FM Receivers

- FM receivers, like AM receivers, utilize the superheterodyne principle, but they operate at much higher frequencies (88 - 108 MHz).
- A *limiter* is often used to ensure the received signal is constant in amplitude before it enters the *discriminator* or *detector*.

Block Diagram of FM Receiver

FM Demodulators

- The FM demodulators must convert frequency variations of the input signal into amplitude variations at the output.
- The Foster-Seeley discriminator and its variant, the ratio detector are commonly found in older receivers. They are based on the principle of slope detection using resonant circuits.

Slope Detector

- La Ca produce an output voltage proportional to the input frequency.
- Center frequency is place at the center of the most linear portion of the voltage versus-frequency curve
- When IF deviates above or below fc , output voltage increases or decreases
- Tuned circuit converts frequency variation to voltage variation

S-curve Characteristics of FM Detectors

Balanced Slope Detector

- Two single-ended slope detectors connected in parallel and fed 180 o out of phase
- Phase inversion accomplished by centertapping secondary winding
- Top tuned circuit is tuned to a frequency above the IF center frequency by approx. 1.33 X Δ f (1.33 X 75 k = 100kHz)
- Similarly, the lower to 100 kHz bellow the IF

- At the IF center frequency, the output voltage from the two tuned circuits are equal in amplitude but opposite in polarity, v out = 0 V
- When IF deviate above resonance, top tuned circuit produces a higher output voltage than the lower circuit and voltage goes positive
- When IF deviate below resonance, lower tuned circuit produces higher output than upper, and output goes negative

Foster-Seely Discriminator

- Similar to balanced slope detector
- Output voltage versus frequency deviation is more linear
- Only one tuned circuit: easier to tune
- Slope-detector and Foster-Seely discriminator respond to amplitude variation as well as frequency deviation: must be preceded by a separate limiter circuit

Ratio Detector

 Advantages over slope detector & Foster-Seely: It is insensitive to amplitude variation in input signal

Phased Locked Loop (PLL)

PLL initially locks to the IF frequency

- After locking, voltage controlled oscillator (VCO) would track frequency changes in the input signal by maintaining a phase error
- The PLL input is a deviated FM and the VCO natural frequency is equal to the IF center frequency
- The correction voltage produced at the output of the phase comparator is proportional to the frequency deviation that is equal to the demodulated information signal

PLL detectors are commonly found in modern FM receivers.

Amplitude Limiter

- Most frequency discriminators use envelope detection to extract the intelligence from the FM wave form
- Envelope detection will demodulate incident amplitude variations as well as frequency variation
- Transmission noise and interference add to the signal to produce unwanted amplitude variations

In the receiver, unwanted AM and random noise are demodulated along with the signal: unwanted distortion is produced

 A limiter circuit is used to produce a constant amplitude output for all input signal above a specified threshold level FM Stereo Broadcasting: Baseband Spectra

To maintain compatibility with mono system, FM stereo uses a form of FDM or frequency-division multiplexing to combine the left and right channel information:

FM Stereo Broadcasting

- To enable the L and R channels to be reproduced at the receiver, the L-R and L+R signals are required. These are sent as a DSBSC AM signal with a suppressed subcarrier at 38 kHz.
- The purpose of the 19 kHz *pilot* is for proper detection of the DSBSC AM signal.
- The optional Subsidiary Carrier Authorization (SCA) signal is normally used for services such as background music for stores and offices.

Chapter 7: Angle Modulation Transmission

- What is Angle modulation
- What is the difference between frequency and phase modulation
- What is direct and indirect modulation
- Deviation sensitivity, phase deviation, modulation index
- Bandwidth of angle-modulated wave
- Bandwidth requirements
- Phasor representation of angle-modulated wave
- Frequency up-conversion
- FM transmitters
- Angle modulation versus AM

Angle modulation

$$V_{\text{anglemod}}\left(t\right) = V_{c}\cos\left(\theta_{\text{inst}}\left(t\right)\right)$$

 $\theta_{inst}(t) = instantaneous phase (radians)$

Question:

What is the instantaneous frequency?

