
MYcsvtu Notes

REGISTER TRANSFER AND MICROOPERATIONS

• Register Transfer Language

• Register Transfer

• Bus and Memory Transfers

• Arithmetic Microoperations

• Logic Microoperations

• Shift Microoperations

• Arithmetic Logic Shift Unit

Simple Digital circuit

• Combinational and sequential circuits (learned in Chapters 1 and 2)

 can be used to create simple digital systems.

• These are the low-level building blocks of a digital computer.

• Simple digital systems are frequently characterized in terms of

– the registers they contain, and

– the operations that they perform.

• Typically,

– What operations are performed on the data in the registers

– What information is passed between registers

MICROOPERATIONS (1)

• The operations on the data in registers are called microoperations.

• The functions built into registers are examples of microoperations

– Shift

– Load

– Clear

– Increment

MICROOPERATION (2)

An elementary operation performed (during

 one clock pulse), on the information stored in one or more registers

MYcsvtu Notes

ORGANIZATION OF A DIGITAL SYSTEM

• Definition of the (internal) organization of a computer

- Set of registers and their functions

- Microoperations set

 Set of allowable microoperations provided

 by the organization of the computer

- Control signals that initiate the sequence of

 microoperations (to perform the functions)

REGISTER TRANSFER LEVEL

• Viewing a computer, or any digital system, in this way is called the register

transfer level

• This is because we’re focusing on

– The system’s registers

– The data transformations in them, and

– The data transfers between them.

REGISTER TRANSFER LANGUAGE

• Rather than specifying a digital system in words, a specific notation is used,

register transfer language

• For any function of the computer, the register transfer language can be used to

describe the (sequence of) microoperations

• Register transfer language

– A symbolic language

– A convenient tool for describing the internal organization of digital

computers

– Can also be used to facilitate the design process of digital systems.

MYcsvtu Notes

DESIGNATION OF REGISTERS

• Registers are designated by capital letters, sometimes followed by numbers (e.g.,

A, R13, IR)

• Often the names indicate function:

– MAR - memory address register

– PC - program counter

– IR - instruction register

• Registers and their contents can be viewed and represented in various ways

– A register can be viewed as a single entity:

- Registers may also be represented showing the bits of data they

 contain

DESIGNA TION OF REGISTERS

• Designation of a register

 - a register

 - portion of a register

 - a bit of a register

• Common ways of drawing the block diagram of a register

REGISTER TRANSFER

• Copying the contents of one register to another is a register transfer

• A register transfer is indicated as

 R2  R1

– In this case the contents of register R2 are copied (loaded) into register R1

– A simultaneous transfer of all bits from the source R1 to the

 destination register R2, during one clock pulse

R1

 Register

Numbering of bits

Showing individual bits

Subfields

PC(H) PC(L)

15 8 7 0

7 6 5 4 3 2 1 0

R2

15 0

MYcsvtu Notes

– Note that this is a non-destructive; i.e. the contents of R1 are not altered by

copying (loading) them to R2

REGISTER TRANSFER

• A register transfer such as

 R3  R5

Implies that the digital system has

– the data lines from the source register (R5) to the destination register (R3)

– Parallel load in the destination register (R3)

– Control lines to perform the action

CONTROL FUNCTIONS

• Often actions need to only occur if a certain condition is true

• this is similar to an “if” statement in a programming langua

• In digital systems, this is often done via a control signal, called a control function

– If the signal is 1, the action takes place

• This is represented as:

P: R2  R1

Which means “if P = 1, then load the contents of register R1 into register R2”, i.e., if (P =

1) then (R2  R1)

HARDWARE IMPLEMENTATION OF CONTROLLED TRANSFERS

Implementation of controlled transfer

P: R2 R1

Block diagram

Timing diagram

Clock R2

R1

Control
Circuit

Load P

n

MYcsvtu Notes

• The same clock controls the circuits that generate the control function

and the destination register

• Registers are assumed to use positive-edge-triggered flip-flops

SIMULTANEOUS OPERATIONS

• If two or more operations are to occur simultaneously, they are separated with

commas

 P: R3  R5, MAR  IR

• Here, if the control function P = 1, load the contents of R5 into R3, and at the

same time (clock), load the contents of register IR into register MAR

BASIC SYMBOLS FOR REGISTER TRANSFERS

Transfer occurs here

Clock

Load

Capital letters Denotes a register MAR, R2
 & numerals
Parentheses () Denotes a part of a register R2(0-7), R2(L)

Arrow  Denotes transfer of information R2 R1

Colon : Denotes termination of control function P:

