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* Mechanism of Convection
* Applications .

* Mean fluid Velocity and Boundary and their effect on the rate of heat
transfer.

* Fundamental equation of heat transfer

* Logarithmic-mean temperature difference.
* Heat transfer Coefficients.

* Heat flux and Nusselt correlation

* Simulation program for Heat Exchanger
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How is the heat transfer?

* Heat can transfer between the surface of a solid conductor
and the surrounding medium whenever temperature gradient
exists.

Conduction

Convection
Natural convection
Forced Convection
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Natural convection occurs whenever heat flows between a solid
and fluid, or between fluid layers.

As a result of heat exchange

Change in density of effective fluid layers taken place, which causes
upward flow of heated fluid.
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If this motion is associated with heat transfer mechanism only,
then it is called Natural Convection

=
17}
[<5]
—
o
c
=]
)
>
(%]
(&)
>
£
S
s
=




»If this motion is associated by mechanical means such as
pumps, gravity or fans, the movement of the fluid is enforced.

»And in this case, we then speak of Forced convection.
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Heat Exchangers

* A device whose primary purpose is the transfer of energy
between two fluids is named a Heat Exchanger.
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Figure 22.4 Compact heat-exchanger configurations.



Applications of Heat Exchangers
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* The closed-type exchanger is the most popular one.
* One example of this type is the Double pipe exchanger.
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l

* In this type, the hot and cold fluid streams do not come into
direct contact with each other. They are separated by a tube
wall or flat plate.
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Principle of Heat Exchanger
* First Law of Thermodynamic: “Energy is conserved.”

dagZ”™’ . X 0 A0 A0
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Cross Section Area Thermal Boundary Lays
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When fluid flow through a circular tube of uniform cross-suction
and fully developed,

The velocity distribution depend on the type of the flow.
In laminar flow the volumetric flowrate is a function of the radius.

r=D/2

V= _[u27zrdr
r=0
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V = volumetric flowrate

u = average mean velocity




= In turbulent flow, there is no such distribution.

* The molecule of the flowing fluid which adjacent to the surface
have zero velocity because of mass-attractive forces. Other
fluid particles in the vicinity of this layer, when attempting to
slid over it, are slow down by viscous forces.
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* Accordingly the temperature gradient is larger at the wall and
through the viscous sub-layer, and small in the turbulent core.

& T};‘/TUbe wall
qx — hAAT o . Wwarm fluid %
2
qu — hA(TW o Tv) \ cold fluid Toe s g
3 : : =

4 lcooling 3

* The reason for tpis is 9 A(T <
1) Heat must transfer through the boundary| er by c
conduction. %
2) Most of the fluid have a low thermal conductivity (k) g
=

3) While in the turbulent core there are a rapid moving eddies,
which they are equalizing the temperature.




U = The Overall Heat Transfer Coefficient [W/m.K]
Mo

Region I : Hot Liquid - Solid
Convection

Qx - hhot'(

qx = hc (]:),wall - ]-;)AO -

I,—1.=
R+R,+R
q. =UA(T, T,

+
k

copper
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Calculating U using Log Mean Temperature

- dg, =m,.C).dT, — d(aT) =dT, —dT,
Hot Stream dy h*=p = "h AT :Th _'FC i d(AT)z(dqhh_
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Log Mean Temperature evaluation
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DIMENSIONLESS ANALYSIS TO CHARACTERIZE A HEAT EXCHANGE
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Empirical Correlation

eFor turbulent flow

0.14
Nu, . = 0.026.Re%® .Pr'/3 [ﬂj
1,

*Good To Predict within 20%
«Conditions: L/D > 10
0.6 < Pr<16,700
Re > 20,000
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Experimental

Apparatus

Switch for concurrent Temperature
and countercurrent ——lndicator
flow *
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Cold Flow | ' Rotameters
rotameter
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» Two copper concentric pipes
sInner pipe (ID=7.9mm, OD =9.5mm, L =1.05m)
*Outer pipe (ID = 11.1 mm, OD = 12.7 mm)

*Thermocouples placed at 10 locations along exchanger, T1 through T10




WATER—WATER TURBULENT FLOW HEAT EXCHANGER
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of Exp. Results
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Effect of core tube velocity on the local and
over all Heat Transfer coefficients
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Two-Phase Flow Boiling Heat Transfer

P MV Subbarao
Professor
Mechanical Engineering Department

Selection of Optimal Parameters for Healthy and Sa
Furnace Walls with Frictional Flow.....
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Heat Transfer in Liquid Region

qg — h(Ts _Tsat)

* The liquid in the channel may be in laminar or turbulent flow, in either case th
laws governing the heat transfer are well established.