Angle modulation

$$v_{\text{anglemod}}(t) = V_c \cos(\theta_{\text{inst}}(t))$$

$$\omega_{inst}\left(t\right) = \frac{d\theta_{inst}\left(t\right)}{dt}$$

$$\theta_{inst}(t) = \int_{0}^{1} \omega_{inst}(t) dt$$

 $v_{anglemod}(t)$ V_c ω_{inst} $heta_{inst}$

- angle modulated wave (Volt)
 peak carrier amplitude (Volt)
 instantaneous angular frequency (rad/sec)
- = instantaneous phase (radians)

Phase modulation

The instantaneous phase of a harmonic carrier signal is varied in such a way that the instantaneous phase deviation i.e. the difference between the instantaneous phase and that of the carrier signal is linearly related to he size of the modulating signal at a given instant of ime.

$$\theta_{inst}(t) = ?$$

$$v_{PM}(t) = ?$$

$$\omega_{inst}(t) = ?$$

Phase modulation

The instantaneous phase of a harmonic carrier signal is varied in such a way that the instantaneous phase deviation i.e. the difference between the instantaneous phase and that of the carrier signal is linearly related to he size of the modulating signal at a given instant of ime.

$$\theta_{inst}(t) = \omega_{c}t + K_{p}v_{m}(t)$$

$$v_{PM}(t) = V_{c}\cos\left(\omega_{c}t + K_{p}v_{m}(t) + \varkappa\right)$$

$$\omega_{inst}(t) = \frac{d\theta_{inst}(t)}{dt} = \frac{d\left\{\omega_{c}t + K_{p}v_{m}(t)\right\}}{dt} = \omega_{c} + K_{p}\frac{dv_{m}(t)}{dt}$$

 K_p is the phase deviation sensitivity (rad/Volt)

Frequency modulation

The frequency of a harmonic carrier signal is varied in such a way that the instantaneous frequency deviation i.e. the difference between the instantaneous requency and the carrier frequency is linearly related o the size of the modulating signal at a given instant of ime.

$$\omega_{inst}(t) = ?$$
$$\theta_{inst}(t) = ?$$
$$v_{FM}(t) = ?$$

Frequency modulation

The frequency of a harmonic carrier signal is varied in such a way that the instantaneous frequency deviation i.e. the difference between the instantaneous requency and the carrier frequency is linearly related o the size of the modulating signal at a given instant of ime.

$$\omega_{inst}\left(t\right) = \omega_{c} + K_{f} v_{m}\left(t\right)$$

$$\theta_{inst}(t) = \int_{0}^{\infty} \omega_{inst}(t) dt = \omega_{c}t + \int_{0}^{\infty} K_{f}v_{m}(t) dt$$

$$v_{FM}(t) = V_c \cos \left(\omega_c t + \int_0^{\infty} K_f v_m(t) dt + \mathcal{K} \right)$$

 K_{f} is the frequency deviation sensitivity

rad / s

Volt

$$\Theta_{inst}(t) = \omega_{c}t + K_{p}v_{m}(t) \qquad K_{p} \text{ is the deviation sensitivity}$$

$$v_{PM}(t) = V_{c}\cos\left(\omega_{c}t + K_{p}v_{m}(t)\right)$$

$$\omega_{inst}(t) = \frac{d\theta_{inst}(t)}{dt} = \frac{d\left\{\omega_{c}t + K_{p}v_{m}(t)\right\}}{dt} = \omega_{c} + K_{p}\frac{dv_{m}(t)}{dt}$$

FM:
$$\omega_{inst}(t) = \omega_c + K_f v_m(t)$$
 K_f is the deviation sensitivity
 $\theta_{inst}(t) = \int_0^t \omega_{inst}(t) dt = \omega_c t + \int_0^t K_f v_m(t) dt$
 $v_{FM}(t) = V_c \cos\left(\omega_c t + \int_0^t K_f v_m(t) dt\right)$