Comma , Separates two micro-operations A B, B A

Symbols Description Examples

MYcsvtu Notes

 CONNECTING REGISTRS

• In a digital system with many registers, it is impractical to have data and control

lines to directly allow each register to be loaded with the contents of every

possible other registers

• To completely connect n registers  n(n-1) lines

• O(n2) cost

• This is not a realistic approach to use in a large digital system

• Instead, take a different approach

• Have one centralized set of circuits for data transfer – the bus

• Have control circuits to select which register is the source, and which is the

destination

BUS AND BUS TRANSFER

Bus is a path(of a group of wires) over which information is transferred, from any of

several sources to any of several destinations

From a register to bus: BUS  R

TRANSFER FROM BUS TO A DESTINATION REGISTER

Register
A

Register
B

Register
C

Register
D

Bus lines

Reg. Reg. R1 Reg. R2 Reg. R3

Bus lines

2 x 4
 Decoder

Load

D 0 D 1 D 2 D 3 z

w
Select E (enable)

MYcsvtu Notes

Three-State Bus Buffers

Normal input A

Control input C Output Y=A if C=1

High-impendence if C=0

BUS TRANSFER IN RTL

• Depending on whether the bus is to be mentioned explicitly or not, register

transfer can be indicated as either

 or

 In the former case the bus is implicit, but in the latter, it is explicitly indicated

MEMORY (RAM)

• Memory (RAM) can be thought as a sequential circuits containing some number

of registers

• These registers hold the words of memory

• Each of the r registers is indicated by an address

• These addresses range from 0 to r-1

• Each register (word) can hold n bits of data

• Assume the RAM contains r = 2k words. It needs the following

– n data input lines

– n data output lines

– k address lines

– A Read control line

– A Write control line

MYcsvtu Notes

 MEMORY TRANSFER

• Collectively, the memory is viewed at the register level as a device, M.

• Since it contains multiple locations, we must specify which address in memory

we will be using

• This is done by indexing memory references

• Memory is usually accessed in computer systems by putting the desired address in

a special register, the Memory Address Register (MAR, or AR)

• When memory is accessed, the contents of the MAR get sent to the memory unit’s

address lines

MEMORY READ

• To read a value from a location in memory and load it into a register, the register

transfer language notation looks like this:

data input
lines

data output
lines

n

n

k

address
lines

Read

Write

RAM
unit

AR
Memor

y
unit

Write

Data
in

Data
out

MYcsvtu Notes

• This causes the following to occur

– The contents of the MAR get sent to the memory address lines

– A Read (= 1) gets sent to the memory unit

– The contents of the specified address are put on the memory’s output data

lines

– These get sent over the bus to be loaded into register R1

• To read a value from a location in memory and load it into a register, the register

transfer language notation looks like this:

• This causes the following to occur

– The contents of the MAR get sent to the memory address lines

– A Read (= 1) gets sent to the memory unit

– The contents of the specified address are put on the memory’s output data

lines

– These get sent over the bus to be loaded into register R1

MEMORY WRITE

• To write a value from a register to a location in memory looks like this in register

transfer language:

• This causes the following to occur

– The contents of the MAR get sent to the memory address lines

– A Write (= 1) gets sent to the memory unit

– The values in register R1 get sent over the bus to the data input lines of the

memory

– The values get loaded into the specified address in the memory

SUMMARY OF R. TRANSFER MICROOPERATIONS

A  B Transfer content of reg. B into reg. A

AR DR (AD) Transfer content of AD portion of reg. DR into reg. AR

A  constant Transfer a binary constant into reg. A

ABUS  R1, Transfer content of R1 into bus A and, at the same time,

R2 ABUS transfer content of bus A into R2

AR Address register

DR Data register

M[R] Memory word specified by reg. R

M Equivalent to M[AR]

DR  M Memory read operation: transfers content of

 memory word specified by AR into DR

M  DR Memory write operation: transfers content of

 DR into memory word specified by AR

MYcsvtu Notes

MICROOPERATIONS

• Computer system microoperations are of four types:

- Register transfer microoperations

- Arithmetic microoperations

- Logic microoperations

- Shift microoperations

ARITHMETIC MICROOPERATIONS

• The basic arithmetic microoperations are

– Addition

– Subtraction

– Increment

– Decrement

• The additional arithmetic microoperations are

– Add with carry

– Subtract with borrow

– Transfer/Load

– etc. …

Summary of Typical Arithmetic Micro-Operations

R3  R1 + R2 Contents of R1 plus R2 transferred to R3

R3  R1 - R2 Contents of R1 minus R2 transferred to R3

R2  R2’ Complement the contents of R2

R2  R2’+ 1 2's complement the contents of R2 (negate)

