementation of Sampling

Rate conversion by block processing.
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Frequency response of above filter is given by

T T
H(w,) = I, 0w Iimln{ﬁ 7

0, otherwise
g(o,Mm, I=0,1, ...,1—-

sm 1. (lmDJ) _é_’q y(m)

D/ Rate =—FE
i g(0, )
z—h—-'D . - (I'H-ITD - 1) =
i
z—t
g(2, i)
L ;- s (5°]-2) ,é .@
I
;
z" alK —1, ,
5 moy_ K+ 1
D,fn_ i (l 1 )_é_.@

: — I I
iy [L flecreret realization of serrreprlenng reate coversion by oo fereton [ 1 ]




MPLING-RATE CONVERSION BY AN ARBITRARY
ACTOR

Case - I : We need to perform sampling rate conversion by a rational

I
numbers [‘D"Jr , where [ is large integer [Fnr example, = 1023 and D !
I 1023 . s
= 511, L.e., D" 511 | Although we can achieve exact sampling rate :

conversion by this number, we would use a polyphase filter with I= 1023
subfilters, such an exactimplementation is obviously inefficient in memory
usage because we need to store a large number of filter coefficients.

Case II : In some applications, the exact conversion sampling rate is
not known when we design the sampling rate convertor, or sampling rate
is continuously changing during the conversion process. For example, we
may counter the situation where the input and output samples are
controlled by two independent clocks. It is possible to define a nominal
conversion rate that is a rational number, the actual sampling rate would

agk-rcet-bhilai




First-order Approximation Method

1
In general case, we can express — as
a

1 &k
R, 1P

where & and I are positive integers and B is a number in the range.
1

0<B<=

P I

1
Now, the boundaries of R is given as
¥ |

R 1 k+1
—_ < <
I R, I
Where I corresponds to interpolation factor. Interpolation factor I will

be determined to satisfy the specification on the amount of tolerable
distortion introduced by sampling rate converter. Also, [ is equal to the

number of polyphase filters.
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For example

Suppose that R, = 2.2 and that we have determined, as we will

demonstrate, that I =6 polyphase filters are required to meet the distortion
specification. Then

R_2 1 3 k+l
—E—d—Cg—5—
I 6 R, 6 I
So that % =2
T
The time spacing between samples of the interpolated sequence s TS .

However, the desired conversion rate R, = 2.2 for I = 6 corresponds to
decimation factor of 2.727, which falls between k = 2 and k = 3.

In the first-order approximation method, we achieve the desired
decimation rate by selecting the output-sample from the polyphase filter
closest in time to the desired sampling time. Itisillustrated in Fig. |

for ] = 6.
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y(m + 1)

Desired

'II'I.’.II.}.I'I.‘II

.'I.'.II..II..II.]..IIII..‘..I

.I.Il.l.'-..lll.'.l.l.l.l.lll.l_

.-lrl..ll.l.l..ll-.ll.l..l-.l.l.ll.ll.l.l

yim + 1)
@

7

!

5

5

i

.-II.-'.I.'-.I.I-...-I.IIII..I.III..I-II_..II.I.I

III'I'I'IIIIII'II.—I‘I

"I-Illltl-illll‘ll'

Desired y

first order approximations.

Sampling rate rconversion by use of

Igﬁ
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By using the bound ¢,,l< 7 owe obtain an upper bound for t h totul

Error power as

1 U, - =3
P = oy s(w)e’™T — S(w)e’ "’ I"‘I'I clew
J'L' ], '

_l._ LU

: " dw
2l

]

S(w) je’ wt

&

1 oo ,(05Y) .
E—I A“[EIE] W “dw
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[ Second-order Approximation Method ]

The disadvantage of the first order approximation method is the large
number of subfilters needed to achieve a specified distortion requirement.

The implementation of the linear interpolation method is very similar
to the first-order approximation. In linear interpolation, we com pute two
adjacent samples with the desired sampling time falling between their
sampling times. It is illustrated in Fig. (12.22). But in first-order
approximation, we use the sample from the interpolating filter closest to
the desired conversion output as the approximation. The normalised time

, o1
spacing between these two samples is 7

We assume that the sampling time of the first sample lags the desire
sampling time by ¢,,, the sampling time of the second sample is then leadiny

1
the desired sampling time by [?) —t,,- If the two samples are denoted by

¥1(n) and yy(mn) then by using linear interpolation, we can com pute thy
approximation to the desired output as
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PROVE THAT

1 pe. 2 2
O I 80w I?