TASK: Make block diagrams of PM and FM modulators

$$PM: \quad \theta_{inst}(t) = \omega_{c}t + K_{p}v_{m}(t) \qquad K_{p} \text{ is the deviation sensitivity}$$

$$v_{PM}(t) = V_{c}\cos(\omega_{c}t + K_{p}v_{m}(t))$$

$$\omega_{inst}(t) = \frac{d\theta_{inst}(t)}{dt} = \frac{d\{\omega_{c}t + K_{p}v_{m}(t)\}}{dt} = \omega_{c} + K_{p}\frac{dv_{m}(t)}{dt}$$

$$Modulating \qquad Phase \qquad modulator \qquad PM wave \qquad Direct \qquad V_{c}\cos(2\pi f_{c}t)$$

$$Dotulating \qquad Differentiator \qquad Frequency \qquad PM wave \qquad Indirect \qquad V_{c}\cos(2\pi f_{c}t)$$

$$FM: \ \omega_{inst}(t) = \omega_c + K_f v_m(t) \qquad K_f \text{ is the deviation sensitive} \\ \theta_{inst}(t) = \int_0^t \omega_{inst}(t) dt = \omega_c t + \int_0^t K_f v_m(t) dt \\ v_{FM}(t) = V_c \cos\left(\omega_c t + \int_0^t K_f v_m(t) dt\right) \\ Modulating \\ signal \\ source \\ V_c \cos\left(2\pi f_c t\right) \\ Modulation \\ V_c \cos\left(2\pi f_c t\right) \\ Modulator \\ V_c \cos\left(2\pi f_c t\right) \\ Modulator \\ V_c \cos\left(2\pi f_c t\right) \\ Modulator \\ Modulator \\ V_c \cos\left(2\pi f_c t\right) \\ Modulator \\ Modulator \\ Modulator \\ V_c \cos\left(2\pi f_c t\right) \\ Modulator \\ Modula$$

Frequency modulation of single frequency signal

$$v_m(t) = V_m \cos(\omega_m t)$$

PM:

FM:

$$V_{PM}(t) = V_c \cos\left(\omega_c t + K_p V_m \cos\left(\omega_m t\right)\right)$$

$$v_{m}(t) = V_{m} \cos(\omega_{m} t)$$

$$v_{FM}(t) = V_{c} \cos\left(\omega_{c} t + \int_{0}^{t} K_{f} V_{m} \cos(\omega_{m} t) dt\right)$$

$$= V_{c} \cos\left(\omega_{c} t + \frac{K_{f} V_{m}}{\omega_{m}} \sin(\omega_{m} t)\right)$$

Phase Deviation and Modulation Index

$$v_{angle}\left(t\right) = V_c \cos\left(\omega_c t + m\cos\left(\omega_m t\right)\right)$$

m is the **peak phase deviation** or **modulation index**

$$PM: \qquad v_{PM}(t) = V_c \cos\left(\omega_c t + K_p V_m \cos\left(\omega_m t\right)\right)$$

 $m = K_p V_m$ (radians)

FM:
$$v_{FM}(t) = V_c \cos\left(\omega_c t + \frac{K_f V_m}{\omega_m} \sin(\omega_m t)\right)$$

 $m = \frac{K_f V_m}{\omega_m}$ (unitless)

Frequency Deviation

$$v_{FM}(t) = V_c \cos\left(\omega_c t + \frac{K_f V_m}{\omega_m} \sin(\omega_m t)\right)$$

$$\omega_{inst}(t) = \omega_c + K_f V_m \cos(\omega_m t)$$

$$\Delta \omega = K_f V_m \quad \text{(peak) frequency deviation}$$

$$m = \frac{K_f V_m}{\omega_m} = \frac{\Delta \omega}{\omega_m} \quad \text{dependent of the frequency}$$

$$v_{PM}(t) = V_c \cos\left(\omega_c t + K_p V_m \cos(\omega_m t)\right)$$

$$\omega_{inst}(t) = \omega_c + \frac{K_p V_m \omega_m}{\omega_m} \sin(\omega_m t)$$