R3  R1 + R2’+ 1 subtraction

R1  R1 + 1 Increment

R1  R1 - 1 Decrement

BINARY ADDER / SUBTRACTOR / INCREMENTER

Binary Adder

MYcsvtu Notes

Binary Adder-Subtractor

Binary Incrementer

ARITHMETIC CIRCUIT

HA

x y

C S

A0 1

S0

HA

x y

C S

A1

S1

HA

x y

C S

A2

S2

HA

x y

C S

A3

S3C4

FA

B0 A0

S0

C0C1FA

B1 A1

S1

C2FA

B2 A2

S2

C3FA

B3 A3

S3C4

M

FA

B0 A0

S0

C0FA

B1 A1

S1

C1FA

B2 A2

S2

C2FA

B3 A3

S3

C3

C4

MYcsvtu Notes

S1 S0 Cin Y Output Microoperation

0 0 0 B D = A + B Add

0 0 1 B D = A + B + 1 Add with carry

0 1 0 B’ D = A + B’ Subtract with borrow

0 1 1 B’ D = A + B’+ 1 Subtract

1 0 0 0 D = A Transfer A

1 0 1 0 D = A + 1 Increment A

1 1 0 1 D = A - 1 Decrement A

1 1 1 1 D = A Transfer A

LOGIC MICROOPERATIONS

• Specify binary operations on the strings of bits in registers

– Logic microoperations are bit-wise operations, i.e., they work on the

individual bits of data

– useful for bit manipulations on binary data

– useful for making logical decisions based on the bit value

• There are, in principle, 16 different logic functions that can be defined over two

binary input variables

S1
S0
0
1
2
3

4x1

MUX

X0

Y0

C0

C1

D0
FA

S1
S0
0
1
2
3

4x1
 MUX

X1

Y1

C1

C2

D1
FA

S1
S0
0
1
2
3

4x1

MUX

X2

Y2

C2

C3

D2
FA

S1
S0
0
1
2
3

4x1

MUX

X3

Y3

C3

C4

D3
FA

Cout

A0

B0

A1

B1

A2

B2

A3

B3

0 1

S

MYcsvtu Notes

However, most systems only implement four of these

AND (), OR (), XOR (), Complement/NOT

The others can be created from combination of these

LIST OF LOGIC MICROOPERATIONS

• List of Logic Microoperations

16 different logic operations with 2 binary vars.

 - n binary vars → functions

• Truth tables for 16 functions of 2 variables and the

 corresponding 16 logic micro-operations

x 0 0 1 1 Boolean Micro Name

 y 0 1 0 1 function operation

0 0 0 0 F0 = 0 F  0 Clear

0 0 0 1 F1 = xy F  A  B AND

0 0 1 0 F2 = xy' F  A  B’

0 0 1 1 F3 = x F  A Transfer A

0 1 0 0 F4 = x'y F  A’ B

0 1 0 1 F5 = y F  B Transfer B

0 1 1 0 F6 = x  y F  A  B Exclusive-OR

0 1 1 1 F7 = x + y F  A  B OR

1 0 0 0 F8 = (x + y)' F  A  B)’ NOR

1 0 0 1 F9 = (x  y)' F  (A  B)’ Exclusive-NOR

1 0 1 0 F10 = y' F  B’ Complement B

1 0 1 1 F11 = x + y' F  A  B

1 1 0 0 F12 = x' F  A’ Complement A

1 1 0 1 F13 = x' + y F  A’ B

1 1 1 0 F14 = (xy)' F  (A  B)’ NAND

1 1 1 1 F15 = 1 F  all 1's Set to all 1's

0 0 0 0 0 … 1 1
1
0 1 0 0 0 … 1 1
1
1 0 0 0 1 … 0 1
1
1 1 0 1 0 … 1 0
1

A B F0 F1 F2 … F13 F14 F15

MYcsvtu Notes

HARDWARE IMPLEMENTATION OF LOGIC MICROOPERATIONS

APPLICATIONS OF LOGIC MICROOPERATIONS

• Logic microoperations can be used to manipulate individual bits or a portions of a

word in a register

• Consider the data in a register A. In another register, B, is bit data that will be

used to modify the contents of A

– Selective-set A  A + B

– Selective-complement A  A  B

– Selective-clear A  A • B’

– Mask (Delete) A  A • B

– Clear A  A  B

– Insert A  (A • B) + C

B

S

F

1

i

i

i
0

1

2

3

4 X 1
 MUX

Select

0 0 F = A  B AND

0 1 F = AB OR

1 0 F = A  B XOR
1 1 F = A’ Complement

S1 S0 Output -operation

 Function table

MYcsvtu Notes

– Compare A  A  B

– . . .