The frequency responses of the desired filter, first-subfilter and second

; ; i (T . 1 . .
subfilter is e/, e/°~'») and /@ 'm* ) respectively. Because linear

interpolation is a linear operation, we can also use linear interpolation to
compute the frequency response of the filter that generates y(m) as
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By ignoring higher order errors, we can write Egn. as
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By ignoring higher order errors, we can write Eqn. as

. 1
joo (x-t,) _ Jolt=ty+7)

e’ -(1l-a,le a,, €

_ ' 1
= /™ {[,J- -(1- u‘m} Cos i, —a,, msm(? - !m)]

| : 1
+j[(1 — o, )sinwt, -0, sinot, - o, Sine [? -, )]}
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APPLICATION OF MULTIRATE DIGITAL SIGNAL
PROCESSING

Multirate Digital signal processing has following applications -
1. Design of Phase Shifters
2. Interfacing of Digital Systems with different sampling rates
3. Implementation of Narrow Band Low Pass filters (NB-LPF)
4. Implementation of Digital Filter Banks.
5. Subband coding of speech signals
6. Quadrature Mirror Filters.
7. Transmultiplexers
8.

Oversampling A/D and D/A Conversion.

agk-rcet-bhilai

-



Consider a multirate system shown in Fig.
Find v(7n) as a function of x(n).
Solution From Fig the outputs of the down sampler ar

1 b1
VI(Z) = lx[zEjJri x[-—zz)
2 2

-1 . -1 X
& — =
w2Z) = 2 X(zi)—z; X[—32]

F'he outputs of the up sampler are

Vu(z}=%.}'{(z]+%}{{—zj

—1 ~1
W, ()= - X () - - X (=2
2x (72) | L T vl ) ‘o T 1)
z—‘l z-‘l

i Sy P fg_-.




¥(z)is given by
M=oV )+ W,
1 -1
- X+ X-2) +%' X))

J
L

—

e
"R
e
e ——
gl |
T—



-,

Example Implement a two-stage decimator for the following
specifications:

Sampling rate of the Input signal s(n)
F. = 20,000 Hz
Decimation Factor, D = 100
PassBand = 0 to 40 Hz
Transition Band = 40 to 50 Hz
Pusshand ripple = 0.01
Stophand ripple = 0.002
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Solwution.,

Input LPFE S4(n) Qutput
s(n) ——>1 hn) ——-l-lmﬂ y(n)

F', = 20,000 Hz F, =200 Hz

IH ()l
A

AR e o o s e ot omm

o
Y
Q

S0 f (Hz)
LPF 1 400 Hz LPF 2

Input Qutput

F', = 20,000 Hz F, =200 Hz




IH, ()1 IH, ()
'y

e e rm

- | -
0 40 350 ¢ (Hz) 0 40 100 1y
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Fig Illustration of single- stage and two -stage network for decimatar,

The implantation of the system in shown in Fig.

Upper limit of passband F, =40 Hz
limit of stopband F, = 50 Hz

=
»
(O]
L
(@)
=
2
>
7
o
>
€
3
3
3

Pass"band ripple 8, = 0.01

Stopband ripple 8, = 0.002
D = Deécimation factor = 100
Sampling rate of the input signal s(n)
= F! = 20,000 Hz
= 20 kHz




INesrersinlarsewd 02 cu33 wsfassts I32arnd wvsd ehs

F, — F,

ro
50 — 40 10 =
Z0.000 Z0. 000 =

For an eqgquirippie linear phase FIR digntal filter, the length &V is given
oy

—2010 4., /5.5, — 13

N -
* 1326 AF

—~20 o, Jf(0.01) (C.O02) - 13
146 (5 =10"7%)

= 4656

In the single stage i1mmplementation, the number of mmultsplication per
secona is,

» '
B AN

4656 = 20,000

= S@3I X200
Trwo-stage Realisactfior
Fi(=)can be implemented as a cascade realisation in the form G(="2) Fiz=).
The stepsin the tow-stage realisation of the decimator structure is shown

in Fig. and the magnitude response are shown in Fig.
— [F=} == T
20 KH=x 20 == 20 K 20 Hz
=N B
20 K 20 Wiz = Kz 200 Fir 200 He
| =1 | (450 | | S =) |
=20 K== 20 Kz S0 WA SOGC Yarx 200 =2

Tovo stepe realisateon of tHhe decirmalors Sfructiers.
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s, .t

- w»