$$\Delta \omega = K_p V_m \omega_m \quad \text{(peak) frequency deviation}$$

$$m = K_p V_m (peak) \quad \text{frequency deviation}$$

F

PM and FM of sine-wave signal

Bessel function of the first kind

$$\begin{aligned} v_{angle}\left(t\right) = V_c \cos\left(\omega_c t + m\cos\left(\omega_m t\right)\right) & m \text{ is the modulation inder} \\ \cos\left(\alpha + m\cos\beta\right) = \sum_{n=-\infty}^{\infty} J_n\left(m\right)\cos\left(\alpha + n\beta + \frac{n\pi}{2}\right) & m = \frac{K_f V_m}{\omega_m} \quad \text{FM} \\ J_n\left(m\right) & \text{ is the Bessel function of the first kind} \\ v_{angle}\left(t\right) = V_c \sum_{n=-\infty}^{\infty} J_n\left(m\right)\cos\left(\omega_c t + n\omega_m t + \frac{n\pi}{2}\right) \\ J_0\left(m\right)\cos\omega_c t + \\ J_1\left(m\right)\cos\left[\left(\omega_c + \omega_m\right)t + \frac{\pi}{2}\right] - J_1\left(m\right)\cos\left[\left(\omega_c - \omega_m\right)t - \frac{\pi}{2}\right] + \\ J_2\left(m\right)\cos\left[\left(\omega_c + 2\omega_m\right)t + \pi\right] + J_2\left(m\right)\cos\left[\left(\omega_c - 2\omega_m\right)t - \pi\right] + \dots \end{aligned}$$

Relation AM and angle mod

$$v_{am}(t) = E_c \left\{ \cos(2\pi f_c t) + \frac{m}{2} \cos(2\pi [f_c + f_m] t) + \frac{m}{2} \cos(2\pi [f_c - f_m] t) \right\}$$

$$v_{angle}(t) = V_c \begin{cases} J_0(m)\cos\omega_c t + \\ J_1(m)\cos\left[(\omega_c + \omega_m)t + \frac{\pi}{2}\right] - J_1(m)\cos\left[(\omega_c - \omega_m)t - \frac{\pi}{2}\right] + \\ J_2(m)\cos\left[(\omega_c + 2\omega_m)t\right] + J_2(m)\cos\left[(\omega_c - 2\omega_m)t\right] + \dots \end{cases}$$

Bessel function of the first kind

Bandwidth requirements of Angle-mod waves

1 Low-index modulation (narrowband FM) $m < 1 (f_m >>> \Delta f) \quad B = 2f_m (Hz)$

2 High-index modulation (wideband FM)

 $m > 10 (\Delta f >>> f_m)$ $B = 2\Delta f$

3 Actual bandwidth (look at Bessel table page 266) $B = 2nf_m$

where n is the number of significant sidebands

4 Carson's rule (approx 98 % of power) $B = 2(\Delta f + f_m)$

Example

FM modulator

 $\Delta f = 10 \text{ kHz}$ $f_m = 10 \text{ kHz}$ $V_c = 10 \text{ V}$ $f_c = 500 \text{ kHz}$

Draw the spectrum?

What is the bandwidth using Bessel table?

What is the bandwidth using Carson's rule?

Example

Phasor representation of Angle-mod wave

2006

Phasor representation of Angle-mod wave

Average Power of Angle-mod wave

Instantaneous power in unmodulated carrier is $P_c = \frac{V_c^2}{2R}$ (W)

 P_c = carrier power (Watts) V_c = peak unmodulated carrier voltage (volts) R = load resistance (ohms)

Instantaneous power in angle-mod carrier is $P_{t} = \frac{v_{angle \mod}(t)^{2}}{R} = \frac{V_{c_un}^{2}}{R} \cos^{2}\left[\omega_{c}t + \theta(t)\right] = \frac{V_{c_un}^{2}}{R} \left\{\frac{1}{2} + \frac{1}{2}\cos\left[2\omega_{c}t + 2\theta(t)\right]\right\}$

So the average power of the angle-mod carrier is equal to the unmodulated carrier

$$\langle P_t \rangle = \frac{V_{c_un}^2}{2R} = \frac{V_c^2}{2R} + \frac{2(V_1)^2}{2R} + \frac{2(V_2)^2}{2R} + \dots + \frac{2(V_n)^2}{2R}$$

Frequency and Phase modulators Direct FM Modulator

Linear integrated-circuit direct FM modulator

High-frequency deviations and high modulation indices.

Fig 7-20

Frequency up-conversion heterodyne method

With FM and PM modulators, the carrier at the output is generally somewhat lower than the desired frequency of transmission

Input from FM or PM modulator

Output

Frequency up-conversion multiplication

Indirect FM Transmitter

Indirect FM Transmitter

Angle mod versus AM

Advantages of Angle modulation

- Noise immunity
- Noise performance and signal-to-noise improvement
- Capture effect
- Power utilization and efficiency

Disadvantages of Angle modulation

- Bandwidth
- Circuit complexity and costs

End Lecture 7

Summary and Outlook

Next lecture:

g

Chapter 8 Angle modulation reception

2006