* Heat transfer in turbulent flow in a circular tube can be estimated by the well-
known Dittus-Boelter (subcritical ) equation.

hD,,

f
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Religious to Secular Attitude

Super Critical means no distinction
between water and steam
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Pseudo Critical Line
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Thermo physical Properties at Super Critical Pressures
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Heat Transfer Coefficient

hd k
— =0.023Re"? pr®*| —
k, d
50
w11 Mg/m?s; 0.8 MW/m?
3 40 -
=
Z 30
%
2
g 20 -
—
T 101 [P=25MPa
Dittus-Boelter
0 ! 1 1 1 |
250 300 350 400 450 500

bulk temperature [°C]

550

%)
5]
=
o
Pz
>
=
>
n
(&}
>_
=
=
%)
(<}
=
(@]
c
=)
=
>
n
©
>
£




Actual Heat Transfer Coefficient of SC Water
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Study of Flow Boiling
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Heat Transfer Coefficient, kW/m2K
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Single-Phase Liquid Heat Transfer

* Under steady state one-dimensional conditions the tube surface
temperature is given by:

Twall (Z) — Tfluid (Z) + Awa e and where

e q" is the heat flux,

e Gisthe mass velocity,

GAC, " e Aisthe flow area.
, flui
i e C,is the liquid specific heat.

q" Pz e Pisthe heated perimeter,
Tauia(Z) = Thuigi + .
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. [l ATy, is the temperature differe
q e histhe heat transfer coefficient
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The Religious Attitude

Super Critical means no distinction
between water and steam
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The Onset of Nucleate Boiling

* If the wall temperature rises sufficiently above the local saturation
temperature pre-existing vapor in wall sites can nucleate and grow.

* This temperature, T, marks the onset of nucleate boiling for this
flow boiling situation.

* From the standpoint of an energy balance this occurs at a particular
axial location along the tube length, Z,,;.

* For a uniform flux condition,
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We can arrange this energy balance to emphasize the necessary
superheat above saturation for the onset of nucleate boiling

T all. ONB — Tt = ATong

W




" PZONB 1 —(T

: sat _Twwi)
mAC . h,

ATONB =(

Now that we have a relation between AT,z and Zy\g We must
provide a stability model for the onset of nucleate boiling.

one can formulate a model based on the metastable condition of
the vapor nuclei ready to grow into the world.

There are a number of correlation models for this stability line of
ATong:
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Bergles and Rohsenow (1964) obtained an equation for the wall
superheat required for the onset of subcooled boiling.




Their equation is valid for water only, given by

q .
(T ~Tour Jong = 0.558 7 5255046397

800 Tor
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Figure 1. Schematic Representation of the Subcooled Boiling Regimen.
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Subcooled Boiling

The onset of nucleate boiling indicates the location where the vapor can fir
exist in a stable state on the heater surface without condensing or vapor
collapse.

As more energy is input into the liquid (i.e., downstream axially) these vapc
bubbles can grow and eventually detach from the heater surface and enter
the liquid.
Onset of nucleate boiling occurs at an axial location before the bulk liquid i
saturated.

The point where the vapor bubbles could detach from the heater surface
would also occur at an axial location before the bulk liquid is saturated.

This axial length over which boiling occurs when the bulk liquid is subcooles
called the "subcooled boiling" length.

This region may be large or small in actual size depending on the fluid
properties, mass flow rate, pressures and heat flux.

It is a region of inherent nonequilibrium where the flowing mass quality ané
vapor void fraction are non-zero and positive even though the thermodynamic
equilibrium quality and volume fraction would be zero; since the bulk
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temperature is below saturation.