O° 2 xHe:r 2 S KH= ~ 1TSS KeEr 2w
{SoFy (soF) TORRE o eoFn 20 sz
‘=
L - 7]
1S ) %
}A‘: ot B =
- =
- +
5 Z
\‘ >_
: : = - =
[= =
= 150 Hz %
Q
Figr. AMoagrnitiede Resporise Ffor ¢ froo stage cdacirmeter. E
For acascade realisation, thhe overnil ripple is the sum of the passband *E
mipplesof Fiz)and Gi=""). Tomaintain the stop band ripple atleast as good @
as Fiz) or Gi=z®9), 5, for both can be 0.002. The specification for the - E
interpolated FIR Daigital fGlters is given | S5 =
For Gi=), &, = O.O05.5, — 0002 2
SO0 -
- =Y XE0C
AF 0. 25 =
For Fezyy &, = 0005 5, = 0002
Af - 220 _ o 310

20 000

The filter lengths are calculated as follows -
For Giz). -

—20 log ,,, [(O.COS5) (CO02> — 13
2.5 =107 — 2 <107
20 = 107"

N =

14.6

= 101




For Fis,

~201log,, ,/(0.005) (0.002) - 13

14,5[ 290 _—4--2]
20 = 10

p—

= 337
The length of the overall filter in cascade is given by
337 + (50 + 101) + 2
= 0389

The filter length in cascade realisation has increased but the number
of multiplication per second can be reduced.

101 %400 ‘
hM. o > = 20 200
337 x 20000
Ny r = = 134800

Total number of multiplication per second is given by
NM, 2+ NM,F = 20,200 + 1,34,3‘.}[}
= 1,565,000

-
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Example  Compare the single-stage, two-stage, three-stage and

multistage realisation of the decimator with the fol

owing specifications.

Sampling rate of a signal has to be reduced from |

0kHzt0500 Hz. The |

decimation filter H(z) has the passband edge (F,) to be 150 Hz, stopband | |

edge (F,) to be 180 Hz.

Passhand ripple 8, = 0.002
Stopband ripple §, = 0.001




Solution. The length N of an equiripple linear phase FIR digital filter in

given by
~20log, /0,0, — 13
14.6 Af
where Af = Normalised transition band-width
_ F,-F,
Fsr
Given | EF' =10kHz

~20log,, J(ﬂ 002) (0.001) —13

N=- 180 - 150
14.&{ — )

10,000
~ 1004




Forthe single-stage implementation of the decimator with a decimntion
factor of 20, the number of multiplications per second is given hy

N F/
Nypw=—"F—
‘ D
_ 1004 = 10,000 — 50,2000 %
20 2
Two-stage Realisation 8
=

H(z) can be implemented as a cascade realisation in the form of (i(s!

#(z). The steps in the two-stage realisation of the decimator structuroa [
shown in Fig. and response is shown in Fig. E
— F(2) o F (z'% {20 b—» g
10 KHz 10KHz 10 KHz 500 Hz :

—» F (2) —~—-—G{z'°}—+ ,l,'m —— *2 -

10 KHz 10 KHz 10 KHz 1 KHz 500 Hz
—Fo}l—iw —{ca}—{1z —
10 KHz 10 KHz 1 KHz 1 KHz 500 Hz
Fig. (@) Two-stage realisation of the decimators structure.




1G gyt

LN /]

= )
1.5 KHz 1.8 KHz 7.5 KHz
(10F,) (10F,) 5 Kz (F. 10 F,) mh:l-lz
F's
A
G (git10e,|
'/ NF gl
%
%
¢
%
EY
W
1 * | =
oF, (F.,’~ 10 F,) 2n
150 150 —J_'_m 10 KHz
Hz Hz .?rED Hz

(6) Magnitude response for a two stage decimator.
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For the case i teahisation, the overall ripple is the sum of the passband
ripples of - nnd (2'Y). To maintain the stop band ripple atleast as good

as Flz) or (i(z'Y), 8, for both can be 0.001. The specification for the
interpolated FIR Digital filters is given by

For G(2),8, =0.001 .
8, =0.001 -
_ 300 g
A =10.000 2
For F(z), &, =0.001 g
8, =0.001 :
570 S
Af =
/ 10,000 g

The filter length N can be determined as follows :
For G(z),
~20log,, /0,05 —13
B 14.6 (Af)




20108, /5,8, ~ 13

F —
14.5{—5 ,FP]
F

-201log,, ,/(0.001) (0.001) - 13

3 _ 3
146(15}:10 15 % 10 )

10 x 10° 5

=107 :

For F(z), S
-201log,, ,/(0.001) (0.001) —13

N = 5

14.6 (T@ - 133) 2

10 x 10° 4

&

= 56 =

S

The length of the overall filter in cascade is given by
56 + (10 x 107)' + 2 = 1128

The filter length in cascade realisation has increased but the number
of multiplications per second can be reduced.