SELECTIVE SET

• In a selective set operation, the bit pattern in B is used to set certain bits in A

 1 1 0 0 At

 1 0 1 0 B

 1 1 1 0 At+1 (A  A + B)

• If a bit in B is set to 1, that same position in A gets set to 1, otherwise that bit in A

keeps its previous value

SELECTIVE COMPLEMENT

• In a selective complement operation, the bit pattern in B is used to complement

certain bits in A

 1 1 0 0 At

 1 0 1 0 B

 0 1 1 0 At+1 (A  A  B)

• If a bit in B is set to 1, that same position in A gets complemented from its

original value, otherwise it is unchanged

SELECTIVE CLEAR

• In a selective clear operation, the bit pattern in B is used to clear certain bits in A

 1 1 0 0 At

 1 0 1 0 B

 0 1 0 0 At+1 (A  A  B’)

• If a bit in B is set to 1, that same position in A gets set to 0, otherwise it is

unchanged

MASK OPERATION

• In a mask operation, the bit pattern in B is used to clear certain bits in A

 1 1 0 0 At

MYcsvtu Notes

 1 0 1 0 B

 1 0 0 0 At+1 (A  A  B)

• If a bit in B is set to 0, that same position in A gets set to 0, otherwise it is

unchanged

CLEAR OPERATION

• In a clear operation, if the bits in the same position in A and B are the same, they

are cleared in A, otherwise they are set in A

 1 1 0 0 At

 1 0 1 0 B

 0 1 1 0 At+1 (A  A  B)

INSERT OPERATION

• An insert operation is used to introduce a specific bit pattern into A register,

leaving the other bit positions unchanged

• This is done as

– A mask operation to clear the desired bit positions, followed by

– An OR operation to introduce the new bits into the desired positions

– Example

» Suppose you wanted to introduce 1010 into the low order four bits

of A: 1101 1000 1011 0001 A (Original)

 1101 1000 1011 1010 A (Desired)

» 1101 1000 1011 0001 A (Original)

 1111 1111 1111 0000 Mask

 1101 1000 1011 0000 A (Intermediate)

 0000 0000 0000 1010 Added bits

 1101 1000 1011 1010 A (Desired)

SHIFT MICROOPERATIONS

• There are three types of shifts

– Logical shift

– Circular shift

– Arithmetic shift

• What differentiates them is the information that goes into the serial input

MYcsvtu Notes

• A right shift operation

A left shift operation

Serial input

• In a Register Transfer Language, the following notation is used

– shl for a logical shift left

– shr for a logical shift right

– Examples:

» R2  shr R2

» R3  shl R3

LOGICAL SHIFT

• In a logical shift the serial input to the shift is a 0.

• A right logical shift operation:

Serial
input

MYcsvtu Notes

• A left shift operation

CIRCULAR SHIFT

• In a circular shift the serial input is the bit that is shifted out of the other end of

the register.

• A right circular shift operation:

• A left circular shift operation:

• In a RTL, the following notation is used

– cil for a circular shift left

– cir for a circular shift right

– Examples:

» R2  cir R2

» R3  cil R3

ARITHMETIC SHIFT

• An arithmetic shift is meant for signed binary numbers (integer)

• An arithmetic left shift multiplies a signed number by two

• An arithmetic right shift divides a signed number by two

• The main distinction of an arithmetic shift is that it must keep the sign of the

number the same as it performs the multiplication or division

• A right arithmetic shift operation:

• A left arithmetic shift operation

ARITHMETIC SHIFT

• An left arithmetic shift operation must be checked for the overflow

MYcsvtu Notes

• In a RTL, the following notation is used

– ashl for an arithmetic shift left

– ashr for an arithmetic shift right

– Examples:

» R2  ashr R2

» R3  ashl R3

HARDWARE IMPLEMENTATION OF SHIFT MICROOPERATIONS

V
Before the shift, if the leftmost two
bits differ, the shift will result in an
overflow

sign
bit

MYcsvtu Notes

ARITHMETIC LOGIC SHIFT UNIT

S

0
 1

H0 MUX

S

0
 1

H1 MUX

S

0
 1

H2 MUX

S

0
 1

H3 MUX

Serial
input (IR)

Serial
input (IL)

MYcsvtu Notes

S3 S2 S1 S0 Cin Operation Function

0 0 0 0 0 F = A Transfer A

0 0 0 0 1 F = A + 1 Increment A

0 0 0 1 0 F = A + B Addition

0 0 0 1 1 F = A + B + 1 Add with carry

0 0 1 0 0 F = A + B’ Subtract with borrow

0 0 1 0 1 F = A + B’+ 1 Subtraction

0 0 1 1 0 F = A - 1 Decrement A

0 0 1 1 1 F = A TransferA

0 1 0 0 X F = A  B AND

0 1 0 1 X F = A B OR

0 1 1 0 X F = A  B XOR

0 1 1 1 X F = A’ Complement A

1 0 X X X F = shr A Shift right A into F

1 1 X X X F = shl A Shift left A into F

Arithmetic
 Circuit

Logi
Circuit

C

C 4 x 1
 MUX

Select

0
 1
 2
 3

F

S2
S1
S0

B
A

i

A

D

A

E

shr
shl

i+1 i

i
i

i+1
i-1

i

i