N, . =107 2% _ 53500
Al (s 2




Total number of multiplication per second is

Nyt Ny p

= 53,000 + 56,000
= 1,09,500




Three-stage Realisation :

The decimation filter F(2) can be realised in the cascade form P(z) Q(ZY),
The specifications are given as follows :

For G(P:), 0 p= 0.0005

5, = 0.001

570
f 10,000 x 5= 0285

N=12
For P(z), 0, =0.0005
5, =0.001
1130

Of =——=0.
/ 10,000 s

N =30

www.mycsvtunotes.in  MYcsvtu Notes



The three stage realisation is shown in Fig

e _.E__.. o |2 | cw _.E_..

The overall number of multiplications per second for a three stage
realisation is given by

10 KHz 10 KHz 2 KHz 2 KHz 1 KHz 500 Hz
Fig. Frequency Response for a three-stage Decimation. §
The number of multiplications per second is given by %
=

N 12 x 2000

N MQ= 5 = 12,000 ;
30 x 1000 S
N MPp = 5 = 60,000 ]
£
S
S
P

‘ NM_G+NM‘Q+NM.P=53,5U[1+12,HDU+ED,OGO

. =1,25500
The number of multipl_icatinns per second for a three-stage realisation
is more than that of a two-stage realisation. Hence higher than two-stage
realisation may not lead to an efficient realisation.




Example We have given a mwiti sampling rate system shown in
Fig. Find y(n) as a function of s(n).

S LNy YL

Output

-’ l2 P y(n)

w(n) w(n)

Fig. Multisampling rate system.




Solution. From above Fig. . the outputs of the down-sampler are
Eilven as

1 1 1 1
Vi(z) == S(z2)+—= S(—=2) (1)
2 2
=1 1 =1 _1
Wiz) = 22 S{;;E}_E_E S(—z2) _.(2)
2 2
The outputs of the up-sampler are
1 1
V(=) = > S(z) +5 S(—2) ..(3)
Zz-1 —z1
W, (2) = =—S(2) S(—z2) ...(4)
Y(z) is given by
Yiz)=z"" V,(=)+ W, (=2 ...(B)
Substituting Eqns. (3) and (4) in Egqn. (5), we get
-1 -1
Y(=) = z'l[l S(z) + = S{—z)] + [z S(z)— = S{—z)]
2 2 = 2
or Yiz) = Z-1 S(z) ...(6)

Tnnking the inverse z-transform of both sides of Eqn. (6), we get
vim) = s{ln — 1)
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15.

16.
17.
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HEVIEW QUESTIONS

What 1s Multarate Digital Signal Processing (MIDSEP)Y 7
What 1= thhe need for Multarate Diaigmtal s:pgpnal processing 7
Gave some examples of Mualtarate Dignital Systems.
Write short motes on the following topacs -
) MDSEP (5 Decoomator (o) Decimation filter {d) Interpolator
fe) Interpolstion filter

Explain thhe interpolation process for aan ainteger factor F with an
example.
Explain thhe Decimation process for an integer factor I with an

example.

T'he signal s(2) is defined by
- A, n >0

() = O otherwise

(ax) Obtain thhe decimated signal with a factor of 3
(53 Obtain the interpolated signal with a factor of 3.
Explain polyphase decomposition process.

rd
Describe the sampling rate conversion by & rational factor (’B) .

Obtain the polyphase structure of the filter with the transfer function.
11— 3="
P
Give thhe name of some aareas where AFfPDSF svyvstems are used .
Gaive the advantages of unasing AfDOSF systems.
Discuss filter design and impleamentation for samplhing -rate conversaon.
Descrmabe and draw Direct-formnm F7IR Digital failter structure.
Write short notes on followirng -
{a) Polyphase Digntal filter structure
(&6 Thme-varving Digital filter structure
Descrmibe thhe samplhing-Rate Conversion by an arbitrary factor.
Write short notes on the following

{x) Sampling rate conversion by use of first-order approximation

methwod.

&) Sampling rate conversion by use of second-order (Lancarxr)
approxamation method.

List some applications of AFIDSF,

(=) w-
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